Science.gov

Sample records for karst aquifer estimates

  1. Evaluating Transmissivity Estimates from Well Hydrographs in Karst Aquifers

    SciTech Connect

    Powers, J.g.; Shevenell, l

    1999-07-01

    Hydrograph recessions from rainfall events have previously been analyzed for discharge at springs and streams; however, relatively little quantitative research has been conducted with regard to hydrograph analysis of recessions from monitoring wells screened in karst aquifers. In previous work a quantitative hydrography analysis technique has been proposed born which matrix transmissivity (i.e., transmissivity of intergranular porosity) and specific yields of matrix, fracture, and conduit components of the aquifer may be determined from well hydrography. The technique has yielded realistic results at three sites tested by the authors thus far (Y-12, Oak Ridge, TN; Crane, IN, and Ft. Campbell, KY). Observed field data, as well as theoretical considerations, show that karst well hydrography are valid indicators of hydraulic properties of the associated karst aquifers. Results show matrix transmissivity (T) values to be in good agreement with values calculated using more traditional parameter estimation techniques such as aquifer pumping tests and slug tests in matrix dominated wells. While the hydrograph analysis technique shows promise for obtaining reliable estimates of karst aquifer T with a simple, relatively inexpensive and passive method, the utility of the technique is limited in its application depending on site-specific hydrologic conditions, which include shallow, submerged conduit systems located in areas with sufficient rainfall for water levels to respond to precipitation events.

  2. Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer.

    PubMed

    Guardiola-Albert, Carolina; Martos-Rosillo, Sergio; Pardo-Igúzquiza, Eulogio; Durán Valsero, Juan José; Pedrera, Antonio; Jiménez-Gavilán, Pablo; Liñán Baena, Cristina

    2015-01-01

    Management of water resources, implying their appropriate protection, calls for a sound evaluation of recharge. Such assessment is very complex in karst aquifers. Most methods are developed for application to detrital aquifers, without taking into account the extraordinary heterogeneity of porosity and permeability of karst systems. It is commonly recommended to estimate recharge using multiple methods; however, differences inherent to the diverse methods make it difficult to clarify the accuracy of each result. In this study, recharge was estimated in a karst aquifer working in a natural regime, in a Mediterranean-type climate, in the western part of the Sierra de las Nieves (southern Spain). Mediterranean climate regions are characterized by high inter-annual rainfall variability featuring long dry periods and short intense wet periods, the latter constituting the most important contribution to aquifer water input. This paper aims to identify the methods that provide the most plausible range of recharge rate during wet periods. Six methods were tested: the classical method of Thornthwaite-Mather, the Visual Balan code, the chloride balance method, and spatially distributed methods such as APLIS, a novel spatiotemporal estimation of recharge, and ZOODRM. The results help determine valid methods for application in the rest of the unit of study and in similar karst aquifers.

  3. Analysis of methods to estimate spring flows in a karst aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer. ?? 2008 National Ground Water Association.

  4. Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: Application to Sierra de las Nieves (Spain)

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, E.; Durán-Valsero, J. J.; Dowd, P. A.; Guardiola-Albert, C.; Liñan-Baena, C.; Robledo-Ardila, P. A.

    2012-11-01

    SummaryWe describe a method for estimating the daily, spatially distributed recharge of aquifers in mountainous karst terrains using a water balance. Water recharge into an aquifer is a highly variable process over both time and space. Many methods have been developed to assess aquifer recharge although most have been applied to detrital aquifers. Many karst aquifers, especially in Mediterranean areas, occur in mountainous environments where rainfall and evapotranspiration can vary considerably over space and time and where there are usually few rainfall and temperature monitoring stations. We have used an advanced geostatistical method to estimate daily rainfall and temperature. The method involves kriging with an external drift using a climatological semi-variogram model inferred by modified maximum-likelihood. The depth of the soil-epikarst layer is estimated from remote sensing and terrain analysis data together with field observations and electrical resistivity tomography. Because of the karst nature of the mountainous terrain, concentrated infiltration is allowed for in some places. The parameters are calibrated against the cumulative discharge of various springs. The method is illustrated by a case study of the Sierra de las Nieves aquifer in the mountainous karst region of southern Spain.

  5. Estimation of transit times in a Karst Aquifer system using environmental tracers: Application on the Jeita Aquifer system-Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Hamdan, Ahmad

    2016-04-01

    Estimating transit times is essential for the assessment of aquifer vulnerability to contaminants. Groundwater in karst aquifer is assumed to be relatively young due to fast preferential pathways; slow flow components are present in water stored in the fissured matrix. Furthermore, transit times are site specific as they depend on recharge rates, temperatures, elevation, and flow media; saturated and unsaturated zones. These differences create significant variation in the groundwater age in karst systems as the water sampled will be a mix of different water that has been transported through different flow pathways (fissured matrix and conduits). Several methods can be applied to estimate water transit time of an aquifer such as artificial tracers, which provide an estimate for fast flow velocities. In this study, groundwater residence times in the Jeita spring aquifer (Lebanon) were estimated using several environmental tracers such as Chlorofluorocarbons (CFCs), Sulfur Hexafluoride (SF6), Helium-Tritium (3H, 3H- 3He). Additional stable isotope and major ion analysis was performed to characterize water types. Groundwater samples were collected from six different wells in the Jeita catchment area (Jurassic Kesrouane aquifer) as well as from the spring and cave itself. The results are reproducible for the Tritium-Helium method, unlike for the CFC/SF6 methods that yielded poor results due to sampling problems. Tritium concentrations in all groundwater samples show nearly the same concentration (~2.73 TU) except for one sample with relatively lower tritium concentration (~2.26 TU). Ages ranging from 0.07 ± 0.07 years to 23.59 ± 0.00 years were obtained. The youngest age is attributed to the spring/ cave while the oldest ages were obtained in wells tapping the fissured matrix. Neon in these samples showed considerable variations and high delta Ne in some samples indicating high excess air. Four (4) samples showed extreme excess air (Delta-Ne is greater than 70 %) and

  6. Analysis of well hydrographs in a karst aquifer: Estimates of specific yields and continuum transmissivities

    SciTech Connect

    Shevenell, L.A.

    1994-11-01

    Hydrograph analysis techniques have been well developed for hydrographs obtained from streams and springs, where data are cast in terms of total discharge. The data obtained from well hydrographs provide water level versus time; hence, a method of hydrograph analysis is required for situations in which only water level data are available. It is hypothesized here that three segments on a recession curve from wells in a karst aquifer represent drainage from three types of storage: conduit (C), fracture (F), and matrix (M). Hydrographs from several wells in a karst aquifer at the U.S. Department of Energy Oak Ridge Y-12 Plant are used to estimate the specific yields (S{sub y}) associated with each portion of the aquifer (C, F, M), as well as continuum transmissivities (T). Data from three short injection tests at one well indicate continuum T at this well bore is {approximately} 5m{sup 2}/d, and tests at numerous other wells in the aquifer yield results between 1 and 7 M{sup 2}/d. The T estimated with well hydrographs from two storm events indicates a T of 9.8 m{sup 2}2/d. Well developed conduit systems in which water levels in wells show a flashy response typically show S{sub y} values of 1{times}10{sup -4}, 1{times}10{sup -3}, and 3{times}10{sup -3}, for C, F, and M. Less well developed conduit areas show more nearly equal S{sub y} values (8.6{times}10{sup -4}, 1.3{times}10{sup -3}, 3{times}10{sup -3}). Areas with no evidence for the presence of conduits have only one, or in some cases two, slopes on the recession curve. In these cases, water level responses are slow. Recession curves with a single slope represent drainage from only the lower T matrix. Those with two slopes have an additional, more rapid response, segment on the recession curve, which represents drainage from the higher T, lower S{sub y}, fractures in the system.

  7. A new Method to Estimate the Representative Elementary Volume (REV) for Porosity in Heterogeneous Karst Aquifers Using Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Gross, M. R.; Manda, A. K.

    2004-12-01

    Karst limestones are characterized by solution-enhanced macropores and conduits that lead to exceptional heterogeneity at the aquifer scale. The interconnected network of solution cavities often results in a conduit flow regime that bypasses the less permeable rock matrix. Efforts to manage and protect karst aquifers, which are vital water resources in many parts of the world, will benefit from meaningful characterizations of the heterogeneity inherent in these formations. To this end, we propose a new method to estimate the representative elementary volume (REV) for macroporosity within karst aquifers using techniques borrowed from remote sensing and geospatial analysis. The REV represents a sampling window in which numerous measurements of a highly-variable property (e.g., porosity, hydraulic conductivity) can be averaged into a single representative value of statistical and physical significance. High-resolution borehole images are classified into binary images consisting of pixels designated as either rock matrix or pore space. A two-dimensional porosity is calculated by summing the total area occupied by pores within a rectangular sampling window placed over the binary image. Small sampling windows quantify the heterogeneous nature of porosity distribution in the aquifer, whereas large windows provide an estimate of overall porosity. Applying this procedure to imagery taken from the Biscayne aquifer of south Florida yields a macroporosity of ~40%, considerably higher than the ~28% porosity measured from recovered core samples. Geospatial analysis may provide the more reliable estimate because it incorporates large solution cavities and conduits captured by the borehole image. The REV is estimated by varying the size of sampling windows around prominent conduits and evaluating the change in porosity as a function of window size. Average porosities decrease systematically with increasing sampling size, eventually converging to a constant value and thus

  8. Predicting contaminant migration in karst aquifers

    SciTech Connect

    Field, M.S.

    1996-06-01

    Time-of-travel transport estimation is employed to predict contaminant migration in karst aquifers. Estimation of time-of-travel transport is conditioned on the set of hydraulic-flow that occur within karst conduits. These parameters are applied to surface-water models to reflect time-of-travel flow and geometries are determined empirically through quantitative ground-water tracing studies. Quantitative ground-water tracing studies are based on a comprehensive tracer budget and numerical analysis of the tracer recovery curves for time-of-travel parameters that include mean residence time, mean flow velocity, longitudinal dispersivity, karst conduit volume, cross-sectional area, diameter, and hydraulic depth for use in surface-water models.

  9. A groundwater conceptual model and karst-related carbon sink for a glacierized alpine karst aquifer, Southwestern China

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Liu, Zaihua; Yang, Jianwen; Yang, Rui

    2015-10-01

    In the Jade Dragon Snow Mountain (JDSM) region, Yunnan Province, SW China, an extensive hydrochemical and stable isotopic study of a glacierized alpine karst aquifer was conducted during the period, 2011-2014. The objectives of the study were: first, to establish a conceptual hydrogeological model of the karst groundwater system; second, to estimate the proportion of extra glacier melt water infiltrating the karst aquifer that is being induced by the regional climate warming; third, to calculate the karst-related flux of carbon into the karst aquifer. Knowledge of the local hydrogeological background from previous work was the starting point of the hydrochemical and stable isotopic study. Some representative spring waters and recharge waters (i.e. glacier melt water and rainwater) were investigated both spatially and temporally by hydrochemical and isotopic techniques, including analysis of major and some minor ions and O and H stable isotopes. A conceptual hydrogeological model of a fracture-diffuse flow karst groundwater aquifer was proposed. The proportion of glacier melt water infiltrating into the karst aquifer was estimated by using the karst spring as a natural pluviometer, and with stable isotope analysis. Results show that (1) the JDSM karst aquifer is a diffuse flow system; (2) it has a number of discharge areas, and the Jinsha River is the karst drainage base level; (3) the proportion of the glacier melt water penetrating the karst aquifer is 29%; and (4) the karst-related carbon sink is 26.67 ± 3.44 t km-2 a-1 (as CO2), which is lower than that in non-glacierized karst aquifers but over ten times larger than the carbon sink flux from silicate weathering in non-karst areas, showing the control of both climate and lithology on the rock weathering-related carbon sink and the significance of carbonate weathering in the global carbon cycle.

  10. Research approach to teaching groundwater biodegradation in karst aquifers

    USGS Publications Warehouse

    King, L.; Byl, T.; Painter, R.

    2006-01-01

    TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.

  11. Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-10-15

    Little is known with respect to the attenuation capacity of karst aquifers. Even less is known about the risk posed by emerging micropollutants in these systems. In order to identify the attenuation potential of karst aquifers in-situ and to estimate the risk posed by micropollutants, a dualtracer test was conducted in this study in order to investigate differential transport in the subsurface: The reactive compound caffeine was used as a tracer to indicate the attenuation capacity within the aquifer in-situ. Due to the low limit of quantification, only small amounts of caffeine needed to be injected. To calibrate a model and to visualize the attenuation of caffeine a conservative reference tracer (uranine) is injected simultaneously. The methodology is tested in a well-characterised karst system in southwest Germany. The results indicate a significantly higher attenuation rate than was expected for karst aquifers. The attenuation is decribed as a first-order process. The corresponding half-life is 104 h. This low half-life suggests that a generally assumed low natural attenuation capacity of karst aquifers is unjustified. The observed mass loss of caffeine illustrates the potential of caffeine to be used as reactive tracer for indicating in-situ attenuation capacity within highly hydraulically conductive systems, such as karst aquifers. Due to the high attenuation rate of caffeine it does not pose a threat as a long-time contaminant. In combination with a conservative reference tracer an economical and environmentally benign method is presented in this manuscript for the in-situ determination of the attenuation capacity of highly conductive aquifer systems.

  12. Unprotected karst resources in western Iran: the environmental impacts of intensive agricultural pumping on the covered karstic aquifer, a case in Kermanshah province

    NASA Astrophysics Data System (ADS)

    Taheri, Kamal; Taheri, Milad; Parise, Mario

    2015-04-01

    Bare and covered karst areas, with developed karstic aquifers, cover 35 percent of the Kermanshah province in western Iran. These aquifers are the vital sources for drinking and agricultural water supplies. Over the past decade, intensive groundwater use (exploitation) for irrigation imposed a significant impact on the carbonate environments. The huge amount of groundwater over-exploitations has been carried out and still goes on by local farmers in the absence of appropriate governance monitoring control. Increasing in water demands, for more intense crop production, is an important driving force toward groundwater depletion in alluvial aquifers. Progressive groundwater over-exploitations from underlying carbonate rocks have led to dramatic drawdown in alluvial aquifers and deep karst water tables. Detecting new sources of groundwater extractions and prohibiting the karst water utilization for agricultural use could be the most effective strategy to manage the sustainability of covered karst aquifers. Anthropogenic pressures on covered karst aquifers have magnified the drought impacts and caused dryness of most of the karst springs and deep wells. In this study, the combination of geophysical and geological studies was used to estimate the most intensively exploited agricultural zones of Islam Abad plain in the southwestern Kermanshah province using GIS. The results show that in the past decade a great number of deep wells were drilled through the overburden alluvial aquifer and reached the deep karst water resources. However, the difficulties involved in monitoring deep wells in covered karst aquifer were the main cause of karst water depletion. Overexploitation from both alluvial and karst aquifers is the main reason for drying out the Arkawazi, Sharafshah, Gawrawani karst springs, and the karst drinking water wells 1, 3 and 5 of Islam Abad city. Karst spring landscape destructions, fresh water supply deficit for inhabitants, decreasing of tourism and

  13. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  14. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types.

  15. Use of stable isotope-labeled Escherichia coli as a tracer in karst aquifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial contamination of karst aquifers is a large concern across the globe, yet bacterial transport in karst aquifers is not currently well understood. Groundwater tracers typically used in karst systems include fluorescent dyes and latex microspheres. Not only can these tracers can be cost-prohi...

  16. SWISSKARST Project - how to document the karst aquifers in Switzerland using the KARSYS approach.

    NASA Astrophysics Data System (ADS)

    Malard, A.; Vouillamoz, J.; Jeannin, P.-Y.; Weber, E.; Eichenberger, U.

    2012-04-01

    Swiss karst aquifers are poorly documented although they represent a resource estimated to around 120 km3 of fresh water - which is comparable to the water volume of all Swiss lakes. Within the framework of the Swiss National Research Program 61 an opportunity was given to develop a systematic way to characterize karst aquifers and to describe their hydrological behaviour. The project aims at providing methodologies or guidelines to approach karst systems and to improve their management. This covers a large range of fields such as water supply, civil engineering, renewable energies, natural hazards, etc. In this context SISKA developed a dedicated approach named KARSYS for KARst SYStems characterization. It is based on iterations of 3D geological models combined with some basic hydraulic principles taking place in karst media. The main principles are: (i) The 3D geometry of the aquifer set the framework in which flow processes take place (ii) Aquifers are flooded below the level of the main perennial springs (iii) The expansion of the water table upstream of the main springs is lower than 1% (low water stage). High water gradients are simulated according to the elevation of temporary springs or observations in existing boreholes or caves. The approach explicitly shows through 3D visual that some groundwater bodies may be separated at low water stage and connected at high water. Such 3D views bring often explanations to the interpretation of "strange" or "not repeatable" dye tracer's results. A major input of KARSYS approach is to provide a systematic construction of a conceptual model for all hydrological karst systems. It also considers interactions between adjacent systems, providing new concepts on the delineation of karst systems. KARSYS approach can be applied in a quick and approximate way and improved along in order to reach a precision according to the question to be addressed. Results of KARSYS applications are: (i) The delineation of catchment areas of

  17. Modelling karst aquifer evolution in fractured, porous rocks

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg

    2016-12-01

    The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.

  18. Heterotrophic prokaryotic production in ultra-oligotrophic alpine karst aquifers and ecological implications

    PubMed Central

    Wilhartitz, Inés C.; Kirschner, Alexander K.T.; Stadler, Hermann; Herndl, Gerhard J.; Dietzel, Martin; Latal, Christine; Mach, Robert L.; Farnleitner, Andreas H.

    2011-01-01

    Spring waters from alpine karst aquifers are important drinking water resources. To investigate in situ prokaryotic heterotrophic production (HP) and its controlling factors, two alpine karst springs of contrasting hydrogeology but of nearby catchments were studied over two annual cycles. Heterotrophic production in spring water, as determined by [3H]leucine incorporation, was low but revealed strong seasonal variations ranging from 0.06 to 6.83 pmol C l−1 h−1 (DKAS1, dolomitic karst-spring) and from 0.50 to 75.6 pmol C l−1 h−1 (LKAS2, limestone karst-spring). Microautoradiography combined with catalyzed reporter deposition - fluorescence in situ hybridization (MAR-CARD-FISH) showed that only about 7 % of the picoplankton community took up [3H]leucine resulting in generation times of 3 to 684 days. Principal component analysis, applying hydrological, chemical and biological parameters demonstrated that planktonic heterotrophic production in LKAS2 was strongly governed by hydrogeographical components (e.g. discharge), whereas variations in DKAS1 are also strongly influenced by changes within the aquifer itself. Measurements in sediments recovered from LKAS2, DKAS1 and similar alpine karst aquifers (n=12) revealed an 106-fold higher heterotrophic production (average 19 μmol C dm−3 h−1) with significantly lower generation times as compared to the planktonic fraction, highlighting the metabolic potential of surface associated endokarst communities to add to self-purification processes. Estimates of microbially mediated CO2 in this compartment indicated a possible contribution to karstification. PMID:19490127

  19. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 3. Use of microspheres to estimate the transport potential of Cryptosporidium parvum oocysts

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.; Shapiro, A.M.; Renken, R.A.; Osborn, C.L.; Ryan, J.N.; Cunningham, K.J.; Landkamer, L.

    2008-01-01

    The vulnerability of a municipal well in the Northwest well field in southeastern Florida to potential contamination by Cryptosporidium parvum oocysts was assessed in a large-scale, forced-gradient (convergent) injection and recovery test. The field study involved a simultaneous pulse introduction of a nonreactive tracer (SF6, an inert gas) and oocyst-sized (1.6, 2.9, and 4.9 ??m diameter) carboxylated polystyrene microspheres into karst limestone of the Biscayne aquifer characterized by a complex triple (matrix, touching-vug, and conduit) porosity. Fractional recoveries 97 m down gradient were inversely related to diameter and ranged from 2.9% for the 4.9 ??m microspheres to 5.8% for 1.6 ??m microspheres. Their centers of mass arrived at the pumping well approximately threefold earlier than that of the nonreactive tracer SF6 (gas), underscoring the need for use of colloid tracers and field-scale tracer tests for these kinds of evaluations. In a modified triaxial cell using near in situ chemical conditions, 2.9 and 4.9 ??m microspheres underestimated by fourfold to sixfold the attachment potential of the less electronegative 2.9-4.1 ??m oocysts in the matrix porosity of limestone core samples. The field and laboratory results collectively suggested that it may take 200-300 m of transport to ensure even a 1-log unit removal of oocysts, even though the limestone surfaces exhibited a substantive capability for their sorptive removal. The study further demonstrated the utility of microspheres as oocyst surrogates in field-scale assessments of well vulnerability in limestone, provided that differences in attachment behaviors between oocysts and microspheres are taken into account. Copyright 2008 by the American Geophysical Union.

  20. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    PubMed

    Musgrove, M; Opsahl, S P; Mahler, B J; Herrington, C; Sample, T L; Banta, J R

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3(-)) loading to surface and groundwater. We investigate variability and sources of NO3(-) in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008-12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3(-) stable isotopes (δ(15)N and δ(18)O). These data were augmented by historical data collected from 1937 to 2007. NO3(-) concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3(-) concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3(-) concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3(-). These results highlight the vulnerability of karst aquifers to NO3(-) contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008-10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3(-) than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized

  1. Prediction, time variance, and classification of hydraulic response to recharge in two karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Mahler, Barbara J.

    2013-01-01

    Many karst aquifers are rapidly filled and depleted and therefore are likely to be susceptible to changes in short-term climate variability. Here we explore methods that could be applied to model site-specific hydraulic responses, with the intent of simulating these responses to different climate scenarios from high-resolution climate models. We compare hydraulic responses (spring flow, groundwater level, stream base flow, and cave drip) at several sites in two karst aquifers: the Edwards aquifer (Texas, USA) and the Madison aquifer (South Dakota, USA). A lumped-parameter model simulates nonlinear soil moisture changes for estimation of recharge, and a time-variant convolution model simulates the aquifer response to this recharge. Model fit to data is 2.4% better for calibration periods than for validation periods according to the Nash–Sutcliffe coefficient of efficiency, which ranges from 0.53 to 0.94 for validation periods. We use metrics that describe the shapes of the impulse-response functions (IRFs) obtained from convolution modeling to make comparisons in the distribution of response times among sites and between aquifers. Time-variant IRFs were applied to 62% of the sites. Principal component analysis (PCA) of metrics describing the shapes of the IRFs indicates three principal components that together account for 84% of the variability in IRF shape: the first is related to IRF skewness and temporal spread and accounts for 51% of the variability; the second and third largely are related to time-variant properties and together account for 33% of the variability. Sites with IRFs that dominantly comprise exponential curves are separated geographically from those dominantly comprising lognormal curves in both aquifers as a result of spatial heterogeneity. The use of multiple IRF metrics in PCA is a novel method to characterize, compare, and classify the way in which different sites and aquifers respond to recharge. As convolution models are developed for

  2. The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Auler, Augusto S.; Bakalowicz, Michel; Drew, David; Griger, Franziska; Hartmann, Jens; Jiang, Guanghui; Moosdorf, Nils; Richts, Andrea; Stevanovic, Zoran; Veni, George; Goldscheider, Nico

    2017-01-01

    Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.

  3. Anthropogenic contaminants as tracers in an urbanizing karst aquifer.

    PubMed

    Mahler, Barbara; Massei, Nicolas

    2007-04-01

    Karst aquifers are uniquely vulnerable to contamination. In the Barton Springs segment of the karstic Edwards aquifer (Texas, U.S.A.), urban contaminants such as pesticides and volatile organic compounds frequently are detected in spring base flow. To determine whether contaminant concentrations change in response to storms, and if they therefore might act as tracers of focused recharge, samples were collected from Barton Springs at closely spaced intervals following three storms. Two herbicides (atrazine and simazine), two insecticides (carbaryl and diazinon), and a solvent (tetrachloroethene) described breakthrough curves over a 1-week period following one or more storms. The breakthrough curves were decomposed into two to five log-normal subcurves, which were interpreted as representing pulses of contaminants moving through the aquifer. Each subcurve could be used in the same way as an artificial tracer to determine travel time to and recovery at the spring. The contaminants have several advantages over artificial tracers: they represent the actual compounds of interest, they are injected essentially simultaneously at several points, and they are injected under those conditions when transport is of the most interest, i.e., following storms. The response of storm discharge, specific conductance, and contaminant loading at the spring depended on initial aquifer flow conditions, which varied from very low (spring discharge of 0.48 m3/s) to high (spring discharge of 2.7 m3/s): concentrations and recovery were the highest when initial aquifer flow conditions were low. This behavior provides information about aquifer structure and the influence of aquifer flow condition on transport properties.

  4. Anthropogenic contaminants as tracers in an urbanizing karst aquifer

    USGS Publications Warehouse

    Mahler, B.; Massei, N.

    2007-01-01

    Karst aquifers are uniquely vulnerable to contamination. In the Barton Springs segment of the karstic Edwards aquifer (Texas, U.S.A.), urban contaminants such as pesticides and volatile organic compounds frequently are detected in spring base flow. To determine whether contaminant concentrations change in response to storms, and if they therefore might act as tracers of focused recharge, samples were collected from Barton Springs at closely spaced intervals following three storms. Two herbicides (atrazine and simazine), two insecticides (carbaryl and diazinon), and a solvent (tetrachloroethene) described breakthrough curves over a 1-week period following one or more storms. The breakthrough curves were decomposed into two to five log-normal subcurves, which were interpreted as representing pulses of contaminants moving through the aquifer. Each subcurve could be used in the same way as an artificial tracer to determine travel time to and recovery at the spring. The contaminants have several advantages over artificial tracers: they represent the actual compounds of interest, they are injected essentially simultaneously at several points, and they are injected under those conditions when transport is of the most interest, i.e., following storms. The response of storm discharge, specific conductance, and contaminant loading at the spring depended on initial aquifer flow conditions, which varied from very low (spring discharge of 0.48??m3/s) to high (spring discharge of 2.7??m3/s): concentrations and recovery were the highest when initial aquifer flow conditions were low. This behavior provides information about aquifer structure and the influence of aquifer flow condition on transport properties. ?? 2006 Elsevier B.V. All rights reserved.

  5. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    PubMed Central

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. PMID:24841501

  6. Factors affecting public-supply well vulnerability in two karst aquifers

    USGS Publications Warehouse

    Musgrove, MaryLynn; Katz, Brian G.; Fahlquist, Lynne S.; Crandall, Christy A.; Lindgren, Richard J.

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  7. Factors affecting public-supply well vulnerability in two karst aquifers.

    PubMed

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  8. Updating an equivalent porous medium karst aquifer model using the coupled continuum pipe-flow method

    NASA Astrophysics Data System (ADS)

    Saller, S. P.; Ronayne, M. J.; Long, A. J.

    2013-12-01

    Karst conduits are commonly treated as high-conductivity zones in equivalent porous medium (EPM) models. In this study, an EPM model for a Paleozoic age carbonate aquifer was updated to include discrete conduits, and flow was simulated using the coupled continuum pipe-flow method. The modeled area, encompassing 2000 square km of the Madison aquifer in western South Dakota (USA), includes four karst springs with contributing conduit networks. The updated model considered the same observation data that were used to calibrate the EPM model: measured hydraulic heads at matrix observation wells and estimated springflow. Adjusted parameters included the conduit locations and hydraulic properties, as well as the matrix hydraulic conductivity distribution. Inferred karst pathways from environmental tracer analysis were used to guide the placement of conduits. The new coupled continuum pipe-flow model is characterized by a simpler conductivity distribution; extreme high-K values used in the EPM model are not necessary when conduit flow is explicitly simulated. Results are presented to illustrate the influence of conduits on simulated flow behavior.

  9. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow

    USGS Publications Warehouse

    Renken, R.A.; Cunningham, K.J.; Shapiro, A.M.; Harvey, R.W.; Zygnerski, M.R.; Metge, D.W.; Wacker, M.A.

    2008-01-01

    The Biscayne aquifer is a highly transmissive karst limestone that serves as the sole source of drinking water to over two million residents in south Florida. The aquifer is characterized by eogenetic karst, where the most transmissive void space can be an interconnected, touching-vug, biogenically influenced porosity of biogenic origin. Public supply wells in the aquifer are in close proximity to lakes established by surface mining. The mining of the limestone has occurred to the same depths as the production wells, which has raised concerns about pathogen and chemical transport from these surface water bodies. Hydraulic and forced gradient tracer tests were conducted to augment geologic and geophysical studies and to develop a hydrogeologic conceptual model of groundwater flow and chemical transport in the Biscayne aquifer. Geologic and geophysical data indicate multiple, areally extensive subhorizontal preferential flow zones of vuggy limestone separated by rock with a matrix pore system. The hydraulic response from an aquifer test suggests that the Biscayne aquifer behaves as a dual-porosity medium; however, the results of the tracer test showed rapid transport similar to other types of karst. The tracer test and concurrent temperature logging revealed that only one of the touching-vug flow zones dominates transport near the production wells. On the basis of the rising limb of the breakthrough curve, the dispersivity is estimated to be less than 3% of the tracer travel distance, which suggests that the fastest flow paths in the formation are likely to yield limited dilution of chemical constituents.

  10. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    USGS Publications Warehouse

    Musgrove, Marylynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John (Ryan)

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  11. Using nitrate to quantify quick flow in a karst aquifer

    USGS Publications Warehouse

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  12. Estimating exposure to groundwater contaminants in karst areas

    NASA Astrophysics Data System (ADS)

    Butscher, C.

    2012-12-01

    Large multidisciplinary projects investigate health effects and environmental impacts of contamination. Such multidisciplinary projects challenge groundwater hydrologist because they demand estimations of human or environmental exposure to groundwater contaminants. But especially in karst regions, groundwater quality is subject to rapid changes resulting from highly dynamic flow systems with rapid groundwater recharge and contaminant transport in karst conduits. There is a strong need for tools that allow the quantification of the risk of contaminant exposure via the karst groundwater and its temporal variation depending on rainfall events and overall hydrological conditions. A fact that makes the assessment of contaminant exposure even more difficult is that many contaminants behave differently in the subsurface than the groundwater, because they do not dissolve and exist as a separate phase. Important examples are particulate contaminants, such as bacteria, and non-aqueous phase liquids (NAPLs), such as many organic compounds. Both are ubiquitous in the environment and have large potential for health impacts. It is known from bacterial contamination of karst springs that such contamination is strongly related to flow conditions. Bacteria, which are present at the land surface, in the soil, rock matrix or the conduit system, are immobile during base flow conditions. During storm events however, they become mobilized and are rapidly transported through the conduit flow system from sources to areas of potential exposure. As a result, bacteria concentrations that most times are low at a spring can show a high peak during storm flow. Conceptual models exist that suggest that the transport of NAPLs in karst aquifers is, just like bacterial contamination, related to flow conditions. Light NAPLs that reach the saturated zone float and accumulate on the water table; and dense NAPLs sink downward in the aquifer until they are trapped in pores, fractures and conduits where

  13. Wellhead protection in confined, semi-confined, fractured and karst aquifer settings

    SciTech Connect

    Not Available

    1993-09-01

    Protection areas around wells producing from confined, fractured, and karst aquifers are, because of their complex hydrogeology, more difficult to define than protection areas for wells in porous media settings. The factsheet provides background information explaining the need to define protection areas for wells that draw public drinking water from several complex hydrogeologic settings: confined, semi-confined, fractured, and karst aquifers. These settings include aquifers in which the ground water is not open to the atmosphere, or the aquifer does not consist of unconsolidated porous media. Several figures illustrate these settings in a general way.

  14. Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Carmona, M.; Anaya, A. A.

    2014-12-01

    Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are

  15. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.

    PubMed

    Magal, Einat; Arbel, Yuval; Caspi, Sarit; Glazman, Hilel; Greenbaum, Noam; Yechieli, Yoseph

    2013-02-01

    This work combines the monitoring of two incidents of spring water pollution in the Western Galilee region of Israel, together with artificial tracer tests that provided valuable information regarding karst system connections and direct estimation of groundwater velocities. Almost simultaneous contamination of seven springs endangered the water supply for the region. The variations over time in contaminant concentration in the different springs were not similar, indicating more than one contamination source. Tracer tests revealed two different pollution sources that contributed to two different conduit pathways in the karst system. Breakthrough data for the tracers were modeled by a two-region non-equilibrium transport model, which provided the transport parameters of the karst conduit. Groundwater velocities in the conduits were found to be in a range of 2-3 km/day. The rapid response of the system was also demonstrated by the short recovery time of the springs, where, after the elimination of the pollution source, most water quality parameters reverted to their background concentrations in less than 3 months. The coexistence of highly polluted springs and uncontaminated groundwater in boreholes penetrating into the same aquifer demonstrates the complexity of groundwater flow in karst systems. In such systems, the fast groundwater flow in localized karst conduits seems to coexist with a slower flow within other portions of the aquifer.

  16. Effects of precipitation events on colloids in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Shevenell, Lisa; McCarthy, John F.

    2002-01-01

    The effects of precipitation events on colloid mobilization were evaluated during several storms from six wells in a karstic aquifer at the Oak Ridge Y-12 Plant in eastern Tennessee (USA). Turbidity increases and rapidly recedes following rain events. Although the magnitude of the turbidity increases are relatively small (≤4.78 NTU), the increased turbidity suggests transient increases in colloid abundance during storm versus non-storm periods. During the larger storms (>19 mm), the increased turbidity is associated with increases in pH, total organic carbon (TOC) and temperature, and with decreases in dissolved oxygen (DO). These larger storms result in flushing of a greater proportion of higher pH, TOC (and lower DO) soil or matrix waters into the fractures and conduits than occurs during smaller storms. Smaller storms also result in increases in turbidity, but show increases in DO and decreases in pH reflecting less influence on the water chemistry from the longer residence time epikarst or and matrix waters, and greater impact from the more dilute, newly recharged waters. Due to the complexity of karst flow and temporal variations in flow and chemistry, controls on turbidity are not consistent through time and space at the wells. During smaller storms, recharge by lower ionic strength waters may promote colloid release and thus contribute to observed increases in turbidity. During larger storms, elevated turbidity may be more related to pH increases resulting from greater influx of matrix and soil waters into fractures and conduits. Chemical factors alone cannot account for the changes in turbidity observed during the various storms. Because of the complicated nature of flow and particle transport in karst aquifers, the presence of colloids during precipitation events is dictated by a complex interplay of chemical reactions and the effects of physical perturbations due to increased flow through the conduits and fractures. Simple trends in water quality

  17. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers

    PubMed Central

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies. PMID:26422202

  18. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers.

    PubMed

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.

  19. Chemograph analysis of two herbicides in a German karst aquifer

    NASA Astrophysics Data System (ADS)

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2013-04-01

    The dynamic of spring discharge of mature karst aquifers shows after strong precipitation events: Karst spring discharge increases rapidly and strongly, the chemical composition of the spring water is altered and contaminants may be transported from the land-surface towards the spring with the percolating rainwater. Contrary to rapid water transport, high travel times have been observed for parts of the spring discharge, employing stable isotopes as indicators. Monitoring the concentrations of Ca2+ and Cl- in spring water after a precipitation event one may observe the following: After a first increase, the concentrations of Ca2+ drop below the pre-event value, due to dilution with lowly mineralized rain water. On the other hand the concentrations of Cl- increase quickly and return to their background values nearly as fast. This difference in behavior arises from the different origins of these two inorganic ions. Ca2+ in spring water originates mainly from the dissolution of the carbonatic bedrock, while Cl- might be transported from the land-surface (e.g. from road salt) towards the spring. To investigate the dynamic of water in the Gallusquelle catchment in southwest Germany a one year sampling campaign was conducted, using different herbicides as indicator compounds. Depending on discharge conditions the sampling interval varied between 3 hours and several days. Among others, the currently applied and chemically unstable metazachlor was observed together with atrazine, which is prohibited since more than 20 years in Germany. While the detection frequency of atrazine in the spring water samples was nearly 100%, the concentrations ranged only up to 5.2 ng/L. On the other hand, the currently applied metazachlor was only detected in 30.7% of the samples, but its maximum concentration was 71.9 ng/L. An interesting feature was the different temporal concentration pattern of the two investigated herbicides: After precipitation events the concentration of metazachlor in

  20. Kinetic controls on early karst aquifer porosity development

    SciTech Connect

    Groves, C.G. ); Howard, A.D. . Dept. of Environmental Sciences)

    1992-01-01

    A series of simulations using the newly developed model KARST has been performed to investigate limiting kinetic controls on limestone dissolution during the earliest stages of karst aquifer porosity development. This FORTRAN model couples fluid flow within and dissolution of circular cross section conduits, and considers surface reaction rates (both far from and close to thermodynamic equilibrium), mass transfer rates of reaction products to the bulk fluid, and rates of homogeneous reactions associated with dissolution of CO[sub 2] gas in water. Mass transfer theory for both laminar and turbulent flow cases is included. Runs were made with a wide variety of initial conditions of passage geometry, head gradient, and initial PCO[sub 2]. Results show a consistent pattern of kinetic control that varies as functions of time as well as position along the conduit. Slow, higher order surface reaction rates (close to equilibrium), diffusion rates, and rapid, lower order reaction rates (far from equilibrium) are found to be limiting steps at various times and location. Under no conditions in the simulations did the rate of CO[sub 2] hydration limit dissolution. Thresholds between the various kinetic regimes were found to be associated with a critical distance from equilibrium, as well as the transition from laminar to turbulent flow. As a result of interactions between flow and chemical conditions, passage growth (measure by fluid discharge rates) can be divided into an initial, slow period initiation and a more rapid one (enlargement). The onset of the enlargement phase was not found to coincide with any single kinetic event.

  1. Transient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, Francesca; D'Agostino, Nicola; Métois, Marianne; Fiorillo, Francesco; Ventafridda, Gerardo

    2016-11-01

    We present GPS, hydrological, and GRACE (Gravity Recovery and Climate Experiment) observations in southern Apennines (Italy) pointing to a previously unnoticed response of the solid Earth to hydrological processes. Transient patterns in GPS horizontal time series near to large karst aquifers are controlled by seasonal and interannual phases of groundwater recharge/discharge of karst aquifers, modulating the extensional ˜3 mm/yr strain within the tectonically active Apennines. We suggest that transient signals are produced, below the saturation level of the aquifers and above a poorly constrained depth in the shallow crust, by time-dependent opening of subvertical, fluid-filled, conductive fractures. We ascribe this process to the immature karstification and intense tectonic fracturing, favoring slow groundwater circulation, and to multiyear variations of the water table elevation, influenced by variable seasonal recharge. The vertical component displays seasonal and multiyear signals more homogeneously distributed in space and closely correlated with estimates of total water storage from GRACE, reflecting the elastic response of the lithosphere to variations of surface water loads. The different sensitivities of vertical and horizontal components to the hydrologically induced deformation processes allow us to spatially and temporally resolve the different phases of the water cycle, from maximum hydrological loading at the surface to maximum hydrostatic pressure beneath karst aquifers. Finally, we suggest that transient deformation signals in the geodetic series of the Apennines are correlated to large-scale climatic patterns (Northern Atlantic Oscillation) through their influence on precipitation variability and trends at the regional scale.

  2. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  3. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    PubMed

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  4. Analysis of karst aquifer spring flows with a gray system decomposition model.

    PubMed

    Hao, Yonghong; Yeh, Tian-Chyi J; Wang, Yanrong; Zhao, Ying

    2007-01-01

    There are approximately 470,000 km(2) of karst aquifers that feed many large springs in North China. Turbulent flow often exists in these karst aquifers, which means that the classical ground water model based on Darcy's law cannot be applied here. Ground water data are rare for these aquifers. As a consequence, it is difficult to quantitatively investigate ground water flow in these karst systems. The purpose of this study is to develop a parsimonious model that predicts karst spring discharge using gray system theory. In this theory, a white color denotes a system that is completely characterized and a black color represents a system that is totally unknown. A gray system thus describes a complex system whose characteristics are only partially known or known with uncertainty. Using this theory, we investigated the karst spring discharge time series over different time scales. First, we identified three specific components of spring discharge: the long-term trend, periodic variation, and random fluctuation. We then used the gray system model to simulate the long-term trend and obtain periodic variation and random fluctuation components. Subsequently, we developed a predictive model for karst spring discharge. Application of the model to Liulin Springs, a representative example of karst springs in northern China, shows that the model performs well. The predicted results suggest that the Liulin Springs discharge will likely decrease over time, with small fluctuations.

  5. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    PubMed Central

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  6. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    PubMed

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

  7. Reservoir properties inversion in a karst aquifer using absolute gravity measurements

    NASA Astrophysics Data System (ADS)

    Sabrina, Deville; Thomas, Jacob; Jean, Chery; Roger, Bayer; Cedric, Champollion; Moigne Nicolas, Le

    2010-05-01

    Direct estimate of water storage and transfer in karst aquifers are difficult to obtain due to the extreme permeability variation of the medium. In this study, we aim to quantify water transfer properties in a karst aquifer of the Larzac plateau (South Massif Central, France) using absolute gravity monitoring. Our measurements are cutting edge as they directly measure the integrated water content below the gravimeter. We analyze monthly repeated FG5 absolute gravity measurements (1-2 microGal precision) over a three-year period at three sites on the karst aquifer. Important precipitation events lead to significant gravity increases which peak up to several weeks after the events depending on the site. Also, gravity decreases in a different manner at each site during drier periods. We consider the different gravity responses at each site to relate to water transfer properties between the surface and the unsaturated zone beneath. Within this scope, the gravity signal is used to invert for those water transfer properties. A simple two-tank reservoir model including a ‘soil' reservoir that feeds into a ‘subsurface' reservoir is used as the forward model in a Monte Carlo simulation. Reservoir discharge proceeds according to Maillet's law. Water levels within the reservoirs are converted into a gravity signal considering an infinite slab scaled by a factor that accounts for both the surrounding topographic effects and the water interception by the building where the measurements are made. Inverted parameters are the discharge constants and the scaling factors. Model input is rainfall measured with rain gauges at each site minus estimated evapotranspiration. The inversion leads to scaling factors much smaller than 1 for the attraction of the surface reservoir. The effects of the surrounding topography and those of the building on gravity are compared to the inversion result of the ‘surface reservoir' scaling factors. We discuss if the forward model and underlying

  8. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.

    PubMed

    Abusaada, Muath; Sauter, Martin

    2013-01-01

    The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low-permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady-state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West-Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well-constrained catchment with well-defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long-term dynamic model for the WMAB, starting from the pre-development period (i.e., 1940s) up to date.

  9. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  10. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, A.J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  11. Occurrence and dynamics of micropollutants in a karst aquifer.

    PubMed

    Morasch, Barbara

    2013-02-01

    Karst systems represent important yet vulnerable drinking water resources. A wide spectrum of pollutants may be released into karst groundwater from agriculture, livestock farming, private households, and industry. This work provides an overview on the occurrence and dynamics of micropollutants in a karst system of the Swiss Jura. Ten months of intensive monitoring for micropollutants confirmed that the swallow hole draining an agricultural plain was the main entry path for pesticides into the karst system and the two connected springs. Elevated fungicide concentrations in winter and occasional quantification of pharmaceuticals suggested wood- or façade treatment and domestic sewer as additional sources of contamination. A continuous atrazine signal in the low ng/L range might affect the autochthonous endokarst microbial community and represents a potential risk for the human population through karst groundwater.

  12. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.

    PubMed

    Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2016-08-02

    Although karst aquifers are far more susceptible to contamination than porous aquifers, with the transport of particulate matter being an important factor, little is known about the attenuation of solutes within karst aquifers and even less about the attenuation of particulate matter. These in situ investigations have therefore aimed to systematically identify the processes that influence the transport and attenuation of particles within a karst aquifer through multitracer testing, using four different types of 1 μm fluorescent particles and the fluorescent dye uranine. Each of the types of particles used were detected at the observed spring, which drains the investigated aquifer. However, the transport behavior varied significantly between the various particles and the uranine dye, with the breakthrough of particles occurring slightly earlier than that of uranine. Attenuation was determined from the tracer recovery and attributed to filtration processes. These processes were affected by the hydrophobicity and surface charge of the particles. Carboxylated polystyrene particles with a density and surface charge comparable to pathogenic microorganisms were found to be mobile in groundwater over a distance of about 3 km. No attenuation was observed for plain silica particles. Particles with these characteristics thus pose a major threat to karst spring water as they might occur as contaminants themselves or facilitate the transport of other contaminants.

  13. Vulnerability assessment of karst aquifer feeding Pertuso Spring (Central Italy): comparison between different applications of COP method

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ferranti, Flavia; Luciani, Giulia

    2016-04-01

    Vulnerability assessment of karst aquifers and vulnerability mapping are important tools for improved sustainable management and protection of karst groundwater resources. In this paper, to estimate the vulnerability degree of the karst aquifer feeding Pertuso Spring in Central Italy, two different implementations of COP method, supported by an open source GIS, were tested and a comparison of the vulnerability maps is proposed. The study area is a highly karstified carbonate aquifer located in the Upper Valley of the Aniene River, in the south-east part of Latium Region. The hydrogeological basin covers about 50 km2 and the karst aquifer provides a water supply of about 120.000 m3d-1. The well-developed karst features in this hydrogeological system is responsible of the fast infiltration of rainfall in the saturated zone and, consequently, of the high discharge rate of Pertuso Spring (up to 3 m3/s). Thus, in the aim of emphasizing the presence of these karst features, due to which, there are limited attenuation processes in the unsaturated zone, in this work COP method has been applied by the implementation of a new discretization methodology of the hydrogeological basin using polygonal layer. Therefore, the hydrogeological catchment basin has been divided into 52 polygonal layer, representative of outcropping lithology and karst features, to which COP method has been applied. The intrinsic vulnerability maps, produced using a GIS approach, has been examinated and compared with the maps obtained using traditional vulnerability assessment method, which provides the discretization of the study area generating a grid map to which associate the Vulnerability Indexes. The results of this study highlight vulnerability from low to very high. The maximum vulnerability degree is due to karstic features responsible of high recharge and high hydraulic conductivity. The new proposed discretization of the hydrogeological basin using polygonal layer raise four vulnerability

  14. Controlling Transport Processes in Groundwater Contamination in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Steele, K.

    2008-05-01

    The karst aquifer of the North Coast of Puerto Rico represents a significant source of water for drinking purposes, as well as ecosystem sustainability. The same characteristics making this aquifer the most productive in the island, fast infiltration and rapid flow in karst conduits, make the aquifers vulnerable highly vulnerable to contamination. Once in the ground water, organic contaminants move through the karst aquifers by complex pathways dictated by system characteristics and flow regimes. Ground water flow in karst aquifers is subscribed to two types of flow systems: conduit flow and diffuse flow. Transport in conduit-flow dominated systems tends to convey solutes rapidly through the system to a discharge or point without much attenuation. Transport in diffuse- flow systems, on the other hand, causes significant solute retardation and serves as a long-term source of contamination. Although it is common to attribute one type of predominant flow regime, most carbonate aquifers are characterized by a mixture of both flow systems. The north coast aquifer of Puerto Rico has been impacted by a large number of contaminates sites. During the last 25 years, 10 Superfund sites have been declared in the zone and others are being evaluated for inclusion in the National Priority List. The work presented herein addresses the potential impact of these sites on the extent of contamination and discusses the transport mechanisms affecting the transport and persistence of organic contaminants in the north coast aquifer of Puerto Rico. Preliminary evaluation indicates that fate and transport of these contaminants is controlled by a combinations of conduit- and diffuse-flow mechanisms, where conduits tend to concentrate water and contaminants and convey it rapidly or to "trapping" diffusive-flow zones of smaller pore-size zones.

  15. Numerical long-term assessment of managed aquifer recharge from a reservoir into a karst aquifer in Jordan

    NASA Astrophysics Data System (ADS)

    Xanke, Julian; Jourde, Hervé; Liesch, Tanja; Goldscheider, Nico

    2016-09-01

    In semi-arid regions with high seasonal variability of water availability, adaptive management strategies and technical measures are required to ensure the sustainable use of water resources. In this study, managed recharge of storm water into a karst aquifer and the water level fluctuations related to pumping in a nearby wellfield were simulated at Wadi Wala, Jordan. We used a numerical equivalent porous medium (EPM) approach with specific adaptations to account for the heterogeneity and anisotropy of the karst aquifer. The model domain was vertically projected along the wadi course, resulting in a 2-dimensional model, and subdivided into hydraulic zones representing the karst-specific flow pattern of fast flow and slow depletion. Results show satisfying agreement of measured and simulated groundwater tables from 2002 to 2012 and predict a lowering of the average groundwater table until 2022 of around 2.7 m in the immediate surroundings of the reservoir and an increased depletion towards the wellfield, mainly caused by sedimentation in the reservoir and an associated decrease in infiltration. Abstraction at the wellfield changed considerably over the regarded time period and strongly influences the groundwater fluctuations, which shows the need of improved pumping management and monitoring. The results can serve as a basis for decision makers regarding an optimization of water management at the reservoir and wellfield. Furthermore, the presented numerical approach can be transferred to karst regions with similar physio-geographical conditions to assess managed aquifer recharge.

  16. Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation

    NASA Astrophysics Data System (ADS)

    Gondwe, Bibi R. N.; Ottowitz, David; Supper, Robert; Motschka, Klaus; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2012-11-01

    Geometry and connectivity of high-permeability zones determine groundwater flow in karst aquifers. Efficient management of karst aquifers requires regional mapping of preferential flow paths. Remote-sensing technology provides tools to efficiently map the subsurface at such scales. Multi-spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain. One known preferential flow path, the Holbox fracture zone, showed lower bulk electrical resistivity than its surroundings in the AEM surveys. Anomalous structures delineated inland were sealed above by a low-resistivity layer (resistivity: 1-5 Ωm, thickness: 5-6 m). This layer was interpreted as ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary), based on similar resistivity signatures found in borehole logs. Due to limited sensitivity of the AEM survey, the subsurface configuration beneath the low-resistivity layer could not be unambiguously determined. AEM measurements combined with remote-sensing data analysis provide a potentially powerful multi-scale methodology for structural mapping in karst aquifers on the Yucatan Peninsula and beyond.

  17. Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer

    NASA Astrophysics Data System (ADS)

    Kong-A-Siou, Line; Fleury, Perrine; Johannet, Anne; Borrell Estupina, Valérie; Pistre, Séverin; Dörfliger, Nathalie

    2014-11-01

    Karst aquifers can provide previously untapped freshwater resources and have thus generated considerable interest among stakeholders involved in the water supply sector. Here we compare the capacity of two systemic models to simulate the discharge and piezometry of a karst aquifer. Systemic models have the advantage of allowing the study of heterogeneous, complex karst systems without relying on extensive geographical and meteorological datasets. The effectiveness and complementarity of the two models are evaluated for a range of hydrologic conditions and for three methods to estimate evapotranspiration (Monteith, a priori ET, and effective rainfall). The first model is a reservoir model (referred to as VENSIM, after the software used), which is designed with just one reservoir so as to be as parsimonious as possible. The second model is a neural network (NN) model. The models are designed to simulate the rainfall-runoff and rainfall-water level relations in a karst conduit. The Lez aquifer, a karst aquifer located near the city of Montpellier in southern France and a critical water resource, was chosen to compare the two models. Simulated discharge and water level were compared after completing model design and calibration. The results suggest that the NN model is more effective at incorporating the nonlinearity of the karst spring for extreme events (extreme low and high water levels), whereas VENSIM provides a better representation of intermediate-amplitude water level fluctuations. VENSIM is sensitive to the method used to estimate evapotranspiration, whereas the NN model is not. Given that the NN model performs better for extreme events, it is better for operational applications (predicting floods or determining water pumping height). VENSIM, on the other hand, seems more appropriate for representing the hydrologic state of the basin during intermediate periods, when several effects are at work: rain, evapotranspiration, development of vegetation, etc. A

  18. Adaptations of indigenous bacteria to fuel contamination in karst aquifers in south-central Kentucky

    USGS Publications Warehouse

    Byl, Thomas D.; Metge, David W.; Agymang, Daniel T.; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  19. Natural and Artificial (fluorescent) Tracers to Characterise Hydrogeological Functioning and to Protect Karst Aquifers

    NASA Astrophysics Data System (ADS)

    Andreo, B.; Mudarra, M.; Marin, A. I.; Barberá, J. A.

    2012-12-01

    The hydrogeological functioning and response of karst aquifers can be determined by the joint use of natural hydrogeochemical tracers, especially total organic carbon (TOC) and intrinsic fluorescence of water, together with artificial (fluorescent) tracers, under the same hydrodynamic conditions. Sharp and rapid variations in discharge, temperature, electrical conductivity and water chemistry, particularly of natural tracers of infiltration (TOC, intrinsic fluorescence and NO3-) recorded in karst spring water, confirm the existence of well developed karst conduits in the sector of the aquifer being drained, with rapid flows and very short water transit times from the surface to the springs (Mudarra et al., 2011). This is in agreement with the evidence obtained from breakthrough curves of fluorescent dye tracers (uranine, eosine, etc.). However, time lags between maximum concentrations of natural (especially TOC and intrinsic fluorescence) and artificial tracers show that the global system response is faster than that produced from a recharge concentrated at a point on the surface, even in karst sinkholes. Response and transit times of water through the karst can be calculated using both natural and artificial tracers, but flow velocities can really only be quantified using artificial tracers. Analysis of the responses obtained by natural tracers of infiltration (global system response) and artificial tracers (single response) in karst waters has revealed the usefulness and complementarity of both techniques for characterising the hydrogeological functioning of karst aquifers and, even more important, for validating contamination vulnerability mapping in these medium (Zwahlen, 2004; Andreo et al., 2006). In recent decades, several methods have been developed for such vulnerability mapping, but little progress has been made in validating their results. This validation is essential for the adequate protection of water resources in karst media, as has been shown in

  20. Hydrological role of karst in the Chalk aquifer of Upper Normandy, France

    NASA Astrophysics Data System (ADS)

    El Janyani, Sanae; Dupont, Jean-Paul; Massei, Nicolas; Slimani, Smail; Dörfliger, Nathalie

    2014-05-01

    The role of karst on large-scale groundwater flow is defined for the Chalk aquifer of Upper Normandy (western Paris Basin), France. In the regional context, chalk plateaus occupy the greater part of watersheds and are the main sites of groundwater recharge. Previous studies focused on karstic output systems in the valleys and less on water-level variations in the recharge zones upstream. This study assesses the relevant hydrogeological processes using time-series data (boreholes and springs) recorded along a down-gradient hydrologeological cross-section in two selected watersheds. These hydrological data are interpreted in the framework of previous descriptions of the morphological organization of the study area's karst network. The results highlight the hydrological role of (1) the input karst (vertical conduits) which drains recharging water, (2) the output karst (sub-horizontal conduits widely developed in the vicinity of valleys in the surface watersheds) which drains the output flows, and (3) the connections between these two (input and output) networks, which control the upstream water levels and allow quick transfer to springs, particularly after strong rainfall events. A conceptual model of the hydrological functioning of this covered karst aquifer is established, which should serve for the structuring and parameterization of a numerical model.

  1. Linking climate change and karst hydrology to evaluate species vulnerability: The Edwards and Madison aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.

    2013-12-01

    Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for

  2. Joining direct and indirect inverse calibration methods to characterize karst, coastal aquifers

    NASA Astrophysics Data System (ADS)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio

    2016-04-01

    Parameter estimation is extremely relevant for accurate simulation of groundwater flow. Parameter values for models of large-scale catchments are usually derived from a limited set of field observations, which can rarely be obtained in a straightforward way from field tests or laboratory measurements on samples, due to a number of factors, including measurement errors and inadequate sampling density. Indeed, a wide gap exists between the local scale, at which most of the observations are taken, and the regional or basin scale, at which the planning and management decisions are usually made. For this reason, the use of geologic information and field data is generally made by zoning the parameter fields. However, pure zoning does not perform well in the case of fairly complex aquifers and this is particularly true for karst aquifers. In fact, the support of the hydraulic conductivity measured in the field is normally much smaller than the cell size of the numerical model, so it should be upscaled to a scale consistent with that of the numerical model discretization. Automatic inverse calibration is a valuable procedure to identify model parameter values by conditioning on observed, available data, limiting the subjective evaluations introduced with the trial-and-error technique. Many approaches have been proposed to solve the inverse problem. Generally speaking, inverse methods fall into two groups: direct and indirect methods. Direct methods allow determination of hydraulic conductivities from the groundwater flow equations which relate the conductivity and head fields. Indirect methods, instead, can handle any type of parameters, independently from the mathematical equations that govern the process, and condition parameter values and model construction on measurements of model output quantities, compared with the available observation data, through the minimization of an objective function. Both approaches have pros and cons, depending also on model complexity. For

  3. Assessing the vulnerability of a municipal well field to contamination in a karst aquifer

    USGS Publications Warehouse

    Renken, R.A.; Cunningham, K.J.; Zygnerski, M.R.; Wacker, M.A.; Shapiro, A.M.; Harvey, R.W.; Metge, D.W.; Osborn, C.L.; Ryan, J.N.

    2005-01-01

    Proposed expansion of extractive lime-rock mines near the Miami-Dade County Northwest well field and Everglades wetland areas has garnered intense scrutiny by government, public, environmental stakeholders, and the media because of concern that mining will increase the risk of pathogen contamination. Rock mines are excavated to the same depth as the well field's primary producing zone. The underlying karst Biscayne aquifer is a triple-porosity system characterized by (1) a matrix of interparticle porosity and separate vug porosity; (2) touching-vug porosity that forms preferred, stratiform passageways; and, less commonly, (3) conduit porosity formed by thin solution pipes, bedding-plane vugs, and cavernous vugs. Existing ground-water flow and particle tracking models do not provide adequate information regarding the ability the aquifer to limit the advective movement of pathogens and other contaminants. Chemical transport and colloidal mobility properties have been delineated using conservative and microsphere-surrogate tracers for Cryptosporidium parvum. Forced-gradient tests were executed by introducing conservative tracers into injection wells located 100 m (328 ft) from a municipal-supply well. Apparent mean advective velocity between the wells is one to two orders of magnitude greater than previously measured. Touching-vug, stratiform flow zones are efficient pathways for tracer movement at the well field. The effective porosity for a continuum model between the point of injection and tracer recovery ranges from 2 to 4 percent and is an order of magnitude smaller than previously assumed. Existing well-field protection zones were established using porosity estimates based on specific yield. The effective, or kinematic, porosity of a Biscayne aquifer continuum model is lower than the total porosity, because high velocities occur along preferential flow paths that result in faster times of travel than can be represented with the ground-water flow equation. Tracer

  4. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Sauter, Martin; Licha, Tobias

    2015-02-15

    The increasing pressure on drinking water resources necessitates an efficient management of potential and actual drinking water resources. Karst aquifers play a key role in the supply of the world's population with drinking water. Around one quarter of all drinking water is produced from these types of aquifers. Unfortunately due to the aquifer characteristics with extremely high hydraulic conductivities and short residence times, these systems are vulnerable to contamination. For successful management, a fundamental understanding of mass transport and attenuation processes with respect to potential contaminants is vital. In this study, a multitracer experiment was performed in a karst aquifer in SW-Germany for determining the attenuation capacity of a karst environment by assessing the environmental fate of selected relevant micropollutants. Uranine, acesulfame and carbamazepine were injected into a sinkhole as reference tracers together with the reactive compounds atenolol, caffeine, cyclamate, ibuprofen and paracetamol (also known as acetaminophen). The breakthrough of the tracers was monitored at a karst spring at a distance of ca. 3 km. The breakthrough curves of the reactive compounds were interpreted relative to the reference substances. No significant retardation was found for any of the investigated micropollutants. The determined half-lives of the reactive compounds range from 38 to 1,400 h (i.e. persistent within the investigation period) in the following order (from high to no observed attenuation): paracetamol>atenolol≈ibuprofen>caffeine≫cyclamate. The attenuation rates are generally in agreement with studies from other environmental compartments. The occurrence of the biotransformation product atenolol acid served as evidence for in-situ biodegradation within the aquifer system.

  5. Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities.

    PubMed

    Farnleitner, Andreas H; Wilhartitz, Ines; Ryzinska, Gabriela; Kirschner, Alexander K T; Stadler, Hermann; Burtscher, Martina M; Hornek, Romana; Szewzyk, Ulrich; Herndl, Gerhard; Mach, Robert L

    2005-08-01

    Spring water of two alpine karst aquifers differing in hydrogeology but of nearby catchments were investigated for their bacterial population dynamics. Dolomite karst aquifer spring 1 (DKAS 1) represents a dolomitic-limestone karst aquifer spring showing high average water residence time and relative constant flow. Limestone karst aquifer spring 2 (LKAS 2) constitutes a typical limestone karst aquifer spring with a dynamic hydrological regime and discharge. Dolomite karst aquifer spring 1 yielded constantly lower cell counts and biomasses (median of 15 x 10(6) cells l(-1) and 0.22 microg C l(-1)) as the LKAS 2 (median of 63 x 10(6) cells l(-1) and 1.1 microg C l(-1)) and distribution of morphotypes and mean cell volumes was also different between the considered systems, indicating the influence of hydrogeology on microbial spring water quality. Molecular bacterial V3 16S-rDNA profiles revealed remarkable constancy within each spring water throughout the investigation period. Time course analysis of a flood event in LKAS 2 further supported the trend of the temporal constancy of the microbial community. Except for one case, retrieval of partial and full length 16S rDNA gene sequences from the relative constant DKAS 1 revealed similarities to presently known sequences between 80% to 96%, supporting the discreteness of the microbial populations. The gathered results provide first evidence for the presence of autochthonous microbial endokarst communities (AMEC). Recovery of AMEC may be considered of relevance for the understanding of alpine karst aquifer biogeochemistry and ecology, which is of interest as many alpine and mountainous karst springs are important water resources throughout the world.

  6. Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria).

    PubMed

    Mayaud, Cyril; Wagner, Thomas; Benischke, Ralf; Birk, Steffen

    2016-01-01

    A thorough data analysis combined with groundwater modelling was conducted in an Austrian binary karst aquifer to better understand changes in the hydrological behaviour observed at a karst spring. During a period of 4 years after a major flood event the spring hydrograph appears to be more damped with lower peak flow and higher baseflow than in the years before. The analysis of the hydrograph recession suggests that the observed hydrological change is caused by changes within the karst system rather than by varying hydro-meteorological conditions. The functioning of the aquifer and potential causes of the observed changes are further examined using the groundwater flow model MODFLOW. The simulation results suggest that a modification of hydraulic conductivity and storage within the conduit network, e.g. due to the plugging of the drainage conduits with sediments, may be the cause of the different behaviour. MODFLOW was able to reproduce the observed dynamics of spring flow, although it does not account for turbulent flow within karst conduits. Using a simplified model scenario it is demonstrated that the damping of the hydrograph is much stronger if turbulent conduit flow is taken into account. Thus, a turbulent flow model is needed to assess potential changes in the storage properties quantitatively.

  7. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    NASA Astrophysics Data System (ADS)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  8. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    USGS Publications Warehouse

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural

  9. HISTORICAL CONTAMINATION OF GROUNDWATER RESOURCES IN THE NORTH COAST KARST AQUIFERS OF PUERTO RICO

    PubMed Central

    Padilla, Ingrid; Irizarry, Celys; Steele, Katherine

    2012-01-01

    The North Coast Karst Aquifer System of Puerto Rico is the island’s most productive aquifer. The characteristics that make it highly productive also make it vulnerable to contamination. This research, which addresses the historical contamination of groundwater resources in the northern karst region was conducted through integration of spatial hydrogeologic and contaminant concentration data in the La Plata-Arecibo area. The study used GIS technologies and focused on phthalates and chlorinated volatile organic compounds (CVOCs) and phthalates due to their ubiquitous presence in the environment as well as their presence in listed and potential superfund sites in Puerto Rico and U.S. and potential for exposure and health impacts. Results show an extensive historical contamination of the groundwater resources in the northern karst aquifers. Long-term contamination indicates the aquifers’ large capacity for storing and releasing contaminants and reflects a long-term potential for exposure. The degradation of this important water resource has resulted in a subsequent reduction of the extraction capacity and an increase in the cost of use. PMID:24772197

  10. An integrated approach for catchment delineation and conduit-network modeling in karst aquifers: application to a site in the Swiss tabular Jura

    NASA Astrophysics Data System (ADS)

    Malard, Arnauld; Jeannin, Pierre-Yves; Vouillamoz, Jonathan; Weber, Eric

    2015-11-01

    An essential issue in karst hydrology is the characterization of the hydrogeological flow systems, i.e., the delineation of catchment areas and the organization of the main flow paths (conduit network) feeding one or several outlets. The proposed approach provides an explicit way to sketch catchment areas, and to generate karst conduits on the basis of a three-dimensional (3D) conceptual model of the aquifer (KARSYS approach). The approach follows three main principles: (1) conduits develop according to the hydraulic gradient, which depends on the aquifer zonation, (2) conduits are guided by preferential guidance features (or inception horizons) prevailing in the unsaturated and saturated zones of the aquifer, and (3) conduits initiate on a regular basis below the autogenic zone of the catchment area. This approach was applied to a site in the Swiss Jura as a base for the assessment of flood-hazard risks. The resulting model proposes a new delineation of the system catchment area and appears fairer regarding hydrological measurements than previous interpretations, which under-estimated the catchment area by about 20 %. Furthermore, the proposed conduit network for the whole aquifer is also consistent with local cave surveys and dye-tracing observations. These interesting results demonstrate that the combination of this approach with the KARSYS 3D model provides an integrated and effective way for the characterization of karst-flow systems.

  11. Modeling the groundwater recharge in karst aquifers by using a reservoir model.

    PubMed

    Ke, Tingting; Shu, Longcang; Chen, Xunhong

    2013-01-01

    The estimation of the groundwater recharge in a karstic system becomes an important challenge due to the great hydrodynamic variability in both time and space. This paper proposes a two reservoir conceptual model to simulate inflow into both the conduit system and the fissure network system based on the analysis of the spring hydrograph. The structure of the model and the governing equations are proposed on the basis of the physical considerations, with the assumption that flow at the outlet of the reservoirs obeys a linear threshold function. The model is applied on the Houzhai karstic underground river basin where it successfully reflects the temporal recharge distribution. The simulated accumulation recharge is 34.29 mm, which is reasonable in relation to the actual rainfall of 92.8 mm. The variations of water volume in two reservoirs represent the storage and transform characteristics of the karst aquifer system. However, this model is particularly well suited to simulate the recharge event after intensive rainfall.

  12. River Intrusion in Karst Springs in Eogenetic Aquifers: Implications for Speleogenesis

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Gulley, J.; Screaton, E. J.

    2008-12-01

    Conceptual models of speleogenesis generally assume uni-directional transport in integrated conduit systems from discrete recharge points to discharge at karst springs. Estavelles, however, are karst springs that function intermittently as discrete recharge points when river stage rises more rapidly than local aquifer heads. As river water chemistry changes between baseflow and floods, estavelles should influence mass transport through (e.g. organic carbon, nutrients, and oxygen) and speleogenesis within karst systems. Estavelles are common in our study area in north-central Florida, particularly along the lower reaches of the Santa Fe River, where it flows across the unconfined karstic Floridan aquifer. River stage in this unconfined region can rise much faster than aquifer heads when large amounts of rain fall on the confined regions in its upper reaches. Backflooding into the estavelles during elevated river stage drives river water into the ground, causing some springs to reverse and other springs to recirculate large volumes of river water. Floodwaters originating in the confined region are highly undersaturated with respect to calcite, and thus river water transitions from slightly supersaturated to highly undersaturated with respect to calcite during flood events. As a result, conduits connected to estavelles are continuously enlarged as springs reverse or recirculate calcite-undersaturated river water. It has been suggested that currently flooded caves (i.e. karst conduits) associated with springs in Florida formed entirely underwater because speleothems, which are prevalent in flooded caves in the Yucatan and Bahamas, have not been observed by cave divers. Results of this study indicate that the absence of speleothems does not necessarily provide evidence of a continuous phreatic history for underwater caves. Instead speleothems that formed in caves while dry could have been dissolved by backflooding of estavelles with undersaturated water

  13. Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers

    USGS Publications Warehouse

    Reimann, T.; Geyer, T.; Shoemaker, W.B.; Liedl, R.; Sauter, M.

    2011-01-01

    Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dual-hydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduit-matrix interaction during free-surface flow. Copyright 2011 by the American Geophysical Union.

  14. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    PubMed

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.

  15. Saltwater wedge variation in a non-anthropogenic coastal karst aquifer influenced by a strong tidal range (Burren, Ireland)

    NASA Astrophysics Data System (ADS)

    Perriquet, Marie; Leonardi, Véronique; Henry, Tiernan; Jourde, Hervé

    2014-11-01

    Spatial and temporal changes in saltwater wedges in coastal karst aquifers are still poorly understood, largely due to complex mixing processes in these heterogeneous environments, but also due to anthropogenic forcing such as pumping, which commonly affect natural variations in wedges. The purpose of this study was first to characterize the hydrodynamic functioning of a karst aquifer in an oceanic temperate climate with little anthropogenic pressure but strongly influenced by a high tidal range and second, to evaluate the extent and movements of a saltwater wedge influenced by both the tide and the natural recharge of the aquifer. Variations in specific conductivity combined with water chemistry results from six boreholes and two lakes located in the Bell Harbour catchment (western Ireland) enabled us to assess the extent of the intrusion of the saltwater wedge into the aquifer as a function of both karst recharge and tidal movements at high/low and neap/spring tidal cycles. The marked spatial disparity of the saltwater wedge was analysed as a function of both the hydrodynamic and the structural properties of the karst aquifer. Results showed that the extent of the saltwater wedge depended not only on the intrinsic properties of the aquifer but also on the relative influence of the recharge and the tide on groundwater levels, which have opposite effects. Recharge in the Burren area throughout the year is large enough to prevent saltwater intruding more than about one kilometre from the shore. A strong tidal amplitude seems to be the motor of sudden saltwater intrusion observed in the aquifer near the shore while the position of the groundwater level seems to influence the intensity of the salinity increase. Competition between recharge and the tide thus controls the seawater inputs, hence explaining temporal and spatial changes in the saltwater wedge in this coastal karst aquifer.

  16. Reducing the ambiguity of karst aquifer models by pattern matching of flow and transport on catchment scale

    NASA Astrophysics Data System (ADS)

    Oehlmann, S.; Geyer, T.; Licha, T.; Sauter, M.

    2015-02-01

    Assessing the hydraulic parameters of karst aquifers is a challenge due to their high degree of heterogeneity. The unknown parameter field generally leads to a high ambiguity for flow and transport calibration in numerical models of karst aquifers. In this study, a distributed numerical model was built for the simulation of groundwater flow and solute transport in a highly heterogeneous karst aquifer in south-western Germany. Therefore, an interface for the simulation of solute transport in one-dimensional pipes was implemented into the software COMSOL Multiphysics® and coupled to the three-dimensional solute transport interface for continuum domains. For reducing model ambiguity, the simulation was matched for steady-state conditions to the hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as the hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyse the influence of the respective geometric and hydraulic parameters and develop a calibration approach in a large-scale heterogeneous karst system. Results show that it is possible not only to derive a consistent flow and transport model for a 150 km2 karst area but also to combine the use of groundwater flow and transport parameters thereby greatly reducing model ambiguity. The approach provides basic information about the conduit network not accessible for direct geometric measurements. The conduit network volume for the main karst spring in the study area could be narrowed down to approximately 100 000 m3.

  17. Convolution modeling of two-domain, nonlinear water-level responses in karst aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2009-12-01

    Convolution modeling is a useful method for simulating the hydraulic response of water levels to sinking streamflow or precipitation infiltration at the macro scale. This approach is particularly useful in karst aquifers, where the complex geometry of the conduit and pore network is not well characterized but can be represented approximately by a parametric impulse-response function (IRF) with very few parameters. For many applications, one-dimensional convolution models can be equally effective as complex two- or three-dimensional models for analyzing water-level responses to recharge. Moreover, convolution models are well suited for identifying and characterizing the distinct domains of quick flow and slow flow (e.g., conduit flow and diffuse flow). Two superposed lognormal functions were used in the IRF to approximate the impulses of the two flow domains. Nonlinear response characteristics of the flow domains were assessed by observing temporal changes in the IRFs. Precipitation infiltration was simulated by filtering the daily rainfall record with a backward-in-time exponential function that weights each day’s rainfall with the rainfall of previous days and thus accounts for the effects of soil moisture on aquifer infiltration. The model was applied to the Edwards aquifer in Texas and the Madison aquifer in South Dakota. Simulations of both aquifers showed similar characteristics, including a separation on the order of years between the quick-flow and slow-flow IRF peaks and temporal changes in the IRF shapes when water levels increased and empty pore spaces became saturated.

  18. Estimating regional transmissivity of the Upper Floridan aquifer

    SciTech Connect

    Johnston, R.H. )

    1993-03-01

    The distribution of permeability in the Upper Floridan aquifer is complex due to variations in the original depositional environments and the post-depositional history. The transmissivity of the aquifer is directly related to the thickness and lithology of the overlying confining unit (Miocene clastic deposits). Where this unit has been thinned or removed by erosion, solution-cavity development and thus high transmissivity are common. At depth, transmissivity is affected by the lithology of the carbonate rocks and the occurrence of paleokarst. The transmissivity of the Upper Floridan varies by more than three orders of magnitude: from less than 1,000 feet squared per day in the thickly confined, micrite-rich limestone of the Fort Walton Beach area of panhandle Florida to more than 1,000,000 feet squared per day in the unconfined, karstic areas of central and northern Florida. The application of aquifer-test methods to determine transmissivity of the Upper Floridan aquifer is summarized as follows: (1) Conducting aquifer tests in the unconfined, karstic areas is virtually impossible because of logistical problems (removing large volumes of pumped water to prevent recycling) and because non-Darcian flow can preclude the use of standard aquifer-test methods. However, flow-net analyses using springs as the discharge control have been used successfully to estimate regional transmissivity values. (2) Multi-well aquifer tests outside of karst areas generally provide data plots that match appropriate type curves. (3) Specific capacity is not a good basis for estimating regional transmissivity values. Transmissivity maps of the Floridan should be accompanied by an evaluation of their reliability based on availability of field-test data. If transmissivity values are derived from computer models, the model sensitivity to transmissivity should be discussed.

  19. A quantitative comparison of moldic and vuggy porosity structure in karst aquifers using image and geospatial analysis

    NASA Astrophysics Data System (ADS)

    Culpepper, A. R.; Manda, A. K.

    2011-12-01

    Limestone aquifers are vital sources of groundwater for domestic and industrial use throughout the world. To sustain rising population throughout the southeastern United States, aquifers are increasingly exploited to provide the populace clean and reliable water resources. The moldic Castle Hayne and the vuggy Biscayne aquifer systems are two highly productive aquifers that provide critical water resources to millions of citizens in eastern North Carolina and southeastern Florida, respectively. In order to better understand karst aquifers and evaluate the potential for contaminant transport, detailed investigation of 2D porosity and pore geometry using image and geospatial analysis were undertaken. The objective of this study is to compare and contrast the porosity structure of moldic and vuggy karst aquifers by quantifying 2D porosity and pore geometry from images of slabbed core samples and optical televiewer images. Televiewer images and images of painted core samples from the Spring Garden Member of the Castle Hayne aquifer and Miami Limestone Formation of the Biscayne aquifer were acquired for analysis of porosity structure. The procedure for converting images of slabbed core and televiewer images to a GIS useable format consisted of rectification, calibration, image enhancement, classification, recoding and filtering. In GIS, raster or vector formats were used to assess pore attributes (e.g., area and perimeter) and structure. Preliminary results show that both pore area and perimeter for the Spring Garden Member of the Castle Hayne and Miami Limestone Formation of the Biscayne aquifers can be described by exponential distributions. In both sets of slabbed core images the relatively small pores have the highest occurrence, whereas larger pores occur less frequently. However, the moldic Spring Garden Member of the Castle Hayne aquifer has larger pore sizes derived from cores images than the vuggy Miami Limestone Formation of Biscayne aquifer. Total porosity

  20. Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers

    USGS Publications Warehouse

    Doctor, D.H.; Alexander, E.C.; Petric, M.; Kogovsek, J.; Urbanc, J.; Lojen, S.; Stichler, W.

    2006-01-01

    Karst aquifer components that contribute to the discharge of a water supply well in the Classical Karst (Kras) region (Italy/Slovenia) were quantitatively estimated during storm events. Results show that water released from storage within the epikarst may comprise as much as two-thirds of conduit flow in a karst aquifer following rainfall. Principal components analysis (PCA) and end-member mixing analysis (EMMA) were performed using major ion chemistry and the stable isotopes of water (??18O, ??2H) and of dissolved inorganic carbon (??13CDIC) to estimate mixing proportions among three sources: (1) allogenic river recharge, (2) autogenic recharge, and (3) an anthropogenic component stored within the epikarst. The sinking river most influences the chemical composition of the water-supply well under low-flow conditions; however, this proportion changes rapidly during recharge events. Autogenic recharge water, released from shallow storage in the epikarst, displaces the river water and is observed at the well within hours after the onset of precipitation. The autogenic recharge end member is the second largest component of the well chemistry, and its contribution increases with higher flow. An anthropogenic component derived from epikarstic storage also impacts the well under conditions of elevated hydraulic head, accounting for the majority of the chemical response at the well during the wettest conditions. ?? Springer-Verlag 2006.

  1. Insights into quick flow in a karst aquifer: Usefulness of infrequently collected geochemical data from wells

    SciTech Connect

    Shevenell, L.A.

    1994-11-01

    Highly variable chemical characteristics (e.g., hardness) can indicate that a portion of a karst aquifer sampled by a well is subject to a quickflow component where water flow is rapid and water quality changes rapidly in response to precipitation events. Typically, karst aquifer monitoring for both water level and geochemistry is conducted at frequent intervals (hourly, daily) due to the nature of rapid geochemical and hydrologic changes in association with storm events. Quarterly monitoring data are available at the U.S. Department of Energy Oak Ridge Y- 12 Plant in Oak Ridge, TN, and these data are evaluated to identify quickflow portions of the aquifer. Values of P{sub CO{sub 2}} near atmospheric suggest rapid recharge of fluids, and 12 of 99 well waters exhibited P{sub CO{sub 2}} near atmospheric. Waters saturated with respect to dolomite must have relatively long residence times because attainment of saturation requires tens to hundreds of years. Repeat sampling of waters shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 wells, indicating that relatively old waters diffusing from the rock matrix into conduits during baseflow experience periodic flushing by more rapidly recharged waters. Undersaturation with respect to calcite indicates active dissolution and may suggest short residence times because calcite saturation can be expected to occur on the order of days. Evaluation of a{sub Mg}/a{sub Ca} ratios in the waters allows identification of portions of the aquifer where flow occurs from a dolomite to a limestone, and vice versa. In addition, 30 well waters exhibited coefficients of variation of hardness >10%. Hence, quickflow was identified in association with numerous well waters even though only quarterly monitoring data were available.

  2. Evaluation of Flow Dynamics in a Karst Aquifer System at Sapanca Lake Basin (turkey) via Hydrochemical and Isotopic Data

    NASA Astrophysics Data System (ADS)

    Gunduz, O. C.; Yolcubal, I.

    2013-12-01

    Sapanca Lake, located 20 km west of Izmit bay, is a fresh water lake with tectonic origin and supplies drinking and municipal water to the region. Groundwater discharges from a karstic aquifer developed in Permo-Triassic and Late Jurassic-Early Cretaceous aged marbles and an alluvial aquifer distributed in east-west direction on the Sapanca plain play an important role in the recharge of the lake. In the Sapanca lake basin, there are numerous springs discharging (1 to 75 lt/s) from different elevations of the karstic aquifer system. Dolines, sinkholes, depression fields, and disappearing rivers developed on the southern heights of the basin are directly connected with the karstic aquifer and allow the aquifer system to show rapid recharge and discharge characteristics. In the scope of the study, 25 karst spring waters as well as 25 wells drilled in the alluvial aquifer were sampled as representatives of dry and rainy periods. Hydrochemical and isotopic (18O/2D/3H) compositions of the samples were evaluated along with the hydrogeology and the fracture analysis of the basin in order to assess the hydraulic relationship between the aquifer systems and the groundwater circulation in the basin. Results show that groundwaters from alluvial and karstic aquifers are modern water and demonstrate similar hydrochemical facies (Ca-HCO3 ve Ca+Mg-HCO3). Although showing seasonal differences, isotopic composition (18O/2D) of the karst springs resembles those of the streams and groundwaters from alluvial aquifer. This suggests that ground and surface waters feed each other periodically and characterize a mixing. Fracture analysis of the basin suggests that faulting has significant control over groundwater discharge and circulation in the karst aquifer and form discontinuities in the system, subdividing it into several aquifer sub-systems.

  3. Simulating groundwater flow in karst aquifers with distributed parameter models—Comparison of porous-equivalent media and hybrid flow approaches

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2016-09-22

    been developed that incorporate the submerged conduits as a one-dimensional pipe network within the aquifer rather than as discrete, extremely transmissive features in a porous-equivalent medium; these submerged conduit models are usually referred to as hybrid models and may include the capability to simulate both laminar and turbulent flow in the one-dimensional pipe network. Comparisons of the application of a porous-equivalent media model with and without turbulence (MODFLOW-Conduit Flow Process mode 2 and basic MODFLOW, respectively) and a hybrid (MODFLOW-Conduit Flow Process mode 1) model to the Woodville Karst Plain near Tallahassee, Florida, indicated that for annual, monthly, or seasonal average hydrologic conditions, all methods met calibration criteria (matched observed groundwater levels and average flows). Thus, the increased effort required, such as the collection of data on conduit location, to develop a hybrid model and its increased computational burden, is not necessary for simulation of average hydrologic conditions (non-laminar flow effects on simulated head and spring discharge were minimal). However, simulation of a large storm event in the Woodville Karst Plain with daily stress periods indicated that turbulence is important for matching daily springflow hydrographs. Thus, if matching streamflow hydrographs over a storm event is required, the simulation of non-laminar flow and the location of conduits are required. The main challenge in application of the methods and approaches for developing hybrid models relates to the difficulty of mapping conduit networks or having high-quality datasets to calibrate these models. Additionally, hybrid models have long simulation times, which can preclude the use of parameter estimation for calibration. Simulation of contaminant transport that does not account for preferential flow through conduits or extremely permeable zones in any approach is ill-advised. Simulation results in other karst aquifers or other

  4. Nutrient dynamics as indicators of karst processes: Comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A.)

    USGS Publications Warehouse

    Mahler, B.J.; Valdes, D.; Musgrove, M.; Massei, N.

    2008-01-01

    Karst aquifers display a range of geologic and geomorphic characteristics in a wide range of climatic and land-use settings; identification of transport dynamics representative of karst aquifers in general could help advance our understanding of these complex systems. To this end, nutrient, turbidity, and major ion dynamics in response to storms were compared at multiple sites in two karst aquifers with contrasting characteristics and settings: the Chalk aquifer (Eure Department, Normandy, France) and the Barton Springs segment of the Edwards Aquifer (Texas, U.S.A.). The Chalk aquifer is typified by high matrix porosity, thick surficial deposits (up to 30??m thick), and agricultural land use; the Barton Springs segment is typified by low matrix porosity, outcropping limestone, and urban land use. Following one to three storms, from 5 to 16 samples from springs and wells were analyzed for major ions, and specific conductance and turbidity were monitored continuously. Comparison of the chemographs indicated some generalized responses, including an increase in turbidity and potassium concentrations and a decrease in major ion and nitrate concentrations with infiltrating storm runoff. Factor analysis of major ions and turbidity revealed strikingly similar behavior of the chemical variables for the two aquifers: The first two factors, explaining more than 75% of the variability, illustrate that dynamics of most major ions (including nitrate) are opposed to those of turbidity and of potassium. The results demonstrate that potassium and nitrate are effective tracers of infiltrating storm runoff and resident ground water, respectively, and the similar results for these two highly contrasting aquifers suggest that the dynamics identified might be applicable to karst systems in general. ?? 2008 Elsevier B.V. All rights reserved.

  5. Changes in groundwater quality in a conduit-flow-dominated karst aquifer, following BMP implementation

    USGS Publications Warehouse

    Currens, J.C.

    2002-01-01

    Water quality in the Pleasant Grove Spring karst groundwater basin, Logan County, Kentucky, was monitored to determine the effectiveness of best management practices (BMPs) in protecting karst aquifers. Ninety-two percent of the 4,069-ha (10,054-acre) watershed is used for agriculture. Water-quality monitoring began in October 1992 and ended in November 1998. By the fall of 1995 approximately 72% of the watershed was enrolled in BMPs sponsored by the US Department of Agriculture Water Quality Incentive Program (WQIP). Pre-BMP nitrate-nitrogen concentration averaged 4.65 mg/1. The median total suspended solids concentration was 127 mg/1. The median triazine concentration measured by immunosorbent assay was 1.44 ??tg/l. Median bacteria counts were 418 colonies per 100 ml (col/100 ml) for fecal coliform and 540 col/100 ml for fecal streptococci. Post-BMP, the average nitrate-nitrogen concentration was 4.74 mg/1. The median total suspended solids concentration was 47.8 mg/1. The median triazine concentration for the post-BMP period was 1.48 ??g/1. The median fecal coliform count increased to 432 col/100 ml after BMP implementation, but the median fecal streptococci count decreased to 441 col/100 ml. The pre- and post-BMP water quality was statistically evaluated by comparing the annual mass flux, annual descriptive statistics, and population of analyses for the two periods. Nitrate-nitrogen concentration was unchanged. Increases in atrazine-equivalent flux and triazine geometric averages were not statistically significant. Total suspended solids concentration decreased slightly, whereas orthophosphate concentration increased slightly. Fecal streptococci counts were reduced. The BMPs were only partially successful because the types available and the rules for participation resulted in less effective BMPs being chosen. Future BMP programs in karst areas should emphasize buffer strips around sinkholes, excluding livestock from streams and karst windows, and withdrawing

  6. Chemical Source Tracking of Bacterial Contamination Using Micropollutants - A Karst Aquifer Case Study

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Schiperski, Ferry; Stange, Claudia; Tiehm, Andreas; Scheytt, Traugott

    2015-04-01

    Karst aquifers are important drinking water resources in many parts of the world, though they are well known for their high vulnerability to contamination. Rainfall and snowmelt often trigger temporary contamination of karst water resources. Free-range animal breeding and application of manure on the one hand and sewage leakage or spillage on the other hand are usually regarded as main sources for fecal contamination. But distinction of their respective contributions is difficult. This study investigates the feasibility to track the origin of fecal contamination from the occurrences of indicator bacteria and chemical source indicators in karst spring water. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (combined sewer system) are known to impact water quality at the spring. There is no free-range animal breeding in the catchment but intense application of manure. Following two heavy rainfall events with overflow of the stormwater detention basin, spring water was sampled over several days. Samples were analysed for indicator bacteria (total Coliform, E. coli, Enterococci) and 57 micropollutants, among them cyclamate and metazachlor. For the Gallusquelle catchment the artificial sweetener cyclamate and the herbicide metazachlor have been established as source specific indicators, the former for the sewer system and the latter for cropland. Though recharge in the Gallusquelle catchment is predominantly diffuse, there is a significant portion of direct recharge reflected by distinct breakthrough curves for cyclamate and metazachlor. The breakthrough of indicator bacteria coincides very well with the occurrence of both, cyclamate and metazachlor. However, indicator bacteria cannot be unambiguously tracked back to a specific source.

  7. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  8. Assessment of vulnerability in karst aquifers using a quantitative integrated numerical model: catchment characterization and high resolution monitoring - Application to semi-arid regions- Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Aoun, Michel; Andari, Fouad

    2016-04-01

    Karst aquifers are highly heterogeneous and characterized by a duality of recharge (concentrated; fast versus diffuse; slow) and a duality of flow which directly influences groundwater flow and spring responses. Given this heterogeneity in flow and infiltration, karst aquifers do not always obey standard hydraulic laws. Therefore the assessment of their vulnerability reveals to be challenging. Studies have shown that vulnerability of aquifers is highly governed by recharge to groundwater. On the other hand specific parameters appear to play a major role in the spatial and temporal distribution of infiltration on a karst system, thus greatly influencing the discharge rates observed at a karst spring, and consequently the vulnerability of a spring. This heterogeneity can only be depicted using an integrated numerical model to quantify recharge spatially and assess the spatial and temporal vulnerability of a catchment for contamination. In the framework of a three-year PEER NSF/USAID funded project, the vulnerability of a karst catchment in Lebanon is assessed quantitatively using a numerical approach. The aim of the project is also to refine actual evapotranspiration rates and spatial recharge distribution in a semi arid environment. For this purpose, a monitoring network was installed since July 2014 on two different pilot karst catchment (drained by Qachqouch Spring and Assal Spring) to collect high resolution data to be used in an integrated catchment numerical model with MIKE SHE, DHI including climate, unsaturated zone, and saturated zone. Catchment characterization essential for the model included geological mapping and karst features (e.g., dolines) survey as they contribute to fast flow. Tracer experiments were performed under different flow conditions (snow melt and low flow) to delineate the catchment area, reveal groundwater velocities and response to snowmelt events. An assessment of spring response after precipitation events allowed the estimation of the

  9. Isotopic evolution of groundwater in a telogenetic karst aquifer: A method to study recharge and contaminant transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There exists a limited understanding of hydrogeologic flow and contaminant transport within karst aquifers, particularly in the epikarst zone, which are highly susceptible to natural and anthropogenic contamination, such as agricultural runoff, due to the interconnected nature of the surface and sub...

  10. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  11. Viruses and bacteria in karst and fractured rock aquifers in East Tennessee, USA.

    PubMed

    Johnson, Trisha B; McKay, Larry D; Layton, Alice C; Jones, Sidney W; Johnson, Greg C; Cashdollar, Jennifer L; Dahling, Daniel R; Villegas, Leah F; Fout, G Shay; Williams, Daniel E; Sayler, Gary

    2011-01-01

    A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in East Tennessee. Seven sites derived their water from carbonate aquifers and one from fractured sandstone. Four of the sites were deemed "low-risk" based on prior monitoring of fecal indicators and factors such as presence of thick layers of overlying sediments. The remaining sites were deemed "high-risk." Enteric viruses (enterovirus and reovirus) were detected by cell culture at least once in seven of the eight wells or springs including all but one of the four low-risk sites. Viral RNA, however, was not detected in any of the samples by reverse transcription-polymerase chain reaction. Conventional indicators of microbial contamination (Escherichia coli and total coliform bacteria) were detected together with culturable viruses in seven of nine virus positive samples. Bacteroides, an alternative fecal indicator which has not previously been used in groundwater investigations, was also detected in all but one of the samples containing E. coli or total coliform bacteria, as well as in one sample where viruses were present in the absence of other bacterial indicators. The study highlights some of the challenges involved in surveys of virus occurrence and indicates that culturable enteric viruses in East Tennessee karst aquifers may be more widespread than previously observed in studies of karst aquifers in Pennsylvania (8%), the Ozark region of Missouri (< 1%), or several other states covered in a national microbial water quality survey conducted by the U.S. Environmental Protection Agency (43%).

  12. Viruses and bacteria in karst and fractured rock aquifers in east Tennessee, USA

    USGS Publications Warehouse

    Johnson, T.B.; McKay, L.D.; Layton, A.C.; Jones, S.W.; Johnson, G.C.; Cashdollar, J.L.; Dahling, D.R.; Villegas, L.F.; Fout, G.S.; Williams, D.E.; Sayler, G.

    2011-01-01

    A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in East Tennessee. Seven sites derived their water from carbonate aquifers and one from fractured sandstone. Four of the sites were deemed "low-risk" based on prior monitoring of fecal indicators and factors such as presence of thick layers of overlying sediments. The remaining sites were deemed "high-risk." Enteric viruses (enterovirus and reovirus) were detected by cell culture at least once in seven of the eight wells or springs including all but one of the four low-risk sites. Viral RNA, however, was not detected in any of the samples by reverse transcription-polymerase chain reaction. Conventional indicators of microbial contamination (Escherichia coli and total coliform bacteria) were detected together with culturable viruses in seven of nine virus positive samples. Bacteroides, an alternative fecal indicator which has not previously been used in groundwater investigations, was also detected in all but one of the samples containing E. coli or total coliform bacteria, as well as in one sample where viruses were present in the absence of other bacterial indicators. The study highlights some of the challenges involved in surveys of virus occurrence and indicates that culturable enteric viruses in East Tennessee karst aquifers may be more widespread than previously observed in studies of karst aquifers in Pennsylvania (8%), the Ozark region of Missouri (< 1%), or several other states covered in a national microbial water quality survey conducted by the U.S. Environmental Protection Agency (43%). Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  13. Effects of projected climate (2011–50) on karst hydrology and species vulnerability—Edwards aquifer, south-central Texas, and Madison aquifer, western South Dakota

    USGS Publications Warehouse

    Mahler, Barbara J.; Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Norton, Parker A.

    2015-12-22

    Karst aquifers—formed by the dissolution of soluble rocks such as limestone—are critical groundwater resources in North America, and karst springs, caves, and streams provide habitat for unique flora and fauna. Springflow and groundwater levels in karst terrane can change greatly over short time scales, and therefore are likely to respond rapidly to climate change. How might the biological communities and ecosystems associated with karst respond to climate change and accompanying changes in groundwater levels and springflow? Sites in two central U.S. regions—the Balcones Escarpment of south-central Texas and the Black Hills of western South Dakota (fig. 1)—were selected to study climate change and its potential effects on the local karst hydrology and ecosystem. The ecosystems associated with the Edwards aquifer (Balcones Escarpment region) and Madison aquifer (Black Hills region) support federally listed endangered and threatened species and numerous State-listed species of concern, including amphibians, birds, insects, and plants. Full results are provided in Stamm and others (2014), and are summarized in this fact sheet.

  14. PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France)

    NASA Astrophysics Data System (ADS)

    Kavouri, Konstantina; Plagnes, Valérie; Tremoulet, Joël; Dörfliger, Nathalie; Rejiba, Fayçal; Marchet, Pierre

    2011-03-01

    The intrinsic vulnerability mapping method, PaPRIKa, is proposed as a common basis for karst groundwater protection in France. PaPRIKa is a specialized method for studying karst aquifers, derived from updating the RISKE and EPIK methods. Both the structure and functioning of karst aquifers are considered in order to develop a resource and source-vulnerability mapping method. PaPRIKa means Protection of aquifers from the assessment of four criteria: P for protection (considering the most protective aspects among parameters related to soil cover, unsaturated zone and epikarst behavior), R for rock type, I for infiltration and Ka for karstification degree. The Ouysse karst system, located in the Causses area in southwest France, is one of the nine pilot sites where this method was tested and standardized. The specificities of the Ouysse system such as the size of the catchment area, the spatial variability of the karst network development, the thick infiltration zone and the system's dual character (both karst and non-karst areas), have provided a valuable field of application. The vulnerability of the resource was assessed for the entire catchment area, while source-orientated cartography was attempted for the catchment areas of the three different capture works used for drinking water.

  15. [Nitrate storage and transport within a typical karst aquifer system in the paralleled ridge-valley of east Sichuan].

    PubMed

    Yang, Ping-Heng; Yuan, Dao-Xian; Ren, You-Rong; Xie, Shi-You; He, Qiu-Fang; Hu, Xiao-Feng

    2012-09-01

    In order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors. Nitrate was derived from land surface and infiltrated together with soil water, which was mainly stored in fissure, pore and solution crack of karst unsaturated zone, whereas soluble iron, manganese and aluminum were derived from soil erosion and directly recharged the underground river through sinkholes and shafts. Nitrate transport in the karst aquifer system could be ideally divided into three phases, including input storage, fast output and re-inputting storage. Under similar external conditions, the karstification intensity of vadose zone was the key factor to determine the dynamics of nitrate concentrations in the groundwater during storm events. Nitrate stored in the karst vadose zone was easily released, which would impair the aquatic ecosystem and pose seriously threats to the local health. Thus, to strengthen the management of ecological system, changing the land-use patterns and scientifically applying fertilizer could effectively make a contribution to controlling mass nutrient input from the surface.

  16. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun spring using EPIK, COP, and travel time methods

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina

    2016-04-01

    Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the

  17. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    USGS Publications Warehouse

    Michael Sukop,; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  18. Fractal And Multi-fractal Analysis Of The Hydraulic Property Variations Of Karst Aquifers

    NASA Astrophysics Data System (ADS)

    Majone, B.; Bellin, A.; Borsato, A.

    Karst aquifers are very heterogeneous systems with hydraulic property variations acting at several continuous and discrete scales, as a result of the fact that macro- structural elements, such as faults and karst channels, and fractures are intertwined in a complex, and largely unknown, manner. Many experimental studies on karst springs showed that the recession limb of the typical storm hydrograph can be divided into several regions with different decreasing rate, suggesting that the discharge is com- posed of contributions experiencing different travel times. Despite the importance of karst aquifers as a source of fresh water for most Mediterranean countries fostered the attention of scientists and practitioners, the mechanisms controlling runoff production in such a complex subsurface environment need to be further explored. A detailed sur- vey, lasting for one year and conducted by the Museo Tridentino di Scienze Naturali of Trento, represents a unique opportunity to analyze the imprint of hydraulic prop- erty variations on the hydrological signal recorded at the spring of Prese Val, located in the Dolomiti group near Trento. Data include water discharge (Q), temperature (T) and electric conductivity of water (E). Analysis of the data revealed that the power spectrum of E scales as 1/f, with slightly, but significantly, smaller than 1. The scaling nature of the E-signal has been confirmed by rescaled range analysis of the time series. Since the electric conductivity is proportional to the concentration of ions in the spring water, which increases with the residence time, one may conclude that the fractal structure of the E signal is the consequence of a similar structure in the hydraulic property variations. This finding confirms previous results of Kirchner et al. (2000), who reported a similar behavior for chloride concentration in the streamflow of three small Welsh catchments. A more detailed analysis revealed that E and T are both multifractal signals

  19. Hydrologic connections and dynamics of water movement in the classical Karst (Kras) Aquifer: evidence from frequent chemical and stable isotope sampling

    USGS Publications Warehouse

    Doctor, Daniel H.

    2008-01-01

    A review of past research on the hydrogeology of the Classical Karst (Kras) region and new information obtained from a two- year study using environmental tracers are presented in this paper. The main problems addressed are 1) the sources of water to the Kras aquifer resurgence zone-including the famous Timavo springs-under changing flow regimes; 2) a quantification of the storage volumes of the karst massif corresponding to flow regimes defined by hydrograph recessions of the Timavo springs; and 3) changing dynamics between deep phreatic conduit flow and shallow phreatic and epiphreatic storage within the aquifer resurgence zone as determined through changes in chemical and isotopic composition at springs and wells. Particular focus was placed on addressing the long-standing question of the influence of the Soca River on the ground waters of the aquifer resurgence zone. The results indicate that the alluvial aquifer supplied by the sinking of the Soca River on the northwestern edge of the massif contributes approximately 75% of the mean annual outflow to the smaller springs of the aquifer resurgence zone, and as much as 53% to the mean annual outflow of the Timavo springs. As a whole, the Soca River is estimated to contribute 56% of the average outflow of the Kras aquifer resurgence. The proportions of Soca River water increase under drier conditions, and decrease under wetter conditions. Time series analysis of oxygen stable isotope records indicate that the transit time of Soca River water to the Timavo springs, Sardos spring, and well B-4 is on the order of 1-2 months, depending on hydrological conditions. The total baseflow storage of the Timavo springs is estimated to be 518 million m3, and represents 88.5% of the storage capacity estimated for all flow regimes of the springs. The ratio of baseflow storage volume to the average annual volume discharged at the Timavo springs is 0.54. The Reka River sinking in Slovenia supplies substantial allogenic recharge to

  20. Evidence of influence of regional and local heterogeneities within a chalk karst aquifer based on nitrates and chlorides analysis

    NASA Astrophysics Data System (ADS)

    El Janyani, S.; Dupont, J. P.; Massei, N.; Dörfliger, N.

    2012-04-01

    In Upper Normandy, a region located in the western Paris Basin, the main source of drinking water comes from the karst aquifer. Developing under the chalk plateaus, it is a covered aquifer overlaid by superficial formations of clay-with-flints and loess. Clay-with-flints result from chalk weathering whereas loess are wind periglacial deposits. The local geologic and hydrogelogic contexts are characterized by a mature development of sinkholes. The chalk karst is causing turbidity, often linked to the fast infiltration of surface water, carrying the products of river and slope erosion and associated contaminants into the aquifer through the sinkholes. Several authors have shown the potential of turbidity as a marker of suspended elements transport and karst conduits fast transport. In this study, we conducted monthly monitoring of 11 boreholes located in the upstream watershed near boreholes (surveyed by the French Geological Survey BRGM): Graveron-Semerville in the Southern department of Upper Normandy (Eure) and Rocquemont in the Norhtern department of Upper Normandy (Seine-Maritime). The monitoring carried out included water level and electrical conductivity (reflecting total water mineralization) measurements, and major elements analysis. In any case, the water levels are similar over time (in accordance with the reference borehole). High mineralizations are observed in the Eure boreholes with significant anomalies of nitrate (70 to 130 mg/l ) and chloride (35 to 90 mg/l). For the Seine Maritime boreholes, no anomalies in nitrates and chlorides were found. To explain such differences, the agricultural activities are not sufficiently different from the study site. The explanation would then come from different reservoirs involved in water storage: loessic formations, thicker and more spreaded in the Seine Maritime department and clay with flints, of significantly higher thickness on average in the Eure department. We also discuss the influence of the drainage

  1. Water-rock interaction induced by contaminated groundwater in a karst aquifer, Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, G.; Lambrakis, N.; Katagas, C.; Papoulis, D.; Tsolis-Katagas, P.

    2005-12-01

    The karst system of SW Trifilia is composed of a thick sequence of carbonate sediments, which have experienced two types of dolomitization and dedolomitization processes and comprise an extended aquifer. The application of fertilizers in the region have not only caused the degradation of the groundwater quality but also induced hydrochemical changes exerting major control on dolomitization processes. Factor analysis indicates high correlation coefficient between NH{4/+}, NO{3/-}, Ca2+ and Mg2+, which can be attributed to cation-exchange processes involving clay minerals. The application of a conservative mixing model showed that the calculated groundwater types indicate a cation-exchange process between NH{4/+}, derived from fertilizers, and between Ca2+ and Mg2+. Mg2+ released from smectite interlayers, exchanged for NH{4/+} in the groundwater and favor a dolomitization process through the partial replacement of Ca2+ in the lattice of calcite (dedolomite) contained in precursor dolomites. This recent stage dolomitization occurred near the water level and within the phreatic zone only and had not influenced the whole karst massif; it also resulted in low Mg/Ca values found in the zone characterized by intensive application of nitrogen-based fertilizers and the absence of overlying impermeable strata.

  2. Karst aquifers on small islands--the island of Olib, Croatia.

    PubMed

    Vlahović, Tatjana; Munda, Boris

    2012-10-01

    Water supply is a major problem in the Adriatic islands, especially during the summer tourism season, and represents a limiting factor to the islands' further economic development. Much attention has been given to water supply solutions, primarily in terms of attempting to use the existing island water. Unfortunately, few islands have favourable hydrological conditions to accumulate significant quantities of surface water or groundwater. In the period from 2001 to 2004, investigations were conducted on many islands to define their own freshwater or partially brackish water resources since desalinisation technology could resolve a significant part of the water supply demand on small and distant islands. Due to the specificity and complexity of research in karst areas, the study was conducted in phases and included the geological and hydrogeological reconnaissance of the island, aimed at locating possible areas on the island where the necessary quantities of groundwater of adequate quality could be captured; a detailed hydrogeological mapping of the specified areas, geophysical investigation and test drilling; and, over several days, test pumping of the most promising borehole. One of the islands investigated was the island of Olib. The conducted surveys indicated that it is possible to pump about 3.5 L/s of groundwater from the karst aquifer of the island of Olib, which fully complies with the sanitary quality of drinking water.

  3. Groundwater Assessment of the Bleone Catchment Karst Aquifer in Southern France

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramadan; Mosoh Bambi, Confidence K.

    2016-10-01

    Karst aquifer is an important water resource in southern France. It is the main source for agriculture and for domestic water supply. Hence, it is necessary to assess the quantity and quality of water in the Bleone Catchment. In order to achieve this aim, a groundwater chemistry analysis and regional numerical groundwater flow modelling using MODFLOW were conducted. Groundwater samples from springs and wells analyzed for water quality in the Bléone Catchment demonstrate different water types dominated mostly by fresh water, which is of moderate alkalinity and contains calcium and magnesium as major cations and bicarbonate as a common anion. The saturation indices for calcite and dolomite reveal that dissolution of calcite and dolomite can still take place. In addition, there is a very complex interaction between surface water and groundwater in the catchment.

  4. Correlation of Spatio-Temporal Contaminant Distribution, Land Use, and Hydrogeological Factors in the Karst Aquifers of Northern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Padilla, I. Y.

    2015-12-01

    Karst aquifers are characterized by caves, springs, and sinkholes, and typified by interconnected fissures, fractures and conduits. These characteristics make these aquifers highly productive, and vulnerable to contamination. Previous studies in the northern karst aquifers of Puerto Rico have shown significant distribution of contaminants, including volatile organic compounds, phthalates and other contaminants of emerging concern, beyond demarked sources of contamination. This study develops spatial-temporal distributions of phthalate contaminants in the karst system of northern Puerto Rico and assesses statistical correlations between hydrogeologic factors and groundwater contamination with phthalates. Geographic Information Systems (GIS) tools and technologies, and statistical models are applied to attain these objectives. Results show that there is an extensive contamination with phthalates that varies with time. Contamination is present in the confined and shallow aquifers. Di-(2-ethylhexyl) phthalate (DEHP) is the most detected contaminant (20.6% of the sites). Diethyl phthalate and and dibutyl phthalate are also detected in 6.7% and 8.24% of the sites, respectively. Phthalates detected as mixtures components are significantly detected in areas of high urban and industrial development. They are also detected in areas within 5 miles of superfund sites and landfills. The results indicate that phthalate contamination is highly related to land use. Statistical models show that the hydraulic conductivity of the aquifers, sinkholes density, and time are significantly related to the presence of phthalates in groundwater. The extensive spatio-temporal contamination suggests that contaminants can persist in the environment for long periods of time, and that land use and hydrogeological factors are important factors contributing to the presence of emerging contaminants in karst systems.

  5. Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer

    NASA Astrophysics Data System (ADS)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.

    2009-10-01

    SummaryInformation about sources of recharge, distributions of flow paths, and the extent of water-rock reactions in karst aquifers commonly result from monitoring spring chemistry and discharge. To investigate the relationship between spring characteristics and the complexities of karst aquifers, we couple variations in surface- and groundwater chemistry to physical conditions including river stage, precipitation, and evapotranspiration (ET) within a sink-rise system through a 6-km portion of the Upper Floridan aquifer (UFA) in north-central Florida. Principal component analysis (PCA) of time series major-element compositions suggests that at least three sources of water affect spring discharge, including allogenic recharge into a swallet, diffuse recharge through a thin vadose zone, and water upwelling from deep within the aquifer. The deep-water source exerts the strongest influence on water chemistry by providing a majority of Na +, Mg 2+, K +, Cl -, and SO42- to the system. Anomalously high temperature at one of several monitoring wells reflects vertical flow of about 1 m/year. Mass-balance calculations suggest diffuse recharge and deep-water upwelling can provide up to 50% of the spring discharge; however, their contributions depend on head gradients between the conduit and surrounding aquifer matrix, which are influenced by variations in precipitation, ET, and river stage. Our results indicate that upwelling from deep flow paths may provide significant contributions of water to spring discharge, and that monitoring only springs limits interpretations of karst systems by masking critical components of the aquifer, such as water sources and flow paths. These results also suggest the matrix in eogenetic aquifers is a major pathway for flow even in a system dominated by conduits.

  6. Microgravity monitoring of recharge in a karst aquifer in southwestern Oklahoma

    SciTech Connect

    Young, R.A.; Ahern, J.L. . School of Geology and Geophysics)

    1993-02-01

    Natural and artificial recharge of a shallow karst aquifer in Harmon County, Oklahoma, is being studied by the Oklahoma Water Resources Board and the US Bureau of Reclamation. The aquifer, the Permian Blaine Formation, consists of interbedded gypsum, shale, and dolomite. It is the only significant fresh water aquifer developed in evaporite rocks in the USA. The Blaine Formation forms major cave systems locally and generally consists of an intricate network of caves, cavities, sinks, and dissolution-collapse structures affecting the five gypsum bed subunits. At the recharge-demonstration sites, the Blaine is roughly 200 feet thick. At each site, observations wells cluster about a central recharge well which injects rainfall runoff at the depth of maximum void space (approximately 100 to 200 feet) determining from drilling. Annual variation in water level is up to 50 feet. Local storms can cause a rise of several tens of feet in a few days and a gradual decrease over several weeks. This may lead to a regional increase in water table elevation near the recharge well ( mounding'), and localized filling of voids in the gypsum. Both of these effects are expected to cause changes in the local gravity field following a heavy rainfall. For example, the filling of a 5 meter radius cylindrical void at a depth of 25 meters would produce a 46 microgal anomaly, easily detectable by a microgravity meter after instrumental and tidal drift corrections are made. To look for these changes, microgravity profiles will be conducted across the recharge zones. If correlation of gravity with measured water levels and recharge volume is demonstrated, microgravity surveys may prove useful in siting recharge wells from surface measurements alone.

  7. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform "super-K" zones

    USGS Publications Warehouse

    Cunningham, K.J.; Sukop, M.C.; Huang, H.; Alvarez, P.F.; Curran, H.A.; Renken, R.A.; Dixon, J.F.

    2009-01-01

    A combination of cyclostratigraphic, ichnologic, and borehole geophysical analyses of continuous core holes; tracer-test analyses; and lattice Boltzmann flow simulations was used to quantify biogenic macroporosity and permeability of the Biscayne aquifer, southeastern Florida. Biogenic macroporosity largely manifests as: (1) ichnogenic macroporosity primarily related to postdepositional burrowing activity by callianassid shrimp and fossilization of components of their complex burrow systems (Ophiomorpha); and (2) biomoldic macroporosity originating from dissolution of fossil hard parts, principally mollusk shells. Ophiomorpha-dominated ichno-fabric provides the greatest contribution to hydrologic characteristics in the Biscayne aquifer in a 345 km2 study area. Stratiform tabular-shaped units of thalassinidean-associated macroporosity are commonly confined to the lower part of upward-shallowing high-frequency cycles, throughout aggradational cycles, and, in one case, they stack vertically within the lower part of a high-frequency cycle set. Broad continuity of many of the macroporous units concentrates groundwater flow in extremely permeable passage-ways, thus making the aquifer vulnerable to long-distance transport of contaminants. Ichnogenic macroporosity represents an alternative pathway for concentrated groundwater flow that differs considerably from standard karst flow-system paradigms, which describe groundwater movement through fractures and cavernous dissolution features. Permeabilities were calculated using lattice Boltzmann methods (LBMs) applied to computer renderings assembled from X-ray computed tomography scans of various biogenic macroporous limestone samples. The highest simulated LBM permeabilities were about five orders of magnitude greater than standard laboratory measurements using air-permeability methods, which are limited in their application to extremely permeable macroporous rock samples. Based on their close conformance to analytical

  8. Percolation and particle transport in the unsaturated zone of a karst aquifer.

    PubMed

    Pronk, Michiel; Goldscheider, Nico; Zopfi, Jakob; Zwahlen, Francxois

    2009-01-01

    Recharge and contamination of karst aquifers often occur via the unsaturated zone, but the functioning of this zone has not yet been fully understood. Therefore, irrigation and tracer experiments, along with monitoring of rainfall events, were used to examine water percolation and the transport of solutes, particles, and fecal bacteria between the land surface and a water outlet into a shallow cave. Monitored parameters included discharge, electrical conductivity, temperature, organic carbon, turbidity, particle-size distribution (PSD), fecal indicator bacteria, chloride, bromide, and uranine. Percolation following rainfall or irrigation can be subdivided into a lag phase (no response at the outlet), a piston-flow phase (release of epikarst storage water by pressure transfer), and a mixed-flow phase (increasing contribution of freshly infiltrated water), starting between 20 min and a few hours after the start of recharge event. Concerning particle and bacteria transport, results demonstrate that (1) a first turbidity signal occurs during increasing discharge due to remobilization of particles from fractures (pulse-through turbidity); (2) a second turbidity signal is caused by direct particle transfer from the soil (flow-through turbidity), often accompanied by high levels of fecal indicator bacteria, up to 17,000 Escherichia coli/100 mL; and (3) PSD allows differentiation between the two types of turbidity. A relative increase of fine particles (0.9 to 1.5 microm) coincides with microbial contamination. These findings help quantify water storage and percolation in the epikarst and better understand contaminant transport and attenuation. The use of PSD as "early-warning parameter" for microbial contamination in karst water is confirmed.

  9. Change in the structure of Escherichia coli population related to the settling velocities in karst aquifer

    NASA Astrophysics Data System (ADS)

    Petit, F.; Massei, N.; Berthe, T.; Deloffre, J.; Fournier, M.; Bertel, F.; jolivet, F.; lallemand, H.; Niepceron, F.; Sellier, C.; Benjamin, S.

    2012-04-01

    Change in the structure of Escherichia coli population related to the settling velocities in karst aquifer. Fabienne Petit1, Fanny Bertel2, Florence Jolivet2, Hélène Lallemand2, Fanny Niepceron2, Clémentine Sellier2, Benjamin Smith2, Thierry Berthe, Julien Deloffre1, Matthieu Fournier1,Nicolas Massei 1. 1- Université de Rouen, UMR 6143 M2C, 76821 Mont-Saint-Aignan, France 1- CNRS, UMR 6143 M2C, 76821 Mont-Saint-Aignan, France 1- SFR SCALE, 76821 Mont-Saint-Aignan, France 2 Research project of students from MasterEnvironment ( ESEB University of Rouen) According to the farming or human use of their watershed, the karst aquifers were particularly vulnerable to contamination by fecal bacteria mainly Escherichia coli (E. coli). To date, if E. coli is a commensal bacteria originated from intestinal tracts of humans and vertebrate animals, the water and sediment are also considered as a putative second habitat where some strains could be naturalized. Among the phenotypic characteristics of E.coli, association with particles not only could enhance the survival of some strains but also greatly influenced the particles dynamics. The great genetic diversity of E. coli may explain this variety of lifestyles of this bacteria species. Indeed we have previously shown that in river, the structure of the population of E. coli was not stable, but depended on hydrological conditions (Ratajczak, 2010). In this work we go further into the understanding of the behaviour of E. coli population in karstic hydrosystem by investigating (i) the structure of E. coli population based on the distribution in four main phylo-groups (A, B1, B2, D) according their settling velocities from surface water to groundwater. For this purpose we combined microbiology , microscopy (SEM) and hydrology approaches. During their transfer along the karst hydrosystem, both modalities of the association of E. coli to the particles and, the structure of E. coli population were modified. Settling experiment led

  10. Environmental isotopic and hydrochemical study of water in the karst aquifer and submarine springs of the Syrian coast

    NASA Astrophysics Data System (ADS)

    Charideh, Al; Rahman, Abdul

    2007-03-01

    The groundwater of major karst systems and submarine springs in the coastal limestone aquifer of Syria has been investigated using chemical and isotopic techniques. The δ18O values of groundwater range from -6.8 to -5.05‰, while those for submarine springs vary from -6.34 to +1.08‰ (eastern Mediterranean seawater samples have a mean of +1.7‰). Groundwater originates from the direct infiltration of atmospheric water. Stable isotopes show that the elevation of the recharge zones feeding the Banyas area (400-600 m a.s.l.) is higher than that feeding the Amrit area (100-300 m a.s.l.). The 18Oextracted (18O content of the seawater contribution) for the major submarine springs suggests a mean recharge area elevation of 600-700 m a.s.l., and lower than 400 m a.s.l. for the spring close to Amrit. Based on the measured velocity and the percentage of fresh water at the submarine springs outlet, the estimated discharge rate is 350 million m3/year. The tritium concentrations in groundwater (1.6-5.9 TU) are low and very close to the current rainfall values (2.9-5.6 TU). Adopting a model with exponential time distribution, the mean turnover time of groundwater in the Al-sen spring was evaluated to be 60 years. A value of about 3.7 billion m3 was obtained for the maximum groundwater reservoir size.

  11. Multitracer test for the determination of transport and in-situ degradation of organic micro-contaminants in karst aquifers on the example of caffeine

    NASA Astrophysics Data System (ADS)

    Hillebrand, O.; Nödler, K.; Licha, T.; Geyer, T.

    2012-04-01

    The application of organic micro-contaminants as indicators for contamination sources in aquifers and surface-water bodies has been increasingly discussed in the literature over the last years. One of the proposed substances was caffeine. It served as indicator for wastewater-leakage to various systems. As well, wastewater volumes could be estimated from caffeine concentrations. Although caffeine is known to be degradable, the degradation rates are normally only determined from mass balances or laboratory experiments. Degradation rates obtained from mass balances are relatively uncertain, as the input-function is difficult to be assessed. Laboratory experiments are hardly capable to consider the full complexity of natural systems and can rarely be transferred to those. To solve this problem, in-situ degradation rates of reactive indicators have to be determined. Especially multitracer tests can be used to access compound-specific transport parameters and degradation rates, relative to conservative tracers. A multitracer test with caffeine and uranine has been performed in a karst system (catchment of the Gallusquelle spring, SW Germany). From the breakthrough curves of the tracers, the transport behavior and the in-situ degradation rate of caffeine could be deduced. The tracers were injected into a sinkhole with a linear distance of 3000 m to the spring. The mean residence time of the tracers was found to be 84 h at a flow velocity of 35 m/h. Throughout the whole experiment, the spring discharge was constant at 187 L/s. Uranine served as conservative reference-tracer for the calibration of a one-dimensional transport model with respect to solute-unspecific parameters. Relative to that, the tracer breakthrough curve of caffeine was interpreted. As solute-specific parameters the retardation coefficient as well as degradation rate of caffeine in the investigated karst aquifer could be determined. The results indicate, that caffeine is slightly retarded in the

  12. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  13. Characterization of the porosity distribution in the upper part of the karst Biscayne aquifer using common offset ground penetrating radar, Everglades National Park, Florida

    NASA Astrophysics Data System (ADS)

    Mount, Gregory J.; Comas, Xavier; Cunningham, Kevin J.

    2014-07-01

    The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity and hydraulic conductivity, making conceptualization difficult. The Biscayne aquifer is the primary source of drinking water for millions of people in south Florida; thus, information concerning the distribution of karst features that concentrate the groundwater flow and affect contaminant transport is critical. The principal purpose of the study was to investigate the ability of two-dimensional ground penetrating radar (GPR) to rapidly characterize porosity variability in the karst Biscayne aquifer in south Florida. An 800-m-long GPR transect of a previously investigated area at the Long Pine Key Nature Trail in Everglades National Park, collected in fast acquisition common offset mode, shows hundreds of diffraction hyperbolae. The distribution of diffraction hyperbolae was used to estimate electromagnetic (EM) wave velocity at each diffraction location and to assess both horizontal and vertical changes in velocity within the transect. A petrophysical model (complex refractive index model or CRIM) was used to estimate total bulk porosity. A set of common midpoint surveys at selected locations distributed along the common-offset transect also were collected for comparison with the common offsets and were used to constrain one-dimensional (1-D) distributions of porosity with depth. Porosity values for the saturated Miami Limestone ranged between 25% and 41% for common offset GPR surveys, and between 23% and 39% for common midpoint GPR surveys. Laboratory measurements of porosity in five whole-core samples from the saturated part of the aquifer in the study area ranged between 7.1% and 41.8%. GPR estimates of porosity were found to be valid only under saturated conditions; other limitations are related to the vertical resolution of the GPR signal and the volume of the material considered by the measurement methodology. Overall, good correspondence between GPR estimates and

  14. Characterization of the porosity distribution in the upper part of the karst Biscayne aquifer using common offset ground penetrating radar, Everglades National Park, Florida

    USGS Publications Warehouse

    Mountain, Gregory S.; Cunningham, Kevin J.; Comas, Xavier

    2014-01-01

    The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity and hydraulic conductivity, making conceptualization difficult. The Biscayne aquifer is the primary source of drinking water for millions of people in south Florida; thus, information concerning the distribution of karst features that concentrate the groundwater flow and affect contaminant transport is critical. The principal purpose of the study was to investigate the ability of two-dimensional ground penetrating radar (GPR) to rapidly characterize porosity variability in the karst Biscayne aquifer in south Florida. An 800-m-long GPR transect of a previously investigated area at the Long Pine Key Nature Trail in Everglades National Park, collected in fast acquisition common offset mode, shows hundreds of diffraction hyperbolae. The distribution of diffraction hyperbolae was used to estimate electromagnetic (EM) wave velocity at each diffraction location and to assess both horizontal and vertical changes in velocity within the transect. A petrophysical model (complex refractive index model or CRIM) was used to estimate total bulk porosity. A set of common midpoint surveys at selected locations distributed along the common-offset transect also were collected for comparison with the common offsets and were used to constrain one-dimensional (1-D) distributions of porosity with depth. Porosity values for the saturated Miami Limestone ranged between 25% and 41% for common offset GPR surveys, and between 23% and 39% for common midpoint GPR surveys. Laboratory measurements of porosity in five whole-core samples from the saturated part of the aquifer in the study area ranged between 7.1% and 41.8%. GPR estimates of porosity were found to be valid only under saturated conditions; other limitations are related to the vertical resolution of the GPR signal and the volume of the material considered by the measurement methodology. Overall, good correspondence between GPR estimates and

  15. Time-series variations in CFC and 3H/3He ages in springs discharging from an eogenetic karst aquifer (Invited)

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Kurz, M. J.; Khadka, M. B.; Cohen, M. J.

    2013-12-01

    increasing from the low flow to flood samples while 3H/3He ages decrease in five of the six springs with increasing discharge. The age of the water would be expected to decrease following the storm, suggesting that the CFC data may be contaminated. Assuming the drought discharge is solely groundwater and the measured reduction in the 3H/3He ages originates from mixing old groundwater with zero-aged water from the storm, the fraction of discharging storm water ranged from 4 to 25% of the total discharge. This variation in the fraction of the storm-derived water corresponds to estimated depths of flow paths to the springs based on dissolved oxygen and temperature data. Springs originating from deep flow paths have smaller fractions of storm water. Time-series measurements of ages of water discharging from springs appear to be a useful technique for estimating fractions of storm derived water and possibly flow paths in springs discharging from eogenetic karst aquifers.

  16. Imaging Karst Aquifers with Multichannel Seismic Data in Biscayne Bay: Conventional Wisdom Defied

    NASA Astrophysics Data System (ADS)

    Walker, C.; Cunningham, K. J.

    2008-05-01

    Conventional wisdom reasons that acquisition of useful seismic data in shallow-marine carbonate environments is not possible because: (1) water-bottom multiples will dominate; (2) receiver offsets will be too short to image deep reflectors; (3) normal move out is too small to effectively calculate velocities; (4) air-gun source arrays are not appropriate or frequency band-limited; and (5) it is folly to over-sample the seismic data and process very large digital data sets. In 2007, about 108 km (17 individual profiles) of marine, multichannel, high-resolution, seismic data were acquired almost entirely inside Biscayne National Park in water depths ranging from 0.9 to 100 m. The data were collected using a 48-trace, towed-streamer array; an interdependent air-gun as the seismic source; and a proprietary 52-channel, 24-bit recording system. The seismic vessel was a fast, shallow-draft catamaran capable of continuously acquiring data in water as shallow as 0.7 m. The set of seismic images from 17 profiles show well-defined reflections from near surface to the Eocene Oldsmar Formation (including the karstic Boulder Zone in the Lower Floridan aquifer). The profiles also display distinctive geologic features that include karst, clinoformal prograding strata, unconformities, fractures, stratal truncation, and evidence for breaching of confining units.

  17. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  18. Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan.

    PubMed

    Zemann, Moritz; Wolf, Leif; Grimmeisen, Felix; Tiehm, Andreas; Klinger, Jochen; Hötzl, Heinz; Goldscheider, Nico

    2015-03-01

    Sewage input into a karst aquifer via leaking sewers and cesspits was investigated over five years in an urbanized catchment. Of 66 samples, analyzed for 25 pharmaceuticals, 91% indicated detectable concentrations. The former standard iodinated X-ray contrast medium (ICM) diatrizoic acid was detected most frequently. Remarkably, it was found more frequently in groundwater (79%, median: 54 ng/l) than in wastewater (21%, 120 ng/l), which is supposed to be the only source in this area. In contrast, iopamidol, a possible substitute, spread over the aquifer during the investigation period whereas concentrations were two orders of magnitude higher in wastewater than in groundwater. Knowledge about changing application of pharmaceuticals thus is essential to assess urban impacts on aquifers, especially when applying mass balances. Since correlated concentrations provide conclusive evidence that, for this catchment, nitrate in groundwater rather comes from urban than from rural sources, ICM are considered useful tracers.

  19. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy

    USGS Publications Warehouse

    Allocca, V.; De Vita, P.; Manna, F.; Nimmo, John R.

    2015-01-01

    Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climate-dependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology could further be applied to other aquifers for evaluating the relationship of recharge to various hydrometeorological and hydrogeological processes.

  20. Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: The Sierra de las Nieves karst aquifer, southern Spain

    NASA Astrophysics Data System (ADS)

    Liñán Baena, C.; Andreo, B.; Mudry, J.; Carrasco Cantos, F.

    2009-06-01

    In carbonate massifs, flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The Sierra de las Nieves karst massif (southern Spain) is subjected to a given climatic and geological context, and thus it is possible to analyse the spatial and temporal variability of the water temperature and electrical conductivity at its main karst outlets, which display different responses to rainfall episodes. In this experimental field area, conduit flow and diffuse flow drainage patterns have been distinguished by combining groundwater temperature and electrical conductivity data. Both parameters show large variations in water coming from conduit flow systems and low variations in water drained by springs draining diffuse flow systems. However, groundwater temperature displays the smallest variations, which seems to indicate that this parameter is less sensitive as regards characterising the degree of karstification, which is a key question in characterising the aquifer functioning.

  1. Bacterial Activity and Geochemical Reactions in Submerged Cave Development -- Impact on Karst Aquifers in Florida

    NASA Astrophysics Data System (ADS)

    Herman, J. S.; Franklin, R. B.; Mills, A. L.; Giannotti, A. L.; Tysall, T. N.

    2008-05-01

    Elucidation of coupled mechanisms of sulfide oxidation and biomass generation supports an improved understanding the driving forces behind acid production, calcite dissolution, cave development, and karst aquifers characterization. Wekiwa Springs Cave and DeLeon Springs Cave, located in central Florida, both contain prolific bacterial mats from which sulfur-oxidizing bacteria have been identified. Wekiwa Springs Cave, a submerged cave developed in the Hawthorne Formation and located near Orlando, Florida, has groundwater discharge from the Floridian aquifer system, with some contribution from surficial and intermediate aquifers. The spring is the headwater of the Wekiwa River and releases a total of 170,000 m3 of water per day. The ceiling and walls are heavily covered (10 cm thick) with three morphologically distinct types of microbial mats largely comprising sulfur-oxidizing bacteria. Analysis of nearby groundwater collected from wells confirms sulfide concentrations in the regional groundwater of ~ 1.5 mg/L, though sulfide concentrations for water collected in the cave are below detection. Dissolved oxygen concentration in the water is low (<0.5 mg/L). DeLeon Springs Cave, a submerged cave located in Volusia County, Florida, is a single conduit with an average discharge of ~ 70,000 m3 of water per day, and water chemistry data suggest the presence of a saline seep in the system. Dense microbial mats cover the rock surfaces of the cave; the mats are highly filamentous, with long white streamers that often extend 1-2 feet from the cave wall. Microscopic analysis has confirmed the presence of sulfur granules within these bacterial cells, similar to those observed in the Wekiwa cave organisms. The water chemistry in DeLeon Springs Cave, however, is distinct from that of Wekiwa Springs Cave. Though DO, Fetotal, and HS- values are similar for the two sites, the concentration of ions such as Cl-, Na+, and SO42- are considerably higher at DeLeon. A similar contrast

  2. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  3. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Mace, Robert E.; Barrett, Michael E.; Smith, Brian

    2003-05-01

    Various approaches can be used to simulate groundwater flow in karst systems, including equivalent porous media distributed parameter, lumped parameter, and dual porosity approaches, as well as discrete fracture or conduit approaches. The purpose of this study was to evaluate two different equivalent porous media approaches: lumped and distributed parameter, for simulating regional groundwater flow in a karst aquifer and to evaluate the adequacy of these approaches. The models were applied to the Barton Springs Edwards aquifer, Texas. Unique aspects of this study include availability of detailed information on recharge from stream-loss studies and on synoptic water levels, long-term continuous water level monitoring in wells throughout the aquifer, and spring discharge data to compare with simulation results. The MODFLOW code was used for the distributed parameter model. Estimation of hydraulic conductivity distribution was optimized by using a combination of trial and error and automated inverse methods. The lumped parameter model consists of five cells representing each of the watersheds contributing recharge to the aquifer. Transient simulations were conducted using both distributed and lumped parameter models for a 10-yr period (1989-1998). Both distributed and lumped parameter models fairly accurately simulated the temporal variability in spring discharge; therefore, if the objective of the model is to simulate spring discharge, either distributed or lumped parameter approaches can be used. The distributed parameter model generally reproduced the potentiometric surface at different times. The impact of the amount of pumping on a regional scale on spring discharge can be evaluated using a lumped parameter model; however, more detailed evaluation of the effect of pumping on groundwater levels and spring discharge requires a distributed parameter modeling approach. Sensitivity analyses indicated that spring discharge was much more sensitive to variations in

  4. Aquifer parameter estimation from surface resistivity data.

    PubMed

    Niwas, Sri; de Lima, Olivar A L

    2003-01-01

    This paper is devoted to the additional use, other than ground water exploration, of surface geoelectrical sounding data for aquifer hydraulic parameter estimation. In a mesoscopic framework, approximated analytical equations are developed separately for saline and for fresh water saturations. A few existing useful aquifer models, both for clean and shaley sandstones, are discussed in terms of their electrical and hydraulic effects, along with the linkage between the two. These equations are derived for insight and physical understanding of the phenomenon. In a macroscopic scale, a general aquifer model is proposed and analytical relations are derived for meaningful estimation, with a higher level of confidence, of hydraulic parameter from electrical parameters. The physical reasons for two different equations at the macroscopic level are explicitly explained to avoid confusion. Numerical examples from existing literature are reproduced to buttress our viewpoint.

  5. Transport of suspended solids from a karstic to an alluvial aquifer: The role of the karst/alluvium interface

    USGS Publications Warehouse

    Massei, N.; Lacroix, M.; Wang, H.Q.; Mahler, B.J.; Dupont, J.P.

    2002-01-01

    This study focuses on the coupled transport of dissolved constituents and particulates, from their infiltration on a karst plateau to their discharge from a karst spring and their arrival at a well in an alluvial plain. Particulate markers were identified and the transport of solids was characterised in situ in porous and karstic media, based on particle size analyses, SEM, and traces. Transport from the sinkhole to the spring appeared to be dominated by flow through karst: particulate transport was apparently conservative between the two sites, and there was little difference in the overall character of the particle size distribution of the particulates infiltrating the sinkhole and of those discharging from the spring. Qualitatively, the mineralogy of the infiltrating and discharging material was similar, although at the spring an autochthonous contribution from the aquifer was noted (chalk particles eroded from the parent rock by weathering). In contrast, transport between the spring and the well appears to be affected by the overlying alluvium: particles in the water from the well, showed evidence of considerable size-sorting. Additionally, SEM images of the well samples showed the presence of particles originating from the overlying alluvial system; these particles were not found in samples from the sinkhole or the spring. The differences between the particulates discharging from the spring and the well indicate that the water pumped from the alluvial plain is coming from the karst aquifer via the very transmissive, complex geologic interface between the underlying chalk formation and the gravel at the base of the overlying alluvial system. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains

    NASA Astrophysics Data System (ADS)

    Faulkner, Jonathan; Hu, Bill X.; Kish, Stephen; Hua, Fei

    2009-11-01

    New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.

  7. New approach to the investigation of groundwater contamination at petroleum release sites in karst aquifers of Minnesota

    SciTech Connect

    Burman, S.R.; Owens, R.S.

    1997-12-31

    The Minnesota Pollution Control Agency (MPCA) provides technical guidance and regulatory oversight for the investigation and remediation of a large number of petroleum release sites in the state. A significant number of these sites are located in southeastern Minnesota. The carbonate bedrock in this region of the state has been subjected to at least 400 million years of karstification processes. Consequently, all these formations are karstified, with a wide range in the intensity of the karstification. This range is very poorly understood, is not established, and is only now beginning to be mapped in the state. However, this is largely irrelevant to groundwater contamination issues, since the presence of even minor solution features can lead to significant deviations from the porous media approximations on which conventional groundwater investigations are based. Essentially, all of the-unconfined carbonate bedrock aquifers are karst aquifers and both groundwater and contaminant movement is best described and managed under discrete-flow or dual-porosity models. Experience gathered over several years has demonstrated that conventional groundwater investigation techniques were proving to be inadequate and also not cost effective in these areas of the state. Application of conventional groundwater investigation methods had resulted in a large number of incompletely characterized sites, inadequate monitoring networks, and failure of remedial systems. This led the MPCA to develop an alternative approach for groundwater characterization techniques specific to karst areas. In early 1996, this approach was presented to the consulting and regulated communities as draft guidance to be implemented during the forthcoming field season. These guidelines present procedures and techniques that recognize the fact that karst aquifers possess hydrogeologic properties that cannot be characterized by porous media approximations.

  8. CO2 outgassing in a combined fracture and conduit karst aquifer near lititz spring, Pennsylvania

    USGS Publications Warehouse

    Toran, L.; Roman, E.

    2006-01-01

    Lititz Spring in southeastern Pennsylvania and a nearby domestic well were sampled for 9 months. Although both locations are connected to conduits (as evidenced by a tracer test), most of the year they were saturated with respect to calcite, which is more typical of matrix flow. Geochemical modeling (PHREEQC) was used to explain this apparent paradox and to infer changes in matrix and conduit contribution to flow. The saturation index varied from 0.5 to 0 most of the year, with a few samples in springtime dropping below saturation. The log PCO2 value varied from -2.5 to -1.7. Lower log PCO2 values (closer to the atmospheric value of -3.5) were observed when the solutions were at or above saturation with respect to calcite. In contrast, samples collected in the springtime had high PCO2, low saturation indices, and high water levels. Geochemical modeling showed that when outgassing occurs from a water with initially high PCO2, the saturation index of calcite increases. In the Lititz Spring area, the recharge water travels through the soil zone, where it picks up CO2 from soil gas, and excess CO 2 subsequently is outgassed when this recharge water reaches the conduit. At times of high water level (pipe full), recharge with excess CO 2 enters the system but the outgassing does not occur. Instead the recharge causes dilution, reducing the calcite saturation index. Understanding the temporal and spatial variation in matrix and conduit flow in karst aquifers benefited here by geochemical modeling and calculation of PCO2 values. ?? 2006 Geological Society of America.

  9. Fate of effluent-borne contaminants beneath septic tank drainfields overlying a Karst aquifer.

    PubMed

    Katz, Brian G; Griffin, Dale W; McMahon, Peter B; Harden, Harmon S; Wade, Edgar; Hicks, Richard W; Chanton, Jeffrey P

    2010-01-01

    Groundwater quality effects from septic tanks were investigated in the Woodville Karst Plain, an area that contains numerous sinkholes and a thin veneer of sands and clays overlying the Upper Floridan aquifer (UFA). Concerns have emerged about elevated nitrate concentrations in the UFA, which is the source of water supply in this area of northern Florida. At three sites during dry and wet periods in 2007-2008, water samples were collected from the septic tank, shallow and deep lysimeters, and drainfield and background wells in the UFA and analyzed for multiple chemical indicators including nutrients, nitrate isotopes, organic wastewater compounds (OWCs), pharmaceutical compounds, and microbiological indicators (bacteria and viruses). Median NO3-N concentration in groundwater beneath the septic tank drainfields was 20 mg L(-1) (8.0-26 mg L(-1)). After adjusting for dilution, about 25 to 40% N loss (from denitrification, ammonium sorption, and ammonia volatilization) occurs as septic tank effluent moves through the unsaturated zone to the water table. Nitrogen loading rates to groundwater were highly variable at each site (3.9-12 kg N yr(-1)), as were N and chloride depth profiles in the unsaturated zone. Most OWCs and pharmaceutical compounds were highly attenuated beneath the drainfields; however, five Cs (caffeine, 1,7-dimethylxanthine, phenol, galaxolide, and tris(dichloroisotopropyl)phosphate) and two pharmaceutical compounds (acetaminophen and sulfamethoxazole) were detected in groundwater samples. Indicator bacteria and human enteric viruses were detected in septic tank effluent samples but only intermittently in soil water and groundwater. Contaminant movement to groundwater beneath each septic tank system also was related to water use and differences in lithology at each site.

  10. Vulnerability of karst aquifers to agricultural contaminants: A case study in the Pennyroyal Plateau of Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  11. Transfer of bacteria-contaminated particles in a karst aquifer: evolution of contaminated materials from a sinkhole to a spring

    NASA Astrophysics Data System (ADS)

    Dussart-Baptista, L.; Massei, N.; Dupont, J.-P.; Jouenne, T.

    2003-12-01

    The transport of particle-associated bacteria during rain events in karst waters has been investigated. In this aim, we studied the correlations between water turbidity and enumerations of sessile (attached) and planktonic (non-attached) bacteria. We monitored physicochemical, i.e. turbidity, electrical conductivity, size and nature of the transported particles, and bacteriological properties of waters since their infiltration on a karst plateau to their discharge at a karstic spring. Results showed a decrease of the concentration of sessile bacteria at the sinkhole for high turbidities. This phenomenon might be explained by the arrival of lower contaminated material. On the other hand, the amount of sessile bacteria at the spring was not influenced by the turbidity values. These data demonstrated that slightly contaminated larger particles were not recovered, whereas small-size particles, which exhibited a higher bacterial contamination, were directly transferred (i.e. not affected by intra-karstic deposition) through the aquifer. Our study highlighted some significant differences between the bacteriological time series at the sinkhole and at the spring, which characterizes the storage/resuspension function of the considered karst system. Moreover, we show a decrease of the concentration of planktonic bacteria after transport through the system whereas no reduction of the sessile population occurred. The present data confirm that turbidity does not constitute a good indicator for bacterial contamination: if high turbidity corresponds to high bacterial contamination, low turbidity does not systematically exclude a risk of contamination by sessile organisms.

  12. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop,; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  13. Analysis of hydrologic and geochemical time-series data at James Cave, Virginia: Implications for epikarst influence on recharge in Appalachian karst aquifers

    USGS Publications Warehouse

    Eagle, Sarah D.; Orndorff, William; Schwartz, Benjamin F.; Doctor, Daniel H.; Gerst, Jonathan D.; Schreiber, Madeline E.

    2016-01-01

    The epikarst, which consists of highly weathered rock in the upper vadose zone of exposed karst systems, plays a critical role in determining the hydrologic and geochemical characteristics of recharge to an underlying karst aquifer. This study utilized time series (2007–2014) of hydrologic and geochemical data of drip water collected within James Cave, Virginia, to examine the influence of epikarst on the quantity and quality of recharge in a mature, doline-dominated karst terrain. Results show a strong seasonality of both hydrology and geochemistry of recharge, which has implications for management of karst aquifers in temperate climatic zones. First, recharge (discharge from the epikarst to the underlying aquifer) reaches a maximum between late winter and early spring, with the onset of the recharge season ranging from as early as December to as late as March during the study period. The timing and duration of the recharge season were found to be a function of precipitation in excess of evapotranspiration on a seasonal time scale. Secondly, seasonally variable residence times for water in the epikarst influence rock-water interaction and, hence, the geochemical characteristics of recharge. Overall, results highlight the strong and complex influence that the epikarst has on karst recharge, which requires long-term and high-resolution data sets to accurately understand and quantify.

  14. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  15. Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA)

    NASA Astrophysics Data System (ADS)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Padilla, Ingrid Y.; Alshawabkeh, Akram

    2016-09-01

    In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal.

  16. Effects of Hydrogeologic Conditions on Groundwater Contamination of CVOCs in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Howard, J.; Padilla, I. Y.; Torres, P.; Cotto, I.; Irizarry, C.

    2012-12-01

    The karst system of northern Puerto Rico is the most productive aquifer of the island. It serves freshwater to industrial, domestic and agricultural purposes, and contributes to the ecological integrity of the region. The same characteristics that make this a highly productive aquifer, make it vulnerable to contamination of groundwater. Of particular importance is contamination with chlorinated volatile organic compounds (CVOCs), which have been related to preterm birth problems. A great extent of CVOC contamination has been seen in the North Coast of Puerto Rico since the 1970s. The main purposes of this study are (1) to relate the water quality of wells and springs with the hydrogeological conditions in the north coast limestone aquifer of Puerto Rico, and (2) to make a statistical analysis of the historical groundwater contamination in that area. To achieve these objectives, groundwater samples are collected from wells and springs during dry and wet seasons. Results show that trichloroethylene (TCE), tetrachloroethylene (PCE) and chloroform (TCM) are frequently detected in groundwater samples. A greater detection of CVOCs is detected during the wet season than the dry season. This is attributed to a greater capacity to flush stored contaminants during the wet season. Historical analysis of contamination in the north coast of Puerto Rico shows a high capacity of the aquifer to store and release contaminants. Future work will be focused the statistical analysis of the historical groundwater contamination data to understand the behavior of the contaminants in different hydrologic conditions.

  17. Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Putnam, Larry D.

    2009-10-01

    SummaryConvolution modeling is useful for investigating the temporal distribution of groundwater age based on environmental tracers. The framework of a quasi-transient convolution model that is applicable to two-domain flow in karst aquifers is presented. The model was designed to provide an acceptable level of statistical confidence in parameter estimates when only chlorofluorocarbon (CFC) and tritium ( 3H) data are available. We show how inverse modeling and uncertainty assessment can be used to constrain model parameterization to a level warranted by available data while allowing major aspects of the flow system to be examined. As an example, the model was applied to water from a pumped well open to the Madison aquifer in central USA with input functions of CFC-11, CFC-12, CFC-113, and 3H, and was calibrated to several samples collected during a 16-year period. A bimodal age distribution was modeled to represent quick and slow flow less than 50 years old. The effects of pumping and hydraulic head on the relative volumetric fractions of these domains were found to be influential factors for transient flow. Quick flow and slow flow were estimated to be distributed mainly within the age ranges of 0-2 and 26-41 years, respectively. The fraction of long-term flow (>50 years) was estimated but was not dateable. The different tracers had different degrees of influence on parameter estimation and uncertainty assessments, where 3H was the most critical, and CFC-113 was least influential.

  18. Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2009-01-01

    Convolution modeling is useful for investigating the temporal distribution of groundwater age based on environmental tracers. The framework of a quasi-transient convolution model that is applicable to two-domain flow in karst aquifers is presented. The model was designed to provide an acceptable level of statistical confidence in parameter estimates when only chlorofluorocarbon (CFC) and tritium (3H) data are available. We show how inverse modeling and uncertainty assessment can be used to constrain model parameterization to a level warranted by available data while allowing major aspects of the flow system to be examined. As an example, the model was applied to water from a pumped well open to the Madison aquifer in central USA with input functions of CFC-11, CFC-12, CFC-113, and 3H, and was calibrated to several samples collected during a 16-year period. A bimodal age distribution was modeled to represent quick and slow flow less than 50 years old. The effects of pumping and hydraulic head on the relative volumetric fractions of these domains were found to be influential factors for transient flow. Quick flow and slow flow were estimated to be distributed mainly within the age ranges of 0-2 and 26-41 years, respectively. The fraction of long-term flow (>50 years) was estimated but was not dateable. The different tracers had different degrees of influence on parameter estimation and uncertainty assessments, where 3H was the most critical, and CFC-113 was least influential.

  19. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions

    USGS Publications Warehouse

    Wong, C.I.; Mahler, B.J.; Musgrove, M.; Banner, J.L.

    2012-01-01

    Understanding the sources and processes that control groundwater compositions and the timing and magnitude of groundwater vulnerability to potential surface-water contamination under varying meteorologic conditions is critical to informing groundwater protection policies and practices. This is especially true in karst terrains, where infiltrating surface water can rapidly affect groundwater quality. We analyzed the evolution of groundwater compositions (major ions and Sr isotopes) during the transition from extreme drought to wetconditions, and used inverse geochemical modeling (PHREEQC) to constrain controls on groundwater compositions during this evolution. Spring water and groundwater from two wells dominantly receiving diffuse and conduit flow (termed diffuse site and conduit site, respectively) in the Barton Springs segment of the Edwards aquifer (central Texas, USA) and surface water from losing streams that recharge the aquifer were sampled every 3–4 weeks during November 2008–March 2010. During this period, water compositions at the spring and conduit sites changed rapidly but there was no change at the diffuse site, illustrating the dual nature (i.e., diffuse vs. conduit) of flow in this karst system. Geochemical modeling demonstrated that, within a month of the onset of wetconditions, the majority of spring water and groundwater at the conduit site was composed of surface water, providing quantitative information on the timing and magnitude of the vulnerability of groundwater to potential surface-water contamination. The temporal pattern of increasing spring discharge and changing pattern of covariation between spring discharge and surface-water (steam) recharge indicates that that there were two modes of aquifer response—one with a small amount of storage and a second that accommodates more storage.

  20. The impact of river water intrusion on trace metal cycling in karst aquifers: an example from the Floridan aquifer system at Madison Blue Spring, Florida

    NASA Astrophysics Data System (ADS)

    Brown, A. L.; Martin, J. B.; Screaton, E.; Spellman, P.; Gulley, J.

    2011-12-01

    Springs located adjacent to rivers can serve as recharge points for aquifers when allogenic runoff increases river stage above the hydraulic head of the spring, forcing river water into the spring vent. Depending on relative compositions of the recharged water and groundwater, the recharged river water could be a source of dissolved trace metals to the aquifer, could mobilize solid phases such as metal oxide coatings, or both. Whether metals are mobilized or precipitated should depend on changes in redox and pH conditions as dissolved oxygen and organic carbon react following intrusion of the river water. To assess how river intrusion events affect metal cycling in springs, we monitored a small recharge event in April 2011 into Madison Blue Spring, which discharges to the Withlacoochee River in north-central Florida. Madison Blue Spring is the entrance to a phreatic cave system that includes over 7.8 km of surveyed conduits. During the event, river stage increased over base flow conditions for approximately 25 days by a maximum of 8%. Intrusion of the river water was monitored with conductivity, temperature and depth sensors that were installed within the cave system and adjacent wells. Decreased specific conductivity within the cave system occurred for approximately 20 days, reflecting the length of time that river water was present in the cave system. During this time, grab samples were collected seven times over a period of 34 days for measurements of major ion and trace metal concentrations at the spring vent and at Martz sink, a karst window connected to the conduit system approximately 150 meters from the spring vent. Relative fractions of surface water and groundwater were estimated based on Cl concentrations of the samples, assuming conservative two end-member mixing during the event. This mixing model indicates that maximum river water contribution to the groundwater system was approximately 20%. River water had concentrations of iron, manganese, and other

  1. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.

    PubMed

    Dodgen, L K; Kelly, W R; Panno, S V; Taylor, S J; Armstrong, D L; Wiles, K N; Zhang, Y; Zheng, W

    2017-02-01

    Karst aquifers are drinking water sources for 25% of the global population. However, the unique geology of karst areas facilitates rapid transfer of surficial chemicals to groundwater, potentially contaminating drinking water. Contamination of karst aquifers by nitrate, chloride, and bacteria have been previously observed, but little knowledge is available on the presence of contaminants of emerging concern (CECs), such as pharmaceuticals. Over a 17-month period, 58 water samples were collected from 13 sites in the Salem Plateau, a karst region in southwestern Illinois, United States. Water was analyzed for 12 pharmaceutical and personal care products (PPCPs), 7 natural and synthetic hormones, and 49 typical water quality parameters (e.g., nutrients and bacteria). Hormones were detected in only 23% of samples, with concentrations of 2.2-9.1ng/L. In contrast, PPCPs were quantified in 89% of groundwater samples. The two most commonly detected PPCPs were the antimicrobial triclocarban, in 81% of samples, and the cardiovascular drug gemfibrozil, in 57%. Analytical results were combined with data of local stream flow, weather, and land use to 1) characterize the extent of aquifer contamination by CECs, 2) cluster sites with similar PPCP contamination profiles, and 3) develop models to describe PPCP contamination. Median detection in karst groundwater was 3 PPCPs at a summed concentration of 4.6ng/L. Sites clustered into 3 subsets with unique contamination models. PPCP contamination in Cluster I sites was related to stream height, manganese, boron, and heterotrophic bacteria. Cluster II sites were characterized by groundwater temperature, specific conductivity, sodium, and calcium. Cluster III sites were characterized by dissolved oxygen and barium. Across all sites, no single or small set of water quality factors was significantly predictive of PPCP contamination, although gemfibrozil concentrations were strongly related to the sum of PPCPs in karst groundwater.

  2. Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal)

    NASA Astrophysics Data System (ADS)

    Neves, Maria C.; Costa, Luis; Monteiro, José P.

    2016-06-01

    Karst aquifers in semi-arid regions, like Querença-Silves (Portugal), are particularly vulnerable to climate variability. For the first time in this region, the temporal structure of a groundwater-level time series (1985-2010) was explored using the continuous wavelet transform. The investigation focused on a set of four piezometers, two at each side of the S. Marcos-Quarteira fault, to demonstrate how each of the two sectors of the aquifer respond to climate-induced patterns. Singular spectral analysis applied to an extended set of piezometers enabled identification of several quasi-periodic modes of variability, with periods of 6.5, 4.3, 3.2 and 2.6 years, which can be explained by low-frequency climate patterns. The geologic forcing accounts for ~15 % of the differential variability between the eastern and western sectors of the aquifer. The western sector displays spatially homogenous piezometric variations, large memory effects and low-pass filtering characteristics, which are consistent with relatively large and uniform values of water storage capacity and transmissivity properties. In this sector, the 6.5-year mode of variability accounts for ~70 % of the total variance of the groundwater levels. The eastern sector shows larger spatial and temporal heterogeneity, is more reactive to short-term variations, and is less influenced by the low-frequency components related to climate patterns.

  3. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection

    USGS Publications Warehouse

    Shapiro, A.M.; Renken, R.A.; Harvey, R.W.; Zygnerski, M.R.; Metge, D.W.

    2008-01-01

    A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is hypothesized that a combination of chemical diffusion and slow advection resulted in significant retention of the tracer in the formation, despite the high transmissivity of the karst limestone. The tail of the breakthrough curve exhibited a straight-line behavior with a slope of -2 on a log-log plot of concentration versus time. The -2 slope is hypothesized to be a function of slow advection, where the velocities of flow paths are hypothesized to range over several orders of magnitude. The flow paths having the slowest velocities result in a response similar to chemical diffusion. Chemical diffusion, due to chemical gradients, is still ongoing during the declining limb of the breakthrough curve, but this process is dwarfed by the magnitude of the mass flux by slow advection.

  4. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico

    PubMed Central

    Yu, Xue; Ghasemizadeh, Reza; Padilla, Ingrid; Irizarry, Celys; Kaeli, David; Alshawabkeh, Akram

    2014-01-01

    We studied the spatial and temporal distribution patterns of Chlorinated Volatile Organic Compounds (CVOCs) in the karst aquifers in northern Puerto Rico (1982-2013). Seventeen CVOCs were widely detected across the study area, with the most detected and persistent contaminated CVOCs including trichloroethylene (TCE), tetrachloroethylene (PCE), carbon tetrachloride (CT), chloroform (TCM), and methylene chloride (DCM). Historically, 471 (76%) and 319 (52%) of the 615 sampling sites have CVOC concentrations above the detection limit and maximum contamination level (MCL), respectively. The spatiotemporal patterns of the CVOC concentrations showed two clusters of contaminated areas, one near the Superfund site “Upjohn” and another near “Vega Alta Public Supply Wells.” Despite a decreasing trend in concentrations, there is a general northward movement and spreading of contaminants even beyond the extent of known sources of the Superfund and landfill sites. Our analyses suggest that, besides the source conditions, karst characteristics (high heterogeneity, complex hydraulic and biochemical environment) are linked to the long-term spatiotemporal patterns of CVOCs in groundwater. PMID:25522355

  5. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico.

    PubMed

    Yu, Xue; Ghasemizadeh, Reza; Padilla, Ingrid; Irizarry, Celys; Kaeli, David; Alshawabkeh, Akram

    2015-04-01

    We studied the spatial and temporal distribution patterns of Chlorinated Volatile Organic Compounds (CVOCs) in the karst aquifers in northern Puerto Rico (1982-2013). Seventeen CVOCs were widely detected across the study area, with the most detected and persistent contaminated CVOCs including trichloroethylene (TCE), tetrachloroethylene (PCE), carbon tetrachloride (CT), chloroform (TCM), and methylene chloride (DCM). Historically, 471 (76%) and 319 (52%) of the 615 sampling sites have CVOC concentrations above the detection limit and maximum contamination level (MCL), respectively. The spatiotemporal patterns of the CVOC concentrations showed two clusters of contaminated areas, one near the Superfund site "Upjohn" and another near "Vega Alta Public Supply Wells." Despite a decreasing trend in concentrations, there is a general northward movement and spreading of contaminants even beyond the extent of known sources of the Superfund and landfill sites. Our analyses suggest that, besides the source conditions, karst characteristics (high heterogeneity, complex hydraulic and biochemical environment) are linked to the long-term spatiotemporal patterns of CVOCs in groundwater.

  6. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    NASA Astrophysics Data System (ADS)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2016-12-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  7. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    NASA Astrophysics Data System (ADS)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  8. Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models

    PubMed Central

    Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.

    2013-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921

  9. Rapid salinization of a karst aquifer after a typhoon-generated storm surge: Hydraulics, geochemistry, and community impact

    NASA Astrophysics Data System (ADS)

    Bennett, P.; Cardenas, M. B.; Zamora, P. B.; Befus, K. M.; Rodolfo, R. S.; Cabria, H. B.; Lapus, M. R.; Muan, M.

    2014-12-01

    Super Typhoon (STY) Haiyan made landfall in the Philippines with sustained winds of 315 kph producing a 7+ meter storm surge that inundated parts of Leyte and Samar; >8000 died, > 106 homes were destroyed, and thousands of people are still missing. The surge reached 1 km inland and resulted in widespread seawater (SW) contamination of groundwater (GW) resources critical for coastal villages. We conducted field-work in a village of ~2200 residents, inundated by a 5-6 m surge, 2 months and again 8 months after STY Haiyan. The 330+ shallow tube wells (STWs) had been drilled through beach sand into karstic reef carbonates to 5-20m below the water table (WT). Residents reported their STWs salinized immediately after the storm, even the deepest wells, and the only source of fresh water was a karst spring 1 km from the village. 2 months after the storm GW salinity was up to 18% SW. Electrical Resistivity Tomography (ERT) was used to image salt distribution in the surficial aquifer alongside the developed village. ERT detected an electrically conductive layer ~1m below the WT, and water sampling confirmed that this was due to infiltrated seawater. Variable-density flow and transport models corroborate the ER tomograms and show that the salt is infiltrating through the aquifer and slowly flushing to the ocean. We hypothesize that SW rapidly infiltrated the ~2m sandy unsaturated zone and contaminated the shallow GW over a wide area. This salt layer is slowly sinking and flushing toward the ocean, and flow models show that it might be several years to flush the system. Results from a second ERT survey 6 months later show little change in the ER field, consistent with model predictions. But karst features and the STWs themselves served as preferential paths into the aquifer for SW injection to the deeper zone under the 6m surge potential, salinizing deep wells ahead of the advancing shallow SW layer. These wells have seen substantial decrease in salinity over 6 months, as much

  10. Imaging the Stratification and Tidal Dynamics of a Saltwater-Freshwater Interface Using Continuous Shallow Electrical Resistivity Techniques in the Karst Coastal Biscayne Aquifer, South Florida.

    NASA Astrophysics Data System (ADS)

    Stalker, J. C.; Whitman, D.; Price, R. M.

    2008-05-01

    Shallow ground resistivity was used to image the saline-freshwater mixing zone in the subsurface due to saltwater intrusion at a site less than 2 kilometers from the coastline of Biscayne Bay, an estuary in South Florida. Resistivity arrays have several advantages when applied to coastal groundwater environments. Experiments can be set up to measure several depths by varying the electrode spacing. Additionally Resistivity techniques can be used to resolve multiple changes in lithology and compositions making them ideal for saltwater intrusion studies. Miami-Dade county and adjoining the Biscayne Bay are underlain by the karst Biscayne aquifer system where the freshwater aquifer is in direct contact with the saline bay system. Saltwater intrusion has been a continuous problem since anthropogenic alteration of the hydrological system occurred to manage flood control and promote agriculture. To better understand the nature and dynamics of the saltwater intrusion in the near coastal shallow subsurface, a Supersting 28-electrode resistivity unit, configured in a Wenner array, was used to produce a 2D image of the freshwater/brackish water/saltwater stratification, and was deployed in a continuous data collection mode to observe the movement of the saltwater mixing zone through a tidal cycle. Results show at a depth of 9m below the surface there is a 2m meter thick freshwater layer above the brackish/saltwater mixing zone. In addition, the continuous imaging of the mixing zone over a tidal cycle shows a fluctuation landward and seaward of the mixing zone as the tide floods and ebbs. This technique provides an efficient tool for detection and characterization of the saltwater/freshwater mixing zone in shallow coastal aquifers and lends new insight to the stratification and thicknesses of the fresh and saline layers. In addition the detection of cyclical tidal movement and an estimate of its magnitude will aid in the understanding of the mixing zone geochemistry and

  11. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    NASA Astrophysics Data System (ADS)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  12. Karst hydrology and chemical contamination

    SciTech Connect

    Field, M.S.

    1993-01-01

    Ground-water flow in karst aquifers is very different from flow in granular or fractured aquifers. Chemical contamination may be fed directly to a karst aquifer via overland flow to a sinkhole with little or no attenuation and may contaminate downgradient wells, springs, and sinkholes within a few hours or a few days. Contaminants may also become temporarily stored in the epikarstic zone for eventual release to the aquifer. Flood pulses may flush the contaminants to cause transiently higher levels of contamination in the aquifer and discharge points. The convergent nature of flow in karst aquifers may result in contaminants becoming concentrated in conduits. Once contaminants have reached the subsurface conduits, they are likely to be rapidly transported to spring outlets. Traditional aquifer remediation techniques for contaminated aquifers are less applicable to karst aquifers.

  13. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  14. Microbial Decomposition of Elm and Oak Leaves in a Karst Aquifer

    PubMed Central

    Eichem, Angela C.; Dodds, Walter K.; Tate, Cathy M.; Edler, Chris

    1993-01-01

    Dry Chinquapin oak (Quercus macrocarpa) and American elm (Ulmus americana) leaves were placed in four microcosms fed by groundwater springs to monitor changes in dry mass, ash-free dry mass, and microbial activity over a 35-day period. Oxygen microelectrodes were used to measure microbial activity and to estimate millimeter-scale heterogeneity in that activity. Oak leaves lost mass more slowly than elm leaves. Generally, there was a decrease in total dry weight over the first 14 days, after which total dry weight began to increase. However, there were consistent decreases in ash-free dry mass over the entire incubation period, suggesting that the material remaining after initial leaf decomposition trapped inorganic particles. Microbial activity was higher on elm leaves than on oak leaves, with peak activity occurring at 6 and 27 days, respectively. The level of oxygen saturation on the bottom surface of an elm leaf ranged between 0 and 75% within a 30-mm2 area. This spatial heterogeneity in O2 saturation disappeared when the water velocity increased from 0 to 6 cm s-1. Our results suggest that as leaves enter the groundwater, they decompose and provide substrate for microorganisms. The rate of decomposition depends on leaf type, small-scale variations in microbial activity, water velocity, and the length of submersion time. During the initial stages of decomposition, anoxic microzones are formed that could potentially be important to the biogeochemistry of the otherwise oxic aquifer. PMID:16349078

  15. Results of a hydrogeological and hydrogeochemical study of a semi-arid karst aquifer in Tezbent plateau, Tebessa region, northeast of Algeria

    NASA Astrophysics Data System (ADS)

    Belfar, Dalila; Fehdi, Chemseddine; Baali, Fethi; Salameh, Elias

    2015-10-01

    The Hammamet Plain, situated in the northwest of the Tezbent mountain range, northeast of Algeria, drains carbonate aquifers through some important karst springs. The physical and chemical characteristics of spring and well water samples were studied for 2 years to assess the origin of groundwater and determine the factors driving the geochemical composition. The ionic speciation and mineral dissolution/precipitation was calculated. Water wells, characterizing groundwater circulation at shallow depths, are moderate to high mineralized waters of Na-HCO3 type. In contrast to the shallow environment, the CO2-rich, deeper waters are of the Ca-HCO3-SO4 type and undergo significant changes in the baseline chemistry along flow lines with increasing residence time. The main factors controlling the groundwater composition and its seasonal variations are the geology, because of the presence of carbonate formations, the elevation and the rate of karst development. In both groups, the carbonate chemistry is diagnostic of the effect of karst development. The supersaturation with respect to calcite indicates CO2 degassing, occurring either inside the aquifer in open conduits, or at the outlet in reservoirs. The undersaturation with respect to calcite shows the existence of fast flow and short residence time conditions inside the aquifer. Interaction between groundwater and surrounding host rocks is believed to be the main process responsible for the observed chemical characteristics of groundwater in the study area.

  16. Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: The case of Alta Cadena (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Mudarra, M.; Andreo, B.

    2011-02-01

    SummaryFrom analysis of the hydrodynamic and hydrochemical responses of karst springs, it is possible to know the behaviour of the aquifers they drain. This manuscript aims to contribute to the characterization of infiltration process, and to determine the relative importance of the saturated zone and of the unsaturated zone in the hydrogeological functioning of carbonate aquifers, using natural hydrochemical tracers. Thus, chemical components together with temperature and electrical conductivity (both punctual and continuous records) have been monitored in three springs which drain Alta Cadena carbonate aquifer, Southern Spain. An evaluation of the percentage of the electrical conductivity frequency peaks determined for each of the three springs is linked to the chemical parameters that comprise the conductivity signal. One of these springs responds rapidly to precipitation (conduit flow system), due to the existence of a high degree of karstification in the unsaturated zone and in the saturated zone, both of which play a similar role in the functioning of the spring. Another spring responds to precipitation with small increases in water flow, somewhat lagged, because the aquifer has a low degree of karstification, even in the unsaturated zone, which seems to influence its functioning more strongly than does the saturated zone. The third spring drains a sector of the aquifer with a moderately developed degree of karstification, one that is intermediate between the other two, in which both the unsaturated zone and the saturated zone participate in the functioning of the spring, but with the latter zone having a stronger influence. These three springs show different hydrogeological functioning although they are in similar geological and climatic contexts, which show the heterogeneity of karst media and the importance of an adequate investigation for groundwater management and protection in karst areas.

  17. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    USGS Publications Warehouse

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  18. Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.

    2006-01-01

    Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three ideal high-frequency cycles as: (1) upward-shallowing subtidal cycles, (2) upward-shallowing paralic cycles, and (3) aggradational subtidal cycles. Digital optical borehole images, tracers, and flow meters indicate that there is a predictable vertical pattern of porosity and permeability within the three ideal cycles, because the distribution of porosity and permeability is related to lithofacies. Stratiform zones of high permeability commonly occur just above flooding surfaces in the lower part of upward-shallowing subtidal and paralic cycles, forming preferential groundwater flow zones. Aggradational subtidal cycles are either mostly high-permeability zones or leaky, low-permeability units. In the study area, groundwater flow within stratiform high-permeability zones is through a secondary pore system of touching-vug porosity principally related to molds of burrows and pelecypods and to interburrow vugs. Movement of a dye-tracer pulse observed using a borehole fluid-temperature tool during a conservative tracer test indicates heterogeneous permeability. Advective movement of the tracer appears to be most concentrated within a thin stratiform flow zone contained within the lower part of a high-frequency cycle, indicating a distinctly high relative permeability for this zone. Borehole flow-meter measurements corroborate the relatively high permeability of the flow zone. Identification and mapping of such high-permeability flow zones is crucial to conceptualization of karst groundwater flow within a cyclostratigraphic framework. Many karst aquifers are included in cyclic

  19. Characterization of the Gacka River basin karst aquifer (Croatia): hydrochemistry, stable isotopes and tritium-based mean residence times.

    PubMed

    Ozyurt, Nur N; Lutz, Hans O; Hunjak, Tamara; Mance, Diana; Roller-Lutz, Zvjezdana

    2014-07-15

    The Gacka River basin aquifer is a highly-developed karst system, located in the Croatian Dinarides. It is mostly composed of permeable Jurassic and Cretaceous carbonate rocks, and clastic sedimentary rocks of Paleogene age. Gacka River provides high quality water for the town of Otočac and several villages; together with the neighboring Lika River, the water is used for the Hydroelectric Power Plant at Senj on the coast. About 10 perennial and over 20 seasonal springs are located at 450 to 460 ma.s.l. (above sea level). Three major springs (Pećina, Majerovo and Tonkovića) provide 57% of the mean annual river flow. Similarities between the average groundwater temperatures as well as between the average specific electrical conductivity values (9.0°C-328 μS/cm, 9.6°C-350 μS/cm and 8.9°C-312 μS/cm) of the springs imply that they are fed from aquifers with similar mean residence times (MRTs). The mean δ(18)O contents of Majerovo, Tonkovića, and Pećina are around -10.1‰, -9.2‰ and -8.9‰, respectively, revealing differences in the mean recharge area elevations. Compared to the temporal amplitude of the(18)O signal of precipitation, the (18)O signal variations of the springs are substantially attenuated because the recharges occurring at different times are well mixed within the aquifers. This indicates MRTs of more than just a few years. The average tritium contents of Pećina, Majerovo and Tonkovića are 5.48 TU, 6.13 TU and 6.17 TU, respectively. Serially connected exponential-plug type unsteady lumped-parameter models run on an annual time scale resulted in rather satisfactory matches between the observed and calculated tritium contents for all studied springs. The models revealed similar MRTs (and corresponding reservoir volumes) for Pećina, Tonkovića and Majerovo of 12 years (470 Mm(3)), 12 years (1,190 Mm(3)), and 12.2 years (1,210 Mm(3)), respectively. Plug flow conditions dominate in about 90% of the total aquifer volumes.

  20. Viruses and Bacteria in Karst and Fractured Rock Aquifers in East Tennessee, USA

    EPA Science Inventory

    A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in east Tennessee. Seven of the sites were in carbonate aquifers and the other was in fractured sandstone. Four sites (three wells and one sp...

  1. On the use of multiple-point statistics to improve groundwater flow modeling in karst aquifers: A case study from the Hydrogeological Experimental Site of Poitiers, France

    NASA Astrophysics Data System (ADS)

    Le Coz, Mathieu; Bodin, Jacques; Renard, Philippe

    2017-02-01

    Limestone aquifers often exhibit complex groundwater flow behaviors resulting from depositional heterogeneities and post-lithification fracturing and karstification. In this study, multiple-point statistics (MPS) was applied to reproduce karst features and to improve groundwater flow modeling. For this purpose, MPS realizations were used in a numerical flow model to simulate the responses to pumping test experiments observed at the Hydrogeological Experimental Site of Poitiers, France. The main flow behaviors evident in the field data were simulated, particularly (i) the early-time inflection of the drawdown signal at certain observation wells and (ii) the convex behavior of the drawdown curves at intermediate times. In addition, it was shown that the spatial structure of the karst features at various scales is critical with regard to the propagation of the depletion wave induced by pumping. Indeed, (i) the spatial shape of the cone of depression is significantly affected by the karst proportion in the vicinity of the pumping well, and (ii) early-time inflection of the drawdown signal occurs only at observation wells crossing locally well-developed karst features.

  2. Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA

    USGS Publications Warehouse

    Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.

    2013-01-01

    Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.

  3. Estimating Hydraulic Properties for Hawaiian Aquifers Using Aquifer Tests and Tidal Responses

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; El-Kadi, A. I.

    2005-12-01

    In the last 30 years the population of the island of Maui, Hawaii, has significantly increased and so has the ground-water demand. To ensure prudent management of the ground-water resources, an improved understanding of ground-water flow systems is needed. At present, no large-scale estimation of the aquifer properties has been completed for Maui. Ground-water flow and chemical transport depends highly on aquifer characteristics such as storage properties and hydraulic conductivity or transmissivity. The suitability of several methods is examined for a number of Hawaiian aquifers. Seven analytical methods using constant and variable-rate withdrawals in a single well provide an estimate of hydraulic conductivity and transmissivity for over 100 wells in central Maui. The spatial distribution permits to form regional clusters of similar hydraulic conductivity. The response of the harmonic ocean tide signal in several wells in the aquifer is investigated. Analytical methods and numerical modeling allow estimating aquifer diffusivity. Results of this analysis are in general agreement with typical values for confined and unconfined aquifers in central Maui. The results of this study will provide information needed to build a numerical ground-water flow model for central Maui in order to estimate ground-water availability.

  4. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs, Edwards aquifer, Texas, USA

    USGS Publications Warehouse

    Mahler, Barbara J.; Bourgeais, Renan

    2013-01-01

    Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.

  5. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    PubMed

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution

  6. Estimation of effective hydrogeological parameters in heterogeneous and anisotropic aquifers

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-Tsung; Tan, Yih-Chi; Chen, Chu-Hui; Yu, Hwa-Lung; Wu, Shih-Ching; Ke, Kai-Yuan

    2010-07-01

    SummaryObtaining reasonable hydrological input parameters is a key challenge in groundwater modeling. Analysis of temporal evolution during pump-induced drawdown is one common approach used to estimate the effective transmissivity and storage coefficients in a heterogeneous aquifer. In this study, we propose a Modified Tabu search Method (MTM), an improvement drawn from an alliance between the Tabu Search (TS) and the Adjoint State Method (ASM) developed by Tan et al. (2008). The latter is employed to estimate effective parameters for anisotropic, heterogeneous aquifers. MTM is validated by several numerical pumping tests. Comparisons are made to other well-known techniques, such as the type-curve method (TCM) and the straight-line method (SLM), to provide insight into the challenge of determining the most effective parameter for an anisotropic, heterogeneous aquifer. The results reveal that MTM can efficiently obtain the best representative and effective aquifer parameters in terms of the least mean square errors of the drawdown estimations. The use of MTM may involve less artificial errors than occur with TCM and SLM, and lead to better solutions. Therefore, effective transmissivity is more likely to be comprised of the geometric mean of all transmissivities within the cone of depression based on a precise estimation of MTM. Further investigation into the applicability of MTM shows that a higher level of heterogeneity in an aquifer can induce an uncertainty in estimations, while the changes in correlation length will affect the accuracy of MTM only once the degree of heterogeneity has also risen.

  7. Estimating transmissivity in the Edwards Aquifer using upscaling, geostatistics, and Bayesian updating

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Jiang, Y.; Woodbury, A. D.

    2002-12-01

    The Edwards Aquifer, a highly heterogeneous karst aquifer located in south central Texas, is the sole source of drinking water for more than one million people. Hydraulic conductivity (K) measurements in the Edwards Aquifer are sparse, highly variable (log-K variance of 6.4), and are mostly from single-well drawdown tests that are appropriate for the spatial scale of a few meters. To support ongoing efforts to develop a groundwater management (MODFLOW) model of the San Antonio segment of the Edwards Aquifer, a multistep procedure was developed to assign hydraulic parameters to the 402 m x 402 m computational cells intended for the management model. The approach used a combination of nonparametric geostatistical analysis, stochastic simulation, numerical upscaling, and automatic model calibration based on Bayesian updating [1,2]. Indicator correlograms reveal a nested spatial structure in the well-test K of the confined zone, with practical correlation ranges of 3,600 and 15,000 meters and a large nugget effect. The fitted geostatistical model was used in unconditional stochastic simulations by the sequential indicator simulation method. The resulting realizations of K, defined at the scale of the well tests, were then numerically upscaled to the block scale. A new geostatistical model was fitted to the upscaled values. The upscaled model was then used to cokrige the block-scale K based on the well-test K. The resulting K map was then converted to transmissivity (T) using deterministically mapped aquifer thickness. When tested in a forward groundwater model, the upscaled T reproduced hydraulic heads better than a simple kriging of the well-test values (mean error of -3.9 meter and mean-absolute-error of 12 meters, as compared with -13 and 17 meters for the simple kriging). As the final step in the study, the upscaled T map was used as the prior distribution in an inverse procedure based on Bayesian updating [1,2]. When input to the forward groundwater model, the

  8. Absolute hydraulic conductivity estimates from aquifer pumping and tracer tests in a stratified aquifer

    SciTech Connect

    Thorbjarnarson, K.W.; Huntley, D.; McCarty, J.J.

    1998-01-01

    Independent estimates of absolute hydraulic conductivity were obtained by a standard aquifer pumping test and a forced-gradient tracer test in a highly heterogeneous aquifer. An aquifer hydraulic test was conducted to evaluate the average hydraulic conductivity (K), and to establish steady-state flow for the tracer test. An average K of 48 m/day was interpreted from the draw-down data in a fully screened well. Type-curve matching and simulation with MODFLOW of the hydraulic response in partially screened wells indicates K of 10 to 15 m/day for the upper section and 71 to 73 m/day for the deeper section. Iodide and fluorescent dye tracers were injected at low rates in wells located approximately 8 m upgradient of the production well. Tracer breakthrough was monitored in the production well and at ten depth intervals within the fully screened monitoring well. Interpretation of tracer response in the production well reveals tracer transport is limited to a 3.9 m thick section of the 20 m thick aquifer, with a hydraulic conductivity of 248 m/day. However, the depth distribution of these permeable strata cannot be determined from the production well tracer response. When sampled at 1.5 m depth intervals in the monitoring well, breakthrough was observed in only three intervals along the entire 18.2 m screened well. K estimates from tracer travel time within discrete high-permeability strata range from 31 to 317 m/day. Inclusion of permeameter K estimates for the lower permeability aquifer sands result in a range in relative K of 0.01 to 1.0. This field site has the highest absolute K estimate for a discrete stratum and the widest range in relative hydraulic conductivity among research field sites with K estimates for discrete strata. Within such a highly stratified aquifer, the use of an average K from an aquifer pumping test to predict solute transport results in great underestimation of transport distances for a given time period.

  9. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.

    PubMed

    Knight, Rosemary; Walsh, David O; Butler, James J; Grunewald, Elliot; Liu, Gaisheng; Parsekian, Andrew D; Reboulet, Edward C; Knobbe, Steve; Barrows, Mercer

    2016-01-01

    Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger-Doll Research (SDR) equation, which is based on the Kozeny-Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct-push methods over a 10- to 20-m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost-effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications.

  10. Isotopic and hydrogeochemical characterization of high-altitude karst aquifers in complex geological settings. The Ordesa and Monte Perdido National Park (Northern Spain) case study.

    PubMed

    Lambán, L J; Jódar, J; Custodio, E; Soler, A; Sapriza, G; Soto, R

    2015-02-15

    The Ordesa and Monte Perdido National Park, located in the Southern Pyrenees, constitutes the highest karst system in Western Europe. No previous studies regarding its geochemical and isotopic groundwater characterization are available in this area. This work presents the results of field and sampling campaigns carried out between July 2007 and September 2013. The groundwater presents high calcium bicarbonate contents due to the occurrence of upper Cretaceous and lower Paleocene-Eocene carbonate materials in the studied area. Other relevant processes include dissolution of anhydrite and/or gypsum and incongruent dissolution of Mg-limestone and dolomite. The water stable isotopes (δ(18)O, δ(2)H) show that the oceanic fronts from the Atlantic Ocean are responsible for the high levels of precipitation. In autumn, winter, and spring, a deuterium excess is found in the recharge water, which could be related to local atmospheric transport of low-altitude snow sublimation vapour and its later condensation on the snow surface at higher altitude, where recharge is mostly produced. The recharge zones are mainly between 2500m and 3200ma.s.l. The tritium content of the water suggests short groundwater transit times. The isotopic composition of dissolved sulphate points to the existence of regional fluxes mixed with local discharge in some of the springs. This work highlights the major role played by the altitude difference between the recharge and discharge zones in controlling the chemistry and the vertical variability of the isotopic composition in high-altitude karst aquifers.

  11. Estimation of sources of water used by plant established in rocky karst habitats, subtropical China

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Chen, H.; Schwinning, S.

    2014-12-01

    Plant communities in continental ecosystems usually access to at least two pools of water that can be differentiated based on their turnover characteristics: a plant preferred pool with rapid recharge and depletion (dynamic pool), and a more consistent pool with less frequent recharge and slower loss rates (reserve pool). Identifying the use of different pools by community members is the key to estimating their ecological and hydrological functions. In regions with rocky, thin soils in which plant roots also take up water from rock fissures and crevices, it is usually very difficult to locate plant available water pools and quantify their water status or use by plants. Fortunately, we expect dynamic water pools to frequently change isotopic ratios due to rapid recharge and depletion, while reserve pools of water is expected to have distinct isotope ratios and maintain much less variability. Thus, we can use this fact to derive limited quantitative conclusions about the species differences in water use. In order to reveal sources of water used by one karst endemic tree species (Platycarya longipes) established in two typical karst habitats (cliff face and nearby loose rocky soils), stem samples for the tree and one coexistence shallow rooted shrub species (Tirpitzia ovoidea, which was proved to relied on shallow water sources) were collected for 9 times throughout a growing season. Linear relationships (regression slopes were closed to 1) were found between stem water isotope ratios of the two species in each habitat, indicating that the target tree species also relied on water in the dynamic pool. We further discussed the probable water movement mechanism based on the responses of stem water isotope ratios to rainfall.

  12. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  13. Combined use of natural and artificial tracers to determine the hydrogeological functioning of a karst aquifer: the Villanueva del Rosario system (Andalusia, southern Spain)

    NASA Astrophysics Data System (ADS)

    Mudarra, M.; Andreo, B.; Marín, A. I.; Vadillo, I.; Barberá, J. A.

    2014-08-01

    Analysis of natural responses of karst springs provides information on the behavior of the aquifers they drain. Detailed monitoring and qualitative and quantitative analyses of natural responses, and environmental—total organic carbon (TOC), NO3 -, Cl- and intrinsic fluorescence—and artificial (fluorescent dye) tracers, in the water drained by Villanueva del Rosario spring (southern Spain), suggest the existence of a conduit flow system with rapid flows and very short transit times of water through the aquifer. This is in agreement with uranine and eosin breakthrough curves and with simple numerical models done using these data. However, due to the low capacity for natural regulation, not all the recharge effects are simultaneously transmitted to the spring water; given a single input, the system modulates and transfers hydrodynamic variations faster than variations of chemical composition and of water temperature. Additionally, time lags between maximum concentrations of natural and artificial tracers show that the global system response (including diffuse infiltration) is faster and more sensitive than that produced from infiltration concentrated at a single point on the surface (sinkholes).

  14. Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA

    USGS Publications Warehouse

    Yager, Richard M.; Plummer, L. Niel; Kauffman, Leon J.; Doctor, Daniel H.; Nelms, David L.; Schlosser, Peter

    2013-01-01

    Measured concentrations of environmental tracers in spring discharge from a karst aquifer in the Shenandoah Valley, USA, were used to refine a numerical groundwater flow model. The karst aquifer is folded and faulted carbonate bedrock dominated by diffuse flow along fractures. The numerical model represented bedrock structure and discrete features (fault zones and springs). Concentrations of 3H, 3He, 4He, and CFC-113 in spring discharge were interpreted as binary dilutions of young (0–8 years) water and old (tracer-free) water. Simulated mixtures of groundwater are derived from young water flowing along shallow paths, with the addition of old water flowing along deeper paths through the model domain that discharge to springs along fault zones. The simulated median age of young water discharged from springs (5.7 years) is slightly older than the median age estimated from 3H/3He data (4.4 years). The numerical model predicted a fraction of old water in spring discharge (0.07) that was half that determined by the binary-dilution model using the 3H/3He apparent age and 3H and CFC-113 data (0.14). This difference suggests that faults and lineaments are more numerous or extensive than those mapped and included in the numerical model.

  15. Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA

    NASA Astrophysics Data System (ADS)

    Yager, Richard M.; Plummer, L. Niel; Kauffman, Leon J.; Doctor, Daniel H.; Nelms, David L.; Schlosser, Peter

    2013-09-01

    Measured concentrations of environmental tracers in spring discharge from a karst aquifer in the Shenandoah Valley, USA, were used to refine a numerical groundwater flow model. The karst aquifer is folded and faulted carbonate bedrock dominated by diffuse flow along fractures. The numerical model represented bedrock structure and discrete features (fault zones and springs). Concentrations of 3H, 3He, 4He, and CFC-113 in spring discharge were interpreted as binary dilutions of young (0-8 years) water and old (tracer-free) water. Simulated mixtures of groundwater are derived from young water flowing along shallow paths, with the addition of old water flowing along deeper paths through the model domain that discharge to springs along fault zones. The simulated median age of young water discharged from springs (5.7 years) is slightly older than the median age estimated from 3H/3He data (4.4 years). The numerical model predicted a fraction of old water in spring discharge (0.07) that was half that determined by the binary-dilution model using the 3H/3He apparent age and 3H and CFC-113 data (0.14). This difference suggests that faults and lineaments are more numerous or extensive than those mapped and included in the numerical model.

  16. Landfills in karst terrains

    SciTech Connect

    Hughes, T.H. ); Memon, B.A.; LaMoreaux, P.E. )

    1994-06-01

    State and Federal regulations have established restrictions for location of hazardous waste and municipal, solid waste landfills. Regulations require owners/operators to demonstrate that the hydrogeology has been completely characterized at proposed landfills, and that locations for monitoring wells have been properly selected. Owners/operators are also required to demonstrate that engineering measures have been incorporated in the design of the municipal solid waste landfills, so that the site is not subject to destabilizing events, as a result of location in unstable areas, such as karst terrains. Karst terrains are typically underlain by limestone or dolomite, and may contain a broad continuum of karst features and karst activity. Preliminary investigation of candidate sites will allow ranking of the sites, rejection of some unsuitable sites, and selection of a few sites for additional studies. The complexity of hydrogeologic systems, in karst terrains, mandates thorough hydrogeologic studies to determine whether a specific site is, or can be rendered, suitable for a land disposal facility. Important components of hydrogeologic studies are: field mapping of structural and stratigraphic units; interpretation of sequential aerial photographs; test drilling and geophysical analyses; fracture analyses; seasonal variation in water-levels; spatial variation of hydraulic characteristics of the aquifer and aquiclude; velocity and direction of movement of ground water within aquifers; determination of control for recharge, discharge, and local base level; and evaluation of the effects of man's activities, such as pumping, dewatering and construction.

  17. Megaporosity and permeability of Thalassinoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity aquifer system, Texas

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael C.

    2012-01-01

    Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.

  18. Hydrologic and geochemical dynamics of vadose zone recharge in a mantled karst aquifer: Results of monitoring drip waters in Mystery Cave, Minnesota

    USGS Publications Warehouse

    Doctor, Daniel H.; Alexander, E. Calvin; Jameson, Roy A.; Alexander, Scott C.

    2015-01-01

    Caves provide direct access to flows through the vadose zone that recharge karst aquifers. Although many recent studies have documented the highly dynamic processes associated with vadose zone flows in karst settings, few have been conducted in mantled karst settings, such as that of southeastern Minnesota. Here we present some results of a long-term program of cave drip monitoring conducted within Mystery Cave, Minnesota. In this study, two perennial ceiling drip sites were monitored between 1997 and 2001. The sites were located about 90 m (300 ft) apart along the same cave passage approximately 18 m (60 ft) below the surface; 7 to 9 m (20 to 30 ft) of loess and 12 m (40 ft) of flat-lying carbonate bedrock strata overlie the cave. Records of drip rate, electrical conductivity, and water temperature were obtained at 15 minute intervals, and supplemented with periodic sampling for major ion chemistry and water stable isotopes. Patterns in flow and geochemistry emerged at each of the two drip sites that were repeated year after year. Although one site responded relatively quickly (within 2-7 hours) to surface recharge events while the other responded more slowly (within 2-5 days), thresholds of antecedent moisture needed to be overcome in order to produce a discharge response at both sites. The greatest amount of flow was observed at both sites during the spring snowmelt period. Rainfall events less than 10 mm (0.4 in) during the summer months generally did not produce a drip discharge response, yet rapid drip responses were observed following intense storm events after periods of prolonged rainfall. The chemical data from both sites indicate that reservoirs of vadose zone water with distinct chemical signatures mixed during recharge events, and drip chemistry returned to a baseline composition during low flow periods. A reservoir with elevated chloride and sulfate concentrations impacts the slow-response drip site with each recharge event, but does not similarly

  19. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China

    NASA Astrophysics Data System (ADS)

    Luo, Mingming; Chen, Zhihua; Criss, Robert E.; Zhou, Hong; Huang, He; Han, Zhaofeng; Shi, Tingting

    2016-12-01

    The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of -2.4 ‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ˜2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water-rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 -. The intensity of water-rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.

  20. Estimation of underground river water availability based on rainfall in the Maros karst region, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Arsyad, Muhammad; Ihsan, Nasrul; Tiwow, Vistarani Arini

    2016-02-01

    Maros karst region, covering an area of 43.750 hectares, has water resources that determine the life around it. Water resources in Maros karst are in the rock layers or river underground in the cave. The data used in this study are primary and secondary data. Primary data includes characteristics of the medium. Secondary data is rainfall data from BMKG, water discharge data from the PSDA, South Sulawesi province in 1990-2010, and the other characteristics data Maros karst, namely cave, flora and fauna of the Bantimurung Bulusaraung National Park. Data analysis was conducted using laboratory test for medium characteristics Maros karst, rainfall and water discharge were analyzed using Minitab Program 1.5 to determine their profile. The average rainfall above 200 mm per year occurs in the range of 1999 to 2005. The availability of the water discharge at over 50 m3/s was happened in 1993 and 1995. Prediction was done by modeling Autoregressive Integrated Moving Average (ARIMA), with the rainfall data shows that the average precipitation for four years (2011-2014) will sharply fluctuate. The prediction of water discharge in Maros karst region was done for the period from January to August in 2011, including the type of 0. In 2012, the addition of the water discharge started up in early 2014.

  1. Employing hydrochemistry and stable isotopes in analyzing groundwater flow mechanism, dynamics in karst aquifer of the Lower Jordan Valley

    NASA Astrophysics Data System (ADS)

    Musallam, Shadha; Sauter, Martin; Marei, Amer

    2015-04-01

    Water is a valuable resource, especially in arid and semi arid areas. In order to do proper management of the water resources, studies on the aquifer system is essential. The study case is located in the lower part of the western Jordan Valley. This karstic area has different systems from which the upper and lower Mountain aquifer systems. Two representative springs were chosen for each aquifer, Sultan spring for the lower aquifer and Auja spring for the upper one. Sultan spring has a continues and constant discharge rate through the year while Auja spring has high oscillation in discharge accompanied by frequent dry-out in summer months and fast response to precipitation events. The two systems have been thought to be separated by an aquiclute, however after frequent intensive sampling of both springs during the raining winter season, This study shows that with the exception of Na+ and Cl- all other concentration of ions are very similar. The average of Sodium for Sultan spring is 33 mg/L, while the average Chloride for the same spring is 54.5 mg/L. As for Auja spring the average Sodium and Chloride are 24 mg/L and 39.4 mg/L respectively, therefore, the water of Sultan spring contains higher content of sodium and chloride than Auja, this could be related to the chemistry of the lower aquifer. The ratio of Na+/Cl- for Sultan and Auja springs are 0.92 and 0.94 respectively, this indicates that Auja is close to the rain ratio of 0.86 while Sultan (although slightly higher) may be closer to the Halite ratio of 1. The isotopic signature of 18O for both springs has shown to be very similar with only a -0.5‰ of difference in most cases, with a range of -5.2‰ to -6.2‰ for Sultan and -5.4‰ to -6.2‰ for Auja spring. These results may indicate the same recharge elevation for both springs in the Mountain area. On the other hand, in some places east to the major fault system, the shallow aquifer's 18O content in Jericho is close to that of Sultan spring, which could

  2. Estimating the input of wastewater-born micropollutants in a rural karst catchment (Gallusquelle, Germany)

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Schiperski, Ferry; Scheytt, Traugott; Licha, Tobias

    2013-04-01

    The main focus of the AGRO research project is on the use of various micropollutants as indicators (e.g. for wastewater) in the catchment of the karst spring Gallusquelle, Swabian Alb. For modeling the micropollutants' fate in the subsurface and their occurrence in spring water, reliable estimates of the spatio-temporal input, i.e. input functions, are crucial. Therefore potential sources for wastewater-born substances are identified. These are the combined sewer system with a stormwater retention basin (untreated wastewater) and the river Fehla (treated wastewater). The micropollutants' concentrations and loads in the potentially infiltrating waters are estimated on the one hand by local water and substance consumption data and on the other hand by water sample analysis and stream gauging. The spring's discharge varies from 0.2-2.0 m³/s with an average of 0.5 m³/s. Treated spring water serves as drinking water for 45 000 people. The catchment area measures 45 km² and is rural in character with 55% forest, 27% grassland, 15% agriculture and 3% residential/industrial. Industrial activity is restricted to a few minor textile and metal works. There are around 4 000 inhabitants and except for a few farms, all households are connected to the public sewer system. The only surface water within the catchment is the stream Fehla, which forms a part of the catchment boundary. It was formerly identified as a sinking stream with an ephemeral part in the lower course. Connections to the Gallusquelle spring were proven by several tracer tests conducted in the 1960's, when the river started to become perennial over the whole course due to heavy colmatation. During a one week campaign, samples of wastewater and river water were taken three times per day. Additionally, hourly samples were taken during a 24 h period. Water samples were analysed for major ions and 58 micropollutants, including pharmaceuticals, stimulants (as caffeine), the artificial sweeteners acesulfame and

  3. Estimation of uranium migration parameters in sandstone aquifers.

    PubMed

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are

  4. Analysis of multicomopnent groundwater flow in karst aquifer by CFC, tritium, tracer test and modelling, case study at Skaistkalnes vicinity, Latvia

    NASA Astrophysics Data System (ADS)

    Bikshe, Janis; Babre, Alise; Delina, Aija; Popovs, Konrads

    2014-05-01

    three different sources of groundwater occur characterized by different flow velocity, recharge age and chemical composition. Although CFC's has been degraded, it is possible to use the results to distinguish groundwater different components and even to estimate groundwater flow velocity because of near located recharge and discharge areas. Tritium results doesn't show considerable variations along flow path with 6 TU in average confirming conclusions based on CFC's. Tracer test approve very high groundwater velocity zones in study area that supposedly doesn't mix with groundwater in matrix. References Delina A., Babre A., Popovs K., Sennikovs J., Grinberga B. 2012. Effects of karst processes on surface water and groundwater hydrology at Skaistkalne vicinity, Latvia. - Hydrology Research, 43(4), IWA Publishing, pp. 445-459, doi:10.2166/nh.2012.123. This study is supported by ERAF project Nr. 1013/00542DP/2.1.1.1.0/13/APIA/VIAA/007

  5. Interpretation of transmissivity estimates from single-well pumping aquifer tests

    USGS Publications Warehouse

    Halford, K.J.; Weight, W.D.; Schreiber, R.P.

    2006-01-01

    Interpretation of single-well tests with the Cooper-Jacob method remains more reasonable than most alternatives. Drawdowns from 628 simulated single-well tests where transmissivity was specified were interpreted with the Cooper-Jacob straight-line method to estimate transmissivity. Error and bias as a function of vertical anisotropy, partial penetration, specific yield, and interpretive technique were investigated for transmissivities that ranged from 10 to 10,000 m2/d. Cooper-Jacob transmissivity estimates in confined aquifers were affected minimally by partial penetration, vertical anisotropy, or analyst. Cooper-Jacob transmissivity estimates of simulated unconfined aquifers averaged twice the known values. Transmissivity estimates of unconfined aquifers were not improved by interpreting results with an unconfined aquifer solution. Judicious interpretation of late-time data consistently improved estimates where transmissivity exceeded 250 m2/d in unconfined aquifers. ?? 2006 National Ground Water Association.

  6. Management Can Reduce Mobility of Escherichia coli compared to traditional groundwater tracers within karst terrains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of fundamental processes controlling pathogen movement is necessary to protect water resources across the globe. Limited filtration and turbulent flow make karst aquifers susceptible to microbial contamination. Groundwater tracers typically used in karst terrains include fluorescent...

  7. FATE AND TRANSPORT OF PETROLEUM RELEASED FROM UNDERGROUND STORAGE TANKS in Areas of Karst Topography

    EPA Science Inventory

    The study determines the transport and ultimate fate of petroleum products within a region of karst geomorphology. The paper entails a complete literature review, including references that pertain to contaminant transport within karst aquifers

  8. The influence of DOM and microbial processes on arsenic release from karst during ASR operations in the Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A. R.

    2011-12-01

    The mobilization of subsurface As poses a serious threat to human health, particularly in a region such as Florida where population is heavily dependent on highly porous karstic aquifers for drinking water. Injection water used in aquifer storage and recovery (ASR) or aquifer recharge (AR) operations is commonly high in dissolved organic matter (DOM) and OM can also be present in the subsurface carbonate rock. Using batch incubation experiments, this study examined the role of core preservation methods, as well as the influence of labile and more refractory DOM on the mobilization of As from carbonate rock. Incubation experiments used sealed reaction vessels with preserved and homogenized core materials collected via coring the Suwannee Formation in southwest Florida and treatment additions consisting of 1) source water (SW) enriched in sterilized soil DOM, 2) SW enriched in soil DOM and microbes, and 3) SW enriched in sodium acetate. During an initial equilibration phase in native groundwater (NGW) with low dissolved oxygen (DO; Phase 1), we found the greatest As release of the whole incubation. In the beginning of Phase 2 (N2 headspace) in which NGW was replaced with treatment solutions, there was little As release except in the vessel with Na-acetate added, which also had the lowest ORP. At the start of Phase 3, when incubations were exposed to air, most vessels saw more ion (including As) release into solution. Vessel with Na-acetate had less As release in Phase 3 than in Phase 2. During all experimental phases, treatments of DOM or microbe additions had no apparent effect on the amount of As release. The core materials was found contain significant amount of indigenous DOM (about 8 g OC/kg core) which was released during the incubation so DOC concentrations displayed no clear pattern among different treatments. At least three abiotic As mobilization mechanisms may play a role in As released during different stages of the experiment. Desorption of As from iron

  9. Comparing and refining karst disturbance index methods through application in an island karst setting

    NASA Astrophysics Data System (ADS)

    Porter, Brandon L.; North, Leslie A.; Polk, Jason S.

    2016-12-01

    The interconnected nature of surface and subsurface karst environments allows easy disturbance to their aquifers and specialized ecosystems from anthropogenic impacts. The karst disturbance index is a holistic tool used to measure disturbance to karst environments and has been applied and refined through studies in Florida and Italy, among others. Through these applications, the karst disturbance index has evolved into two commonly used methods of application; yet, the karst disturbance index is still susceptible to evaluation and modification for application in other areas around the world. The geographically isolated and highly vulnerable municipality of Arecibo, Puerto Rico's karst area provides an opportunity to test the usefulness and validity of the karst disturbance index in an island setting and to compare and further refine the application of the original and modified methods. This study found the both methods of karst disturbance index application resulted in high disturbance scores (Original Method 0.54 and Modified Method 0.69, respectively) and uncovered multiple considerations for the improvement of the karst disturbance index. An evaluation of multiple methods together in an island setting also resulted in the need for adding additional indicators, including Mogote Removal and Coastal Karst. Collectively, the results provide a holistic approach to using the karst disturbance index in an island karst setting and suggest a modified method by which scaling and weighting may compensate for the difference between the original and modified method scores and allow interested stakeholders to evaluate disturbance regardless of his or her level of expertise.

  10. Comparing and refining karst disturbance index methods through application in an island karst setting.

    PubMed

    Porter, Brandon L; North, Leslie A; Polk, Jason S

    2016-12-01

    The interconnected nature of surface and subsurface karst environments allows easy disturbance to their aquifers and specialized ecosystems from anthropogenic impacts. The karst disturbance index is a holistic tool used to measure disturbance to karst environments and has been applied and refined through studies in Florida and Italy, among others. Through these applications, the karst disturbance index has evolved into two commonly used methods of application; yet, the karst disturbance index is still susceptible to evaluation and modification for application in other areas around the world. The geographically isolated and highly vulnerable municipality of Arecibo, Puerto Rico's karst area provides an opportunity to test the usefulness and validity of the karst disturbance index in an island setting and to compare and further refine the application of the original and modified methods. This study found the both methods of karst disturbance index application resulted in high disturbance scores (Original Method 0.54 and Modified Method 0.69, respectively) and uncovered multiple considerations for the improvement of the karst disturbance index. An evaluation of multiple methods together in an island setting also resulted in the need for adding additional indicators, including Mogote Removal and Coastal Karst. Collectively, the results provide a holistic approach to using the karst disturbance index in an island karst setting and suggest a modified method by which scaling and weighting may compensate for the difference between the original and modified method scores and allow interested stakeholders to evaluate disturbance regardless of his or her level of expertise.

  11. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in both mildly and highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests. In mildly heterogeneous aquifers, ??L estimates from two-well tests with relatively large tracer transport distances are similar to ??L values from natural-gradient simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests at all tracer transport distances are typically smaller than ??L values from natural-gradient simulations.

  12. Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods.

    PubMed

    Kazakis, N; Vargemezis, G; Voudouris, K S

    2016-04-15

    Geoelectrical methods have been widely used for the estimation of aquifer hydraulic properties. In this study, geoelectrical methods were applied in a lithologically and hydrochemically complex porous aquifer to estimate its porosity, hydraulic conductivity and transmissivity. For this purpose, the electrical resistivity of the aquifer as well as the electrical conductivity of the groundwater was measured in 37 sites and wells. Initially, the Archie's law was used to generate sets of cementation factor (m) and alpha (α) parameter from which the mode values of α=0.98 and m=1.75 are representative of the studied aquifer. The transmissivity of the aquifer varies from 5.1×10(-3) to 3.1×10(-5)m(2)/s, whereas the mean value of its porosity is 0.45. The hydraulic conductivity of the aquifer which was calculated according to Archie's law varies from 2.08×10(-6) to 6.84×10(-5)m/s and is strongly correlated with the pumping test's hydraulic conductivity. In contrast, the hydraulic conductivity which was calculated using Dar-Zarrouk parameters presents lower correlation with the pumping test's hydraulic conductivity. Furthermore, a relation between aquifer resistivity and hydraulic conductivity was established for the studied aquifer to enable the estimation of these parameters in sites lacking data.

  13. Multi-compartment modelling for aquifer parameter estimation using natural tracers in non-steady flow

    NASA Astrophysics Data System (ADS)

    Adar, E.; Sorek, S.

    A method is developed for aquifer parameter estimation incorporating dissolved hydrochemical constituents and environmental isotopes. This model is developed for basins with lack of hydrological information but with enough wells to allow for hydraulic head measurements and water sampling for chemical and isotoic analyses. It was developed for aquifer systems with observed hydraulic head fluctuations. The model is based on a distributed parameter approach in which the aquifer is represented by a finte number of cells. Inflows through external aquifer boundaries and internal fluxes are evaluated by optimizing a set of mass balance equations expressing the conservation of water, isotopes and dissolved chemicals. Storativity and transmissivity coefficients are then evaluated by the previously calculated flow components and the periodic changes in hydraulic heads. This paper presents a methodology to enhance the accuracy of estimated physical parameters in heterogeneous and anisotropic aquifers by adding chemical and isotopic information.

  14. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  15. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  16. Comparison of a karst groundwater model with and without discrete conduit flow

    NASA Astrophysics Data System (ADS)

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-11-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  17. Comparison of a karst groundwater model with and without discrete conduit flow

    USGS Publications Warehouse

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-01-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  18. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-01

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting 3H samples in groundwater over 27 years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean 3H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 μg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important.

  19. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants.

    PubMed

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-20

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting (3)H samples in groundwater over 27years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean (3)H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 microg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important.

  20. Uncertainties in temperature based estimates of stream-aquifer flux

    NASA Astrophysics Data System (ADS)

    Soto, C. D.; Meixner, T.; Ferre, T. A.

    2009-12-01

    The use of temperature to quantify stream-aquifer interactions has become a common scientific measurement technique. Diurnal air temperature fluctuations force diurnal temperature fluctuations in surface waters. These oscillations force continuous pulses of heat that propagate downward through streambed sediments. Many researchers have developed methods to analyze time series of temperature beneath the streambed to estimate the direction and/or magnitude of water fluxes between surface and ground waters. One such method uses measurements of changes in amplitude and phase of the temperature signal at different depths beneath the stream. The measurements are analyzed using numerical, analytical, or approximate solutions to the coupled water flow and heat transport equations. These methods rely on correctly identifying the thermal properties of the streambed sediments and the water. While some of these property values are readily available (e.g. thermal conductivity, heat capacity of water), others are less well defined (e.g. thermal dispersivity). While there has been considerable use and examination of these temperature methods, none have considered the impacts of temperature measurement uncertainty on the inferred water flux. Without consideration of these errors, previous researchers have reported that the water flux can be inferred reliably for fluxes ranging over ±10 m/day or ±1.157x10^-2 cm/s based on paired temperature measurements made with sensors at different depths. We use a numerical model (HYDRUS1D) to develop a “true” time series of temperature fluctuations in a stream and the subsurface. Uncertainty is added in the form of normally distributed noise with a mean of zero. This synthetic data is analyzed using a commonly applied analytical solution to infer the water flux. The inferred flux is compared to the “known” flux to calculate the error. The uncertainty is determined for multiple error realizations and true fluxes. Results show that the

  1. Estimated availability of water from stratified-drift aquifers in the Concord River Basin, Massachusetts

    USGS Publications Warehouse

    Bratton, Lisa; Parker, Gene W.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Management, Office of Water Resources, studied the Concord River Basin to estimate the volume of water that is available from stratified-drift aquifers. A combined hydrograph-separation and streamflow- duration-curve analysis indicates that 20.8 million cubic feet of water can be withdrawn from the stratified-drift aquifer above the South Acton streamflow-gaging station during a 102-day period of no recharge before streamflow is reduced to a prescribed minimum level. This volume, which equaled 2.85 million cubic feet per square mile of strati- fied drift, was used to estimate volume of available water for the 17 aquifer areas in the Concord River Basin. The total volume of available water in the Concord River Basin is estimated to be 561 million cubic feet. Finite-difference ground-water-flow models for the River Meadow Brook aquifer area and the Sudbury and Concord aquifer area quantified the current and potential water availability. The results of three withdrawal simulations for each aquifer area indicate that the 1989 withdrawal rates do not exceed the volume of water available during a 102-day period of no recharge. Results from model simulations of 10- and 65-percent water-table draw- down at existing and hypothetical wells indicate that withdrawn water volumes would exceed the available water in the two aquifer areas.

  2. Estimating 14C groundwater ages in a methanogenic aquifer

    USGS Publications Warehouse

    Aravena, Ramon; Wassenaar, Leonard I; Plummer, L. Niel

    1995-01-01

    This paper addresses the problem of 14C age dating of groundwaters in a confined regional aquifer affected by methanogenesis. Increasing CH4 concentrations along the groundwater flow system and 13C and 14C isotopic data for dissolved inorganic carbon, dissolved organic carbon, and CH4 clearly show the effect of methanogenesis on groundwater chemistry. Inverse reaction path modeling using NETPATH indicates the predominant geochemical reactions controlling the chemical evolution of groundwater in the aquifer are incongruent dissolution of dolomite, ion exchange, methanogenesis, and oxidation of sedimentary organic matter. Modeling of groundwater 14C ages using NETPATH indicates that a significant part of groundwater in the Alliston aquifer is less than 13,000 years old; however, older groundwater in the range of 15,000–23,000 years is also present in the aquifer. This paper demonstrates that 14C ages calculated using NETPATH, incorporating the effects of methanogenesis on the carbon pools, provide reasonable groundwater ages that were not possible by other isotopic methods.

  3. Estimating equivalent hydraulic properties in deep bedrock aquifers using dynamic well field data

    NASA Astrophysics Data System (ADS)

    Lewis, A.; Ronayne, M. J.; Sale, T.

    2013-12-01

    Production well water levels from active well fields offer a transient dataset that can be used to estimate aquifer hydraulic properties. In this study, we apply an inverse modeling method to estimate representative values of aquifer transmissivity and storativity in areas stressed by well fields. We consider water level and pumping data collected within the sedimentary bedrock aquifers of the Denver Basin in Colorado (USA). The forward model is based on superposition of the Theis equation (over space and time for multiple interacting production wells) and includes a correction term for well losses. Calculated water levels are compared to observed water levels at individual production wells, and the inverse method is used to identify equivalent aquifer and well properties that minimize residuals. The method is initially tested using synthetic water level datasets generated from numerical models with patterns of heterogeneity characteristic of the Denver Basin aquifers. An application is presented using actual municipal well field data collected over a 3-year period within two Denver Basin aquifers. Modeled water levels provide a good fit to the observed levels once the hydraulic properties and well loss constants are estimated by the inversion routine. Accurate estimation of these values is necessary for certain problems facing municipal well fields such as how to shedule pumping to minimize energy costs and where to drill new wells in existing well fields.

  4. Evaluation of longitudinal dispersivity estimates from forced-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2002-01-01

    Converging radial-flow and two-well tracer tests are simulated in two-dimensional aquifers to investigate the effects of heterogeneity and forced-gradient test configuration on longitudinal dispersivity (??L) estimates, and to compare ??L estimates from forced-gradient tests with ??L values that characterize solute spreading under natural-gradient flow. Results indicate that in mildly heterogeneous aquifers, for tests with relatively large tracer transport distances, ??L estimates from the two test types are generally similar, and are also similar to ??L values determined from natural-gradient tracer simulations. In highly heterogeneous aquifers, ??L estimates from two-well tests are generally larger than those from radial-flow tests, and the ??L estimates from both test types are typically smaller than the ??L values determined from natural-gradient simulations.

  5. Estimation of hydraulic characteristics of the upper glacial and Magothy aquifers at East Meadow, New York, by use of aquifer tests. Water Resources Investigation

    SciTech Connect

    Prince, K.R.; Schneider, B.J.

    1989-01-01

    This study obtained estimates of the hydraulic properties of the upper glacial and Magothy aquifers in the East Meadow area for use in analyzing the movement of reclaimed waste water through the aquifer system. This report presents drawdown and recovery data form the two aquifer tests of 1978 and 1985, describes the six methods of analysis used, and summarizes the results of the analyses in tables and graphs. The drawdown and recovery data were analyzed through three simple analytical equations, two curve-matching techniques, and a finite-element radial-flow model. The resulting estimates of hydraulic conductivity, anisotropy, and storage characteristics were used as initial input values to the finite-element radial-flow model (Reilly, 1984). The flow model was then used to refine the estimates of the aquifer properties by more accurately representing the aquifer geometry and field conditions of the pumping tests.

  6. Speleogenesis in Dinaric karst area

    NASA Astrophysics Data System (ADS)

    Garasic, Mladen; Garasic, Davor

    2015-04-01

    remarkable variety in types of caves. It is estimated that the Dinaric Karst has at least 100,000 caves, only a fifth of which have been explored and suitably documented so far. Karst caves are truly unique by a variety of their types (dry caves, water caves, cave systems, shafts, spring caves, etc.), by their dimensions (the longest cave systems can reach over 100 km, the deepest ones are more than 1,430 metres deep), and by their great spatial frequency. In the Classical Karst, in area around the town Sežana and Fernetti/Fernetiči there are up to 60 caves/km2 - the number which is unprecedented. The great numbers of cave channels covered in dripstone, types of dripstone and its forms (stalactites, stalagmite, curtains, cave pearls, etc.) only contribute to this abundance. One should not forget the significance of cave sediments for scientific explorations. Their dating was used to determine the age of caves and scientifically explain the dynamics of karst evolution. Another important set of karst features are numerous submarine springs. This is the area where the science of karstology and speleology started to develop, where the basic ideas about the karstification processes (corrosion) and karst hydrology were born. The international term karst and the scientific investigation of karst originate in this region as well as many other international professional terms. Many words, describing karst features, originate from the Dinaric Karst Area, and belong to internationally accepted karst terminology (karst, dolina, polje, vrtača, ponikva, vrulja etc.). The word "karst" was first mentioned in Charter of Juraj Pariježić in 1230 in which "kras" locality near Dobrinj on the Island Krk in Croatia was subject of donation. The first written note that mentions the Italian word "Carso" dates back to the year 1292. In an Austrian document term "Karst" was cited for the first time in 1423. From the etymological point of view the word "Karst" is expression of Indo

  7. Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California

    SciTech Connect

    Hayes, J.; Bertschinger, V. ); Aley, T. )

    1993-04-01

    Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyes were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.

  8. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  9. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGES

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  10. Estimation of hydraulic characteristics of the upper glacial and Magothy aquifers at East Meadow, New York, by use of aquifer tests

    USGS Publications Warehouse

    Prince, K.R.; Schneider, B.J.

    1989-01-01

    Drawdown and recovery data from two aquifer tests in central Nassau County, NY were used to calculate aquifer characteristics by several methods to aid in predicting the response of the aquifer system to stress. The first test, on May 12, 1978, entailed pumping the Magothy aquifer for 12 hours; the second on July 30-31, 1985, entailed pumping the upper glacial aquifer for 24 hours. Drawdown and recovery data from both tests were analyzed through analytical solutions and curve-matching procedures, and the resulting hydraulic values were used as initial values in a finite-element radial-flow numerical model to simulate the observed drawdowns and recoveries. Storativity values obtained by all methods were consistent with published estimates; but hydraulic conductivity values were higher than published estimates. The simple analytical solutions and curve-matching procedures gave reasonable values of most terms quickly, but the greatest confidence is in the estimates made with the finite-element model. These estimates for the Magothy aquifer were: horizontal hydraulic conductivity of 100 ft/d; ratio of horizontal to vertical conductivity, 5; and specific storage, 0.0001. Estimates for the upper glacial aquifer were: horizontal hydraulic conductivity, 380 ft/d; ratio of horizontal to vertical hydraulic conductivity, 2.5; and specific yield, 0.15. (USGS)

  11. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  12. Estimation of aquifer scale proportion using equal area grids: assessment of regional scale groundwater quality

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Landon, Matthew K.; Fram, Miranda S.; Johnson, Tyler D.

    2010-01-01

    The proportion of an aquifer with constituent concentrations above a specified threshold (high concentrations) is taken as a nondimensional measure of regional scale water quality. If computed on the basis of area, it can be referred to as the aquifer scale proportion. A spatially unbiased estimate of aquifer scale proportion and a confidence interval for that estimate are obtained through the use of equal area grids and the binomial distribution. Traditionally, the confidence interval for a binomial proportion is computed using either the standard interval or the exact interval. Research from the statistics literature has shown that the standard interval should not be used and that the exact interval is overly conservative. On the basis of coverage probability and interval width, the Jeffreys interval is preferred. If more than one sample per cell is available, cell declustering is used to estimate the aquifer scale proportion, and Kish's design effect may be useful for estimating an effective number of samples. The binomial distribution is also used to quantify the adequacy of a grid with a given number of cells for identifying a small target, defined as a constituent that is present at high concentrations in a small proportion of the aquifer. Case studies illustrate a consistency between approaches that use one well per grid cell and many wells per cell. The methods presented in this paper provide a quantitative basis for designing a sampling program and for utilizing existing data.

  13. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  14. Caffeine as an indicator for the quantification of untreated wastewater in karst systems.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-02-01

    Contamination from untreated wastewater leakage and related bacterial contamination poses a threat to drinking water quality. However, a quantification of the magnitude of leakage is difficult. The objective of this work is to provide a highly sensitive methodology for the estimation of the mass of untreated wastewater entering karst aquifers with rapid recharge. For this purpose a balance approach is adapted. It is based on the mass flow of caffeine in spring water, the load of caffeine in untreated wastewater and the daily water consumption per person in a spring catchment area. Caffeine is a source-specific indicator for wastewater, consumed and discharged in quantities allowing detection in a karst spring. The methodology was applied to estimate the amount of leaking and infiltrating wastewater to a well investigated karst aquifer on a daily basis. The calculated mean volume of untreated wastewater entering the aquifer was found to be 2.2 ± 0.5 m(3) d(-1) (undiluted wastewater). It corresponds to approximately 0.4% of the total amount of wastewater within the spring catchment.

  15. Estimates of the volume of water in five coal aquifers, Northern Cheyenne Indian Reservation, southeastern Montana

    USGS Publications Warehouse

    Tuck, L.K.; Pearson, Daniel K.; Cannon, M.R.; Dutton, DeAnn M.

    2013-01-01

    The Tongue River Member of the Tertiary Fort Union Formation is the primary source of groundwater in the Northern Cheyenne Indian Reservation in southeastern Montana. Coal beds within this formation generally contain the most laterally extensive aquifers in much of the reservation. The U.S. Geological Survey, in cooperation with the Northern Cheyenne Tribe, conducted a study to estimate the volume of water in five coal aquifers. This report presents estimates of the volume of water in five coal aquifers in the eastern and southern parts of the Northern Cheyenne Indian Reservation: the Canyon, Wall, Pawnee, Knobloch, and Flowers-Goodale coal beds in the Tongue River Member of the Tertiary Fort Union Formation. Only conservative estimates of the volume of water in these coal aquifers are presented. The volume of water in the Canyon coal was estimated to range from about 10,400 acre-feet (75 percent saturated) to 3,450 acre-feet (25 percent saturated). The volume of water in the Wall coal was estimated to range from about 14,200 acre-feet (100 percent saturated) to 3,560 acre-feet (25 percent saturated). The volume of water in the Pawnee coal was estimated to range from about 9,440 acre-feet (100 percent saturated) to 2,360 acre-feet (25 percent saturated). The volume of water in the Knobloch coal was estimated to range from about 38,700 acre-feet (100 percent saturated) to 9,680 acre-feet (25 percent saturated). The volume of water in the Flowers-Goodale coal was estimated to be about 35,800 acre-feet (100 percent saturated). Sufficient data are needed to accurately characterize coal-bed horizontal and vertical variability, which is highly complex both locally and regionally. Where data points are widely spaced, the reliability of estimates of the volume of coal beds is decreased. Additionally, reliable estimates of the volume of water in coal aquifers depend heavily on data about water levels and data about coal-aquifer characteristics. Because the data needed to

  16. Scale dependence of the hydraulic properties of a fractured aquifer estimated using transfer functions

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Russian, A.; Sanchez-Vila, X.; Dentz, M.

    2016-07-01

    We present an investigation of the scale dependence of hydraulic parameters in fractured media based on the concept of transfer functions (TF). TF methods provide an inexpensive way to perform aquifer parameter estimation, as they relate the fluctuations of an observation time series (hydraulic head fluctuations) to an input function (aquifer recharge) in frequency domain. Fractured media are specially sensitive to this approach as hydraulic parameters are strongly scale-dependent, involving nonstationary statistical distributions. Our study is based on an extensive data set, involving up to 130 measurement points with periodic head measurements that in some cases extend for more than 30 years. For each point, we use a single-porosity and dual-continuum TF formulation to obtain a distribution of transmissivities and storativities in both mobile and immobile domains. Single-porosity TF estimates are compared with data obtained from the interpretation of over 60 hydraulic tests (slug and pumping tests). Results show that the TF is able to estimate the scale dependence of the hydraulic parameters, and it is consistent with the behavior of estimates from traditional hydraulic tests. In addition, the TF approach seems to provide an estimation of the system variance and the extension of the ergodic behavior of the aquifer (estimated in approximately 500 m in the analyzed aquifer). The scale dependence of transmissivity seems to be independent from the adopted formulation (single or dual-continuum), while storativity is more sensitive to the presence of multiple continua.

  17. Using existing data to estimate aquifer properties, Great Lakes Region, USA

    USGS Publications Warehouse

    Darner, Robert A.; Sheets, Rodney A.

    2012-01-01

    To determine specific storage and porosity, areally limited and time-consuming aquifer tests are frequently done. Hydrogeologic studies often do not have the resources to collect such data and rely on existing data sources for aquifer properties. An alternative tool for determining these aquifer properties is the analysis of earth tides. The objective of this study was to determine whether existing water-level and barometric-pressure data could be used to determine aquifer properties, such as porosity and specific storage, on a regional scale. In this study, national databases from the Great Lakes Region were queried for continuous records of groundwater-level and barometric-pressure data. Records from 37 selected wells were then analyzed for barometric efficiency and earth-tide responses. Specific-storage (Ss) and porosity values were determined, and the quality of the results were assessed with a measure of the "goodness of fit" (percent variance) of reconstruction of the response. Records from wells completed in several aquifer systems were analyzed with varying degrees of success. Aquifer Ss values ranging from 5.9 x 10-8 to 3.8 x 10-6/m were derived, with percent variance of reconstruction ranging from 1% to 78%. Comparisons with aquifer and laboratory testing of Ss and porosity are favorable if the percent variance of reconstruction is above about 30%. Although the earth-tide-analysis method is not suitable for every situation, the Ss and porosity of aquifers can, in many places, be estimated with existing water-level and barometric-pressure data or with data that are relatively inexpensive to collect.

  18. Sustainable-yield estimation for the Sparta Aquifer in Union County, Arkansas

    USGS Publications Warehouse

    Hays, Phillip D.

    2000-01-01

    Options for utilizing alternative sources of water to alleviate overdraft from the Sparta aquifer and ensure that the aquifer can continue to provide abundant water of excellent quality for the future are being evaluated by water managers in Union County. Sustainable yield is a critical element in identifying and designing viable water supply alternatives. With sustainable yield defined and a knowledge of total water demand in an area, any unmet demand can be calculated. The ground-water flow model of the Sparta aquifer was used to estimate sustainable yield using an iterative approach. The Sparta aquifer is a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. Currently, the rate of withdrawal in some areas greatly exceeds the rate of recharge to the aquifer and considerable water-level declines have occurred. Ground-water flow model results indicate that the aquifer cannot continue to meet growing water-use demands indefinitely and that water levels will drop below the top of the primary producing sand unit in Union County (locally termed the El Dorado sand) by 2008 if current water-use trends continue. Declines of that magnitude will initiate dewatering of the El Dorado sand. The sustainable yield of the aquifer was calculated by targeting a specified minimum acceptable water level within Union County and varying Union County pumpage within the model to achieve the target water level. Selection of the minimum target water level for sustainable-yield estimation was an important criterion for the modeling effort. In keeping with the State Critical Ground-Water Area designation criteria and the desire of water managers in Union County to improve aquifer conditions and bring the area out of the Critical Ground-Water Area designation, the approximate altitude of the top of the Sparta Sand in central Union County was used as the minimum water level target for estimation of

  19. Pumpspeicherbecken im Karstgrundwasserleiter des Weißen Jura der Schwäbischen Alb. Erste Ergebnisse aus der geologischen und hydrogeologischen Erkundung für die Planfeststellung Pumped-storage hydroelectric power plant in the Jurassic karst aquifer of the swabian alb, Germany

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Köhler, Hans Joachim; Fernandez-Steeger, Tomas; Hennings, Sibylle; Azzam, Rafig

    2014-06-01

    Extensive geological and hydrogeological investigations have been undertaken for the planned pumped-storage hydroelectric power plant in "Blautal" (Swabian Alb, Germany) in order to characterise the Jurassic karst aquifer in which the lower reservoir will be constructed. The preferred option for the plant setup is to integrate the lower reservoir into the groundwater without sealing. Therefore, in order to reliably predict the impact of the pumped storage plant operations on the surrounding drinking water wells and groundwater dependent ecosystems, a comprehensive database has been developed to assess the hydraulic conditions of the karst aquifer. A large scale geological site investigation was carried out to characterise the rock mass and extensive hydraulic tests were performed in many boreholes. The results of the hydraulic characterisation were then implemented in a three dimensional flow model. In this paper, the first results of the geological and hydrogeological investigations are presented and discussed.

  20. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers

    NASA Astrophysics Data System (ADS)

    Wildemeersch, S.; Jamin, P.; Orban, P.; Hermans, T.; Klepikova, M.; Nguyen, F.; Brouyère, S.; Dassargues, A.

    2014-11-01

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54 MJ/m3/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  1. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    PubMed

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  2. Estimating transmissivity and storage properties from aquifer tests in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The results show that transmissivity in the Lihue basin ranges over several orders of magnitude, 42 to 7,900 square feet per day, but is generally lower than reported values of transmissivity of other basaltic aquifers in Hawaii. Estimates of confined-aquifer storage coefficient range from 1.3x10-4 to 8.2x10-2. The hydraulic conductivity estimates obtained using an elliptical-equation method compare favorably with the results obtained from the generally more-accepted curvematching methods. No significant difference is apparent between the estimated transmissivity of the Koloa Volcanics and the Waimea Canyon Basalt in the study area. An analysis of the lithology penetrated by the wells indicates the transmissivity is probably controlled mainly by the stratigraphic position of the layers penetrated by the well. The range of transmissivity values estimated for the southern Lihue basin is lower than reported values from aquifer tests at wells penetrating postshield-stage or rejuvenation-stage lava flows on other Hawaiian islands. This range is one to four orders of magnitude lower than most reported values for dike-free basalt aquifers in Hawaii.

  3. Mapping karst regions of Illinois: Preliminary results

    SciTech Connect

    Weibel, C.P.; Panno, S.V. )

    1993-03-01

    Groundwater contamination may be significant in shallow aquifers in the parts of Illinois where karst occurs. Problems with ground-water contamination in shallow aquifers in karst areas may be significant in parts of Illinois. A study is underway to study factors that contribute to karst development and to map the karst areas of the state, including areas where obvious diagnostic karst geomorphic features are absent. The following generalizations can be made about the structural and stratigraphic factors that control the extent and maturity of karst areas and the development of karstic terrain in Illinois: (1) karstification is restricted to the flanks of the Illinois Basin because most of the basin interior contains carbonate-poor Pennsylvanian bedrock; (2) karstic terrain generally occurs in thick, flatlying, carbonate-rich lithologic units; (3) carbonate to non-carbonate facies changes in formations and the presence of disconformities affect the degree of karstification; (4) structures (folds, faults) may either increase or decrease the likelihood of karstification; and (5) karstification is potentially greater in areas where overlying regolith is absent or thin.

  4. Application of dye-tracing techniques for determining solute-transport characteristics of ground water in karst terranes

    SciTech Connect

    Mull, D.S.; Liebermann, T.D.; Smoot, J.L.; Woosley, L.H.

    1988-10-01

    Approximately 20% of the United States is underlain by karst aquifers. This approximation includes roughly 50% of both Kentucky and Tennessee, substantial portions of northern Georgia and Alabama, and parts of other Region IV states. The prevalence of karst aquifers in the southeast, the common use of karst aquifers as drinking water sources and the vulnerability of these aquifers to contamination highlighted the need to provide a mechanism to assist in ground-water management and protection in karst terranes. In an attempt to meet this need, the U.S. Environmental Protection Agency (EPA)--Region IV and the Kentucky District of the U.S. Geological Survey (USGS), have been cooperating to document the application of dye tracing techniques and concepts to ground-water protection in karst aquifers. These efforts have resulted in the preparation of the manual. The information presented herein should be viewed as another analytical 'tool' to assist in the management and protection of karst water supplies.

  5. 2-D and 3-D Visualization of the Freshwater/Saltwater Mixing Front, and Zones of Preferential Groundwater Flow in the Karst Biscayne Coastal Aquifer using Electromagnetic Induction Techniques, Miami, Southeastern Florida.

    NASA Astrophysics Data System (ADS)

    Stalker, J. C.; Glaccum, R.

    2005-05-01

    The Biscayne aquifer is unconfined, composed primarily of Karst limestone, and underlies all of Miami-Dade County and much of Biscayne Bay in southeastern Florida. It is the sole source of drinking water for the 3 million inhabitants of the city of Miami and Miami-Dade County, as well as portions of Broward and Monroe Counties. Saltwater intrusion is a prominent problem for all coastal aquifers including the Biscayne aquifer. Simple and quick detection of the three-dimensional saltwater/freshwater interface has been problematic without the use of extensive sounding surveys or multiple well sampling. We are developing a technique combining rapid EM-31 surface surveys with EM-31 vertical soundings to model the depth to the saltwater/freshwater front at two sites located within a half mile of Biscayne Bay. The EM-31 has a maximum signal penetration of about 25ft allowing for accurate near shore surveys. Depths to the saltwater have ranged from over 25 ft inland to less than 2-3 ft near the Bay and saltwater mangroves. Changes in conductivity along survey lines of equal elevation that are equidistant from the Bay may indicate zones of preferential flow due to conduit networks or the presence of backfill, both of which exacerbate saltwater intrusion. All surveys show a rapid change from fresh to brackish water as you move toward the Bay indicating a shallow and abrupt mixing zone. Using a simple depth-modeling program, a wire frame contour map of the mixing zone can be constructed. This technique has proven to be a quick, inexpensive method for first-order hydrogeological and spatial analysis of the saltwater/freshwater interface. In an allied study we are using down-hole electromagnetic induction techniques with an EM-39 tool on existing wells, analyzing fluctuations in conductivity within the saltwater zone to look for zones of high permeability in the aquifer. Conductivity fluctuates within the mixing zone from brackish values to values equivalent to Biscayne Bay

  6. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    NASA Astrophysics Data System (ADS)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  7. Estimating Parameters of Aquifer Heterogeneity Using Pumping Tests - a Paradigm for Field Applications

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Arnold, Sven; Schneider, Christoph; Attinger, Sabine

    2013-04-01

    The vast majority of natural aquifers are characterized by heterogeneity which can be statistically represented by parameters such as geometric mean, correlation lengths and variance of hydraulic conductivity. Head measurements of pumping tests are commonly used to estimate the hydraulic properties of porous media. Zech et al. 2012, WRR introduced the effective well flow method allowing a direct parameter estimation from steady state pumping test drawdowns. However, in contrast to simulated pumping tests, the number and spatial distribution of piezometers is limited for on-site pumping tests. We analyze the capability of the effective well flow method to provide accurate and confident parameter estimates of a heterogeneous aquifer under limited availability of head measurements. We use simulated pumping tests to systematically reduce sampling size while also determining the accuracy and uncertainty of estimates at each level of data availability. The same analytical solution is then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We thereby close the gap between theoretical and practical application of an analytical solution describing three-dimensional steady state well flow. Our findings indicate how accuracy and uncertainty of estimated parameters, like mean conductivities and correlation lengths correlate to number and spatial distribution of head measurements. The results provide valuable implications regarding the conceptual design of ground water pumping tests and the predictive power of established pumping test sites.

  8. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    aquifer system from March to June 2009. The groundwater levels were used to construct a map of the potentiometric surface of the High Plains aquifer system. In addition, depth to water and estimated saturated-thickness maps of the aquifer system were constructed using the potentiometric-surface map.

  9. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  10. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.

    PubMed

    Xu, Zexuan; Hu, Bill X; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  11. Estimating parameters of aquifer heterogeneity using pumping tests - implications for field applications

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Arnold, Sven; Schneider, Christoph; Attinger, Sabine

    2015-09-01

    The knowledge of subsurface heterogeneity is a prerequisite to describe flow and transport in porous media. Of particular interest are the variance and the correlation scale of hydraulic conductivity. In this study, we present how these aquifer parameters can be inferred using empirical steady state pumping test data. We refer to a previously developed analytical solution of "effective well flow" and examine its applicability to pumping test data as under field conditions. It is examined how the accuracy and confidence of parameter estimates of variance and correlation length depend on the number and location of head measurements. Simulations of steady state pumping tests in a confined virtual aquifer are used to systematically reduce sampling size while determining the rating of the estimates at each level of data density. The method was then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We conclude that the "effective well flow" solution is a simple alternative to laboratory investigations to estimate the statistical heterogeneity parameter using steady state pumping tests. However, the accuracy and uncertainty of the estimates depend on the design of the field study. In this regard, our results can help to improve the conceptual design of pumping tests with regard to the parameter of interest.

  12. Estimated trichloroethene transformation rates due to naturally occurring biodegradation in a fractured-rock aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Lacombe, Pierre J.; Bradley, Paul M.

    2012-01-01

    Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation–cis-dichloroethene (cis-DCE) and chloride–using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis-DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump-and-treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009.

  13. Carbamazepine breakthrough as indicator for specific vulnerability of karst springs: application on the Jeita spring, Lebanon

    NASA Astrophysics Data System (ADS)

    Doummar, J.; Geyer, T.; Noedler, K.; Sauter, M.

    2014-12-01

    The pharmaceutical drug carbamazepine is considered an effective wastewater marker. The varying concentration of this drug was analyzed in a mature karst spring following a precipitation event. The results show that carbamazepine is an indicator of wastewater entering the system through a fast flow pathway, leading to an increase of the drug concentrations in spring water shortly after a strong rainfall event. The analysis of the breakthrough curve of carbamazepine along with the electrical conductivity signal and major ions chemograph allowed the development of a conceptual model for precipitation event-based flow and transport in the investigated karst system. Furthermore the amount of newly recharged water and the mass of carbamazepine reaching the aquifer system during the event could be estimated using a simple mixing approach. The distance between the karst spring and the potential carbamazepine source was estimated by the combination of results from artificial tracer tests and the carbamazepine breakthrough curve. The assessment of spring responses to precipitation event using persistent drugs like carbamazepine helps assess the effect of waste water contamination at a spring and gives therefore insights to the specific vulnerability of a karst spring.

  14. Negative grouting consequences on karst environment

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Roje-Bonacci, T.; Gottstein, S.

    2009-04-01

    Grouting is a procedure by means of which grout is injected into different kinds of karst spaces (cracks, fissures, conduits and caves). It has a wide application in modern civil engineering, especially in karst terrains. It started nearly 200 years ago. In most cases the ingredients for the preparation of mortars and grouting suspensions are: cement, bentonite, clay and fillers, additives for stability and water. In practice the composition of grouting suspension is not standardized. A suspension injected under pressure will circulate in the karst spaces like a more or less viscous fluid until some of the larger suspended particles are blocked where the karst voids get narrower than the size of injected grains. The injection of materials into karst groundwater, i.e. the construction of grouting curtains, definitely could be the cause of unpredictable negative consequences on karst groundwater environments. The building of dams in karst areas always go along the construction of grouting curtains. During the construction of most dams in karst all over the world millions tons of injection mass have been injected in karst underground. It may impact water quantity in vadose zone and in karstic aquifer causing water table lowering and spring desiccation. In such cases the negative impact on local karst environment could be very dangerous. Physically as well as chemically this mass voraciously and quickly destroyed underground habitats and killed an enormous number of endangered and endemic species. Very often this is extremely expensive procedure and in many cases not very successful from the engineering point of view. From the ecological point of view it could causes catastrophic consequences. The greatest problem is that until now neither engineers nor ecologists took care of these great and massive negative influences on underground karst environments. In this paper few examples of different consequences of grouting on the hydrogeological as well as ecological regime

  15. Verification of the karst flow model under laboratory controlled conditions

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  16. Estimating hydraulic parameters of the Açu-Brazil aquifer using the computer analysis of micrographs

    NASA Astrophysics Data System (ADS)

    de Lucena, Leandson R. F.; da Silva, Luis R. D.; Vieira, Marcela M.; Carvalho, Bruno M.; Xavier Júnior, Milton M.

    2016-04-01

    The conventional way of obtaining hydraulic parameters of aquifers is through the interpretation of aquifer tests that requires a fairly complex logistics in terms of equipment and personnel. On the other way, the processing and analysis of digital images of two-dimensional rock sample micrographs presents itself as a promising (simpler and cheaper) alternative procedure for obtaining estimates for hydraulics parameters. This methodology involves the sampling of rocks, followed by the making and imaging of thin rock samples, image segmentation, three-dimensional reconstruction and flow simulation. This methodology was applied to the outcropping portion of the Açu aquifer in the northeast of Brazil, and the computational analyses of the thin rock sections of the acquired samples produced effective porosities between 11.2% and 18.5%, and permeabilities between 52.4 mD and 1140.7 mD. Considering that the aquifer is unconfined, these effective porosity values can be used effectively as storage coefficients. The hydraulic conductivities produced by adopting different water dynamic viscosities at the temperature of 28 °C in the conversion of the permeabilities result in values in the range of [ 6.03 ×10-7, 1.43 ×10-5 ] m/s, compatible with the local hydrogeology.

  17. Use of geophysical logs to estimate the quality of ground water and the permeability of aquifers

    USGS Publications Warehouse

    Hudson, J.D.

    1996-01-01

    The relation of formation factor to resistivity of formation water and intergranular permeability has often been investigated, and the general consensus is that this relation is closest when established in a clean-sand aquifer in which water quality does not vary substantially. When these restrictions are applied, the following standard equation is a useful tool in estimating the resistance of the formation water: F = Ro/Rw, where F is the formation factor, which is a function of the effective porosity; Ro is the resistivity of a formation that is 100 percent saturated with interstitial water; and Rw is the resistivity of the water in the saturated zone. However, arenaceous aquifers can have electrical resistivities that are not directly related to resistivity of water or porosity. Surface conductivity and ion exchange are significant factors when the sediments are clay bearing. The solid constituents are a major component of the parameters needed to solve the equation for formation-water resistivity and estimates of aquifer permeability. A correction process needs to be applied to adjust the variables, Ro and F, to the equivalent of clean sand. This report presents an empirical method of using the neutron log and the electrical-resistivity values from long- and short-normal resistivity logs to correct for fine-grained material and the subsequent effects of low impedance to electrical flow that are not related to the resistance of formation water.

  18. Estimation of aquifer dimensions from passive seismic signals in the presence of material and source uncertainties

    NASA Astrophysics Data System (ADS)

    Lähivaara, T.; Dudley Ward, N. F.; Huttunen, T.; Rawlinson, Z.; Kaipio, J. P.

    2015-03-01

    Small magnitude seismic activity has recently been considered for the assessment of aquifer properties and state. Since the aquifers are modelled as poroelastic, the computational resources needed to simulate the related wave propagation accurately can prove to be impracticable for field studies. Furthermore, the related parameter estimation problem poses significantly higher requirements. In this paper, we investigate model reduction and the Bayesian approximation error (BAE) approach under additional model uncertainties, and establish its feasibility for the estimation of aquifer geometry. The main model approximation is the use of an elastic model in lieu of a poroelastic model. However, the use of an elastic model alone results in a posterior distribution that does not capture the actual parameters. We use the BAE to recover from the model errors. The main uncertainties on which we focus here are related to the unknown material properties and the earthquake itself, including the location and moments. In this feasibility study, we show that the overall approach is able to provide posterior models that capture the actual parameters.

  19. A new method for estimating recharge to unconfined aquifers using differential river gauging.

    PubMed

    McCallum, Andrew M; Andersen, Martin S; Acworth, R Ian

    2014-01-01

    In semiarid and arid environments, leakage from rivers is a major source of recharge to underlying unconfined aquifers. Differential river gauging is widely used to estimate the recharge. However, the methods commonly applied are limited in that the temporal resolution is event-scale or longer. In this paper, a novel method is presented for quantifying both the total recharge volume for an event, and variation in recharge rate during an event from hydrographs recorded at the upstream and downstream ends of a river reach. The proposed method is applied to river hydrographs to illustrate the method steps and investigate recharge processes occurring in a sub-catchment of the Murray Darling Basin (Australia). Interestingly, although it is the large flood events which are commonly assumed to be the main source of recharge to an aquifer, our analysis revealed that the smaller flow events were more important in providing recharge.

  20. Thermographic Data Analyses for Karst Watersheds

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; McCaleb, Rebecca C. (Technical Monitor)

    2001-01-01

    Aerial thermography is an emerging technology unsurpassed for locating groundwater discharges. Thermography can be used to locate submerged discharges that are extremely difficult to find by other means. In two large projects, thermography was used to identify almost every significant spring at sites underlain by karst aquifers. This technology effectively converts Brown's Type 5 topology to types 1 or 2 (all discharges known), which has a significant impact on dye tracing. At a north Alabama site, springs located by thermography quadrupled the known groundwater discharge in and around the site. For submerged discharges, thermographic temperatures can be measured down the center of the groundwater plume that rises to the surface in the winter. Using the Cornell Mixing (CORMIX) model, flow rate for one submerged spring was estimated. Once identified, estimates of spring recharge area were desired. The size of the area of recharge was estimated by hydrograph separation of flow data from nearby, unregulated surface streams. Monthly recharge estimates were also made and used to show that in north Alabama the mean annual recharge/discharge occurs during May and December. Spring flow measurements for the same county of north Alabama were averaged to obtain mean flows. Then measurements for May only, were averaged. The two averages usually agreed to within 20 percent. This provides evidence that hydrograph separation determinations of recharge are valid.

  1. Karst development in central Butler County, Kansas

    SciTech Connect

    Bain, B.A.

    1993-02-01

    Research was conducted to study the geology and hydrology of sinkholes, springs, and caves formed in Lower Permian, Fort Riley Limestone, located in central Butler County, Kansas. The goal was to better understand the controlling factors of these karst features and the processes that produce them in a portion of Kansas that is undergoing rapid population growth and increased groundwater usage. Research was accomplished in seven phases: literature search, locating karst features, measuring bedrock fracture joint trends, surveying major caves, estimating discharge of springs, dye tracing, and water chemistry analysis. Recognizable karst landforms within the study area were plotted onto a base map to demonstrate their geographic, geologic, and hydrologic relationships. Karst features identified were 125 sinkholes, a major cave system composed of at least three enterable cave segments, and one large spring. The karst terrain found within the study area is clearly a system of interrelated features and processes. Long-term solution of the bedrock allows karst features to form, joints and bedding planes to enlarge, and creates an efficient network of subsurface drainage. Factors that control karst development in the study area are lithology, thickness, and dip of the bedrock; presence of well defined joints and bedding planes; relatively level topography; nearby entrenched river valleys; lack of thick surficial cover; and climate. Of these influences, solutional activity at joints plays a major role in the formation of sinkholes and cave passages; however, a complex combination of all the controlling factors is responsible for the present, unique, and dynamic karst system.

  2. Estimated rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas

    USGS Publications Warehouse

    Noble, John E.

    1997-01-01

    During 1989-90, the U.S. Geological Survey (USGS), in cooperation with the Harris-Galveston Coastal Subsidence District, conducted a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area (fig. 1) comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwestern Harris County, Montgomery County, and southern Walker County. The depth to the water table was estimated using seismic refraction, and an estimated rate of recharge in the aquifer outcrops was computed using the tritium-interface method (Andres and Egger, 1985) in which environmental tritium is the ground-water tracer. The water table generally ranges in depth between 10 and 30 feet in the study area, and the average total recharge rate was estimated to be not larger than 6 inches per year. The rate is total recharge to the saturated zone, rather than net recharge to the deep regional flow system. The total recharge can be reduced by evapotranspiration and by local discharge, mainly to streams. These results are published in USGS Water-Resources Investigations Report 96-4018 (Noble and others, 1996). A second study of environmental tritium in the same area as the 1989-90 study, also in cooperation with the Harris-Galveston Coastal Subsidence District, was done in 1996 to confirm the results of the original study. This fact sheet documents the estimation of an upper limit on the average total recharge rate on the basis of the vertical movement of tritium in ground water during 1953-89 and during 1953-95.

  3. Obtaining permeability estimates from NMR logging data in an unconsolidated groundwater aquifer

    NASA Astrophysics Data System (ADS)

    Dlubac, K.; Knight, R. J.; Song, Y.; Bachman, N.; Grau, B.; Cannia, J. C.; Williams, J.

    2011-12-01

    There is growing interest in the use of proton nuclear magnetic resonance (NMR) logging for aquifer characterization because it provides information about water-filled porosity and pore space geometry that can be used to estimate permeability (k). Hydrologists estimate hydraulic conductivity, from which k can be calculated, using wellbore flow (WBF) logging. WBF logging data distributes the total hydraulic conductivity, determined from aquifer testing, throughout the aquifer. However, this method is time consuming and has relatively low vertical resolution. If reliable estimates of k can be obtained from NMR logging data, this would provide hydrologists with an efficient alternate method for characterizing aquifer properties. The Schlumberger Doll Research (SDR) and Timur-Coates (T-C) equations are widely used in petroleum applications to obtain k from NMR logging measurements of the relaxation time T2. In this abstract, we focus on the SDR equation which takes the form kSDR=aφ mT2MLn where a, m and n are empirical constants, T2ML is the mean log of the T2 distribution and φ is porosity. The constants have been empirically determined in consolidated materials and are typically assumed to have the following values: a=4, m=4 and n=2. The use of the SDR equation with these values has been found to yield reliable estimates of k in consolidated materials. However, this same equation underestimates k in unconsolidated materials. In this study, we collected NMR logging, aquifer-test, and WBF data from a 150-m deep well that penetrated the High Plains aquifer in central Nebraska. We then worked with a generalized form of the SDR equation: kSDR Generalized =aφ mT2AVG2, where we allowed T2AVG to be calculated as the mean log and arithmetic mean (T2AM) of the T2 distribution. We elected to set the exponent n on the T2 term equal to 2, which results in a k estimate that has the appropriate units of length squared. We used a semi-constrained least squares inversion to

  4. Estimation of hectare-scale soil-moisture characteristics from aquifer-test data

    USGS Publications Warehouse

    Moench, A.F.

    2003-01-01

    Analysis of a 72-h, constant-rate aquifer test conducted in a coarse-grained and highly permeable, glacial outwash deposit on Cape Cod, Massachusetts revealed that drawdowns measured in 20 piezometers located at various depths below the water table and distances from the pumped well were significantly influenced by effects of drainage from the vadose zone. The influence was greatest in piezometers located close to the water table and diminished with increasing depth. The influence of the vadose zone was evident from a gap, in the intermediate-time zone, between measured drawdowns and drawdowns computed under the assumption that drainage from the vadose zone occurred instantaneously in response to a decline in the elevation of the water table. By means of an analytical model that was designed to account for time-varying drainage, simulated drawdowns could be closely fitted to measured drawdowns regardless of the piezometer locations. Because of the exceptional quality and quantity of the data and the relatively small aquifer heterogeneity, it was possible by inverse modeling to estimate all relevant aquifer parameters and a set of three empirical constants used in the upper-boundary condition to account for the dynamic drainage process. The empirical constants were used to define a one-dimensional (ID) drainage versus time curve that is assumed to be representative of the bulk material overlying the water table. The curve was inverted with a parameter estimation algorithm and a ID numerical model for variably saturated flow to obtain soil-moisture retention curves and unsaturated hydraulic conductivity relationships defined by the Brooks and Corey equations. Direct analysis of the aquifer-test data using a parameter estimation algorithm and a two-dimensional, axisymmetric numerical model for variably saturated flow yielded similar soil-moisture characteristics. Results suggest that hectare-scale soil-moisture characteristics are different from core-scale predictions

  5. Estimation of hydraulic conductivity of a coastal aquifer using satellite imagery

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Iglesias-Prieto, R.; Marino-Tapia, I.

    2012-12-01

    The northern Yucatan Peninsula is characterized by a young and dynamic karstic system that yields very high secondary porosity and permeability. However, we have little, if none, knowledge about the hydraulic conductivity and the amount of groundwater being discharged in to ocean. Here we present and estimation of the hydraulic conductivity and quantity of groundwater being discharged by the northern Yucatan Peninsula coastal aquifer into the Gulf of Mexico, using the Sea Surface Temperature (SST) Images offshore the Yucatan coast, where we have detected a thermal anomaly that appears few hours after heavy rainfall in northern Yucatan. We associated these thermal anomalies of the SST to the groundwater being discharged into the ocean. To test our hypothesis we conducted a review of extreme rainfall events in the last 10 years; in parallel we used data from pressure and flow direction gauges installed in a known submarine groundwater discharge (SGD) to estimate the hydraulic conductivity and the quantity of groundwater being discharged. The satellite imagery and the rainfall data, allowed us to estimate the time lag between the rainfall and the SGD beginning, along with the hydraulic data from the gauges we have estimated the hydrogeological parameters of the coastal aquifer. This data is very important to contribute to the understanding the hydrogeological setting of the Yucatan coastal aquifer and its implications of the impact of human activities on the water quality. July 29th, 2005, NOAA's Sea Surface Temperature (SST) image of the Gulf of Mexico taken a week after hurricane Emily (2005). A thermal low is present offshore northern Yucatan.

  6. Delineation of ground-water basins and recharge areas for municipal water-supply springs in a karst aquifer system in the Elizabethtown area, northern Kentucky

    USGS Publications Warehouse

    Taylor, C.J.

    1997-01-01

    Ground-water basins and recharge areas for municipal water-supply springs for the Elizabethtown area, northern Kentucky, were delineated using a hydrogeologic-mapping approach, potentiometric map interpretation, anddye-tracing tests. Five distinct ground-water basins drained by major karst springs are present in the Elizabethtown area. These basins are composed of networks of hydraulically interconnected solution conduits and fractures. The boundaries of the basins for Elizabethtown and Dyers Springs-the primary sources of water for the city of Elizabethtown-weredelineated by the positions of inferred ground-water divides on an existing potentiometric contour map. The results of dye-tracing tests, plotted as straight- line flowpaths, were used to confirm the presence and location of inferred ground-water divides and to adjust the position of the basin boundaries. Recharge areas of 4.8 and 2.7 square miles weredelineated for Elizabethtown and Dyers Springs, respectively. Swallets that drain concentrated stormwater runoff from major highways are presentin the recharge areas for both municipal-supply springs. Each spring is therefore potentially vulnerable to stormwater-runoff contaminants oraccidental spills and releases of toxic or hazardous materials into certain highway drainage culverts.

  7. Biodegradation of chlorinated ethenes at a karst site in middle Tennessee

    USGS Publications Warehouse

    Byl, Thomas Duane; Williams, Shannon D.

    2000-01-01

    This report presents results of field and laboratory investigations examining the biodegradation of chlorinated ethenes in a karst aquifer contaminated with trichloroethylene (TCE). The study site, located in Middle Tennessee, was selected because of the presence of TCE degradation byproducts in the karst aquifer and available site hydrologic and chlorinated-ethene information. Additional chemical, biological, and hydrologic data were gathered to evaluate whether the occurrence of TCE degradation byproducts in the karst aquifer was the result of biodegradation within the aquifer or simply transport into the aquifer. Geochemical analysis established that sulfate-reducing conditions, essential for reductive dechlorination of chlorinated solvents, existed in parts of the contaminated karst aquifer. Other areas of the aquifer fluctuated between anaerobic and aerobic conditions and contained compounds associated with cometabolism, such as ethane, methane, ammonia, and dissolved oxygen. A large, diverse bacteria population inhabits the contaminated aquifer. Bacteria known to biodegrade TCE and other chlorinated solvents, such as sulfate-reducers, methanotrophs, and ammonia-oxidizers, were identified from karst-aquifer water using the RNA-hybridization technique. Results from microcosms using raw karst-aquifer water found that aerobic cometabolism and anaerobic reductive-dechlorination degradation processes were possible when appropriate conditions were established in the microcosms. These chemical and biological results provide circumstantial evidence that several biodegradation processes are active in the aquifer. Additional site hydrologic information was developed to determine if appropriate conditions persist long enough in the karst aquifer for these biodegradation processes to be significant. Continuous monitoring devices placed in four wells during the spring of 1998 indicated that pH, specific conductance, dissolved oxygen, and oxidation-reduction potentials

  8. Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Rabinovich, Avinoam; Barrash, Warren; Cardiff, Michael; Hochstetler, David L.; Bakhos, Tania; Dagan, Gedeon; Kitanidis, Peter K.

    2015-12-01

    Oscillatory pumping tests were conducted at the Boise Hydrogeophysical Research Site. A periodic pressure signal is generated by pumping and injecting water into the aquifer consecutively and the pressure response is recorded at many points around the source. We present and analyze the data from the field test after applying Fourier analysis. We then match the data with a recently derived analytical solution for homogeneous formations to estimate the equivalent aquifer properties: conductivity K, specific storage Ss and specific yield Sy . The estimated values are shown to be in agreement with previous estimates conducted at this site. We observe variations in the estimated parameters with different oscillation periods of pumping. The trend of the parameters with changing period is discussed and compared to predictions by existing theory and laboratory experiments dealing with dynamic effective properties. It is shown that the results are qualitatively consistent with recent works on effective properties of formations of spatially variable properties in oscillatory flow. To grasp the impact of heterogeneity, a simple configuration is proposed, helping explain the observed increase in effective conductivity with decreasing period.

  9. Frequency Dependent Hydraulic Properties Estimated from Oscillatory Pumping Tests in an Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Barrash, W.; Cardiff, M. A.; Hochstetler, D. L.; Bakhos, T.; Dagan, G.; Kitanidis, P. K.

    2015-12-01

    Oscillatory pumping tests were conducted at the Boise Hydrological Research Site. A periodic pressure signal is generated by pumping and injecting water into the aquifer consecutively and the pressure response is recorded at many points around the source. We present and analyze the data from the field test after applying Fourier analysis. We then match the data with a recently derived analytical solution for homogeneous formations to estimate the equivalent aquifer properties: conductivity K, specific storage Ss and specific yield Sy. The estimated values are shown to be in agreement with previous estimates conducted at this site. We observe variations in the estimated parameters with different oscillation periods of pumping. The trend of the parameters with changing period is discussed and compared to predictions by existing theory and laboratory experiments dealing with dynamic effective properties. It is shown that the results are qualitatively consistent with recent works on effective properties of formations of spatially variable properties in oscillatory flow. To grasp the impact of heterogeneity, a simple configuration is proposed, helping explain the observed increase in effective conductivity with decreasing period.

  10. Climate, karst, and critters—A multidisciplinary evaluation of karst species vulnerability to climate change

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Long, A. J.; Stamm, J. F.; Poteet, M. F.; Symstad, A.

    2015-12-01

    The complex hydrologic regimes of karst aquifers respond rapidly to the effects of climate change, and unique biological communities associated with karst are sensitive to hydrologic changes. To explore how climate change might affect karst-dependent species, we coupled a climate-change model, a hydrologic model, and a vulnerability assessment tool to evaluate projected hydrologic change and vulnerability of selected species at sites in the karstic Edwards aquifer (Texas) and Madison aquifer (South Dakota). The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate from 2011 to 2050 at a 36-km grid spacing for 3 weather stations near the study sites. Daily climate projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI). RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, superposing the quick- and slow-flow responses that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to assess the vulnerability of a species. An upward trend in temperature was projected at all three weather stations; there was a trend (downward) in precipitation only for the Texas weather station. A downward trend in mean annual spring flow or groundwater level was projected for the three Edwards sites, but there was no significant trend for the two Madison sites. Of 16 Edwards aquifer species evaluated, 10 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all 8 Madison aquifer species evaluated were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservation concern such as endemic salamanders.

  11. Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers

    SciTech Connect

    Doughty, Christine

    2008-07-11

    Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

  12. Estimating aquifer properties and distributed groundwater recharge in a hard-rock catchment of Udaipur, India

    NASA Astrophysics Data System (ADS)

    Machiwal, Deepesh; Singh, P. K.; Yadav, K. K.

    2016-09-01

    The present study determined aquifer parameters in hard-rock aquifer system of Ahar River catchment, Udaipur, India by conducting 19 pumping tests in large-diameter wells. Spreadsheet programs were developed for analyzing pumping test data, and their accuracy was evaluated by root mean square error (RMSE) and correlation coefficient (R). Histograms and Shapiro-Wilk test indicated non-normality (p value <0.01) of pre- and post-monsoon groundwater levels at 50 sites for years 2006-2008, and hence, logarithmic transformations were done. Furthermore, recharge was estimated using GIS-based water table fluctuation method. The groundwater levels were found to be influenced by the topography, presence of structural hills, density of pumping wells, and seasonal recharge. The results of the pumping tests revealed that the transmissivity (T) ranges from 68-2239 m2/day, and the specific yield (S y) varies from 0.211 to 0.51 × 10-5. The T and S y values were found reasonable for the hard-rock formations in the area, and the spreadsheet programs were found reliable (RMSE ~0.017-0.339 m; R > 0.95). Distribution of the aquifer parameters and recharge indicated that the northern portion with high ground elevations (575-700 m MSL), and high S y (0.08-0.25) and T (>600 m2/day) values may act as recharge zone. The T and S y values revealed significant spatial variability, which suggests strong heterogeneity of the hard-rock aquifer system. Overall, the findings of this study are useful to formulate appropriate strategies for managing water resources in the area. Also, the developed spreadsheet programs may be used to analyze the pumping test data of large-diameter wells in other hard-rock regions of the world.

  13. Historical and projected climate (1901–2050) and hydrologic response of karst aquifers, and species vulnerability in south-central Texas and western South Dakota

    USGS Publications Warehouse

    Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Mahler, Barbara J.; Norton, Parker A.

    2015-12-18

    Flora and fauna that rely on springflow from Edwards and Madison aquifer sites were assessed for vulnerability to projected climate change on the basis of the Climate Change Vulnerability Index (CCVI). The CCVI is determined by the exposure of a species to climate, the sensitivity of the species, and the ability of the species to cope with climate change. Sixteen species associated with springs and groundwater were assessed in the Balcones Escarpment region. The Barton Springs salamander (Eurycea sosorum) was scored as highly vulnerable with moderate confidence. Nine species—three salamanders, a fountain darter (Etheostoma fonticola), three insects, and two amphipods—were scored as moderately vulnerable. The remaining six species—four vascular plants, the Barton cavesnail (Stygopyrgus bartonensis), and a cave shrimp—were scored as not vulnerable/presumed stable (not vulnerable and evidence does not support change in abundance or range of the species). Vulnerability of eight species associated with streams that receive springflow from the Madison aquifer in the Black Hills was assessed. Of these, the American dipper (Cinclus mexicanus) and the lesser yellow lady’s slipper (Cypripedium parviflorum) were scored as moderately vulernable with high confidence. The dwarf scouringrush (Equisetum scirpoides) and autumn willow (Salix serissima) were also scored as moderately vulnerable with moderate to low confidence, respectively. Other species were assessed as not vulnerable/presumed stable or not vulnerable/increase likely (not vulnerable and evidence supporting an increase in abundance or range of the species). Lower vulnerability scores for the Black Hills species in comparison to the Balcones Escarpment species reflect lower endemicity, higher projected springflow than in the historical period, and high thermal tolerance of many of the species for the Black Hills. Importantly, climate change vulnerability scores differed substantially for Edwards aquifer

  14. Estimated predevelopment discharge to streams from the High Plains Aquifer in northwestern Oklahoma, southwestern Kansas, and northwestern Texas

    USGS Publications Warehouse

    Luckey, R.R.; Becker, M.F.

    1998-01-01

    A study of the High Plains aquifer in Okla homa was initiated in 1996 to: (1) provide the information needed by the Oklahoma Water Resources Board to manage the quantity of water produced from the aquifer; and (2) provide base line water-chemistry data. The approach used to meet the first objective is to develop a digital ground-water flow model. The model will be cali brated, in part, by comparing simulated and esti mated predevelopment discharge from the aquifer to streams and cross-boundary flow. This report presents the estimated predevelopment discharge to streams from the High Plains aquifer. Streamflow data were the primary source of information used to estimate predevelopment dis charge from the High Plains aquifer. Data from 30 streamflow stations between the Arkansas and Canadian Rivers were considered in the analysis, and winter low-flow frequencies for 7-, 14-, and 30-day periods were determined for 25 stations. The 14-day low flow with a recurrence interval of 2 years was the primary value used to estimate pre development discharge from the aquifer. The streams that drain the eastern part of the High Plains aquifer in Kansas (generally east of 99.5 longitude) are estimated to have had large predevelopment discharge from the aquifer, and most of them received discharge from near their headwaters. For streams with more than one streamflow gage, the upper perennial reaches appeared to have gained more discharge from the aquifer than the lower reaches. The total predevel opment discharge from the aquifer in this area to several streams is estimated to have been about 312 cubic feet per second, not including discharge that probably went directly to the Arkansas River. The Cimarron River and its tributaries are estimated to have gained about 78 cubic feet per second, but nearly one-half that amount was lost in the lower reaches of the river. The cause of the loss in the lower reaches is unknown. The Beaver River and its tributaries are estimated to have

  15. Transmissivity estimation for highly heterogeneous aquifers: comparison of three methods applied to the Edwards Aquifer, Texas, USA

    NASA Astrophysics Data System (ADS)

    Painter, Scott L.; Woodbury, Allan D.; Jiang, Yefang

    2007-03-01

    Obtaining reliable hydrological input parameters is a key challenge in groundwater modeling. Although many quantitative characterization techniques exist, experience applying these techniques to highly heterogeneous real-world aquifers is limited. Three geostatistical characterization techniques are applied to the Edwards Aquifer, a limestone aquifer in south-central Texas, USA, for the purposes of quantifying the performance in an 88,000-cell groundwater model. The first method is a simple kriging of existing hydraulic conductivity data developed primarily from single-well tests. The second method involves numerical upscaling to the grid-block scale, followed by cokriging the grid-block conductivity. In the third method, the results of the second method are used to establish the prior distribution for a Bayesian updating calculation. Results of kriging alone are biased towards low values and fail to reproduce hydraulic heads or spring flows. The upscaling/cokriging approach removes most of the systematic bias. The Bayesian update reduced the mean residual by more than a factor of 10, to 6 m, approximately 2.5% of the total head variation in the aquifer. This agreement demonstrates the utility of automatic calibration techniques based on formal statistical approaches and lends further support for using the Bayesian updating approach for highly heterogeneous aquifers.

  16. WTAQ: A Computer Program for Calculating Drawdowns and Estimating Hydraulic Properties for Confined and Water-Table Aquifers

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    1999-01-01

    The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.

  17. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  18. Tomographic inverse estimation of aquifer properties based on pressure variations caused by transient water-supply pumping

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D. R.; Koch, R. J.; Birdsell, K. H.

    2008-12-01

    Groundwater pumping of water-supply wells frequently exhibits substantial temporal and spatial variability. Wells are typically operated periodically (on daily and seasonal temporal scales), and the total production is controlled by the water-supply demand,. The pumping causes temporal and spatial variability in the water levels around the pumping wells. During the wellfield operation, water-level data are collected from the production and nearby observation wells. Water level fluctuations are a result of the manner in which the pumping is conducted, aquifer heterogeneity, and variations in other influences such as recharge, poroelastic effects, etc. The variability in aquifer stresses due to pumping can provide valuable information about aquifer properties. The supply-well pumping can be viewed as a single prolonged pumping test extending over multiple pumping cycles and including multiple pumping and observation wells. Here we discuss water level and pumping production data acquired during water-supply production from the regional aquifer at Los Alamos, New Mexico. We have performed extensive interpretation of the data using analytical and numerical techniques. The analytical techniques are applied to provide (1) initial screening of the data for measurement errors, (2) identification of correlations between the pumping and water-level variability, and (3) estimation of the large-scale properties of the aquifer. The numerical models are applied to characterize the spatial heterogeneity of the aquifer using an approach based on tomographic inverse analysis. Our results demonstrate that there are large-scale features in the aquifer that appear to control the spatial propagation of transient pumping effects. The identified aquifer heterogeneities were not previously recognized and are expected to have important effects on the potential migration of contaminants in the regional aquifer.

  19. Agriculture and Karst in Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication describes the unique hydrologic and environmental issues found in karst environments. The publication describes karst landscapes, the importance of karst, different types of karst features, and how water moves through karst landscapes. The publication includes details on methods for...

  20. Karst Lands: The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns

    SciTech Connect

    White, W.B.; Culver, D.C.; Herman, J.S.

    1995-09-01

    Karst lands are produced by the action of water on soluble rocks, a process among the most dynamic of all erosive forces that counterbalance the uplifting forces of tectonics. The dissolution of carbonate rock, primarily limestone and dolomite, produces unique landscapes and poses significant hydrological and environmental concerns. The major topic areas discussed in this article include the following: processes that form karst; karst drainage basins; discharge from karst aquifers; caves as paleoclimatic recorders; caves as ecosystems; water issues in karst regions; and sinkholes, soil piping and subsidence. 20 refs., 9 figs.

  1. Karst and artificial recharge: Theoretical and practical problems. A preliminary approach to artificial recharge assessment

    NASA Astrophysics Data System (ADS)

    Daher, Walid; Pistre, Séverin; Kneppers, Angeline; Bakalowicz, Michel; Najem, Wajdi

    2011-10-01

    SummaryManaged Aquifer Recharge (MAR) is an emerging sustainable technique that has already generated successful results and is expected to solve many water resource problems, especially in semi-arid and arid zones. It is of great interest for karst aquifers that currently supply 20-25% of the world's potable water, particularly in Mediterranean countries. However, the high heterogeneity in karst aquifers is too complex to be able to locate and describe them simply via field observations. Hence, as compared to projects in porous media, MAR is still marginal in karst aquifers. Accordingly, the present work presents a conceptual methodology for Aquifer Rechargeability Assessment in Karst - referred to as ARAK. The methodology was developed noting that artificial recharge in karst aquifers is considered an improbable challenge to solve since karst conduits may drain off recharge water without any significant storage, or recharge water may not be able to infiltrate. The aim of the ARAK method is to determine the ability of a given karst aquifer to be artificially recharged and managed, and the best sites for implementing artificial recharge from the surface. ARAK is based on multi-criteria indexation analysis modeled on karst vulnerability assessment methods. ARAK depends on four independent criteria, i.e. Epikarst, Rock, Infiltration and Karst. After dividing the karst domain into grids, these criteria are indexed using geological and topographic maps refined by field observations. ARAK applies a linear formula that computes the intrinsic rechargeability index based on the indexed map for every criterion, coupled with its attributed weighting rate. This index indicates the aptitude for recharging a given karst aquifer, as determined by studying its probability first on a regional scale for the whole karst aquifer, and then by characterizing the most favorable sites. Subsequently, for the selected sites, a technical and economic feasibility factor is applied, weighted

  2. Peculiarity and vulnerability of karst settings, analyzed through a review of available environmental indices

    NASA Astrophysics Data System (ADS)

    Parise, Mario; Mazzei, Marianna

    2016-04-01

    Karst is a unique environment on Earth, characterized by a variety of peculiar geological and hydrological features, that are expressed by typical landforms at the surface (doline, ponor, polje, etc.) and underground (single cave, sinkhole, complex hypogean systems consisting of sequences of pits and galleries, etc.). Among the main characters of karst, the direct connection between the surface and the underground is at the origin of the fragility of karst settings, and the related high vulnerability. Many different types of natural geological hazards (or geo-hazards) may potentially affect karst lands, with sinkholes and flash floods being the most frequent and typical. In addition, karst is exposed to a variety of anthropogenic disturbances as well, including loss of natural landscapes, destruction of caves and speleothems, and contamination and pollution problems. At this latter regard, it has to be reminded that karst aquifers host high quality groundwaters, that are used as source of drinking water worldwide, with estimates indicating that the supply of drinking water from karst is going to have a significant increase in the next decades, From all of this, the importance in fully defining the karst setting, and in a detail examination of all the natural and anthropogenic events that may cause negative effects on it, comes out. Uniqueness of karst has been acknowledged since a long time, but only in recent years efforts have been made to develop approaches and methods specifically dedicated to this peculiar environment. Such approaches represent definitely a mandatory step in the correct management of karst terranes, providing useful elements to stakeholders, land managers and people living in karst lands about their fragility, and the need to safeguard them and the natural resources therein contained. Starting from these considerations, in this contribution we review the main environmental indices dedicated to karst that have been recently proposed in the

  3. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    PubMed

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer.

  4. Combining chemical and isotopic measurements to estimate pesticide degradation rates in a fractured-rock aquifer

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; El-Khabbaz, Hassanya; Schreglmann, Kathrin; Höche, Martina; Elsner, Martin

    2013-04-01

    Encouraged by new regulatory requirements for pesticide registration and authorization, the transport and environmental fate of these compounds in the different environmental compartments has been studied extensively. Degradation rates vary widely depending on hydraulic and chemical characteristics, with the strongest degradation usually occuring in the topsoil. Nonetheless, significant pesticide attenuation may still take place during transport in the aquifer, since residence times are generally much longer than in the soil. Ideally, pesticide transformation in the aquifer needs to be determined under real field conditions. Mass balance calculations however are complicated by the fact that the initial pesticide mass leached from the soil is often not known precisely enough. In this study, isotopic and classical pesticide concentration measurements were combined with groundwater dating techniques to assess the degradation rate of atrazine and its metabolite desethylatrazine in a fractured sandstone. The mass balance problem was solved by introducing the desethylatrazine to atrazine ratio, a relative measure which was used to quantify the advancement of atrazine degradation with increasing transport time in the subsurface. The extent of transformation of the parent compound was finally estimated from the shift in the isotopic signal between soil application and the outlet of the groundwater system.

  5. Subsidence of residual soils in a karst terrain

    SciTech Connect

    Drumm, E.C.; Kane, W.F.; Ben-Hassine, J.; Scarborough, J.A. ); Ketelle, R.H. )

    1990-06-01

    Siting and operating landfills for solid waste disposal in eastern Tennessee that can operate with minimum impact on groundwater is problematic. The operational requirement of thick, excavational soils and the regulatory requirement of a buffer between disposal units and an aquifer result in siting most operating East Tennessee landfills in outcrop areas of the Knox Group. However, the common occurrence of karst terrain and sinkholes in the Knox Group indicates the vulnerability of such sites to rapid groundwater recharge and flow and the potential for subsidence or collapse of soil into bedrock cavities. To address the potential for subsidence or collapse of soils at the East Chestnut Ridge site on the Department of Energy's (DOE) Oak Ridge Reservation (ORR), the following activities and analyses were completed: The locations of karst features on the site were determined by field reconnaissance; several sinkholes were selected for detailed examination; soil boring, sampling, and physical testing were performed in soils located within, adjacent to, and outside of sinkholes to characterize soil strength at various depths; detailed plane surveys were made for 11 sinkholes to measure accurately their dimension and shape for use in determining profile functions for subsidence basins at the site; The stress-deformation response of a typical soil profile overlying a hypothetical bedrock cavity was analyzed numerically for a range of soil thickness and a range of cavity radii. A consistent estimate of the relationship between subsidence basin dimension, soil thickness, and cavity radius has been derived. 30 refs., 41 figs., 7 tabs.

  6. A GPGPU accelerated modeling environment for quantitatively characterizing karst systems

    NASA Astrophysics Data System (ADS)

    Myre, J. M.; Covington, M. D.; Luhmann, A. J.; Saar, M. O.

    2011-12-01

    The ability to derive quantitative information on the geometry of karst aquifer systems is highly desirable. Knowing the geometric makeup of a karst aquifer system enables quantitative characterization of the systems response to hydraulic events. However, the relationship between flow path geometry and karst aquifer response is not well understood. One method to improve this understanding is the use of high speed modeling environments. High speed modeling environments offer great potential in this regard as they allow researchers to improve their understanding of the modeled karst aquifer through fast quantitative characterization. To that end, we have implemented a finite difference model using General Purpose Graphics Processing Units (GPGPUs). GPGPUs are special purpose accelerators which are capable of high speed and highly parallel computation. The GPGPU architecture is a grid like structure, making it is a natural fit for structured systems like finite difference models. To characterize the highly complex nature of karst aquifer systems our modeling environment is designed to use an inverse method to conduct the parameter tuning. Using an inverse method reduces the total amount of parameter space needed to produce a set of parameters describing a system of good fit. Systems of good fit are determined with a comparison to reference storm responses. To obtain reference storm responses we have collected data from a series of data-loggers measuring water depth, temperature, and conductivity at locations along a cave stream with a known geometry in southeastern Minnesota. By comparing the modeled response to those of the reference responses the model parameters can be tuned to quantitatively characterize geometry, and thus, the response of the karst system.

  7. Estimating mountain block recharge to downstream alluvial aquifers from standard methods

    NASA Astrophysics Data System (ADS)

    Kao, Yu-Hsuan; Liu, Chen-Wuing; Wang, Sheng-Wei; Lee, Cheng-Haw

    2012-03-01

    SummaryThe purpose of the study is to assess the applicability in estimating the mountain block recharge (MBR) to the downstream alluvial aquifers in the sub-tropical area using baseflow separation and rainfall infiltration methods. The Choushui-Wu River basin, the largest groundwater region in Taiwan was the study area. The high slope mountainous catchment located in the upstream of Choushui-Wu River basin, act as an important conduit in conveying surface and subsurface runoff to the recharge of the downstream alluvial aquifers. Geographic Information Systems (GISs) was applied to facilitate the estimation processes. The estimated MBR using the baseflow separation method was 1.08 × 109 m3/year of which Wu River and Choushui River basins comprised 0.27 × 109 m3/year (25.2%) and 0.81 × 109 m3/year (74.8%), respectively. These results are similar to the previous O18 isotopic study indicating that 22% and 78% were from the Wu River and Choushui River basins, respectively. Moreover, the estimated amount of lateral flow using C14 technique from the upstream of Choushui River basin was 0.83 × 109 m3/year, which is close to the result (0.81 × 109 m3/year) of this study. For comparison, groundwater recharged by rainfall infiltration in the mountainous catchment was derived from the precipitation, evapotranspiration, land use and soil types of the region. The estimated MBR by the rainfall infiltration method is 1.06 × 109 m3/year, which is close to 1.08 × 109 m3/year determined by the baseflow separation method. These results are also similar to the groundwater hydrograph analysis. The proposed methods show simple and efficient computation and do not require complex hydrological modeling and detailed knowledge of soil characteristics. They can reasonably estimate the lateral boundary influx contributing from the MBR and are thus applicable to estimate the MBRs in other sub-tropical regions.

  8. Uncertainty of natural tracer methods for estimating river-aquifer exchange flux in the Heihe River, northwest China

    NASA Astrophysics Data System (ADS)

    Xie, Yueqing; Cook, Peter; Shanafield, Margaret; Simmons, Craig; Zheng, Chunmiao

    2016-04-01

    Reliable estimation of river-aquifer exchange flux is critical to the conjunctive management of surface water and groundwater, especially in the arid and semiarid regions where potential evapotranspiration is much higher than precipitation. A number of natural tracer methods are available to estimate river-aquifer exchange flux at different spatial scales. However, these methods have primarily been applied to rivers with relatively low flow rates (mostly less than 5 m3 s-1). In this study, several natural tracers including heat, radon-222 and electrical conductivity were used to quantify river-aquifer exchange flux at both point and regional scales in the Heihe River, northwest China with a large flow rate (63 m3 s-1). These tracers were measured both on vertical riverbed profiles and on longitudinal river samples. Results show that the radon-222 profile method can estimate a narrower range of point-scale river-aquifer flux than the temperature profile method. However, three vertical radon-222 profiles failed to estimate the upper bounds of plausible flux ranges. Results also show that when quantifying regional-scale river-aquifer exchange flux, the river chemistry method constrained the flux (5.20 - 10.39 m2 d-1) better than the river temperature method (-100 - 100 m2 d-1). The river chemistry method also identified spatial variation in the flux, whereas the river temperature method did not have sufficient resolution. Overall, for quantifying river-aquifer exchange flux in a large river such as the Heihe River, both the temperature profile method and the radon-222 profile method provide useful complementary information at the point scale to complement each other, whereas the river chemistry method is recommended over the river temperature method at the regional scale.

  9. Estimating aquifer recharge in Mission River watershed, Texas: model development and calibration using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Uddameri, V.; Kuchanur, M.

    2007-01-01

    Soil moisture balance studies provide a convenient approach to estimate aquifer recharge when only limited site-specific data are available. A monthly mass-balance approach has been utilized in this study to estimate recharge in a small watershed in the coastal bend of South Texas. The developed lumped parameter model employs four adjustable parameters to calibrate model predicted stream runoff to observations at a gaging station. A new procedure was developed to correctly capture the intermittent nature of rainfall. The total monthly rainfall was assigned to a single-equivalent storm whose duration was obtained via calibration. A total of four calibrations were carried out using an evolutionary computing technique called genetic algorithms as well as the conventional gradient descent (GD) technique. Ordinary least squares and the heteroscedastic maximum likelihood error (HMLE) based objective functions were evaluated as part of this study as well. While the genetic algorithm based calibrations were relatively better in capturing the peak runoff events, the GD based calibration did slightly better in capturing the low flow events. Treating the Box-Cox exponent in the HMLE function as a calibration parameter did not yield better estimates and the study corroborates the suggestion made in the literature of fixing this exponent at 0.3. The model outputs were compared against available information and results indicate that the developed modeling approach provides a conservative estimate of recharge.

  10. Estimating Cleanup Times for Organic Contaminants in Shallow Coastal Plain Aquifers

    NASA Astrophysics Data System (ADS)

    Chapelle, F. H.; Widdowson, M. A.; Casey, C.

    2001-05-01

    Monitored natural attenuation (MNA) can be a cost-effective strategy for restoring contaminated aquifer systems either as a stand-alone technology or in combination with other engineered remedial actions. However, USEPA guidance specifically requires MNA to achieve site-specific cleanup objectives "within a reasonable time frame" (USEPA, 1999). Thus, it is necessary to provide estimates of cleanup times whenever MNA is proposed as part of a cleanup strategy. This problem can be approached in terms of a mass-balance in which rates of contaminant delivery to the environment (dissolution of NAPL, desorption etc.) are quantitatively compared to rates of contaminant destruction (principally biodegradation). Because of the complex interaction of contaminant sources and sinks, and because these factors operate within the context of dynamic ground-water systems, solutions to this problem generally requires the use of solute-transport models. This paper outlines a methodology for estimating cleanup times associated with MNA as a stand-alone remedial strategy and in conjunction with source-area removal using the numerical model Sequential Electron Acceptor Model for 3D transport (SEAM3D). The code incorporates physical transport, retardation and intrinsic biodegradation (aerobic and sequential anaerobic) within a three-dimensional flow field. SEAM3D also includes a module for simulating the dissolution of contaminants from a non-aqueous phase liquid (NAPL), such as gasoline or chlorinated solvents. With this capability, a mass-based approach is employed to simulate a contaminant source combined with attenuation of an aqueous-phase plume and to address time frames associated with MNA. This methodology is illustrated by considering the time of remediation in chlorinated ethene contaminated coastal-plain aquifers in Pensacola, Florida (trichloroethene, TCE) and in Kings Bay, Georgia (tetrachloroethene, PCE). At both sites, reductive dechlorination was a significant attenuation

  11. Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints

    SciTech Connect

    Chen, J.; Hubbard, S.S.; Gaines, D.; Korneev, V.; Baker, G.; Watson, D.

    2010-09-01

    We develop a Bayesian model to invert surface seismic refraction data with depth constraints from boreholes for characterization of aquifer geometry and apply it to seismic and borehole datasets collected at the contaminated Oak Ridge National Laboratory site in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times for seismic velocity and then using that information to aid in the spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and wellbore-based information, such as depths of key lithological boundaries. We use a staggered-grid finite-difference algorithm with second order accuracy in time and fourth order accuracy in space to model seismic full waveforms and use an automated method to pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many samples from the joint posterior probability distribution, on which we can estimate the key interfaces and their associated uncertainty as a function of horizontal location and depth. We test the developed method on both synthetic and field case studies. The synthetic studies show that the developed method is effective at rigorous incorporation of multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach to field data, including two surface seismic profiles located 620 m apart from each other, reveal the presence of a low-velocity subsurface zone that is laterally persistent. This geophysically-defined feature is aligned with the plume axis, suggesting it may serve as an important regional preferential flow pathway.

  12. Estimates for self-supplied domestic withdrawals and population served for selected principal aquifers, calendar year 2005

    USGS Publications Warehouse

    Maupin, Molly A.; Arnold, Terri L.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey has groundwater studies that focus on water-quality conditions in principal aquifers of the United States. The Program specifically focuses on aquifers that are important to public supply, domestic, and other major uses. Estimates for self-supplied domestic withdrawals and the population served for 20 aquifers in the United States for calendar year 2005 are provided in this report. These estimates are based on county-level data for self-supplied domestic groundwater withdrawals and the population served by those withdrawals, as compiled by the National Water Use Information Program, for areas within the extent of the 20 aquifers. In 2005, the total groundwater withdrawals for self-supplied domestic use from the 20 aquifers represented about 63 percent of the total self-supplied domestic groundwater withdrawals in the United States; the population served by the withdrawals represented about 61 percent of the total self-supplied domestic population in the United States.

  13. Evidence for Bacterial Sulfate Reduction in a Fissured-porous Karst System in Southern Germany

    NASA Astrophysics Data System (ADS)

    Einsiedl, F.; Mayer, B.

    2005-12-01

    Twenty five percent of the world's population uses karst water as drinking water resources. Since karst groundwater systems are highly vulnerable to contamination, groundwater protection and self purification is a major challenge. Up to now research in karst groundwater systems has predominantly concentrated on hydrodynamic processes. Little is known about anoxic processes in oxygen dominated, fracture-matrix diffusion controlled karst aquifers. Isotope measurements comprise a promising tool to identify biogeochemical processes such as bacterial (dissimilatory) sulfate reduction in karstic aquifers. The goal of this study was to determine the sources and the processes affecting sulfate in an oxygen-rich karst aquifer in southern Germany and their dependence on hydrogeological parameters. This was achieved by interpreting tritium data with a simple lumped parameter approach and assessing variations in concentrations and isotopic compositions of sulfate and dissolved inorganic carbon (DIC) with respect to groundwater age. Young groundwater (<30 years) was characterized by comparatively high sulfate concentrations (0.36 mM) and δ34S values similar to those of recent atmospheric deposition (1.5‰). In contrast groundwater with mean residence times >60 years had significantly lower sulfate concentrations (0.08 mM) and markedly higher δ34S values (7.5‰). These results indicate that in karst systems with matrix porosity, bacterial (dissimilatory) sulfate reduction may occur. This process has the potential to contribute to long-term biodegradation of contaminants in the porous rock matrix representing the dominant water reservoir in fissured-porous karst aquifers.

  14. Estimated hydraulic properties for the surficial-and bedrock-aquifer system, Meddybemps, Maine

    USGS Publications Warehouse

    Lyford, Forest P.; Garabedian, Stephen P.; Hansen, Bruce P.

    1999-01-01

    Analytical and numerical-modeling methods were used to estimate hydraulic properties of the aquifer system underlying the Eastern Surplus Company Superfund Site in Meddybemps, Maine. Estimates of hydraulic properties are needed to evaluate pathways for contaminants in ground water and to support evaluation and selection of remediation measures for contaminated ground water at this site. The hydraulic conductivity of surficial materials, determined from specific-capacity tests, ranges from 17 to 78 feet per day for wells completed in coarse-grained glaciomarine sediments, and from about 0.1 to 1.Ofoot per day for wells completed in till. The transmissivity of fractured bedrock determined from specific-capacity tests and aquifer tests in wells completed in less than 200 feet of bedrock ranges from about 0.09 to 130 feet squared per day. Relatively high values of transmissivity at the south end of the study area appear to be associated with a high-angle fracture or fracture zone that hydraulically connects two wells completed in bedrock. Transmissivities at six low-yielding (less than 0.5 gallon per minute) wells, which appear to lie within a poorly transmissive block of the bedrock, are consistently in a range of about 0.09 to 0.5 foot squared per day. The estimates of hydraulic conductivity and transmissivity in the southern half of the study area are supported by results of steady-state calibration of a numerical model and simulation of a 24-hour pumping test at a well completed in bedrock. Hydraulic conductivity values for the surficial aquifer used in the model were 30 feet per day for coarse-grained glaciomarine sediments, 0.001 to 0.01 foot per day for fine-grained glaciomarine sediments, and 0.1 to 0.5 foot per day for till. As part of model calibration, a relatively transmissive zone in the surficial aquifer was extended beyond the hypothesized extent of coarse-grained sediments eastward to the Dennys River. Hydraulic conductivity values used for bedrock in

  15. U.S. Geological Survey Karst Interest Group Proceedings, Bowling Green, Kentucky, May 27-29, 2008

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2008-01-01

    *INTRODUCTION AND ACKNOWLEDGMENTS* Karst aquifer systems are present throughout parts of the United States and some of its territories. The complex depositional environments that form carbonate rocks combined with post-depositional tectonic events and the diverse climatic regimes under which these rocks were formed result in unique hydrologic systems. The dissolution of calcium carbonate and the subsequent development of distinct and beautiful landscapes, caverns, and springs have resulted in some karst areas of the United States being designated as national or state parks and commercial caverns. Karst aquifers and landscapes that form in tropical areas, such as the north coast of Puerto Rico, differ greatly from karst areas in more arid climates, such as central Texas or western South Dakota. Many of these public and private lands contain unique flora and fauna associated with the hydrologic systems in these karst areas. As a result, multiple Federal, State, and local agencies have an interest in the study of karst terrains. Carbonate sediments and rocks (limestone and dolomite) are composed of greater than 50 percent carbonate minerals and the predominant carbonate mineral is calcium carbonate or limestone (CaCO3). Unlike terrigenous clastic sedimentation, the depositional processes that produce carbonate rocks are complex, involving both biological and physical processes. These depositional processes impact greatly the development of permeability of the sediments. Carbonate minerals readily dissolve or precipitate depending on the chemistry of the water flowing through the rock, thus the study of both marine and meteoric diagenesis of carbonate sediments is multidisciplinary. Even with a better understanding of the depositional environment and subsequent diagenesis, the dual porosity nature of karst aquifers presents challenges to scientists attempting to study ground-water flow and contaminant transport. Many of the major springs and aquifers in the United

  16. Effects of steady-state assumption on hydraulic conductivity and recharge estimates in a surficial aquifer system

    USGS Publications Warehouse

    Halford, K.J.

    1999-01-01

    The ability of a calibrated flow model to predict the behavior of a surficial aquifer system is governed the quality of the hydraulic conductivity and recharge estimates used. Reasonable lateral and vertical hydraulic conductivities can be estimated by steady-state simulations driven effective recharge rates that approximate the net effects of evapotranspiration, and water released from storage during periods of recession. Results from a hypothetical, transient, cross-sectional model indicated that most of the water was contributed uniformly from storage from five to 25 days after a recharge event. Results also showed that a steady-state, snapshot calibration approach can be used on aquifers in a humid climate with diffusivities between 20 and 500 m2/d. Most estimates of the lateral and vertical hydraulic conductivities of the hypothetical aquifer system were within 30% of the actual values. Estimates of hydraulic conductivity from the transient cases were similar to those from the snapshot calibration cases. The long-term recharge rate could be identified calibrating to multiple synoptic surveys that were sampled over the range of drier to wetter conditions. The effective recharge rates estimated for the driest and wettest conditions bracketed the long-term recharge rate. Results suggested that the effective recharge rate estimated for the synoptic survey with the lowest water level root-mean-square (RMS) error was the best estimate of the long-term recharge rate. A field application of the snapshot calibration approach simulated the surficial aquifer system beneath Cecil Field Naval Air Station well and provided reasonable estimates of the long-term recharge rate (0.4 mm/d) relative to the range of recharge rates that were independently estimated the chloride concentration ratio method (0.2 to 0.6 mm/d).The ability of a calibrated flow model to predict the behavior of a surficial aquifer system is governed by the quality of the hydraulic conductivity and recharge

  17. Extending Theis' solution: Using transient pumping tests to estimate parameters of aquifer heterogeneity

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Müller, Sebastian; Mai, Juliane; Heße, Falk; Attinger, Sabine

    2016-08-01

    A framework for interpreting transient pumping tests in heterogeneous transmissivity fields is developed to infer the overall geostatistical parameters of the medium without reconstructing the specific heterogeneous structure point wise. The methodology of Radial Coarse Graining is applied to deduce an effective radial description of multi-Gaussian transmissivity. It was used to derive an Effective Well Flow Solution for transient flow conditions including not only the storativity, but also the geometric mean, the variance, and the correlation length of log-transmissivity. This solution is shown to be appropriate to characterize the pumping test drawdown behavior in heterogeneous transmissivity fields making use of ensembles of simulated pumping tests with multiple combinations of statistical parameters. Based on the Effective Well Flow Solution, a method is developed for inferring heterogeneity parameters from transient pumping test drawdown data by inverse estimation. Thereby, the impact of statistical parameters on the drawdown is analyzed, allowing to determine the dependence of reliability of parameter estimates on location and number of measurements. It is shown, that the number of measurements can be reduced compared to steady state pumping tests. Finally, a sampling strategy for single aquifer analysis is developed, which allows to estimate the statistical parameters, in particular variance and correlation length for individual heterogeneous transmissivity fields making use of transient pumping test measurements at multiple locations.

  18. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete

    NASA Astrophysics Data System (ADS)

    Malagò, Anna; Efstathiou, Dionissios; Bouraoui, Fayçal; Nikolaidis, Nikolaos P.; Franchini, Marco; Bidoglio, Giovanni; Kritsotakis, Marinos

    2016-09-01

    Crete Island (Greece) is a karst dominated region that faces limited water supply and increased seasonal demand, especially during summer for agricultural and touristic uses. In addition, due to the mountainous terrain, interbasin water transfer is very limited. The resulting water imbalance requires a correct quantification of available water resources in view of developing appropriate management plans to face the problem of water shortage. The aim of this work is the development of a methodology using the SWAT model and a karst-flow model (KSWAT, Karst SWAT model) for the quantification of a spatially and temporally explicit hydrologic water balance of karst-dominated geomorphology in order to assess the sustainability of the actual water use. The application was conducted in the Island of Crete using both hard (long time series of streamflow and spring monitoring stations) and soft data (i.e. literature information of individual processes). The KSWAT model estimated the water balance under normal hydrological condition as follows: 6400 Mm3/y of precipitation, of which 40% (2500 Mm3/y) was lost through evapotranspiration, 5% was surface runoff and 55% percolated into the soil contributing to lateral flow (2%), and recharging the shallow (9%) and deep aquifer (44%). The water yield was estimated as 22% of precipitation, of which about half was the contribution from spring discharges (9% of precipitation). The application of the KSWAT model increased our knowledge about water resources availability and distribution in Crete under different hydrologic conditions. The model was able to capture the hydrology of the karst areas allowing a better management and planning of water resources under scarcity.

  19. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Rossi, P. M.; Kløve, B.

    2015-04-01

    Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D sandy sediment profile spatially to estimate transient recharge in an unconfined esker aquifer. The modelling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover) and timing (thickness of the unsaturated zone) of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI) using forestry inventory data. Uncertainty in the parameters controlling sediment hydraulic properties and evapotranspiration (ET) was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation (WTF) method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount. Soil evaporation (SE) compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated thickness and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  20. Model-derived estimates of groundwater mean ages, recharge rates, effective porosities and storage in a limestone aquifer

    NASA Astrophysics Data System (ADS)

    Campana, M. E.; Mahin, D. A.

    1985-02-01

    The Edwards aquifer of south-central Texas, U.S.A., a highly fractured and faulted group of limestone formations, is the major water supply for the San Antonio area. A discrete-state compartment (DSC) model or mixing-cell model, based upon the conservation of environmental tritium within the aquifer, was used to obtain estimates of groundwater mean ages, recharge, effective porosities and storage in the Edwards aquifer in the vicinity of San Antonio, Texas. The model was calibrated and validated with the spatial and temporal (1953-1971) distributions of environmental 3H (tritium) in the groundwater. The final model consisted of 34 cells; eight of these cells represented the unconfined portion of the Edwards aquifer in the vicinity of the Balcones fault zone, an area where recharge occurs via streamflow infiltration and direct infiltration of precipitation. The model confirmed previous analyses of flow in the Edwards system: generally parallel to the Balcones fault zone with restricted flow perpendicular to this zone. Groundwater mean ages ranged from 16 to over 130 yr. The storage volume of the confined portion of the Edwards aquifer is ˜ 30.9 km 3, which corresponds to an average effective porosity of 4.8% (range: 1.9-8%). The average annual recharge to the Edwards aquifer during the period 1953-1971 was 0.614 km 3. The study demonstrated that discrete-state compartment models calibrated and validated with environmental tritium distributions can yield valuable hydrogeologic information that is difficult or expensive to obtain using traditional techniques. The approach used in the study is particularly suited to limestone aquifers, which are normally extremely difficult to analyze with traditional methods.

  1. Estimation of recharge rates to the sand and gravel aquifer using environmental tritium, Nantucket Island, Massachusetts

    USGS Publications Warehouse

    Knott, Jayne Fifield; Olimpio, Julio C.

    1986-01-01

    Estimation of the average annual rate of ground-water recharge to sand and gravel aquifers using elevated tritium concentrations in ground water is an alternative to traditional steady-state and water-balance recharge-rate methods. The concept of the tritium tracer method is that the average annual rate of ground-water recharge over a period of time can be calculated from the depth of the peak tritium concentration in the aquifer. Assuming that ground-water flow is vertically downward and that aquifer properties are reasonably homogeneous, and knowing the date of maximum tritium concentration in precipitation and the current depth to the tritium peak from the water table, the average recharge rate can be calculated. The method, which is a direct-measurement technique, was applied at two sites on Nantucket Island, Massachusetts. At site 1, the average annual recharge rate between 1964 and 1983 was 26.1 inches per year, or 68 percent of the average annual precipitation, and the estimated uncertainty is ?15 percent. At site 2, the multilevel water samplers were not constructed deep enough to determine the peak concentration of tritium in ground water. The tritium profile at site 2 resembles the upper part of the tritium profile at site 1 and indicates that the average recharge rate was at least 16 .7 inches per year, or at least 44 percent of the average annual precipitation. The Nantucket tritium recharge rates clearly are higher than rates determined elsewhere in southeastern Massachusetts using the tritium, water-table-fluctuation, and water-balance (Thornthwaite) methods, regardless of the method or the area. Because the recharge potential on Nantucket is so high (runoff is only 2 percent of the total water balance), the tritium recharge rates probably represent the effective upper limit for ground-water recharge in this region. The recharge-rate values used by Guswa and LeBlanc (1985) and LeBlanc (1984) in their ground-water-flow computer models of Cape Cod are

  2. Deriving the time-variant transit time distributions of an Austrian karst system by a semi-distributed karst model

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Kobler, Johannes; Kralik, Martin; Dirnboeck, Thomas; Humer, Franko; Weiler, Markus

    2014-05-01

    Karst systems contribute around 50% to Austria's drinking water supply. Distributions of transit times of water and hence other water quality parameters can be highly valuable when assessing the risk of contamination of a karst aquifer. In this study we assess the transit time distributions of a dolomite karst system in Austria. Using a new type of semi-distributed model that considers the spatial heterogeneity of the karst system by distribution functions we simulated a range of spatially variable pathways through the karst system. To assure a reliable calibration of the model we used observations of discharge at 2 different locations and 3 time series of solute concentrations (DOC, NO3 and SO4). We benchmarked the model with a split sample test using all 5 types of observations. Having enough indication for a realistic representation of the system and its flow and storage behaviour, the range of simulated pathways through the karst system was used to derive transit time distributions for different initial conditions. We use experimentally derived information about transit times (water ages, O 18 observations, tracer experiments) to evaluate the simulated residence time distributions. Finally, the process-based structure of the model allows to attribute the different transit time distributions to physical processes and pathways in the karst system and to assess the system's vulnerability on contamination.

  3. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    USGS Publications Warehouse

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-01-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  4. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-04-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  5. Identification of recharge zones in the Lower Mississippi River alluvial aquifer using high-resolution precipitation estimates

    NASA Astrophysics Data System (ADS)

    Dyer, Jamie; Mercer, Andrew; Rigby, James R.; Grimes, Alexandria

    2015-12-01

    Water resources in the lower Mississippi River alluvial valley play a critical role in agricultural productivity due to the widespread use of irrigation during the growing season. However, the unknown specifics of surface-atmosphere feedbacks in the region, along with diminishing groundwater availability and the non-sustainable trend in irrigation draws from the alluvial aquifer, makes it difficult for water resource managers to make sound decisions for future water sustainability. As a result, it is crucial to identify spatial and temporal associations between local rainfall patterns and groundwater levels to determine the influence of precipitation on regional aquifer recharge. Specifically, it is critical to define the recharge zones of the aquifer so that rainfall distribution can be used to assess potential groundwater recovery. This project addresses the issue of defining areas of recharge in the lower Mississippi River alluvial aquifer (LMRAA) through an assessment of historical precipitation variability using high-resolution radar-derived precipitation estimates. A rotated principal component analysis (RPCA) of both groundwater and precipitation data from October through April is used to define locations where aquifer levels show the greatest variability, with a stepwise regression approach used to define areas where rainfall and groundwater levels show the strongest association. Results show that the greatest recharge through direct rainfall is along the Tallahatchie River basin in the northeastern Mississippi Delta, with recharge along the periphery of the LMRAA likely a result of direct water flux from surface hydrologic features.

  6. Ratosa playa lake in southern Spain. Karst pan or compound sink?

    PubMed

    Rodríguez-Rodríguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio; Benavente-Herrera, José

    2015-04-01

    In Andalusia (Spain), there are more than 45 semiarid playa lakes protected as natural reserves and related to karstic outcrops. Some of them are located over regional karstic aquifers and have internal drainage networks with sporadic surface outlets, such as sinkholes (compound sinks), but the majority of such playas have no internal drainage systems, so the only water output is evaporation (karst pans). Karst pans are perched and disconnected from the groundwater system. The fact that the Ratosa playa lake is partially located over a karstic Sierra, as well as other hydromorphological observations, it is suggested that the system could be of a compound type, but a detailed hydrogeological analysis showed that the playa is disconnected from the aquifer, so it is in fact a karst pan. Once the hydrological functioning had been established, a monthly water balance for a 10-year period (1998-2008), enabled us to reproduce the evolution of the water level of the playa lake. Estimations of runoff were carried out by a soil water estimate for a water holding capacity in the soil of 191 mm. Results show a good correlation (>90%) after calibration with the time series of water level in the lake for the same period confirming geological observations. Our results highlight that this water body is extremely vulnerable to hydrological alterations of its watershed caused by human activities, particularly those related to land-use change for agriculture. For this reason, we propose a new protection zone, based on hydrological knowledge, instead of the present Peripheral Area of Protection.

  7. Multi-tracer investigation of groundwater residence time in a karstic aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Land, Lewis; Huff, G. F.

    2010-03-01

    Several natural and anthropogenic tracers have been used to evaluate groundwater residence time within a karstic limestone aquifer in southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge, on the northeast margin of the Roswell Artesian Basin. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for threatened and endangered species, there is concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding karst conduit flow. A better understanding of groundwater residence time is required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results indicate that the artesian aquifer contains a significant component of water recharged within the last 10-50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.

  8. Multi-Tracer Investigation of Groundwater Residence Time in a Karstic Aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Land, L. A.; Huff, R.

    2009-12-01

    Several natural and anthropogenic tracers are used to evaluate groundwater residence time within the karstic limestone aquifer of the Roswell Artesian Basin, southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for a number of threatened and endangered species, Refuge managers have expressed concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding the role of karst conduit flow. A better understanding of groundwater residence time is thus required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results of tracer investigations indicate that the artesian aquifer contains a significant component of water recharged within the last 10 to 50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.

  9. On parameterization of the inverse problem for estimating aquifer properties using tracer data

    SciTech Connect

    Kowalsky, M. B.; Finsterle, Stefan A.; Williams, Kenneth H.; Murray, Christopher J.; Commer, Michael; Newcomer, Darrell R.; Englert, Andreas L.; Steefel, Carl I.; Hubbard, Susan

    2012-06-11

    We consider a field-scale tracer experiment conducted in 2007 in a shallow uranium-contaminated aquifer at Rifle, Colorado. In developing a reliable approach for inferring hydrological properties at the site through inverse modeling of the tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance. We present an approach for hydrological inversion of the tracer data and explore, using a 2D synthetic example at first, how parameterization affects the solution, and how additional characterization data could be incorporated to reduce uncertainty. Specifically, we examine sensitivity of the results to the configuration of pilot points used in a geostatistical parameterization, and to the sampling frequency and measurement error of the concentration data. A reliable solution of the inverse problem is found when the pilot point configuration is carefully implemented. In addition, we examine the use of a zonation parameterization, in which the geometry of the geological facies is known (e.g., from geophysical data or core data), to reduce the non-uniqueness of the solution and the number of unknown parameters to be estimated. When zonation information is only available for a limited region, special treatment in the remainder of the model is necessary, such as using a geostatistical parameterization. Finally, inversion of the actual field data is performed using 2D and 3D models, and results are compared with slug test data.

  10. Recent Trends in Karst Geomorphology.

    ERIC Educational Resources Information Center

    Palmer, Arthur N.

    1984-01-01

    Recent trends related to the karst processes and the evolution of karst landscapes are discussed. The hydrochemical processes responsible for the origin of karst are expanded on to illustrate the present scope of karst studies. These geomorphological studies are combined with concepts and techniques from hydraulics, chemistry, and mathematics. (JN)

  11. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, A.F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2000-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table. The aquifer was pumped at a rate of 320 gallons per minute for 72-hours and drawdown measurements were made in the pumped well and in 20 piezometers located at various distances from the pumped well and depths below the land surface. To facilitate the analysis, an automatic parameter estimation algorithm was used to obtain relevant unconfined aquifer parameters, including the saturated thickness and a set of empirical parameters that relate to gradual drainage from the unsaturated zone. Drainage from the unsaturated zone is treated in this paper as a finite series of exponential terms, each of which contains one empirical parameter that is to be determined. It was necessary to account for effects of gradual drainage from the unsaturated zone to obtain satisfactory agreement between measured and simulated drawdown, particularly in piezometers located near the water table. The commonly used assumption of instantaneous drainage from the unsaturated zone gives rise to large discrepancies between measured and predicted drawdown in the intermediate-time range and can result in inaccurate estimates of aquifer parameters when automatic parameter estimation procedures are used. The values of the estimated hydraulic parameters are consistent with estimates from prior studies and from what is known about the aquifer at the site. Effects of

  12. The Karst Waters Institute

    NASA Astrophysics Data System (ADS)

    The Karst Waters Institute (KWI) is a U.S. research organization that was formed to combine the skills of academic, governmental, and private sector specialists to solve existing karst water problems and anticipate future problems. KWI has been incorporated as a not-for-profit corporation in West Virginia to provide the human expertise and database needed to assist the nation in the preservation and utilization of its water resources. KWI plans to develop a core of resident and visiting scientists from across the nation and overseas, technicians, support staff, and graduate students. Its mission is to conduct research to improve our understanding of karst phenomena, to develop techniques to prevent environmental problems from occurring in karst areas, to assist in rectifying existing environmental problems, and to provide education and training for professionals and the general public on the risks and benefits of karst areas.

  13. Advanced karst hydrological and contaminant monitoring techniques for real-time and high resolution applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...

  14. Estimating Aquifer Properties in the San Joaquin Basin, California, through the Analysis of InSAR Data

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Knight, R. J.; Zebker, H. A.; Farr, T. G.; Liu, Z.; Chen, J.; Crews, J.; Reeves, J.

    2015-12-01

    Increased groundwater withdrawal in the San Joaquin Valley, California, due to recent droughts has over-stressed many parts of the aquifer system, resulting in widespread aquifer compaction and land subsidence. Using Interferometric Synthetic Aperture Radar, or InSAR, we measure the magnitude of land subsidence to be as much as 20 cm/year for the period from 2007-2011. By comparing the observed subsidence with current and historic groundwater levels, we estimate that 90% of the observed subsidence is inelastic, or not recoverable. Due to delayed drainage in thick aquitards, we find that the majority (>95%) of compaction is caused by thin clay lenses within the upper and lower aquifers, which agrees with previous studies in the area. We use representative skeletal storage coefficients from previous studies in conjunction with observed subsidence and groundwater levels in a 1-dimensional vertical diffusion model to estimate the effective vertical hydraulic conductivity of the aquifer, and determine it is on the order of 1×10-6 cm/second.

  15. Estimation of Release History of Pollutant Source and Dispersion Coefficient of Aquifer Using Trained ANN Model

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ayaz, M.; Jain, A.

    2013-12-01

    Knowledge of the release history of a groundwater pollutant source is critical in the prediction of the future trend of the pollutant movement and in choosing an effective remediation strategy. Moreover, for source sites which have undergone an ownership change, the estimated release history can be utilized for appropriate allocation of the costs of remediation among different parties who may be responsible for the contamination. Estimation of the release history with the help of concentration data is an inverse problem that becomes ill-posed because of the irreversible nature of the dispersion process. Breakthrough curves represent the temporal variation of pollutant concentration at a particular location, and contain significant information about the source and the release history. Several methodologies have been developed to solve the inverse problem of estimating the source and/or porous medium properties using the breakthrough curves as a known input. A common problem in the use of the breakthrough curves for this purpose is that, in most field situations, we have little or no information about the time of measurement of the breakthrough curve with respect to the time when the pollutant source becomes active. We develop an Artificial Neural Network (ANN) model to estimate the release history of a groundwater pollutant source through the use of breakthrough curves. It is assumed that the source location is known but the time dependent contaminant source strength is unknown. This temporal variation of the strength of the pollutant source is the output of the ANN model that is trained using the Levenberg-Marquardt algorithm utilizing synthetically generated breakthrough curves as inputs. A single hidden layer was used in the neural network and, to utilize just sufficient information and reduce the required sampling duration, only the upper half of the curve is used as the input pattern. The second objective of this work was to identify the aquifer parameters. An

  16. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  17. Hazard connected to tunnel construction in Mt Stena karstic area (Rosandra Valley, Classical Karst)

    NASA Astrophysics Data System (ADS)

    Cucchi, F.; Boschin, W.; Visintin, L.; Zini, L.

    2009-04-01

    Rosandra Valley -a unique geomorphological environment- is located in the western side of the Classical Karst plateau. This deep limestone gorge is crossed by a stream that is fed by a large basin located in Slovenia. Rosandra Valley is the only example of Classical Karst river valley with surface hydrography; the torrent digs a deep gully into the rock, rich in rapids, swirl holes, small waterfalls, enclosed meanders and basins; here, the first seepage phenomena occur, and part of the water feeds the underground aquifer. Rosandra Valley is theatre to complex structural situation; the NE slope culminates in the structure of Mt Stena, a limestone tectonic scale located between two faults and firmly rooted in the karst platform. Tectonics is quite important for the development of deep karst in this area; Mt Stena, in particular, hosts a comprehensive net of articulated and diversely shaped caves, basically organised on several levels, which stretches over a total of 9,000 metres, bearing testimony to ancient geological and hydrogeological origins. The deepest areas of the system reach a suspended aquifer that is probably sustained by an overthrust and placed about 100 meters above Rosandra torrent underground aquifer. During feasibility studies about Trieste-Divača high velocity railway link, interaction between project and karst features was examined; in fact the proximity of proposal project and Mt Stena karst system suggest to improve the knowledge related to karst and hydrogeological aspects of the massif. Compatibly with the project requirements, risk of voids intersection and water contamination were analyzed. In fact the Mt Stena suspended aquifer partially feeds Rosandra torrent which flows in a protected natural area. Karst features were represented in a 3D model in order to better understand the spatial relationship between railway project and karst system.

  18. Karst subsidence in East Tennessee

    SciTech Connect

    Ketelle, R.H.; Newton, J.G.; Tanner, J.M.

    1988-01-01

    Waste disposal site selection and facility design in regions dominated by carbonate bedrock must carefully consider karst development and the factors which contribute to subsidence activity. The Department of Energy's (DOE) Oak Ridge National Laboratory has completed a three phase study of karst subsidence in East Tennessee to quantify historical subsidence activity. The purpose of the study was to determine the principal factors which cause karst subsidence in the region. Techniques used and results obtained in this study form a basis for more detailed risk assessment at the local scale within the region. As development pressures diminish available land for various uses, risk-based land use decisions must be made to site critical facilities. To fulfill the study objectives a three phase study was designed including, (1) collection of subsidence data and compilation of a database, (2) performance of detailed studies of subsidence in three, two-to-five square-mile areas, and (3) synthesis of data obtained to; quantify the predominant sinkhole collapse dimensions, and identify events prior to subsidence or collapse events which may have caused the event, and estimate the intensity of subsidence as a function of geologic unit within subregional areas of higher and lower subsidence risk. 4 refs., 7 figs., 2 tabs.

  19. Estimation of recharge rates to the sand and gravel aquifer using environmental tritium, Nantucket Island, Massachusetts

    SciTech Connect

    Knott, J.F.; Olimpio, J.C.

    1986-01-01

    Estimation of the average annual rate of ground-water recharge to sand and gravel aquifers using elevated tritium concentrations in groundwater is an alternative to traditional steady-state and water balance recharge rate methods. The Nantucket tritium recharge rates clearly are higher than rates determined elsewhere in southeastern Massachusetts using the tritium, water table fluctuation, and water balance methods, regardless of the method or the area. Because the recharge potential on Nantucket is so high (runoff is only 2% of the total water balance), the tritium recharge rates probably represent the effective upper limit for groundwater recharge in this region. The accuracy of the tritium method is dependent on two factors: the accuracy of the effective porosity data, and the sampling interval. For some sites, the need for recharge rate data may require a determination as statistically accurate as that which can be provided by the tritium method. However, the tritium method is more costly and more time consuming than the other methods. For many sites, a less accurate, less expensive, and faster method of recharge rate determination might be more satisfactory. 40 refs., 13 figs., 5 tabs.

  20. River-groundwater connectivity in a karst system, Wellington, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Mohammadreza; Baker, Andy; Kelly, Bryce F. J.; Andersen, Martin S.

    2017-03-01

    The characterization of river-aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.

  1. Pesticides and biocides in a karst catchment: Identification of contaminant sources and related flow components

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Bollmann, Ulla E.; Bester, Kai; Birk, Steffen

    2013-04-01

    Karst aquifers are widely used as drinking water resources. However, their high vulnerability to chemical and bacterial contamination due to the heterogeneity in aquifer properties (highly conductive solution conduits embedded in the less conductive fissured rock) is difficult to assess and thus poses major challenges to the management of karst water resources. Contamination of karst springs by organic micro-pollutants has been observed in recent studies. Within this study the water from different springs draining one karst aquifer as well as the main sinking stream replenishing it were analysed before, during and after a storm water event in order to examine the occurrence of different pesticides and biocides. Contaminants from both urban as well as agricultural origin could be detected in the water with concentrations in the low ng/L range (tebuconazole, carbendazim, diuron, isoproturon, terbutryn, atrazine, dichlorobenzamide (BAM), which is a metabolite of dichlobenil). While some compounds could be followed from the sinking stream to the springs (e.g. dichlorobenzamide) some seem to have a source in the autogenic recharge from the karst plateau (Tebuconazole: wood preservative in buildings). These compounds appear to be related to fast flow components with residence times in the order of days, which are known from a number of tracer tests with fluorescent dyes. However, the occurrence of the pesticide atrazine (banned since 1995 in Austria) in the springs, while on the other hand no current input into the karst occurs, shows that some compounds have long residence times in the karst aquifer. These differences in residence times can hardly be attributed to differences in physico-chemical properties of the compounds and must thus be due to the presence of slow and fast flow components. This is in agreement with the duality of karst aquifers due to highly conductive networks of solution conduits embedded in less conductive fissured carbonate rocks.

  2. River-groundwater connectivity in a karst system, Wellington, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Mohammadreza; Baker, Andy; Kelly, Bryce F. J.; Andersen, Martin S.

    2016-12-01

    The characterization of river-aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.

  3. Quantification of submarine/intertidal groundwater discharge and nutrient loading from a lowland karst catchment

    NASA Astrophysics Data System (ADS)

    McCormack, T.; Gill, L. W.; Naughton, O.; Johnston, P. M.

    2014-11-01

    Submarine groundwater discharge (SGD) is now recognised to be a process of significant importance to coastal systems and is of increasing interest within oceanographic and hydrologic research communities. However, due to the inherent difficulty of measuring SGD accurately, its quantification at any particular location is a relatively slow process often involving multiple labour intensive methods. In this paper, the SGD occurring at Kinvara Bay, the outlet of a lowland karst catchment in Western Ireland, is estimated using a hydrological model of the karst aquifer and then further verified by means of a relatively simple salinity survey. Discharge at Kinvara predominantly occurs via two springs, Kinvara West (KW) which serves as the outlet of a major, primarily allogenically fed, karst conduit network and Kinvara East (KE) which discharges water from more diffuse/autogenic sources. Discharge from these springs occurs intertidally and as such, their flow rates cannot be measured using traditional methods. Using the hydrological model, flow rates from KW were seen to vary between 5 and 16 m3/s with a mean value of 8.7 m3/s. Through hydrochemical analysis, this estimated discharge was found to be supplemented by an additional 14-18% via sources not accounted for by the model. Mean discharge at KE was also estimated as approximately 2 m3/s, thus the total mean discharge from both Kinvara Springs was determined to be 11.9-12.3 m3/s. Overall, the range of discharge was found to be lower than previous studies have estimated (as these studies had no means of quantifying attenuation within the conduit network). Combining this discharge with nutrient concentrations from the springs, the nutrient loading from the springs into the bay was estimated as 1230 kg/day N and 24.3 kg/day P. This research illustrates the benefits of a numerical modelling approach to the quantification of SGD when used in the appropriate hydrological scenario.

  4. GC estimation of organic hydrocarbons that threaten shallow Quaternary sandy aquifer Northwestern Gulf of Suez, Egypt.

    PubMed

    Zawrah, M F; Ebiad, M A; Rashad, A M; El-Sayed, E; Snousy, Moustafa Gamal; Tantawy, M A

    2014-11-01

    Soil and groundwater contamination is one of the important environmental problems at petroleum-related sites, which causes critical environmental and health defects. Severe petroleum hydrocarbon contamination from coastal refinery plant was detected in a shallow Quaternary sandy aquifer is bordered by Gulf in the Northwestern Gulf of Suez, Egypt. The overall objective of this investigation is to estimate the organic hydrocarbons in shallow sandy aquifers, released from continuous major point-source of pollution over a long period of time (91 years ago). This oil refinery contamination resulted mainly in the improper disposal of hydrocarbons and produced water releases caused by equipment failures, vandalism, and accidents that caused direct groundwater pollution or discharge into the gulf. In order to determine the fate of hydrocarbons, detailed field investigations were made to provide intensive deep profile information. Eight composite randomly sediment samples from a test plot were selected for demonstration. The tested plot was 50 m long × 50 m wide × 70 cm deep. Sediment samples were collected using an American auger around the point 29° 57' 33″ N and 32° 30' 40″ E in 2012 and covered an area of 2,500 m(2) which represents nearly 1/15 of total plant area (the total area of the plant is approximately 3.250 km(2)). The detected total petroleum hydrocarbons (TPHs) were 2.44, 2.62, 4.54, 4.78, 2.83, 3.22, 2.56, and 3.13 wt%, respectively. TPH was calculated by differences in weight and subjected to gas chromatography (GC). Hydrocarbons were analyzed on Hewlett-Packard (HP-7890 plus) gas chromatograph equipped with a flame ionization detector (FID). The percentage of paraffine of the investigated TPH samples was 7.33, 7.24, 7.58, 8.25, 10.25, 9.89, 14.77, and 17.53 wt%, respectively.

  5. Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi site, Las Vegas, Nevada

    USGS Publications Warehouse

    Pavelko, Michael T.

    2004-01-01

    Land subsidence related to aquifer-system compaction and ground-water withdrawals has been occurring in Las Vegas Valley, Nevada, since the 1930's, and by the late 1980's some areas in the valley had subsided more than 5 feet. Since the late 1980's, seasonal artificial-recharge programs have lessened the effects of summertime pumping on aquifer-system compaction, but the long-term trend of compaction continues in places. Since 1994, the U.S. Geological Survey has continuously monitored water-level changes in three piezometers and vertical aquifer-system deformation with a borehole extensometer at the Lorenzi site in Las Vegas, Nevada. A one-dimensional, numerical, ground-water flow model of the aquifer system below the Lorenzi site was developed for the period 1901-2000, to estimate aquitard vertical hydraulic conductivity, aquitard inelastic skeletal specific storage, and aquitard and aquifer elastic skeletal specific storage. Aquifer water-level data were used in the model as the aquifer-system stresses that controlled simulated vertical aquifer-system deformation. Nonlinear-regression methods were used to calibrate the model, utilizing estimated and measured aquifer-system deformation data to minimize a weighted least-squares objective function, and estimate optimal property values. Model results indicate that at the Lorenzi site, aquitard vertical hydraulic conductivity is 3 x 10-6 feet per day, aquitard inelastic skeletal specific storage is 4 x 10-5 per foot, aquitard elastic skeletal specific storage is 5 x 10-6 per foot, and aquifer elastic skeletal specific storage is 3 x 10-7 per foot. Regression statistics indicate that the model and data provided sufficient information to estimate the target properties, the model adequately simulated observed data, and the estimated property values are accurate and unique.

  6. Identification of potential sites for aquifer storage and recovery (ASR) in coastal areas using ASR performance estimation methods

    NASA Astrophysics Data System (ADS)

    Zuurbier, Koen G.; Bakker, Mark; Zaadnoordijk, Willem Jan; Stuyfzand, Pieter J.

    2013-09-01

    Performance of freshwater aquifer storage and recovery (ASR) systems in brackish or saline aquifers is negatively affected by lateral flow, density effects, and/or dispersive mixing, causing ambient groundwater to enter ASR wells during recovery. Two recently published ASR performance estimation methods are applied in a Dutch coastal area, characterized by brackish-to-saline groundwater and locally high lateral-flow velocities. ASR performance of existing systems in the study area show good agreement with the predicted performance using the two methods, provided that local vertical anisotropy ratios are limited (<3). Deviations between actual and predicted ASR performance may originate from simplifications in the conceptual model and uncertainties in the hydrogeological and hydrochemical input. As the estimation methods prove suitable to predict ASR performance, feasibility maps are generated for different scales of ASR to identify favorable ASR sites. Successful small-to-medium-scale ASR varies spatially in the study area, emphasizing the relevance of reliable a priori spatial mapping.

  7. Karst groundwater: a challenge for new resources

    NASA Astrophysics Data System (ADS)

    Bakalowicz, Michel

    2005-03-01

    Karst aquifers have complex and original characteristics which make them very different from other aquifers: high heterogeneity created and organised by groundwater flow; large voids, high flow velocities up to several hundreds of m/h, high flow rate springs up to some tens of m3/s. Different conceptual models, known from the literature, attempt to take into account all these particularities. The study methods used in classical hydrogeology—bore hole, pumping test and distributed models—are generally invalid and unsuccessful in karst aquifers, because the results cannot be extended to the whole aquifer nor to some parts, as is done in non-karst aquifers. Presently, karst hydrogeologists use a specific investigation methodology (described here), which is comparable to that used in surface hydrology. Important points remain unsolved. Some of them are related to fundamental aspects suc h as the void structure - only a conduit network, or a conduit network plus a porous matrix -, the functioning - threshold effects and non-linearities -, the modeling of the functioning - double or triple porosity, or viscous flow in conduits - and of karst genesis. Some other points deal with practical aspects, such as the assessment of aquifer storage capacity or vulnerability, or the prediction of the location of highly productive zones. Los acuíferos kársticos tienen características originales y complejas que los hacen muy diferentes de otros acuíferos: alta heterogeneidad creada y organizada por el flujo de agua subterránea, espacios grandes, velocidades altas de flujo de hasta varios cientos de m/h, manantiales con ritmo alto de flujo de hasta algunas decenas de m3/s. Diferentes modelos conceptuales que se conocen en la literatura tratan de tomar en cuenta todas estas particularidades. Los métodos de estudio usados en hidrogeología clásica- pozos, pruebas de bombeo y modelos distribuidos- son generalmente inválidos y no exitosos en acu

  8. A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions

    NASA Astrophysics Data System (ADS)

    Irsa, J.; Zhang, Y.

    2012-09-01

    We propose a novel direct method for estimating steady state hydrogeological model parameters and model state variables in an aquifer where boundary conditions are unknown. The method is adapted from a recently developed potential theory technique for solving general inverse/reconstruction problems. Unlike many inverse techniques used for groundwater model calibration, the new method is not based on fitting and optimizing an objective function, which usually requires forward simulation and iterative parameter updates. Instead, it directly incorporates noisy observed data (hydraulic heads and flow rates) at the measurement points in a single step, without solving a boundary value problem. The new method is computationally efficient and is robust to the presence of observation errors. It has been tested on two-dimensional groundwater flow problems with regular and irregular geometries, different heterogeneity patterns, variances of heterogeneity, and error magnitudes. In all cases, parameters (hydraulic conductivities) converge to the correct or expected values and are thus unique, based on which heads and flow fields are constructed directly via a set of analytical expressions. Accurate boundary conditions are then inferred from these fields. The accuracy of the direct method also improves with increasing amount of observed data, lower measurement errors, and grid refinement. Under natural flow (i.e., no pumping), the direct method yields an equivalent conductivity of the aquifer, suggesting that the method can be used as an inexpensive characterization tool with which both aquifer parameters and aquifer boundary conditions can be inferred.

  9. Classification of Thermal Patterns at Karst Springs and Cave Streams

    USGS Publications Warehouse

    Luhmann, A.J.; Covington, M.D.; Peters, Albert J.; Alexander, S.C.; Anger, C.T.; Green, J.A.; Runkel, Anthony C.; Alexander, E.C.

    2011-01-01

    Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event-scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase-shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  10. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Rossi, P. M.; Kløve, B.

    2014-07-01

    Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D soil profile spatially to estimate transient recharge in an unconfined esker aquifer. The modeling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover) and timing (depth of the unsaturated zone) of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI) using forestry inventory data. Uncertainty in the parameters controlling soil hydraulic properties and evapotranspiration was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount, and the modeling approach successfully reduced model uncertainty by allocating the LAI parameter spatially in the model. Soil evaporation compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated depth and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  11. Karst water resources in a changing world: Review of hydrological modeling approaches

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M.

    2014-09-01

    Karst regions represent 7-12% of the Earth's continental area, and about one quarter of the global population is completely or partially dependent on drinking water from karst aquifers. Climate simulations project a strong increase in temperature and a decrease of precipitation in many karst regions in the world over the next decades. Despite this potentially bleak future, few studies specifically quantify the impact of climate change on karst water resources. This review provides an introduction to karst, its evolution, and its particular hydrological processes. We explore different conceptual models of karst systems and how they can be translated into numerical models of varying complexity and therefore varying data requirements and depths of process representation. We discuss limitations of current karst models and show that at the present state, we face a challenge in terms of data availability and information content of the available data. We conclude by providing new research directions to develop and evaluate better prediction models to address the most challenging problems of karst water resources management, including opportunities for data collection and for karst model applications at so far unprecedented scales.

  12. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: Implications in the estimation of setback distances

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates ( katt) that were determined by applying the model to the breakthrough data, filter factors ( f) were calculated and compared with f values estimated from the slopes of log ( cmax/ co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log ( cmax/ co) m -1, are consistently in the order of 10 -2 for clean coarse gravel aquifers, 10 -3 for contaminated coarse gravel aquifers, and generally 10 -1 for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10 4 pfu/l for enteroviruses and 10 6 cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking

  13. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.

    PubMed

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates (katt) that were determined by applying the model to the breakthrough data, filter factors (f) were calculated and compared with f values estimated from the slopes of log (cmax/co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log (cmax/co) m(-1), are consistently in the order of 10(-2) for clean coarse gravel aquifers, 10(-3) for contaminated coarse gravel aquifers, and generally 10(-1) for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10(4) pfu/l for enteroviruses and 10(6) cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking

  14. Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett

    2016-08-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  15. Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida

    PubMed Central

    Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett

    2016-01-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer. PMID:27557803

  16. Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida.

    PubMed

    Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett

    2016-08-25

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  17. Assessing the vulnerability of a karst groundwater system to contamination by pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael

    2010-05-01

    Contamination of drinking water supplies is a serious problem and a potential threat to public health. Organic micropollutants such as pharmaceuticals and personal care products are identified as an environmental risk and concern has been raised about their environmental presence and fate. These compounds are present in effluents of wastewater treatment plants (WWTPs) in concentrations of up to several µg/L, and they have frequently been detected in surface waters and groundwater systems. A popular method for wastewater disposal in karst areas is the injection of wastewater into open sinkholes. Subsequently, the wastewater infiltrates rapidly along conduits and through the fractured karst aquifer. This is a major contributing factor to the contamination of karst aquifers. To address the vulnerability of such systems against relatively mobile organic micropollutants, we investigated the occurrence of two pharmaceuticals (diclofenac, ibuprofen) in combination with the groundwater heterogeneity and flow pathways in the aquifer. Groundwater samples and effluents of three WWTPs were repeatedly collected during a field campaign in the Franconian Alb karst system which is located in southern Germany. These results were coupled with hydrogeological investigations such as tracer tests, application of environmental isotopes (3H), and modeling. The results of this study demonstrated that (i) both pharmaceuticals are mobile in the karst aquifer and thus represent a risk for contamination of karst water, (ii) the transport of pharmaceuticals in the fractured system with mean transit times of some years affects the karst groundwater contamination, and (iii) long-term wastewater injection containing organic micropollutants into karst ecosystems may contribute to water quality deterioration over years.

  18. Can one identify karst conduit networks geometry and properties from hydraulic and tracer test data?

    NASA Astrophysics Data System (ADS)

    Borghi, Andrea; Renard, Philippe; Cornaton, Fabien

    2016-04-01

    Karst aquifers are characterized by extreme heterogeneity due to the presence of karst conduits embedded in a fractured matrix having a much lower hydraulic conductivity. The resulting contrast in the physical properties of the system implies that the system reacts very rapidly to some changes in the boundary conditions and that numerical models are extremely sensitive to small modifications in properties or positions of the conduits. Furthermore, one major issue in all those models is that the location and size of the conduits is generally unknown. For all those reasons, estimating karst network geometry and their properties by solving an inverse problem is a particularly difficult problem. In this paper, two numerical experiments are described. In the first one, 18,000 flow and transport simulations have been computed and used in a systematic manner to assess statistically if one can retrieve the parameters of a model (geometry and radius of the conduits, hydraulic conductivity of the conduits) from head and tracer data. When two tracer test data sets are available, the solution of the inverse problems indicate with high certainty that there are indeed two conduits and not more. The radius of the conduits are usually well identified but not the properties of the matrix. If more conduits are present in the system, but only two tracer test data sets are available, the inverse problem is still able to identify the true solution as the most probable but it also indicates that the data are insufficient to conclude with high certainty. In the second experiment, a more complex model (including non linear flow equations in conduits) is considered. In this example, gradient-based optimization techniques are proved to be efficient for estimating the radius of the conduits and the hydraulic conductivity of the matrix in a promising and efficient manner. These results suggest that, despite the numerical difficulties, inverse methods should be used to constrain numerical

  19. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    NASA Astrophysics Data System (ADS)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  20. Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui

    2015-08-01

    Karst aquifers are commonly simulated based on conceptual models. However, most karst conceptual models hardly consider the function of turbulent conduits. The conduit network acts as the main draining passage of the karst aquifer and may also have a strong influence on the hydrological processes, especially during storm events. A conceptual model with a nonlinear reservoir and a turbulent pipe (representing the conduit system) in series is proposed according to the basic structure of a typical karst aquifer, to simulate the karst spring. The model indicates whether the spring discharge is influenced by the turbulent pipe; this not only depends on the parameters of the nonlinear reservoir and turbulent pipe, but also depends on the volume of spring discharge itself. Even though the spring discharge is strongly influenced by the turbulent pipe during the storm, this influence decreases with the rainfall intensity and volume of spring discharge. In addition, an `evapotranspiration store' is used to consider the moisture loss through evapotranspiration and to calculate the effective rainfall on the proposed model. Then, this simple conceptual model is used to simulate a karst spring (named S31) near Guilin city, China, with satisfactory results, especially with respect to discharge peaks and recession curves of the spring under storm conditions. The proposed model is also compared with the Vensim model of similar complexity, which has been applied to the same spring catchment. The comparison shows the superiority and better performance of the nonlinear reservoir-pipe model.

  1. Water volume estimates of the Greenland Perennial Firn Aquifer from in situ measurements

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Miege, C.; Forster, R. R.; Brucker, L.

    2013-12-01

    Improving our understanding of the complex Greenland hydrologic system is necessary for assessing change across the Greenland Ice Sheet and its contribution to sea level rise (SLR). A new component of the Greenland hydrologic system, a Perennial Firn Aquifer (PFA), was recently discovered in April 2011. The PFA represents a large storage of liquid water within the Greenland Ice Sheet with an area of 70,000 × 10,000 km2 simulated by the RACMO2/GR regional climate model which closely follows airborne radar-derived mapping (Forster et al., in press). The average top surface depth of the PFA as detected by radar is 23 m. In April 2013, our team drilled through the PFA for the first time to gain an understanding of firn structure constraining the PFA, to estimate the water volume within the PFA, and to measure PFA temperatures and densities. At our drill site in Southeast Greenland (~100 km Northwest of Kulusuk), water fills or partially fills the available firn pore space from depths of ~12 to 37 m. The temperature within the PFA depths is constant at 0.1 × 0.1° C while the 12 m of seasonally dry firn above the PFA has a temperature profile dominated by surface temperature forcing. Near the bottom of the PFA water completely fills available pore space as the firn is compressed to ice entrapping water filled bubbles, as opposed to air filled bubbles, which then start to refreeze. A PFA maximum density is reached as the water filling the pore space, increasing density, begins refreezing back into ice at a lower density. We define this depth as the pore water refreeze depth and use this depth as the bottom of the PFA to calculate volume. It is certain, however that a small amount of water does exist below this depth, which we do not account for. The density profile obtained from the ACT11B firn core, the closest seasonally dry firn core, is compared to both gravitational densities and high resolution densities derived from a neutron density probe at the PFA site. The

  2. Estimating the uncertainty of the impact of climate change on alluvial aquifers. Case study in central Italy

    NASA Astrophysics Data System (ADS)

    Romano, Emanuele; Camici, Stefania; Brocca, Luca; Moramarco, Tommaso; Pica, Federico; Preziosi, Elisabetta

    2014-05-01

    ) for temperature. Such a procedure has allowed to estimate, through the Thornthwaite-Mather model, the uncertainty related to the future scenarios of recharge to the aquifer. Finally, all the scenarios of recharge have been used as input to the groundwater flow model and the results have been evaluated in terms of the uncertainty on the computed aquifer heads and total budget. The main results have indicated that most of the uncertainty on the impact to the aquifer arise from the uncertainty on the first part of the processing chain GCM-DSC.

  3. Effects of Changing Meteoric Precipitation Patterns on Groundwater Temperature in Karst Environments.

    PubMed

    Brookfield, A E; Macpherson, G L; Covington, M D

    2017-03-01

    Climate predictions indicate that precipitation patterns will change and average air temperatures will increase across much of the planet. These changes will alter surface water and groundwater temperatures which can significantly affect the local and regional environment. Here, we examine the role of precipitation timing in changes to groundwater temperature in carbonate-karst aquifers using measured groundwater level and temperature data from the Konza Prairie Long-Term Ecological Research Site, Kansas. We demonstrate that shifts to increased cool-season precipitation may mitigate the increases in groundwater temperature produced by increases in average annual air temperature. In karst, the solution-enlarged conduits allow faster and focused recharge, and the recharge-event temperature can strongly influence the groundwater temperature in the aquifer. Our field data and analysis show that predictions of future groundwater conditions in karst aquifers need to consider changes in precipitation patterns, in addition to changes to average annual air temperature.

  4. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    NASA Astrophysics Data System (ADS)

    Tziritis, E.; Lombardo, L.

    2016-03-01

    The intrinsic vulnerability of a karstic aquifer system in central Greece was jointly assessed with the use of a statistical approach and PI method, as a function of topography, protective cover effectiveness and the degree to which this cover is bypassed due to flow conditions. The input data for the index-overlay PI method were derived from field works and 71 boreholes of the area; the information was obtained, subsequently its critical factors were compiled which included lithology, fissuring and karstification of bedrock, soil characteristics, hydrology, hydrogeology, topography and vegetation. The aforementioned parameters were processed jointly with the aid of a GIS and yielded the final estimation of intrinsic aquifer vulnerability to contamination. Results were compared with an equivalent spatially distributed probability map obtained through a stochastic approach. The calibration and test phase of the latter relied on morphometric conditions derived by terrain analyses of a digital elevation model as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated with ground truth nitrate values obtained from 41 groundwater samples, highlighted the spatial delineation of susceptible areas to contamination in both cases and provided a robust tool for regional planning actions and water resources management schemes.

  5. Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A.

    USGS Publications Warehouse

    Sophocleous, M.A.

    1984-01-01

    The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.

  6. Estimated Hydraulic Properties for the Surficial - and Bedrock-Aquifer System, Meddybemps, Maine

    DTIC Science & Technology

    1999-01-01

    fractures or fracture zones ........................................................................................................ 9 5. Water level for... fractured bedrock determined from specific- capacity tests and aquifer tests in wells completed in less than 200 feet of bedrock ranges from about...angle fracture or fracture zone that hydraulically connects two wells’ completed in bedrock. Transmissivities at six low-yielding (less than 0.5

  7. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  8. Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: relationship with infiltration processes.

    PubMed

    Mudarra, M; Andreo, B; Baker, A

    2011-08-15

    From analysis of spectrophotometric properties of dissolved organic matter (OM) and the hydrochemical responses of some karst springs under different hydrologic conditions, an assessment of the origin and transfer pathway of OM present in karst spring waters, from soil and epikarst toward the spring, has been conducted for three karst aquifers in southern Spain: Alta Cadena, Sierra de Enmedio and Los Tajos. Intrinsic fluorescence (excitation-emission matrices or EEMs), together with major water chemistry (electrical conductivity, temperature, alkalinity, Cl⁻, Mg⁺²) and P(CO₂) along with natural hydrochemical tracers (TOC and NO₃⁻, have been monitored in 19 springs which drain the three karst aquifers examined in this study. The spring water EEM spectra indicate that fulvic acid-like substances, produced in the soil as a consequence of the decomposition of OM, are the dominant fluorophores, although some of the OM appears to originate from in situ microbiological activity but could be indicative of contamination present in recharge waters from livestock. During each recharge event, TOC and NO₃⁻ concentrations increased and variations in fluorescence intensities of peaks attributed to fulvic acid-like compounds were observed. In areas with minimal soil development, spatial and temporal variations in the fluorescence intensity of fulvic acid-like substances and other fluorophores derived from microbiological activity, together with other hydrochemical parameters, provide insights into the hydrogeological functioning of karst aquifers and the infiltration velocity of water from soil and facilitate assessment of contamination vulnerability in these aquifers.

  9. Use of air-pressurized slug tests to estimate hydraulic conductivity at selected piezometers completed in the Santa Fe Group aquifer system, Albuquerque area, New Mexico

    USGS Publications Warehouse

    Thomas, Carole L.; Thorn, Conde R.

    2000-01-01

    The City of Albuquerque Public Works Department, Water Resources Management (City), is interested in quantifying aquifer hydraulic properties in the Albuquerque, New Mexico, area to better understand and manage water resources in the Middle Rio Grande Basin. In 1998, the City and the U.S. Geological Survey entered into a cooperative program to determine hydraulic properties of aquifer material adjacent to screened intervals of piezometers in the Albuquerque area. Investigators conducted slug tests from March 8 through April 8, 1999, to estimate hydraulic conductivity of aquifer material adjacent to the screened intervals of 25 piezometers from 11 nested- piezometer sites in the Albuquerque area. At 20 of the piezometers, slug-test responses were typical; at 2 piezometers, tests were prematurely terminated because the tests were taking too long to complete; and at 3 piezometers, test responses were oscillatory. Methods used to estimate hydraulic conductivity were the Bouwer and Rice method or the Cooper, Bredehoeft, and Papadopulos method for most tests; the Shapiro and Greene method for prematurely terminated tests; and the van der Kamp method for oscillatory tests. Hydraulic-conductivity estimates ranged from about 0.15 to 92 feet per day. In general, the smaller estimated values are associated with fine-grained aquifer materials and the larger estimated hydraulic-conductivity values are associated with coarse- grained aquifer materials adjacent to the screened intervals of the piezometers. Hydraulic-conductivity estimates ranged from 0.15 to 8.2 feet per day for aquifer materials adjacent to the screened intervals at 12 piezometers and from 12 to 41 feet per day for aquifer materials adjacent to the screened intervals at 10 piezometers. Hydraulic-conductivity estimates at four piezometers were greater than 41 feet per day.

  10. The characteristic trends of karst springs discharges in relation to climate change (examples from the Classical Karst, SE Slovenia)

    NASA Astrophysics Data System (ADS)

    Ravbar, Natasa; Kovacic, Gregor

    2016-04-01

    Changes in the large-scale hydrological cycle induced by global warming are among the biggest actual concerns. The observed records and climate simulations are consistent in projecting changing precipitation and temperature patterns worldwide. Particularly the incidence of changed precipitation amount, intensity and variability may increase changes in hydrological regimes, and could have implications on water quantity and quality in many areas. This may affect freshwater dependant ecosystems and several socio-economic activities. Groundwater resources availability, stability of access and utilisation may further provoke difficulties for many services, such as drinking water supply, agriculture, industry, hydropower, etc. Karst aquifers are due to their specific nature (i.e. rapid infiltration rates and underground water flow, highly controlled by conduits) highly dependent on respective hydrological conditions. The goal of this study was to better understand how and to what extent impacts of the climate change may affect karst groundwater resources and to quantify the role of karst aquifers in flood attenuation and baseflow maintenance. The characteristic linear trends of mean, minimal and maximal annual discharge values of nine selected karst springs in SE Slovenia have been assessed and compared with the linear trends of annual precipitation amount and air temperature covering a 52-year period (1961 - 2013). The data have also been evaluated in respect to the individual spring's catchment characteristics (e.g. storage capacity). Obtained results and analysis reveal the impacts of climate (environmental) change on karst groundwater and call for urgent adherence of standards for karst water sources protection, monitoring and rational use in the relevant management strategies.

  11. Estimated depth to the water table and estimated rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas

    USGS Publications Warehouse

    Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.

    1996-01-01

    In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.

  12. Karst Groundwater Hydrologic Analyses Based on Aerial Thermography

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; Keith, A. G.

    2000-01-01

    On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.

  13. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  14. Comparison of kriging and cokriging for the geostatistical estimation of specific capacity in the Newark Basin (NJ) aquifer system.

    PubMed

    Carter, Gail P; Miskewitz, Robert J; Isukapalli, Sastry; Mun, Yuri; Vyas, Vikram; Yoon, Sungwon; Georgeopoulos, Panos; Uchrin, Christopher G

    2011-01-01

    Groundwater is a major water source in New Jersey; hence, accurate hydrogeologic data are extremely important. However, most measured data have inadequate spatial density and their locations are often clustered. Our study focuses on implementing geostatistical methods to generate the spatial distribution of specific capacity over the Newark Basin in New Jersey. Two geostatistical methods, ordinary kriging and cokriging, were employed and compared. Ordinary kriging was employed to estimate the spatial distribution of specific capacity by using measured values. Cokriging incorporated the spatial variability of fracture density into the estimation with the spatial variability of specific capacity, as groundwater flow in fractured rock aquifers depends on the fracture characteristics in the Newark Basin. Results indicate that cokriging manifested substantial improvements over ordinary kriging including a larger areal coverage, a more detailed variation of specific capacity, and reduction in the variance of its estimates.

  15. Using 81Kr-age of groundwater in the Guarani Aquifer, Brazil, to constrain estimates of continental degassing flux of 4He

    NASA Astrophysics Data System (ADS)

    Aggarwal, P. K.; Matsumoto, T.; Sturchio, N. C.; Chang, H. K.; Gastmans, D.; Lu, Z.; Jiang, W.; Müller, P.; Yokochi, R.; Han, L.; Klaus, P.; Torgersen, T.

    2013-12-01

    Continental degassing flux of helium is the dominant component of dissolved helium in deep groundwater together with that produced in-situ in the aquifer. A reliable estimate of the degassing flux is critical to the use of 4He as a dating tool in groundwater studies. The degassing flux is also important for understanding fluid and heat transport in the mantle and the rust. An independent tracer of groundwater age is required in order to deconvolute the two signals of the external, degassing flux and in situ production. Estimates of degassing flux mostly have relied upon shorter-lived radionuclides such as 14C and tritium and the resulting flux estimates have a significant variability (Torgersen, 2010). In the Guarani Aquifer in Brazil, an effective crustal 4He degassing flux into the aquifer was estimated from 81Kr ages ranging from about 70 Ka to 570 Ka. We then used the model framework of Toregesen and Ivey (1985), modified to include a diffusive reduction of originally uniform crustal helium flux from basement rocks through a thick sedimentary layer beneath the aquifer, to calculate a distribution of radiogenic 4He within the aquifer. With this framework, we obtain 4He ages that are consistent with ages based on 81Kr and 14C, and with a crustal degassing flux equivalent to that estimated from U and Th contents in the crust. The model framework for the Guarani Aquifer is also applied to data from other deep aquifers in Africa and Australia and our results suggest that the continental flux of 4He may be uniform, at least in stable continental areas. Additionally, a reliable estimate of the 4He degassing flux also helps to constrain the surficial discharge of deep groundwater.

  16. A new approach to constrain basal helium flux into aquifers for better estimation of groundwater ages by Helium 4

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Sturchio, Neil C.; Chang, Hung K.; Gastmans, Didier; Araguas-Araguas, Luis J.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yokochi, Reika; Purtschert, Roland; Zongyu, Chen; Shuiming, Hu; Aggarwal, Pradeep K.

    2016-04-01

    Estimation of groundwater age through the combined use of isotope methods and groundwater flow modelling is the common approach used for developing the required level of knowledge in the case of groundwater pumped from deep aquifers. For more than 50 years radiocarbon and tritium have been the common tools used in isotope hydrology studies to provide first estimates of groundwater age and dynamics. The half-life of carbon-14 (5730 years) and the complex geochemistry of carbon species in most environments have limited the proper characterization of groundwater flow patterns in large sedimentary basins and deep aquifers to ages more recent than about 40 000 years. Over the last years, a number of long-live radionuclides and other isotopes have been tested as more reliable age indicators by specialised laboratories. Among these methods, chlorine-36 (half-life of 300 000 yr) has been used with mixed results, mainly due to problems derived from in-situ production of this radionuclide. Uranium isotopes have also been used in a few instances, but never became a routine tool. Accumulation of helium-4 in deep groundwaters has also been proposed and used in a few instance, but one major obstacle in the 4He dating method is a difficulty in assessing a rate constant of 4He input into aquifers (namely, the entering basal 4He flux). In this context, recent breakthrough developments in analytical methods allow the precise determination of dissolved noble gases in groundwater as well as trace-level noble gas radionuclides present in very old groundwaters. Atom trap trace analysis, or ATTA, has dramatically improved over the last years the processing of very small amount of noble gases, providing now real possibilities for routine measurements of extremely low concentration of exotic radionuclides dissolved in groundwater, such as krypton-81 (half-life 229 000 years). Atom trap trace analysis involves the selective capture of individual atoms of a given isotope using six laser

  17. Estimating Equivalent Continuum Scales in Fractured Aquifer Watersheds Using Discrete Feature Network Simulation

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Poeter, E. P.

    2003-12-01

    Fractured aquifers serve as primary water resources throughout the western United States. In light of diminishing water supply, management practices must be improved to promote resource sustainability. Ground-water flow models are often the preferred management tool, but can be computationally expensive and difficult to implement in large-scale fractured environments. Discrete feature network (DFN) simulation is a robust approach for modeling fluid movement in fractured architecture, but numerically expensive for large-scale models. By using an equivalent continuum model (ECM) numerical expense may be substantially reduced. An intrinsic assumption of the ECM approach is that the geologic media is represented accurately as a continuum, requiring that grid scale discretization correspond to representative elementary scale (RES) at each location within a fractured aquifer. Heterogeneity and compartmentalization likely cause regions with large differences in fracture permeability and connectivity, resulting in spatially variable RES. Thus, while regional flow may be honored using essentially any grid pattern, failure to properly represent spatially variable RES could lead to erroneous predictions of local flow and transport, especially in highly heterogeneous zones. The purpose of our study is to determine whether head predictions from DFN flow simulations can delineate spatially variable RES in fractured aquifers. Provided there is a correlation of simulated hydraulic head to continuum scale, we hypothesize that RES can be identified using spatially disperse water level observations within a fractured aquifer watershed. Preliminary results suggest there is potential for using hydraulic head data to determine the RES. Ongoing research is necessary to confirm these preliminary results and our hypothesis.

  18. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  19. Evaluation of longitudinal dispersivity estimates from simulated forced- and natural-gradient tracer tests in heterogeneous aquifers

    USGS Publications Warehouse

    Tiedeman, C.R.; Hsieh, P.A.

    2004-01-01

    We simulate three types of forced-gradient tracer tests (converging radial flow, unequal strength two well, and equal strength two well) and natural-gradient tracer tests in multiple realizations of heterogeneous two-dimensional aquifers with a hydraulic conductivity distribution characterized by a spherical variogram. We determine longitudinal dispersivities (??L) by analysis of forced-gradient test breakthrough curves at the pumped well and by spatial moment analysis of tracer concentrations during the natural-gradient tests. Results show that among the forced-gradient tests, a converging radial-flow test tends to yield the smallest ??L, an equal strength two-well test tends to yield the largest ??L, and an unequal strength two-well test tends to yield an intermediate value. This finding is qualitatively explained by considering the aquifer area sampled by a particular test. A converging radial-flow test samples a small area, and thus the tracer undergoes a low degree of spreading and mixing. An equal strength two-well test samples a much larger area, so the tracer is spread and mixed to a greater degree. Results also suggest that if the distance between the tracer source well and the pumped well is short relative to the lengths over which velocity is correlated, then the ??L estimate can be highly dependent on local heterogeneities in the vicinity of the wells. Finally, results indicate that ??L estimated from forced-gradient tracer tests can significantly underestimate the ??L needed to characterize solute dispersion under natural-gradient flow. Only a two-well tracer test with a large well separation in an aquifer with a low degree of heterogeneity can yield a value of ??L that characterizes natural-gradient tracer spreading. This suggests that a two-well test with a large well separation is the preferred forced-gradient test for characterizing solute dispersion under natural-gradient flow.

  20. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Frederick, D.B.; Johnson, G.S.

    1996-02-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Pressure transducers mounted in the straddle-packer assembly were used to monitor the response of the Snake River Plain aquifer to pumping at the ICPP production wells, located 2600 to 4200 feet from the observation wells. The time-drawdown data from these tests were used to evaluate various conceptual models of the aquifer. Aquifer properties were estimated by matching time-drawdown data to type curves for partially penetrating wells in an unconfined aquifer. This approach assumes a homogeneous and isotropic aquifer. The hydraulic properties of the aquifer obtained from the type curve analyses were: (1) Storativity = 3 x 10{sup -5}, (2) Specific Yield = 0.01, (3) Transmissivity = 740 ft{sup 2}/min, (4) Anisotropy (Kv:Kh)= 1:360.

  1. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  2. Hydrogeological studies in high mountains karst environment: the example of Picos de Europa (Spain)

    NASA Astrophysics Data System (ADS)

    Meléndez, Mónica; Ballesteros, Daniel; Jiménez-Sanchez, Montserrat; García-Sansegundo, Joaquín

    2015-04-01

    Karst aquifers are very vulnerable to contamination due their high infiltration coefficient, elevated hydraulic conductivity, high speed of circulation, and very low self-purification capacities. The functioning of that type of aquifer is quite complicated by the high heterogeneity and anisotropy of the karst and the presence of three different types of porosity. It is necessary to understand the functioning of a karst aquifer in order to protect and manage them properly. Therefore, it is necessary to develop working methods to establish the aquifer hydrodynamics, especially in high mountain areas with many methodological constrains (e. g. difficulty to access). The Picos de Europa karst aquifer, located in theNational Park of Picos de Europa (North Spain), presents a high environmental, geomorphological and hydrogeological value; it is included in the "Spanish geological contexts with global relevance" by the Law of Natural Heritage and Biodiversity of Spain, being considered as a Global Geosite by the Geological and Mining Institute of Spain. In addition, the karst massif is included in several figures of environmental protection, both at global and national levels. Hydrogeological and geomorphological research is developed together in this area under the GEOCAVE project (MAGRAMA-580/12 OAPN) and the "Investigación hidrogeológica en las masas de agua subterránea 012.014 Picos de Europa-Panes y 012.018 Alto Deva-Alto Cares. (IGME-73.3.00.41.00/2013)". The aim of this study is to characterize the hydrodynamics of the karst aquifer, considering the snow as an important component of the aquifer recharge. The proposed methodology includes the installation of an integrated pressure sensor and data logger for level and temperature measurement in two karst spring related to two groundwater bodies (GWB) with 86 and 14 km2 extension. The store of data to regular intervals with punctual values of discharge measures has provided, at least, an annual series of data in

  3. Translating CFC-based piston ages into probability density functions of ground-water age in karst

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2006-01-01

    Temporal age distributions are equivalent to probability density functions (PDFs) of transit time. The type and shape of a PDF provides important information related to ground-water mixing at the well or spring and the complex nature of flow networks in karst aquifers. Chlorofluorocarbon (CFC) concentrations measured for samples from 12 locations in the karstic Madison aquifer were used to evaluate the suitability of various PDF types for this aquifer. Parameters of PDFs could not be estimated within acceptable confidence intervals for any of the individual sites. Therefore, metrics derived from CFC-based apparent ages were used to evaluate results of PDF modeling in a more general approach. The ranges of these metrics were established as criteria against which families of PDFs could be evaluated for their applicability to different parts of the aquifer. Seven PDF types, including five unimodal and two bimodal models, were evaluated. Model results indicate that unimodal models may be applicable to areas close to conduits that have younger piston (i.e., apparent) ages and that bimodal models probably are applicable to areas farther from conduits that have older piston ages. The two components of a bimodal PDF are interpreted as representing conduit and diffuse flow, and transit times of as much as two decades may separate these PDF components. Areas near conduits may be dominated by conduit flow, whereas areas farther from conduits having bimodal distributions probably have good hydraulic connection to both diffuse and conduit flow. ?? 2006 Elsevier B.V. All rights reserved.

  4. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    USGS Publications Warehouse

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Recharge rates estimated from environmental tracer data are dependent upon several hydrogeologic variables and have inherent uncertainties. By using the recharge estimates derived from samples collected from 14 wells completed in the Chicot aquifer for which apparent groundwater ages could be determined, recharge to the Chicot aquifer ranged from 0.2 to 7.2 inches (in.) per year (yr). Based on data from one well, estimated recharge to the unconfined zone of the Evangeline aquifer (outcrop) was 0.1 in./yr. Based on data collected from eight wells, estimated rates of recharge to the confined zone of the Evangeline aquifer ranged from less than 0.1 to 2.8 in./yr. Based on data from one well, estimated recharge to the unconfined zone of the Jasper aquifer (outcrop) was 0.5 in./yr. Based on data collected from nine wells, estimated rates of recharge to the confined zone of the Jasper aquifer ranged from less than 0.1 to 0.1 in./yr. The complexity of the hydrogeology in the area, uncertainty in the conceptual model, and numerical assumptions required in the determination of the recharge rates all pose limitations and need to be considered when evaluating these data on a countywide or regional scale. The estimated recharge rates calculated for this study are specific to each well location and should not be extrapolated or inferred as a countywide average. Local variations in the hydrogeology and surficial conditions can affect the recharge rate at a local scale.

  5. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain).

    PubMed

    Hornero, Jorge; Manzano, Marisol; Ortega, Lucía; Custodio, Emilio

    2016-10-15

    Groundwater recharge is one of the key variables for aquifer management and also one of the most difficult to be evaluated with acceptable accuracy. This is especially relevant in semiarid areas, where the processes involved in recharge are widely variable. Uncertainty should be estimated to know how reliable recharge estimations are. Groundwater recharge has been calculated in the Alcadozo Aquifer System, under steady state conditions, at regional (aquifer) and sub-regional (spring catchment) scales applying different methods. The regional distribution of long-term average recharge values has been estimated with the chloride mass balance method using data from four rain stations and 40 groundwater samples covering almost the whole aquifer surface. A remarkable spatial variability has been found. Average annual recharge rates ranges from 20 to 243mmyear(-1) across the aquifer, with an estimated coefficient of variation between 0.16 and 0.38. The average recharge/precipitation ratio decreases from 34% in the NW to 6% in the SE, following the topographic slope. At spring-catchment scale, recharge has been estimated by modelling the soil water balance with the code Visual Balan 2.0. The results, calibrated with discharge data of the two main springs Liétor and Ayna, are 35.5 and 50mmyear(-1) respectively, with estimated coefficients of variation of 0.49 and 0.36. A sensitivity analysis showed that soil parameters influence the most the uncertainty of recharge estimations. Recharge values estimated with both methods and at two temporal and spatial scales are consistent, considering the regional variability obtained with the chloride method and the respective confidence intervals. Evaluating the uncertainties of each method eased to compare their relative results and to check their agreement, which provided confidence to the values obtained. Thus, the use of independent methods together with their uncertainties is strongly recommended to constrain the magnitude and to

  6. Estimating Hydraulic Properties of the Floridan Aquifer System by Analysis of Earth-Tide, Ocean-Tide, and Barometric Effects, Collier and Hendry Counties, Florida

    USGS Publications Warehouse

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied. An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem. A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the

  7. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  8. Estimation of stream-aquifer exchanges at regional scale using a distributed model: Sensitivity to in-stream water level fluctuations, riverbed elevation and roughness

    NASA Astrophysics Data System (ADS)

    Baratelli, Fulvia; Flipo, Nicolas; Moatar, Florentina

    2016-11-01

    Several studies on stream-aquifer interactions focus on the local scale. However, the estimation of stream-aquifer exchanges for a regional river network remains challenging. This study aims at assessing the sensitivity of distributed stream-aquifer exchanges to in-stream water level fluctuations, riverbed elevation and Manning roughness coefficient. An integrated distributed surface-subsurface model is applied to the Loire river basin (117,480 km2, France), where in-stream water level fluctuations are taken into account with a simplified Manning-Strickler approach. The stream-aquifer exchanges are analyzed at pluri-annual and annual scales, as well as during short-term hydrological events. The model simulates the spatio-temporal variability of in-stream water levels accurately, with Nash coefficients up to 0.96 for the Loire river. The river network mainly drains the aquifer system. The average net exchanged flow is 2 ·10-2 m3 s-1 km-1, which corresponds to 12% of the averaged discharge at the outlet of the basin. The assumption of constant river stages significantly impacts the total infiltration (-70%) and exfiltration (-10%) in the basin, whereas it has a negligible influence on the average net flux. The river fluctuations increase the time variability of the stream-aquifer exchanges and may determine flow reversals during flood events and also more frequently for river stretches at equilibrium with its nearby aquifer. This study highlights the importance of accounting for river stage fluctuations in the modeling of regional hydrosystems. Moreover, a sensitivity analysis indicates that it is mandatory to develop new methodologies to better estimate the riverbed elevation at high resolution for a river network at regional scale. In a lesser extent, errors on Manning coefficient affect the timing of infiltration and exfiltration, leading to temporally localized discrepancies. However it does not affect the estimates of the global net exchanges significantly.

  9. Estimation of local scale dispersion from local breakthrough curves during a tracer test in a heterogeneous aquifer: the Lagrangian approach.

    PubMed

    Vanderborght, Jan; Vereecken, Harry

    2002-01-01

    The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.

  10. Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests.

    PubMed

    Marín, A I; Andreo, B; Mudarra, M

    2015-11-01

    Protection zoning of karst springs and wells used for water supply is a key aspect in many countries, calling for specific methodologies adapted to the particular characteristics of karst media. This work presents a new approach, in view of the present state of the art and based on experiences with contamination vulnerability mapping at the pilot site of the Villanueva del Rosario karst system (southern Spain). Source (intrinsic) vulnerability maps were prepared and compared using three European procedures for karst aquifers. The vulnerability maps were then tested using dye tracers. The COP+K method and Slovene Approach appear to provide reliable results in terms of intrinsic vulnerability mapping. Nevertheless, all the methods have a margin of error. The COP+K map is adopted as the baseline to delineate the protection zones, through the conversion from vulnerability classes to degrees of protection.

  11. Estimation of groundwater levels with vertical electrical sounding in the semiarid area of South Keerqin sandy aquifer, China

    NASA Astrophysics Data System (ADS)

    Song, Lining; Zhu, Jiaojun; Yan, Qiaoling; Kang, Hongzhang

    2012-08-01

    To develop a simple, accurate, and non-destructive method for estimating the groundwater level (GWL) in an unconfined sandy aquifer, field measurements of soil electrical resistivity were conducted at the Daqinggou Ecological Station (DES) in 2005 and the Experimental Base of the Institute of Wind-Sand Land Improvement and Utilization (IWLIU) in 2009. The resistivity data were acquired through a series of vertical electrical soundings (VES) using a Wenner array. For comparison with the VES method, the GWLs were also manually monitored in wells. The results showed that the thirty VES profiles decreased or first increased and then decreased with increasing electrode spacing (i.e., becoming more conductive with depth). The depth of the GWL was obtained by calculating the turning points, as inferred from inflections in the apparent resistivity profiles. The GWL variations between the VES method and manual measurement ranged from 0.22 to 1.03 m at the DES, with a mean value of 0.52 m, and from 0.03 to 0.82 m at the IWLIU, with a mean value of 0.10 m. The significant differences between the GWLs obtained by the VES method and manual measurement at the DES were due to the higher GWLs with capillary action; there were no significant differences in the GWLs obtained at the IWLIU. The linear regression coefficient of determination was 0.97 for the IWLIU GWL values, indicating a good agreement between the VES method and manual measurements. Therefore, we conclude that the VES method is a sound measuring tool for estimating GWLs in unconfined sandy aquifers when the GWL is sufficiently deep (e.g., GWL > 3.98 m).

  12. Method of estimating natural recharge to the Edwards Aquifer in the San Antonio area, Texas

    USGS Publications Warehouse

    Puente, Celso

    1978-01-01

    The principal errors in the estimates of annual recharge are related to errors in estimating runoff in ungaged areas, which represent about 30 percent of the infiltration area. The estimated long-term average annual recharge in each basin, however, is probably representative of the actual recharge because the averaging procedure tends to cancel out the major errors.

  13. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  14. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    SciTech Connect

    Katz, B.G.; Davis, J.H.; Coplen, T.B.; Bullen, T.D.

    1997-11-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [{sup 18}O/{sup 16}O ({delta}{sup 18}O), {sup 2}H/{sup 1}H ({delta}D), {sup 13}C/{sup 12}C ({delta}{sup 13}C), tritium ({sup 3}H), and strontium-87/strontium-86 ({sup 87}Sr/{sup 86}Sr)] along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Florida aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes ({delta}{sup 18}O and {delta}D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in {delta}{sup 18}O and {delta}D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in {sup 18}O and D from five of 12 samples municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, {delta}{sup 13}C and {sup 87}Sr/{sup 86}Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions.

  15. A review of the potential and actual sources of pollution to groundwater in selected karst areas in Slovenia

    NASA Astrophysics Data System (ADS)

    Kovačič, G.; Ravbar, N.

    2005-02-01

    Slovenian karst areas extend over 43% of the country; limestones and dolomites of the Mesozoic era prevail. In Slovenia karst groundwater contributes up to 50% of the total drinking water supply. The quality of water is very high, despite the fact that it is extremely vulnerable to pollution. The present article is a study and a review of the potential and actual sources of pollution to the groundwater in the selected karst aquifers (the Kras, Velika planina and Snežnik plateaus), which differ in their natural characteristics. Unlike the other selected plateaus, the Kras plateau is inhabited. There are several settlements in the area and the industrial, agricultural and traffic activities carried out that represent a serious threat to the quality of karst groundwater. The Velika planina and Snežnik plateaus do not have permanent residents, however there are some serious hazards to the quality of the karst springs arising from sports, tourist, construction and farming activities, as well as from the traffic related to them. Despite relatively favourable conditions for protection, many important karst aquifers and springs are improperly protected in Slovenia. The reason is the lack of knowledge about sustainable water management in karst regions and the confusion in drinking water protection policy.

  16. The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Hao, Yonghong; Hu, Bill X.; Huo, Xueli; Hao, Pengmei; Liu, Zhongfang

    2017-01-01

    Karst aquifers supply drinking water for 25 % of the world's population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most

  17. Estimating Recharge through Playa Lakes to the Southern High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Rainwater, K.; Ganesan, G.; Gitz, D.; Zartman, R.; Hudnall, W.; Smith, L.

    2009-12-01

    In the Southern High Plains of Texas, it is accepted that focused recharge to the High Plains Aquifer (locally known as the Ogallala) occurs through over 20,000 playa lakes, which are local depressions that collect storm runoff. The amount and rate of recharge is not precisely known, and the impact of the land use surrounding each playa lake on the amount of runoff has not been quantified. Each playa exists within its own watershed, and many of those are cultivated, while others are surrounded by native grassland or conservation reserve program (CRP) lands. The amount of sediments entering most playas following cultivation has been substantial, but whether this erosion has had a harmful influence on recharge is unknown. Changing recharge rates can also impact the playa ecosystems that are pivotal to many types of local wildlife. Improved understanding of playa recharge is necessary for proper management strategies for long-term survivability of the Ogallala aquifer. Over the last four years, the research team selected and instrumented 30 playas (10 counties, one cropland playa, one native grassland playa, one CRP playa in each) for observation of their water budgets. To quantify recharge in each playa, data collection includes sufficient weather instrumentation to determine local precipitation and free water evaporation, as well as water level monitoring in the playa lake. The depth/area/volume relationship for each playa was developed by local GPS surveying. Between rainfall/runoff events, seepage through the playa bottom is calculated as the difference between the change in the volume of water stored in the playa and the calculated free water evaporation. The research team hopes to keep the instrumentation operational for as long as possible, hopefully several years, to observe enough inundation events to characterize a range of behaviors in the different playa basins. In this presentation, initial water budget analyses for several of the initially instrumented

  18. Chemical evolution and estimated flow velocity of water in the Trinity Aquifer, south-central Texas

    USGS Publications Warehouse

    Jones, Sonya A.; Lee, Roger W.; Busby, John F.

    1997-01-01

    Three permeable zones with varying lithology and water chemistry compose the Trinity aquifer, a principal source of water in the 5,500- square-mile study area in south-central Texas. The upper permeable zone locally yields small quantities of water to wells and was not included in this study. The middle permeable zone primarily is composed of limestone with minor amounts of dolostone. Terrigenous sand and marine limestone, with minor amounts of dolostone, are the principal lithologic units in the lower permeable zone. Dissolved solids concentrations range from 329 to 1,820 milligrams per liter in water samples from the middle permeable zone and from 518 to 3,030 milligrams per liter in water samples from the lower permeable zone. Principal hydrochemical facies in the middle permeable zone are calcium magnesium bicarbonate and calcium magnesium sulfate. Hydrochemical facies in ground-water samples from the lower permeable zone vary. Tritium concentrations as large as 5.3 tritium units in the southeastern part of the study area are indicative of relatively recent recharge. Results of a geochemical mass balance simulation along a flowpath in the middle permeable zone indicate a mass transfer of 4.25 millimoles per liter of dolomite dissolved, 5.74 millimoles per liter of gypsum dissolved, 0.46 millimole per liter of sodium chloride dissolved, 8.07 millimoles per liter of calcite precipitated, and 0.67 millimole per liter of calcium-for-sodium cation exchange between solid and aqueous phases. These results support dedolomitization as a principal chemical process in the middle permeable zone of the Trinity aquifer. Results of a simulation along a flowpath in the lower permeable zone indicate a mass transfer of 0.41 millimole per liter of dolomite dissolved, 0.001 millimole per liter of gypsum dissolved, 9.58 millimoles per liter of sodium chloride dissolved, 1.09 millimoles per liter of calcite precipitated, and 1.11 millimoles per liter of sodium-forcalcium cation

  19. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways.

  20. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Water fluxes through the ponds are a function of several factors, including the size, shape, and bathymetry of the pond, orientation of the pond relative to the regional hydraulic gradient, and hydrologic setting relative to the proximity of groundwater divides and discharge boundaries. Total steady-state fluxes through the ponds range from more than 3,300,000 to less than 2,000 cubic feet per day. For ponds without surface-water inlets or outlets, groundwater inflow accounts for 98 to 3 percent of total inflow; conversely, recharge onto the pond surface accounts for the remainder of inflow (between 2 and 97 percent). All natural flows from these ponds are through recharge from the pond into the aquifer. In one pond, about 94 percent of the total outflow is removed for water supply. For ponds that are connected to surface-water drainages, most inflow and outflow are through streams. Ponds that receive water from streams receive most (58 to 89 percent) of their water from those streams. Ponds that are drained by streams lose between 5 and 100 percent of their water to those streams.

  1. Use of geophysical logs to estimate water-quality trends in carbonate aquifers

    USGS Publications Warehouse

    MacCary, Lawrence Mead

    1980-01-01

    The water quality in carbonate aquifers can be determined by analysis of resistivity and porosity logs. When supporting data from water analyses are available, the value of the cementation exponent m can be determined more precisely. Data for this study were taken from logs of oil-test wells, Amstrat sample studies, drill-stem tests and water test wells in parts of Montana, North and South Dakota, and Wyoming. The preferred resistivity curves for apparent water resistivity (Rwa) analyses are the deeply focused laterolog and the induction log. The standard electric log can be used if the drilling mud is not saturated with salt. The preferred porosity logs are the sonic, sidewall neutron, compensated neutron, and the density logs. Older, uncalibrated neutron curves can be empirically calibrated in some instances, however, resulting porosities are frequently anomalous when compared to those determined from core or modern logs. When apparent water resistivity is determined for many wells, the data can be plotted and contoured to outline areas of recharge, direction of probable ground-water movement, and location and salinity of brine areas. (USGS)

  2. Structural controls on ground-water conditions and estimated aquifer properties near Bill Williams Mountain, Williams, Arizona

    USGS Publications Warehouse

    Pierce, Herbert A.

    2001-01-01

    As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted

  3. Operational tools to help stakeholders to protect and alert municipalities facing uncertainties and changes in karst flash floods

    NASA Astrophysics Data System (ADS)

    Borrell Estupina, V.; Raynaud, F.; Bourgeois, N.; Kong-A-Siou, L.; Collet, L.; Haziza, E.; Servat, E.

    2015-06-01

    Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).

  4. Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho

    USGS Publications Warehouse

    Garabedian, Stephen P.

    1986-01-01

    A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from

  5. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  6. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  7. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is

  8. Karst features of a glaciated dolomite peninsula, Door County, Wisconsin

    NASA Astrophysics Data System (ADS)

    Johnson, Scot B.; Stieglitz, Ronald D.

    1990-11-01

    A geologic investigation of the northern part of Door Peninsula, Wisconsin for a state funded water quality project revealed that karstification of the Silurian aquifer is more extensive than previously believed. Sinkholes and small insurgent features, solution modified crevices, pavements, caves and springs were inventories and mapped. These features are generally smaller and less densely developed than those in most limestone terranes; however, they are important to the geomorphology and water quality of the peninsula. Continental glaciation has strongly influenced both the distribution and the present surface morphology of the karst features. Ice scour has formed a stepped bedrock topography, contributed to pavement formation and may have removed some preglacial features. Deposition has plugged and masked features in places. In addition, subglacial water circulation, and ice loading and unloading may have influenced karst development.

  9. Karst in Permian evaporite rocks of western Oklahoma

    SciTech Connect

    Johnson, K.S. )

    1993-02-01

    Bedded evaporites (gypsum and salt) of Permian age have been dissolved naturally by ground water to form a major evaporite-karst region in western Oklahoma. The Blaine Formation and associated evaporites comprise 100--800 ft of strata that dip gently into broad, structural basins. Outcropping gypsum, dolomite, and red-bed shales of the Blaine display typical karstic features, such as sinkholes, caves, disappearing streams, and springs. Large caves are developed in gypsum beds 10--30 ft thick at several places, and a major gypsum/dolomite karst aquifer provides irrigation water to a large region in southwestern Oklahoma, where salt layers above and below the Blaine Formation have been partly dissolved at depths of 30--800 ft below the land surface. Salt dissolution causes development of brine-filled cavities, into which overlying strata collapse, and the brine eventually is emitted at the land surface in large salt plains.

  10. Design of aquifer remediation systems: (2) Estimating site-specific performance and benefits of partial source removal

    NASA Astrophysics Data System (ADS)

    Wood, A. Lynn; Enfield, Carl G.; Espinoza, Felipe P.; Annable, Michael; Brooks, Michael C.; Rao, P. S. C.; Sabatini, David; Knox, Robert

    2005-12-01

    A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hydraulic "structure" and non-aqueous phase liquid (NAPL) "architecture" have been described in a companion paper (Enfield, C.G., Wood, A.L., Espinoza, F.P., Brooks, M.C., Annable, M., Rao, P.S.C., this issue. Design of aquifer remediation systems: (1) describing hydraulic structure and NAPL architecture using tracers. J. Contam. Hydrol.). The previously defined functions were used along with the properties of the remedial fluids to describe remedial performance. There are two objectives for this paper. First, is to show that a simple analytic element model can be used to give a reasonable estimate of system performance. This is accomplished by comparing forecast performance to observed performance. The second objective is to display the model output in terms of change in mass flux and mass removal as a function of pore volumes of remedial fluid injected. The modelling results suggest that short term benefits are obtained and related to mass reduction at the sites where the model was tested.

  11. Estimates of Ground-Water Pumpage from the Yakima River Basin Aquifer System, Washington, 1960-2000

    USGS Publications Warehouse

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    August and during 2000, was about 100 cubic feet per second each month averaged over the Yakima River Basin aquifer system. During 2000, non-standby/reserve pumpage associated with ground-water rights was estimated to total 253,454 acre-feet, or about 198,290 acre-feet less than the appropriated quantity. The unused part of the appropriated value is about equivalent to the irrigation pumpage for primary rights.

  12. Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan.

    PubMed

    Alfonso, Lorenzo-Flores; Germán, Giácoman Vallejos; María Del Carmen, Ponce Caballero; Hossein, Ghoveisi

    2017-01-01

    This article discusses the adsorption of four organophosphorus pesticides-diazinon, dimethoate, methyl parathion, and sulfotep-in soil samples from four sites-Komchén, Xcanatún, Chablekal and Mocochá- in the northwest of Yucatan, Mexico. These pesticides have been detected in groundwater at concentrations greater than 5 (μg/L) during recent monitoring campaigns in the study area. In this region, groundwater contamination is exacerbated by its karst aquifer, which is susceptible to contamination and is considered very vulnerable. The experimental work was carried out using the batch equilibrium technique. Pesticide analyses by solid-phase extraction and gas chromatography were performed. The equilibrium adsorption data were analyzed by Henry, Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. Freundlich adsorption coefficients Kf were in the range of 1.62-2.35 for sulfotep, 2.43 to 3.25 for dimethoate, from 5.54 to 9.27 for methyl parathion, and 3.22 to 5.17 for diazinon. Freundlich adsorption coefficients were normalized to the content of organic carbon in the soil to estimate the sorption coefficient of organic carbon (KOC). KOC values were in the range of 9.45-71.80, indicated that four pesticides have low adsorption on the four studied soils, which represents a high risk of contamination to the aquifer.

  13. Assessing the Nonlinearity of Karst Response Function under Variable Boundary Conditions.

    PubMed

    Duran, Léa; Fournier, Matthieu; Massei, Nicolas; Dupont, Jean-Paul

    2016-01-01

    The hydraulic and transfer response of karst aquifers is complex and often highly nonlinear: due to their high transmissivity and connection with the surface, such systems are very sensitive to modifications of their boundary conditions. The aim of this study was to assess the variation of the response depending on both upstream and downstream parameters, and propose a methodology to simulate the response of the karst system depending on those parameters. The impact of the variations of multiple environmental parameters on the response of a karstic system submitted to tidal variations (Normandy, France) was investigated after a campaign of artificial tracer tests acquired in very different hydrologic conditions (rainfall events, low tide, high tide, low/high piezometric level, and low/high waters). Principal components analysis and hierarchical clustering were applied on both environmental variables and karstic system response variables (parameters of the residence time distribution [RTD] curves). Equations between the RTD parameters and the most relevant variables were established using a symbolic regression algorithm. It appeared that the variations of the RTD parameters depend mainly on the cumulated rainfall preceding the injection, the piezometric level of the aquifer, and on the tide parameters. The hydraulic conditions downstream of the aquifer have a strong influence on the hydraulic and transfer response of the aquifer. The response of the aquifer in various and extreme conditions has been simulated using the equations resulting from the symbolic regression algorithm. Such relationships can be useful for management of water resources in karst media, and support decision making.

  14. Improved methods for satellite-based groundwater storage estimates: A decade of monitoring the high plains aquifer from space and ground observations

    NASA Astrophysics Data System (ADS)

    Breña-Naranjo, Jose Agustin; Kendall, Anthony D.; Hyndman, David W.

    2014-09-01

    The impacts of climate extremes and water use on groundwater storage across large aquifers can be quantified using Gravity Recovery and Climate Experiment (GRACE) satellite monitoring. We present new methods to improve estimates of changes in groundwater storage by incorporating irrigation soil moisture corrections to common data assimilation products. These methods are demonstrated using data from the High Plains Aquifer (HPA) for 2003 to 2013. Accounting for the impacts of observed and inferred irrigation on soil moisture significantly improves estimates of groundwater storage changes as verified by interpolated measurements from ~10,000 HPA wells. The resulting estimates show persistent declines in groundwater storage across the HPA, more severe in the southern and central HPA than in the north. Groundwater levels declined by an average of approximately 276 ± 23 mm from 2003 to 2013, resulting in a storage loss of 125 ± 4.3 km3, based on the most accurate of the three methods developed here.

  15. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.; Czarnecki, John B.

    2004-01-01

    Conjunctive-use optimization modeling was done to assist water managers and planners by estimating the maximum amount of ground water that hypothetically could be withdrawn from wells within the Sparta aquifer indefinitely without violating hydraulic-head or stream-discharge constraints. The Sparta aquifer is largely a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. In 2000, more than 35.4 million cubic feet per day (Mft3/d) of water were withdrawn from the aquifer by more than 900 wells, primarily for industry, municipal supply, and crop irrigation in Arkansas. Continued, heavy withdrawals from the aquifer have caused several large cones of depression, lowering hydraulic heads below the top of the Sparta Sand in parts of Union and Columbia Counties and several areas in north-central Louisiana. Problems related to overdraft in the Sparta aquifer can result in increased drilling and pumping costs, reduced well yields, and degraded water quality in areas of large drawdown. A finite-difference ground-water flow model was developed for the Sparta aquifer using MODFLOW, primarily in eastern and southeastern Arkansas and north-central Louisiana. Observed aquifer conditions in 1997 supported by numerical simulations of ground-water flow show that continued pumping at withdrawal rates representative of 1990 - 1997 rates cannot be sustained indefinitely without causing hydraulic heads to drop substantially below the top of the Sparta Sand in southern Arkansas and north-central Louisiana. Areas of ground-water levels below the top of the Sparta Sand have been designated as Critical Ground-Water Areas by the State of Arkansas. A steady-state conjunctive-use optimization model was developed to simulate optimized surface-water and ground-water withdrawals while maintaining hydraulic-head and streamflow constraints, thus determining the 'sustainable yield' for the aquifer. Initial attempts

  16. Karst Map of Puerto Rico

    USGS Publications Warehouse

    Aleman-Gonzalez, Wilma B.

    2010-01-01

    This map is a digital compilation, combining the mapping of earlier geologists. Their work, cited on the map, contains more detailed descriptions of karst areas and landforms in Puerto Rico. This map is the basis for the Puerto Rico part of a new national karst map currently being compiled by the U.S. Geological Survey. In addition, this product is a standalone, citable source of digital karst data for Puerto Rico. Nearly 25 percent of the United States is underlain by karst terrain, and a large part of that area is undergoing urban and industrial development. Accurate delineations of karstic rocks are needed at scales suitable for national, State, and local maps. The data on this map contribute to a better understanding of subsidence hazards, groundwater contamination potential, and cave resources as well as serve as a guide to topical research on karst. Because the karst data were digitized from maps having a different scale and projection from those on the base map used for this publication, some karst features may not coincide perfectly with physiographic features portrayed on the base map.

  17. Eogenetic karst hydrology: Insights from the 2004 hurricanes, peninsular Florida

    USGS Publications Warehouse

    Florea, L.J.; Vacher, H.L.

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix - both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. ?? 2007 National Ground Water Association.

  18. Eogenetic karst hydrology: insights from the 2004 hurricanes, peninsular Florida.

    PubMed

    Florea, Lee J; Vacher, H L

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.

  19. Karst rocky desertification information extraction with EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Yue, Yuemin; Wang, Kelin; Zhang, Bing; Jiao, Quanjun; Yu, Yizun

    2008-12-01

    Karst rocky desertification is a special kind of land desertification developed under violent human impacts on the vulnerable eco-geo-environment of karst ecosystem. The process of karst rocky desertification results in simultaneous and complex variations of many interrelated soil, rock and vegetation biogeophysical parameters, rendering it difficult to develop simple and robust remote sensing mapping and monitoring approaches. In this study, we aimed to use Earth Observing 1 (EO-1) Hyperion hyperspectral data to extract the karst rocky desertification information. A spectral unmixing model based on Monte Carlo approach, was employed to quantify the fractional cover of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare substrates. The results showed that SWIR (1.9-2.35μm) portions of the spectrum were significantly different in PV, NPV and bare rock spectral properties. It has limitations in using full optical range or only SWIR (1.9-2.35μm) region of Hyperion to decompose image into PV, NPV and bare substrates covers. However, when use the tied-SWIR, the sub-pixel fractional covers of PV, NPV and bare substrates were accurately estimated. Our study indicates that the "tied-spectrum" method effectively accentuate the spectral characteristics of materials, while the spectral unmixing model based on Monte Carlo approach is a useful tool to automatically extract mixed ground objects in karst ecosystem. Karst rocky desertification information can be accurately extracted with EO-1 Hyperion. Imaging spectroscopy can provide a powerful methodology toward understanding the extent and spatial pattern of land degradation in karst ecosystem.

  20. On parameterization of the inverse problem for estimating aquifer properties using tracer data

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Finsterle, S.; Williams, K. H.; Murray, C.; Commer, M.; Newcomer, D.; Englert, A.; Steefel, C. I.; Hubbard, S. S.

    2012-06-01

    In developing a reliable approach for inferring hydrological properties through inverse modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance, as errors in the model structure are partly compensated for by estimating biased property values during the inversion. These biased estimates, while potentially providing an improved fit to the calibration data, may lead to wrong interpretations and conclusions and reduce the ability of the model to make reliable predictions. We consider the estimation of spatial variations in permeability and several other parameters through inverse modeling of tracer data, specifically synthetic and actual field data associated with the 2007 Winchester experiment from the Department of Energy Rifle site. Characterization is challenging due to the real-world complexities associated with field experiments in such a dynamic groundwater system. Our aim is to highlight and quantify the impact on inversion results of various decisions related to parameterization, such as the positioning of pilot points in a geostatistical parameterization; the handling of up-gradient regions; the inclusion of zonal information derived from geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the gradient direction, porosity, and the semivariogram function; and deteriorating experimental conditions. This work adds to the relatively limited number of studies that offer guidance on the use of pilot points in complex real-world experiments involving tracer data (as opposed to hydraulic head data).

  1. Transient Hydraulic Tomography in the Field: 3-D K Estimation and Validation in a Highly Heterogeneous Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Hochstetler, D. L.; Barrash, W.; Kitanidis, P. K.

    2014-12-01

    Characterizing subsurface hydraulic properties is essential for predicting flow and transport, and thus, for making informed decisions, such as selection and execution of a groundwater remediation strategy; however, obtaining accurate estimates at the necessary resolution with quantified uncertainty is an ongoing challenge. For over a decade, the development of hydraulic tomography (HT) - i.e., conducting a series of discrete interval hydraulic tests, observing distributed pressure signals, and analyzing the data through inversion of all tests together - has shown promise as a subsurface imaging method. Numerical and laboratory 3-D HT studies have enhanced and validated such methodologies, but there have been far fewer 3-D field characterization studies. We use 3-D transient hydraulic tomography (3-D THT) to characterize a highly heterogeneous unconfined alluvial aquifer at an active industrial site near Assemini, Italy. With 26 pumping tests conducted from 13 isolated vertical locations, and pressure responses measured at 63 spatial locations through five clusters of continuous multichannel tubing, we recorded over 800 drawdown curves during the field testing. Selected measurements from each curve were inverted in order to obtain an estimate of the distributed hydraulic conductivity field K(x) as well as uniform ("effective") values of specific storage Ss and specific yield Sy. The estimated K values varied across seven orders of magnitude, suggesting that this is one of the most heterogeneous sites at which HT has ever been conducted. Furthermore, these results are validated using drawdown observations from seven independent tests with pumping performed at multiple locations other than the main pumping well. The validation results are encouraging, especially given the uncertain nature of the problem. Overall, this research demonstrates the ability of 3-D THT to provide high-resolution of structure and local K at a non-research site at the scale of a contaminant

  2. Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China

    NASA Astrophysics Data System (ADS)

    Hu, B. X.

    2015-12-01

    It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.

  3. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China.

    PubMed

    Zhang, Xiaobo; Li, Xue; Gao, Xubo

    2016-04-01

    Hydrogeochemical analysis, statistical analysis, and geochemical modeling were employed to evaluate the impacts of coal mining activities on karst water chemistry in Niangziguan spring catchment, one of the largest karst springs in Northern China. Significant water quality deterioration was observed along the flow path, evidenced from the increasing sulfate, nitrate, and TDS content in karst water. Karst water samples are Ca-Mg-HCO3 type in the recharge areas, Ca-Mg-HCO3-SO4 type in the coal mining areas, and Ca-Mg-SO4-HCO3/HCO3-SO4 type in the rural areas and discharge areas. A four-factor principal component analysis (PCA) model is conducted which explains over 82.9% of the total variation. Factor 1, which explained the largest portion (45.33%) of the total variance, reveals that coal mining activities and natural water-rock interaction as the primary factors controlling karst water quality. Anthropogenic effects were recognized as the secondary factor with high positive loadings for NO3 (-) and Cl(-) in the model. The other two factors are co-precipitation removal of trace elements and silicate mineral dissolution, which explained 20.96% of the total variance. A two-end mixing modeling was proposed to estimate the percentage of coal wastewater giving on karst water chemistry, based on the groundwater sulfate chemistry constrains rather than sulfur isotopes. Uncertainty of sulfur isotope sources led to an overestimation of coal mining water contribution. According to the results of the modeling, the contribution of coal mining waste on karst water chemistry was quantified to be from 27.05 to 1.11% which is ca. three times lower than the values suggested using a sulfur isotope method.

  4. Analytical expressions to estimate the free product recovery in oil-contaminated aquifers

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Tuncay, Kagan; Lingarn, Rajasekhar; Kambham, Kiran K. R.

    1994-12-01

    Petroleum products, such as gasoline, leaked from an underground storage tank can be recovered successfully by two-pump operations. The success of the recovery effort depends on the accurate placement of the recovery well at the spill site. An effective recovery operation can minimize the remaining contamination mass in the subsurface. Therefore, a careful evaluation and determination has to be made as to where to locate the recovery well. The location of the well can be decided based on an estimation of the extent and thickness of free product on the water table. Such an estimation should be based on analysis of governing mechanisms. In this study we present analytical solutions to estimate the recovery of oil from an established oil lens. These solutions are obtained by applying the Laplace transformation to averaged linear partial differential equations governing the phenomenon. The governing equation for the free product thickness is derived by averaging the oil phase mass balance equation along the free product thickness and substituting the boundary conditions at the oil/water interface and oil surface. The analytical solutions estimate the temporal and spatial distribution of free product thickness on the water table for a number of recovery scenarios. Results are presented for the temporal and spatial variation of the free product thickness, temporal variation of the free product volume recovered, and recovery efficiency based on the readings at the monitoring wells. Since they can be utilized without a great deal of data, analytical solutions are quite attractive as screening tools in two-pump free product recovery operations.

  5. CO2 mass estimation visible in time-lapse 3D seismic data from a saline aquifer and uncertainties

    NASA Astrophysics Data System (ADS)

    Ivanova, A.; Lueth, S.; Bergmann, P.; Ivandic, M.

    2014-12-01

    At Ketzin (Germany) the first European onshore pilot scale project for geological storage of CO2 was initiated in 2004. This project is multidisciplinary and includes 3D time-lapse seismic monitoring. A 3D pre-injection seismic survey was acquired in 2005. Then CO2 injection into a sandstone saline aquifer started at a depth of 650 m in 2008. A 1st 3D seismic repeat survey was acquired in 2009 after 22 kilotons had been injected. The imaged CO2 signature was concentrated around the injection well (200-300 m). A 2nd 3D seismic repeat survey was acquired in 2012 after 61 kilotons had been injected. The imaged CO2 signature further extended (100-200 m). The injection was terminated in 2013. Totally 67 kilotons of CO2 were injected. Time-lapse seismic processing, petrophysical data and geophysical logging on CO2 saturation have allowed for an estimate of the amount of CO2 visible in the seismic data. This estimate is dependent upon a choice of a number of parameters and contains a number of uncertainties. The main uncertainties are following. The constant reservoir porosity and CO2 density used for the estimation are probably an over-simplification since the reservoir is quite heterogeneous. May be velocity dispersion is present in the Ketzin reservoir rocks, but we do not consider it to be large enough that it could affect the mass of CO2 in our estimation. There are only a small number of direct petrophysical observations, providing a weak statistical basis for the determination of seismic velocities based on CO2 saturation and we have assumed that the petrophysical experiments were carried out on samples that are representative for the average properties of the whole reservoir. Finally, the most of the time delay values in the both 3D seismic repeat surveys within the amplitude anomaly are near the noise level of 1-2 ms, however a change of 1 ms in the time delay affects significantly the mass estimate, thus the choice of the time-delay cutoff is crucial. In spite

  6. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    USGS Publications Warehouse

    Morrissey, D.J.

    1987-01-01

    The highly permeable, unconfined, glacial drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many communities that obtain part or all of their public water supply from groundwater. Analytical , two-dimensional numerical and three-dimensional numerical models were used to delineate contributing areas of groundwater pollution. These methods of analysis were compared by applying them to hypothetical aquifer having the dimensions and geometry of a typical glacial drift, river valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial drift aquifers in New England. These controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and degree of well penetration. Numerical models of valley aquifers are deemed best suited to determine the approximate contributing area of a well because of their capability to simulate more accurately the variable geohydrologic conditions typical of glacial drift valley aquifers. On the basis of results obtained with the two-dimensional numerical model, for which a wide range of hydrologic conditions were simulated, the contributing area in a typical glacial drift, river valley setting for a well pumped at a rate of 1.0 million gal/day--a common pumping rate--can be expected to range from about 0.9 to 1.8 sq mi. Model analysis also shows that the contributing area of pumped wells may be expected to extend to the opposite side of the river and to include significant areas of till uplands adjacent to the aquifer on both sides of the valley

  7. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    USGS Publications Warehouse

    Morrissey, Daniel J.

    1989-01-01

    The highly permeable, unconfined, glacial-drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many of the communities that obtain part or all of their public water supply from ground water. Recent events have shown that these aquifers are highly susceptible to contamination that results from a number of sources, such as seepage from wastewater lagoons, leaking petroleum-product storage tanks, and road salting. To protect the quality of water pumped from supply wells in these aquifers, it is necessary to ensure that potentially harmful contaminants do not enter the ground in the area that contributes water to the well. A high degree of protection can be achieved through the application of appropriate land-use controls within the contributing area. However, the contributing areas for most supply wells are not known. This report describes the factors that affect the size and shape of contributing areas to public supply wells and evaluates several methods that may be used to delineate contributing areas of wells in glacial-drift, river-valley aquifers. Analytical, two-dimensional numerical, and three-dimensional numerical models were used to delineate contributing areas. These methods of analysis were compared by applying them to a hypothetical aquifer having the dimensions and geometry of a typical glacial-drift, river-valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial-drift aquifers in New England. The controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and

  8. Transport of free and particulate-associated bacteria in karst

    USGS Publications Warehouse

    Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.

    2000-01-01

    Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The

  9. Estimating the evolution of atrazine concentration in a fractured sandstone aquifer using lumped-parameter models and taking land-use into account

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Gallé, T.; Bayerle, M.; Pittois, D.; Braun, C.; El Khabbaz, H.; Maloszewski, P.; Elsner, M.

    2012-04-01

    The European water framework directive and the groundwater directive require member states to identify water bodies at risk and assess the significance of increasing trend in pollutant concentration. For groundwater bodies, estimating the time to trend reversal or the pollution potential of the different sources present in the catchment require a sound understanding of the hydraulic behaviour of the aquifer. Although numerical groundwater models can theoretically be used for such forecasts, their calibration remains in many real-world cases problematic. A more parsimonious lumped-parameter model was applied to predict the evolution of atrazine concentration in springs draining a fractured sandstone aquifer in Luxembourg. Despite a nationwide ban in 2005, spring water concentrations of both atrazine and its metabolite desethylatrazine still had not begun to decrease four years later. The transfer function of the model was calibrated using tritium measurements and modified to take into account the fact that whereas tritium is applied uniformly over the entire catchment, atrazine was only used in areas where cereals are grown. We could also show that sorption processes in the aquifer can be neglected and that including pesticide degradation does not modify the shape of the atrazine breakthrough, but only affects the magnitude of the predicted spring water concentration. Results indicate that due to the large hydraulic inertia of the aquifer, trend reversal should not be expected before 2018.

  10. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The

  11. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  12. An In-Depth Exploration of Karst.

    ERIC Educational Resources Information Center

    Jackson, Julia A.; Zokaites, Carol; Smith, Michael J.; Crum, Emily; Callahan, Caitlin

    2001-01-01

    Explains how a karst is formed in the U.S. and introduces an activity in which students explore the fragile environment of a karst and study the interactions between human population and the earth system. (YDS)

  13. Hydraulic linkage of a storm water tank to a karst spring (Gallusquelle)

    NASA Astrophysics Data System (ADS)

    Tranter, Morgan; Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2017-03-01

    A significant proportion of the global water supply is ensured by karst aquifers. However, these are often highly vulnerable to contamination. A storm water tank located in the rural karst catchment area of the Gallusquelle spring (Swabian Alb, southwest Germany) about 9.1 km away was identified as a potential source of contamination. A tracer experiment was carried out in order to evaluate this hydraulic connection. For this, 2.5 kg of the fluorescence dye sulforhodamine G was injected directly at the spillway location. The proposed hydraulic connectivity of the storm water tank to the Gallusquelle spring has been confirmed with this experiment. The maximum tracer velocity of 149 m h-1 highlights rapid groundwater flow through karst conduits. The low tracer mass recovery rate of 14.1% is an indication of a retention capacity along the flow path. This was confirmed by a release of withheld tracer triggered by a heavy storm event 16 days after the injection.

  14. Groundwater vulnerability mapping of Qatar aquifers

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  15. Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA

    NASA Astrophysics Data System (ADS)

    Vesper, Dorothy J.; White, William B.

    Continuous records of discharge, specific conductance, and temperature were collected through a series of storm pulses on two limestone springs at Fort Campbell, western Kentucky/Tennessee, USA. Water samples, collected at short time intervals across the same storm pulses, were analyzed for calcium, magnesium, bicarbonate, total organic carbon, and pH. Chemographs of calcium, calcite saturation index, and carbon dioxide partial pressure were superimposed on the storm hydrographs. Calcium concentration and specific conductance track together and dip to a minimum either coincident with the peak of the hydrograph or lag slightly behind it. The CO2 pressure continues to rise on the recession limb of the hydrograph and, as a result, the saturation index decreases on the recession limb of the hydrograph. These results are interpreted as being due to dispersed infiltration through CO2-rich soils lagging the arrival of quickflow from sinkhole recharge in the transport of storm flow to the springs. Karst spring hydrographs reflect not only the changing mix of base flow and storm flow but also a shift in source of recharge water over the course of the storm. L'enregistrement en continu du débit, de la conductivité et de la température de l'eau a été réalisé au cours d'une série de crues à deux sources émergeant de calcaires, à Fort Campbell (Kentucky occidental, Tennessee, États-Unis). Des échantillons d'eau, prélevés à de courts pas de temps lors de ces crues, ont été analysés pour le calcium, le magnésium, les bicarbonates, le carbone organique total et le pH. Les chimiogrammes de calcium, d'indice de saturation de la calcite et de la pression partielle en CO2 ont été superposés aux hydrogrammes de crue. La concentration en calcium et la conductivité de l'eau se suivent bien et passent par un minimum correspondant au pic de l'hydrogramme ou légèrement retardé. La pression partielle en CO2 continue de croître au cours de la récession de l

  16. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.

    1997-01-01

    Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual

  17. Estimating aquifer recharge in fractured hard rock: analysis of the methodological challenges and application to obtain a water balance (Jaisamand Lake Basin, India)

    NASA Astrophysics Data System (ADS)

    Rohde, Melissa M.; Edmunds, W. Mike; Freyberg, David; Sharma, Om Prakash; Sharma, Anupma

    2015-11-01

    Groundwater recharge is an important metric for sustainable water management, particularly in semi-arid regions. Hard-rock aquifers underlie two-thirds of India and appropriate techniques for estimating groundwater recharge are needed, but the accuracy of such values is highly uncertain. The chloride mass balance (CMB) method was employed to estimate annual groundwater recharge rates in a monsoon-dependent area of Jaisamand Lake basin in Rajasthan, which contains the Gangeshwar watershed. A monitoring program was established within the watershed during summer 2009, with local participation for the collection of rainfall and groundwater samples. Groundwater recharge was estimated spatially over a 3-year period with pre-monsoon and post-monsoon datasets. Recharge rates estimated using the CMB method were then compared to those estimated using the water-table fluctuation (WTF) method. Specific yield was 0.63 % and assumed to be homogenous across the watershed. The average recharge rate derived from the WTF method (31 mm/year) was higher than that derived from the CMB method (24.3 mm/year). CMB recharge rates were also applied to obtain a water balance for the watershed. CMB recharge rates were used to estimate annual groundwater replenishment and were compared with estimates of groundwater withdrawal using Landsat imagery. Over the 2009-2011 study period, groundwater demand was about seven times greater than the estimated groundwater renewal of 5.6 million cubic meters. This analysis highlights the challenges associated with estimating groundwater recharge in fractured hard-rock aquifers, and how renewable groundwater-resource estimates can be used as a metric to promote sustainable water use.

  18. Wildfire on Karst: an Overview

    NASA Astrophysics Data System (ADS)

    Coleborn, K.; Lupingna, A.; Flemons, I.; Nagra, G.; Treble, P. C.; Andersen, M. S.; Baker, A.; Tozer, M.; Fairchild, I. J.; Baker, A.; Meehan, S.

    2015-12-01

    Wildfires dramatically change the surface environment by removing vegetation and soil microbial communities and altering soil structure and geochemistry. Karst subsurface processes such as dissolution, cave formation and speleothem deposition are sensitive to environmental change, which is precisely why speleothems have been widely used as recorders of surface and climate change at an annual to millennial temporal scale. The effect of fire on karst processes is poorly understood. We hypothesise that a wildfire induced change at the surface will impact karst dissolution and precipitation processes. Firstly, sterilisation of the soil by heating causes a reduction in soil CO2 concentration which is a key component in dissolution processes. Secondly, removal of vegetation alters surface albedo and soil water storage properties. This could change the hydrology and isotopic signature of speleothem-forming drip water. We also hypothesise that a wildfire will produce a unique biogeochemical signature due to a change in the organic and inorganic properties of soil, which can be transported into speleothem forming drip water. Fire changes the organic matter character which is an important component in the mobilisation and transport of trace metals. Combustion of vegetation results in addition of ash derived minerals to the soil. Quantifying the biogeochemical signature from a burnt landscape will enable us to determine whether this wildfire signature is preserved in speleothems. This would provide the opportunity to use speleothems as recorders of fire history for the first time. Determining the impact of fire on karst processes would inform fire management and karst conservation policies.

  19. Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM)

    NASA Astrophysics Data System (ADS)

    Peterson, Eric W.; Wicks, Carol M.

    2006-09-01

    SummaryQuestions about the importance of conduit geometry and about the values of hydraulic parameters in controlling ground-water flow and solute transport through karstic aquifers have remained largely speculative. One goal of this project was to assess the role that the conduit geometry and the hydraulic parameters have on controlling transport dynamics within karstic aquifers. The storm water management model (SWMM) was applied to the Devil's Icebox-Connor's Cave System in central Missouri, USA. Simulations with incremental changes to conduit geometry or hydraulic parameters were performed with the output compared to a calibrated baseline model. Ten percent changes in the length or width of a conduit produced statistically significant different fluid flow responses. The model exhibited minimal sensitivity to slope and infiltration rates; however, slight changes in Manning's roughness coefficient can highly alter the simulated output. Traditionally, the difference in flow dynamics between karstified aquifers and porous media aquifers has led to the idea that modeling of karst aquifers is more difficult and less precise than modeling of porous media aquifers. When evaluated against models for porous media aquifers, SWMM produced results that were as accurate (10% error compared to basecase). In addition, SWMM has the advantage of providing data about local flow. While SWMM may be an appropriate modeling technique for some karstic aquifers, SWMM should not be viewed as a universal solution to modeling karst systems.

  20. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    PubMed Central

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-01-01

    Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and

  1. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).

    PubMed

    Mayaud, C; Wagner, T; Benischke, R; Birk, S

    2014-04-16

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the

  2. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain

    NASA Astrophysics Data System (ADS)

    Frumkin, Amos; Zaidner, Yossi; Na'aman, Israel; Tsatskin, Alexander; Porat, Naomi; Vulfson, Leonid

    2015-01-01

    We show that clusters of karst sinkholes can occur on carbonate hypogene karst terrains. Unlike common doline karst of dissolution origin, the studied sinkholes form mainly by sagging and collapse. Thermal survey, OSL dating and morphologic analysis during quarrying and excavations are applied to study the sinkholes at the Ayyalon karst, Israel. The thermal survey shows the spatial pattern of rising warm water plumes, whose temperature is > 2 °C warmer than the surrounding aquifer water. These plumes dissolve the limestone, creating large voids and maze caves. Mass wasting forms surface sinkholes mainly by sagging and collapse. Both types of deformation often occur within the same depression. Lack of hydrologic connection between the surface and underground voids constrain drainage and promote rapid accumulation of colluvium, dust and pedogenic clays. These have filled the sinkholes up to their rim before the late Holocene. OSL dating constrains the rate of sediment accumulation within the sinkholes. The average filling rate (thickness divided by elapsed time) is ~ 47 mm ka- 1 for the last 53 ± 4 ka in Sinkhole 1, while in Sinkhole 2 ("Nesher Ramla karst depression"), the rate is ~ 61 mm ka- 1 from ~ 200 to 78 ka, and ~ 173 mm ka- 1 since ~ 78 ka. Between ~ 170 and 78 ka, Sinkhole 2 was intensively used by Middle Paleolithic hominins. The studied sinkholes may be considered as a type locality for hypogene sinkhole terrain on carbonate rocks.

  3. Analysis of the quality of parameter estimates from repeated pumping and slug tests in a fractured porous aquifer system in Wonju, Korea.

    PubMed

    Lee, J Y; Lee, K K

    1999-01-01

    Pumping and slug tests are widely used, relatively simple methods for estimating hydraulic conductivity and storage coefficient. This study tested the reproducibility of pumping and slug tests in estimating aquifer parameters in fractured or fractured porous media. The continuum concept is applied to represent the hydraulic properties by the conventional conductivity and storage coefficient. Repeated tests show discrepancies wider than can be attributed to probable measurement errors or incomplete curve fitting. The sources of discrepancy include turbulent head loss in an observation well, pumping well location, data acquisition period (pumping or recovery), selection of analysis method, test initiation mechanism, applied initial displacement, and selection of data segment for analysis. When we employ a specific test practice or choose a specific analysis method or data segment for the analysis, the resulting parameter estimates show characteristic patterns of distribution with respect to the mean value. This study analyzes the patterns and discusses how to improve the reliability of the parameter estimation.

  4. Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing

    USGS Publications Warehouse

    Blainey, J.B.; Ferre, T. P. A.; Cordova, J.T.

    2007-01-01

    Pumping of an unconfined aquifer can cause local desaturation detectable with high-resolution gravimetry. A previous study showed that signal-to-noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters, estimations of hydraulic conductivity and specific yield based on gravity data alone are likely to be unacceptably inaccurate and imprecise. In contrast, a transect of low-quality drawdown data alone resulted in accurate estimates of hydraulic conductivity and inaccurate and imprecise estimates of specific yield. Combined use of drawdown and gravity data, or use of high-quality drawdown data alone, resulted in unbiased and precise estimates of both parameters. This study is an example of the value of a staged assessment regarding the likely significance of a new measurement method or monitoring scenario before collecting field data. Copyright 2007 by the American Geophysical Union.

  5. Tidal pumping of water between Bahamian blue holes, aquifers, and the ocean

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan B.; Gulley, Jason; Spellman, Patricia

    2012-01-01

    SummaryExchange of water between conduits and aquifers occurs in many continental karst settings because allogenic recharge from confined catchments causes hydraulic heads in conduits to increase faster than in the aquifer. Most modern carbonate platforms lack allogenic catchments, allowing rainfall to recharge the aquifer uniformly without sufficiently altering head gradients to drive exchange between conduits and aquifers. Some modern carbonate platforms experience tidal variations which could lead to head gradients that drive exchange. To determine the impact of tides on exchange, we measured water elevations at high temporal resolution in the ocean, blue holes and wells on San Salvador Island and Rum Cay, Bahamas. Dampened tidal amplitudes inland indicate diffusivity values (transmissivity/storativity) at wells were around 1.3 × 10 6 m 2/day and at blue holes were around 76.9 × 10 6 m 2/day, assuming dampening results only from head loss. These diffusivity values were used to estimate hydraulic conductivity values of around 4.0-294 × 10 4 m/day although they may be lower if the aquifer thickness is greater than the estimated 10 m. We assume wells provide values representing greater influence of