Sample records for karst groundwater hydrologic

  1. Estimating exposure to groundwater contaminants in karst areas

    NASA Astrophysics Data System (ADS)

    Butscher, C.

    2012-12-01

    Large multidisciplinary projects investigate health effects and environmental impacts of contamination. Such multidisciplinary projects challenge groundwater hydrologist because they demand estimations of human or environmental exposure to groundwater contaminants. But especially in karst regions, groundwater quality is subject to rapid changes resulting from highly dynamic flow systems with rapid groundwater recharge and contaminant transport in karst conduits. There is a strong need for tools that allow the quantification of the risk of contaminant exposure via the karst groundwater and its temporal variation depending on rainfall events and overall hydrological conditions. A fact that makes the assessment of contaminant exposure even more difficult is that many contaminants behave differently in the subsurface than the groundwater, because they do not dissolve and exist as a separate phase. Important examples are particulate contaminants, such as bacteria, and non-aqueous phase liquids (NAPLs), such as many organic compounds. Both are ubiquitous in the environment and have large potential for health impacts. It is known from bacterial contamination of karst springs that such contamination is strongly related to flow conditions. Bacteria, which are present at the land surface, in the soil, rock matrix or the conduit system, are immobile during base flow conditions. During storm events however, they become mobilized and are rapidly transported through the conduit flow system from sources to areas of potential exposure. As a result, bacteria concentrations that most times are low at a spring can show a high peak during storm flow. Conceptual models exist that suggest that the transport of NAPLs in karst aquifers is, just like bacterial contamination, related to flow conditions. Light NAPLs that reach the saturated zone float and accumulate on the water table; and dense NAPLs sink downward in the aquifer until they are trapped in pores, fractures and conduits where

  2. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  3. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China

    NASA Astrophysics Data System (ADS)

    Jiang, Yongjun; Cao, Min; Yuan, Daoxian; Zhang, Yuanzhu; He, Qiufang

    2018-02-01

    The unique hydrogeology of karst makes the associated groundwater respond quickly to rainfall events and vulnerable to anthropogenic pollutions. In this study, high-frequency monitoring of spring discharge, temperature, electrical conductivity (EC) and pH, along with monthly hydrochemical and microbial analyses, was undertaken at the outlet of Laolondong karst underground river in Nanshan, southwestern China. The aim was to explore the environmental effects of the catchment's urban area on the karst groundwater resources. The monitoring data of a tracer test and the response of discharge to rainfall events demonstrate that conduits and narrow fissures coexist in the Laolongdong karst aquifer. The EC, Na+, Cl- and SO4 2- values (840 μS/cm, 33.7, 38.6 and 137.2 μg/L, respectively), along with high concentrations of fecal coliform bacteria, at the outlet indicate considerable urban pollution in this area. The contaminants sulfate and nitrate showed different relationships with discharge and EC in different stages of a rainfall event. This behavior provided information about aquifer structure and the influence of transport properties. Meanwhile, the hydrological processes of groundwater flow could be modified by urbanization and result in increasing magnitude of urban floods in the underground river. In addition, sulfuric and nitric acids introduced by urbanization not only impact the karst groundwater quality, but also result in a significant perturbation to the carbon cycling system in the karst area.

  4. Estimating the proportion of groundwater recharge from flood events in relation to total annual recharge in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Dvory, N. Z.; Ronen, A.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A.

    2017-12-01

    Sustainable groundwater production from karstic aquifers is primarily dictated by its recharge rate. Therefore, in order to limit over-exploitation, it is essential to accurately quantify groundwater recharge. Infiltration during erratic floods in karstic basins may contribute substantial amount to aquifer recharge. However, the complicated nature of karst systems, which are characterized in part by multiple springs, sinkholes, and losing/gaining streams, present a large obstacle to accurately assess the actual contribution of flood water to groundwater recharge. In this study, we aim to quantify the proportion of groundwater recharge during flood events in relation to the annual recharge for karst aquifers. The role of karst conduits on flash flood infiltration was examined during four flood and artificial runoff events in the Sorek creek near Jerusalem, Israel. The events were monitored in short time steps (four minutes). This high resolution analysis is essential to accurately estimating surface flow volumes, which are of particular importance in arid and semi-arid climate where ephemeral flows may provide a substantial contribution to the groundwater reservoirs. For the present investigation, we distinguished between direct infiltration, percolation through karst conduits and diffused infiltration, which is most affected by evapotranspiration. A water balance was then calculated for the 2014/15 hydrologic year using the Hydrologic Engineering Center - Hydrologic Modelling System (HEC-HMS). Simulations show that an additional 8% to 24% of the annual recharge volume is added from runoff losses along the creek that infiltrate through the karst system into the aquifer. The results improve the understanding of recharge processes and support the use of the proposed methodology for quantifying groundwater recharge.

  5. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  6. Understanding heterogeneity and data assimilation in karst groundwater surface water interactions: The role of geophysics and hydrologic models in a semi-confined aquifer

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Steven B.

    Groundwater and surface water historically have been treated as different entities. Due to this, planning and development of groundwater and surface water resources, both quantity and quality are often also treated separately. Recently, there has been work to characterize groundwater and surface water as a single system. Karstic systems are widely influenced by these interactions due to varying permeability, fracture geometry and porosity. Here, three different approaches are used to characterize groundwater surface water interactions in karstic environments. 1) A hydrologic model, ParFlow, is conditioned with known subsurface data to determine whether a reduction in subsurface uncertainty will enhance the prediction of surface water variables. A reduction in subsurface uncertainty resulted in substantial reductions in uncertainty in Hortonian runoff and less reductions in Dunne runoff. 2) Geophysical data is collected at a field site in O'leno State Park, Florida to visualize groundwater and surface water interactions in karstic environments. Significant changes in resistivity are seen through time at two locations. It is hypothesized that these changes are related to changing fluid source waters (e.g groundwater or surface water). 3). To confirm these observations an ensemble of synthetic forward models are simulated, inverted and compared directly with field observations and End-Member-Mixing-Analysis (EMMA). Field observations and synthetic models have comparable resistivity anomalies patterns and mixing fractions. This allows us to characterize and quantify subsurface mixing of groundwater and surface in karst environments. These three approaches (hydrologic models, field data and forward model experiments), (1) show the complexity and dynamics of groundwater and surface mixing in karstic environments in varying flow conditions, (2) showcase a novel geophysical technique to visualize groundwater and surface water interactions and (3) confirm hypothesis of flow

  7. Using streamflow and hydrochemical tracers to conceptualise hydrological function of underground channel system in a karst catchment of southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicai; Chen, Xi; Wang, Jinli

    2016-04-01

    Karst hydrodynamic behaviour is complex because of special karst geology and geomorphology. The permeable multi-media consisting of soil, epikarst fractures and conduits has a key influence on karst hydrological processes. Spatial heterogeneity is high due to special landforms of vertical shafts, caves and sinkholes, which leads to a high dynamic variability of hydrological processes in space and time, and frequent exchange of surface water and groundwater. Underground water in different reach were sampled over the 1996-2001 in a karst catchment of Houzhai, with 81km2, located in Guizhou province of southwest China. Samples were analysed for water temperature, pH, conductivity and four solute concentrations. The monitoring sought to assess the combined utility of flow discharge and natural geochemical tracers in upscaling flow structure understanding in karst area. Based on previous researches and field investigation, the catchment characteristics were explored with the use of a GIS. Both flow discharge and solute concentrations exhibited clear seasonal patterns at every groundwater sampling sites. The variations of flow and chemistry are more dramatic in upstream site with less soil cover and more sinkholes development, which affect the hydrological pathways significantly. There was clear evidence that the differences in geology and soil were the main controls on hydrology and flow chemistry, which was spatially variable in different sites of underground channel. Conceptual flow structures in main hydrological response units for different area in the catchment were developed according to the variation of discharge and flow chemistry.

  8. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  9. [Variation Characteristics and Sources of Heavy Metals in an Urban Karst Groundwater System during Rainfall Event].

    PubMed

    Ren, Kun; Yang, Ping-heng; Jiang, Ze-li; Wang, Zun-bo; Shi, Yang; Wang, Feng-kang; Li, Xiao-chun

    2015-04-01

    The groundwater discharge and heavy metal concentrations (Mn, Pb, Cu and As) at the outlet of Nanshan Laolongdong karst subterranean river, located at the urban region in Chongqing, were observed during the rainfall events. Analysis of flow and concentrations curves was employed to study their responses to the rainfall events and explore the internal structure of karst hydrological system. Principal component analysis (PCA) and measurements were used to identify the sources of heavy metals during rainfall. The result showed that the discharge and concentrations of the heavy metals responded promptly to the rainfall event. The variation characteristics of flow indicated that Laolongdong subterranean river system belonged to a karst hydrological system including fractures together with conduits. Urban surface runoff containing large amounts of Mn, Pb and Cu went directly to subterranean river via sinkholes, shafts and karst windows. As a result, the peak concentrations of contaminants (Mn, Pb and Cu) flowed faster than those of discharge. The major sources of water pollution were derived from urban surface runoff, soil and water loss. Cave dripwater and rainwater could also bring a certain amount of Mn, Pb and As into the subterranean river. Urban construction in karst areas needs scientific and rational design, perfect facilities and well-educated population to prevent groundwater pollution from the source.

  10. Large-scale assessment of present day and future groundwater recharge and its sensitivity to climate variability in Europe's karst regions

    NASA Astrophysics Data System (ADS)

    Hartmann, A. J.; Gleeson, T. P.; Wagener, T.; Wada, Y.

    2016-12-01

    Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly

  11. Karst spring real time monitoring to identify the groundwater circulation in the feeding aquifer

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ferranti, Flavia; De Filippi, Francesco M.; Cardilo, Giulia

    2017-04-01

    About one quarter of the world's population is largely or entirely dependent on groundwater from karst systems. However, karst aquifers have specific hydraulic and hydrogeological characteristics that render them highly vulnerable to pollution from human activities. Intrinsic vulnerability of a karst aquifer takes account of the inherent geological, hydrological and hydrogeological characteristics of an area; however, it is independent of the nature of contaminants. Groundwater circulation is usually very rapidly as a function of high rainfall input. As consequence, in case of contamination, these systems are characterized by limited attenuation processes in the unsaturated zone. The analysis of karst spring responses to rainfall events, at the catchment scale, is one promising approach for groundwater flow characterization. Karst springs are, in fact, an important source of information in order to understand the circulation characteristics in such complex systems. The karst Pertuso Spring, located in the Upper Valley of Aniene River, is the main outlet of a large aquifer which is one of the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This paper deals with Pertuso Spring data collected from December 2014 to March 2016, using a multiparametric probe which directly interfaces with a data logger for real-time recording of hourly data. This instrument simultaneously measures up to 6 parameters (pH, groundwater level, temperature, electric conductivity, redox and dissolved oxygen). In particular, water temperature, electrical conductivity and rainfall data coming from meteorological stations have been studied to identify the groundwater circulation in the aquifer feeding Pertuso Spring. The study of the lag time between peak rainfall and peak of T and EC allow to highlight the seasonal vulnerability of this aquifer.

  12. Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi

    2017-04-01

    The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.

  13. Karst Groundwater Hydrologic Analyses Based on Aerial Thermography

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; Keith, A. G.

    2000-01-01

    On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.

  14. Hydrologic controls of methane dynamics in a karst subterranean estuary

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Ganju, N. K.; Lowell, N. S.; Roth, E.; Lapham, L.

    2017-12-01

    Subterranean estuaries extend into carbonate landmasses where abundant cave networks influence the hydrology and biogeochemistry of the coastal aquifer environment. Enhanced density stratification between meteoric freshwater and saline groundwater facilitates the development of sharp salinity and redox gradients associated with the production and consumption of methane, a potent greenhouse gas. These processes impact methane-dynamics in the coastal zone and provide nutritive resources for the cave-adapted estuarine food web in this oligotrophic habitat. These observations were based on sampling in discrete time periods, leaving questions about the effects of temporally dynamic hydrology on the production, consumption and transport of methane. In this study, we evaluated hydro-biogeochemical controls of methane dynamics in a subterranean estuary to quantify the magnitude of the methane sink in the coastal karst platform of the Yucatan Peninsula, Mexico. We deployed osmotically-driven sampling devices (OsmoSamplers) in flooded cave passages to document temporal variability in methane concentrations and δ13C values, as well as major ions in the groundwater. Water level, current velocities, water and air temperatures, and precipitation were also monitored. Using these records, we built an integrated model to provide a first-order calculation on methane consumption rates for the coastal aquifer. The year-long water chemistry record reveals higher source concentrations of methane in the dry season (5849 ± 1198 nM) than in the wet season (4265 ± 778 nM) with depleted δ13C values (-65.4 ± 2.1 ‰) throughout the year. Our analyses suggest the methane sink potential and ecosystem function are significantly affected by precipitation induced hydrological changes within the tropical subterranean karst estuary.

  15. Ecosystem services provided by groundwater dependent wetlands in karst areas

    NASA Astrophysics Data System (ADS)

    Massimo Delle Grazie, Fabio; Gill, Laurence

    2017-04-01

    Ecosystem services provided by groundwater dependent wetlands in karst areas Turloughs are topographic depressions in karst, which are intermittently flooded on an annual cycle via groundwater sources and have substrate and/or ecological communities characteristic of wetlands. Turloughs are designated a Priority Habitat in Annex 1 of the EU Habitats Directive (92/43/EEC) as well as GWDTEs under the Water Framework Directive (WFD). Hydrology is the primary driver of these unique ecosystems and so a rigorous understanding of the flooding regime is required in order to assess their conservation and future sustainability. This research aims to identify and quantify the ecosystem services associated with turloughs, particularly in relation to the need for habitat conservation in the face of external pressures associated with agriculture, road drainage schemes, water supply and wastewater disposal. The research focuses primarily on quantifying the ecosystem functions responsible for producing terrestrial hydrologic and climatic services, as well as intrinsic biodiversity services, and uses this context to lay out a blueprint for a more detailed ecosystem service assessment. These services have been quantified in appropriate units (biophysical or otherwise), based on actual or potential sustainable use levels. Available data and field studies have been used to assess the hydrological conditions necessary to sustain the biodiversity of vegetation as well as to better understand the connections between hydrology and biogeochemical cycles. The benefits of the turlough services have then been analyzed and quantified in appropriate units (ecological, socio-cultural and economic indicators) as well as monetary values. This has been done using the inVEST tool. InVEST includes models for quantifying, mapping, and valuing the benefits provided by terrestrial, freshwater, and marine systems. In particular the Habitat Risk Assessment and the Nutrient Delivery Ratio modules have been

  16. Karst hydrology and chemical contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, M.S.

    1993-01-01

    Ground-water flow in karst aquifers is very different from flow in granular or fractured aquifers. Chemical contamination may be fed directly to a karst aquifer via overland flow to a sinkhole with little or no attenuation and may contaminate downgradient wells, springs, and sinkholes within a few hours or a few days. Contaminants may also become temporarily stored in the epikarstic zone for eventual release to the aquifer. Flood pulses may flush the contaminants to cause transiently higher levels of contamination in the aquifer and discharge points. The convergent nature of flow in karst aquifers may result in contaminants becomingmore » concentrated in conduits. Once contaminants have reached the subsurface conduits, they are likely to be rapidly transported to spring outlets. Traditional aquifer remediation techniques for contaminated aquifers are less applicable to karst aquifers.« less

  17. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    USGS Publications Warehouse

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  18. Hydrochemical processes and evolution of karst groundwater in the northeastern Huaibei Plain, China

    NASA Astrophysics Data System (ADS)

    Qian, Jiazhong; Peng, Yinxue; Zhao, Weidong; Ma, Lei; He, Xiaorui; Lu, YueHan

    2018-06-01

    Major ion geochemistry reveals that the hydrochemical evolutionary process of karst groundwater in the northeastern Huaibei Plain, China, consists of three sub-processes: the dissolution of dolomite, gypsum dissolution with dedolomitization, and mixing with overlying pore water. Understanding hydrochemical evolution has been an important topic in understanding the history, status, and dynamics of the groundwater flow system. The presented study found a hydrochemical boundary roughly corresponding to the thickness of overlying strata equating to 50 m depth, indicating two flow compartments participating in different hydrological cycles—a local shallow rapidly replenished compartment showing lower and more stable main ion concentrations, and a regional deep-flow compartment showing higher and sporadic concentrations of Na+, K+, Ca2+, Mg2+, Cl- and SO4 2-, as well as high total dissolved solids (TDS), total hardness, and sodium adsorption ratio (SAR). In areas with aquifers with low water transmitting ability, groundwater samples show a high chloride ratio and elevated TDS values, indicating salinization of groundwater due to stagnant water flows. Analyses of the data on the saturation indexes and mineral solutions, in tandem with trilinear diagram analysis and petrological observations, indicate that dedolomitization is the dominant process controlling the chemical characteristics of karst groundwater in the study area. Groundwater and pore-water mixing was also observed at the later evolutionary stage of groundwater flow, demonstrating frequent groundwater/pore-water interactions where groundwater is recharged by pore water due to lower groundwater level in the study area.

  19. Retrieving hydrological connectivity from empirical causality in karst systems

    NASA Astrophysics Data System (ADS)

    Delforge, Damien; Vanclooster, Marnik; Van Camp, Michel; Poulain, Amaël; Watlet, Arnaud; Hallet, Vincent; Kaufmann, Olivier; Francis, Olivier

    2017-04-01

    Because of their complexity, karst systems exhibit nonlinear dynamics. Moreover, if one attempts to model a karst, the hidden behavior complicates the choice of the most suitable model. Therefore, both intense investigation methods and nonlinear data analysis are needed to reveal the underlying hydrological connectivity as a prior for a consistent physically based modelling approach. Convergent Cross Mapping (CCM), a recent method, promises to identify causal relationships between time series belonging to the same dynamical systems. The method is based on phase space reconstruction and is suitable for nonlinear dynamics. As an empirical causation detection method, it could be used to highlight the hidden complexity of a karst system by revealing its inner hydrological and dynamical connectivity. Hence, if one can link causal relationships to physical processes, the method should show great potential to support physically based model structure selection. We present the results of numerical experiments using karst model blocks combined in different structures to generate time series from actual rainfall series. CCM is applied between the time series to investigate if the empirical causation detection is consistent with the hydrological connectivity suggested by the karst model.

  20. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    USGS Publications Warehouse

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  1. Continuous gravimetric monitoring as an integrative tool for exploring hydrological processes in the Lomme Karst System (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Poulain, A.; Hallet, V.; Rochez, G.; Quinif, Y.; Meus, P.; Kaufmann, O.; Francis, O.

    2016-12-01

    Karst systems are highly heterogeneous which makes their hydrology difficult to understand. Geophysical techniques offer non-invasive and integrative methods that help interpreting such systems as a whole. Among these techniques, gravimetry has been increasingly used in the last decade to characterize the hydrological behavior of complex systems, e.g. karst environments or volcanoes. We present a continuous microgravimetric monitoring of 3 years in the karstic area of Rochefort (Belgium), that shows multiple occurrences of caves and karstic features. The gravity record includes measurements of a GWR superconducting gravimeter, a Micro-g LaCoste gPhone and an absolute FG5 gravimeter. Together with meteorological measurements and a surface/in-cave hydrogeological monitoring, we were able to improve the knowledge of hydrological processes. On the one hand, the data allowed identifying seasonal groundwater content changes in the unsaturated zone of the karst area, most likely to be linked to temporary groundwater storage occurring in the most karstified layers closed to the surface. Combined with additional geological information, modelling of the gravity signal based on the vertical potential of the gravitational attraction was then particularly useful to estimate the seasonal recharge leading to the temporary subsurface groundwater storage. On the other hand, the gravity monitoring of flash floods occurring in deeper layers after intense rainfall events informed on the effective porosity gradient of the limestones. Modelling was then helpful to identify the hydrogeological role played by the cave galleries with respect to the hosting limestones during flash floods. These results are also compared with measurements of an in-cave gravimetric monitoring performed with a gPhone spring gravimeter. An Electrical Resistivity Tomography monitoring is also conducted at site and brings additional information useful to verify the interpretation made with the gravimetric

  2. Effects of projected climate (2011–50) on karst hydrology and species vulnerability—Edwards aquifer, south-central Texas, and Madison aquifer, western South Dakota

    USGS Publications Warehouse

    Mahler, Barbara J.; Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Norton, Parker A.

    2015-12-22

    Karst aquifers—formed by the dissolution of soluble rocks such as limestone—are critical groundwater resources in North America, and karst springs, caves, and streams provide habitat for unique flora and fauna. Springflow and groundwater levels in karst terrane can change greatly over short time scales, and therefore are likely to respond rapidly to climate change. How might the biological communities and ecosystems associated with karst respond to climate change and accompanying changes in groundwater levels and springflow? Sites in two central U.S. regions—the Balcones Escarpment of south-central Texas and the Black Hills of western South Dakota (fig. 1)—were selected to study climate change and its potential effects on the local karst hydrology and ecosystem. The ecosystems associated with the Edwards aquifer (Balcones Escarpment region) and Madison aquifer (Black Hills region) support federally listed endangered and threatened species and numerous State-listed species of concern, including amphibians, birds, insects, and plants. Full results are provided in Stamm and others (2014), and are summarized in this fact sheet.

  3. Assessment of groundwater recharge in an ash-fall mantled karst aquifer of southern Italy

    NASA Astrophysics Data System (ADS)

    Manna, F.; Nimmo, J. R.; De Vita, P.; Allocca, V.

    2014-12-01

    In southern Italy, Mesozoic carbonate formations, covered by ash-fall pyroclastic soils, are large karst aquifers and major groundwater resources. For these aquifers, even though Allocca et al., 2014 estimated a mean annual groundwater recharge coefficient at regional scale, a more complete understanding of the recharge processes at small spatio-temporal scale is a primary scientific target. In this paper, we study groundwater recharge processes in the Acqua della Madonna test site (Allocca et al., 2008) through the integrated analysis of piezometric levels, rainfall, soil moisture and air temperature data. These were gathered with hourly frequency by a monitoring station in 2008. We applied the Episodic Master Recharge method (Nimmo et al., 2014) to identify episodes of recharge and estimate the Recharge to Precipitation Ratio (RPR) at both the individual-episode and annual time scales. For different episodes of recharge observed, RPR ranges from 97% to 37%, with an annual mean around 73%. This result has been confirmed by a soil water balance and the application of the Thornthwaite-Mather method to estimate actual evapotranspiration. Even though it seems higher than RPRs typical of some parts of the world, it is very close to the mean annual groundwater recharge coefficient estimated at the regional scale for the karst aquifers of southern Italy. In addition, the RPR is affected at the daily scale by both antecedent soil moisture and rainfall intensity, as demonstrated by a statistically significant multiple linear regression among such hydrological variables. In particular, the recharge magnitude is great for low storm intensity and high antecedent soil moisture value. The results advance the comprehension of groundwater recharge processes in karst aquifers, and the sensitivity of RPR to antecedent soil moisture and rainfall intensity facilitates the prediction of the influence of climate and precipitation regime change on the groundwater recharge process.

  4. [Hydrogeochemical characteristics of a typical karst groundwater system in Chongqing].

    PubMed

    Yang, Ping-Heng; Lu, Bing-Qing; He, Qiu-Fang; Chen, Xue-Bin

    2014-04-01

    The two-year hydrologic process, hydrochemistry, and a portion of deltaD, delta18O of both the surface water at the inlet and the groundwater at the outlet, were investigated to identify the spatial and temporal variations of hydrogeochemistry in the Qingmuguan karst groundwater system. Research results show that there are wet and dry periods in the groundwater system owing to the striking influence of seasonal rainfall. The evolution of the chemical compositions in the groundwater is significantly influenced by the water and rock interaction, anthropogenic activities and rainwater dilution. The variations of the chemical compositions in the groundwater exhibit obvious spatiality and temporality. The deltaD and delta18O of the surface water beneath the local Meteoric Water Line of Chonqing indicate that the surface water is strongly evaporated. Furthermore, the deltaD and delta18O of the surface water are more positive in the dry period than in the wet period, showing a distinct seasonal effect. The deltaD and delta18O of the groundwater are quite stable and much negative compared with those of the surface water, which suggests that the rainwater recharge the groundwater via two pathways, one directly through sinkholes and the other via the vadose zone.

  5. Hochauflösendes Monitoring von Karst-Grundwasserressourcen beiderseits des Jordangrabens - Konzepte und Anwendungsbeispiele

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Grimmeisen, Felix; Ries, Fabian; Goldscheider, Nico; Sauter, Martin

    2018-03-01

    In the semi-arid eastern Mediterranean water supply is highly dependent on karst aquifers. The region is characterized by multi-year dry and wet cycles combined with high hydrological dynamics, especially during intense precipitation events. The investigated karst regions in the West Bank and Jordan are experiencing strong urbanization within the groundwater catchments and hence a rising impact on water quality. Therefore, high resolution monitoring data are required for the assessment of available water resources and the hydrogeological characterization of the karst systems. These measurements are focused on the (natural) meteorological input signals and the system output signals at the karst springs. Also soil moisture and ephemeral runoff dynamics are investigated. The monitoring data enable (1) hydrogeological characterization of the aquifers, (2) estimation of groundwater recharge via soil water balance and reservoir models, and (3) assessment of contamination dynamics in groundwater (e. g. nitrate and E. coli concentrations), allowing an optimized raw water management. Several examples illustrate the importance of high-resolution hydrological monitoring data.

  6. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain

    NASA Astrophysics Data System (ADS)

    Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.

    2017-01-01

    Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and geochemical and isotopic modelling were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main geochemical processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. Modelling results strongly support the hypothesis that most of the selected springs geochemically evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.

  7. Hydrological controls on transient aquifer storage in a karst watershed

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  8. Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT

    USDA-ARS?s Scientific Manuscript database

    Karst hydrology is characterized by multiple springs, sinkholes, and losing streams resulting from acidic water percolating through limestone. These features provide direct connections between surface water and groundwater and increase the risk of groundwater, springs and stream contamination. Anthr...

  9. Linking climate change and karst hydrology to evaluate species vulnerability: The Edwards and Madison aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.

    2013-12-01

    Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for

  10. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  11. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  12. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    NASA Astrophysics Data System (ADS)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  13. Temporal-spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China

    NASA Astrophysics Data System (ADS)

    He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo

    2018-02-01

    Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.

  14. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants.

    PubMed

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-20

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting (3)H samples in groundwater over 27years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean (3)H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 microg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Biodegradation of chlorinated ethenes at a karst site in middle Tennessee

    USGS Publications Warehouse

    Byl, Thomas Duane; Williams, Shannon D.

    2000-01-01

    changed very little in areas isolated from active ground-water flow paths. These stable areas in the karst aquifer had geochemical conditions and bacteria conducive to reductive dechlorination of chlorinated ethenes. Other areas of the karst aquifer were associated with active ground-water flow paths and fluctuated between anaerobic and aerobic conditions in response to rain events. Associated with this dynamic environment were bacteria and geochemical conditions conducive to cometabolism. In summary, multiple lines of evidence developed from chemical, biological, and hydrologic data demonstrate that a variety of biodegradation processes are active in this karst aquifer.

  16. Geomorphological, pedological, and hydrological characteristics of karst lakes at Conversano (Apulia, southern Italy) as a basis for environmental protection

    NASA Astrophysics Data System (ADS)

    Lopez, N.; Spizzico, V.; Parise, M.

    2009-07-01

    The land around Conversano (Apulia, southern Italy) is part of the Murge karst, interesting limestones and dolomitic limestones of Upper Cretaceous age, in a flat environment with sub-horizontal setting. Dolines and karst depressions are the most typical landforms in the area. Filling of these landforms with eluvial deposits locally created the possibility of water stagnancy at the surface. The Conversano territory presents ten karst lakes that represented, until some decades ago, the only water resource available for the local people, who built the typical bell-shaped wells to collect water volumes satisfying local needs during the dry season. Currently, these lakes have no great importance as water supplies, but represent habitats of great naturalistic value that are still able to support the ecological functionality and the wet environments with self-vegetation. Hydrological and hydrogeological studies have been carried out with the aim to fully estimate the related environmental problems. For this purpose, the hydrogeologic data of historical time series have been collected and compared to those of the last 5 years; successively, according to the Thornthwaite method, a hydrological monthly balance has been evaluated to quantify the distribution of water volumes interacting annually between the surface water bodies and the underlying carbonate groundwater. This evaluation has highlighted the need to carefully consider all the parameters concurring to a right definition of water balance for a karst environment, where pedological features, climatic conditions and anthropogenic modifications to the environment represent the elements of a very delicate system. Particularly, on the basis of recent soil map and field surveys, a re-evaluation of the available water capacity, estimated in some 40 mm, has been carried out. The studies have highlighted the need to extend the environmental protection rules to larger areas around the lakes, e.g. at the catchment scale, with

  17. Hydrological deformation signals in karst systems: new evidence from the European Alps

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.

    2017-12-01

    The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad zone of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern Alps toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose zones of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation

  18. Possibilities and Challenges for Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT

    USDA-ARS?s Scientific Manuscript database

    Karst hydrology is characterized by multiple springs, sinkholes, and losing streams resulting from acidic water percolating through limestone. These features provide direct connections between surface water and groundwater and increase the risk of groundwater, spring and stream contamination. Anthro...

  19. Karst geomorphology and hydrology of the Shenandoah Valley near Harrisonburg, Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Orndorff, Wil; Maynard, Joel; Heller, Matthew J.; Casile, Gerolamo C.

    2014-01-01

    The karst of the central Shenandoah Valley has characteristics of both shallow and deep phreatic formation. This field guide focuses on the region around Harrisonburg, Virginia, where a number of these karst features and their associated geologic context can be examined. Ancient, widespread alluvial deposits cover much of the carbonate bedrock on the western side of the valley, where shallow karstification has resulted in classical fluviokarst development. However, in upland exposures of carbonate rock, isolated caves exist atop hills not affected by surface processes other than exposure during denudation. The upland caves contain phreatic deposits of calcite and fine-grained sediments. They lack any evidence of having been invaded by surface streams. Recent geologic mapping and LIDAR (light detection and ranging) elevation data have enabled interpretive association between bedrock structure, igneous intrusions, silicification and brecciation of host carbonate bedrock, and the location of several caves and karst springs. Geochemistry, water quality, and water temperature data support the broad categorization of springs into those affected primarily by shallow near-surface recharge, and those sourced deeper in the karst aquifer. The deep-seated karst formation occurred in the distant past where subvertical fracture and fault zones intersect thrust faults and/or cross-strike faults, enabling upwelling of deep-circulating meteoric groundwater. Most caves formed in such settings have been overprinted by later circulation of shallow groundwater, thus removing evidence of the history of earliest inception; however, several caves do preserve evidence of an earlier formation.

  20. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  1. Karst development in central Butler County, Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bain, B.A.

    1993-02-01

    Research was conducted to study the geology and hydrology of sinkholes, springs, and caves formed in Lower Permian, Fort Riley Limestone, located in central Butler County, Kansas. The goal was to better understand the controlling factors of these karst features and the processes that produce them in a portion of Kansas that is undergoing rapid population growth and increased groundwater usage. Research was accomplished in seven phases: literature search, locating karst features, measuring bedrock fracture joint trends, surveying major caves, estimating discharge of springs, dye tracing, and water chemistry analysis. Recognizable karst landforms within the study area were plotted ontomore » a base map to demonstrate their geographic, geologic, and hydrologic relationships. Karst features identified were 125 sinkholes, a major cave system composed of at least three enterable cave segments, and one large spring. The karst terrain found within the study area is clearly a system of interrelated features and processes. Long-term solution of the bedrock allows karst features to form, joints and bedding planes to enlarge, and creates an efficient network of subsurface drainage. Factors that control karst development in the study area are lithology, thickness, and dip of the bedrock; presence of well defined joints and bedding planes; relatively level topography; nearby entrenched river valleys; lack of thick surficial cover; and climate. Of these influences, solutional activity at joints plays a major role in the formation of sinkholes and cave passages; however, a complex combination of all the controlling factors is responsible for the present, unique, and dynamic karst system.« less

  2. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  3. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Musgrove, M.; Stern, L. A.; Banner, J. L.

    2010-06-01

    SummaryA two and a half year study of two adjacent watersheds at the Honey Creek State Natural Area (HCSNA) in central Texas was undertaken to evaluate spatial and temporal variations in springwater geochemistry, geochemical evolution processes, and potential effects of brush control on karst watershed hydrology. The watersheds are geologically and geomorphologically similar, and each has springs discharging into Honey Creek, a tributary to the Guadalupe River. Springwater geochemistry is considered in a regional context of aquifer components including soil water, cave dripwater, springwater, and phreatic groundwater. Isotopic and trace element variability allows us to identify both vadose and phreatic groundwater contributions to surface water in Honey Creek. Spatial and temporal geochemical data for six springs reveal systematic differences between the two watersheds. Springwater Sr isotope values lie between values for the limestone bedrock and soils at HCSNA, reflecting a balance between these two primary sources of Sr. Sr isotope values for springs within each watershed are consistent with differences between soil compositions. At some of the springs, consistent temporal variability in springwater geochemistry (Sr isotopes, Mg/Ca, and Sr/Ca values) appears to reflect changes in climatic and hydrologic parameters (rainfall/recharge) that affect watershed processes. Springwater geochemistry was unaffected by brush removal at the scale of the HCSNA study. Results of this study build on previous regional studies to provide insight into watershed hydrology and regional hydrologic processes, including connections between surface water, vadose groundwater, and phreatic groundwater.

  4. Management Can Reduce Mobility of Escherichia coli compared to traditional groundwater tracers within karst terrains

    USDA-ARS?s Scientific Manuscript database

    An understanding of fundamental processes controlling pathogen movement is necessary to protect water resources across the globe. Limited filtration and turbulent flow make karst aquifers susceptible to microbial contamination. Groundwater tracers typically used in karst terrains include fluorescent...

  5. Transient deformation of karst aquifers observed by GPS: improved knowledge from Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, F.; D'Agostino, N.; Borsa, A. A.

    2017-12-01

    The redistribution of water masses due to temporal variations of hydrological conditions can produce observable deformation of the shallow crust. Space geodesy, e.g., GPS and InSAR, has provided a considerable improvement in terms of data accuracy and spatial and temporal resolution for the detection and investigation of this kind of deformation. In particular, in the areas where snow and water accumulate for long periods, such as aquifers, relatively high deformation (up to several millimeters) has been observed. Karst aquifers are able to store huge amounts of water and a clear deformation related to the groundwater storage variations has been observed in some regions. In a recent study we showed that the karst aquifers of Southern Apennines deform in response of seasonal and interannual variations of groundwater content, producing a visible transient signal in the time series of the surrounding GPS sites. In this work, we analyze the GPS time series and hydrological data of Central Italy, an interesting and complex area which hosts huge karst aquifers and is characterized by high seismic activity. We show that a noticeable transient signal with features similar to those of Southern Apennines affects also the time series of Central Apennines, suggesting that the large karst aquifers of this region experience a process analogue to the ones in Southern Italy. Thanks to the availability of a dense GPS network and different kinds of hydrological data (rainfall, spring discharge, groundwater level) we focus on the process causing the observed deformation. In particular, we model the observed deformation by inverting the GPS data using Green's functions for finite strain cuboid sources (Barbot et al. 2017). An enhanced understanding of the causes and implications of the highlighted deformation of karst aquifers is of primary interest for an improved management of this important water resource and for a better understanding of the possible interactions between

  6. Simulating groundwater flow in karst aquifers with distributed parameter models—Comparison of porous-equivalent media and hybrid flow approaches

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2016-09-22

    been developed that incorporate the submerged conduits as a one-dimensional pipe network within the aquifer rather than as discrete, extremely transmissive features in a porous-equivalent medium; these submerged conduit models are usually referred to as hybrid models and may include the capability to simulate both laminar and turbulent flow in the one-dimensional pipe network. Comparisons of the application of a porous-equivalent media model with and without turbulence (MODFLOW-Conduit Flow Process mode 2 and basic MODFLOW, respectively) and a hybrid (MODFLOW-Conduit Flow Process mode 1) model to the Woodville Karst Plain near Tallahassee, Florida, indicated that for annual, monthly, or seasonal average hydrologic conditions, all methods met calibration criteria (matched observed groundwater levels and average flows). Thus, the increased effort required, such as the collection of data on conduit location, to develop a hybrid model and its increased computational burden, is not necessary for simulation of average hydrologic conditions (non-laminar flow effects on simulated head and spring discharge were minimal). However, simulation of a large storm event in the Woodville Karst Plain with daily stress periods indicated that turbulence is important for matching daily springflow hydrographs. Thus, if matching streamflow hydrographs over a storm event is required, the simulation of non-laminar flow and the location of conduits are required. The main challenge in application of the methods and approaches for developing hybrid models relates to the difficulty of mapping conduit networks or having high-quality datasets to calibrate these models. Additionally, hybrid models have long simulation times, which can preclude the use of parameter estimation for calibration. Simulation of contaminant transport that does not account for preferential flow through conduits or extremely permeable zones in any approach is ill-advised. Simulation results in other karst aquifers or other

  7. Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.

    2016-12-01

    Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal

  8. Karst Lands: The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.B.; Culver, D.C.; Herman, J.S.

    1995-09-01

    Karst lands are produced by the action of water on soluble rocks, a process among the most dynamic of all erosive forces that counterbalance the uplifting forces of tectonics. The dissolution of carbonate rock, primarily limestone and dolomite, produces unique landscapes and poses significant hydrological and environmental concerns. The major topic areas discussed in this article include the following: processes that form karst; karst drainage basins; discharge from karst aquifers; caves as paleoclimatic recorders; caves as ecosystems; water issues in karst regions; and sinkholes, soil piping and subsidence. 20 refs., 9 figs.

  9. Effectiveness of airborne multispectral thermal data for karst groundwater resources recognition in coastal areas

    NASA Astrophysics Data System (ADS)

    Pignatti, Stefano; Fusilli, Lorenzo; Palombo, Angelo; Santini, Federico; Pascucci, Simone

    2013-04-01

    Currently the detection, use and management of groundwater in karst regions can be considered one of the most significant procedures for solving water scarcity problems during periods of low rainfall this because groundwater resources from karst aquifers play a key role in the water supply in karst areas worldwide [1]. In many countries of the Mediterranean area, where karst is widespread, groundwater resources are still underexploited, while surface waters are generally preferred [2]. Furthermore, carbonate aquifers constitute a crucial thermal water resource outside of volcanic areas, even if there is no detailed and reliable global assessment of thermal water resources. The composite hydrogeological characteristics of karst, particularly directions and zones of groundwater distribution, are not up till now adequately explained [3]. In view of the abovementioned reasons the present study aims at analyzing the detection capability of high spatial resolution thermal remote sensing of karst water resources in coastal areas in order to get useful information on the karst springs flow and on different characteristics of these environments. To this purpose MIVIS [4, 5] and TASI-600 [6] airborne multispectral thermal imagery (see sensors' characteristics in Table 1) acquired on two coastal areas of the Mediterranean area interested by karst activity, one located in Montenegro and one in Italy, were used. One study area is located in the Kotor Bay, a winding bay on the Adriatic Sea surrounded by high mountains in south-western Montenegro and characterized by many subaerial and submarine coastal springs related to deep karstic channels. The other study area is located in Santa Cesarea (Italy), encompassing coastal cold springs, the main local source of high quality water, and also a noticeable thermal groundwater outflow. The proposed study shows the preliminary results of the two airborne deployments on these areas. The preprocessing of the multispectral thermal imagery

  10. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results

  11. Karst of the Mid-Atlantic region in Maryland, West Virginia, and Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Weary, David J.; Brezinski, David K.; Orndorff, Randall C.; Spangler, Lawrence E.; Brezinski, David K.; Halka, Jeffrey; Ortt, Richard A.

    2015-01-01

    The Mid-Atlantic region hosts some of the most mature karst landscapes in North America, developed in highly deformed rocks within the Piedmont and Valley and Ridge physiographic provinces. This guide describes a three-day excursion to examine karst development in various carbonate rocks by following Interstate 70 west from Baltimore across the eastern Piedmont, across the Frederick Valley, and into the Great Valley proper. The localities were chosen in order to examine the structural and lithological controls on karst feature development in marble, limestone, and dolostone rocks with an eye toward the implications for ancient landscape evolution, as well as for modern subsidence hazards. A number of caves will be visited, including two commercial caverns that reveal strikingly different histories of speleogenesis. Links between karst landscape development, hydrologic dynamics, and water resource sustainability will also be emphasized through visits to locally important springs. Recent work on quantitative dye tracing, spring water geochemistry, and groundwater modeling reveal the interaction between shallow and deep circulation of groundwater that has given rise to the modern karst landscape. Geologic and karst feature mapping conducted with the benefit of lidar data help reveal the strong bedrock structural controls on karst feature development, and illustrate the utility of geologic maps for assessment of sinkhole susceptibility.

  12. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.

    PubMed

    Xu, Zexuan; Hu, Bill X; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  13. Investigation of Submarine Groundwater Discharge and Preferential Groundwater Flow-paths in a Coastal Karst Area using towed Marine and Terrestrial Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    O'connell, Y.; Daly, E.; Duffy, G.; Henry, T.

    2012-12-01

    Large volumes of groundwater, containing nutrients and contaminants enter the coastal waters of southern Galway Bay on the west coast of Ireland through submarine groundwater discharge (SGD). The SGD occurs through karstified Carboniferous limestone in a major karst region comprising the Burren and Gort Lowlands. The Carboniferous limestones have experienced extensive dissolution resulting in the development of an underground network of conduits and fissures that define a trimodal groundwater flow pattern across the region. Groundwater discharge to the sea in this area is exclusively intertidal and submarine. Storage in the karst is limited and typical winter rainfall conditions result in the karst system becoming saturated. Temporary lakes (turloughs) form in lowlying areas and act as large reservoirs which provide storage to enable the transmission of the large volumes of water in the system to the sea. Between 2010 and 2012, terrestrial and shallow marine geophysical surveying has been undertaken to investigate preferential groundwater flow-paths and SGD locations in order to quantify the groundwater-seawater interactions in this coastal karst system. A report into the groundwater system of this karst region following a major flood event proposed a conceptual conduit model defined by extensive water tracing, water level monitoring, hydrochemical sampling, geological mapping and drilling. Limited information about the dimensions of the conduits was known. Electrical resistivity tomography (ERT) profiling to depths of 100m below ground level, with multiple array configurations, has been carried out to investigate the modes of groundwater flow in to and out of both temporary and permanent freshwater lakes in the system. Towed dipole-dipole profiles have been recorded to investigate conduits beneath a permanent lake exhibiting a tidal influence despite its location 5.5 km from the seashore. The ERT data indicates significant variations in subsurface resistivities

  14. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete

    NASA Astrophysics Data System (ADS)

    Malagò, Anna; Efstathiou, Dionissios; Bouraoui, Fayçal; Nikolaidis, Nikolaos P.; Franchini, Marco; Bidoglio, Giovanni; Kritsotakis, Marinos

    2016-09-01

    Crete Island (Greece) is a karst dominated region that faces limited water supply and increased seasonal demand, especially during summer for agricultural and touristic uses. In addition, due to the mountainous terrain, interbasin water transfer is very limited. The resulting water imbalance requires a correct quantification of available water resources in view of developing appropriate management plans to face the problem of water shortage. The aim of this work is the development of a methodology using the SWAT model and a karst-flow model (KSWAT, Karst SWAT model) for the quantification of a spatially and temporally explicit hydrologic water balance of karst-dominated geomorphology in order to assess the sustainability of the actual water use. The application was conducted in the Island of Crete using both hard (long time series of streamflow and spring monitoring stations) and soft data (i.e. literature information of individual processes). The KSWAT model estimated the water balance under normal hydrological condition as follows: 6400 Mm3/y of precipitation, of which 40% (2500 Mm3/y) was lost through evapotranspiration, 5% was surface runoff and 55% percolated into the soil contributing to lateral flow (2%), and recharging the shallow (9%) and deep aquifer (44%). The water yield was estimated as 22% of precipitation, of which about half was the contribution from spring discharges (9% of precipitation). The application of the KSWAT model increased our knowledge about water resources availability and distribution in Crete under different hydrologic conditions. The model was able to capture the hydrology of the karst areas allowing a better management and planning of water resources under scarcity.

  15. Agriculture and Karst in Kentucky

    USDA-ARS?s Scientific Manuscript database

    This publication describes the unique hydrologic and environmental issues found in karst environments. The publication describes karst landscapes, the importance of karst, different types of karst features, and how water moves through karst landscapes. The publication includes details on methods for...

  16. A Compilation of Provisional Karst Geospatial Data for the Interior Low Plateaus Physiographic Region, Central United States

    USGS Publications Warehouse

    Taylor, Charles J.; Nelson, Hugh L.

    2008-01-01

    Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.

  17. Dynamic Vulnerability of Karst Systems: a Concept to understand qualitative and quantitative Aspects of Karst springs due to Changes in Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Huggenberger, P.; Butscher, C.; Epting, J.; Auckenthaler, A.

    2015-12-01

    Karst groundwater resources represent valuable water resources, which may be affected by different types of pollution and changes of groundwater recharge by climate change. In many parts of Europe, it has been predicted that record-breaking heat waves, such as the one experienced in 2003 and 2015, will become more frequent. At the same time, even as summers become drier, the incidence of severe precipitation events could increase. What is the influence such changes to the quantitative and qualitative aspects of Karst groundwater systems? A factor to be considered in conjunction with groundwater quality is the vulnerability of the resource, which is defined as the sensitivity of a groundwater system to pollution. Intrinsic vulnerability refers to the sensitivity to pollution when considering only natural, geogenic conditions without the effects of human activities such as contaminant release. Intrinsic vulnerability depends on the recharge conditions, which are dependent on the surface and subsurface structure and on precipitation and evaporation patterns. The latter are highly time dependent. Therefore, our groundwater vulnerability concept also includes dynamic aspects of the system, the variations of spatial and temporal components. We present results of combined monitoring and modelling experiments of several types of Karst systems in the Tabular and the Folded Jura of NW Switzerland. The recharge, conduit flow, diffuse flow(RCD) rainfall-discharge model "RCD-seasonal" was used to simulate the discharge and substance concentration of several spring. This lumped parameter model include: the recharge system (soil and epikarst system), the conduit flow system, and the diffuse flow system. The numerically derived Dynamic Vulnerability Index (DVI) can indicate qualitative changes of spring water with sufficient accuracy to be used for drinking water management. In addition, the results obtained from the test sites indicate a decrease in short-lived contaminants in

  18. Eogenetic karst hydrology: Insights from the 2004 hurricanes, peninsular Florida

    USGS Publications Warehouse

    Florea, L.J.; Vacher, H. Leonard

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix - both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. ?? 2007 National Ground Water Association.

  19. Eogenetic karst hydrology: insights from the 2004 hurricanes, peninsular Florida.

    PubMed

    Florea, Lee J; Vacher, H L

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.

  20. Field Investigation and Modeling Development for Hydrological and Carbon Cycles in Southwest Karst Region of China

    NASA Astrophysics Data System (ADS)

    Hu, X. B.

    2017-12-01

    It is required to understanding water cycle and carbon cycle processes for water resource management and pollution prevention and global warming influence in southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models. Our study focus on the karst springshed in Mao village, the mechanisms coupling carbon cycle and water cycle are explored. This study provides basic theory and simulation method for water resource management and groundwater pollution prevention in China karst region.

  1. Geomorphic interaction among climate, sea levels and karst groundwater: the Taranto area (South of Italy)

    NASA Astrophysics Data System (ADS)

    Spilotro, Giuseppe; Fidelibus, Maria Dolores; Argentiero, Ilenia; Pellicani, Roberta; Parisi, Alessandro; Di Modugno, Antonella

    2017-04-01

    The area of Taranto (Apulia region, Italy) has an extraordinary environmental and landscape value, which derives from its specific geological, geomorphological and hydrogeological conditions: they represent the effect of a complex mechanism of interaction in the geological time among the sea, its level variations and stands driven by climate changes, karst groundwater and the geo lithological frame. The knowledge of this interaction spans over two very different time duration: the first is subsequent to the sedimentary pleistocenic deposition and diagenesis and lasts until the late Holocene; the second spans over a more limited time durations, from the LIA until today, and its knowledge is mainly based on hystorical topographic records and reports. The general geological and stratigraphical setting is represented by marine deposits, which fill the Bradanic Trough, shaped in the upper part as marine terraces bordering the W and SW side of the Murgian carbonate platform (Apulia, South of Italy) as well. This latter constitutes an important karst hydro-structure, fed by precipitation, bordered on the opposite side of the Bradanic Trough by the Adriatic Sea. Fresh groundwater hosted in the huge coastal aquifer freely flows towards the Adriatic coast, while on the opposite W-NW side, the continuous confinement by the impermeable filling of the trough, forces the underground drainage of the aquifer towards the Ionian Sea just in the Taranto area. The overall flow rate of the groundwater through submarine and subaerial coastal springs, according to the current sea level, is significant and currently estimated in about 18 m3/sec. Climate changes have forced over geological time, but also in shorter periods, sea level changes and stands, consequently correlated to groundwater levels. This allowed genesis of selected karst levels, of regional extension, both at the surface or underground, which arise as typical forms, namely polje and karst plane inland, terraces on the sea

  2. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  3. HISTORICAL CONTAMINATION OF GROUNDWATER RESOURCES IN THE NORTH COAST KARST AQUIFERS OF PUERTO RICO

    PubMed Central

    Padilla, Ingrid; Irizarry, Celys; Steele, Katherine

    2012-01-01

    The North Coast Karst Aquifer System of Puerto Rico is the island’s most productive aquifer. The characteristics that make it highly productive also make it vulnerable to contamination. This research, which addresses the historical contamination of groundwater resources in the northern karst region was conducted through integration of spatial hydrogeologic and contaminant concentration data in the La Plata-Arecibo area. The study used GIS technologies and focused on phthalates and chlorinated volatile organic compounds (CVOCs) and phthalates due to their ubiquitous presence in the environment as well as their presence in listed and potential superfund sites in Puerto Rico and U.S. and potential for exposure and health impacts. Results show an extensive historical contamination of the groundwater resources in the northern karst aquifers. Long-term contamination indicates the aquifers’ large capacity for storing and releasing contaminants and reflects a long-term potential for exposure. The degradation of this important water resource has resulted in a subsequent reduction of the extraction capacity and an increase in the cost of use. PMID:24772197

  4. Modeling a network of turloughs in lowland karst

    NASA Astrophysics Data System (ADS)

    Gill, L. W.; Naughton, O.; Johnston, P. M.

    2013-06-01

    In lowland karst areas of Ireland topographic depressions which get intermittently flooded on an annual cycle via groundwater sources are termed turloughs. These are sites of high ecological interest as they have communities and substrate characteristic of wetlands. The flooding in many turlough basins is due to insufficient capacity of the underground karst system to take increased flows following excessive precipitation events, causing the conduit-type network to surcharge. Continuous water level measurements have been taken in five linked turloughs in the lowland karst area of south Galway over a 3 year period. These water level fluctuations, in conjunction with river inputs and precipitation, were then used to elucidate the hydrogeological controls forming the hydraulic system beneath the ground. A model of the karst network has been developed using a pipe network model with the turloughs represented as ponds. The contribution to the karst network from diffuse flow through the epikarst via the matrix and fracture flow has also been modeled using a combination of an infiltration module and network of permeable pipes. The final model was calibrated against two separate hydrological years and in general provided a good simulation for all of the turloughs water levels particularly for the year with one main filling event. The model also accurately picked up the tidal response observed in these turloughs at shallow depths. The model has been used to predict the groundwater discharge to the coast via the main spring which had not heretofore been possible to measure, being below the sea level.

  5. SWISSKARST Project - how to document the karst aquifers in Switzerland using the KARSYS approach.

    NASA Astrophysics Data System (ADS)

    Malard, A.; Vouillamoz, J.; Jeannin, P.-Y.; Weber, E.; Eichenberger, U.

    2012-04-01

    Swiss karst aquifers are poorly documented although they represent a resource estimated to around 120 km3 of fresh water - which is comparable to the water volume of all Swiss lakes. Within the framework of the Swiss National Research Program 61 an opportunity was given to develop a systematic way to characterize karst aquifers and to describe their hydrological behaviour. The project aims at providing methodologies or guidelines to approach karst systems and to improve their management. This covers a large range of fields such as water supply, civil engineering, renewable energies, natural hazards, etc. In this context SISKA developed a dedicated approach named KARSYS for KARst SYStems characterization. It is based on iterations of 3D geological models combined with some basic hydraulic principles taking place in karst media. The main principles are: (i) The 3D geometry of the aquifer set the framework in which flow processes take place (ii) Aquifers are flooded below the level of the main perennial springs (iii) The expansion of the water table upstream of the main springs is lower than 1% (low water stage). High water gradients are simulated according to the elevation of temporary springs or observations in existing boreholes or caves. The approach explicitly shows through 3D visual that some groundwater bodies may be separated at low water stage and connected at high water. Such 3D views bring often explanations to the interpretation of "strange" or "not repeatable" dye tracer's results. A major input of KARSYS approach is to provide a systematic construction of a conceptual model for all hydrological karst systems. It also considers interactions between adjacent systems, providing new concepts on the delineation of karst systems. KARSYS approach can be applied in a quick and approximate way and improved along in order to reach a precision according to the question to be addressed. Results of KARSYS applications are: (i) The delineation of catchment areas of

  6. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers.

    PubMed

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.

  7. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers

    PubMed Central

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies. PMID:26422202

  8. Impact of a grout curtain on groundwater regime in karst: the example of the Ðale reservoir (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, Ognjen; Roje-Bonacci, Tanja

    2010-05-01

    Construction of grout curtains in karst terrains is primarily connected with dams and reservoirs. Their role is to increase watertightness and prevent progressive erosion. In this presentation hourly continuous measurement of groundwater level in two deep piezometers near the Đale reservoir is analysed. The Đale reservoir in the Cetina River began operation in 1989. The total length of the grout curtain is 3.9 km. It spreads 120 m bellow the Đale dam. First analysed piezometer A is drilled in the interior part of the system, between the reservoir and the grout curtain, while the second one B is located in its external part. Distance between them is 200 m. In natural conditions, prior the grout curtain construction, groundwater level fluctuation in both of them was similar (practically the same). Construction of the grout curtain extremely changed groundwater behaviour in each of them. During the six month of continuous monitoring, differences between groundwater levels in them range between +19.86 m (groundwater in B is lower than in A) and -12.77 m (groundwater in A is lower than in B). During the 77% of analysed period the groundwater level in interior piezometer A is higher than the groundwater level in external piezometer B. In other 23% of analysed period the groundwater level in outside piezometer B is higher than in inside A. The construction of the grout curtain caused unnaturally high hydrostatic gradients, which can accelerate the dissolutional expansion of karst fractures. As a result, unbearable leakage of the reservoir Đale can occur over its lifetime. Careful analyses of groundwater level behaviour discover some other very important characteristics of karst underground morphology.

  9. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    NASA Astrophysics Data System (ADS)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  10. Karst groundwater: a challenge for new resources

    NASA Astrophysics Data System (ADS)

    Bakalowicz, Michel

    2005-03-01

    Karst aquifers have complex and original characteristics which make them very different from other aquifers: high heterogeneity created and organised by groundwater flow; large voids, high flow velocities up to several hundreds of m/h, high flow rate springs up to some tens of m3/s. Different conceptual models, known from the literature, attempt to take into account all these particularities. The study methods used in classical hydrogeology—bore hole, pumping test and distributed models—are generally invalid and unsuccessful in karst aquifers, because the results cannot be extended to the whole aquifer nor to some parts, as is done in non-karst aquifers. Presently, karst hydrogeologists use a specific investigation methodology (described here), which is comparable to that used in surface hydrology. Important points remain unsolved. Some of them are related to fundamental aspects suc h as the void structure - only a conduit network, or a conduit network plus a porous matrix -, the functioning - threshold effects and non-linearities -, the modeling of the functioning - double or triple porosity, or viscous flow in conduits - and of karst genesis. Some other points deal with practical aspects, such as the assessment of aquifer storage capacity or vulnerability, or the prediction of the location of highly productive zones. Los acuíferos kársticos tienen características originales y complejas que los hacen muy diferentes de otros acuíferos: alta heterogeneidad creada y organizada por el flujo de agua subterránea, espacios grandes, velocidades altas de flujo de hasta varios cientos de m/h, manantiales con ritmo alto de flujo de hasta algunas decenas de m3/s. Diferentes modelos conceptuales que se conocen en la literatura tratan de tomar en cuenta todas estas particularidades. Los métodos de estudio usados en hidrogeología clásica- pozos, pruebas de bombeo y modelos distribuidos- son generalmente inválidos y no exitosos en acu

  11. Geo-Hydro Statistical Characterization of Preferential Flow and Transport Processes in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.; Macchiavelli, R. E.

    2011-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are chlorinated organic contaminants and phthalates derived from industrial solvents and plastic by-products. These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the development of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes. Multidimensional, laboratory-scale Geo-Hydrobed models were developed and tested for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entailed making a series of point injections in wells while monitoring the hydraulic response in other wells. Statistical mixed models were applied to spatial probabilities of hydraulic response and weighted injected volume data, and were used to determinate the best spatial correlation structure to represent paths of preferential flow in the limestone units under different groundwater flow regimes. Preliminary testing

  12. Advanced karst hydrological and contaminant monitoring techniques for real-time and high resolution applications

    USDA-ARS?s Scientific Manuscript database

    In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...

  13. A compact field fluorometer and its application to dye tracing in karst environments

    NASA Astrophysics Data System (ADS)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-08-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  14. U.S. Geological Survey Karst Interest Group Proceedings, Bowling Green, Kentucky, May 27-29, 2008

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2008-01-01

    *INTRODUCTION AND ACKNOWLEDGMENTS* Karst aquifer systems are present throughout parts of the United States and some of its territories. The complex depositional environments that form carbonate rocks combined with post-depositional tectonic events and the diverse climatic regimes under which these rocks were formed result in unique hydrologic systems. The dissolution of calcium carbonate and the subsequent development of distinct and beautiful landscapes, caverns, and springs have resulted in some karst areas of the United States being designated as national or state parks and commercial caverns. Karst aquifers and landscapes that form in tropical areas, such as the north coast of Puerto Rico, differ greatly from karst areas in more arid climates, such as central Texas or western South Dakota. Many of these public and private lands contain unique flora and fauna associated with the hydrologic systems in these karst areas. As a result, multiple Federal, State, and local agencies have an interest in the study of karst terrains. Carbonate sediments and rocks (limestone and dolomite) are composed of greater than 50 percent carbonate minerals and the predominant carbonate mineral is calcium carbonate or limestone (CaCO3). Unlike terrigenous clastic sedimentation, the depositional processes that produce carbonate rocks are complex, involving both biological and physical processes. These depositional processes impact greatly the development of permeability of the sediments. Carbonate minerals readily dissolve or precipitate depending on the chemistry of the water flowing through the rock, thus the study of both marine and meteoric diagenesis of carbonate sediments is multidisciplinary. Even with a better understanding of the depositional environment and subsequent diagenesis, the dual porosity nature of karst aquifers presents challenges to scientists attempting to study ground-water flow and contaminant transport. Many of the major springs and aquifers in the United

  15. Karst flash floods: an example from the Dinaric karst (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T.

    2006-03-01

    Flash floods constitute one of the deadliest and costliest natural disasters worldwide. This paper explains the karst flash flood phenomenon, which represents a special kind of flash flood. As the majority of flash floods karst flash floods are caused by intensive short-term precipitation in an area whose surface rarely exceeds a few square kilometres. The characteristics of all flash floods are their short duration, small areal extent, high flood peaks and rapid flows, and heavy loss of life and property. Karst flash floods have specific characteristics due to special conditions for water circulation, which exist in karst terrains. During karst flash floods a sudden rise of groundwater levels occurs, which causes the appearance of numerous, unexpected, abundant and temporary karst springs. This paper presents in detail an example of a karst flash flood in the Marina bay (Dinaric karst region of Croatia), which occurred in December 2004.

  16. Development of a 3D GIS and its application to karst areas

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Xu, Hua; Zhou, Wanfang

    2008-05-01

    There is a growing interest in modeling and analyzing karst phenomena in three dimensions. This paper integrates geology, groundwater hydrology, geographic information system (GIS), database management system (DBMS), visualization and data mining to study karst features in Huaibei, China. The 3D geo-objects retrieved from the karst area are analyzed and mapped into different abstract levels. The spatial relationships among the objects are constructed by a dual-linker. The shapes of the 3D objects and the topological models with attributes are stored and maintained in the DBMS. Spatial analysis was then used to integrate the data in the DBMS and the 3D model to form a virtual reality (VR) to provide analytical functions such as distribution analysis, correlation query, and probability assessment. The research successfully implements 3D modeling and analyses in the karst area, and meanwhile provides an efficient tool for government policy-makers to set out restrictions on water resource development in the area.

  17. Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer

    NASA Astrophysics Data System (ADS)

    Filippini, Maria; Squarzoni, Gabriela; De Waele, Jo; Fiorucci, Adriano; Vigna, Bartolomeo; Grillo, Barbara; Riva, Alberto; Rossetti, Stefano; Zini, Luca; Casagrande, Giacomo; Stumpp, Christine; Gargini, Alessandro

    2018-01-01

    Limestone massifs with a high density of dolines form important karst aquifers in most of the Alps, often with groundwater circulating through deep karst conduits and water coming out of closely spaced springs with flow rates of over some cubic meters per second. Although several hydrogeological studies and tracing experiments were carried out in many of these carbonate mountains in the past, the hydrogeology of most of these karst aquifers is still poorly known. Geological, hydrodynamic and hydrochemical investigations have been carried out in one of the most representative of these areas (Cansiglio-Monte Cavallo, NE Italy) since spring 2015, in order to enhance the knowledge on this important type of aquifer system. Additionally, a cave-to-spring multitracer test was carried out in late spring 2016 by using three different fluorescent tracers. This hydrogeological study allowed: 1) gathering new detailed information on the geological and tectonic structure of such alpine karst plateau; 2) defining discharge rates of the three main springs (Gorgazzo, Santissima, and Molinetto) by constructing rating curves; 3) understanding the discharging behavior of the system with respect to different recharge conditions; 4) better defining the recharge areas of the three springs. The three nearby springs (the spring front stretches over 5 km), that drain the investigated karst aquifer system, show different behaviors with respect to changing discharge conditions, demonstrating this aquifer to be divided in partially independent drainage systems under low-flow conditions, when their chemistry is clearly differentiated. Under high-flow conditions, waters discharging at all springs show more similar geochemical characteristics. The combination of geochemistry, hydrodynamic monitoring and dye tracing tests has shown that the three springs have different recharge areas. The study points out that even closely spaced karst springs, that apparently drain the same karst mountain, can

  18. Effects of Hydrogeologic Conditions on Groundwater Contamination of CVOCs in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Howard, J.; Padilla, I. Y.; Torres, P.; Cotto, I.; Irizarry, C.

    2012-12-01

    The karst system of northern Puerto Rico is the most productive aquifer of the island. It serves freshwater to industrial, domestic and agricultural purposes, and contributes to the ecological integrity of the region. The same characteristics that make this a highly productive aquifer, make it vulnerable to contamination of groundwater. Of particular importance is contamination with chlorinated volatile organic compounds (CVOCs), which have been related to preterm birth problems. A great extent of CVOC contamination has been seen in the North Coast of Puerto Rico since the 1970s. The main purposes of this study are (1) to relate the water quality of wells and springs with the hydrogeological conditions in the north coast limestone aquifer of Puerto Rico, and (2) to make a statistical analysis of the historical groundwater contamination in that area. To achieve these objectives, groundwater samples are collected from wells and springs during dry and wet seasons. Results show that trichloroethylene (TCE), tetrachloroethylene (PCE) and chloroform (TCM) are frequently detected in groundwater samples. A greater detection of CVOCs is detected during the wet season than the dry season. This is attributed to a greater capacity to flush stored contaminants during the wet season. Historical analysis of contamination in the north coast of Puerto Rico shows a high capacity of the aquifer to store and release contaminants. Future work will be focused the statistical analysis of the historical groundwater contamination data to understand the behavior of the contaminants in different hydrologic conditions.

  19. Analysis of hydrologic and geochemical time-series data at James Cave, Virginia: Implications for epikarst influence on recharge in Appalachian karst aquifers

    USGS Publications Warehouse

    Eagle, Sarah D.; Orndorff, William; Schwartz, Benjamin F.; Doctor, Daniel H.; Gerst, Jonathan D.; Schreiber, Madeline E.

    2016-01-01

    The epikarst, which consists of highly weathered rock in the upper vadose zone of exposed karst systems, plays a critical role in determining the hydrologic and geochemical characteristics of recharge to an underlying karst aquifer. This study utilized time series (2007–2014) of hydrologic and geochemical data of drip water collected within James Cave, Virginia, to examine the influence of epikarst on the quantity and quality of recharge in a mature, doline-dominated karst terrain. Results show a strong seasonality of both hydrology and geochemistry of recharge, which has implications for management of karst aquifers in temperate climatic zones. First, recharge (discharge from the epikarst to the underlying aquifer) reaches a maximum between late winter and early spring, with the onset of the recharge season ranging from as early as December to as late as March during the study period. The timing and duration of the recharge season were found to be a function of precipitation in excess of evapotranspiration on a seasonal time scale. Secondly, seasonally variable residence times for water in the epikarst influence rock-water interaction and, hence, the geochemical characteristics of recharge. Overall, results highlight the strong and complex influence that the epikarst has on karst recharge, which requires long-term and high-resolution data sets to accurately understand and quantify.

  20. Verification of the karst flow model under laboratory controlled conditions

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  1. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    NASA Astrophysics Data System (ADS)

    Hinić, V.; Rubinić, J.; Vučković, I.; Ružić, I.; Gržetić, A.; Volf, G.; Ljubotina, M.; Kvas, N.

    2008-11-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  2. Fate of Organic Matters in a Soil Erosion Context : Qualitative and Quantitative Monitoring in a Karst Hydrosystem

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Gateuille, D.; Perrette, Y.; Naffrechoux, E.; David, B.; Malet, E.

    2017-12-01

    Soils are a key compartments of hydrosystems, especially in karst aquifers which are characterized by fast hydrologic responses to rainfalls. In steady state, soils are efficient filters preventing karst water from pollutions. But agricultural or forestry land uses can alter or even reverse the role of soils. Thus , soils can act as pollution sources rather than pollution filters. In order to manage water quality together with man activities in karst environment, the development of new tools and procedures designed to monitor the fate of soil organic matter are needed. This study reports two complementary methods applied in a moutain karst system impacted by anthropic activities and environmental stresses. A continuous monitoring of water fluorescence coupled with punctual sampling was analyzed by chemiometric methods and allowed to discriminate the type of organic matter transferred through the karst system along the year (winter / summer) and hydrological stages. As a main result, the modelisation of organic carbone fluxes is dominated by a colloidal or particulate part during highwaters, and a main part dissolved in solution during low water, demonstrating the change of organic carbone source. To confirm this result, a second method was used based on the observation of Polycyclic Aromatic Hydrocarbons (PAH) profiles. Two previous studies (Perrette et al 2013, Schwarz et al 2011) led to opposite conclusions about the fate of PAH from soil to groundwaters. This opposition leads to a potential use of PAH profiles (low molecular weight less hydrophobic ones versus high molecular weight more hydrophobic ones) as an indicator of soil erosion. We validate that use by the anaylsis of these PAH profiles for low and high waters (floods). These results demonstrate if needed the high vulnerability of karst system to soil erosion, and propose a new proxy to record soils erosion in groundwaters and in natural archives as stalagmites or sediments.

  3. Prediction and assessment of the disturbances of the coal mining in Kailuan to karst groundwater system

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Wu, Qiang; Liu, Honglei; Jiao, Jian

    Coal resources and water resources play an essential and strategic role in the development of China's social and economic development, being the priority for China's medium and long technological development. As the mining of the coal extraction is increasingly deep, the mine water inrush of high-pressure confined karst water becomes much more a problem. This paper carried out research on the hundred-year old Kailuan coal mine's karst groundwater system. With the help of advanced Visual Modflow software and numerical simulation method, the paper assessed the flow field of karst water area under large-scale exploitation. It also predicted the evolution ofgroundwaterflow field under different mining schemes of Kailuan Corp. The result shows that two cones of depression are formed in the karst flow field of Zhaogezhuang mining area and Tangshan mining area, and the water levels in two cone centers are -270 m and -31 m respectively, and the groundwater generally flows from the northeast to the southwest. Given some potential closed mines in the future, the mine discharge will decrease and the water level of Ordovician limestone will increase slightly. Conversely, given increase of coal yield, the mine drainage will increase, falling depression cone of Ordovician limestone flow field will enlarge. And in Tangshan's urban district, central water level of the depression cone will move slightly towards north due to pumping of a few mines in the north.

  4. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China.

    PubMed

    Zang, Hongfei; Zheng, Xiuqing; Qin, Zuodong; Jia, Zhenxing

    2015-01-01

    Due to the significance of karst groundwater for water supply in arid and semi-arid regions, the characteristics of the karst groundwater flow system in the Liulin spring area, North China, are analysed through isotopic tracing (δ(2)H, δ(18)O, δ(13)C and (3)H) and dating approaches ((14)C). The results show that the primary recharge source of karst groundwater is precipitation. Evaporation during dropping and infiltration of rainfall results in a certain offset in the values of δ(2)H and δ(18)O in groundwater samples from the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The altitudes of the recharge region calculated by δ(18)O range from 1280 to 2020 m above sea level, which is consistent with the altitudes of the recharge area. The Liulin spring groups could be regarded as the mixing of groundwater with long and short flow paths at a ratio of 4:1. In the upgradient of the Liulin spring, the groundwater represents modern groundwater features and its [Formula: see text] is mainly derived from dissolution of soil CO(2), while in the downgradient of the Liulin spring, the (14)C age of dissolved inorganic carbon (DIC) in groundwater shows an apparent increase and [Formula: see text] is mainly derived from the dissolution of carbonate rocks. The mean flow rate calculated by (14)C ages of DIC between IS10 and IS12 is 1.23 m/year.

  5. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.

  6. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system

    USGS Publications Warehouse

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.

    2016-11-23

    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge

  7. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).

    PubMed

    Mayaud, C; Wagner, T; Benischke, R; Birk, S

    2014-04-16

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the

  8. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    PubMed Central

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-01-01

    Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and

  9. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  10. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    NASA Astrophysics Data System (ADS)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-12-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  11. Characterisation of the heterogeneity of karst using electrical geophysics - applications in SW China

    NASA Astrophysics Data System (ADS)

    Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.

    2017-12-01

    The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We

  12. Hydrological connectivity in the karst critical zone: an integrated approach

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhang, Z.; Soulsby, C.; Cheng, Q.; Binley, A. M.; Tao, M.

    2017-12-01

    Spatial heterogeneity in the subsurface is high, evidenced by specific landform features (sinkholes, caves etc.) and resulting in high variability of hydrological processes in space and time. This includes complex exchange of various flow sources (e.g. hillslope springs and depression aquifers) and fast conduit flow and slow fracture flow. In this paper we integrate various "state-of-the-art" methods to understand the structure and function of this understudied critical zone environment. Geophysical, hydrometric and hydrogeochemical tools are used to characterize the hydrological connectivity of the cockpit karst critical zone in a small catchment of Chenqi, Guizhou province, China. Geophysical surveys, using electrical resistivity tomography (ERT), identified the complex conduit networks that link flows between hillslopes and depressions. Statistical time series analysis of water tables and discharge responses at hillslope springs and in depression wells and underground channels showed different threshold responses of hillslope and depression flows. This reflected the differing relative contribution of fast and slow flow paths during rainfall events of varying magnitude in the hillslope epikarst and depression aquifer in dry and wet periods. This showed that the hillslope epikarst receives a high proportion of rainfall recharge and is thus a main water resource in the catchment during the drought period. In contrast, the depression aquifer receives fast, concentrated hillslope flows during large rainfall events during the wet period, resulting in the filling of depression conduits and frequent flooding. Hydrological tracer studies using water temperatures and stable water isotopes (δD and δ18O) corroborated this and provided quantitative information of the mixing proportions of various flow sources and insights into water travel times. This revealed how higher contributions of event "new" water (from hillslope springs and depression conduits displaces "old" pre

  13. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun spring using EPIK, COP, and travel time methods

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina

    2016-04-01

    Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the

  14. Physical and Hydrological Meaning of the Spectral Information from Hydrodynamic Signals at Karst Springs

    NASA Astrophysics Data System (ADS)

    Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.

    2017-12-01

    Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto

  15. Ratosa playa lake in southern Spain. Karst pan or compound sink?

    PubMed

    Rodríguez-Rodríguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio; Benavente-Herrera, José

    2015-04-01

    In Andalusia (Spain), there are more than 45 semiarid playa lakes protected as natural reserves and related to karstic outcrops. Some of them are located over regional karstic aquifers and have internal drainage networks with sporadic surface outlets, such as sinkholes (compound sinks), but the majority of such playas have no internal drainage systems, so the only water output is evaporation (karst pans). Karst pans are perched and disconnected from the groundwater system. The fact that the Ratosa playa lake is partially located over a karstic Sierra, as well as other hydromorphological observations, it is suggested that the system could be of a compound type, but a detailed hydrogeological analysis showed that the playa is disconnected from the aquifer, so it is in fact a karst pan. Once the hydrological functioning had been established, a monthly water balance for a 10-year period (1998-2008), enabled us to reproduce the evolution of the water level of the playa lake. Estimations of runoff were carried out by a soil water estimate for a water holding capacity in the soil of 191 mm. Results show a good correlation (>90%) after calibration with the time series of water level in the lake for the same period confirming geological observations. Our results highlight that this water body is extremely vulnerable to hydrological alterations of its watershed caused by human activities, particularly those related to land-use change for agriculture. For this reason, we propose a new protection zone, based on hydrological knowledge, instead of the present Peripheral Area of Protection.

  16. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    USGS Publications Warehouse

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  17. Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Kelly, W.R.

    2001-01-01

    The sources of nitrate (NO-3) in groundwater of the shallow karst aquifer in southwestern Illinois' sinkhole plain were investigated using chemical and isotopic techniques. The groundwater in this aquifer is an important source of potable water for about half of the residents of the sinkhole plain area. Previous work has shown that groundwater from approximately 18% of the wells in the sinkhole plain has NO-3 concentrations in excess of the USEPA's drinking water standard of 10 mg N/1. Relative to background levels, the NO-3 concentrations in water from 52% of the wells, and probably all of the springs in the study area, are anomalously high, suggesting that sources other than naturally occurring soil organic matter have contributed additional NO-3 to groundwater in the shallow karst aquifer. This information, and the dominance of agriculture in the study area, suggest that agrichemical contributions may be significant. To test this hypothesis, water samples from 10 relatively large karst springs were collected during four different seasons and analyzed for inorganic constituents, dissolved organic carbon, atrazine, and ??15N and ??18O of the NO-3 ions. The isotopic data were most definitive and suggested that the sources of NO-3 in spring water are dominated by N-fertilizer with some possible influence of atmospheric NO-3 and, to a much lesser extent, human and/or animal waste. Differences in the isotopic composition of NO-3 and some of the chemical characteristics were observed during the four consecutive seasons in which spring water samples were collected. Isotopic values for ??15N and ??18O of the NO-3 ranged from 3.2??? to 19.1??? and from 7.2??? to 18.7???, respectively. The trend of ??15N and ??18O data for NO-3 also indicated that a significant degree of denitrification is occurring in the shallow karst hydrologic system (within the soil zone, the epikarst and the shallow karst aquifer) prior to discharging to springs. ?? 2001 Elsevier Science B.V. All

  18. Natural hazards in Slovene karst areas: Flood risk areas in the Upper Pivka valley

    NASA Astrophysics Data System (ADS)

    Ravbar, N.; Kovacic, G.

    2009-04-01

    An overview of exceptional natural processes or natural hazards from the human perspective in Slovene karst areas is made. Some types of natural hazards are typical for karst due to the process of karstification and resulting geomorphological and hydrological characteristics of karst landscapes (presence of voids within the rock, absence of superficial flow and presence of specific karst groundwater flow system), while the others occur evenly in all types of landscapes. However, their impact is different in karst as it is in the non-karst landscapes. Examples of particular phenomenon or events, their frequency of occurrence, expansion and caused damage are presented. Special emphasis is laid on high waters in karst poljes, shallow karst areas or contact karst, where flooding emerges due to the raise of karst groundwater table as a consequence of intensive precipitation or snowmelt. Flooding in karst can also appear due to insufficient swallow capacities of the underground channels, which are not capable of conducting surpluses of inflowing water. In opposite to flash floods, the karst floods are more predictable, since they usually occur in the same areas to the same elevation and in the same season of the year. Inhabitants are easily adapted to this phenomenon, setting the settlements and other important infrastructure on elevations above the highest recorded water level. Usually such flooding does not pose serious threat and causes no serious flood damage, except during extreme events, as it was in the case of the autumn 2000 floods. Case study of the Upper Pivka valley, where floods usually cover around 6.6 km2, is treated and explained. During the intensive rain period from September to November 2000, the groundwater table rose for about 20-35 m above the usual level, causing flooding also in the areas, where they have never been recorded before. Precise mapping of the flooded area extents in the discussed area and the height of the water levels was performed

  19. Using MODFLOW drains to simulate groundwater flow in a karst environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, J.; Tomasko, D.; Glennon, M.A.

    1998-07-01

    Modeling groundwater flow in a karst environment is both numerically challenging and highly uncertain because of potentially complex flowpaths and a lack of site-specific information. This study presents the results of MODFLOW numerical modeling in which drain cells in a finite-difference model are used as analogs for preferential flowpaths or conduits in karst environments. In this study, conduits in mixed-flow systems are simulated by assigning connected pathways of drain cells from the locations of tracer releases, sinkholes, or other karst features to outlet springs along inferred flowpaths. These paths are determined by the locations of losing stream segments, ephemeral streammore » beds, geophysical surveys, fracture lineaments, or other surficial characteristics, combined with the results of dye traces. The elevations of the drains at the discharge ends of the inferred flowpaths are estimated from field data and are adjusted when necessary during model calibration. To simulate flow in a free-flowing conduit, a high conductance is assigned to each drain to eliminate the need for drain-specific information that would be very difficult to obtain. Calculations were performed for a site near Hohenfels, Germany. The potentiometric surface produced by the simulations agreed well with field data. The head contours in the vicinity of the karst features behaved in a manner consistent with a flow system having both diffuse and conduit components, and the sum of the volumetric flow out of the drain cells agreed closely with spring discharges and stream flows. Because of the success of this approach, it is recommended for regional studies in which little site-specific information (e.g., location, number, size, and conductivity of fractures and conduits) is available, and general flow characteristics are desired.« less

  20. Geochemical and isotopic characterization of groundwater origins in a Mediterranean karst system (southern France)

    NASA Astrophysics Data System (ADS)

    Seidel, J. L.; Ladouche, B.; Batiot-Guilhe, C.

    2013-12-01

    Geochemical and isotopic ratio (11B/10B and 87Sr/86Sr) results are reported for better determining the groundwater origins in the Lez Karst system (southern France). The Lez spring is the main perennial outlet of the system and supplies with drinking water the metropolitan area of Montpellier. According to the hydrodynamic conditions, five water-types discharge at the Lez spring with important mineralization fluctuations (Caetano Bicalho et al., 2012). This geochemical response suggests that hydrodynamics targets groundwater circulation, resulting from different water end-member solicitation and mixing. Previous studies using conventional natural tracers do not succeed to identify all the water compartments supporting the flow during the hydrologic cycle (Marjolet & Salado, 1977; Joseph et al., 1988) and to explain the mineralization variation of the Lez spring. The present study combines a basic geochemical survey data with boron and strontium isotope ratio data for a better characterization of the Lez spring geochemical functioning. Groundwater samples were collected at the Lez spring and surrounding springs and wells under different hydrologic conditions from 2009 to 2011. Major, trace and rare earth elements were determined at AETE analytical platform (OREME, Univ. Montpellier 2) by ionic chromatography and Q-ICP-MS respectively. d11B and 87Sr/86Sr were determined at BRGM/MMA Orleans by TIMS. The geochemical survey has been extended at a larger scale by sampling the main geochemical end- members already identified to replace the Lez spring waters in the regional geochemical context. From this geochemical study, valuable informations have been provided on the reservoir types and water origins flowing in high and low stage periods. For the highly mineralized waters occurring in the fall first rainy events or severe low stages, a deep contribution is highlighted but B and Sr isotopic data do not ascertain the two Triassic end-members (halite or gypsum) as possible

  1. Assessment of vulnerability in karst aquifers using a quantitative integrated numerical model: catchment characterization and high resolution monitoring - Application to semi-arid regions- Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Aoun, Michel; Andari, Fouad

    2016-04-01

    fast infiltration component. A series of laboratory tests were performed to acquire physical values to be used as a benchmark for model parameterization, such as laboratory tests on soils for conductivity at saturation and grain size analysis. Time series used for input or calibration were collected and computed from continuous high resolution monitoring of climatic data, moisture variation in the soil, and discharge at the investigated spring. This similar model approach used on a catchment site in Germany is to be applied and validated on two pilot karst catchments in Lebanon governed by semi-arid climatic conditions. References Doummar J., Sauter M., Geyer T., 2012. Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) - Identification of relevant parameters influencing spring discharge. Journal of Hydrology, v. 426-427- p 112-123. Jukić, D., and Denić-Jukić, V., 2009. Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. Journal of Hydrology, v. 373- p 302-315

  2. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    PubMed

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.

  3. Basic elements of ground-water hydrology with reference to North Carolina

    USGS Publications Warehouse

    Heath, Ralph Carr

    1980-01-01

    This report was prepared as an aid to developing a better understanding of the groundwater resources of North Carolina. It consists of 46 essays grouped into five parts. The topics covered by these essays range from the most basic aspects of ground-water hydrology to the identification and correction of problems that affect the operation of supply wells. The essays were designed both for self study and for use in workshops on ground-water hydrology and the development and operation of ground-water supplies. From the standpoint of self study, it is assumed that the reader does not have any prior knowledge of geology or ground-water hydrology. Those readers with such knowledge can simply skip those topics with which they are already familar. (USGS)

  4. Karst landscapes and associated resources: a resource assessment.

    Treesearch

    James F. Baichtal; Douglas N. Swanston

    1996-01-01

    The Tongass National Forest contains world-class karst features and the largest concentration of associated dissolved caves known in the state of Alaska. This paper describes the dominant karst formation processes operating in southeast Alaska, the controlling geologic and hydrologic characteristics, and the influence of karst landscapes on associated forest resources...

  5. A LEXICON OF CAVE AND KARST TERMINOLOGY WITH SPECIAL REFERENCE TO ENVIRONMENTAL KARST HYDROLOGY (2002 EDITION)

    EPA Science Inventory

    Several attempts to classify karst terminology in an organized manner have been attempted in the past. The last few glossaries of karst terminology were organized in the late 1960s and published in the early 1970s. Since that time, many new terms related to karst in general hav...

  6. The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Hao, Yonghong; Hu, Bill X.; Huo, Xueli; Hao, Pengmei; Liu, Zhongfang

    2017-01-01

    Karst aquifers supply drinking water for 25 % of the world's population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most

  7. Negative grouting consequences on karst environment

    NASA Astrophysics Data System (ADS)

    Bonacci, O.; Roje-Bonacci, T.; Gottstein, S.

    2009-04-01

    Grouting is a procedure by means of which grout is injected into different kinds of karst spaces (cracks, fissures, conduits and caves). It has a wide application in modern civil engineering, especially in karst terrains. It started nearly 200 years ago. In most cases the ingredients for the preparation of mortars and grouting suspensions are: cement, bentonite, clay and fillers, additives for stability and water. In practice the composition of grouting suspension is not standardized. A suspension injected under pressure will circulate in the karst spaces like a more or less viscous fluid until some of the larger suspended particles are blocked where the karst voids get narrower than the size of injected grains. The injection of materials into karst groundwater, i.e. the construction of grouting curtains, definitely could be the cause of unpredictable negative consequences on karst groundwater environments. The building of dams in karst areas always go along the construction of grouting curtains. During the construction of most dams in karst all over the world millions tons of injection mass have been injected in karst underground. It may impact water quantity in vadose zone and in karstic aquifer causing water table lowering and spring desiccation. In such cases the negative impact on local karst environment could be very dangerous. Physically as well as chemically this mass voraciously and quickly destroyed underground habitats and killed an enormous number of endangered and endemic species. Very often this is extremely expensive procedure and in many cases not very successful from the engineering point of view. From the ecological point of view it could causes catastrophic consequences. The greatest problem is that until now neither engineers nor ecologists took care of these great and massive negative influences on underground karst environments. In this paper few examples of different consequences of grouting on the hydrogeological as well as ecological regime

  8. A new model for simulating spring discharge recession and estimating effective porosity of karst aquifers

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen

    2018-07-01

    Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.

  9. Monitoring of Emerging and Legacy Contaminants in Groundwater and Tap Water of the Karst Region in Northern Puerto Rico for Assessment of Sources and Fate and Transport Processes

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Cotto, I.; Torres, P. M.

    2014-12-01

    The karst aquifer region of northern Puerto Rico is the area with the highest groundwater extraction in the island. Urban and industrial development has led to extensive contamination of the groundwater in the region. Of particular concern, is the presence of emerging and legacy organic contaminants, such as phthalates and chlorinated organic compounds (CVOCs), because there high risk for exposure and adverse health impact. Variable sources and the heterogeneous and dynamic conditions of karst groundwater systems, limits the ability to properly assess and manage the water quality of these precious water resources. This work develops a monitoring and water analysis scheme to assess spatial-temporal exposure of hazardous contaminants trough karst water in northern Puerto Rico. Groundwater and tap water are sampled in the region and analyzed for phthalates, CVOCs, and common ions. Detections and concentrations of phthalates and CVOCs are determined by using modified EPA methods, which rely on liquid-liquid extractions and gas chromatography techniques. The modified methods have reduced the volume of samples and solvent waste, decreased the time of analysis, increased analysis outcomes, and lower potential for hazardous exposure. Results show intermittent presence of di-ethyl, di-butyl and di (2-ethyl hexyl) phthalates in 36% of the groundwater and 53% of tap water samples, with detected concentrations ranging between 0.1-88.7 μg/L. These results indicate that karst groundwater can serve as a route of exposure for phthalates, but there are additional disperse sources in the water system. CVOCs are detected in groundwater at much higher frequencies (50%) than phthalates, and include trichloromethane (TCM), carbon tetrachloride (CT), trichloroethylene (TCE), and tetrachloroethylene (TCE). CVOCs, except for TCM, are found at lower frequencies on tap water (5.8%) than groundwater (27%). TCM is detected more frequently and at higher concentrations in tap water (56.8%) than

  10. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    NASA Astrophysics Data System (ADS)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  11. Numerical Study of Groundwater Flow and Salinity Distribution Cycling Controlled by Seawater/Freshwater Interaction in Karst Aquifer Using SEAWAT

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Hu, B.

    2017-12-01

    The interest to predict seawater intrusion and salinity distribution in Woodville Karst Plain (WKP) has increased due to the huge challenge on quality of drinkable water and serious environmental problems. Seawater intrudes into the conduit system from submarine karst caves at Spring Creek Spring due to density difference and sea level rising, nowadays the low salinity has been detected at Wakulla Spring which is 18 km from coastal line. The groundwater discharge at two major springs and salinity distribution in this area is controlled by the seawater/freshwater interaction under different rainfall conditions: during low rainfall periods, seawater flow into the submarine spring through karst windows, then the salinity rising at the submarine spring leads to seawater further intrudes into conduit system; during high rainfall periods, seawater is pushed out by fresh water discharge at submarine spring. The previous numerical studies of WKP mainly focused on the density independent transport modeling and seawater/freshwater discharge at major karst springs, in this study, a SEAWAT model has been developed to fully investigate the salinity distribution in the WKP under repeating phases of low rainfall and high rainfall periods, the conduit system was simulated as porous media with high conductivity and porosity. The precipitation, salinity and discharge at springs were used to calibrate the model. The results showed that the salinity distribution in porous media and conduit system is controlled by the rainfall change, in general, the salinity distribution inland under low rainfall conditions is much higher and wider than the high rainfall conditions. The results propose a prediction on the environmental problem caused by seawater intrusion in karst coastal aquifer, in addition, provide a visual and scientific basis for future groundwater remediation.

  12. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    NASA Astrophysics Data System (ADS)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  13. Karst map of Puerto Rico

    USGS Publications Warehouse

    Alemán González, Wilma B.

    2010-01-01

    This map is a digital compilation, combining the mapping of earlier geologists. Their work, cited on the map, contains more detailed descriptions of karst areas and landforms in Puerto Rico. This map is the basis for the Puerto Rico part of a new national karst map currently being compiled by the U.S. Geological Survey. In addition, this product is a standalone, citable source of digital karst data for Puerto Rico. Nearly 25 percent of the United States is underlain by karst terrain, and a large part of that area is undergoing urban and industrial development. Accurate delineations of karstic rocks are needed at scales suitable for national, State, and local maps. The data on this map contribute to a better understanding of subsidence hazards, groundwater contamination potential, and cave resources as well as serve as a guide to topical research on karst. Because the karst data were digitized from maps having a different scale and projection from those on the base map used for this publication, some karst features may not coincide perfectly with physiographic features portrayed on the base map.

  14. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    PubMed Central

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  15. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements

    USGS Publications Warehouse

    Opsahl, Stephen P.; Musgrove, MaryLynn; Slattery, Richard N.

    2017-01-01

    Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells —one rural and one urban—located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8–1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate

  16. Microorganisms as tracers in groundwater injection and recovery experiments: A review

    USGS Publications Warehouse

    Harvey, R.W.

    1997-01-01

    Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured- rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e g., 1013 phage ml-1) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g by stable isotope labeling or inserting genetic markers; such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course.

  17. Research approach to teaching groundwater biodegradation in karst aquifers

    USGS Publications Warehouse

    King, L.; Byl, T.; Painter, R.

    2006-01-01

    TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.

  18. On the use of multiple-point statistics to improve groundwater flow modeling in karst aquifers: A case study from the Hydrogeological Experimental Site of Poitiers, France

    NASA Astrophysics Data System (ADS)

    Le Coz, Mathieu; Bodin, Jacques; Renard, Philippe

    2017-02-01

    Limestone aquifers often exhibit complex groundwater flow behaviors resulting from depositional heterogeneities and post-lithification fracturing and karstification. In this study, multiple-point statistics (MPS) was applied to reproduce karst features and to improve groundwater flow modeling. For this purpose, MPS realizations were used in a numerical flow model to simulate the responses to pumping test experiments observed at the Hydrogeological Experimental Site of Poitiers, France. The main flow behaviors evident in the field data were simulated, particularly (i) the early-time inflection of the drawdown signal at certain observation wells and (ii) the convex behavior of the drawdown curves at intermediate times. In addition, it was shown that the spatial structure of the karst features at various scales is critical with regard to the propagation of the depletion wave induced by pumping. Indeed, (i) the spatial shape of the cone of depression is significantly affected by the karst proportion in the vicinity of the pumping well, and (ii) early-time inflection of the drawdown signal occurs only at observation wells crossing locally well-developed karst features.

  19. A multi-method approach for groundwater resource assessment in coastal carbonate (karst) aquifers: the case study of Sierra Almijara (southern Spain)

    NASA Astrophysics Data System (ADS)

    Andreo, B.; Barberá, J. A.; Mudarra, M.; Marín, A. I.; García-Orellana, J.; Rodellas, V.; Pérez, I.

    2018-02-01

    Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17-60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9-45.9 hm3 year-1) is in agreement with the average recharged groundwater (44.7 hm3 year-1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.

  20. Stream-groundwater exchange and hydrologic turnover at the network scale

    NASA Astrophysics Data System (ADS)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  1. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    NASA Technical Reports Server (NTRS)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  2. Intensive exploitation of a karst aquifer leads to Cryptosporidium water supply contamination.

    PubMed

    Khaldi, S; Ratajczak, M; Gargala, G; Fournier, M; Berthe, T; Favennec, L; Dupont, J P

    2011-04-01

    Groundwater from karst aquifers is an important source of drinking water worldwide. Outbreaks of cryptosporidiosis linked to surface water and treated public water are regularly reported. Cryptosporidium oocysts are resistant to conventional drinking water disinfectants and are a major concern for the water industry. Here, we examined conditions associated with oocyst transport along a karstic hydrosystem, and the impact of intensive exploitation on Cryptosporidium oocyst contamination of the water supply. We studied a well-characterized karstic hydrosystem composed of a sinkhole, a spring and a wellbore. Thirty-six surface water and groundwater samples were analyzed for suspended particulate matter, turbidity, electrical conductivity, and Cryptosporidium and Giardia (oo)cyst concentrations. (Oo)cysts were identified and counted by means of solid-phase cytometry (ChemScan RDI(®)), a highly sensitive method. Cryptosporidium oocysts were detected in 78% of both surface water and groundwater samples, while Giardia cysts were found in respectively 22% and 8% of surface water and groundwater samples. Mean Cryptosporidium oocyst concentrations were 29, 13 and 4/100 L at the sinkhole, spring and wellbore, respectively. Cryptosporidium oocysts were transported from the sinkhole to the spring and the wellbore, with respective release rates of 45% and 14%, suggesting that oocysts are subject to storage and remobilization in karst conduits. Principal components analysis showed that Cryptosporidium oocyst concentrations depended on variations in hydrological forcing factors. All water samples collected during intensive exploitation contained oocysts. Control of Cryptosporidium oocyst contamination during intensive exploitation is therefore necessary to ensure drinking water quality. Copyright © 2011. Published by Elsevier Ltd.

  3. Intrinsic vulnerability, hazard and risk mapping for karst aquifers: A case study

    NASA Astrophysics Data System (ADS)

    Mimi, Ziad A.; Assi, Amjad

    2009-01-01

    SummaryGroundwater from karst aquifers is among the most important resources of drinking water supply of the worldwide population. The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, hazard and risk mapping. This paper presents the first application of all components of this European approach to the groundwater underlying the Ramallah district, a karst hydrogeology system in Palestine. The vulnerability maps which were developed can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. Large areas in the case study area can be classified as low or very low risk area corresponding to the pollution sources due to the absence of hazards and also due to low vulnerabilities. These areas could consequently be interesting for future development as they are preferable in view of ground water protection.

  4. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    USDA-ARS?s Scientific Manuscript database

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  5. Karst geomorphology and hydrology at the Campania - Basilicata border (southern Apennines of Italy)

    NASA Astrophysics Data System (ADS)

    Farfan Gonzalez, H.; Parise, M.

    2009-04-01

    This paper describes the main karst geomorphological and hydrological features of the area at the boundary between the Campania and Basilicata regions, in the southern Apennines of Italy. Even not far from the most important karst area of southern Italy (the Alburni Massif, hosting hundreds of caves, with very complex subterranean systems that have been extensively explored in the last 50 years), this sector has never been object of detailed karstic studies. Geologically, it shows a carbonate bedrock consisting of Cretaceous limestones and dolomites, in tectonic contact with terrigenous deposits of Miocene age. The territory is an active seismogenic zone, as testified by the November 23, 1980, earthquake that hit this part of southern Italy with a 6.8 magnitude, causing over 2,700 victims and destroying several small towns in the two regions. In 2007, within the framework of joint projects between the Italian Speleological Society (SSI) and the Cuban Speleological Society (SEC), a scientific and speleological expedition was carried out in a sector of this area. The efforts produced during the expedition, and in the preceeding phases as well, resulted in discovery, survey and documentation of 62 caves, and in supporting the progresses of the exploration activities in the main karst system in the area, a complex of two caves that reach a maximum depth of 123 meters and an overall length of 1,8 km. At the surface, a variety of karst landforms is recognizable. The main carbonate ridges show several orders of palaeosurfaces, located at different heights above sea level. Bounded by fault lines or fault line scarps, they present variable extension, the highest surfaces showing a much better continuity. On the Campanian side, several sinkholes are also present, some of which opened in the aftermath of the 1980 earthquake. The same event caused in Basilicata the formation of several caves of structural origin, controlled in their development by tectonics and extremely

  6. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    PubMed

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2018-01-01

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  7. Water resources management in karst aquifers - concepts and modeling approaches

    NASA Astrophysics Data System (ADS)

    Sauter, M.; Schmidt, S.; Abusaada, M.; Reimann, T.; Liedl, R.; Kordilla, J.; Geyer, T.

    2011-12-01

    Water resources management schemes generally imply the availability of a spectrum of various sources of water with a variability of quantity and quality in space and time, and the availability and suitability of storage facilities to cover various demands of water consumers on quantity and quality. Aquifers are generally regarded as suitable reservoirs since large volumes of water can be stored in the subsurface, water is protected from contamination and evaporation and the underground passage assists in the removal of at least some groundwater contaminants. Favorable aquifer properties include high vertical hydraulic conductivities for infiltration, large storage coefficients and not too large hydraulic gradients / conductivities. The latter factors determine the degree of discharge, i.e. loss of groundwater. Considering the above criteria, fractured and karstified aquifers appear to not really fulfill the respective conditions for storage reservoirs. Although infiltration capacity is relatively high, due to low storativity and high hydraulic conductivities, the small quantity of water stored is rapidly discharged. However, for a number of specific conditions, even karst aquifers are suitable for groundwater management schemes. They can be subdivided into active and passive management strategies. Active management options include strategies such as overpumping, i.e. the depletion of the karst water resources below the spring outflow level, the construction of subsurface dams to prevent rapid discharge. Passive management options include the optimal use of the discharging groundwater under natural discharge conditions. System models that include the superposition of the effect of the different compartments soil zone, epikarst, vadose and phreatic zone assist in the optimal usage of the available groundwater resources, while taking into account the different water reservoirs. The elaboration and implementation of groundwater protection schemes employing well

  8. Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China

    NASA Astrophysics Data System (ADS)

    Kang, Fengxin; Jin, Menggui; Qin, Pinrui

    2011-06-01

    Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5 m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.

  9. Recharge heterogeneity and high intensity rainfall events increase contamination risk for Mediterranean groundwater resources

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Jasechko, Scott; Gleeson, Tom; Wada, Yoshihide; Andreo, Bartolomé; Barberá, Juan Antonio; Brielmann, Heike; Charlier, Jean-Baptiste; Darling, George; Filippini, Maria; Garvelmann, Jakob; Goldscheider, Nico; Kralik, Martin; Kunstmann, Harald; Ladouche, Bernard; Lange, Jens; Mudarra, Matías; Francisco Martín, José; Rimmer, Alon; Sanchez, Damián; Stumpp, Christine; Wagener, Thorsten

    2017-04-01

    Karst develops through the dissolution of carbonate rock and results in pronounced spatiotemporal heterogeneity of hydrological processes. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries like Austria or Slovenia. Previous work showed that karstic recharge processes enhance and alter the sensitivity of recharge to climate variability. The enhanced preferential flow from the surface to the aquifer may be followed by enhanced risk of groundwater contamination. In this study we assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of karst hydraulic properties, we were able to simulate karstic groundwater recharge including its heterogeneous spatiotemporal dynamics. The model is driven by gridded daily climate data from the Global Land Data Assimilation System (GLDAS). Transit time distributions are calculated using virtual tracer experiments. We evaluated our simulations by independent information on transit times derived from observed time series of water isotopes of >70 karst springs over Europe. The simulations indicate that, compared to humid, mountain and desert regions, the Mediterranean region shows a stronger risk of contamination in Europe because preferential flow processes are most pronounced given thin soil layers and the seasonal abundance of high intensity rainfall events in autumn and winter. Our modelling approach includes strong simplifications and its results cannot easily be generalized but it still highlights that the combined effects of variable climate and heterogeneous catchment properties constitute a strong risk on water quality.

  10. The role of groundwater in hydrological processes and memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui

    The interactions between soil moisture and groundwater play important roles in controlling Earth's climate, by changing the terrestrial water cycle. However, most contemporary land surface models (LSMs) used for climate modeling lack any representation of groundwater aquifers. In this dissertation, the effects of water table dynamics on the National Center for Atmospheric Research (NCAR) Community Land Model (CLM) and Community Atmosphere Model (CAM) hydrology and land-atmosphere simulations are investigated. First, a simple, lumped unconfined aquifer model is incorporated into the CLM, in which the water table is interactively coupled to the soil moisture through groundwater recharge fluxes. The recent availability of GRACE water storage data provides a unique opportunity to constrain LSMs simulations of terrestrial hydrology. A multi-objective calibration framework using GRACE and streamflow data is developed. This approach improves parameter estimation and reduces the uncertainty of water table simulations in the CLM. Next, experiments are conducted with the off-line CLM to explore the effects of groundwater on land surface memory. Results show that feedbacks of groundwater on land surface memory can be positive, negative, or neutral depending on water table dynamics. The CAM-CLM is further utilized to investigate the effects of water table dynamics on spatial-temporal variations of precipitation. Results indicate that groundwater can increase short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth. Finally, lower tropospheric water vapor is increased due to the presence of groundwater in the model. However, the impact of groundwater on the spatial distribution of precipitation is not globally homogeneous. In the boreal summer, tropical land regions show a positive (negative) anomaly over the Northern (Southern) Hemisphere. The increased tropical precipitation follows the climatology of the

  11. Relationships between groundwater contamination and major-ion chemistry in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.

    1990-11-01

    Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal

  12. Occurrence of Pepper Mild Mottle Virus (PMMoV) in Groundwater from a Karst Aquifer System in the Yucatan Peninsula, Mexico.

    PubMed

    Rosiles-González, Gabriela; Ávila-Torres, Gerardo; Moreno-Valenzuela, Oscar A; Acosta-González, Gilberto; Leal-Bautista, Rosa María; Grimaldo-Hernández, Cinthya D; Brown, Judith K; Chaidez-Quiroz, Cristóbal; Betancourt, Walter Q; Gerba, Charles P; Hernández-Zepeda, Cecilia

    2017-12-01

    The Yucatan Peninsula of Mexico hosts a karst aquifer system that is the only source of freshwater for the area; however, it is vulnerable to human-mediated contamination. Pepper mild mottle virus (PMMoV) is one of the most abundant RNA viruses associated with human feces, making it a viable indicator for tracking fecal pollution in aquatic environments, including groundwater. In this study, groundwater samples collected from a karst aquifer from fresh and brackish water locations were analyzed for fecal indicator bacteria, somatic and male F+ specific coliphages, and PMMoV during the rainy and dry seasons. Total coliform bacteria were detected at all sites, whereas Escherichia coli were found at relatively low levels <40 MPN/100 ml. The highest average concentrations of somatic and male F+ specific coliphages were 920 and 330 plaque forming units per 100 ml, respectively, detected in freshwater during the rainy season. PMMoV RNA was detected in 85% of the samples with gene sequences sharing 99-100% of nucleotide identity with PMMoV sequences available in GenBank. Quantification of PMMoV genome copies (GC) by quantitative real-time PCR indicated concentrations ranging from 1.7 × 10 1 to 1.0 × 10 4 GC/L, with the highest number of GC detected during the rainy season. No significant correlation was observed between PMMoV occurrence by season or water type (p > 0.05). Physicochemical and indicator bacteria were not correlated with PMMoV concentrations. The abundance and prevalence of PMMoV in the karst aquifer may reflect its environmental persistence and its potential as a fecal indicator in this karst aquifer system.

  13. Modern and Unconventional Approaches to Karst Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sukop, M. C.

    2017-12-01

    Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave

  14. Hydrologic and geochemical approaches for determining ground-water flow components

    USGS Publications Warehouse

    Hjalmarson, H.W.; Robertson, F.N.

    1991-01-01

    Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.

  15. Changes in groundwater quality in a conduit-flow-dominated karst aquifer, following BMP implementation

    USGS Publications Warehouse

    Currens, J.C.

    2002-01-01

    Water quality in the Pleasant Grove Spring karst groundwater basin, Logan County, Kentucky, was monitored to determine the effectiveness of best management practices (BMPs) in protecting karst aquifers. Ninety-two percent of the 4,069-ha (10,054-acre) watershed is used for agriculture. Water-quality monitoring began in October 1992 and ended in November 1998. By the fall of 1995 approximately 72% of the watershed was enrolled in BMPs sponsored by the US Department of Agriculture Water Quality Incentive Program (WQIP). Pre-BMP nitrate-nitrogen concentration averaged 4.65 mg/1. The median total suspended solids concentration was 127 mg/1. The median triazine concentration measured by immunosorbent assay was 1.44 ??tg/l. Median bacteria counts were 418 colonies per 100 ml (col/100 ml) for fecal coliform and 540 col/100 ml for fecal streptococci. Post-BMP, the average nitrate-nitrogen concentration was 4.74 mg/1. The median total suspended solids concentration was 47.8 mg/1. The median triazine concentration for the post-BMP period was 1.48 ??g/1. The median fecal coliform count increased to 432 col/100 ml after BMP implementation, but the median fecal streptococci count decreased to 441 col/100 ml. The pre- and post-BMP water quality was statistically evaluated by comparing the annual mass flux, annual descriptive statistics, and population of analyses for the two periods. Nitrate-nitrogen concentration was unchanged. Increases in atrazine-equivalent flux and triazine geometric averages were not statistically significant. Total suspended solids concentration decreased slightly, whereas orthophosphate concentration increased slightly. Fecal streptococci counts were reduced. The BMPs were only partially successful because the types available and the rules for participation resulted in less effective BMPs being chosen. Future BMP programs in karst areas should emphasize buffer strips around sinkholes, excluding livestock from streams and karst windows, and withdrawing

  16. Use of stable isotope-labeled Escherichia coli as a tracer in karst aquifers

    USDA-ARS?s Scientific Manuscript database

    Bacterial contamination of karst aquifers is a large concern across the globe, yet bacterial transport in karst aquifers is not currently well understood. Groundwater tracers typically used in karst systems include fluorescent dyes and latex microspheres. Not only can these tracers can be cost-prohi...

  17. Looking Deeper Into Hydrologic Connectivity and Streamflow Generation: A Groundwater Hydrologist's Perspective.

    NASA Astrophysics Data System (ADS)

    Gardner, W. P.

    2016-12-01

    In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.

  18. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  19. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river

    PubMed Central

    Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-01-01

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859

  20. Hydrochemical constraints between the karst Tabular Middle Atlas Causses and the Saïs basin (Morocco): implications of groundwater circulation

    NASA Astrophysics Data System (ADS)

    Miche, Hélène; Saracco, Ginette; Mayer, Adriano; Qarqori, Khaoula; Rouai, Mohamed; Dekayir, Abdelilah; Chalikakis, Konstantinos; Emblanch, Christophe

    2018-02-01

    The karst Tabular Middle Atlas Causses reservoir is the main drinking-water supply of Fez-Meknes region (Saïs Basin) in Morocco. Recent analyses showed a decline in associated groundwater chemical quality and increased turbidity. To understand this hydrosystem, four surveys were undertaken during fall and spring, 2009-2011. Hydrogeochemical studies coupled with isotopic analyses (δ18O, δD and 222Rn) showed that the aquifers between the causses (mountains) and the Saïs Basin are of Liassic origin and at the southern extremities are of Triassic origin. Five recharge zones of different altitudes have been defined, including two main mixing zones in the south. Deuterium excess results suggest local recharge, while a plot of δ18O versus δD characterizes a confined aquifer in the eastern sector. 222Rn results reveal areas of rapid exchanges with an upwelling time of less than 2 weeks. A schematic conceptual model is presented to explain the groundwater circulation system and the behavior of this karst system.

  1. Process-based monitoring and modeling of Karst springs - Linking intrinsic to specific vulnerability.

    PubMed

    Epting, Jannis; Page, Rebecca M; Auckenthaler, Adrian; Huggenberger, Peter

    2018-06-01

    The presented work illustrates to what extent field investigations as well as monitoring and modeling approaches are necessary to understand the high discharge dynamics and vulnerability of Karst springs. In complex settings the application of 3D geological models is essential for evaluating the vulnerability of Karst systems. They allow deriving information on catchment characteristics, as the geometry of aquifers and aquitards as well as their displacements along faults. A series of Karst springs in northwestern Switzerland were compared and Karst system dynamics with respect to qualitative and quantitative issues were evaluated. The main objective of the studies was to combine information of catchment characteristics and data from novel monitoring systems (physicochemical and microbiological parameters) to assess the intrinsic vulnerability of Karst springs to microbiological contamination with simulated spring discharges derived from numerical modeling (linear storage models). The numerically derived relation of fast and slow groundwater flow components enabled us to relate different sources of groundwater recharge and to characterize the dynamics of the Karst springs. Our study illustrates that comparably simple model-setups were able to reproduce the overall dynamic intrinsic vulnerability of several Karst systems and that one of the most important processes involved was the temporal variation of groundwater recharge (precipitation, evapotranspiration and snow melt). Furthermore, we make a first attempt on how to link intrinsic to specific vulnerability of Karst springs, which involves activities within the catchment area as human impacts from agriculture and settlements. Likewise, by a more detailed representation of system dynamics the influence of surface water, which is impacted by release events from storm sewers, infiltrating into the Karst system, could be considered. Overall, we demonstrate that our approach can be the basis for a more flexible and

  2. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow

  3. A preliminary study on the feedback of heat transfer on groundwater flow in a Karst geothermal field

    NASA Astrophysics Data System (ADS)

    Kong, Y.; Pang, Z.; Hu, S.; Pang, J.; Shao, H.; Kolditz, O.

    2014-12-01

    In deep sedimentary basins, groundwater movement can significantly alter the heat flow pattern. At the same time, heat flux induced temperature change can reversely determine the flow regime through density dependent convection process. In Karst aquifers, the heterogeneity in the carbonate rocks makes the identification of this feedback much more complex. In this work, a preliminary study has been made on this feedback in Xiongxian geothermal field. The Karst aquifer in our site has an average thickness of about 1000 m, and is overlaid by over 400 m of quaternary clay, and subsequently 600 m of Neogene sandstone. Geothermal energy has been exploited in the site for space heating. During the heating period from Nov 15th to Mar 15th every year, hot water was extracted from the aquifer and re-injected after the heat extraction. A detailed temperature logging has been carried out in the field, both before and after the heating period, with the consideration that temperature distribution will be affected by the re-injection of cold water. The vertical distribution of temperature in the cap rock shows a constant positive gradient over depth. The heat flux at different locations has been calculated respectively. It is found to decline from southwest to northeast, with the highest value of 113.9 mW/m2 to the lowest of 80.6 mW/m2. This pattern can be well explained by the tectonic features. More interestingly, two inflection points appear on the temperature profile of the Karst layer, revealing strong influence from the cold re-injection water. Also, a 3℃ temperature difference was observed in the June and October measurement, which is related to the reservoir recovery. Currently, a 3D numerical model is being constructed, using the open-source software OpenGeoSys. Heat transport process is coupled with density dependent flow in a monolithic approach, to simulate both heat conduction and groundwater convection. This model will help to quantify the feedback from heat

  4. Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA

    USGS Publications Warehouse

    Long, Andrew J.; Sawyer, J.F.; Putnam, L.D.

    2008-01-01

    Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. ??18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration. ?? Springer-Verlag 2007.

  5. Cansiglio Karst Plateau: 10 Years of Geodetic-Hydrological Observations in Seismically Active Northeast Italy

    NASA Astrophysics Data System (ADS)

    Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo

    2018-04-01

    Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau (M m = 6.2) and the 1976 disastrous Friuli earthquake (M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.

  6. Cansiglio Karst Plateau: 10 Years of Geodetic-Hydrological Observations in Seismically Active Northeast Italy

    NASA Astrophysics Data System (ADS)

    Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo

    2018-05-01

    Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau ( M m = 6.2) and the 1976 disastrous Friuli earthquake ( M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.

  7. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    NASA Astrophysics Data System (ADS)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2018-03-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  8. Contamination, Transport, and Exposure Mapping and Assessment of Karst Groundwater Systems in Northern Puerto Rico Using GIS

    NASA Astrophysics Data System (ADS)

    Howard, J.; Schifman, L. A.; Irrizary, C.; Torres, P.; Padilla, I. Y.

    2011-12-01

    Ground waters from karst aquifer systems are one of the most important sources of freshwater worldwide and are highly vulnerable to both natural and anthropogenic contamination. Contaminants released into karst groundwater systems move through complex pathways from their sources to discharge areas of potential exposure. Points of exposure can include wells, springs, and surface waters that serve as drinking water sources. In Puerto Rico, the North Coast Limestone Aquifer System, which extends 90 miles across the north coast with an area of nearly 700 sq. miles, provides more than 50% of the potable water demand for industrial and drinking purposes. Historical reports from the 1980s revealed that volatile organic compounds, phthalates, and metals were close to or exceeded maximum contaminant levels. Exposure to such contaminants has been reported to cause reproductive and developmental issues, such as preterm birth. Since there is minimal understanding of the extent of contamination it is important to identify areas of potential concern. Preliminary analysis of 20 groundwater/springs and 20 tap water sites within the North Coast suggest that contamination is still a major concern. In addition, mixed effects models analyses suggest that >60% of pre-term birth rates may be explained by the presence of sites contaminated with volatile organic compounds, phthalates, and metals within the North Coast region. This presentation will focus primarily on how GIS was used as a tool for developing sampling strategies for collecting groundwater and tap water sources within the North Coast Limestone Aquifer System of Puerto Rico. In addition, the linkage of contamination, transport, and exposure to volatile organic compounds and phthalates will be addressed.

  9. Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, J.; Bertschinger, V.; Aley, T.

    1993-04-01

    Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less

  10. Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu

    NASA Astrophysics Data System (ADS)

    Fatchurohman, H.; Adji, T. N.; Haryono, E.; Wijayanti, P.

    2018-04-01

    Karst terrain occurs in combination of high solubility rock and well developed secondary porosity. Over the time, groundwater resources have not been well managed including karst aquifers. Karst aquifers formed in a very complex hydrological system. Developed in fracture media and soluble rocks have led karst aquifers into various porosity types and aquifer properties. Karst spring hydrograph is an essential element for water resource management. The form of karst spring hydrograph reflects the aquifer characteristics. The shapes of flood discharge hydrographs represent aquifer responses to recharge and contain information about the interior condition of karst drainage basin. Every year, Gunung Sewu karst area is suffering to severe water scarcity. The development of sub-terrain drainage networks lead into the minimum surface water resources. Kakap Spring is perennial gravity spring that located adjacently to the border of Gunung Sewu and the alluvial formation of Baturetno. Kakap spring play vital role regarding water supply in Giriwoyo sub-district as the spring fulfill most of the water needs in Giriwoyo sub-district. Kakap Spring utilized by the local authorities as the main source for pipeline water and distributed to the households. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Kakap Spring calculated as y = 14,504e8,9763x with r2 value = 0.8582. From the MRC result, flow regimes formula determined as + 400 (1-0,005t) + 700 (1-0,01t)., indicated that the aquifer dominated by turbulent flow regime. From the MRC formula, the degree of karstification in Kakap Spring classified at eighth scale. The average baseflow index in Kakap Spring calculated using recession curve analysis with the BFI index = 0,7485.

  11. Research on Evaluation and Control of Karst Water Resources in a Certain Tunnel of Dalian Subway

    NASA Astrophysics Data System (ADS)

    Wang, Guang Qiang

    2018-05-01

    Taking a certain tunnel in Dalian Metro as the research object, to evaluate the situation of karst development through geophysical prospecting and drilling data in study area. Karst water resources can be evaluated by quality and quantity in the study area, the correlation of the ion content can be analyzed according to the analysis results of chemical composition of groundwater and the maximum water inflow in karst water section tunnel can be calculated by using the Oshima Yoshi formula. Put forward measures and methods of groundwater control and tube well dewatering based on these evaluation, it has certain guiding significance for tunnel construction in karst area.

  12. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    NASA Astrophysics Data System (ADS)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  13. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    USGS Publications Warehouse

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  14. Unprotected karst resources in western Iran: the environmental impacts of intensive agricultural pumping on the covered karstic aquifer, a case in Kermanshah province

    NASA Astrophysics Data System (ADS)

    Taheri, Kamal; Taheri, Milad; Parise, Mario

    2015-04-01

    Bare and covered karst areas, with developed karstic aquifers, cover 35 percent of the Kermanshah province in western Iran. These aquifers are the vital sources for drinking and agricultural water supplies. Over the past decade, intensive groundwater use (exploitation) for irrigation imposed a significant impact on the carbonate environments. The huge amount of groundwater over-exploitations has been carried out and still goes on by local farmers in the absence of appropriate governance monitoring control. Increasing in water demands, for more intense crop production, is an important driving force toward groundwater depletion in alluvial aquifers. Progressive groundwater over-exploitations from underlying carbonate rocks have led to dramatic drawdown in alluvial aquifers and deep karst water tables. Detecting new sources of groundwater extractions and prohibiting the karst water utilization for agricultural use could be the most effective strategy to manage the sustainability of covered karst aquifers. Anthropogenic pressures on covered karst aquifers have magnified the drought impacts and caused dryness of most of the karst springs and deep wells. In this study, the combination of geophysical and geological studies was used to estimate the most intensively exploited agricultural zones of Islam Abad plain in the southwestern Kermanshah province using GIS. The results show that in the past decade a great number of deep wells were drilled through the overburden alluvial aquifer and reached the deep karst water resources. However, the difficulties involved in monitoring deep wells in covered karst aquifer were the main cause of karst water depletion. Overexploitation from both alluvial and karst aquifers is the main reason for drying out the Arkawazi, Sharafshah, Gawrawani karst springs, and the karst drinking water wells 1, 3 and 5 of Islam Abad city. Karst spring landscape destructions, fresh water supply deficit for inhabitants, decreasing of tourism and

  15. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Le Moigne, N.; Bayer, R.; Chéry, J.

    2017-01-01

    In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, 3 yr of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (-894.8 nm s-2 V-1) and the long-term drift of this instrument (45 nm s-2 yr-1) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydrogeophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time-series assimilation in hydrological simulations, even

  16. An integrated groundwater and surface water approach to quantifying the contribution of hydrological pathways to streamflow

    NASA Astrophysics Data System (ADS)

    O'Brien, R. J.; Deakin, J.; Misstear, B.; Gill, L.; Flynn, R. M.

    2012-12-01

    An appreciation of the quantity of streamflow derived from the main hydrological groundwater and surface water pathways transporting diffuse pollutants is critical when addressing a wide range of water resource management issues. The Pathways Project, funded by the Irish EPA, is developing a Catchment Management Tool (CMT) as an aid to water resource decision makers. The pollutants investigated by the CMT include phosphorus, nitrogen, sediments, pesticides and pathogens. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways in conjunction with the quicker overland and interflow pathways. Four watersheds are being investigated, with continuous rainfall, discharge, temperature and conductivity data being collected at gauging points within each of the watersheds. These datasets are being used to populate the semi-distributed, lumped flow model, NAM and also the distributed, finite difference model, MODFLOW. One of the main challenges is to achieve credible separations of the hydrograph into the main pathways in relatively small catchments (sometimes less than 5km2) with short response times. To assist the numerical modelling, physical separation techniques have been used to constrain the separations within probable limits. Physical techniques include: Master Recession Analysis; a modified Lyne and Hollick one-parameter digital separation; an approach developed in Ireland involving the application of recharge coefficients to hydrologically effective rainfall estimates; and finally using the NAM and MODFLOW models themselves as means of investigating separations. The contribution from each of the pathways, combined with an understanding of the attenuation of the contaminants along those pathways, will inform the CMT. This understanding will lay the foundation for linking the parameters of the NAM model to watershed descriptors such as slope, drainage density, watershed area, soil type, etc., in order to

  17. Characterization of the hydrogeology of the sacred Gihon Spring, Jerusalem: a deteriorating urban karst spring

    NASA Astrophysics Data System (ADS)

    Amiel, Ronit Benami; Grodek, Tamir; Frumkin, Amos

    2010-09-01

    The Gihon Spring, Jerusalem, is important for the major monotheistic religions. Its hydrogeology and hydrochemistry is studied here in order to understand urbanization effects on karst groundwater resources, and promote better water management. High-resolution monitoring of the spring discharge, temperature and electrical conductivity, was performed, together with chemical and bacterial analysis. All these demonstrate a rapid response of the spring to rainfall events and human impact. A complex karst system is inferred, including conduit flow, fissure flow and diffuse flow. Electrical conductivity, Na+ and K+ values (2.0 mS/cm, 130 and 50 mg/l respectively) are very high compared to other nearby springs located at the town margins (0.6 mS/cm, 15 and <1 mg/l respectively), indicating considerable urban pollution in the Gihon area. The previously cited pulsating nature of the spring was not detected during the present high-resolution monitoring. This phenomenon may have ceased due to additional water sources from urban leakage and irrigation feeding the spring. The urbanization of the recharge catchment thus affects the spring water dramatically, both chemically and hydrologically. Appropriate measures should therefore be undertaken to protect the Gihon Spring and other karst aquifers threatened by rapid urbanization.

  18. Hydrological challenges to groundwater trading: Lessons from south-west Western Australia

    NASA Astrophysics Data System (ADS)

    Skurray, James H.; Roberts, E. J.; Pannell, David J.

    2012-01-01

    SummaryPerth, Western Australia (pop. 1.6 m) derives 60% of its public water supply from the Gnangara groundwater system (GGS). Horticulture, domestic self-supply, and municipal parks are other major consumers of GGS groundwater. The system supports important wetlands and groundwater-dependent ecosystems. Underlying approximately 2200 km 2 of the Swan Coastal Plain, the GGS comprises several aquifer levels with partial interconnectivity. Supplies of GGS groundwater are under unprecedented stress, due to reduced recharge and increases in extraction. Stored reserves in the superficial aquifer fell by 700 GL between 1979 and 2008. Over a similar period, annual extraction for public supply increased by more than 350% from the system overall. Some management areas are over-allocated by as much as 69%. One potential policy response is a trading scheme for groundwater use. There has been only limited trading between GGS irrigators. Design and implementation of a robust groundwater trading scheme faces hydrological and/or hydro-economic challenges, among others. Groundwater trading involves transfers of the right to extract water. The resulting potential for spatial (and temporal) redistribution of the impacts of extraction requires management. Impacts at the respective selling and buying locations may differ in scale and nature. Negative externalities from groundwater trading may be uncertain as well as not monetarily compensable. An ideal groundwater trading scheme would ensure that marginal costs from trades do not exceed marginal benefits, incorporating future effects and impacts on third-parties. If this condition could be met, all transactions would result in constant or improved overall welfare. This paper examines issues that could reduce public welfare if groundwater trading is not subject to well-designed governance arrangements that are appropriate to meeting the above condition. It also outlines some opportunities to address key risks within the design of a

  19. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  20. Groundwater hydrochemistry evolution in cyclone driven hydrological regimes, NW Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Dogramaci, S.; Grierson, P.

    2013-12-01

    Groundwater reserves supply the water needs of many arid regions around the world. Aquifer recharge in these regions is primarily depended on the amount and distribution of rainfall, coupled with exceedingly high rates of evaporation and interactions with both local and regional geomorphology and geology. In semi-arid northwest Australia, the majority of rainfall is delivered by large but infrequent cyclonic events and relatively more frequent but low intensity frontal systems. Changes to rainfall patterns due to global climate change may impact hydrological regimes, recharge rates and groundwater hydrochemistry. These changes may significantly restrict freshwater resources in the future. Between 2008 and 2012, we analysed >400 groundwater, surface and rainwater samples for stable isotope composition (δ2H and δ18O) and major ion chemistry. We then developed conceptual geochemical models of groundwater evolution for the Hamersley Basin (>100,000 km2) and a salt inventory for the Fortescue Marsh (the largest wetland in NW Australia) [1,2]. Fresh groundwater from the alluvium (-8.02 × 0.83‰) and fractured aquifers (-8.22 × 0.70‰) were hydrochemically similar and characterised by a very narrow range of δ18O [1]. In contrast, δ18O of saline and brine groundwater (TDS >10 g L-1) varies in wide range from +2.5 to -7.2‰ [2]. Most of the fresh and brackish groundwater reflects modern recharge and is evaporated by <20% prior to recharge. In contrast, highly saline and brine groundwater reflects mixing between modern rainfall, brackish water and older deep groundwater. The Fortescue Marsh primarily acts as a terminal basin for surface water from the upper Fortescue River catchment [2]. The stable isotope composition of the deep brine groundwater under the Marsh suggests a complex evolution, which cannot be explained by evaporation under current climatic conditions. The observed salinity and δ18O values may result from progressive evaporation from highly saline

  1. A Hydrologically-based Method for Calculating Sustainable Yield under California's Sustainable Groundwater Management Act

    NASA Astrophysics Data System (ADS)

    Miro, M.; Famiglietti, J. S.

    2016-12-01

    In California, traditional water management has focused heavily on surface water, leaving many basins in a state of critical overdraft and lacking in established frameworks for groundwater management. However, new groundwater legislation, the 2014 Sustainable Groundwater Management Act (SGMA), presents an important opportunity for water managers and hydrologists to develop novel methods for managing statewide groundwater resources. Integrating scientific advances in groundwater monitoring with hydrologically-sound methods can go a long way in creating a system that can better govern the resource. SGMA mandates that groundwater management agencies employ the concept of sustainable yield as their primary management goal but does not clearly define a method to calculate it. This study will develop a hydrologically-based method to quantify sustainable yield that follows the threshold framework under SGMA. Using this method, sustainable yield will be calculated for two critically-overdrafted groundwater basins in California's Central Valley. This measure will also utilize groundwater monitoring data and downscaled remote sensing estimates of groundwater storage change from NASA's GRACE satellite to illustrate why data matters for successful management. This method can be used as a basis for the development of SGMA's groundwater management plans (GSPs) throughout California.

  2. Spatial heterogeneities and variability of karst hydro-system : insights from geophysics

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Fores, B.; Lesparre, N.; Frederic, N.

    2017-12-01

    Heterogeneous systems such as karsts or fractured hydro-systems are challenging for both scientist and groundwater resources management. Karsts heterogeneities prevent the comparison and moreover the combination of data representative of different scales: borehole water level can generally not be used directly to interpret spring flow dynamic for example. The spatial heterogeneity has also an impact on the temporal variability of groundwater transfer and storage. Karst hydro-systems have characteristic non linear relation between precipitation amount and discharge at the outlets with threshold effects and a large variability of groundwater transit times In the presentation, geophysical field experiments conducted in karst hydro-system in the south of France are used to investigate groundwater transfer and storage variability at a scale of a few hundred meters. We focus on the added value of both geophysical time-lapse gravity experiments and 2D ERT imaging of the subsurface heterogeneities. Both gravity and ERT results can only be interpreted with large ambiguity or some strong a priori: the relation between resistivity and water content is not unique; almost no information about the processes can be inferred from the groundwater stock variations. The present study demonstrate how the ERT and gravity field experiments can be interpreted together in a coherent scheme with less ambiguity. First the geological and hydro-meteorological context is presented. Then the ERT field experiment including the processing and the results are detailed in the section about geophysical imaging of the heterogeneities. The gravity double difference (S2D) time-lapse experiment is described in the section about geophysical monitoring of the temporal variability. The following discussion demonstrate the impact of both experiments on the interpretation in terms of processes and heterogeneities.

  3. Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, South China.

    PubMed

    Huang, Siyu; Pu, Junbing; Cao, Jianhua; Li, Jianhong; Zhang, Tao; Jiang, Feng; Li, Li; Wu, Feihong; Pan, Moucheng; Bai, Bing

    2018-03-01

    Reservoirs are commonly recharged by groundwater that is rich in bicarbonate ions in karst regions of South China, and the recharge of this groundwater to the reservoir can affect the biogeochemical processes of carbon sedimentation at the reservoir bottom. In this study, Dalongdong Reservoir, which is mainly recharged by two subterranean streams, was investigated based on a 42-cm-thick sedimentary core and the 210 Pb/ 137 Cs dating technique and isotope analyses to understand the sedimentary history and identify the carbon sources. The 210 Pb/ 137 Cs age model showed that the sediments were accumulated over the last 60 years. The annual increase precipitation and temperature showed no obvious change compared with trends of δ 13 C in total organic carbon (δ 13 C org ), δ 15 N values in total nitrogen, and the carbon and nitrogen ratio (C/N). This shows that climate was not the main control of the variation in sediment factors. Based on δ 13 C org , δ 15 N, C/N, and isotopic mixing modeling, sources of organic carbon in the sediments were derived from plankton (60.84%), soil (22.93%), waste water (14.56%), and terrestrial plants (1.67%). From 1958 to 1978, reservoir establishment and leakage affected the contribution of the four sources. The contribution of the plankton source increased from 1978 to 2015, resulting from change of water level and continued input of external nitrogen. However, because of the revegetation supplied by an economic aid project the contribution of soil showed a considerable decreasing trend from 1978 to 2002. After 2002, For "Grain for Green" project, the contribution from soil further decreased. After reservoir construction, the contribution of waste water stabilized. The contribution of terrestrial plants started increased rapidly after 2002. Karst groundwater, which contains more dissolved inorganic carbon containing lower δ 13 C DIC than the water sources of other lakes or reservoirs, makes the δ 13 C org value of sediment more

  4. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang

    2017-05-01

    Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.

  5. Spatial distribution of nitrogen on grazed karst landscapes.

    PubMed

    Boyer, D G; Alloush, G A

    2001-11-27

    The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian region. Karst areas comprise about 18% of the region"s land area. An estimated one-third of the region"s farms, cattle, and agricultural market value are located on karst terrain. Mean nitrate concentrations in several karst springs in southeastern West Virginia exhibit a strong linear relationship with the percentage of agriculture land cover. Development of best management practices for efficient nitrogen (N) use and reduction of outflow of N to water from karst areas requires knowledge about N dynamics on those landscapes. Water extractable NO3-N and NH4-N were measured along transects at four soil depths in two grazed sinkholes and one wooded sinkhole. Distribution of soil NO3-N and NH4-N were related to frequency of animal presence and to topographic and hydrologic redistribution of soil and fecal matter in the grazed sinkholes. Karst pastures are characterized by under drainage and funneling of water and contaminants to the shallow aquifer. Control of NO3-N leaching from karst pasture may depend on management strategies that change livestock grazing behavior in sinkholes and reduce the opportunity for water and contaminants to quickly reach sinkhole drains.

  6. The newest findings on Red Lake (Dinaric karst of Croatia)

    NASA Astrophysics Data System (ADS)

    Andrić, Ivo; Jukić, Branimir

    2014-05-01

    Red Lake in the Dinaric karst (Croatia) is of the deepest karst lakes in the world. Even so, through the history of Red Lake's research there were many controversies in the conclusions and the theories concerning its genesis, geomorphology and hydrology. This work has for a goal to present the newest research results won with the help of emerging technologies based on LiDAR and SoNAR methods. The measurements took place during September 2013. New generation of equipment developed to advance the geoscientific research has been deployed during the field work and the gathered data enabled the analysis which led to a new understanding of the lake's morphology. Some of the results confirmed already known and well documented features of Red Lake whereas others disputed widely accepted assumptions in the scientific community and general public. The objective of this paper is also groundwork for further research in the field of karst hydrology and a new insight on local and regional scale.

  7. Integrated Research Methods for Applied Urban Hydrogeology of Karst Sites

    NASA Astrophysics Data System (ADS)

    Epting, J.; Romanov, D. K.; Kaufmann, G.; Huggenberger, P.

    2008-12-01

    Integrated and adaptive surface- and groundwater monitoring and management in urban areas require innovative process-oriented approaches. To accomplish this, it is necessary to develop and combine interdisciplinary instruments that facilitate adequately quantifying cumulative effects on groundwater flow regimes. While the characterization and modeling of flow in heterogeneous and fractured media has been investigated intensively, there are no well-developed long-term hydrogeological research sites for gypsum karst. Considering that infrastructures in karst regions, particularly in gypsum, are prone to subsidence, severe problems can arise in urban areas. In the 1880's, a river dam was constructed on gypsum-containing rock, Southeast of Basel, Switzerland. Over the last 30 years, subsidence of the dam and an adjacent highway has been observed. Surface water infiltrates upstream of the dam, circulates in the gravel deposits and in the weathered bedrock around and beneath the dam and exfiltrates downstream into the river. These processes enhance karstification processes in the soluble units of the gypsum. As a result an extended weathering zone within the bedrock and the development of preferential flow paths within voids and conduits can be observed. To prevent further subsidence, construction measures were conducted in two major project phases in 2006 and 2007. The highway was supported by a large number of pillars embedded in the non- weathered rock and by a sealing pile wall, to prevent infiltrating river water circulating around the dam and beneath the foundation of the highway. To safeguard surface and subsurface water resources during the construction measures, an extensive observation network was set up. Protection schemes and geotechnical investigations that are necessary for engineering projects often provide "windows of opportunity", bearing the possibility to change perceptions concerning the sustainable development of water resources and coordinate future

  8. A glossary of Karst terminology

    USGS Publications Warehouse

    Monroe, Watson Hiner

    1970-01-01

    This glossary includes most terms used in describing karst geomorphologic features and processes. The terms are primarily those used in the literature of English-speaking countries, but a few of the more common terms in French, German, and Spanish are included, with references to the corresponding English terms where they are available. The glossary also includes simple definitions of the more common rocks and minerals found in karst terrain, common terms of hydrology, and a number of the descriptive terms used by speleologists. The glossary does not include definitions of most biospeleological terms, geologic structure terms, varieties of carbonate rock that require microscopic techniques for identification, or names describing tools and techniques of cave exploration.

  9. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    USGS Publications Warehouse

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    individual flow paths. Dominant changes in geochemistry for the Ouachita Mountains aquifer and the Western Interior Plains confining system are attributed to rock/water interaction and changes in redox zonation along the flow path. In these areas, groundwater evolves along flow paths from a calcium- to a sodium-bicarbonate water type with increasing reducing conditions resulting in denitrification, elevated iron and manganese concentrations, and production of methane in the more geochemically evolved and strongest reducing conditions. In the Ozark and Springfield Plateau aquifers, rapid influx of surface-derived contaminants, especially nitrogen, coupled with few to no attenuation processes was attributed to the karst landscape developed on Mississippian- and Ordovician-age carbonate rocks of the Ozark Plateaus. Increasing nitrate concentrations are related to increasing agricultural land use, and areas of mature karst development result in higher nitrate concentrations than areas with less karst features.

  10. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    NASA Astrophysics Data System (ADS)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  11. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains.

    PubMed

    Faulkner, Jonathan; Hu, Bill X; Kish, Stephen; Hua, Fei

    2009-11-03

    New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.

  12. A review of stormwater management in karst

    USDA-ARS?s Scientific Manuscript database

    Stormwater management can be a challenge in any environment, but it is especially difficult in karst terrain. The characteristic dissolution of bedrock creates depressions in topography as well as voids in the subsurface, resulting in problems such as collapse sinkhole development, groundwater cont...

  13. Flow characterization in the Santee Cave system in the Chapel Branch Creek watershed, upper coastal plain of South Carolina, USA

    Treesearch

    Amy E. Edwards; Devendra M. Amatya; Thomas M. Williams; Daniel R. Hitchcock; April L. James

    2013-01-01

    Karst watersheds possess both diffuse and conduit flow and varying degrees of connectivity between surface and groundwater over spatial scales that result in complex hydrology and contaminant transport processes. The flow regime and surface-groundwater connection must be properly identified and characterized to improve management in karst watersheds with impaired water...

  14. Characterisation of hydrogeological connections in a lowland karst network using time series analysis of water levels in ephemeral groundwater-fed lakes (turloughs)

    NASA Astrophysics Data System (ADS)

    Gill, L. W.; Naughton, O.; Johnston, P. M.; Basu, B.; Ghosh, B.

    2013-08-01

    This research has used continuous water level measurements five groundwater-fed lakes (or turloughs) in a linked lowland karst network of south Galway in Ireland over a 3 year period in order to elucidate the hydrogeological controls and conduit configurations forming the flooded karstic hydraulic system beneath the ground. The main spring outflow from this network discharges below mean sea level making it difficult to determine the hydraulic nature of the network using traditional rainfall-spring flow cross analysis, as has been done in many other studies on karst systems. However, the localised groundwater-surface water interactions (the turloughs) in this flooded lowland karst system can yield information about the nature of the hydraulic connections beneath the ground. Various different analytical techniques have been applied to the fluctuating turlough water level time series data in order to determine the nature of the linkage between them as well as hydraulic pipe configurations at key points in order to improve the conceptual model of the overall karst network. Initially, simple cross correlations between the different turlough water levels were carried out applying different time lags. Frequency analysis of the signals was then carried out using Fast Fourier transform analysis and then both discrete and continuous wavelet analyses have been applied to the data sets to characterise these inherently non-stationary time-series of fluctuating water levels. The analysis has indicated which turloughs are on the main line conduit system and which are somewhat off-line, the relative size of the main conduit in the network including evidence of localised constrictions, as well as clearly showing the tidal influence on the water levels in the three lower turloughs at shallow depths ∼8 km from the main spring outfall at the sea. It has also indicated that the timing of high rainfall events coincident with maximum spring tide levels may promote more consistent, long

  15. Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China

    NASA Astrophysics Data System (ADS)

    Hu, B. X.

    2015-12-01

    It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.

  16. Factors affecting public-supply well vulnerability in two karst aquifers.

    PubMed

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  17. Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    2014-06-01

    Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removedmore » from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.« less

  18. Carbon cycling in the mantled karst of the Ozark Plateaus, central United States

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik D.; Covington, Matthew D.; Hays, Phillip D.; Brye, Kristofor R.

    2017-01-01

    The nature of carbon (C) cycling in the unsaturated zone where groundwater is in contact with abundant gas-filled voids is poorly understood. The objective of this study was to trace inorganic-C cycling in a karst landscape using stable-C isotopes, with emphasis on a shallow groundwater flow path through the soil, to an underlying cave, and to the spring outlet of a cave stream in the Ozark Plateaus of northwestern Arkansas. Carbon dioxide (CO2) concentration and isotopic composition (δ13C-CO2) in gas and dissolved inorganic carbon (DIC) concentration and isotopic composition (δ13C-DIC) in water were measured in samples collected from two suction-cup soil samplers above the cave, three sites in the cave, and at the spring outlet of the cave stream. Soil-gas CO2 concentration (median 2,578 ppm) and δ13C-CO2 (median − 21.5‰) were seasonally variable, reflecting the effects of surface temperature changes on soil-CO2 production via respiration and organic-matter decomposition. Cave-air CO2 (median 1,026 ppm) was sourced from the soil zone and the surface atmosphere, with seasonally changing proportions of each source controlled by surface temperature-driven air density gradients. Soil-DIC concentration (median 1.7 mg L− 1) was lower and soil-δ13C-DIC (median − 19.5‰) was lighter compared to the cave (median 23.3 mg L− 1 and − 14.3‰, respectively) because carbonate-bedrock dissolution provided an inorganic source of C to the cave. Carbon species in the soil had a unique, light stable-C isotopic signature compared to the cave. Discrimination of soil-C sources to karst groundwater was achieved, which is critical for developing hydrologic budgets using environmental tracers such as C.

  19. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of <2 GL/yr (<0.03% of the FM water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our

  20. Quantitative Analysis of Karst Conduit Structure Parameters and Hydraulic Parameters Based on Tracer Test

    NASA Astrophysics Data System (ADS)

    Qiang, Z.; Zhiqiang, Z.; Xu, M.; Jinyu, S.; Jihong, Q.

    2017-12-01

    The Old Town of Lijiang is famous as the world cultural heritage since 1997, while characterized by its ancient buildings and natural scenery, water is the soul of the town. Around Heilongtan Springs, there are a large quantity of springs at the Old Town of Lijiang , which is an important part of the World Cultural Heritage. Heilongtan Springs is 2420m above the sea level, the annual variation of the flow rate varies greatly (0 8042 x 104 m3 / year). Recharge area Jiuzihai depressions is 6km long, 3km wide and 2800m above sea level, as main karst water recharge area karst funnel and the sink hole are developing on this planation surface, in the research area medium to thick layers of limestone made up Beiya formation (T2b) of Triassic system distributed widely, karst is strongly developed and the fissure caves water occurrence. In order to exploring the application of tracer test in karst hydrogeology, a tracer test was conducted from Jiuzihai depressions to Ganze Spring. Based on the hydrogeological conditions in the study area, tracer test was used for analysis of groundwater connectivity and flow field characteristics, quantitative analysis of Tracer Breakthrough Curves (BTC) with code Qtracer2. The results demonstated that there are hydraulic connection between Jiuzihai depressions with Ganze Spring, and there are other karst conduits in this area. The longitudinal dispersivity coefficient is 0.24 m2/s, longitudinal dispersivity is 12.06m, flow-channel volume is 3.08×104 m3, flow-channel surface area is 3.27×107m2, mean diameter is 1.42m, Reynolds number is 25187, Froude number is 0.0061, respectively. The groundwater in this area is in a slow turbulent state. The results are of great significance to understand the law of groundwater migration, establish groundwater quality prediction model and exploit karst water resources effectively.

  1. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower

  2. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.

    PubMed

    Abusaada, Muath; Sauter, Martin

    2013-01-01

    The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low-permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady-state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West-Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well-constrained catchment with well-defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long-term dynamic model for the WMAB, starting from the pre-development period (i.e., 1940s) up to date. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.

  3. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  4. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and

  5. Genesis analysis of karst water trichloroethylene pollution in the east of a city

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Zhenmin; Wen, Ming

    2017-04-01

    To understand the situation of Karst water Trichloroethylene (TCE) pollution in the east of city, Karst water samples sampled at 43 monitoring sites were analyzed. Result shows that relevance ratio of TCE is 100%, over the standard rate of 97.67% and the maximum value is 73.64μg/L, as 14.73 times as the standard value(5μg/L). Causes of groundwater TCE pollution were analyzed. Result shows that indiscriminate discharge of waste water and poor groundwater vulnerability are the main reasons. And based on the reasons, the pollution ways of TCE were found out.

  6. Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Krabbenhoft, David P.

    1999-01-01

    Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.

  7. Evaporite-karst problems and studies in the USA

    USGS Publications Warehouse

    Johnson, K.S.

    2008-01-01

    Evaporites, including rock salt (halite) and gypsum (or anhydrite), are the most soluble among common rocks; they dissolve readily to form the same types of karst features that commonly are found in limestones and dolomites. Evaporites are present in 32 of the 48 contiguous states in USA, and they underlie about 40% of the land area. Typical evaporite-karst features observed in outcrops include sinkholes, caves, disappearing streams, and springs, whereas other evidence of active evaporite karst includes surface-collapse structures and saline springs or saline plumes that result from salt dissolution. Many evaporites also contain evidence of paleokarst, such as dissolution breccias, breccia pipes, slumped beds, and collapse structures. All these natural karst phenomena can be sources of engineering or environmental problems. Dangerous sinkholes and caves can form rapidly in evaporite rocks, or pre-existing karst features can be reactivated and open up (collapse) under certain hydrologic conditions or when the land is put to new uses. Many karst features also propagate upward through overlying surficial deposits. Human activities also have caused development of evaporite karst, primarily in salt deposits. Boreholes (petroleum tests or solution-mining operations) or underground mines may enable unsaturated water to flow through or against salt deposits, either intentionally or accidentally, thus allowing development of small to large dissolution cavities. If the dissolution cavity is large enough and shallow enough, successive roof failures can cause land subsidence and/or catastrophic collapse. Evaporite karst, natural and human-induced, is far more prevalent than is commonly believed. ?? 2007 Springer-Verlag.

  8. Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)

    NASA Astrophysics Data System (ADS)

    Jing, Miao; Heße, Falk; Kumar, Rohini; Wang, Wenqing; Fischer, Thomas; Walther, Marc; Zink, Matthias; Zech, Alraune; Samaniego, Luis; Kolditz, Olaf; Attinger, Sabine

    2018-06-01

    Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nägelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems.

  9. U.S. Geological Survey Karst Interest Group Proceedings, Carlsbad, New Mexico, April 29-May 2, 2014

    USGS Publications Warehouse

    Kuniansky, Eve L.; Spangler, Lawrence E.; Kuniansky, Eve L.; Spangler, Lawrence E.

    2014-01-01

    Karst aquifer systems are present throughout parts of the United States and some of its territories, and have developed in carbonate rocks (primarily limestone and dolomite) that span an interval of time encompassing more than 550 million years. The depositional environments, diagenetic processes, post-depositional tectonic events, and geochemical weathering processes that form karst aquifers are varied and complex, and involve biological, chemical, and physical changes. These factors, combined with the diverse climatic regimes under which karst development in these rocks has taken place, result in the unique dual- or triple-porosity nature of karst aquifers. These complex hydrogeologic systems typically represent challenging and unique conditions to scientists attempting to study groundwater flow and contaminant transport in these terrains.The dissolution of carbonate rocks and the subsequent development of distinct and beautiful landscapes, caverns, and springs has resulted in the most exceptional karst areas of the United States being designated as national or state parks; commercial caverns and known privately owned caves number in the tens of thousands. Both public and private properties provide access for scientists to study the flow of groundwater in situ. Likewise, the range and complexity of landforms and groundwater flow systems associated with karst terrains are enormous, perhaps more than for any other aquifer type. Karst aquifers and landscapes that form in tropical areas, such as the cockpit karst along the north coast of Puerto Rico, differ greatly from karst landforms in more arid climates, such as the Edwards Plateau in west-central Texas or the Guadalupe Mountains near Carlsbad, New Mexico, where hypogenic processes have played a major role in speleogenesis. Many of these public and private lands also contain unique flora and fauna associated with these karst hydrogeologic systems. As a result, numerous federal, state, and local agencies have a

  10. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.

    1997-01-01

    Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual

  11. Old Groundwater, Interbasin Groundwater Flow, Magmatic Solutes, and Hydrologic Fluxes of Carbon in a Lowland Costa Rican Rainforest

    NASA Astrophysics Data System (ADS)

    Genereux, D. P.; Webb, M.; Solomon, D. K.

    2009-04-01

    Carbon (C), helium (He), and chloride (Cl) concentrations and isotopes were measured in groundwater and surface-water in a lowland Costa Rican rainforest at the foot of Volcan Barva (a 2900 m peak that is one of the largest in the Cordillera Central of Costa Rica). Results are consistent with the presence and mixing of two distinct groundwaters: (1) high-solute bedrock groundwater representing interbasin groundwater flow (IGF) into the rainforest watersheds, and (2) low-solute local groundwater recharged within the lowland rainforest watersheds. In bedrock groundwater, high ^13C (-4.89 o/oo), low 14C (7.98 pmC), high R/RA for He (6.88), and low 36Cl/Cl (17x10-15) suggest that elevated DIC, He, and Cl concentrations are derived from magmatic outgassing and/or weathering of volcanic rock beneath nearby Volcan Barva. In local groundwater, the magmatic signature is absent and data suggest atmospheric sources for He and Cl and a biogenic soil-gas CO2 source for DIC. 14C dating suggests the age of bedrock groundwater is 2700-4300 years (most likely at the lower end of the range). Local groundwater has 14C>100 pmC, indicating the presence of "bomb carbon" and thus ages less than ~50 years for these samples collected in 2006. Overall, the C, He, and Cl data are consistent with a prior conceptual hydrologic model developed with major ion and water-balance data from this tropical rainforest: (1) the large variation in solute concentrations can be explained by mixing of the two distinct groundwaters, (2) bedrock groundwater is much older than local water, (3) elevated solute concentrations in bedrock groundwater are derived from volcanic fluids and/or rock, and (4) local water has not had significant interaction with volcanic rock. Tracers with different behaviors and capabilities converge on the same hydrologic interpretation. Also, transport of magmatic CO2 into the lowland rainforest (as DIC in the IGF) seems to be significant relative to other large ecosystem-level carbon

  12. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow

    USGS Publications Warehouse

    Renken, Robert A.; Cunningham, Kevin J.; Shapiro, Allen M.; Harvey, Ronald W.; Zygnerski, Michael R.; Metge, David W.; Wacker, Michael A.

    2008-01-01

    The Biscayne aquifer is a highly transmissive karst limestone that serves as the sole source of drinking water to over two million residents in south Florida. The aquifer is characterized by eogenetic karst, where the most transmissive void space can be an interconnected, touching‐vug, biogenically influenced porosity of biogenic origin. Public supply wells in the aquifer are in close proximity to lakes established by surface mining. The mining of the limestone has occurred to the same depths as the production wells, which has raised concerns about pathogen and chemical transport from these surface water bodies. Hydraulic and forced gradient tracer tests were conducted to augment geologic and geophysical studies and to develop a hydrogeologic conceptual model of groundwater flow and chemical transport in the Biscayne aquifer. Geologic and geophysical data indicate multiple, areally extensive subhorizontal preferential flow zones of vuggy limestone separated by rock with a matrix pore system. The hydraulic response from an aquifer test suggests that the Biscayne aquifer behaves as a dual‐porosity medium; however, the results of the tracer test showed rapid transport similar to other types of karst. The tracer test and concurrent temperature logging revealed that only one of the touching‐vug flow zones dominates transport near the production wells. On the basis of the rising limb of the breakthrough curve, the dispersivity is estimated to be less than 3% of the tracer travel distance, which suggests that the fastest flow paths in the formation are likely to yield limited dilution of chemical constituents.

  13. Development, description, and application of a geographic information system data base for water resources in karst terrane in Greene County, Missouri

    USGS Publications Warehouse

    Waite, L.A.; Thomson, Kenneth C.

    1993-01-01

    A geographic information system data base was developed for Greene County, Missouri, to provide data for use in the protection of water resources. The geographic information system data base contains the following map layers: geology, cave entrances and passages, county and quadrangle boundary, dye traces, faults, geographic names, hypsography, hydrography, lineaments, Ozark aquifer potentio- metric surface, public land survey system, sink- holes, soils, springs, and transportation. Several serious incidents of ground-water contamination have been reported in the karst terrane developed in soluble carbonate rocks in Greene County. Karst terranes are environmentally sensitive because any contaminant carried by surface runoff has the potential for rapid transport through solution enlarged fractures to the ground-water system. In the karst terrane in Greene County, about 2,500 sinkholes have been located; these sinkholes are potential access points for contamination to the ground-water system. Recent examples of ground-water contamination by sewage, fertilizers, and hydrocarbon chemicals have demonstrated the sensitivity of ground water in the Greene County karst terrane to degradation. The ground-water system is a major source of drinking water for Greene County. The population in Greene County, which includes Springfield, the third largest city in Missouri, is rapidly increasing and the protection of the water resources of Greene County is an increasing concern.

  14. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  15. Destruction of dolines: the examples from Slovene karst

    NASA Astrophysics Data System (ADS)

    Kovacic, G.; Ravbar, N.

    2012-04-01

    Due to the absence of soil and flat agricultural land, in karst regions, the cultivation of doline bottoms and the clearing of stones on fields and meadows were traditional methods of adapting farming practices to the landscape with limited agricultural potential. In recent years, a variety of activities resulting from comprehensive economic and urban development have increased pressure on karst landscapes. In some areas the surface and the underground are increasingly threatened by industrial activities, uncontrolled settlement and spread of infrastructure, the development of tourism, and intensive agrarian land use. Unsupervised human encroachment on karst landscapes is causing the increasingly more frequent and more widespread degradation of karst relief forms. The intensive reshaping of the landscape has expanded beyond control largely as a result of technological development and mechanization. The excessive modern filling of dolines, as one of the most distinctive karst surface features, has become a major encroachment on the environment for leveling purposes. Such kind of human influence affects the shape of karst features and the appearance of the landscape as well as the intensity of karst processes such as corrosion. Many dolines are filled with general and construction waste, which threatens the existence of unique habitats and quality of groundwater and consequently water supply. This contribution presents some cases of inappropriate management of karst landscape in Slovenia and examines the national legislative framework on spatial planning in karst regions. Unfortunately, in the current legislation, the standards and conditions for the protection of karst landscape characteristics (e.g. dolines) are loose and not fully elaborated. Principally, there are no uniform mechanisms to protect specific relief forms or for the adequate protection of karst. To a large extent, the preservation of the characteristic karst landscape is left to local communities

  16. Evaluation of water stress and groundwater storage using a global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  17. Operational tools to help stakeholders to protect and alert municipalities facing uncertainties and changes in karst flash floods

    NASA Astrophysics Data System (ADS)

    Borrell Estupina, V.; Raynaud, F.; Bourgeois, N.; Kong-A-Siou, L.; Collet, L.; Haziza, E.; Servat, E.

    2015-06-01

    Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).

  18. SWAT-based streamflow and embayment modeling of Karst-affected Chapel branch watershed, South Carolina

    Treesearch

    Devendra Amatya; M. Jha; A.E. Edwards; T.M. Williams; D.R. Hitchcock

    2011-01-01

    SWAT is a GIS-based basin-scale model widely used for the characterization of hydrology and water quality of large, complex watersheds; however, SWAT has not been fully tested in watersheds with karst geomorphology and downstream reservoir-like embayment. In this study, SWAT was applied to test its ability to predict monthly streamflow dynamics for a 1,555 ha karst...

  19. Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the U.S. glacial aquifer system

    NASA Astrophysics Data System (ADS)

    Dudley, R. W.; Hodgkins, G. A.; Nielsen, M. G.; Qi, S. L.

    2018-07-01

    A number of previous studies have examined relations between groundwater levels and hydrologic and meteorological variables over parts of the glacial aquifer system, but systematic analyses across the entire U.S. glacial aquifer system are lacking. We tested correlations between monthly groundwater levels measured at 1043 wells in the U.S. glacial aquifer system considered to be minimally influenced by human disturbance and selected hydrologic and meteorological variables with the goal of extending historical groundwater records where there were strong correlations. Groundwater levels in the East region correlated most strongly with short-term (1 and 3 month) averages of hydrologic and meteorological variables, while those in the Central and West Central regions yielded stronger correlations with hydrologic and meteorological variables averaged over longer time intervals (6-12 months). Variables strongly correlated with high and low annual groundwater levels were identified as candidate records for use in statistical linear models as a means to fill in and extend historical high and low groundwater levels respectively. Overall, 37.4% of study wells meeting data criteria had successful models for high and (or) low groundwater levels; these wells shared characteristics of relatively higher local precipitation, higher local land-surface slope, lower amounts of clay within the surficial sediments, and higher base-flow index. Streamflow and base flow served as explanatory variables in about two thirds of both high- and low-groundwater-level models in all three regions, and generally yielded more and better models compared to precipitation and Palmer Drought Severity Index. The use of variables such as streamflow with substantially longer and more complete records than those of groundwater wells provide a means for placing contemporary groundwater levels in a longer historical context and can support site-specific analyses such as groundwater modeling.

  20. Transit time distributions to assess present and future contamination risk of karst aquifers over Europe and the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten

    2016-04-01

    Karst develops through the dissolution of carbonate rock. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries. Climate model projections suggest that in the next 100 years, karst regions will experience a strong increase in temperature and a serious decrease of precipitation - especially in the Mediterranean region. Previous work showed that the karstic preferential recharge processes result in enhanced recharge rates and future climate sensitivity. But as there is fast water flow form the surface to the aquifer, there is also an enhanced risk of groundwater contamination. In this study we will assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of the karst system by distribution functions we simulated a range of spatially variable pathways of karstic groundwater recharge. The model is driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). Transit time distributions are calculated by virtual tracer experiments. These are repeated several times in the present (1991-2010) and the future (2080-2099). We can show that regions with larger fractions of preferential recharge show higher risks of contamination and that spatial patterns of contamination risk change towards the future.

  1. Nutrient pressures and legacies in a small agricultural karst catchment

    NASA Astrophysics Data System (ADS)

    Fenton, Owen; Mellander, Per-Erik; Daly, Karen; Wall, David P.; Jahangir, Mohammad M.; Jordan, Phil; Hennessey, Deirdre; Huebsch, Manuela; Blum, Philipp; Vero, Sara; Richards, Karl G.

    2017-04-01

    Catchments with short subsurface hydrologic time lags are commonly at risk for leached losses of nitrogen (N) and phosphorus (P). Such catchments are suitable for testing the efficacy of mitigation measures as management changes. In some sites, however, N and P may be retained in the soil and subsoil layers, and then leached, mobilised or attenuated over time. This biogeochemical time lag may therefore have enduring effects on the water quality. The aim of this study was to improve the understanding of N and P retention, attenuation and distribution of subsurface pathway in an intensively managed agricultural karst catchment with an oxidised aquifer setting, and also to inform how similar sites can be managed in the future. Results showed that in the years pre-2000 slurry from an on-site integrated pig production unit had been applied at rates of 33 t/ha annually, which supplied approximately 136 kg/ha total N and approximately 26 kg/ha total P annually. This practice contributed to large quantities of N (total N and NH4-N) and elevated soil test P (Morgan extractable P), present to a depth of 1 m. This store was augmented by recent surpluses of 263 kg N/ha, with leached N to groundwater of 82.5 kg N/ha and only 2.5 kg N/ha denitrified in the aquifer thereafter. Sub hourly spring data showed the largest proportion of N loss from small (54-88%) and medium fissure pathways (7- 21%) with longer hydrologic time lags, with smallest loads from either large fissure (1-13%) or conduit (1-10%) pathways with short hydrologic time lags (reaction time at the spring from onset of a rainfall event is within hours). Although soils were saturated in P and in mobile forms to 0.5 m, dissolved reactive P concentrations in groundwater remained low due to Ca and Mg limestone chemistry. Under these conditions a depletion of the legacy store, with no further inputs, would take approximately 50 years and with NO3-N concentrations in the source area dropping to levels that could sustain

  2. Review: Characterization, evolution, and environmental issues of karst water systems in Northern China

    NASA Astrophysics Data System (ADS)

    Liang, Yongping; Gao, Xubo; Zhao, Chunhong; Tang, Chunlei; Shen, Haoyong; Wang, Zhiheng; Wang, Yanxin

    2018-05-01

    In Northern China, karst systems in widely distributed carbonate rocks are one of the most important water supplies for local inhabitants. Constrained by the specific geological and geomorphological conditions, most karst water in this region is discharged as individual or groups of springs. This paper summarizes the characteristics, chemistry, and environmental quality of these karst systems in Northern China. Five structural models of karst water systems were identified based on the relationships between the karst geological strata and karst groundwater flow fields. These specific structural models may closely relate to the attendant environmental geological issues and consistent risks from pollution. Over the past 40 years, the karst water systems in Northern China have suffered from various environmental problems, including deteriorating water quality, the drying up of springs, a continuous decline in the level of karst water, and so on. Based on the field investigation and previous data, a preliminary summary is provided of the environmental problems related to the development and evolutionary trends of karst water in this region. The results highlight the significant challenges associated with karst water, and it is essential that all segments of society be made aware of the situation in order to demand change. In addition, the study provides a scientific basis for the management, protection, and sustainable utilization of karst water resources.

  3. McCauley Sinks: A compound breccia pipe in evaporite karst, Holbrook Basin, Arizona, U.S.A

    USGS Publications Warehouse

    Neal, J.T.; Johnson, K.S.

    2002-01-01

    The McCauley Sinks, in the Holbrook basin of northeastern Arizona, are comprised of some 50 individual sinkholes within a 3-km-wide depression. The sinks are grouped in a semi-concentric pattern of three nested rings. The outer ring is an apparent tension zone containing ring fractures. The two inner rings are semi-circular chains of large sinkholes, ranging up to 100 m across and 50 m deep. Several sub-basins within the larger depression show local downwarping and possible incipient sinkholes. Permian Kaibab Formation limestone is the principal surface lithology; the limestone here is less than 15 m thick and is near its easternmost limit. Although surface rillenkarren are present, and the sinks are seen in the Kaibab limestone outcrops, the Kaibab is mainly a passive rock unit that has collapsed into solution cavities developed in underlying salt beds. Beneath the Kaibab is Coconino Sandstone, which overlies the Permian Schnebly Hill Formation, the unit containing the evaporite rocks-principally halite in the Corduroy Member. Evaporite karst in this part of the Holbrook basin is quite different from the eastern part, probably because of the westward disappearance of the Holbrook anticline, a structure that has major joint systems that help channel water down to the salt beds farther to the east. Also, the McCauley Sinks are near the western limits of the evaporites. The structure at McCauley Sinks suggests a compound breccia pipe, with multiple sinks contributing to the inward-dipping major depression. The Richards Lake depression, 5 km southeast of McCauley Sinks, is similar in form and size but contains only a single, central sinkhole. An apparent difference in hydrogeology at McCauley Sinks is their proximity to the adjacent, deeply incised, Chevelon Canyon drainage, but the hydrologic connections are unknown. The 3-km-wide McCauley Sinks karst depression, along with five other nearby depressions, provide substantial hydrologic catchment. Because of widespread

  4. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    PubMed Central

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. PMID:24841501

  5. Factors affecting public-supply well vulnerability in two karst aquifers

    USGS Publications Warehouse

    Musgrove, MaryLynn; Katz, Brian G.; Fahlquist, Lynne S.; Crandall, Christy A.; Lindgren, Richard J.

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  6. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Müller Schmied, Hannes; Schuh, Carina; Portmann, Felix T.; Eicker, Annette

    2014-07-01

    Groundwater depletion (GWD) compromises crop production in major global agricultural areas and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends determined from GRACE satellite data by three analysis centers were compared to model results. GWD and TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water requirement. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the 21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km3/yr during 2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates. About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water storage, but the low spatial resolution of GRACE remains a challenge.

  7. Temporal hydrological and hydrochemical behaviour of the regional discharge area of a carbonate system - why we can not see fast responses?

    NASA Astrophysics Data System (ADS)

    Bodor, Petra; Eröss, Anita; Kovács, József; Mádl-Szönyi, Judit

    2016-04-01

    The subsurface part of the hydrologic cycle, the saturated groundwater flow can be mostly studied in regional discharge areas. In these regions the water has already spent geologically long time under the surface, therefore the upwelling water reflect the effect of the geometry and boundary conditions of the whole flow field, its geology and chemical processes. According to these conditions, the discharging waters can be characterized with different values and variability of physicochemical parameters (temperature, total dissolved solids, cations, anions, gas content etc.). This question has special interest in carbonate systems where the concept of regional groundwater flow was only introduced in the last few years. Hydrographs and chemographs are frequently used in karst studies to demonstrate the effect of variability of the system and to derive information for the nature of flow inside the karst (channel, fracture or matrix). Usually these graphs show abrupt changes after precipitation events, but this is typical for epigenic karsts. However, discharge areas, where hypogenic karsts developed, can behave differently due to their feeding flow systems. These systems and their effects are not so well studied yet. In this study we examined hydrographs and chemographs of the regional discharge area of a deep and thick carbonate range of Buda Thermal Karst and tried to understand those mechanisms which determine the hydrological and hydrochemical behaviour of the region. Here cold, lukewarm and also thermal waters discharge along the River Danube. The variability of physicochemical parameters (temperature, electric conductivity, pH, volume discharge, water level, dissolved CO2 and 222Rn, δ18O, δD) of the discharging water was studied to understand influencing mechanisms. We tried to understand the effect of precipitation (short and long term) and the effect of River Danube with geomathematical methods for the lukewarm components of the discharging water. Based on

  8. Fen ecohydrologic trajectories in response to groundwater drawdown with edaphic, floristic, and hydrologic feedbacks

    NASA Astrophysics Data System (ADS)

    Booth, E.; Steven, L. I.; Bart, D.

    2017-12-01

    Calcareous fens are unique and often isolated ecosystems of high conservation value worldwide because they provide habitat for many rare plant and animal species. Their identity is inextricably linked to an absolute dependence on a consistent discharge of groundwater that saturates the near surface for most of the growing season leading to the accumulation of carbon as peat or tufa and sequestration of nutrients. The stresses resulting from consistent saturation and low-nutrient availability result in high native plant diversity including very high rare species richness compared to other ecosystems. Decreases in the saturation stress by reduced groundwater inputs (e.g., from nearby pumping) can result in losses of native diversity, decreases in rare-species abundance, and increased invasion by non-native species. As such, fen ecosystems are particularly susceptible to changes in groundwater conditions including reduction in water levels due to nearby groundwater pumping. Trajectories of degradation are complex due to feedbacks between loss of soil organic carbon, changes in soil properties, and plant water use. We present a model of an archetype fen that couples a hydrological niche model with a variably-saturated groundwater flow model to predict changes in vegetation composition in response to different groundwater drawdown scenarios (step change, declining trend, and periodic drawdown during dry periods). The model also includes feedbacks among vegetation composition, plant water use, and soil properties. The hydrological niche models (using surface soil moisture as predictor) and relationships between vegetation composition, plant water use (via stomatal conductance and leaf-area index), and soil hydraulic properties (van Genuchten parameters) were determined based on data collected from six fens in Wisconsin under various states of degradation. Results reveal a complex response to drawdown and provide insight into other ecosystems with linkages between the

  9. Application of a Groundwater Modeling Tool for Managing Hydrologically Connected Area in State of Nebraska, US

    NASA Astrophysics Data System (ADS)

    Li, R.; Flyr, B.; Bradley, J.; Pun, M.; Schneider, J.; Wietjes, J.; Chinta, S.

    2014-12-01

    Determination of the nature and degree of hydrologically connected groundwater and surface water resources is of paramount importance to integrated water management within the State of Nebraska to understand the impact of water uses on available supplies, such as depletion of streams and aquifers caused by groundwater pumping. The ability to quantify effects of surface water-groundwater hydrologic connection and interactions, is regarded as one of the most important steps towards effectively managing water resources in Nebraska and provides the basis for designating management areas. Designation of management areas allows the state and other management entities to focus various efforts and resources towards those projects that have the greatest impact to water users. Nebraska Department of Natural Resources (NDNR) developed a groundwater modeling tool, Cycle Well Analysis, to determine the areas defined to have a high degree of connectivity between groundwater and surface water (in accordance with the state regulations). This tool features two graphic user interfaces to allow the analysis to be fully compatible with most MODFLOW-based numerical groundwater models currently utilized by NDNR. Case studies showed that the tool, in combination of Geographic Information Systems (GIS), can be used to quantify the degree of stream depletion and delineate the boundary of hydrologically connected areas within different political boundaries and subbasins in Nebraska. This approach may be applied to other regions with similar background and need for integrated water management.

  10. Use of oxygen-18 and deuterium to assess the hydrology of groundwater-lake systems: Chapter 3: Advances in chemistry

    USGS Publications Warehouse

    Krabbenhoft, David P.; Bowser, Carl J.; Kendall, Carol; Gat, Joel

    2009-01-01

    A thorough understanding of a lake's hydrology is essential for many lake studies. In some situations the interactions between groundwater systems and lakes are complex; in other cases the hydrology of a multilake system needs to be quantified. In such places, stable isotopes offer an alternative to the more traditional piezometer networks, which are costly to install and time-consuming to maintain. The stable-isotope mass-balance relations presented here can be used to estimate groundwater exchange rates for individual lakes and geographically clustered lakes. These relations also can be used to estimate other hydrological factors, such as average relative humidity. In places where the groundwater system is unstable (e.g., where flow reversals occur), natural solute tracers may provide a better alternative than stable isotopes for estimating rates of groundwater flow to and from lakes.

  11. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    PubMed

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  12. [Variation characteristics and environmental significant of trace elements under rainfall condition in karst groundwater].

    PubMed

    Chen, Xue-Bin; Yang, Ping-Heng; Lan, Jia-Cheng; Mo, Xue; Shi, Yang

    2014-01-01

    Chemical dynamics of Qingmuguan karst groundwater system were continuously monitored during the rainfall events. A series of high-resolution concentrations data on trace elements, such as barium, strontium, iron, manganese, aluminum, and other major elements were acquired. Correlation analysis and analysis of concentration curve were employed to identify the sources and migration path of the trace elements. And the formation process of trace elements in groundwater was discussed with the geological background of underground river basin. Research shows that barium and strontium derived from carbonate dissolution appeared to be stored in features such as fissures and pores. These two ions were recharged into the underground river by diffusion during precipitation, which resulted in small changes in the their concentration. However total iron, total manganese and aluminum derived from soil erosion varied relatively widely with strong response to rainfall, attributing to the migration of total iron and aluminum with overland flow to recharge the subterranean river directly via sinkholes while total manganese via soil-rock porous media. The results showed that concentrations of all the five trace elements were below 1 mg x L(-1), and the highest concentrations of total iron, total manganese and aluminum exceeded the limit of drinking water. To some extent, the concentrations of total iron and aluminum may be an indicator for soil erosion and water quality.

  13. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow

    USGS Publications Warehouse

    Hughes, Joseph D.; White, Jeremy T.

    2014-01-01

    The model was designed specifically to evaluate the effect of groundwater pumpage on canal leakage at the surface-water-basin scale and thus may not be appropriate for (1) predictions that are dependent on data not included in the calibration process (for example, subdaily simulation of high-intensity events and travel times) and (or) (2) hydrologic conditions that are substantially different from those during the calibration and verification periods. The reliability of the model is limited by the conceptual model of the surface-water and groundwater system, the spatial distribution of physical properties, the scale and discretization of the system, and specified boundary conditions. Some of the model limitations are manifested in model errors. Despite these limitations, however, the model represents the complexities of the interconnected surface-water and groundwater systems that affect how the systems respond to groundwater pumpage, sea-level rise, and other hydrologic stresses. The model also quantifies the relative effects of groundwater pumpage and sea-level rise on the surface-water and groundwater systems.

  14. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    USGS Publications Warehouse

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural

  15. A remote sensing study of regional variation in sinkhole morphology-Florida karst vs. Minnesota karst

    NASA Astrophysics Data System (ADS)

    Ernst, C. L.; Hadizadeh, J.; McCarty, J. L.

    2010-12-01

    In many regions of the United States, database technologies and GIS have facilitated spatial analysis of karst. The purpose of this research was to compare regional latitudinal variation in sinkhole karst morphology via remote sensing techniques. Such comparison may be significant because the development of a karst landscape depends primarily on climate and availability of water as well as lithology. Sinkhole karst, a common karst in the U.S., is morphologically defined as cone-shaped depressions with circular or oval opening to the surface that result from the dissolution of relatively soluble bedrock such as limestone or gypsum. The two regions of interest, north-central Florida and southeastern Minnesota, were selected based on structural and lithological similarity of limestone bedrock and the fact that the bedrock study areas are located in clearly different climate zones. This approach utilized topographic maps, digital elevation models, state karst feature databases, and high resolution 0.6m QuickBirdTM and 0.5m WorldView 1TM satellite images in a GIS environment. Morphological parameters - area, perimeter, minor axis and major axis length - were calculated on a total of 80 sinkholes in the study regions using the zonal geometry function, a tool in the spatial analysis extension provided by ESRITM. Our results show that north-central Florida and southeastern Minnesota karst are statistically different in terms of sinkhole shape and size distribution. Florida has larger sinkholes (2,835 square meter Mean) that are closer to circular shape. Minnesota has smaller (1,213 square meter Mean) and more elliptical sinkholes with a comparatively shorter minor axis. Of the possible explanations, climate appears to be the most likely cause for the observed differences. The higher amount of precipitation in Florida coupled with warmer year round temperatures provides an environment conducive to a more chemically involved hydrological regime, which may be responsible for

  16. Development of a process-oriented vulnerability concept for water travel time in karst aquifers-case study of Tanour and Rasoun springs catchment area.

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Sauter, Martin; Ptak, Thomas; Wiegand, Bettina; Margane, Armin; Toll, Mathias

    2017-04-01

    Key words: Karst aquifer, water travel time, vulnerability assessment, Jordan. The understanding of the groundwater pathways and movement through karst aquifers, and the karst aquifer response to precipitation events especially in the arid to semi-arid areas is fundamental to evaluate pollution risks from point and non-point sources. In spite of the great importance of the karst aquifer for drinking purposes, karst aquifers are highly sensitive to contamination events due to the fast connections between the land-surface and the groundwater (through the karst features) which is makes groundwater quality issues within karst systems very complicated. Within this study, different methods and approaches were developed and applied in order to characterise the karst aquifer system of the Tanour and Rasoun springs (NW-Jordan) and the flow dynamics within the aquifer, and to develop a process-oriented method for vulnerability assessment based on the monitoring of different multi-spatially variable parameters of water travel time in karst aquifer. In general, this study aims to achieve two main objectives: 1. Characterization of the karst aquifer system and flow dynamics. 2. Development of a process-oriented method for vulnerability assessment based on spatially variable parameters of travel time. In order to achieve these aims, different approaches and methods were applied starting from the understanding of the geological and hydrogeological characteristics of the karst aquifer and its vulnerability against pollutants, to using different methods, procedures and monitored parameters in order to determine the water travel time within the aquifer and investigate its response to precipitation event and, finally, with the study of the aquifer response to pollution events. The integrated breakthrough signal obtained from the applied methods and procedures including the using of stable isotopes of oxygen and hydrogen, the monitoring of multi qualitative and quantitative parameters

  17. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.

    PubMed

    Dodgen, L K; Kelly, W R; Panno, S V; Taylor, S J; Armstrong, D L; Wiles, K N; Zhang, Y; Zheng, W

    2017-02-01

    Karst aquifers are drinking water sources for 25% of the global population. However, the unique geology of karst areas facilitates rapid transfer of surficial chemicals to groundwater, potentially contaminating drinking water. Contamination of karst aquifers by nitrate, chloride, and bacteria have been previously observed, but little knowledge is available on the presence of contaminants of emerging concern (CECs), such as pharmaceuticals. Over a 17-month period, 58 water samples were collected from 13 sites in the Salem Plateau, a karst region in southwestern Illinois, United States. Water was analyzed for 12 pharmaceutical and personal care products (PPCPs), 7 natural and synthetic hormones, and 49 typical water quality parameters (e.g., nutrients and bacteria). Hormones were detected in only 23% of samples, with concentrations of 2.2-9.1ng/L. In contrast, PPCPs were quantified in 89% of groundwater samples. The two most commonly detected PPCPs were the antimicrobial triclocarban, in 81% of samples, and the cardiovascular drug gemfibrozil, in 57%. Analytical results were combined with data of local stream flow, weather, and land use to 1) characterize the extent of aquifer contamination by CECs, 2) cluster sites with similar PPCP contamination profiles, and 3) develop models to describe PPCP contamination. Median detection in karst groundwater was 3 PPCPs at a summed concentration of 4.6ng/L. Sites clustered into 3 subsets with unique contamination models. PPCP contamination in Cluster I sites was related to stream height, manganese, boron, and heterotrophic bacteria. Cluster II sites were characterized by groundwater temperature, specific conductivity, sodium, and calcium. Cluster III sites were characterized by dissolved oxygen and barium. Across all sites, no single or small set of water quality factors was significantly predictive of PPCP contamination, although gemfibrozil concentrations were strongly related to the sum of PPCPs in karst groundwater

  18. Groundwater modelling in conceptual hydrological models - introducing space

    NASA Astrophysics Data System (ADS)

    Boje, Søren; Skaugen, Thomas; Møen, Knut; Myrabø, Steinar

    2017-04-01

    The tiny Sæternbekken Minifelt (Muren) catchment (7500 m2) in Bærumsmarka, Norway, was during the 1990s, densely instrumented with more than a 100 observation points for measuring groundwater levels. The aim was to investigate the link between shallow groundwater dynamics and runoff. The DDD (Distance Distribution Dynamics) model is a newly developed rainfall-runoff model used operationally by the Norwegian Flood-Forecasting service at NVE. The model estimates the capacity of the subsurface reservoir at different levels of saturation and predicts overland flow. The subsurface in the DDD model has a 2-D representation that calculates the saturated and unsaturated soil moisture along a hillslope representing the entire catchment in question. The groundwater observations from more than two decades ago are used to verify assumptions of the subsurface reservoir in the DDD model and to validate its spatial representation of the subsurface reservoir. The Muren catchment will, during 2017, be re-instrumented in order to continue the work to bridge the gap between conceptual hydrological models, with typically single value or 0-dimension representation of the subsurface, and models with more realistic 2- or 3-dimension representation of the subsurface.

  19. Stormwater infiltration and the 'urban karst' - A review

    NASA Astrophysics Data System (ADS)

    Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.

    2017-09-01

    The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.

  20. Diagnosing scaling behavior of groundwater with a fully-integrated, high resolution hydrologic model simulated over the continental US (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Kollet, S. J.

    2013-12-01

    Groundwater is an important component of the hydrologic cycle yet its importance is often overlooked. Aquifers are a critical water resource, particularly in irrigation, but also participates in moderating the land-energy balance over the so-called critical zone of 2-10m in water table depth. Yet,the scaling behavior of groundwater is not well known. Here, we present the results of a fully-integrated hydrologic model run over a 6.3M km2 domain that covers much of North America focused on the continental United States. This model encompasses both the Mississippi and Colorado River watersheds in their entirety at 1km resolution and is constructed using the fully-integrated groundwater-vadose zone-surface water-land surface model, ParFlow. Results from this work are compared to observations (both of surface water flow and groundwater depths) and approaches are presented for observing of these integrated systems. Furthermore, results are used to understand the scaling behavior of groundwater over the continent at high resolution. Implications for understanding dominant hydrological processes at large scales will be discussed.

  1. Effects of hydrogeological and anthropogenic factors on the distribution of CVOCs in eogenetic karst aquifers

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Padilla, I. Y.; Rivera, V. L.

    2016-12-01

    Eogenetic kart aquifers are characterized by well-developed conduit networks within a rock matrix having significant primary porosity and permeability. These aquifers are highly productive and serve as important source of water for multiple uses. As a consequence, eogenetic karst regions are attractive for industrial, urban, and agricultural development that can serve as contaminations sources for the aquifers. It is hypothesized that the distribution of contaminants in these aquifers are influenced by combined characteristics of source and hydrogeological features. This research assesses the spatio-temporal distribution of chlorinated volatile organic compounds (CVOCs) in the eogenetic karst aquifers of northern Puerto Rico (NPR) and studies the correlation between hydrogeological and anthropogenic variables and groundwater contamination using Geographic Information System and statistical methods. CVOCs, which are used as dry cleaning and industrial solvents, degreasers and paint or spot removers, are among the most commonly found groundwater contaminants in the world. The NPR karst aquifers have been heavily impacted by land development and groundwater contamination, particularly CVOCs, with Trichloroethylene, Tetrachloroethylene, and Carbon Tetrachloride among the most detected contaminants. The analysis shows that 62% of the samples and 78% of the sites sampled have presence of one or more CVOC, and that their concentrations vary with time. Detection and concentrations of certain CVOCs are associated with some sources of known contamination. Significant presence of CVOCs is also found near developed and agricultural land uses. The shallow aquifer shows greater presence of CVOCs (66%) than the confined aquifer (16%), with most detections occurring in areas of low and medium sinkholes coverage and medium hydraulic conductivities. Multivariate statistical analysis indicates that, indeed, the distribution of CVOCs in the karsts aquifers of NPR is influenced by a

  2. Interregional comparison of karst disturbance: west-central Florida and southeast Italy.

    PubMed

    North, Leslie A; van Beynen, Philip E; Parise, Mario

    2009-04-01

    The karst disturbance index (KDI) consists of 31 environmental indicators contained within the five broad categories: geomorphology, hydrology, atmosphere, biota, and cultural. The purpose of this research is to apply the KDI to two distinct karst areas, west Florida, USA, and Apulia, Italy. Through its application, the utility of the index can be validated and other important comparisons can be made, such as differences in the karst legislations implemented in each region and the effect of time exposure to human occupation to each karst terrain. Humans have intensively impacted the karst of southeast Italy for thousands of years compared to only decades in west-central Florida. However, west-central Florida's higher population density allows the region to reach disturbance levels comparable to those reached over a longer period in Apulia. Similarly, Italian karst is more diverse than the karst found in west-central Florida, creating an opportunity to test all the KDI indicators. Overall, major disturbances for southeast Italy karst include quarrying, stone clearing, and the dumping of refuse into caves, while west-central Florida suffers most from the infilling of sinkholes, soil compaction, changes in the water table, and vegetation removal. The application of the KDI allows a benchmark of disturbance to be established and later revisited to determine the changing state of human impact for a region. The highlighting of certain indicators that recorded high levels of disturbance also allows regional planners to allocate resources in a more refined manner.

  3. Runoff generation in karst catchments: multifractal analysis

    NASA Astrophysics Data System (ADS)

    Majone, Bruno; Bellin, Alberto; Borsato, Andrea

    2004-07-01

    Time series of hydrological and geochemical signals at two karst springs, located in the Dolomiti del Brenta region, near Trento, Italy, are used to infer how karst catchments work internally to generate runoff. The data analyzed include precipitation, spring flow and electric conductivity of the spring water. All the signals show the signature of multifractality but with different intermittency and non-stationarity. In particular, precipitation and spring flow are shown to have nearly the same degree of non-stationarity and intermittency, while electric conductivity, which mimics the travel time distribution of water in the karst system, is less intermittent and smoother than both spring flow and precipitations. We found that spring flow can be obtained from precipitation through fractional convolution with a power law transfer function. An important result of our study is that the probability distribution of travel times is inconsistent with the advection dispersion equation, while it supports the anomalous transport model. This result is in line with what was observed by Painter et al. [Geophys. Res. Lett. 29 (2002) 21.1] for transport in fractured rocks.

  4. A mathematical model for simulating spring discharge and estimating sinkhole porosity in a karst watershed

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Field, Malcolm S.

    2014-03-01

    Documenting and understanding water balances in a karst watershed in which groundwater and surface water resources are strongly interconnected are important aspects for managing regional water resources. Assessing water balances in karst watersheds can be difficult, however, because karst watersheds are so very strongly affected by groundwater flows through solution conduits that are often connected to one or more sinkholes. In this paper we develop a mathematical model to approximate sinkhole porosity from discharge at a downstream spring. The model represents a combination of a traditional linear reservoir model with turbulent hydrodynamics in the solution conduit connecting the downstream spring with the upstream sinkhole, which allows for the simulation of spring discharges and estimation of sinkhole porosity. Noting that spring discharge is an integral of all aspects of water storage and flow, it is mainly dependent on the behavior of the karst aquifer as a whole and can be adequately simulated using the analytical model described in this paper. The model is advantageous in that it obviates the need for a sophisticated numerical model that is much more costly to calibrate and operate. The model is demonstrated using the St. Marks River Watershed in northwestern Florida.

  5. Past and present management of water resources in karst environments

    NASA Astrophysics Data System (ADS)

    Parise, Mario

    2010-05-01

    Karst is a very peculiar environment, and has a number of intrinsic features that clearly distinguish it from any other natural setting. Hydrology of karst is dominated by absence or very scarce presence of surface runoff, since water rapidly infiltrates underground through the complex network of conduits and fissures that are at the origin of the development of karst caves. The limited presence of water at the surface represented the main problem to be faced by man, starting from the very first historic phases of establishing settlements in karst territories. As often happens in areas with limited natural resources, man was however able to understand the local environment through observations and direct experience, develop technique in order to collect the limited available water resources, and adapt his way of life to the need of the natural environment. In a few words, a sustainable use of the water resources was reached, that went on for many centuries, allowing development of human settlements and agriculture, and, at the same time, protecting and safeguarding the precious hydric resources. Some of the most typical rural architectures built in karst areas of the Mediterranean Basin can be described as examples of such efforts: from the dry stone walls, to many types of storage-houses or dwellings, known with different names, depending upon the different countries and regions. Dry stone walls, in particular, deserve a particular attention, since they had multiple functions: to delimit the fields and properties, to act as a barrier to soil erosion, to allow terracing the high-gradient slopes, to collect and store water. At this latter aim, dry stone walls were build in order to create a small but remarkable micro-environment, functioning as collectors of moisture and water vapour. In the last centuries, with particular regard to the last decades of XX century, the attention paid by man to the need of the natural environment has dramatically changed. This

  6. GIS thematic layers for assessing karst hazard in Murgia region (Italy)

    NASA Astrophysics Data System (ADS)

    Canora, Filomena; D'Angella, Annachiara; Fidelibus, Dolores; Lella, Angela; Pellicani, Roberta; Spilotro, Giuseppe

    2013-04-01

    The assessment of karst hazard in a carbonate area may be somewhat complex for the multiplicity of involved factors (geological, hydrological, morphological, anthropogenic, etc.), their history and the slow rate of evolution of the processes. In coastal areas, moreover, the long term sea level variations and the short term oscillations generally influence the generation and evolution of the karst process. Another peculiarity of the karst hazard assessment consists in the difficulty for identifying the location of subsurface forms, which may develop over very large areas without any kind of surface signal. The karst processes and landforms often require specific methods of investigation and mitigation, due to the unique and highly variable characters of karst environments. In addition, the hidden character of the karst processes, often accelerated by human activity, is an issue with significant economic impact, affecting many regions of the world. The assessment of karst hazard in the Murgia plateau (in central-west of Apulia region) is the main goal of this research. For this aim, the typologies of karst phenomena, able to produce hazard in the study area, were individuated and collected in a specific database. The hazard was evaluated on the basis of the probability of occurrence of a phenomenon of instability, active (produced by human activities) or passive (natural evolution of karst process), in relation to the presence, evolution or generation of karst forms on surface or at critical distance from the surface. The critical distance from the surface is defined as the distance at which the local or general destructive evolution of a karst process can produce a variation of the usability of the area or of the value of elements involved in the instability. The thematic layers relative to the factors influencing karst processes and landforms (doline, sinkholes, polje, lame, gravine, caves) were elaborated and managed in a GIS system. The archives of the main karst

  7. Enhanced recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten

    2017-04-01

    Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly

  8. [Transportation and sources of the suspended particle in a karst spring during a storm event].

    PubMed

    Yang, Ping-Heng; Liu, Zi-Qi; He, Qiu-Fang

    2012-10-01

    Storm periods are the crucial stage to reveal input and outlet of material and energy in groundwater system. Jiangjia spring, the outlet of Qingmuguan groundwater system, was taken as an example. Distribution of suspended particle in the Jiangjia spring was continuously monitored. Supported by hydrochemical data, characteristics and sources of the suspended particle in the karst groundwater system were investigated. Results show that the number of suspended particle in size of 0-11 microm abruptly increased in the channel of Jiangjia spring at the beginning of rainfall occurred. It indicates the suspended particle was derived from allochthonous material. While the groundwater was recharged by karst fissure, the number of suspended particle in size of 0-11 microm sharply raised, which shows that the suspended particle was autochthonous. Finally, the number of suspended particle in size of 0-4 microm elevated due to the entire groundwater watershed recharged by rainfall and dilution effect occurring again, suggesting the suspended particle was derived from allochthonous material. Owing to the intrinsic hydrogeological settings and rainfall intensity, the threshold of size for the suspended particle was 4 pm in Qingmuguan groundwater system. It probably was a high practical significance to indicate the groundwater was whether polluted by microbe or not.

  9. Speleogenesis in Dinaric karst area

    NASA Astrophysics Data System (ADS)

    Garasic, Mladen; Garasic, Davor

    2015-04-01

    remarkable variety in types of caves. It is estimated that the Dinaric Karst has at least 100,000 caves, only a fifth of which have been explored and suitably documented so far. Karst caves are truly unique by a variety of their types (dry caves, water caves, cave systems, shafts, spring caves, etc.), by their dimensions (the longest cave systems can reach over 100 km, the deepest ones are more than 1,430 metres deep), and by their great spatial frequency. In the Classical Karst, in area around the town Sežana and Fernetti/Fernetiči there are up to 60 caves/km2 - the number which is unprecedented. The great numbers of cave channels covered in dripstone, types of dripstone and its forms (stalactites, stalagmite, curtains, cave pearls, etc.) only contribute to this abundance. One should not forget the significance of cave sediments for scientific explorations. Their dating was used to determine the age of caves and scientifically explain the dynamics of karst evolution. Another important set of karst features are numerous submarine springs. This is the area where the science of karstology and speleology started to develop, where the basic ideas about the karstification processes (corrosion) and karst hydrology were born. The international term karst and the scientific investigation of karst originate in this region as well as many other international professional terms. Many words, describing karst features, originate from the Dinaric Karst Area, and belong to internationally accepted karst terminology (karst, dolina, polje, vrtača, ponikva, vrulja etc.). The word "karst" was first mentioned in Charter of Juraj Pariježić in 1230 in which "kras" locality near Dobrinj on the Island Krk in Croatia was subject of donation. The first written note that mentions the Italian word "Carso" dates back to the year 1292. In an Austrian document term "Karst" was cited for the first time in 1423. From the etymological point of view the word "Karst" is expression of Indo

  10. Assessing Spatio-temporal Variability of Karst Water Storage over Southwest China from GRACE and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Yao, C.; Luo, Z.; Lo, M. H.; Li, Q.

    2016-12-01

    This study assesses spatio-temporal variability of terrestrial water storage (TWS) over the world's largest karst aquifer with continuous coverage in Southwest China (SWC) from Gravity Recovery and Climate Experiment (GRACE), along with hydrological model outputs, precipitation and reservoir water level data. GRACE shows karst water increases for the period 2003/01-2014/06 with a total volume ranging from 29.0 to 49.1 km3, and observes an extremely wet condition in 2008/2009 caused by the increase in precipitation and Longtan Reservoir (LTR) storage. The subsequent two droughts in 2009/2010 and 2011 have resulted in significant aquifer water depletion, with abnormal karst water losses of 180.2±43.3 km3 and 269.8±34.6 km3 respectively. In particular, the sustained reduction in peaks of the LTR storage is associated with the long-term dry condition over the upper Pearl River. Nonseasonal karst TWS variations are considerably impacted by LTR impoundment in the post-dam period, especially for the impounding episode of autumn and the dry season of winter, with correlations of 0.71 and 0.93 between TWS and reservoir volume variations respectively. Additionally, the nonseasonal GRACE TWS deficit provides an alternative and valuable drought indicator for the study karst region since large differences exist in modeled soil moisture and drought indices. This study demonstrates that the combination of GRACE and other hydrological variables could be beneficial for studying karst hydrologic dynamics. Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant Nos. 41174020, 41131067, 41174021), the National Basic Research Program of China (973 Program) (Grant No. 2013CB733302), the Fundamental Research Funds for the Central Universities (Grant No. 2014214020203), the open fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (Grant No. 14-02-011), the open fund of Guangxi Key Laboratory of Spatial Information

  11. Diagnosing hydrological limitations of a Land Surface Model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2015-08-01

    Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  12. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2016-01-01

    Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  13. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    NASA Astrophysics Data System (ADS)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  14. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.

    2012-12-01

    The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with

  15. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.

    2013-03-01

    The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with

  16. Geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin

    NASA Astrophysics Data System (ADS)

    Vibhava, F.; Graham, W. D.; Maxwell, R. M.

    2012-12-01

    Streamflow at any given location and time is representative of surface and subsurface contributions from various sources. The ability to fully identify the factors controlling these contributions is key to successfully understanding the transport of contaminants through the system. In this study we developed a fully integrated 3D surface water-groundwater-land surface model, PARFLOW, to evaluate geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin in North Central Florida. In addition to traditional model evaluation criterion, such as comparing field observations to model simulated streamflow and groundwater elevations, we quantitatively evaluated the model's predictions of surface-groundwater interactions over space and time using a suite of binary end-member mixing models that were developed using observed specific conductivity differences among surface and groundwater sources throughout the domain. Analysis of model predictions showed that geologic heterogeneity exerts a strong control on both streamflow generation processes and land atmospheric fluxes in this watershed. In the upper basin, where the karst aquifer is overlain by a thick confining layer, approximately 92% of streamflow is "young" event flow, produced by near stream rainfall. Throughout the upper basin the confining layer produces a persistent high surficial water table which results in high evapotranspiration, low groundwater recharge and thus negligible "inter-event" streamflow. In the lower basin, where the karst aquifer is unconfined, deeper water tables result in less evapotranspiration. Thus, over 80% of the streamflow is "old" subsurface flow produced by diffuse infiltration through the epikarst throughout the lower basin, and all surface contributions to streamflow originate in the upper confined basin. Climatic variability provides a secondary control on surface-subsurface and land-atmosphere fluxes, producing significant seasonal and

  17. Combined Use of GIS, Hydrostratigraphic, Geochemical, and Multi-Isotope Analysis for Groundwater Preservation and Development in a Complex Karst Setting

    NASA Astrophysics Data System (ADS)

    Murgulet, D.; Cook, M. R.

    2011-12-01

    The complex stratigraphy and geologic structure characteristic to fractured karst aquifers underlying an urban part of the north-central Alabama Valley and Ridge Setting make the development and protection of groundwater sources difficult. In this area, population growth accompanied by increased impervious surfaces, storm water runoff, contaminants, subsidence, and pumping rates have rendered the groundwater resource. The potential for aquifer recharge and flow conditions were evaluated in order to determine the current and future alternative water sources available in this area. Geochemical and multi-isotope techniques were coupled with hydrostratigraphic and geomorphic spatial (GIS) analyses to determine the primary mechanisms controlling recharge and flow and evaluate seasonal impacts on groundwater resources and recharge environments. Groundwater samples, collected in summer and fall (2010) from wells developed in the Bangor Limestone and Tuscumbia Fort Payne aquifers (north-central Alabama), were analyzed for major ions, stable isotopes of oxygen (δ^18O), hydrogen (δD), and carbon (δ^13C), and anthropogenic isotopes such as chlorofluorocarbon (CFCs) and sulphur hexafluoride (SF_6). Stable isotope investigations suggest that recharge occurs under relatively closed conditions, with fast percolation rates in short periods (characteristic to karst aquifers) and low evaporation rates during the colder seasons. The average δ^13C value (-11.4±2% PDB, n=9) lies near the combined average δ^13C values of soil CO_2 and the carbonate. Therefore, groundwater δ^13C signature is mainly controlled by two factors: soil CO_2 and carbonate dissolution. Static water levels decrease over the summer causing drawdowns (2 to 5.2 meters) in all the production wells and a slight shift of the δ^18O and δD values towards a more positive member (summer range--δ^18O: -5.1±0.1 to -5.7±0.1% VSMOW, n=11; δD: -25.0±1 to -30.6±1% VSMOW, n=11 and fall range--δ^18O: -4.8±0.1 to

  18. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  19. Groundwater hydrology” is redundant

    NASA Astrophysics Data System (ADS)

    While in the Netherlands a few months ago, I mentioned “groundwater hydrology” to a very well-educated, very literary, and non-hydrologic old friend. She shuddered and told me in no uncertain words that this was a horrible term, completely redundant like a round circle, or as the linguists call it, a pleonasm. This is, of course, because hydrology already means water science (from the Greek words udor, or hydor for water, and logos for science), so that groundwater hydrology really stands for groundwater water science, and surface water hydrology for surface water science.These are pleonasms of the first kind and insults to any language purist, which all of us should strive to be! So I propose that henceforth groundwater hydrology be called subterranean hydrology. Other possibilities would be subsurface hydrology, but this sounds too shallow, or underground hydrology, which, however, could give the impression of some clandestine activity. Besides, subterranean hydrology would be in keeping with the words for groundwater in Latin-based languages (eau souterrain in French, acqua sotierranea in Italian, and aguas subterraneas in Spanish). Also, subterranean hydrology includes the vadose zone, which, of course, groundwater hydrology as such does not. Surface water hydrology would simply be called surface hydrology, and anything above that atmospheric hydrology.

  20. Hydrology and simulation of ground-water flow in the Aguadilla to Rio Camuy area, Puerto Rico

    USGS Publications Warehouse

    Tucci, Patrick; Martinez, M.I.

    1995-01-01

    The aquifers of the Aguadilla to Rio Camuy area, in the northwestern part of Puerto Rico, are the least developed of those on the north coast, and relatively little information is available concerning the ground-water system. The present study, which was part of a comprehensive appraisal of the ground-water resources of the North Coast Province, attempts to interpret the hydrology of the area within the constraints of available data. The study area consists of an uplifted rolling plain that is 200 to 400 feet above sea level and a heavily forested, karst upland. The only major streams in the area are the Rfo Camuy and the Rio Guajataca. Most water used in the area is obtained from Lago de Guajataca, just south of the study area, and ground-water use is minimal (less than 5 million gallons per day). Sedimentary rocks of Tertiary age, mainly limestone and calcareous clays, comprise the aquifers of the Aguadilla to Rio Camuy area. The rocks generally dip from 4 to 7 degrees to the north, and the total sedimentary rock sequence may be as much as 6,000 feet thick near the Atlantic coast. Baseflows for the Rio Camuy are 58 cubic feet per second near Bayaney and 72 cubic feet per second near Hatillo. The ground-water discharge to the Rio Camuy between these stations is estimated to be 15 cubic feet per second, or 2.6 cubic feet per second per linear mile. The flow of the Rio Guajataca is regulated by the Guajataca Dam at Lago de Guajataca. Ground-water discharge to the Rio Guajataca between the dam and the coast is estimated to be about 17 cubic feet per.second, based on the average ground-water discharge per linear mile estimated for the Rio Camuy. Both water-table and artesian aquifers are present in the Aguadilla to Rio Camuy area; how-ever, most ground water occurs within the watertable aquifer, which was the primary focus of this study. The top of the confining unit, below the water-table aquifer, generally is within the unnamed upper member of the Cibao Formation

  1. Use of hydrologic budgets and hydrochemistry to determine ground-water and surface-water interactions for Rapid Creek, Western South Dakota

    USGS Publications Warehouse

    Anderson, Mark T.

    1995-01-01

    The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.

  2. Peculiarity and vulnerability of karst settings, analyzed through a review of available environmental indices

    NASA Astrophysics Data System (ADS)

    Parise, Mario; Mazzei, Marianna

    2016-04-01

    Karst is a unique environment on Earth, characterized by a variety of peculiar geological and hydrological features, that are expressed by typical landforms at the surface (doline, ponor, polje, etc.) and underground (single cave, sinkhole, complex hypogean systems consisting of sequences of pits and galleries, etc.). Among the main characters of karst, the direct connection between the surface and the underground is at the origin of the fragility of karst settings, and the related high vulnerability. Many different types of natural geological hazards (or geo-hazards) may potentially affect karst lands, with sinkholes and flash floods being the most frequent and typical. In addition, karst is exposed to a variety of anthropogenic disturbances as well, including loss of natural landscapes, destruction of caves and speleothems, and contamination and pollution problems. At this latter regard, it has to be reminded that karst aquifers host high quality groundwaters, that are used as source of drinking water worldwide, with estimates indicating that the supply of drinking water from karst is going to have a significant increase in the next decades, From all of this, the importance in fully defining the karst setting, and in a detail examination of all the natural and anthropogenic events that may cause negative effects on it, comes out. Uniqueness of karst has been acknowledged since a long time, but only in recent years efforts have been made to develop approaches and methods specifically dedicated to this peculiar environment. Such approaches represent definitely a mandatory step in the correct management of karst terranes, providing useful elements to stakeholders, land managers and people living in karst lands about their fragility, and the need to safeguard them and the natural resources therein contained. Starting from these considerations, in this contribution we review the main environmental indices dedicated to karst that have been recently proposed in the

  3. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    USGS Publications Warehouse

    Katz, B.G.; Chelette, A.R.; Pratt, T.R.

    2004-01-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  4. Porosity Gradient Development Around Karst Features due to Tidal Pumping in Eastern Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.

    2016-12-01

    Water exchange between karst features and the porous matrix around them has been observed in karst aquifers by previous research. The exchange is driven by hydraulic head gradients caused by stormwater runoff or sea tides and may cause mineral dissolution. The authors of this work proposed a conceptual model of porosity development under tidal variations of hydraulic head is proposed. Simulations of reactive transport and porosity evolution were conducted to explore the porosity gradient development around a karst feature. Simulations account for petrophysical properties of porous media and groundwater geochemical characteristics. Data used in simulations corresponds to an eogenetic karst aquifer found on the eastern coast of Yucatan Peninsula in Mexico. Simulations include both analytical and numerical solutions of porosity increase caused by mineral dissolution. The estimated rate of porosity development and associated wall retreat (3-30 cm/100 yr) are large enough to develop karst cavities on time periods relevant to karst formation in the study area (10K yr). The analytical solution could be used to assess porosity increase in rock samples and can be also applied to model slow reactions in porous media under flow driven by sinusoidal hydraulic boundary conditions. The results show a possible alternative mechanism of karst cavity development in a high conductive limestone rock matrix aquifer.

  5. Risk assessment of groundwater environmental contamination: a case study of a karst site for the construction of a fossil power plant.

    PubMed

    Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan

    2017-12-20

    This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of

  6. Modeling the role of groundwater and vegetation in the hydrological response of tropical glaciated watersheds to climate change

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Wickert, A. D.; McLaughlin, R.; La Frenierre, J.; Liess, S.; Saberi, L.

    2016-12-01

    Climate change projections show greater rates at higher elevations, making tropical glaciated regions some of the most vulnerable hydrological systems and the earliest windows into changing conditions in mountainous watersheds. Many of the subsistence agrarian communities below Volcán Chimborazo, Ecuador, experience water stress, heightening the urgency to understand the hydrological impacts of climate change. Previous hydrochemical and physical observations suggest that a significant fraction of glacial melt may first recharge underlying groundwater before discharging to streams at lower elevations. This has important implications for tracking hydrological response to climate change, due to differences in the spatiotemporal behavior of surface water vs. groundwater. However, differentiating meltwater-sourced and precipitation-sourced groundwater throughout the watershed poses a challenge in elucidating the influence of accelerated but finite glacial melt on streamflow. In addition to glacial melt, recently noted upslope vegetation migration on Chimborazo will likely complicate future predictions of water availability by influencing the relative amounts of groundwater sources and changing discharge through altered evapotranspiration along riparian zones. To investigate the roles of groundwater pathways and vegetation on glacial melt contributions to streamflow, we implement the coupled groundwater/rainfall-runoff model GSFLOW. We infer hydrogeological model inputs from geological maps of Chimborazo and vegetation properties from a combination of remotely sensed imagery and in-situ surveys. Dynamically downscaled meteorological state variables, checked against field data, force the model. Such a model enables the quantification of the current meltwater contribution to streamflow at critical water extraction points and allows us to probe potential meltwater and water resource changes under future climate change scenarios.

  7. Investigating In-Situ Mass Transfer Processes in a Groundwater U Plume Influenced by Groundwater-River Hydrologic and Geochemical Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.

    2009-12-01

    The Hanford Integrated Field Research Challenge (IFRC) site is a DOE/BER-supported experimental and monitoring facility focused on multi-scale mass transfer processes (hanfordifc@pnl.gov). It is located within the footprint of a historic uranium (U) waste disposal pond that overlies a contaminated vadose zone and a 1 km+ groundwater U plume. The plume is under a regulatory clean-up mandate. The site is in hydraulic connectivity with the Columbia River that is located approximately 300 m distant. Dramatic seasonal variations in Columbia River stage cause 2m+ variations in water table and associated changes in groundwater flow directions and composition that are believed to recharge contaminant U to the plume through lower vadose zone pumping. The 60 m triangular shaped facility contains 37 monitoring wells equipped with down-hole electrical resistance tomography electrode and thermistor arrays, pressure transducers for continual water level monitoring, and specific conductance electrodes. Well spacings allow cross-hole geophysical interrogation and dynamic plume monitoring. Various geophysical and hydrologic field characterizations were performed during and after well installation, and retrieved sediments are being subjected to a hierarchal laboratory characterization process to support geostatistical models of hydrologic properties, U(VI) distribution and speciation, and equilibrium and kinetic reaction parameters for robust but tractable field-scale reactive transport calculations. Three large scale (10,000 gal+), non-reactive tracer experiments have been performed to evaluate groundwater flowpaths and velocities, facies scale mass transfer, and subsurface heterogeneity effects under different hydrologic conditions (e.g., flow vectors toward or away from the river). A passive monitoring experiment was completed during spring and summer of 2009 that documents spatially variable U(VI) release and plume recharge from the contaminated lower vadose zone during

  8. Recent advances in understanding the interaction of groundwater and surface water

    USGS Publications Warehouse

    Winter, Thomas C.

    1995-01-01

    The most common image of the interaction of groundwater and surface water is that of the interaction of streams with a contiguous alluvial aquifer. This type of system has been the focus of study for more than 100 years, from the work of Boussinesq (1877) to the present, and stream-aquifer interaction continues to be the most common topic of papers discussing the interaction of groundwater and surface water. However, groundwater and surface water interact in a wide variety of landscapes from alpine to coastal. Within these landscapes, ground-water systems range in scale from local to regional, and the types of surface water include streams, lakes, wetlands, and oceans. Given the broad spectrum of the topic of groundwater and surface water interaction, an overview of studies of this topic could be organized according to surface water type, landscape type, scale of hydrologic systems, or field and analytical methods. All these factors are discussed, but this paper is organized according to landscape type because of the great increase in studies of the interaction of groundwater and surface water in landscapes other than riverine systems in the last 15 years. Furthermore, discussing studies by landscape type facilitates comparison of methods and results from different geologic and climatic settings. The general landscapes discussed are mountain terrane, riverine systems, coastal terrane, hummocky terrane, and karst terrane.

  9. Delineating Potential Karst Water-Bearing Structures based on Resistivity Anomalies and Microtremor Analyses-A Case Study in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Gan, F.; Su, C.; Liu, W.; Zhao, W.

    2016-12-01

    Heterogeneity, anisotropy and rugged landforms become challenges for geophysicists to locate drilling site by water-bearing structure profiling in Karst region. If only one geophysical method is used to achieve this objective, low resistivity anomalies deduced to be water-rich zones could actually be zones rich in marl and shale. In this study, integrated geophysical methods were used to locate a favorable drilling position for the provision of karst water to Juede village, which had been experiencing severe water shortages over a prolonged period. According to site conditions and hydrogeological data, appropriate geophysical profiles were conducted, approximately perpendicular to the direction of groundwater flow. In general, significant changes in resistivity occur between water-filled caves/ fractures and competent rocks. Thus, electrical and electromagnetic methods have been widely applied to search for karst groundwater indirectly. First, electrical resistivity tomography was carried out to discern shallow resistivity distributions within the profile where the low resistivity anomalies were of most interest. Second, one short profile of audio-frequency magnetotelluric survey was used to ascertain the vertical and horizontal extent of these low resistivity anomalies. Third, the microtremor H/V spectral ratio method was applied to identify potential water-bearing structures from low resistivity anomalies and to differentiate these from the interference of marl and shale with low resistivity. Finally, anomalous depths were estimated by interpreting Schlumberger sounding data to determine an optimal drilling site. The study shows that karst hydrogeology and geophysical methods can be effectively integrated for the purposes of karst groundwater exploration.

  10. How important is exact knowledge of preferential flowpath locations and orientations for understanding spatiotemporally integrated spring hydrologic and transport response?

    NASA Astrophysics Data System (ADS)

    Henson, W.; De Rooij, R.; Graham, W. D.

    2016-12-01

    The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer

  11. Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Carmona, M.; Anaya, A. A.

    2014-12-01

    Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are

  12. Seasonal changes of organic matter quality and quantity at the outlet of a forested karst system (La Roche Saint Alban, French Alps)

    NASA Astrophysics Data System (ADS)

    Tissier, Grégory; Perrette, Yves; Dzikowski, Marc; Poulenard, Jérome; Hobléa, Fabien; Malet, Emmanuel; Fanget, Bernard

    2013-03-01

    SummaryBecause of its impact on water quality, organic matter (OM) in karst groundwater has been widely studied. The present article describes a method for monitoring OM in karst aquifers characterized by quick responses to rainfall. This method combines weekly manual sampling and continuous monitoring to provide, qualitative and quantitative information about OM flow. Weekly samples were analyzed for Total Organic Carbon (TOC) content and spectrofluorescence, while continuous monitoring was carried out at the main spring, using a field fluorimeter (310/400-700 nm and 280/300-600 nm) to quantify chromophoric organic matter (COM). The type and quantity of COM were defined by decomposing Excitation Emission Matrices (EEMs) and by applying a 2D fluorescence decomposition method. Continuous monitoring data showed that the dominant COM was humic-like (HL). We found three types of relationship between HL and discharge and between HL and TOC, showing that caution must be exercised when using field fluorimeter measurements to quantify TOC. Each relationship was characterized by global differences in OM content and by the presence of different percentages of non-chromophoric organic matter. These three relationships are associated with changes in hydrology and microorganism activity during the year. We used these relationships to estimate the annual OM flow (about 15 kg/ha/year) and thereby quantify OM flow during the year. Our results show the importance of the non-chromophoric organic matter in such estimation. That work illustrates the need to couple qualitative and quantitative monitoring of OM in karst spring to improve the global comprehension of karst system and of the sources implies in the OM flow.

  13. Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern mediterranean basin (Teboursouk area, NW Tunisia)

    NASA Astrophysics Data System (ADS)

    Ayadi, Yosra; Mokadem, Naziha; Besser, Houda; Khelifi, Faten; Harabi, Samia; Hamad, Amor; Boyce, Adrian; Laouar, Rabah; Hamed, Younes

    2018-01-01

    Karst aquifers receive increasing attention in Mediterranean countries as they provide large supplies water used for drinkable and irrigation purposes as well as for electricity production. In Teboursouk basin, Northwestern Tunisia, characterized by a typical karst landscape, the water hosted in the carbonates aquifers provides large parts of water supply for drinkable water and agriculture purposes. Groundwater circulation in karst aquifers is characterized by short residence time and low water-rock interaction caused by high karstification processes in the study area. Ion exchange process, rock dissolution and rainfall infiltration are the principal factors of water mineralization and spatial distribution of groundwater chemistry. The present work attempted to study karstic groundwater in Teboursouk region using hydrochemistry and stable isotopes (δ18O and δ2H) tools. Karst aquifers have good water quality with low salinity levels expressed by TDS values largely below 1.5 g/l with Ca-SO4-Cl water type prevailing in the study area. The aquifers have been recharged by rainfall originating from a mixture of Atlantic and Mediterranean vapor masses.

  14. Spatial analysis for susceptibility of second-time karst sinkholes: A case study of Jili Village in Guangxi, China

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Yan, Hongbo; Chen, Kunhua; Zhang, Rongting

    2016-04-01

    After a big karst sinkhole happened in Jili Village of Guangxi, China, the local government was eager to quantitatively analyze and map susceptible areas of the potential second-time karst sinkholes in order to make timely decisions whether the residents living in the first-time sinkhole areas should move. For this reason, karst sinkholes susceptibility geospatial analysis is investigated using multivariate spatial data, logistic regression model (LRM) and Geographical Information System (GIS). Ten major karst sinkholes related factors, including (1) formation lithology, (2) soil structure, (3) profile curvature, (4) groundwater depth, (5) fluctuation of groundwater level, (6) percolation rate of soil, (7) degree of karst development, (8) distance from fault, (9) distance from the traffic route, and (10) overburden thickness were selected, and then each of factors was classified and quantitated with the three or four levels. The LRM was applied to evaluate which factor makes significant contributions to sinkhole. The results demonstrated that formation lithology, soil structure, profile curvature, groundwater depth, ground water level, percolation rate of soil, and degree of karst development, the distance from fault, and overburden thickness are positive, while one factor, the distance from traffic routes is negative, which is deleted from LRM model. The susceptibility of the potential sinkholes in the study area is estimated and mapped using the solved impact factors. The susceptible degrees of the study area are classified into five levels, very high, high, moderate, low, and ignore susceptibility. It has been found that that both very high and high susceptibility areas are along Datou Hill and the foothills of the study area. This finding is verified by field observations. With the investigations conducted in this paper, it can be concluded that the susceptibility maps produced in this paper are reliable and accurate, and useful as a reference for local

  15. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    NASA Astrophysics Data System (ADS)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  16. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  17. Results of a hydrogeological and hydrogeochemical study of a semi-arid karst aquifer in Tezbent plateau, Tebessa region, northeast of Algeria

    NASA Astrophysics Data System (ADS)

    Belfar, Dalila; Fehdi, Chemseddine; Baali, Fethi; Salameh, Elias

    2017-06-01

    The Hammamet Plain, situated in the northwest of the Tezbent mountain range, northeast of Algeria, drains carbonate aquifers through some important karst springs. The physical and chemical characteristics of spring and well water samples were studied for 2 years to assess the origin of groundwater and determine the factors driving the geochemical composition. The ionic speciation and mineral dissolution/precipitation was calculated. Water wells, characterizing groundwater circulation at shallow depths, are moderate to high mineralized waters of Na-HCO3 type. In contrast to the shallow environment, the CO2-rich, deeper waters are of the Ca-HCO3-SO4 type and undergo significant changes in the baseline chemistry along flow lines with increasing residence time. The main factors controlling the groundwater composition and its seasonal variations are the geology, because of the presence of carbonate formations, the elevation and the rate of karst development. In both groups, the carbonate chemistry is diagnostic of the effect of karst development. The supersaturation with respect to calcite indicates CO2 degassing, occurring either inside the aquifer in open conduits, or at the outlet in reservoirs. The undersaturation with respect to calcite shows the existence of fast flow and short residence time conditions inside the aquifer. Interaction between groundwater and surrounding host rocks is believed to be the main process responsible for the observed chemical characteristics of groundwater in the study area.

  18. Evaporite karst of northern lower Michigan

    USGS Publications Warehouse

    Black, T.J.

    1997-01-01

    Michigan has three main zones of evaporite karst: collapse breccia in Late Silurian deposits of the Mackinac Straits region; breccia, collapse sinks, and mega-block collapse in Middle Devonian deposits of Northern Lower Michigan, which overlaps the preceding area; and areas of soil swallows in sinks of Mississippian deposits between Turner and Alabaster in Arenac and Iosco counties, and near Grand Rapids in Kent County. The author has focused his study on evaporite karst of the Middle Devonian deposits. The Middle Devonian depos its are the Detroit River Group: a series consisting of limestone, dolomite, shale, salt, gypsum, and anhydrite. The group occurs from subcrop, near the surface, to nearly 1400 feet deep from the northern tip of the Southern Peninsula to the south edge of the "solution front" Glacial drift is from zero to 350 feet thick. Oil and gas exploration has encountered some significant lost-circulation zones throughout the area. Drilling without fluid returns, casing-seal failures, and lost holes are strong risks in some parts of the region. Lost fluid returns near the top of the group in nearby areas indicate some karst development shortly after deposition. Large and irregular lost-circulation zones, linear and patch trends of large sink holes, and 0.25 mile wide blocks of down-dropped land in the northern Lower Peninsula of Michigan were caused by surface- and ground-water movement along faults into the Detroit River Group. Glaciation has removed some evidence of the karst area at the surface. Sinkhole development, collapse valleys, and swallows developed since retreat of the glacier reveal an active solution front in the Detroit River Group.

  19. Implications of groundwater hydrology to buffer design in the southeastern U.S.

    Treesearch

    Ge Sun; James M. Vose; Devendra M. Amatya; Carl Trettin; Steven G. McNulty

    2008-01-01

    The objective of this study was to examine the hydrologic processes of shallow groundwater to better define and design forest riparian management zones in headwater streams of two contrasting terrains in the southeastern U.S. We employed two long-term experimental watersheds, WS80 (206 ha) and WS77 (151 ha) at the Santee Experimental Forests in South Carolina, and WS2...

  20. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    PubMed Central

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  1. Hydrologic and nutrient response of groundwater to flooding of cranberry farms in southeastern Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.

    2015-06-01

    Seasonal flooding of cranberry farms is essential for commercial production of cranberries in southeastern Massachusetts, with close to 90% of growers using a flood for harvesting and winter protection. Although periodic flooding results in increased groundwater recharge, it may also exacerbate subsurface transport of dissolved forms of nitrogen and phosphorus. Given the paucity of information on groundwater exchange with cranberry floodwaters, hydrometric measurements were used to solve for the residual term of groundwater recharge in water budgets for three cranberry farms during the harvest and winter floods. Combined with continuous monitoring of water-table depth and discrete sampling of groundwater for analysis of nitrate (NO3-), ammonium (NH4+), and total dissolved phosphorus (TDP), values of groundwater recharge were used to evaluate the hydrologic and nutrient response of groundwater to flooding of cranberry farms. Mean values of groundwater recharge were 11 (±6) and 47 (±11) cm for the harvest and winter floods, respectively (one standard deviation in parentheses). The factor-of-four difference in ground recharge was related to flood holding times that, on average, were twenty days longer for the winter flood. The total estimated seasonal groundwater recharge of 58 cm was about four times higher than that assigned to cranberry farms in regional groundwater flow models. During the floods, 10 to 20-cm increases in water-table depth were observed for wells within 10 m of the farm, contrasting with decreases (or minimal variation) in water-table depth for wells located 100 m or farther from the farm. These spatial patterns in the hydrologic response of groundwater suggested a zone of influence of approximately 100 m from the flooded edge of the farm. Analysis of 43 groundwater samples collected from 10 wells indicated generally low concentrations of TDP in groundwater (<0.32 μM for 84% of the samples). Nitrate accounted for 85% of the dissolved inorganic N

  2. Application of the Risk-Based Early Warning Method in a Fracture-Karst Water Source, North China.

    PubMed

    Guo, Yongli; Wu, Qing; Li, Changsuo; Zhao, Zhenhua; Sun, Bin; He, Shiyi; Jiang, Guanghui; Zhai, Yuanzheng; Guo, Fang

    2018-03-01

      The paper proposes a risk-based early warning considering characteristics of fracture-karst aquifer in North China and applied it in a super-large fracture-karst water source. Groundwater vulnerability, types of land use, water abundance, transmissivity and spatial temporal variation of groundwater quality were chosen as indexes of the method. Weights of factors were obtained by using AHP method based on relative importance of factors, maps of factors were zoned by GIS, early warning map was conducted based on extension theory with the help of GIS, ENVI+IDL. The early warning map fused five factors very well, serious and tremendous warning areas are mainly located in northwest and east with high or relatively high transmissivity and groundwater pollutant loading, and obviously deteriorated or deteriorated trend of petroleum. The early warning map warns people where more attention should be paid, and the paper guides decision making to take appropriate protection actions in different warning levels areas.

  3. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy

    USGS Publications Warehouse

    Allocca, V.; De Vita, P.; Manna, F.; Nimmo, John R.

    2015-01-01

    Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climate-dependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology could further be applied to other aquifers for evaluating the relationship of recharge to various hydrometeorological and hydrogeological processes.

  4. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Treesearch

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  5. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  6. Hydrogeology, hydrologic effects of development, and simulation of groundwater flow in the Borrego Valley, San Diego County, California

    USGS Publications Warehouse

    Faunt, Claudia C.; Stamos, Christina L.; Flint, Lorraine E.; Wright, Michael T.; Burgess, Matthew K.; Sneed, Michelle; Brandt, Justin; Martin, Peter; Coes, Alissa L.

    2015-11-24

    This report documents and presents (1) an analysis of the conceptual model, (2) a description of the hydrologic features, (3) a compilation and analysis of water-quality data, (4) the measurement and analysis of land subsidence by using geophysical and remote sensing techniques, (5) the development and calibration of a two-dimensional borehole-groundwater-flow model to estimate aquifer hydraulic conductivities, (6) the development and calibration of a three-dimensional (3-D) integrated hydrologic flow model, (7) a water-availability analysis with respect to current climate variability and land use, and (8) potential future management scenarios. The integrated hydrologic model, referred to here as the “Borrego Valley Hydrologic Model” (BVHM), is a tool that can provide results with the accuracy needed for making water-management decisions, although potential future refinements and enhancements could further improve the level of spatial and temporal resolution and model accuracy. Because the model incorporates time-varying inflows and outflows, this tool can be used to evaluate the effects of temporal changes in recharge and pumping and to compare the relative effects of different water-management scenarios on the aquifer system. Overall, the development of the hydrogeologic and hydrologic models, data networks, and hydrologic analysis provides a basis for assessing surface and groundwater availability and potential water-resource management guidelines.

  7. Hydrological and Mineralogical Factors Influencing Paradoxical Groundwater Arsenic Release in the Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nghiem, A.; Bostick, B. C.

    2017-12-01

    In South and Southeast Asia, the widespread contamination of groundwater arsenic (As) via microbial reduction of As-bearing iron (Fe) minerals in the subsurface results in toxic levels of arsenic above the World Health Organization (WHO) drinking water standard of 10 ug/L. High groundwater arsenic levels are generally found in gray Holocene aquifers whereas orange-sanded Pleistocene aquifers are typically a safer, lower As alternative. In the Red River Delta of Vietnam and elsewhere, Pleistocene aquifers can also have elevated arsenic levels, often due to increased groundwater pumping from the growing Hanoi area drawing high As water from Holocene aquifers, or from reduction induced by advected groundwater and organic carbon from the Red River. To determine which factors threaten the Pleistocene aquifers, we critically examine the hydrological and geochemical factors that could influence arsenic levels in the area. Exploiting an asymmetry in the region just south of Hanoi, yearlong spatiotemporal measurements of dissolved arsenic levels reveals a paradox between a Pleistocene aquifer site in Yen My (west bank) with higher As concentrations than a Holocene site in Van Duc (east bank). We monitor the influence of local and regional hydrology via water table measurements, stable water isotopes and conservative anion concentrations linked to the release of aqueous As. Preliminary x-ray absorption spectroscopy (XAS) data point to As(V)/arsenic sulfide minerals in Yen My versus As(III) minerals in Van Duc. Coupled to hydrology, downcore Fe Extended X-Ray Absorption Fine Structure (EXAFS) and As X-ray Absorption Near Edge Structure (XANES) stratigraphy and spatiotemporal dissolved organic carbon data serve to narrow down the possible sources of carbon and reductive processes that affect As speciation and transport. Overall, understanding sources that endanger the Pleistocene aquifers may elucidate important As cycling mechanisms at play that threatens water quality for

  8. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia.

    PubMed

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH<4) posed risks of acid and metals entering shallow groundwater and potentially discharging to the remaining lake water body. Piezometer transects were installed at four locations and monitoring of the groundwater levels and quality was undertaken for six years from 2009 (drought) to 2014 (4years post-reinundation). Acidic (pH3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia

    NASA Astrophysics Data System (ADS)

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH < 4) posed risks of acid and metals entering shallow groundwater and potentially discharging to the remaining lake water body. Piezometer transects were installed at four locations and monitoring of the groundwater levels and quality was undertaken for six years from 2009 (drought) to 2014 (4 years post-reinundation). Acidic (pH 3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2 m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4 years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments.

  10. Use of heat as a groundwater tracer in fractured rock hydrology

    NASA Astrophysics Data System (ADS)

    Bour, Olivier; Le Borgne, Tanguy; Klepikova, Maria V.; Read, Tom; Selker, John S.; Bense, Victor F.; Le Lay, Hugo; Hochreutener, Rebecca; Lavenant, Nicolas

    2015-04-01

    Crystalline rocks aquifers are often difficult to characterize since flows are mainly localized in few fractures. In particular, the geometry and the connections of the main flow paths are often only partly constrained with classical hydraulic tests. Here, we show through few examples how heat can be used to characterize groundwater flows in fractured rocks at the borehole, inter-borehole and watershed scale. Estimating flows from temperature measurements requires heat advection to be the dominant process of heat transport, but this condition is generally met in fractured rock at least within the few structures where flow is highly channelized. At the borehole scale, groundwater temperature variations with depth can be used to locate permeable fractures and to estimates borehole flows. Measurements can be done with classical multi-parameters probes, but also with recent technologies such as Fiber Optic Distributed Temperature Sensing (FO-DTS) which allows to measure temperature over long distances with an excellent spatial and temporal resolution. In addition, we show how a distributed borehole flowmeter can be achieved using an armored fiber-optic cable and measuring the difference in temperature between a heated and unheated cable that is a function of the fluid velocity. At the inter-borehole scale, temperature changes during cross-borehole hydraulic tests allow to identify the connections and the hydraulic properties of the main flow paths between boreholes. At the aquifer scale, groundwater temperature may be monitored to record temperature changes and estimate groundwater origin. In the example chosen, the main water supply comes from a depth of at least 300 meters through relatively deep groundwater circulation within a major permeable fault zone. The influence of groundwater extraction is clearly identified through groundwater temperature monitoring. These examples illustrate the advantages and limitations of using heat and groundwater temperature

  11. State-space prediction of spring discharge in a karst catchment in southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Liu, Meixian; Li, Xuezhang; Zhang, Rongfei; Wang, Kelin; Xu, Chaohao

    2017-06-01

    Southwest China represents one of the largest continuous karst regions in the world. It is estimated that around 1.7 million people are heavily dependent on water derived from karst springs in southwest China. However, there is a limited amount of water supply in this region. Moreover, there is not enough information on temporal patterns of spring discharge in the area. In this context, it is essential to accurately predict spring discharge, as well as understand karst hydrological processes in a thorough manner, so that water shortages in this area could be predicted and managed efficiently. The objectives of this study were to determine the primary factors that govern spring discharge patterns and to develop a state-space model to predict spring discharge. Spring discharge, precipitation (PT), relative humidity (RD), water temperature (WD), and electrical conductivity (EC) were the variables analyzed in the present work, and they were monitored at two different locations (referred to as karst springs A and B, respectively, in this paper) in a karst catchment area in southwest China from May to November 2015. Results showed that a state-space model using any combinations of variables outperformed a classical linear regression, a back-propagation artificial neural network model, and a least square support vector machine in modeling spring discharge time series for karst spring A. The best state-space model was obtained by using PT and RD, which accounted for 99.9% of the total variation in spring discharge. This model was then applied to an independent data set obtained from karst spring B, and it provided accurate spring discharge estimates. Therefore, state-space modeling was a useful tool for predicting spring discharge in karst regions in southwest China, and this modeling procedure may help researchers to obtain accurate results in other karst regions.

  12. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Gallay, Michal; Bandura, Peter; Šašak, Ján

    2018-05-01

    Karst sinkholes (dolines) play an important role in a karst landscape by controlling infiltration of surficial water, air flow or spatial distribution of solar energy. These landforms also present a limiting factor for human activities in agriculture or construction. Therefore, mapping such geomorphological forms is vital for appropriate landscape management and planning. There are several mapping techniques available; however, their applicability can be reduced in densely forested areas with poor accessibility and visibility of the landforms. In such conditions, airborne laser scanning (ALS) provides means for efficient and accurate mapping of both land and landscape canopy surfaces. Taking the benefits of ALS into account, we present an innovative method for identification and evaluation of karst sinkholes based on numerical water flow modelling. The suggested method was compared to traditional techniques for sinkhole mapping which use topographic maps and digital terrain modelling. The approach based on simulation of a rainfall event very closely matched the reference datasets derived by manual inspection of the ALS digital elevation model and field surveys. However, our process-based approach provides advantage of assessing the magnitude how sinkholes influence concentration of overland water flow during extreme rainfall events. This was performed by calculating the volume of water accumulated in sinkholes during the simulated rainfall. In this way, the influence of particular sinkholes on underground geomorphological systems can be assessed. The method was demonstrated in a case study of Slovak Karst in the West Carpathians where extreme rainfalls or snow-thaw events occur annually. We identified three spatially contiguous groups of sinkholes with a different effect on overland flow concentration. These results are discussed in relation to the known underground hydrological systems.

  13. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    USGS Publications Warehouse

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  14. A Multi-Tracer Approach to Characterize Sources and Transport of Nitrate in Groundwater in Mantled Karst, Northern Florida

    NASA Astrophysics Data System (ADS)

    Katz, B. G.; Bohlke, J.; Hornsby, D.

    2001-05-01

    Nitrate is readily transported from agricultural activities at the surface to the Upper Floridan aquifer in northern Florida due to karst features mantled by highly permeable sands and a high recharge rate (50 cm/yr). In Suwannee and Lafayette Counties, nitrate contamination of groundwater is widespread due to the 10-30 kg/ha nitrogen (N) applied annually for the past few decades as synthetic fertilizers (the dominant source of N). Water samples were collected from 12 springs during baseflow conditions (1997-99) and monthly from 14 wells (1998-99). Springwaters were analyzed for various chemical (N species, dissolved gases, CFCs) and isotopic tracers (15N, 3H/3He, 18O, D, 13C). Water from wells was analyzed monthly for N species, and during low-flow and high-flow conditions for 15N, 18O, D, and 13C. As a result of oxic conditions in the aquifer, nitrate was the dominant N species in water samples. Large monthly fluctuations of groundwater nitrate concentrations were observed at most wells. Relatively high nitrate concentrations in groundwater from 7 wells likely resulted from seasonal agricultural practices including fertilizer applications and manure spreading on cropland. Relatively low nitrate concentrations in groundwater from two wells during high-flow conditions were related to mixing with river water. Groundwater samples had N-isotope values (3.8-11.7 per mil) that indicated varying mixtures of inorganic and organic N sources, which corresponded in part to varying proportions of synthetic fertilizers and manure applied to fields. In springwaters from Suwannee County, nitrate trends and N-isotope data (2.7-6.2 per mil) were consistent with a peak in fertilizer N input in the late 1970's and a relatively high overall ratio of artificial fertilizer/manure. In contrast, springwater nitrate trends and N-isotope data (4.5-9.1 per mil) in Lafayette County were consistent with a more monotonic increase in fertilizer N input and relatively low overall ratio of

  15. Groundwater sensitivity mapping in Kentucky using GIS and digitally vectorized geologic quadrangles

    NASA Astrophysics Data System (ADS)

    Croskrey, Andrea; Groves, Chris

    2008-05-01

    Groundwater sensitivity (Ray and O’dell in Environ Geol 22:345 352, 1993a) refers to the inherent ease with which groundwater can be contaminated based on hydrogeologic characteristics. We have developed digital methods for identifying areas of varying groundwater sensitivity for a ten county area of south central Kentucky at a scale of 1:100,000. The study area includes extensive limestone karst sinkhole plains, with groundwater extremely sensitive to contamination. Digitally vectorized geologic quadrangles (DVGQs) were combined with elevation data to identify both hydrogeologic groundwater sensitivity regions and zones of “high risk runoff” where contaminants could be transported in runoff from less sensitive to higher sensitivity (particularly karst) areas. While future work will fine-tune these maps with additional layers of data (soils for example) as digital data have become available, using DVGQs allows a relatively rapid assessment of groundwater sensitivity for Kentucky at a more useful scale than previously available assessment methods, such as DRASTIC and DIVERSITY.

  16. Real-time hydrological early warning system at national scale for surface water and groundwater with stakeholder involvement

    NASA Astrophysics Data System (ADS)

    He, X.; Stisen, S.; Henriksen, H. J.

    2015-12-01

    Hydrological models are important tools to support decision making in water resource management in the past few decades. Nowadays, frequent occurrence of extreme hydrological events has put focus on development of real-time hydrological modeling and forecasting systems. Among the various types of hydrological models, it is only the rainfall-runoff models for surface water that are commonly used in the online real-time fashion; and there is never a tradition to use integrated hydrological models for both surface water and groundwater with large scale perspective. At the Geological Survey of Denmark and Greenland (GEUS), we have setup and calibrated an integrated hydrological model that covers the entire nation, namely the DK-model. So far, the DK-model has only been used in offline mode for historical and future scenario simulations. Therefore, challenges arise when operating the DK-model in real-time mode due to lack of technical experiences and stakeholder awareness. In the present study, we try to demonstrate the process of bringing the DK-model online while actively involving the opinions of the stakeholders. Although the system is not yet fully operational, a prototype has been finished and presented to the stakeholders which can simulate groundwater levels, streamflow and water content in the root zone with a lead time of 48 hours and refreshed every 6 hours. The active involvement of stakeholders has provided very valuable insights and feedbacks for future improvements.

  17. Applications of GIS and database technologies to manage a Karst Feature Database

    USGS Publications Warehouse

    Gao, Y.; Tipping, R.G.; Alexander, E.C.

    2006-01-01

    This paper describes the management of a Karst Feature Database (KFD) in Minnesota. Two sets of applications in both GIS and Database Management System (DBMS) have been developed for the KFD of Minnesota. These applications were used to manage and to enhance the usability of the KFD. Structured Query Language (SQL) was used to manipulate transactions of the database and to facilitate the functionality of the user interfaces. The Database Administrator (DBA) authorized users with different access permissions to enhance the security of the database. Database consistency and recovery are accomplished by creating data logs and maintaining backups on a regular basis. The working database provides guidelines and management tools for future studies of karst features in Minnesota. The methodology of designing this DBMS is applicable to develop GIS-based databases to analyze and manage geomorphic and hydrologic datasets at both regional and local scales. The short-term goal of this research is to develop a regional KFD for the Upper Mississippi Valley Karst and the long-term goal is to expand this database to manage and study karst features at national and global scales.

  18. Natural and Artificial (fluorescent) Tracers to Characterise Hydrogeological Functioning and to Protect Karst Aquifers

    NASA Astrophysics Data System (ADS)

    Andreo, B.; Mudarra, M.; Marin, A. I.; Barberá, J. A.

    2012-12-01

    recent research (Marin et al., 2012; Ravbar et al., 2012). References: Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles MJ, Zwahlen F (2006a): Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain). Science of the Total Environment, 357 1-3: 54-73. Marín AI, Andreo B and Dörfliger N (2012): Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environmental Earth Sciences, 65: 2407-2421. Mudarra M, Andreo B and Baker A (2011): Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: Relationship with infiltration processes. Science of Total Environment, 40: 3448-3462. Ravbar N, Barberá JA, Petric M, Kogovsek J and Andreo B (2012): Study of hydrodynamic behaviour of a complex karst system under low-flow conditions using natural and artificial tracers (springs of the Unica River, SW Slovenia Environmental Earth Sciences, 65: 2259-2272. Zwahlen F -Editor- (2004). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620). - European Commission, Directorate-General XII Science, Research and Development: 297 pp.

  19. Influence of lateral groundwater flow in a shallow aquifer on eco-hydrological process in a shrub-grass coexistence semiarid area

    NASA Astrophysics Data System (ADS)

    Wang, Siru; Sun, Jinhua; Lei, Huimin; Zhu, Qiande; Jiang, Sanyuan

    2017-04-01

    Topography has a considerable influence on eco-hydrological processes resulting from the patterns of solar radiation distribution and lateral water flow. However, not much quantitative information on the contribution of lateral groundwater flow on ecological processes such as vegetation growth and evapo-transpiration is available. To fill this gap, we used a simple eco-hydrological model based on water balance with a 3D groundwater module that uses Darcy's law. This model was applied to a non-contributing area of 50km2 dominated by grassland and shrubland with an underlying shallow aquifer. It was calibrated using manually and remotely sensed vegetation data and water flux data observed by eddy covariance system of two flux towers as well as water table data obtained from HOBO recorders of 40 wells. The results demonstrate that the maximum hydraulic gradient and the maximum flux of lateral groundwater flow reached to 0.156m m-1 and 0.093m3 s-1 respectively. The average annual maximum LAI in grassland, predominantly in low-lying areas, improved by about 5.9% while that in shrubland, predominantly in high-lying areas, remained the same when lateral groundwater flow is considered adequately compared to the case without considering lateral groundwater flow. They also show that LAI is positively and nonlinearly related to evapotranspiration, and that the greater the magnitude of evapotranspiration, the smaller the rate of increase of LAI. The results suggest that lateral groundwater flow should not be neglected when simulating eco-hydrological process in areas with a shallow aquifer.

  20. Understanding Prairie Fen Hydrology - a Hierarchical Multi-Scale Groundwater Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sampath, P.; Liao, H.; Abbas, H.; Ma, L.; Li, S.

    2012-12-01

    Prairie fens provide critical habitat to more than 50 rare species and significantly contribute to the biodiversity of the upper Great Lakes region. The sustainability of these globally unique ecosystems, however, requires that they be fed by a steady supply of pristine, calcareous groundwater. Understanding the hydrology that supports the existence of such fens is essential in preserving these valuable habitats. This research uses process-based multi-scale groundwater modeling for this purpose. Two fen-sites, MacCready Fen and Ives Road Fen, in Southern Michigan were systematically studied. A hierarchy of nested steady-state models was built for each fen-site to capture the system's dynamics at spatial scales ranging from the regional groundwater-shed to the local fens. The models utilize high-resolution Digital Elevation Models (DEM), National Hydrologic Datasets (NHD), a recently-assembled water-well database, and results from a state-wide groundwater mapping project to represent the complex hydro-geological and stress framework. The modeling system simulates both shallow glacial and deep bedrock aquifers as well as the interaction between surface water and groundwater. Aquifer heterogeneities were explicitly simulated with multi-scale transition probability geo-statistics. A two-way hydraulic head feedback mechanism was set up between the nested models, such that the parent models provided boundary conditions to the child models, and in turn the child models provided local information to the parent models. A hierarchical mass budget analysis was performed to estimate the seepage fluxes at the surface water/groundwater interfaces and to assess the relative importance of the processes at multiple scales that contribute water to the fens. The models were calibrated using observed base-flows at stream gauging stations and/or static water levels at wells. Three-dimensional particle tracking was used to predict the sources of water to the fens. We observed from the

  1. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    USGS Publications Warehouse

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  2. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    USGS Publications Warehouse

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  3. Final Technical Report for "High-resolution temporal variations in groundwater chemistry: Tracing the links between climate, hydrology, and element mobility in the vadose zone"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay L. Banner

    2002-04-23

    In spite of a developing emphasis on geochemical methods in studies of modern hydrologic systems, there have been few attempts to examine temporal fluctuations in groundwater chemistry and element mobility in the near-surface environment. Relatively little is known regarding how groundwaters evolve over 10 to 10,000 year scales, yet this knowledge provides a critical framework for understanding the links between climate and hydrology, the evolution of soils, and element migration in the vadose environment. Recent analytical advances allow U-series measurements to be applied to developing high-resolution chronologies of Pleistocene and Holocene carbonates. The potential of these new tools is examinedmore » through an analysis of two well-defined, active karst systems in (1) Barbados and (2) Texas. (1) The research effort on Barbados has developed methods of estimating recharge and inferring the spatial and seasonal distribution of recharge to the Pleistocene limestone aquifer on Barbados. A new method has been developed to estimate recharge based on oxygen isotope variations in rainwater and groundwater. Inter-annual recharge variations indicate that recharge is dependent on the distribution of rainfall throughout the year rather than total annual rainfall. Consequently, a year when rainfall occurs primarily during the peak wet season months (August through November) may have more recharge than a year when rainfall is more evenly distributed through the year. These results lay important groundwork for analysis of rainfall/recharge variations over different time scales based on isotopic records presently being constructed using Barbados speleothems from the same aquifer. (2) The chronology of speleothems (cave calcite deposits) from three caves across 130 kilometers in central Texas provides a 71,000-year record of temporal changes in hydrology and climate. Fifty-three ages were determined by mass spectrometric 238U - 230Th and 235U - 231Pa analyses. The accuracy

  4. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    NASA Astrophysics Data System (ADS)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  5. Groundwater withdrawal impacts in a karst area

    NASA Astrophysics Data System (ADS)

    Destephen, R. A.; Benson, C. P.

    1993-12-01

    During a 3000-gpm pump test on a groundwater supply well in Augusta County, Virginia, residential properties were impacted. The impacts included lowered farm pond water levels, development of a sinkhole, and water level decrease in residential wells. A study was performed to assess whether a lower design yield was possible with minimal impacts on adjacent property. This study included a 48-h 1500-gpm pump test that evaluated impacts due to: (1) sinkhole development and potential damage to homes, (2) loss of water in residential wells, and (3) water-quality degradation. Spring flows, residential well levels, survey monuments, and water quality were monitored. Groundwater and surface water testing included inorganic water-quality parameters and microbiological parameters. The latter included particulate analyses, Giardia cysts, and coliforms, which were used to evaluate the connection between groundwater and local surface waterbodies. Although results of the study indicated a low potential for structural damage due to future sinkhole activity, it showed that the water quality of some residential wells might be degraded. Because particulate analyses confirmed that groundwater into the supply well is under the direct influence of surface water, it was recommended that certain residents be placed on an alternate water supply prior to production pumping and that filtration be provided for the well in accordance with the Surface Water Treatment Rule. A mitigation plan was implemented. This plan included crack surveys, a long-term settlement station monitoring program, and limitation of the groundwater withdrawal rate to 1.0 million gallons per day (mgd) and maximum production rate to 1500 gpm.

  6. Transport of environmental tracers through a karst system with a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Geyer, Tobias; Sültenfuss, Jürgen; Eichinger, Florian; Sauter, Martin

    2010-05-01

    The transport of the environmental tracers tritium (3H), krypton-85 (85Kr) and helium (3He) in a karst system is investigated. Differences between mean tracer ages determined in spring water are explained by slow percolation of water through the thick unsaturated zone reflecting the importance of slow and diffuse unsaturated flow processes in these systems. Mean tracer ages on the Gallusquelle spring (Swabian Alb) were determined with lumped parameter modeling and decrease in the following order: 3H >> 85Kr > 3He. Since 3H is part of the water molecule it enters a karst system via precipitation, i.e. the mean 3H age is a measure of water flow through the whole karst system, including the unsaturated and saturated zone. The mean 85Kr age and 3H/3He age are measures of time since groundwater recharge arrived at the water table. Therefore our results indicate a long travel time of 3H through the unsaturated zone of the karst system. The interpretation is supported by a two-dimensional numerical simulation of flow and transport in a fissured matrix block that contains a thick unsaturated zone (ca. 100 m) and is drained by a conduit. Transport simulation is performed in the sense of backtracking, i.e. the flow field is reversed, and the boundary conditions are adapted accordingly. At any position in the model domain, the time required for a water molecule to reach the outlet is estimated corresponding to the "life expectancy" (Cornaton and Perrochet 2006), i.e. the life expectancy on the outlet is zero. The simulation of life expectancy of water in the matrix block shows (1) the importance of heterogeneities for interpretation of groundwater ages, (2) the location of stagnant zones in areas of low hydraulic permeability and/or low hydraulic gradient and (3) that flow through unsaturated fissured matrix blocks may cause a considerable travel time of water through a karst system. The travel time of water from the recharge area to the discharge point for the shown example

  7. Hydrology

    USGS Publications Warehouse

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  8. Dynamics of natural prokaryotes, viruses, and heterotrophic nanoflagellates in alpine karstic groundwater

    PubMed Central

    Wilhartitz, Inés C; Kirschner, Alexander K T; Brussaard, Corina P D; Fischer, Ulrike R; Wieltschnig, Claudia; Stadler, Hermann; Farnleitner, Andreas H

    2013-01-01

    Abstract Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible interrelationships between these three groups in karstic groundwater. Hydrological and microbiological standard indicators were recovered simultaneously in order to estimate surface influence, especially during rainfall events. Data revealed a strong dependence of the microbial communities on the prevailing hydrological situation. Prokaryotic numbers averaged 5.1 × 107 and 1.3 × 107 cells L−1, and heterotrophic nanoflagellate abundance averaged 1.1 × 104 and 3 × 103 cells L−1 in the limestone spring type (LKAS2) and the dolomitic spring type (DKAS1), respectively. Viral abundance in LKAS2 and DKAS1 averaged 9.4 × 108 and 1.1 × 108 viruses L−1. Unlike in DKAS1, the dynamic spring type LKAS2 revealed a clear difference between base flow and high discharge conditions. The virus-to-prokaryotes ratio was generally lower by a factor of 2–3, at higher average water residence times. Furthermore, the high prokaryotes-to-heterotrophic nanoflagellate ratios, namely about 4700 and 5400 for LKAS2 and DKAS1, respectively, pointed toward an uncoupling of these two groups in the planktonic fraction of alpine karstic aquifers. Seasonal dynamics of naturally occurring prokaryotes, viruses and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. Data revealed a strong dependence of the microbial communities on the prevailing hydrological situation. PMID:23828838

  9. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun; Lian, Ergang; Yang, Shouye

    2017-03-01

    Studies of isotope characteristics of lake water in a desert can provide important information on groundwater discharge and hydrologic partition of the lakes in the desert. This paper presents the investigation of 18O and 2H stable isotopes and radiogenic radium of different water endmembers in three representative lakes of Badain-E, Badain-W and Sumujilin-S in the Badain Jaran Desert (BJD), the fourth largest desert in the world. A stable 18O and 2H isotopic buildup model is constructed to classify the hydrologic conditions of the desert lakes by estimating the ratio between groundwater discharge rate (Fin) and lake surface evaporation (E). Then the radium mass balance models are developed to quantify Fin. Based on the obtained Fin/E and Fin, Badain-E, Badain-W and Sumujilin-S are classified as flowing through, terminal and desiccating lakes, respectively, and their hydrologic partition is obtained. The groundwater discharge rate of Badain-E, Badain-W and Sumujilin-S, is estimated to be 8-10 mm d-1, 4-5 mm d-1, and 7-8 mm d-1, respectively. The total groundwater discharge to the lake areas in the BJD is about 1.68 × 105 m3 d-1. The flow-through condition explains the existence of the fresh lakes, while the terminal and desiccating conditions lead to the lake salinization over time. This study represents the first attempt to couple both stable and radium isotopic approaches to investigate the groundwater discharge and hydrologic partition of desert lakes in the BJD and is instructional to lake studies in other deserts in the world.

  10. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in

  11. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2017-09-01

    A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model computes the spring discharge hydrograph through three parallel linear reservoirs for base-flow, intermediate-flow, and quick-flow. Three antecedent recharge indices are defined and embedded in the model structure to deal with the memory effect of three karst flow systems to antecedent recharge flow. The Sasan Karst aquifer located in the semi-arid region of south-west Iran with a continuous long-term (21-years) daily meteorological and discharge data are considered to describe model calibration and validation procedures. The effects of temporal variations of RA of karst formations during the hydrological year namely invariant RA, two RA (winter and summer), four RA (seasonal), and twelve RA (monthly) are assessed to determine their impact on the model efficiency. Results indicated that the proposed model with monthly-variant RA is able to reproduce acceptable simulation results based on modified Kling-Gupta efficiency (KGE = -0.83). The results of density-based global sensitivity analysis for dry (June to September) and a wet (October to May) period reveal the dominant influence of RA (with sensitivity indices equal to 0.89 and 0.93, respectively) in spring discharge simulation. The sensitivity of simulated spring discharge to memory effect of different karst formations during the

  12. Contribution Of Spray Irrigation Of Wastewater To Groundwater Contamination In The Karst Of Southeastern Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Mooers, H. D.; Alexander, E. C., Jr.

    1994-01-01

    A vegetable- and meat-canning facility located in the karst of southeastern Minnesota disposes ≈2.85×105 m3 yr-1 of wastewater by spray irrigation of an 83.7-ha field located atop the local groundwater divide. Cannery effluent contains high levels of chloride and nitrogen (organic and ammonia), in excess of 7000 mg/l and 400 mg/l, respectively. Nitrate-nitrogen concentrations are generally < 5 mg/l. Agricultural, domestic, and municipal sources of chloride and nitrate are common in the region, and water supplies frequently exceed the drinking-water limit for nitrate-nitrogen of 10 mg/l. Fifty-two area wells and thirteen surface-water locations were sampled and analyzed for five ionic species, including: chloride (Cl), nitrate-nitrogen (NO3-N), sulfate (SO4), nitrite-nitrogen (NO2-N), and phosphate (PO4). Two distinct chloride plumes flowing outward from the groundwater divide were identified, and 65% of the wells sampled had nitrate-nitrogen concentrations in excess of 10 mg/l. The data were divided into two groups: one group of samples from wells located near the canning facility and another group from outside that area. A correlation coefficient of R2= 0.004 for Cl vs. NO3-N in the vicinity of the irrigation fields indicates essentially no relationship between the source of Cl and NO3. In areas of agricultural and domestic activities located away from the cannery, an R2 of 0.54 suggests that Cl and NO3 have common sources in these areas.

  13. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  14. Temperature as a tracer of hydrological dynamics in an anchialine cave system with a submarine spring

    NASA Astrophysics Data System (ADS)

    Domínguez-Villar, David; Cukrov, Neven; Krklec, Kristina

    2018-06-01

    Although temperature is a nonconservative tracer, it often provides useful information to understand hydrological processes. This study explores the potential of temperature to characterize the hydrological dynamics of a submarine spring and its coastal karst aquifer in Krka Estuary (Croatia). The estuary is well stratified and its water column has a clear thermocline. A network of loggers was designed to monitor the temperature along vertical profiles in the estuary and the coastal aquifer, taking advantage of an anchialine cave that enabled access to the subterranean estuary. The location of the thermocline in the groundwater, which defines the upper boundary of the saline intrusion, depends on (1) the recharge of the aquifer via infiltration of precipitation, (2) the evolution of the thermocline in the estuary, and (3) the tidal oscillations. The sources of water flowing though the anchialine cave were identified: brackish water from the estuary above the thermocline, saline water from the estuary below the thermocline, and freshwater from infiltrated precipitation. A conceptual model is described that characterizes the hydrological dynamics of this coastal aquifer and its interactions with the estuary. Thus, at least for some hydrological settings, temperature is a valid tracer to characterize the main hydrological processes. The measurement of temperature is inexpensive compared to other (conservative) tracers. Therefore, for those hydrological settings that have water masses with distinct temperatures, the use of temperature as a tracer to establish conceptual models of the hydrological dynamics is encouraged.

  15. Comparing and refining karst disturbance index methods through application in an island karst setting

    NASA Astrophysics Data System (ADS)

    Porter, Brandon L.; North, Leslie A.; Polk, Jason S.

    2016-12-01

    The interconnected nature of surface and subsurface karst environments allows easy disturbance to their aquifers and specialized ecosystems from anthropogenic impacts. The karst disturbance index is a holistic tool used to measure disturbance to karst environments and has been applied and refined through studies in Florida and Italy, among others. Through these applications, the karst disturbance index has evolved into two commonly used methods of application; yet, the karst disturbance index is still susceptible to evaluation and modification for application in other areas around the world. The geographically isolated and highly vulnerable municipality of Arecibo, Puerto Rico's karst area provides an opportunity to test the usefulness and validity of the karst disturbance index in an island setting and to compare and further refine the application of the original and modified methods. This study found the both methods of karst disturbance index application resulted in high disturbance scores (Original Method 0.54 and Modified Method 0.69, respectively) and uncovered multiple considerations for the improvement of the karst disturbance index. An evaluation of multiple methods together in an island setting also resulted in the need for adding additional indicators, including Mogote Removal and Coastal Karst. Collectively, the results provide a holistic approach to using the karst disturbance index in an island karst setting and suggest a modified method by which scaling and weighting may compensate for the difference between the original and modified method scores and allow interested stakeholders to evaluate disturbance regardless of his or her level of expertise.

  16. Hydrologic conditions, stream-water quality, and selected groundwater studies conducted in the Lawrenceville area, Georgia, 2003-2008

    USGS Publications Warehouse

    Clarke, John S.; Williams, Lester J.

    2010-01-01

    Hydrologic studies conducted during 2003-2008 as part of the U.S. Geological Survey Cooperative Water Program with the City of Lawrenceville, Georgia, provide important data for the management of water resources. The Cooperative Water Program includes (1) hydrologic monitoring (precipitation, streamflow, and groundwater levels) to quantify baseline conditions in anticipation of expanded groundwater development, (2) surface-water-quality monitoring to provide an understanding of how stream quality is affected by natural (such as precipitation) and anthropogenic factors (such as impervious area), and (3) geologic studies to better understand groundwater flow and hydrologic processes in a crystalline rock setting. The hydrologic monitoring network includes each of the two watersheds projected for groundwater development?the Redland-Pew Creek and upper Alcovy River watersheds?and the upper Apalachee River watershed, which serves as a background or control watershed because of its similar hydrologic and geologic characteristics to the other two watersheds. In each watershed, precipitation was generally greater during 2003-2005 than during 2006-2008, and correspondingly streamflow and groundwater levels decreased. In the upper Alcovy River and Redland-Pew Creek watersheds, groundwater level declines during 2003-2008 were mostly between 2 and 7 feet, with maximum observed declines of as much as 28.5 feet in the upper Alcovy River watershed, and 49.1 feet in the Redland-Pew Creek watershed. Synoptic base-flow measurements were used to locate and quantify gains or losses to streamflow resulting from groundwater interaction (groundwater seepage). In September 2006, seepage gains were measured at five of nine reaches evaluated in the upper Alcovy River watershed, with losses in the other four. The four losing reaches were near the confluence of the Alcovy River and Cedar Creek where the stream gradient is low and bedrock is at or near the land surface. In the Redland

  17. Quantitative assessment of key parameters in qualitative vulnerability methods applied in karst systems based on an integrated numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Kassem, Assaad

    2017-04-01

    In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.

  18. Adaptations of indigenous bacteria to fuel contamination in karst aquifers in south-central Kentucky

    USGS Publications Warehouse

    Byl, Thomas D.; Metge, David W.; Agymang, Daniel T.; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  19. Heterotrophic prokaryotic production in ultra-oligotrophic alpine karst aquifers and ecological implications

    PubMed Central

    Wilhartitz, Inés C.; Kirschner, Alexander K.T.; Stadler, Hermann; Herndl, Gerhard J.; Dietzel, Martin; Latal, Christine; Mach, Robert L.; Farnleitner, Andreas H.

    2011-01-01

    Spring waters from alpine karst aquifers are important drinking water resources. To investigate in situ prokaryotic heterotrophic production (HP) and its controlling factors, two alpine karst springs of contrasting hydrogeology but of nearby catchments were studied over two annual cycles. Heterotrophic production in spring water, as determined by [3H]leucine incorporation, was low but revealed strong seasonal variations ranging from 0.06 to 6.83 pmol C l−1 h−1 (DKAS1, dolomitic karst-spring) and from 0.50 to 75.6 pmol C l−1 h−1 (LKAS2, limestone karst-spring). Microautoradiography combined with catalyzed reporter deposition - fluorescence in situ hybridization (MAR-CARD-FISH) showed that only about 7 % of the picoplankton community took up [3H]leucine resulting in generation times of 3 to 684 days. Principal component analysis, applying hydrological, chemical and biological parameters demonstrated that planktonic heterotrophic production in LKAS2 was strongly governed by hydrogeographical components (e.g. discharge), whereas variations in DKAS1 are also strongly influenced by changes within the aquifer itself. Measurements in sediments recovered from LKAS2, DKAS1 and similar alpine karst aquifers (n=12) revealed an 106-fold higher heterotrophic production (average 19 μmol C dm−3 h−1) with significantly lower generation times as compared to the planktonic fraction, highlighting the metabolic potential of surface associated endokarst communities to add to self-purification processes. Estimates of microbially mediated CO2 in this compartment indicated a possible contribution to karstification. PMID:19490127

  20. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  1. Evaluating disturbance on mediterranean karst areas: the example of Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    de Waele, Jo

    2009-07-01

    Evaluating the human disturbance on karst areas is a difficult task because of the complexity of these peculiar and unique environments. The human impact on karstic geo-ecosystems is increasingly important and there is an increasing need for multidisciplinary tools to assess the environmental changes in karst areas. Many disciplines, such as biology, geomorphology, hydrology and social-economical sciences are to be considered to sufficiently evaluate the impact on these intrinsically vulnerable areas. This article gives an overview of the evolution of environmental impact on karst areas of the island Sardinia (Italy). For this particular case, the most important impacts in the past 50 years are derived from the following activities, in decreasing importance: (1) mining and quarrying; (2) deforestation, agriculture and grazing; (3) building (widespread urbanisation, isolated homes, etc.) and related infrastructures (roads, sewer systems, aqueducts, waste dumps, etc.); (4) tourism; (5) military activities. To evaluate the present environmental state of these areas the Disturbance Index for Karst environments [Van Beynen and Townsend (Environ Manage 36:101-116)] is applied in a slightly modified version. Instead of considering the indicators of environmental disturbances used in the original method, this slightly modified index evaluates the disturbances causing the deterioration of the environmental attributes. In the Sardinian case study, 27 disturbances have been evaluated, giving rise to the definition of a Disturbance Index ranging between 0 (Pristine) and 1 (highly disturbed). This Disturbance Index simplifies the original KDI method, appears to adequately measure disturbance on Mediterranean karst areas and could be applied with success to other similar regions.

  2. The One-Water Hydrologic Flow Model - The next generation in fully integrated hydrologic simulation software

    NASA Astrophysics Data System (ADS)

    Boyce, S. E.; Hanson, R. T.

    2015-12-01

    The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. MF-OWHM fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 combined with Local Grid Refinement, Streamflow Routing, Surface-water Routing Process, Seawater Intrusion, Riparian Evapotranspiration, and the Newton-Raphson solver. MF-OWHM also includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of MF-OWHM, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, the conduit flow process for karst aquifers and leaky pipe networks, a new subsidence and aquifer compaction package, and additional features and enhancements to enable more integration and cross communication between traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, MF-OWHM accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems such as evaluation of conjunctive-use alternatives and sustainability analysis, including potential adaptation and mitigation strategies, and best management practices. By Scott E. Boyce and Randall T. Hanson

  3. Going Underground: A Field Investigation and Lab Activity on Karst Topography and Water Systems

    ERIC Educational Resources Information Center

    O'Dell, Gary; Gonzalez-Espada, Wilson

    2011-01-01

    Students learn science best with activities that mirror the way scientists work. This article describes how geologists investigate groundwater flow systems in areas of karst topography--geologic formations shaped by dissolving bedrock--and provides a way for students to replicate this research. Students also use electric current to model water…

  4. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions

    USGS Publications Warehouse

    Wong, C.I.; Mahler, B.J.; Musgrove, M.; Banner, J.L.

    2012-01-01

    Understanding the sources and processes that control groundwater compositions and the timing and magnitude of groundwater vulnerability to potential surface-water contamination under varying meteorologic conditions is critical to informing groundwater protection policies and practices. This is especially true in karst terrains, where infiltrating surface water can rapidly affect groundwater quality. We analyzed the evolution of groundwater compositions (major ions and Sr isotopes) during the transition from extreme drought to wetconditions, and used inverse geochemical modeling (PHREEQC) to constrain controls on groundwater compositions during this evolution. Spring water and groundwater from two wells dominantly receiving diffuse and conduit flow (termed diffuse site and conduit site, respectively) in the Barton Springs segment of the Edwards aquifer (central Texas, USA) and surface water from losing streams that recharge the aquifer were sampled every 3–4 weeks during November 2008–March 2010. During this period, water compositions at the spring and conduit sites changed rapidly but there was no change at the diffuse site, illustrating the dual nature (i.e., diffuse vs. conduit) of flow in this karst system. Geochemical modeling demonstrated that, within a month of the onset of wetconditions, the majority of spring water and groundwater at the conduit site was composed of surface water, providing quantitative information on the timing and magnitude of the vulnerability of groundwater to potential surface-water contamination. The temporal pattern of increasing spring discharge and changing pattern of covariation between spring discharge and surface-water (steam) recharge indicates that that there were two modes of aquifer response—one with a small amount of storage and a second that accommodates more storage.

  5. Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.

    2012-12-01

    In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.

  6. Bibliography of borehole geophysics as applied to ground-water hydrology

    USGS Publications Warehouse

    Taylor, Ticie A.; Dey, Joyce A.

    1985-01-01

    Most of the references on borehole geophysics that are relevant to ground-water hydrology are contained in this bibliography, but it does not include every reference that is available under each subject heading; the literature is much too extensive to compile a complete listing. Some of the references may appear under more than one subject heading because the references commonly relate to more than one main topic. Many articles have been cross-referenced in order to assist the reader in locating an article. For example, the article entitled, 'Application of the acoustic televiewer to the characterization of hydraulic fractures in geothermal wells' is listed under both 'Acoustic televiewer,' and 'Geothermal'. The bibliography is intended to lead the reader to other articles on borehole-geophysical logging and related subjects, because each article cited also will have a list of references, which may be more specialized, covering many subjects with related applications, such as physics, mathematics, chemistry, geology, electronics, acoustics, hydrology, and surface geophysics. However, not all of these related subject headings could be included in this bibliography.

  7. Hydrologic assessment and numerical simulation of groundwater flow, San Juan Mine, San Juan County, New Mexico, 2010–13

    USGS Publications Warehouse

    Stewart, Anne M.

    2018-04-03

    Coal combustion byproducts (CCBs), which are composed of fly ash, bottom ash, and flue gas desulfurization material, produced at the coal-fired San Juan Generating Station (SJGS), located in San Juan County, New Mexico, have been buried in former surface-mine pits at the San Juan Mine, also referred to as the San Juan Coal Mine, since operations began in the early 1970s. This report, prepared by the U.S. Geological Survey in cooperation with the Mining and Minerals Division of the New Mexico Energy, Minerals and Natural Resources Department, describes results of a hydrogeologic assessment, including numerical groundwater modeling, to identify the timing of groundwater recovery and potential pathways for groundwater transport of metals that may be leached from stored CCBs and reach hydrologic receptors after operations cease. Data collected for the hydrologic assessment indicate that groundwater in at least one centrally located reclaimed surface-mining pit has already begun to recover.The U.S. Geological Survey numerical modeling package MODFLOW–NWT was used with MODPATH particle-tracking software to identify advective flow paths from CCB storage areas toward potential hydrologic receptors. Results indicate that groundwater at CCB storage areas will recover to the former steady state, or in some locations, groundwater may recover to a new steady state in 6,600 to 10,600 years at variable rates depending on the proximity to a residual cone-of-groundwater depression caused by mine dewatering and regional oil and gas pumping as well as on actual, rather than estimated, groundwater recharge and evapotranspirational losses. Advective particle-track modeling indicates that the number of particles and rates of advective transport will vary depending on hydraulic properties of the mine spoil, particularly hydraulic conductivity and porosity. Modeling results from the most conservative scenario indicate that particles can migrate from CCB repositories to either the

  8. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    USGS Publications Warehouse

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  9. Surface water, groundwater, and social science measurements in a prototype hydrologic observatory

    NASA Astrophysics Data System (ADS)

    Genereux, D.; Duffy, C.; Famiglietti, J.; Helly, J.; Hooper, R.; Krajewski, W.; McKnight, D.; Ogden, F.; Reckhow, K.; Scanlon, B.; Shabmasn, L.

    2003-12-01

    We convened in late April 2003 to begin work on the design for a "paper" prototype hydrologic observatory (HO) in the watershed of the Neuse estuary in North Carolina. This design example was to specify what would be measured in the HO, why, where, how, how often, and how much it would cost. This presentation focuses on aspects of the design related to stream and river measurements (discharge, water quality, fluvial geomorphology and sediment), groundwater measurements, and groundwater interaction with streams, rivers, and the estuary. Also considered is the collection of social sciences data to support multidisciplinary studies of land and water use and the consequences for flooding, water supply, and water quality. A second presentation in this session (Scanlon et al.) covers atmospheric and land surface aspects of the HO design, including recharge and ET. The design calls for measurements to quantify surface and subsurface hydrologic fluxes (water, solutes, sediment) into the Neuse estuary, and internally within the watershed at a wide range of spatial scales (about 5 orders of magnitude, roughly 0.1-10,000 square km). One hydrologic goal is to construct reliable water budgets for watersheds spanning this full range of scales, from the smallest to the full Neuse estuary watershed. A linked water quality goal is a strong quantitative characterization of the hydrologic storage and transport of nitrogen, a major water quality issue in this and many other large watersheds with major agricultural operations. Geomorphological observations will target the effects of physiographic and anthropogenic factors on rates of erosion, residence times of sediment in the fluvial system, and the role of wetlands and channel sources on the discharge of sediment and sorbed nutrients to the Neuse estuary during extreme events. Measurements will span the entire Neuse watershed but be more concentrated in a subset of 6 intermediate-size watersheds (averaging about 500 square km) that

  10. Variations of the spatiotemporal patterns of CVOCs concentrations in northern karst of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Yu, X.; Ghasemizadeh, R.; Padilla, I. Y.; Irizarry, C.; Yegen, C.; Kaeli, D.; Alshawabkeh, A. N.

    2013-12-01

    The northern Puerto Rico is characterized as karst topography, where the groundwater is a major source of water use to the island. Various types of Chlorinated Volatile Organic Compounds (CVOCs), which are due to improper disposal of industrial waste, are detected in these karst aquifers. It is important to study the spatiotemporal distribution patterns of the CVOCs in this region, which are posing a serious threat to both the ecological and human health. In this study, various historical CVOCs data from 264 wells across the northern karst region from January 1982 to December 2000 were collected from a number of reports and studies. We found that 38% (99 out of 264) of the sites had at least one sample with CVOC concentration above the standards established to protect human health over the study period. We found that the distribution of the CVOCs spatially varied with areas containing clusters of sites contaminated by different organic compound. The response of CVOC concentrations were occasionally retarded even though they were depleted significantly in the source zones. The study confirmed that the measured CVOC concentrations decreased during the study period at most of the sites. The source origin (toxics release locations and quantities) and the intrinsic characteristics of the karst (high heterogeneity and complex hydraulic behavior) are most likely related with the spatial and temporal distribution patterns of CVOCs. The study of the spatiotemporal patterns of CVOCs concentrations in the northern karst aquifers has important implications on the public water use, especially when it coincides with the recent population growth in this region. Locations of Puerto Rico, the northern karst region of Puerto Rico and 264 sampling sites in the karst region.

  11. Groundwater potential for water supply during droughts in Korea

    NASA Astrophysics Data System (ADS)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  12. Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling

    NASA Astrophysics Data System (ADS)

    Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.

    2018-03-01

    Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.

  13. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  14. Quantification of frequency-components contributions to the discharge of a karst spring

    NASA Astrophysics Data System (ADS)

    Taver, V.; Johannet, A.; Vinches, M.; Borrell, V.; Pistre, S.; Bertin, D.

    2013-12-01

    of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.

  15. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    USGS Publications Warehouse

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  16. Hydrology

    Treesearch

    Mark H. Eisenbies; W. Brian Hughes

    2000-01-01

    Hydrologic processes are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic produvtivity, biodiversity, and biogeochemical cycling....

  17. Recent Trends in Karst Geomorphology.

    ERIC Educational Resources Information Center

    Palmer, Arthur N.

    1984-01-01

    Recent trends related to the karst processes and the evolution of karst landscapes are discussed. The hydrochemical processes responsible for the origin of karst are expanded on to illustrate the present scope of karst studies. These geomorphological studies are combined with concepts and techniques from hydraulics, chemistry, and mathematics. (JN)

  18. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  19. ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Castellazzi, Pascal; Gloaguen, Erwan; Trépanier, Luc; Garfias, Jaime

    2018-06-01

    Urban infrastructures built over karst settings may be at risk of collapse due to hydro-chemical erosion of underlying rock structures. In such settings, mapping cave networks and monitoring ground stability is important to assure civil safety and guide future infrastructure development decisions. However, no technique can directly and comprehensively map these hydrogeological features and monitor their stability. The most reliable method to map a cave network is through speleological exploration, which is not always possible due to restrictions, narrow corridors/passages, or high water levels. Borehole drilling is expensive and is often only performed where the presence of karsts is suggested by other techniques. Numerous indirect and cost-effective methods exist to map a karst flow system, such as geophysics, geodesy, and tracer tests. This paper presents the outcomes from a challenging application in Quebec City, Canada, where a multidisciplinary approach was designed to better understand the groundwater dynamics and cave paths. Two tracer tests in groundwater flowing through the cave system indicated that water flows along an approximately straight path from the sinking stream to the spring. It also suggests the presence of a parallel flow path close to the one already partially mapped. This observation was confirmed by combining Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) techniques, and ultimately by observing voids in several boreholes drilled close to the main cave path. Lowering the water levels at the suspected infiltration zone and inside the karst, the infiltration cracks were identified and the hydraulic link between them was confirmed. In fact, almost no infiltration occurs into the karst system when the water level at the sinking stream drops below a threshold level. Finally, SAR interferometry (InSAR) using RADARSAT-2 images detected movements on few buildings located over a backfilled sinkhole intercepted by the karst

  20. Soil Parameters for Representing a Karst Geologic Terrain in the Noah Land-Surface Model over Tennessee and Kentucky

    NASA Astrophysics Data System (ADS)

    Sullivan, Z.; Fan, X.

    2015-12-01

    Currently, the Noah Land-Surface Model (Noah-LSM) coupled with the Weather Research and Forecasting (WRF) model does not have a representation of the physical behavior of a karst terrain found in a large area of Tennessee and Kentucky and 25% of land area worldwide. The soluble nature of the bedrock within a karst geologic terrains allows for the formation of caverns, joints, fissures, sinkholes, and underground streams which affect the hydrological behavior of the region. The Highland Rim of Tennessee and the Pennyroyal Plateau and Bluegrass region of Kentucky make up a larger karst area known as the Interior Low Plateau. The highly weathered upper portion of the karst terrain, known as the epikarst, allows for more rapid transport of water through the system. For this study, hydrological aspects, such as bedrock porosity and the hydraulic conductivity, were chosen within this region in order to determine the most representative subsurface parameters for the Noah-LSM. These values along with the use of similar proxy values were chosen to calculate and represent the remaining eight parameters within the SOILPARM.TBL for the WRF model. Hydraulic conductivity values show a variation ranging from around 10-7 and 10-5 ms-1 for the karst bedrock within this region. A sand and clay soil type was used along with bedrock parameters to determine an average soil parameter type for the epikarst bedrock located within this region. Results from this study show parameters for an epikarst bedrock type displaying higher water transport through the system, similar to that of a sandy soil type with a water retention similar to that of a loam type soil. The physical nature of epikarst may lead to a decrease in latent heat values over this region and increase sensible heat values. This, in turn, may effect boundary layer growth which could lead to convective development. Future modeling work can be conducted using these values by way of coupling the soil parameters with the karst

  1. Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan

    NASA Astrophysics Data System (ADS)

    Xanke, Julian; Liesch, Tanja; Goeppert, Nadine; Klinger, Jochen; Gassen, Niklas; Goldscheider, Nico

    2017-09-01

    Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.

  2. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  3. Delineating Fecal Contaminant Sources and Travel Times in a Karst Groundwater Basin, Inner Bluegrass Region, Kentucky

    NASA Astrophysics Data System (ADS)

    Ward, J. W.; Reed, T. M.; Fryar, A. E.; Brion, G. M.

    2006-12-01

    Because of preferential flowpaths via features such as sinkholes and conduits, karst aquifers are susceptible to non-point-source pollution from agricultural and urban drainage. With many karst aquifers being drinking- water sources, pathogens are contaminants of public health concern. Monitoring of microbial parameters (total coliforms [TC], atypical colonies [AC] and fecal coliform bacteria [FC]) transpired biweekly from December 2002 March 2004 and weekly from February October 2005 at Blue Hole Spring, which drains outlying farm lands and the town of Versailles in the Inner Bluegrass Region of Kentucky. Physicochemical parameters (discharge, temperature, specific conductance, and pH) were measured continuously during the entire period. The AC/TC ratio, which had been employed only in surface water-quality studies, was used with FC counts, precipitation and discharge data to determine sources of fecal loading to ground water as result of land-use practices. An AC/TC ratio < 10 demonstrates fresh input of fecal matter, while a larger ratio can represent a variety of occurrences, including aged fecal material input and/or lack of nutrient input into the system. AC/TC ratio data in the 2002 04 dataset behaved similarly to surface waters, with ratios > 10 during dry periods and < 10 during wet periods, while the 2005 data demonstrated a very irregular pattern. The difference in these two data sets indicated a compositional change within the groundwater basin between the two sampling periods, perhaps as a result of construction at a sewage treatment plant adjoining the spring. Solute (rhodamine WT fluorescent dye and bromide) and particle (1-μm diameter fluorescent latex microspheres) tracer tests were conducted during summer 2006 to examine contaminant mobility within the system under base-flow and storm-flow conditions. Rainfall was limited prior to the base-flow trace, totaling 0.025 cm within 2 weeks prior to the slug injection. Base-flow discharge averaged 400 m

  4. Subsurface dynamics of reactive and inert gases in the context of noble gases as environmental tracers in groundwater hydrology

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner

    2017-04-01

    Applications of inert gases in groundwater hydrology require a profound understanding of underlying biogeochemical processes. Some of these processes are, however, not well understood and therefore require further investigation. This is the first study simultaneously investigating soil air and groundwater in the context of noble gas tracer applications, accounting for seasonal effects in different climate regions. The sampled data confirm a general reliability of common assumptions proposed in the literature. In particular, a solubility-controlled description of excess air formation and of groundwater degassing can be confirmed. This study identifies certain effects which need to be taken into account to reliably evaluate noble gas patterns. First, long-term samplings suggest a permanent temperature-driven equilibration of shallow groundwater with entrapped air bubbles, even some years after recharge. Second, minor groundwater degassing is found to challenge existing excess air model approaches, depending on the amount and the fractionation of excess air. Third, soil air composition data of this study imply a potential bias of noble gas temperatures by up to about 2℃ due to microbial oxygen depletion and a reduced sum value of O2+CO2. This effect causes systematically lower noble gas temperatures in tropical groundwater samples and in shallow mid-latitude groundwater samples after strong recharge during the warm season. However, a general bias of noble gas temperatures in mid-latitudes is probably prevented by a predominant recharge during the cold season, accompanied by nearly atmospheric noble gas mixing ratios in the soil air. Findings of this study provide a remarkable contribution to the reliability of noble gas tracer applications in hydrology, in particular with regard to paleoclimate reconstructions and an understanding of subsurface gas dynamics.

  5. From local hydrological process analysis to regional hydrological model application in Benin: Concept, results and perspectives

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Faß, T.; Giertz, S.; Junge, B.; Diekkrüger, B.; Reichert, B.; Skowronek, A.

    This paper presents the concept, first results and perspectives of the hydrological sub-project of the IMPETUS-Benin project which is part of the GLOWA program funded by the German ministry of education and research. In addition to the research concept, first results on field hydrology, pedology, hydrogeology and hydrological modelling are presented, focusing on the understanding of the actual hydrological processes. For analysing the processes a 30 km 2 catchment acting as a super test site was chosen which is assumed to be representative for the entire catchment of about 15,000 km 2. First results of the field investigations show that infiltration, runoff generation and soil erosion strongly depend on land cover and land use which again influence the soil properties significantly. A conceptual hydrogeological model has been developed summarising the process knowledge on runoff generation and subsurface hydrological processes. This concept model shows a dominance of fast runoff components (surface runoff and interflow), a groundwater recharge along preferential flow paths, temporary interaction between surface and groundwater and separate groundwater systems on different scales (shallow, temporary groundwater on local scale and permanent, deep groundwater on regional scale). The findings of intensive measurement campaigns on soil hydrology, groundwater dynamics and soil erosion have been integrated into different, scale-dependent hydrological modelling concepts applied at different scales in the target region (upper Ouémé catchment in Benin, about 15,000 km 2). The models have been applied and successfully validated. They will be used for integrated scenario analyses in the forthcoming project phase to assess the impacts of global change on the regional water cycle and on typical problem complexes such as food security in West African countries.

  6. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  7. Subsidence of residual soils in a karst terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, E.C.; Kane, W.F.; Ben-Hassine, J.

    1990-06-01

    Siting and operating landfills for solid waste disposal in eastern Tennessee that can operate with minimum impact on groundwater is problematic. The operational requirement of thick, excavational soils and the regulatory requirement of a buffer between disposal units and an aquifer result in siting most operating East Tennessee landfills in outcrop areas of the Knox Group. However, the common occurrence of karst terrain and sinkholes in the Knox Group indicates the vulnerability of such sites to rapid groundwater recharge and flow and the potential for subsidence or collapse of soil into bedrock cavities. To address the potential for subsidence ormore » collapse of soils at the East Chestnut Ridge site on the Department of Energy's (DOE) Oak Ridge Reservation (ORR), the following activities and analyses were completed: The locations of karst features on the site were determined by field reconnaissance; several sinkholes were selected for detailed examination; soil boring, sampling, and physical testing were performed in soils located within, adjacent to, and outside of sinkholes to characterize soil strength at various depths; detailed plane surveys were made for 11 sinkholes to measure accurately their dimension and shape for use in determining profile functions for subsidence basins at the site; The stress-deformation response of a typical soil profile overlying a hypothetical bedrock cavity was analyzed numerically for a range of soil thickness and a range of cavity radii. A consistent estimate of the relationship between subsidence basin dimension, soil thickness, and cavity radius has been derived. 30 refs., 41 figs., 7 tabs.« less

  8. Using Hydrologic Data from Africa in a Senior-Level Course in Groundwater Hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.

    2010-12-01

    Ongoing research efforts in Benin, West Africa, and Uganda, East Africa, have provided substantial data sets involving groundwater quality, applied geophysics, water use, and response of local populations / government agencies to challenges related to water development, protection and management. Ranging from characterization of coastal salt-water encroachment to a major well field to nitrate and microbial contamination of rural water supplies, these data sets were developed by interdisciplinary / international teams that included both undergraduate and graduate students. The present discussion focuses on the integration of the resulting data sets into a senior-level (and lower-level graduate student) course in Groundwater Hydrology. The data sets are employed in multiple ways, including: (i) support of concepts introduced during lectures, (ii) problem sets involving analysis of the data, and (iii) foundation material for open-ended discussions on comparative water resource strategies in developed and developing countries. Most significant in terms of the use of these data sets to advance educational opportunities, the African case studies have been integrated into semester-long projects completed by teams of students as a significant component of their final grade as well as one of their engineering design experiences used to fulfill ABET requirements. During the 2009-2010 academic year, these data sets (as well as published data bases by other agencies) were used by individual groups to design water development strategies for rural villages. During the present semester, two teams of students are pursuing long-term sustainability analyses, the first focused on an aquifer system in northern Indiana (USA) and the second focused on a coastal aquifer system serving Cotonou, Benin. The goal of pursuing these parallel projects is to illustrate to the students the similarities and differences involved in water resource management / protection in different parts of the

  9. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    NASA Astrophysics Data System (ADS)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  10. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    PubMed

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  11. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation

    PubMed Central

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J.; Herbert, Matthew E.; May, Christopher A.; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  12. Uranium plume persistence impacted by hydrologic and geochemical heterogeneity in the groundwater and river water interaction zone of Hanford site

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.

    2015-12-01

    The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.

  13. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2015-08-01

    We study the influence of topography on groundwater fluxes and water table depths across the contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real-world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental-scale, high-resolution (1 km), groundwater-surface water simulation spanning more than 6.3 million km2. Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental-scale groundwater behavior at a high resolution not possible with other techniques. This article was corrected on 11 SEP 2015. See the end of the full text for details.

  14. Hydrologic data and groundwater flow simulations in the vicinity of Long Lake, Indiana Dunes National Lakeshore, near Gary, Indiana

    USGS Publications Warehouse

    Lampe, David C.; Bayless, E. Randall

    2013-01-01

    The U.S. Geological Survey (USGS) collected data and simulated groundwater flow to increase understanding of the hydrology and the effects of drainage alterations to the water table in the vicinity of Long Lake, near Gary, Indiana. East Long Lake and West Long Lake (collectively known as Long Lake) make up one of the largest interdunal lakes within the Indiana Dunes National Lakeshore. The National Park Service is tasked with preservation and restoration of wetlands in the Indiana Dunes National Lakeshore along the southern shoreline of Lake Michigan. Urban development and engineering have modified drainage and caused changes in the distribution of open water, streams and ditches, and groundwater abundance and flow paths. A better understanding of the effects these modifications have on the hydrologic system in the area will help the National Park Service, the Gary Sanitary District (GSD), and local stakeholders manage and protect the resources within the study area.This study used hydrologic data and steady-state groundwater simulations to estimate directions of groundwater flow and the effects of various engineering controls and climatic conditions on the hydrology near Long Lake. Periods of relatively high and low groundwater levels were examined and simulated by using MODFLOW and companion software. Simulated hydrologic modifications examined the effects of (1) removing the beaver dams in US-12 ditch, (2) discontinuing seepage of water from the filtration pond east of East Long Lake, (3) discontinuing discharge from US-12 ditch to the GSD sewer system, (4) decreasing discharge from US-12 ditch to the GSD sewer system, (5) connecting East Long Lake and West Long Lake, (6) deepening County Line Road ditch, and (7) raising and lowering the water level of Lake Michigan.Results from collected hydrologic data indicate that East Long Lake functioned as an area of groundwater recharge during October 2002 and a “flow-through” lake during March 2011, with the

  15. Groundwater vulnerability mapping of Qatar aquifers

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  16. Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine

    NASA Astrophysics Data System (ADS)

    Jebreen, Hassan; Wohnlich, Stefan; Wisotzky, Frank; Banning, Andre; Niedermayr, Andrea; Ghanem, Marwan

    2018-03-01

    Knowledge of groundwater recharge constitutes a valuable tool for sustainable management in karst systems. In this respect, a quantitative evaluation of groundwater recharge can be considered a pre-requisite for the optimal operation of groundwater resources systems, particular for semi-arid areas. This paper demonstrates the processes affecting recharge in Palestine aquifers. The Central Western Catchment is one of the main water supply sources in the West Bank. Quantification of potential recharge rates are estimated using chloride mass balance (CMB) and empirical recharge equations over the catchment. The results showing the spatialized recharge rate, which ranges from 111-216 mm/year, representing 19-37% of the long-term mean annual rainfall. Using Water Balance models and climatological data (e. g. solar radiation, monthly temperature, average monthly relative humidity and precipitation), actual evapotranspiration (AET) is estimated. The mean annual actual evapotranspiration was about 66-70% of precipitation.

  17. Use of aerial photos and field reconnaissance to predict groundwater flow of a karst area in the Inner Bluegrass Region of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gremos, K.; Sendlein, L.V.A.

    1993-03-01

    Significant areas of the continental US (Kentucky included) are underlain by karstified limestone. In many of these areas agriculture is a leading business and a potential non-point source of pollution to the groundwater. A study is underway to assess the Best Management Practices (BMP) on a farm in north-central Woodford County in Kentucky. As part of the study, various computer-based decision models for integrated farm operation will be assessed. Because surface area and run off are integral parts of all of these models, diversion of surface run off through karst features such as sinkholes will modify predictions from these models.more » This study utilizes areal photographs to identify all sinkholes on the property and characterize their morphometric parameters such as length, width, depth, and area and distribution. Sink hole areas represent approximately 10 percent of the area and all but a few discharge within the basin monitored as part of the model. The bedrock geology and fractures of the area have been defined using fracture trace analysis and a rectified drainage linear analysis. Surface drainage patterns, spring distribution, and stream and spring discharge data have been collected. Dye tracing has identified groundwater basins whose catchment area is outside the boundaries of the study site.« less

  18. The development of deep karst in the anticlinal aquifer structure based on the coupling of multistage flow systems

    NASA Astrophysics Data System (ADS)

    Xu, M.; Zhong, L.; Yang, Y.

    2017-12-01

    Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.

  19. Determination of the recharge area and salinization degree of karst springs in the Lamas Basin (Turkey).

    PubMed

    Yüce, Galip

    2005-12-01

    The Lamas Basin is an area covering approximately 4,400 km(2) situated on the eastern Mediterranean coast of Turkey covered with highly karstified limestone and dolomitic limestone from the Miocene and Mesozoic age, respectively. Owing to the area's low karstification basement, groundwater in the karst aquifer circulates deep from the surface towards the springs along the coast as well as to the submarine springs. This study aims working out the salinization level and recharge characteristics of the Lamas Basin using environmental isotopes techniques. In the study, the data collected previously to discover, in general terms, the groundwater characteristics within the area are reanalyzed to fulfil the purpose of the study. In conclusion, it is found that the down gradient karst springs discharging along the Mediterranean coast mostly contain groundwater contributions from higher altitudes with depleted delta(18)O and delta(2)H compositions. The delta(18)O-altitude effect was determined as approximately-0.12 per thousand/100 m which may indicate sea-spray intrusion towards inland. As a result, the salinization level of coastal springs changes ranging between 1.2 % and 17.0 %. Owing to the seawater encroachment, Ca-HCO(3) water type changes to Na-HCO(3) or Na-Cl water by the cation exchange during the dry period. As the unique freshwater potential extends along the coastal area, the groundwater production should be exploited in a way that seawater encroachment is kept at minimum.

  20. An Investigation into Groundwater Recharge Dynamics and Hydrologic Connectivity in an Alpine/Subalpine Mountainous Headwater Catchment, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dailey, K. R.; Hughes, H.; Williams, M. W.

    2015-12-01

    Geochemical surface and groundwater data were used to examine groundwater recharge dynamics and hydrologic connectivity in the dominantly subalpine Como Creek headwater catchment within the Boulder Creek Watershed in the Colorado Front Range. Streamwater chemistry along an elevational gradient of Como Creek showed strong responses to variations in precipitation inputs spanning 2011-2014. Elevation effects on δ18O were apparent, with more depleted values indicative of snowmelt influence observed at the higher elevation sites. Results from one-way ANOVA indicated that the highest elevation stream site, situated right below treeline, was significantly different from the lower three sites with regards to DOC, δ18O, and Ca2+ (p < 0.05) over May-October 2011-2014. Additionally, the second highest site in elevation was found to be significantly different from all other sites with respect to Ca2+ concentrations. Soil moisture sensor and geochemical data from soil tension lysimeters co-located with subalpine groundwater wells revealed a disconnect between soil and surface water chemistry during snowmelt and that of deeper, underlying groundwater. The initial results of this study provide insight on where groundwater recharge and discharge may be occurring in the catchment and help us to evaluate the large September 2013 rain event in the Colorado Front Range, a once in a 1000 year event. Water isotopes were enriched, Ca2+ decreased, and DOC was enriched, showing that new event water had flowed through near-surface soils but not deeper, recharging groundwater, with all values returning to normal within six months. The event was also observable compared to a long-term geochemical and stream stage record at the stream site near the catchment outlet, with the most enriched δ18O value on record of -13.41‰ corresponding to the flood. Remaining questions concerning groundwater dynamics in the catchment include constraining the tradeoffs between forest ET, groundwater recharge

  1. Groundwater seepage controls salinity in a hydrologically terminal basin of semi-arid northwest Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline F.

    2016-11-01

    Very small groundwater outflows have the potential to significantly impact the hydrochemistry and salt accumulation processes of notionally terminal basins in arid environments. However, this limited groundwater outflow can be very difficult to quantify using classical water budget calculations due to large uncertainties in estimates of evaporation and evapotranspiration rates from the surface of dry lake beds. In this study, we used a dimensionless time evaporation model to estimate the range of groundwater outflow required to maintain salinity levels observed at the Fortescue Marsh (FM), one of the largest wetlands of semi-arid northwest Australia (∼1100 km2). The groundwater outflow from aquifers underlying the FM to the Lower Fortescue catchment is constrained by an extremely low hydraulic gradient of <0.0001 and a small 'alluvial outlet' of 0.35 km2 because of relatively high bedrock elevation. However, FM groundwater salinity is far below saturation with respect to halite (TDS < 160 g/L), episodic flood water is fresh to brackish, and salt efflorescences are very sparse and evident only when the FM is dry. We show that if the FM was 100% "leakage free" i.e., a true terminal basin, groundwater would have achieved halite saturation (>300 g/L) after ∼45 ka. We calculated that only a very small seepage of ∼2G L/yr (∼0.03% of the FM water volume) is sufficient to maintain current salinity conditions. The minimum time required to develop the current hydrochemical groundwater composition under the FM ranges from ∼60 to ∼165 ka. We conclude that a dimensionless time evaporation model versus inflow over outflow ratio model is likely more suitable than classical water budget calculations for determining outflow from large saline lakes and to estimate groundwater seepage from hydrologically terminal basins.

  2. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  3. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  4. Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.

    2006-01-01

    Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three ideal high-frequency cycles as: (1) upward-shallowing subtidal cycles, (2) upward-shallowing paralic cycles, and (3) aggradational subtidal cycles. Digital optical borehole images, tracers, and flow meters indicate that there is a predictable vertical pattern of porosity and permeability within the three ideal cycles, because the distribution of porosity and permeability is related to lithofacies. Stratiform zones of high permeability commonly occur just above flooding surfaces in the lower part of upward-shallowing subtidal and paralic cycles, forming preferential groundwater flow zones. Aggradational subtidal cycles are either mostly high-permeability zones or leaky, low-permeability units. In the study area, groundwater flow within stratiform high-permeability zones is through a secondary pore system of touching-vug porosity principally related to molds of burrows and pelecypods and to interburrow vugs. Movement of a dye-tracer pulse observed using a borehole fluid-temperature tool during a conservative tracer test indicates heterogeneous permeability. Advective movement of the tracer appears to be most concentrated within a thin stratiform flow zone contained within the lower part of a high-frequency cycle, indicating a distinctly high relative permeability for this zone. Borehole flow-meter measurements corroborate the relatively high permeability of the flow zone. Identification and mapping of such high-permeability flow zones is crucial to conceptualization of karst groundwater flow within a cyclostratigraphic framework. Many karst aquifers are included in cyclic

  5. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform "super-K" zones

    USGS Publications Warehouse

    Cunningham, K.J.; Sukop, M.C.; Huang, H.; Alvarez, P.F.; Curran, H.A.; Renken, R.A.; Dixon, J.F.

    2009-01-01

    A combination of cyclostratigraphic, ichnologic, and borehole geophysical analyses of continuous core holes; tracer-test analyses; and lattice Boltzmann flow simulations was used to quantify biogenic macroporosity and permeability of the Biscayne aquifer, southeastern Florida. Biogenic macroporosity largely manifests as: (1) ichnogenic macroporosity primarily related to postdepositional burrowing activity by callianassid shrimp and fossilization of components of their complex burrow systems (Ophiomorpha); and (2) biomoldic macroporosity originating from dissolution of fossil hard parts, principally mollusk shells. Ophiomorpha-dominated ichno-fabric provides the greatest contribution to hydrologic characteristics in the Biscayne aquifer in a 345 km2 study area. Stratiform tabular-shaped units of thalassinidean-associated macroporosity are commonly confined to the lower part of upward-shallowing high-frequency cycles, throughout aggradational cycles, and, in one case, they stack vertically within the lower part of a high-frequency cycle set. Broad continuity of many of the macroporous units concentrates groundwater flow in extremely permeable passage-ways, thus making the aquifer vulnerable to long-distance transport of contaminants. Ichnogenic macroporosity represents an alternative pathway for concentrated groundwater flow that differs considerably from standard karst flow-system paradigms, which describe groundwater movement through fractures and cavernous dissolution features. Permeabilities were calculated using lattice Boltzmann methods (LBMs) applied to computer renderings assembled from X-ray computed tomography scans of various biogenic macroporous limestone samples. The highest simulated LBM permeabilities were about five orders of magnitude greater than standard laboratory measurements using air-permeability methods, which are limited in their application to extremely permeable macroporous rock samples. Based on their close conformance to analytical

  6. U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017

    USGS Publications Warehouse

    Kuniansky, Eve L.; Spangler, Lawrence E.

    2017-05-15

    Introduction and AcknowledgmentsKarst aquifer systems are present throughout parts of the United States and some of its territories, and have developed in carbonate rocks (primarily limestone and dolomite) and evaporites (gypsum, anhydrite, and halite) that span an interval of time encompassing more than 550 million years. The depositional environments, diagenetic processes, post-depositional tectonic events, and geochemical weathering processes that form karst aquifers are varied and complex. These factors involve biological, chemical, and physical changes that when combined with the diverse climatic regimes in which karst development has taken place, result in the unique dual- or triple-porosity nature of karst aquifers. These complex hydrogeologic systems typically represent challenging and unique conditions to scientists attempting to study groundwater flow and contaminant transport in these terrains.The dissolution of carbonate rocks and the subsequent development of distinct and beautiful landscapes, caverns, and springs have resulted in the most exceptional karst areas being designated as national or state parks. Tens of thousands of similar areas in the United States have been developed into commercial caverns and known privately owned caves. Both public and private properties provide access for scientists to study the flow of groundwater in situ. Likewise, the range and complexity of landforms and groundwater flow systems associated with karst terrains are enormous, perhaps more than for any other aquifer type. Karst aquifers and landscapes that form in tropical areas, such as the cockpit karst along the north coast of Puerto Rico, differ greatly from karst landforms in more arid climates, such as the Edwards Plateau in west-central Texas or the Guadalupe Mountains near Carlsbad, New Mexico, where hypogenic processes have played a major role in speleogenesis. Many of these public and private lands also contain unique flora and fauna associated with these

  7. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE PAGES

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...

    2018-05-18

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and

  8. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and

  9. Geologic context of large karst springs and caves in the Ozark National Scenic Riverways, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.

    2016-01-01

    The ONSR is a karst park, containing many springs and caves. The “jewels” of the park are large springs, several of first magnitude, that contribute significantly to the flow and water quality of the Current River and its tributaries. Completion of 1:24,000-scale geologic mapping of the park and surrounding river basin, along with synthesis of published hydrologic data, allows us to examine the spatial relationships between the springs and the geologic framework to develop a conceptual model for genesis of these springs. Based on their similarity to mapped spring conduits, many of the caves in the ONSR are fossil conduit segments. Therefore, geologic control on the evolution of the springs also applies to speleogenesis in this part of the southern Missouri Ozarks.Large springs occur in the ONSR area because: (1) the Ozark aquifer, from which they rise, is chiefly dolomite affected by solution via various processes over a long time period, (2) Paleozoic hypogenic fluid migration through these rocks exploited and enhanced flow-paths, (3) a consistent and low regional dip of the rocks off of the Salem Plateau (less than 2° to the southeast) allows integration of flow into large groundwater basins with a few discreet outlets, (4) the springs are located where the rivers have cut down into structural highs, allowing access to water from stratigraphic units deeper in the aquifer thus allowing development of springsheds that have volumetrically larger storage than smaller springs higher in the section, and (5) quartz sandstone and bedded chert in the carbonate stratigraphic succession that are locally to regionally continuous, serve as aquitards that locally confine groundwater up dip of the springs creating artesian conditions. This subhorizontal partitioning of the Ozark aquifer allows contributing areas for different springs to overlap, as evidenced by dye traces that cross adjacent groundwater basin boundaries, and possibly contributes to alternate flow routes

  10. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  11. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model

    PubMed Central

    Wang, Jianhua; Lu, Chuiyu; Sun, Qingyan; Xiao, Weihua; Cao, Guoliang; Li, Hui; Yan, Lingjia; Zhang, Bo

    2017-01-01

    Large-scale ground subsidence caused by coal mining and subsequent water-filling leads to serious environmental problems and economic losses, especially in plains with a high phreatic water level. Clarifying the hydrologic cycle in subsidence areas has important practical value for environmental remediation, and provides a scientific basis for water resource development and utilisation of the subsidence areas. Here we present a simulation approach to describe interactions between subsidence area water (SW) and several hydrologic factors from the River-Subsidence-Groundwater Model (RSGM), which is developed based on the distributed hydrologic model. Analysis of water balance shows that the recharge of SW from groundwater only accounts for a small fraction of the total water source, due to weak groundwater flow in the plain. The interaction between SW and groundwater has an obvious annual cycle. The SW basically performs as a net source of groundwater in the wet season, and a net sink for groundwater in the dry season. The results show there is an average 905.34 million m3 per year of water available through the Huainan coal mining subsidence areas (HCMSs). If these subsidence areas can be integrated into water resource planning, the increasingly precarious water supply infrastructure will be strengthened. PMID:28106048

  12. The use of karst geomorphology for planning, hazard avoidance and development in Great Britain

    NASA Astrophysics Data System (ADS)

    Cooper, Anthony H.; Farrant, Andrew R.; Price, Simon J.

    2011-11-01

    Within Great Britain five main types of karstic rocks - dolomite, limestone, chalk, gypsum and salt - are present. Each presents a different type and severity of karstic geohazard which are related to the rock solubility and geological setting. Typical karstic features associated with these rocks have been databased by the British Geological Survey (BGS) with records of sinkholes, cave entrances, stream sinks, resurgences and building damage; data for more than half of the country has been gathered. BGS has manipulated digital map data, for bedrock and superficial deposits, with digital elevation slope models, superficial deposit thickness models, the karst data and expertly interpreted areas, to generate a derived dataset assessing the likelihood of subsidence due to karst collapse. This dataset is informed and verified by the karst database and marketed as part of the BGS GeoSure suite. It is currently used by environmental regulators, the insurance and construction industries, and the BGS semi-automated enquiry system. The database and derived datasets can be further combined and manipulated using GIS to provide other datasets that deal with specific problems. Sustainable drainage systems, some of which use soak-aways into the ground, are being encouraged in Great Britain, but in karst areas they can cause ground stability problems. Similarly, open loop ground source heat or cooling pump systems may induce subsidence if installed in certain types of karstic environments such as in chalk with overlying sand deposits. Groundwater abstraction also has the potential to trigger subsidence in karst areas. GIS manipulation of the karst information is allowing Great Britain to be zoned into areas suitable, or unsuitable, for such uses; it has the potential to become part of a suite of planning management tools for local and National Government to assess the long term sustainable use of the ground.

  13. Agriculturally induced environmental changes in the Burren Karst, Western Ireland

    NASA Astrophysics Data System (ADS)

    Drew, D.

    1996-10-01

    The Burren plateau of County Clare is a classic example of a plateau karst characterised by patchy, thin soils, a lack of defined surface drainage, and in the instance of the Burren, a rich floristic, archaeological and landscape heritage. Since accession to the European Union and, in particular, as a result of Common Agricultural Policy initiatives, attempts have been made to raise farm incomes and to modernise agriculture in areas such as the Burren. Due to the encouragement of land reclamation and silage production has largely replaced hay farming for winter fodder. These changes pose a threat to groundwater quality by enhancing the leaching of artificial fertilizers or of organic pollutants. The Burren is highly vulnerable to water pollution from silage effluent because of its thin or absent soils and its highly karstified aquifers. A full survey of silage clamps was made in the summers of 1991 and 1992. For each site data were collected to derive the following: mass of silage, effluent produced, hazard rating of site to groundwater, likely discharge of effluent to groundwater and groundwater dilution index. About 60% of clamps were considered to be high risk and 23% medium risk. About 92% of all sites probably allow some effluent to infiltrate groundwater.

  14. Thermographic Data Analyses for Karst Watersheds

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; McCaleb, Rebecca C. (Technical Monitor)

    2001-01-01

    Aerial thermography is an emerging technology unsurpassed for locating groundwater discharges. Thermography can be used to locate submerged discharges that are extremely difficult to find by other means. In two large projects, thermography was used to identify almost every significant spring at sites underlain by karst aquifers. This technology effectively converts Brown's Type 5 topology to types 1 or 2 (all discharges known), which has a significant impact on dye tracing. At a north Alabama site, springs located by thermography quadrupled the known groundwater discharge in and around the site. For submerged discharges, thermographic temperatures can be measured down the center of the groundwater plume that rises to the surface in the winter. Using the Cornell Mixing (CORMIX) model, flow rate for one submerged spring was estimated. Once identified, estimates of spring recharge area were desired. The size of the area of recharge was estimated by hydrograph separation of flow data from nearby, unregulated surface streams. Monthly recharge estimates were also made and used to show that in north Alabama the mean annual recharge/discharge occurs during May and December. Spring flow measurements for the same county of north Alabama were averaged to obtain mean flows. Then measurements for May only, were averaged. The two averages usually agreed to within 20 percent. This provides evidence that hydrograph separation determinations of recharge are valid.

  15. Subnetworks of percolation backbones to model karst systems around Tulum, Mexico

    NASA Astrophysics Data System (ADS)

    Hendrick, Martin; Renard, Philippe

    2016-11-01

    Karstic caves, which play a key role in groundwater transport, are often organized as complex connected networks resulting from the dissolution of carbonate rocks. In this work, we propose a new model to describe and study the structures of the two largest submersed karst networks in the world. Both of these networks are located in the area of Tulum (Quintana Roo, Mexico). In a previous work te{hendrick2016fractal} we showed that these networks behave as self-similar structures exhibiting well-defined scaling behaviours. In this paper, we suggest that these networks can be modeled using substructures of percolation clusters (θ-subnetworks) having similar structural behaviour (in terms of fractal dimension and conductivity exponent) to those observed in Tulum's karst networks. We show in addition that these θ-subnetworks correspond to structures that minimise a global function, where this global function includes energy dissipation by the viscous forces when water flows through the network, and the cost of network formation itself.

  16. Coupled Thermo-Hydro-Chemical (THC) Modeling of Hypogene Karst Evolution in a Prototype Mountain Hydrologic System

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A.; Rajaram, H.; Viswanathan, H. S.; Zyvoloski, G.

    2011-12-01

    Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths

  17. Stochastic modeling of wetland-groundwater systems

    NASA Astrophysics Data System (ADS)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  18. U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2011-01-01

    This fifth workshop is a joint workshop of the USGS Karst Interest Group and University of Arkansas HydroDays workshop, sponsored by the USGS, the Department of Geosciences at the University of Arkansas in Fayetteville. Additional sponsors are: the National Cave and Karst Research Institute, the Edwards Aquifer Authority, San Antonio, Texas, and Beaver Water District, northwest Arkansas. The majority of funding for the proceedings preparation and workshop was provided by the USGS Groundwater Resources Program, National Cooperative Mapping Program, and the Regional Executives of the Northeast, Southeast, Midwest, South Central and Rocky Mountain Areas. The University of Arkansas provided the rooms and facilities for the technical and poster presentations of the workshop, vans for the field trips, and sponsored the HydroDays banquet at the Savoy Experimental Watershed on Wednesday after the technical sessions.

  19. Use of dye tracing to determine ground-water movement to Mammoth Crystal Springs, Sylvan Pass area, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Spangler, Lawrence E.; Susong, David D.

    2006-01-01

    At the request of and in cooperation with the Geology Program at Yellowstone National Park, the U.S. Geological Survey conducted a hydrologic investigation of the Sylvan Pass area in June 2005 to determine the relation between surface water and ground-water flow to Mammoth Crystal Springs. Results of a dye-tracing investigation indicate that streamflow lost into talus deposits on Sylvan Pass enters the ground-water system and moves to the southeast to discharge at Mammoth Crystal Springs. Ground-water travel times to the springs from a distance of 1.45 miles and a vertical relief of 500 feet were less than 1 day, indicating apparent rates of movement of at least 8,000 feet per day, values that are similar to those in karst aquifers. Peak dye concentrations were reached about 2 days after dye injection, and transit time of most of the dye mass through the system was about 3 weeks. High permeability and rapid travel times within this aquifer also are indicated by the large variation in springflow in response to snowmelt runoff and precipitation, and by the high concentration of suspended sediment (turbidity) in the water discharging into the spring-fed lake.

  20. A hydrological-economic model for sustainable groundwater use in sparse-data drylands: Application to the Amtoudi Oasis in southern Morocco, northern Sahara.

    PubMed

    Alcalá, Francisco J; Martínez-Valderrama, Jaime; Robles-Marín, Pedro; Guerrera, Francesco; Martín-Martín, Manuel; Raffaelli, Giuliana; de León, Julián Tejera; Asebriy, Lahcen

    2015-12-15

    A hydrological-economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus 'pumping': (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009-2010 and the average 2010-2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI+PU (G<0) in the average year 2010-2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI+PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency. Copyright

  1. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece.

    PubMed

    Kazakis, N; Kantiranis, N; Kalaitzidou, K; Kaprara, E; Mitrakas, M; Frei, R; Vargemezis, G; Tsourlos, P; Zouboulis, A; Filippidis, A

    2017-09-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest was paid to this particular study area due to the co-existence here of two important factors both expected to contribute to Cr(VI) presence and groundwater pollution; namely the area's exposed ophiolitic rocks and its substantial fly ash deposits originating from the local lignite burning power plant. Accordingly, detailed geochemical, mineralogical, hydro-chemical, geophysical and hydrogeological studies were performed on the rocks, soils, sediments and water resources of this basin. Cr(VI) concentrations varied in the different aquifers, with the highest concentration (up to 120μgL -1 ) recorded in the groundwater of the unconfined porous aquifer situated near the temporary fly ash disposal site. Recharge of the porous aquifer is related mainly to precipitation infiltration and occasional surface run-off. Nevertheless, a hydraulic connection between the porous and neighboring karst aquifers could not be delineated. Therefore, the presence of Cr(VI) in the groundwater of this area is thought to originate from both the ophiolitic rock weathering products in the soils, and the local leaching of Cr(VI) from the diffused fly ash located in the area surrounding the lignite power plant. This conclusion was corroborated by factor analysis, and the strongly positively fractionated Cr isotopes (δ 53 Cr up to 0.83‰) recorded in groundwater, an ash leachate, and the bulk fly ash. An anthropogenic source of Cr(VI) that possibly influences groundwater quality is especially apparent in the eastern part of the Sarigkiol basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs.

    PubMed

    Eller, Kirstin T; Katz, Brian G

    2017-07-01

    Nitrogen (N) from anthropogenic sources has contaminated groundwater used as drinking water in addition to impairing water quality and ecosystem health of karst springs. The Nitrogen Source Inventory and Loading Tool (NSILT) was developed as an ArcGIS and spreadsheet-based approach that provides spatial estimates of current nitrogen (N) inputs to the land surface and loads to groundwater from nonpoint and point sources within the groundwater contributing area. The NSILT involves a three-step approach where local and regional land use practices and N sources are evaluated to: (1) estimate N input to the land surface, (2) quantify subsurface environmental attenuation, and (3) assess regional recharge to the aquifer. NSILT was used to assess nitrogen loading to groundwater in two karst spring areas in west-central Florida: Rainbow Springs (RS) and Kings Bay (KB). The karstic Upper Floridan aquifer (UFA) is the source of water discharging to the springs in both areas. In the KB study area (predominantly urban land use), septic systems and urban fertilizers contribute 48% and 22%, respectively, of the estimated total annual N load to groundwater 294,400 kg-N/yr. In contrast for the RS study area (predominantly agricultural land use), livestock operations and crop fertilizers contribute 50% and 13%, respectively, of the estimated N load to groundwater. Using overall groundwater N loading rates for the KB and RS study areas, 4.4 and 3.3 kg N/ha, respectively, and spatial recharge rates, the calculated groundwater nitrate-N concentration (2.1 mg/L) agreed closely with the median nitrate-N concentration (1.7 mg/L) from groundwater samples in agricultural land use areas in the RS study area for the period 2010-2014. NSILT results provide critical information for prioritizing and designing restoration efforts for water-quality impaired springs and spring runs affected by multiple sources of nitrogen loading to groundwater. The calculated groundwater N concentration for

  3. Spring distribution in Winona County, Minnesota, USA and the relationship with geologic strata in a karst landscape

    USGS Publications Warehouse

    Vondracek, Bruce C.; Williams, Mary A.

    2010-01-01

    Karst aquifers are important groundwater resources, but are vulnerable to contamination due to relatively rapid subsurface transport. Springs, points where the landscape and water table intersect and cold groundwater discharges, link aquifer systems with land surfaces and water bodies. As such, in many regions, they are critical to the viability of lakes, streams and cold-water fish communities. An understanding of where springs are located is important to watershed, fishery and environmental management efforts in karst regions. To better understand spatial distribution of springs and as a potential method for identifying variables that characterize locations of springs for improved land and watershed management, a nearest-neighbor analysis and a discriminant function analysis (DFA) of springs were conducted in Winona County, Minnesota, USA, a karst landscape. Nearest-neighbor analysis examined the spatial spring distribution. Twenty-two variables describing the locations of springs were analyzed to ascertain their ability to discriminate correct aquifer unit or bedrock unit classification for each spring. Springs were clumped with the highest densities in the lowest elevations. Springs were correctly assigned to aquifer units and bedrock units with eight and 11 landscape variables, respectively. Forest land cover was the only land cover type contributing to spring discrimination. Consideration of upland human activities, particularly in forested areas, on spring discharge along with a better understanding of characteristics describing spring locations could lead to better management activities that locate and protect springs and their important contributions to regional ecohydrology.

  4. Analysis of water control in an underground mine under strong karst media influence (Vazante mine, Brazil)

    NASA Astrophysics Data System (ADS)

    Ninanya, Hugo; Guiguer, Nilson; Vargas, Eurípedes A.; Nascimento, Gustavo; Araujo, Edmar; Cazarin, Caroline L.

    2018-05-01

    This work presents analysis of groundwater flow conditions and groundwater control measures for Vazante underground mine located in the state of Minas Gerais, Brazil. According to field observations, groundwater flow processes in this mine are highly influenced by the presence of karst features located in the near-surface terrain next to Santa Catarina River. The karstic features, such as caves, sinkholes, dolines and conduits, have direct contact with the aquifer and tend to increase water flow into the mine. These effects are more acute in areas under the influence of groundwater-level drawdown by pumping. Numerical analyses of this condition were carried out using the computer program FEFLOW. This program represents karstic features as one-dimensional discrete flow conduits inside a three-dimensional finite element structure representing the geologic medium following a combined discrete-continuum approach for representing the karst system. These features create preferential flow paths between the river and mine; their incorporation into the model is able to more realistically represent the hydrogeological environment of the mine surroundings. In order to mitigate the water-inflow problems, impermeabilization of the river through construction of a reinforced concrete channel was incorporated in the developed hydrogeological model. Different scenarios for channelization lengths for the most critical zones along the river were studied. Obtained results were able to compare effectiveness of different river channelization scenarios. It was also possible to determine whether the use of these impermeabilization measures would be able to reduce, in large part, the elevated costs of pumping inside the mine.

  5. Correlation of Spatio-Temporal Contaminant Distribution, Land Use, and Hydrogeological Factors in the Karst Aquifers of Northern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Padilla, I. Y.

    2015-12-01

    Karst aquifers are characterized by caves, springs, and sinkholes, and typified by interconnected fissures, fractures and conduits. These characteristics make these aquifers highly productive, and vulnerable to contamination. Previous studies in the northern karst aquifers of Puerto Rico have shown significant distribution of contaminants, including volatile organic compounds, phthalates and other contaminants of emerging concern, beyond demarked sources of contamination. This study develops spatial-temporal distributions of phthalate contaminants in the karst system of northern Puerto Rico and assesses statistical correlations between hydrogeologic factors and groundwater contamination with phthalates. Geographic Information Systems (GIS) tools and technologies, and statistical models are applied to attain these objectives. Results show that there is an extensive contamination with phthalates that varies with time. Contamination is present in the confined and shallow aquifers. Di-(2-ethylhexyl) phthalate (DEHP) is the most detected contaminant (20.6% of the sites). Diethyl phthalate and and dibutyl phthalate are also detected in 6.7% and 8.24% of the sites, respectively. Phthalates detected as mixtures components are significantly detected in areas of high urban and industrial development. They are also detected in areas within 5 miles of superfund sites and landfills. The results indicate that phthalate contamination is highly related to land use. Statistical models show that the hydraulic conductivity of the aquifers, sinkholes density, and time are significantly related to the presence of phthalates in groundwater. The extensive spatio-temporal contamination suggests that contaminants can persist in the environment for long periods of time, and that land use and hydrogeological factors are important factors contributing to the presence of emerging contaminants in karst systems.

  6. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions

    NASA Astrophysics Data System (ADS)

    Kurtzman, Daniel; Shapira, Roi H.; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr- 1 and 50-220 kg ha- 1 yr- 1, respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L- 1. Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  7. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems

    USGS Publications Warehouse

    Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.

    1995-01-01

    The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.

  8. Using Coupled Groundwater-Surface Water Models to Simulate Eco-Regional Differences in Climate Change Impacts on Hydrological Drought Regimes in British Columbia

    NASA Astrophysics Data System (ADS)

    Dierauer, J. R.; Allen, D. M.

    2016-12-01

    Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.

  9. Multi-scale hydrogeological and hydrogeophysical approach to monitor vadose zone hydrodynamics of a karst system

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Poulain, Amaël; Van Camp, Michel; Francis, Olivier; Triantafyllou, Antoine; Rochez, Gaëtan; Hallet, Vincent; Kaufmann, Olivier

    2016-04-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of weather conditions, reduced evapotranspiration and the vertical gradients of porosity and permeability. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside. We present a multi-scale study covering two years of hydrogeological and geophysical monitoring of the Lomme Karst System (LKS) located in the Variscan fold-and-thrust belt (Belgium), a region (~ 3000 ha) that shows many karstic networks within Devonian limestone units. Hydrogeological data cover the whole LKS and involve e.g. flows and levels monitoring or tracer tests performed in both vadose and saturated zones. Such data bring valuable information on the hydrological context of the studied area at the catchment scale. Combining those results with geophysical measurements allows validating and imaging them at a smaller scale, with more integrative techniques. Hydrogeophysical measurements are focused on only one cave system of the LKS, at the Rochefort site (~ 40 ha), taking benefit of the Rochefort Cave Laboratory (RCL) infrastructures. In this study, a microgravimetric monitoring and an Electrical Resistivity Tomography (ERT) monitoring are involved. The microgravimetric monitoring consists in a superconducting gravimeter continuously measuring gravity changes at the surface of the RCL and an additional relative gravimeter installed in the underlying cave located 35 meters below the surface. While gravimeters are sensible to changes that occur in both the vadose zone and the saturated zone of the whole cave system, combining their recorded signals allows enhancing vadose zone's gravity changes. Finally, the surface ERT monitoring provide valuable information at the (sub)-meter scale on the

  10. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trendsmore » for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.« less

  11. Proposed work plan for the study of hydrologic effects of ground-water development in the Wet Mountain Valley, Colorado

    USGS Publications Warehouse

    Robson, S.G.

    1985-01-01

    Large-scale development of groundwater resources in the Wet Mountain Valley, Colorado, could adversely affect other water rights in the valley or in the Arkansas River Basin. Such infringement on senior water rights could severely limit development of additional water supplies in the valley. A work plan is presented for a study that is intended to define the hydrologic system in the valley better, and to determine the extent that the quantity and chemical quality of both surface and groundwater in the valley might be affected by proposed development. (USGS)

  12. Reply to Discussion by Zekai Șen on "Modeling karst spring hydrograph recession based on head drop at sinkholes"

    NASA Astrophysics Data System (ADS)

    Field, Malcolm S.; Goldscheider, Nico; Li, Guangquan

    2018-02-01

    We are pleased to learn that the model presented in our paper dealing with the "modeling karst spring hydrograph recession based on head drop at sinkholes," published in the Journal of Hydrology in 2016 (Li et al., 2016), is of interest to readers of this journal. Our study presented a new non-exponential model for assessing spring hydrographs in terms of head drop at flooded sinkholes, as an extension of an earlier model proposed by Li and Field (2014). In both papers, we used two spring hydrographs measured in the St. Marks Karst Watershed in northwest Florida to test the applicability and to verify the validity of our models.

  13. [Nitrate storage and transport within a typical karst aquifer system in the paralleled ridge-valley of east Sichuan].

    PubMed

    Yang, Ping-Heng; Yuan, Dao-Xian; Ren, You-Rong; Xie, Shi-You; He, Qiu-Fang; Hu, Xiao-Feng

    2012-09-01

    In order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors. Nitrate was derived from land surface and infiltrated together with soil water, which was mainly stored in fissure, pore and solution crack of karst unsaturated zone, whereas soluble iron, manganese and aluminum were derived from soil erosion and directly recharged the underground river through sinkholes and shafts. Nitrate transport in the karst aquifer system could be ideally divided into three phases, including input storage, fast output and re-inputting storage. Under similar external conditions, the karstification intensity of vadose zone was the key factor to determine the dynamics of nitrate concentrations in the groundwater during storm events. Nitrate stored in the karst vadose zone was easily released, which would impair the aquatic ecosystem and pose seriously threats to the local health. Thus, to strengthen the management of ecological system, changing the land-use patterns and scientifically applying fertilizer could effectively make a contribution to controlling mass nutrient input from the surface.

  14. Analysis of the Control Factors of Groundwater Petroleum Hydrocarbons Contamination in a City’s West Part

    NASA Astrophysics Data System (ADS)

    Sun, L. H.; Ma, Z. M.; Liu, Z. W.

    2018-05-01

    Based on study of the hydrogeological condition and the characteristics of petroleum hydrocarbons pollution in karst groundwater, an oil refinery located in western part of a certain city is chosen as the study site to have an analysis on the control factors of groundwater petroleum hydrocarbons contamination. The study result shows that the control factors of groundwater petroleum hydrocarbons contamination are hydrogeological condition and biodegradation. The soil layer of Quaternary is very thin, the limestone is exposed in the surface, which makes the petroleum hydrocarbons easy to permeate into the water bearing layer. Karst-fractured zone in aquifer determines the migration way of petroleum hydrocarbons to be convection, but the magmatic rock in northern part has certain blocking effect on the migration of petroleum hydrocarbons. Biodegradation makes both the contamination plume area of petroleum hydrocarbons and the content of petroleum hydrocarbons decreased.

  15. Georgius Agricola's contributions to hydrology

    NASA Astrophysics Data System (ADS)

    Barton, Isabel F.

    2015-04-01

    Georgius Agricola's 1546 book De Ortu et Causis Subterraneorum (On the Source and Causes of What is Underground) was the first European work since antiquity to focus on hydrology and helped to shape the thought of Nicolaus Steno, Pierre Perrault, A.G. Werner, and other important figures in the history of hydrology and geology. De Ortu contains the first known expressions of numerous concepts important in modern hydrology: erosion as an active process, groundwater movement through pores and fissures, hydrofracturing, water-rock reaction, and others. The concepts of groundwater origins, movement, and nature in De Ortu were also the foundation for the theories of ore deposit formation for which Agricola is better known. In spite of their importance, most of Agricola's contributions to the study of groundwater are unrecognized today because De Ortu, alone of his major works, has never been translated out of Latin and no existing vernacular summary of it is longer than two pages. This article presents the first detailed description of Agricola's work on hydrology and discusses the derivation and impact of his ideas.

  16. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  17. An Examination of the Application of Professional Reliance To Management of Karst Resources In British Columbia (Canada)

    NASA Astrophysics Data System (ADS)

    Ramsey, Carolyn L.; Griffiths, Paul A.

    2010-05-01

    British Columbia (BC), Canada's most ecologically diverse province, is home to some of the nation's finest karst resources. Many of these are in forested settings, and are often associated with special/unique natural attributes ranging from geomorphology to hydrology, biology and ecology. Karst management in BC forests was shaped initially by concerns for caves and their recreation management, but as of 1997 there was a significant shift to an ecosystem approach to management of karst and cave resources. This new management approach was supported in due course by standards and guidelines for karst assessment and management. The approach also recognized the inherently multidisciplinary nature of this type of work and the frequent need to engage professionals with specialized knowledge of karst, and its natural and cultural resource values. In 2004, the BC Government introduced the Forest and Range Practices Act, a new results-based regulatory framework for forest practices. Government orders made pursuant to regulations under the Act identify categories of karst terrain and associated resource features that must be protected from the potentially damaging effects of roadbuilding and road maintenance, timber harvesting, and silviculture activities. In support of a general shift toward more results-based regulation and "freedom to manage" forest resources, it was argued that the forestry sector and its professionals are qualified, and competent enough, to formulate strategies for protecting and managing forest resources (including karst) without as much government oversight. As a result, forest tenure holders and their professionals are now responsible for assessing protected categories of karst resource features and developing and applying appropriate forest practices for them. Where knowledge beyond the area of forest professionals' expertise is required, the knowledge gaps are to be addressed by hiring suitably qualified professional consultants for advice and

  18. Characterization of TCE DNAPL and Dissolved Phase Transport in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2015-12-01

    Trichloroethylene (TCE) contaminated sites are a threat to the environment and human health. Of particular concerns is the contamination of karst groundwater systems (KGWSs). Their heterogeneous character, rapid flow through conduits, high permeability zones, and strong storage capacity in the rock porous-matrix pose a high risk of exposure over large areas and temporal scales. To achieve effective remedial actions for TCE removal, it is important to understand and quantify the fate and transport process of trichloroethylene in these systems. This research studies the fate, transport, and distribution of TCE Non-Aqueous Phase Liquids (NAPLs) and associated dissolved species in KGWSs. Experiments are conducted in a karstified limestone physical model, a limestone rock mimicking a saturated confined karst aquifer. After injecting TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed for TCE NAPL and dissolved phases. Data analysis shows the rapid detection of TCE NAPL and high aqueous concentrations along preferential pathway, even at distances far away from the injection point. Temporal distribution curves exhibit spatial variations related to the limestone rock heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing indicates rate-limited diffusive transport in the rock matrix. Overall, results indicate that karstified limestone has a high capacity to rapidly transport pure and dissolved TCE along preferential flow paths, and to store and slowly release TCE over long periods of time.

  19. Hydrogeological controls of variable microbial water quality in a complex subtropical karst system in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-05-01

    Karst aquifers are particularly vulnerable to bacterial contamination. Especially in developing countries, poor microbial water quality poses a threat to human health. In order to develop effective groundwater protection strategies, a profound understanding of the hydrogeological setting is crucial. The goal of this study was to elucidate the relationships between high spatio-temporal variability in microbial contamination and the hydrogeological conditions. Based on extensive field studies, including mapping, tracer tests and hydrochemical analyses, a conceptual hydrogeological model was developed for a remote and geologically complex karst area in Northern Vietnam called Dong Van. Four different physicochemical water types were identified; the most important ones correspond to the karstified Bac Son and the fractured Na Quan aquifer. Alongside comprehensive investigation of the local hydrogeology, water quality was evaluated by analysis for three types of fecal indicator bacteria (FIB): Escherichia coli, enterococci and thermotolerant coliforms. The major findings are: (1) Springs from the Bac Son formation displayed the highest microbial contamination, while (2) springs that are involved in a polje series with connections to sinking streams were distinctly more contaminated than springs with a catchment area characterized by a more diffuse infiltration. (3) FIB concentrations are dependent on the season, with higher values under wet season conditions. Furthermore, (4) the type of spring capture also affects the water quality. Nevertheless, all studied springs were faecally impacted, along with several shallow wells within the confined karst aquifer. Based on these findings, effective protection strategies can be developed to improve groundwater quality.

  20. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Bullen, T.D.

    1996-01-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 ??g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [??13C = -1.6 permil (???)] is also indicated by an enriched ??13CDIC (-8.8 to - 11.4???) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (??13CDIC < - 16???). Groundwater downgradient from Lake Barco was enriched in 18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2

  1. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Bullen, Thomas D.

    1996-12-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 μg/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [δ13C= -1.6permil(‰)] is also indicated by an enriched δ13CDIC(-8.8 to -11.4 ‰) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (δ13CDIC< -16‰). Groundwater downgradient from Lake Barco was enriched in18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from

  2. Evaluation of onsite sewage treatment and disposal systems in shallow karst terrain.

    PubMed

    Harden, Harmon S; Roeder, Eberhard; Hooks, Mark; Chanton, Jeffrey P

    2008-05-01

    Two conventional onsite sewage treatment and disposal systems (OSTDSs) at Manatee Springs State Park, Florida, USA, were studied to assess their impact on groundwater quality in a shallow karst environment. Sulfur hexafluoride (SF6) and fluorescein were used as tracers to establish connections between the drainfields and monitoring wells. Elevated nutrients were found in all wells where significant concentrations of both tracers were observed, with the mean of the highest nitrate (NO3) concentration observed at each well being 47.8+/-14.9 (n=11) mg/L NO3-N. The most elevated nutrient concentrations were found directly in the flow path of the effluent. Fecal coliform densities above 10 colony-forming units (cfu)/100 mL were observed in wells with the most rapid connection to the drainfield. The proximity and connectivity of the 0.4-4m thick sandy surficial soils and the underlying karst aquifer allow rapid contaminant transport and limit the ability of conventional OSTDSs to attenuate NO3.

  3. Assessment of groundwater response to droughts in a complex runoff-dominated watershed by using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Woolfenden, L. R.; Hevesi, J. A.; Nishikawa, T.

    2014-12-01

    Groundwater is an important component of the water supply, especially during droughts, within the Santa Rosa Plain watershed (SRPW), California, USA. The SRPW is 680 km2 and includes a network of natural and engineered stream channels. Streamflow is strongly seasonal, with high winter flows, predominantly intermittent summer flows, and comparatively rapid response time to larger storms. Groundwater flow is influenced primarily by complex geology, spatial and temporal variation in recharge, and pumping for urban, agricultural, and rural demands. Results from an integrated hydrologic model (GSFLOW) for the SRPW were analyzed to assess the effect of droughts on groundwater resources during water years 1976-2010. Model results indicate that, in general, below-average precipitation during historical drought periods reduced groundwater recharge (focused within stream channels and diffuse outside of channels on alluvial plains), groundwater evapotranspiration (ET), and groundwater discharge to streams (baseflow). In addition, recharge during wet periods was not sufficient to replenish groundwater-storage losses caused by drought and groundwater pumping, resulting in an overall 150 gigaliter loss in groundwater storage for water years 1976-2010. During drought periods, lower groundwater levels from reduced recharge broadly increased the number and length of losing-stream reaches, and seepage losses in streams became a higher percentage of recharge relative to the diffuse recharge outside of stream channels (for example, seepage losses in streams were 36% of recharge in 2006 and 57% at the end of the 2007-09 drought). Reductions in groundwater storage during drought periods resulted in decreased groundwater ET (loss of riparian habitat) and baseflow, especially during the warmer and dryer months (May through September) when groundwater is the dominant component of streamflow.

  4. Research in karst aquifers developed in high-mountain areas combining KARSYS models with springs discharge records. Picos de Europa, Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Meléndez, Mónica; Malard, Arnauld; Jiménez-Sánchez, Montserrat; Heredia, Nemesio; Jeannin, Pierre-Yves; García-Sansegundo, Joaquín

    2014-05-01

    The study of karst aquifers developed in high-mountain areas is quite complex since the application of many techniques of hydrogeology in these areas is difficult, expensive, and requires many hours of field work. In addition, the access to the study area is usually conditioned by the orography and the meteorological conditions. A pragmatic approach to study these aquifers can be the combination of geometric models of the aquifer with the monitoring of the discharge rate of springs and the meteorological records. KARSYS approach (Jeannin et al. 2013) allows us to elaborate a geometric model of karst aquifers establishing the boundaries of the groundwater bodies, the main drainage axes and providing evidences of the catchment delineation of the springs. The aim of this work is to analyse the functioning of the karst aquifer from the western and central part of the Picos de Europa Mountains (Spain) combining the KARSYS approach, the discharge record from two springs and the meteorological records (rain, snow and temperature). The Picos de Europa (North Spain) is a high-mountains area up to 2.6 km altitude with 2,500 mm/year of precipitations. The highest part of these mountains is covered by snow four to seven months a year. The karst aquifer is developed in Carboniferous limestone which is strongly compartmentalized in, at least, 17 groundwater bodies. The method of work includes: 1) the elaboration of a hydrogeological 3D model of the geometry of the karst aquifers by KARSYS approach, 2) the definition of the springs catchment areas based on the hydrogeological 3D model, 3) the selection of two representative springs emerging from the aquifers to study it, 4) the continuous monitoring of water levels in two karst springs since October 2013, 5) the transformation of the water level values to flow values using height-stream relation curves constructed by measures of the spring discharge, and 5) the comparison of the spring discharge rate records and meteorological

  5. Simulations of ecosystem hydrological processes using a unified multi-scale model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater

  6. Simulating long term nitrate-N contamination processes in the Woodville Karst Plain using CFPv2 with UMT3D

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Cao, Jianhua

    2015-05-01

    A research version of CFP (Conduit Flow Process) code, CFPv2, is applied with UMT3D to simulate long term (1966-2018) nitrate-N contamination transport processes in the Woodville Karst Plain (WKP), northern Florida, where karst conduit networks are well developed. Groundwater flow in the WKP limestone porous matrix is simulated using Darcy's law, and non-laminar flow within conduits is described by Darcy-Weisbach equation. Nitrate-N conduit transport and advective exchanges of groundwater and nitrate-N between conduits and limestone matrix are calculated by CFPv2 and UMT3D, instead of MODFLOW and MT3DMS since Reynolds numbers for flows in conduits are over the criteria of laminar flow. The developed numerical model is calibrated by field observations and then applied to simulate nitrate-N transport in the WKP. The numerical simulations verify the theories that two sprayfields near the City of Tallahassee and septic tanks in the rural area are major nitrate-N point sources within the WKP. High nitrate-N concentrations occur near Lost Creek Sink, and conduits of Wakulla Spring and Spring Creek Springs where aquifer discharge groundwater. Conduit networks control nitrate-N transport and regional contaminant distributions in the WKP, as nitrate-N is transported through conduits rapidly and spread over large areas.

  7. Socio-hydrologic perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    NASA Astrophysics Data System (ADS)

    Han, S.; Tian, F.; Liu, Y.

    2017-12-01

    This study presents a historical analysis from socio-hydrologic perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain. The history of the "pendulum swing" for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to the balance). The system evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced the community sensitivity of humans toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural condition to groundwater exploiting. The drought from 1997 to 2002 resulted a pulse in further groundwater abstraction and dramatic aquifer deterioration, and the community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system is returning the balance through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restorations of groundwater environment would be implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid the irreversible change of the system.

  8. Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tian, Fuqiang; Liu, Ye; Duan, Xianhui

    2017-07-01

    This paper presents a historical analysis from socio-hydrological perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain (NCP). The history of the pendulum swing for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to equilibrium). The system's evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion, and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced community sensitivity toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural conditions to groundwater exploiting. The drought from 1997 to 2002 resulted in a surge in further groundwater abstraction and dramatic aquifer deterioration, and community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system returns to equilibrium through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restoration of groundwater environment was implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid irreversible change in the system.

  9. The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

    NASA Astrophysics Data System (ADS)

    Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe

    2016-11-01

    Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

  10. Hydrology of the Sevier-Sigurd ground-water basin and other ground-water basins, central Sevier Valley, Utah.

    USGS Publications Warehouse

    Lambert, P.M.; Mason, J.L.; Puchta, R.W

    1995-01-01

    The hydrologic system in the central Sevier Valley, and more specifically the Sevier-Sigurd basin, is a complex system in which surface- and ground-water systems are interrelated. Seepage from an extensive irrigation system is the primary source of recharge to the basin-fill aquifer in the Sevier-Sigurd basin.Water-quality data indicate that inflow from streams and subsurface inflow that intersect evaporite deposits in the Arapien Shale does not adversely affect ground-water quality in the Sevier-Sigurd basin. Stable-isotope data indicate that large sulfate concentrations in water from wells are from the dissolution of gypsum within the basin fill rather than inflow from the Arapien Shale.A ground-water-flow model of the basin-fill aquifer in the Sevier-Sigurd basin was calibrated to steady-state conditions and transient conditions using yearly water-level changes from 1957-88 and monthly water-level changes from 1958-59. Predictive simulations were made to test the effects of reduced recharge from irrigation and increased well discharge. To simulate the effects of conversion from flood to sprinkler irrigation, recharge from irrigated fields was reduced by 50 percent. After twenty years, this reduction resulted in water-level declines of 1 to 8 feet in most of the basin, and a reduction in ground-water discharge to the Sevier River of 4,800 acre-ft/yr. Water-level declines of as much as 12 feet and a reduction in recharge to the Sevier River of 4,800 acre-ft/yr were the result of increasing well discharge near Richfield and Monroe by 25,000 acre-ft/yr. 

  11. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA.

    PubMed

    Siska, Peter P; Goovaerts, Pierre; Hung, I-K

    2016-08-01

    Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines' morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards.

  12. The concept of hydrologic landscapes

    USGS Publications Warehouse

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  13. Flow Dependence Assessment for Fate and Transport of DNAPL in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2017-12-01

    DNAPLs are a group of organic compounds, which exhibit high fluid density, relatively aqueous solubility, and a high level of toxicity. It is also very persistent and remains in the environment long after been released. Massive production of these compounds, their constant use and poor disposal methods have increased the occurrence of these contaminants in groundwater systems. The physico-chemical properties of DNAPL, combined with the high variation of groundwater flow causes contaminants to behave unpredictably in such aquifer. This research focuses on fate and transport of trichloroethylene (which is one of the most frequent DNAPL found) in a karstified limestone physical model (KLPM) at two different flow rates. The KLPM represents a real case of a saturated confined karst aquifer consisting of a porous limestone block enclosed in a stainless-steel tank with fifteen horizontal sampling ports. After injection of pure TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed volumetrically and analytically with HPLC. Data show pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port. Results from the constructed temporal distributions curves at different spatial locations show spatial variations related to the limestone block heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing is indicative of diffusive transport in the rock matrix and mass transport rates limitations. Although, high flow rates show greater mass removal of TCE by dissolving its NAPL, pure TCE accumulates at all flow rates studied. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase for long periods of time. They also show that fate and transport of contaminants in karst environments is significantly flow dependent.

  14. Speleogenesis, geometry, and topology of caves: A quantitative study of 3D karst conduits

    NASA Astrophysics Data System (ADS)

    Jouves, Johan; Viseur, Sophie; Arfib, Bruno; Baudement, Cécile; Camus, Hubert; Collon, Pauline; Guglielmi, Yves

    2017-12-01

    Karst systems are hierarchically spatially organized three-dimensional (3D) networks of conduits behaving as drains for groundwater flow. Recently, geostatistical approaches proposed to generate karst networks from data and parameters stemming from analogous observed karst features. Other studies have qualitatively highlighted relationships between speleogenetic processes and cave patterns. However, few studies have been performed to quantitatively define these relationships. This paper reports a quantitative study of cave geometries and topologies that takes the underlying speleogenetic processes into account. In order to study the spatial organization of caves, a 3D numerical database was built from 26 caves, corresponding to 621 km of cumulative cave passages representative of the variety of karst network patterns. The database includes 3D speleological surveys for which the speleogenetic context is known, allowing the polygenic karst networks to be divided into 48 monogenic cave samples and classified into four cave patterns: vadose branchwork (VB), water-table cave (WTC), looping cave (LC), and angular maze (AM). Eight morphometric cave descriptors were calculated, four geometrical parameters (width-height ratio, tortuosity, curvature, and vertical index) and four topological ones (degree of node connectivity, α and γ graph indices, and ramification index) respectively. The results were validated by statistical analyses (Kruskal-Wallis test and PCA). The VB patterns are clearly distinct from AM ones and from a third group including WTC and LC. A quantitative database of cave morphology characteristics is provided, depending on their speleogenetic processes. These characteristics can be used to constrain and/or validate 3D geostatistical simulations. This study shows how important it is to relate the geometry and connectivity of cave networks to recharge and flow processes. Conversely, the approach developed here provides proxies to estimate the evolution of

  15. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  16. Spring distributions and relationships with land cover and hydrogeologic strata in a karst landscape in Winona County, Minnesota, USA

    USGS Publications Warehouse

    Williams, M.A.; Vondracek, B.

    2010-01-01

    Karst aquifers are important groundwater resources, but are vulnerable to contamination due to relatively rapid subsurface transport. Springs, points where the landscape and water table intersect and cold groundwater discharges, link aquifer systems with land surfaces and water bodies. As such, in many regions, they are critical to the viability of lakes, streams and cold-water fish communities. An understanding of where springs are located is important to watershed, fishery and environmental management efforts in karst regions. To better understand spatial distribution of springs and as a potential method for identifying variables that characterize locations of springs for improved land and watershed management, a nearest-neighbor analysis and a discriminant function analysis (DFA) of springs were conducted in Winona County, Minnesota USA, a karst landscape. Nearestneighbor analysis examined the spatial spring distribution. Twenty-two variables describing the locations of springs were analyzed to ascertain their ability to discriminate correct aquifer unit or bedrock unit classification for each spring. Springs were clumped with the highest densities in the lowest elevations. Springs were correctly assigned to aquifer units and bedrock units with eight and 11 landscape variables, respectively. Forest land cover was the only land cover type contributing to spring discrimination. Consideration of upland human activities, particularly in forested areas, on spring discharge along with a better understanding of characteristics describing spring locations could lead to better management activities that locate and protect springs and their important contributions to regional ecohydrology. ?? 2010 Springer-Verlag.

  17. Estimation of transit times in a Karst Aquifer system using environmental tracers: Application on the Jeita Aquifer system-Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Hamdan, Ahmad

    2016-04-01

    Estimating transit times is essential for the assessment of aquifer vulnerability to contaminants. Groundwater in karst aquifer is assumed to be relatively young due to fast preferential pathways; slow flow components are present in water stored in the fissured matrix. Furthermore, transit times are site specific as they depend on recharge rates, temperatures, elevation, and flow media; saturated and unsaturated zones. These differences create significant variation in the groundwater age in karst systems as the water sampled will be a mix of different water that has been transported through different flow pathways (fissured matrix and conduits). Several methods can be applied to estimate water transit time of an aquifer such as artificial tracers, which provide an estimate for fast flow velocities. In this study, groundwater residence times in the Jeita spring aquifer (Lebanon) were estimated using several environmental tracers such as Chlorofluorocarbons (CFCs), Sulfur Hexafluoride (SF6), Helium-Tritium (3H, 3H- 3He). Additional stable isotope and major ion analysis was performed to characterize water types. Groundwater samples were collected from six different wells in the Jeita catchment area (Jurassic Kesrouane aquifer) as well as from the spring and cave itself. The results are reproducible for the Tritium-Helium method, unlike for the CFC/SF6 methods that yielded poor results due to sampling problems. Tritium concentrations in all groundwater samples show nearly the same concentration (~2.73 TU) except for one sample with relatively lower tritium concentration (~2.26 TU). Ages ranging from 0.07 ± 0.07 years to 23.59 ± 0.00 years were obtained. The youngest age is attributed to the spring/ cave while the oldest ages were obtained in wells tapping the fissured matrix. Neon in these samples showed considerable variations and high delta Ne in some samples indicating high excess air. Four (4) samples showed extreme excess air (Delta-Ne is greater than 70 %) and

  18. Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia

    NASA Astrophysics Data System (ADS)

    Mahmud, Kashif; Mariethoz, Gregoire; Baker, Andy; Treble, Pauline C.

    2018-02-01

    Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by k means is used to classify similar drip types based on time series

  19. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  20. Hydraulics of Reka-Timavo system, Classical Karst (Carso), Slovenia-Italy

    NASA Astrophysics Data System (ADS)

    Gabrovsek, Franci; Kaufmann, Georg; Peric, Borut

    2016-04-01

    In tectonically active areas, karst systems continuously adapt to the relatively rapid changes of the structural and boundary conditions. The flow pathways in such systems are characterised by high variability of channel cross-sections and breakdowns, which restrict the flow and cause high fluctuations of groundwater level, particularly if the recharge variations are high. One of the world's most prominent karst systems with such characteristics is the Kras/Carso plateau (Classical Karst), which extends between SW Slovenia and NE Italy. The ground water dynamics is mainly influenced by the allogenic input of Reka river which sinks at the Škocjanske jame (Škocjan caves) and emerges about 40 km north-west at the coast of Adria near Duino in springs of Timavo. The ratio between highest and lowest flow of Reka reaches 1700 with the maximum measured discharge 305 m3/s, and minimum 0.18 m3/s. This work is based on the long-term continuous monitoring of basic physical parameters of underground flow within six active caves of the Reka-Timavo system. Using stage, temperature and specific electric conductivity hydrographs, following questions were addressed: How do different signals (flood pulse, temperature, SEP) propagate through the system? How does the known geometry relate to the recorded hydrographs in caves? Can we infer on the structure of unknown parts of the system from the recorded hydrographs ? Where are the restrictions causing floods in different parts of the system? The data analysis includes heuristic and statistical analysis of the hydrographs and optimisation based hydraulic modelling. The response to recharge events is vigorous; high flow variability causes extreme stage variations along the whole observed system, with more than 100 m difference between the base and highest water levels at rising and recession rates reaching almost 10 m/h. By analysing large recharge events, we show that high floods in the two most upstream caves (Škocjanske jame and Ka

  1. Geophysical imaging of karst features in Missouri

    NASA Astrophysics Data System (ADS)

    Obi, Jeremiah Chukwunonso

    Automated electrical resistivity tomography (ERT) supported with multichannel analysis of surface waves (MASW) and boring data were used to map karst related features in Missouri in order to understand karst processes better in Missouri. Previous works on karst in Missouri were mostly surficial mapping of bedrock outcrops and joints, which are not enough to define the internal structure of karst system, since most critical processes in karst occur underground. To understand these processes better, the density, placement and pattern of karst related features like solution-widened joints and voids, as well as top of bedrock were mapped. In the course of the study, six study sites were visited in Missouri. The sites were in Nixa, Gasconade River Bridge in Lebanon, Battlefield, Aurora, Protem and Richland. The case studies reflect to a large extent some of the problems inherent in karst terrain, ranging from environmental problems to structural problems especially sinkhole collapses. The result of the study showed that karst in Missouri is mostly formed as a result of piping of sediments through solution-widened joints, with a pattern showing that the joints/fractures are mostly filled with moist clay-sized materials of low resistivity values. The highest density of mapped solution-widened joints was one in every one hundred and fifty feet, and these areas are where intense dissolution is taking place, and bedrock pervasively fractured. The study also showed that interpreted solution-widened joints trend in different directions, and often times conform with known structural lineaments in the area. About 40% of sinkhole collapses in the study areas are anthropogenic. Karst in Missouri varies, and can be classified as a combination of kI (juvenile), kIII (mature) and kIV (complex) karsts.

  2. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams

    NASA Astrophysics Data System (ADS)

    Bailly-Comte, Vincent; Martin, Jonathan B.; Jourde, Hervé; Screaton, Elizabeth J.; Pistre, Séverin; Langston, Abigail

    2010-05-01

    SummaryKarst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves. We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of

  3. Puerto Rican Karst-A Vital Resource

    Treesearch

    Ariel E. Lugo; Leopoldo Miranda Castro; Abel Vale; Tania del Mar López; Enrique Hernández Prieto; Andrés García Martinó; Alberto R. Puente Rolón; Adrianne G. Tossas; Donald A. McFarlane; Tom Miller; Armando Rodríguez; Joyce Lundberg; John Thomlinson; José Colón; Johannes H. Schellekens; Olga Ramos; Eileen Helmer

    2001-01-01

    The limestone region of Puerto Rico covers about 27.5 percent of the island’s surface and is subdivided into the northern, southern, and dispersed limestone areas. All limestone areas have karst features. The karst belt is that part of the northern limestone with the most spectacular surficial karst landforms. It covers 142,544 ha or 65 percent of the northern...

  4. Stochastic simulation of karst conduit networks

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José

    2012-01-01

    Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when

  5. Relation of streams, lakes, and wetlands to groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  6. Fundamentals of watershed hydrology

    Treesearch

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  7. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  8. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA

    PubMed Central

    Siska, Peter P.; Goovaerts, Pierre; Hung, I-K

    2016-01-01

    Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines’ morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards. PMID:27616807

  9. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Chang, Y.; Peng, F.; Wu, J.

    2016-12-01

    Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.

  10. Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code

    NASA Astrophysics Data System (ADS)

    Assari, Amin; Mohammadi, Zargham

    2017-09-01

    Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.

  11. Hydrological control of As concentrations in Bangladesh groundwater

    NASA Astrophysics Data System (ADS)

    Stute, M.; Zheng, Y.; Schlosser, P.; Horneman, A.; Dhar, R. K.; Datta, S.; Hoque, M. A.; Seddique, A. A.; Shamsudduha, M.; Ahmed, K. M.; van Geen, A.

    2007-09-01

    The elevated arsenic (As) content of groundwater from wells across Bangladesh and several other South Asian countries is estimated to slowly poison at least 100 million people. The heterogeneous distribution of dissolved arsenic in the subsurface complicates understanding of its release from the sediment matrix into the groundwater, as well as the design of mitigation strategies. Using the tritium-helium (3H/3He) groundwater dating technique, we show that there is a linear correlation between groundwater age at depths <20 m and dissolved As concentration, with an average slope of 19 μg L-1 yr-1 (monitoring wells only). We propose that either the kinetics of As mobilization or the removal of As by groundwater flushing is the mechanism underlying this relationship. In either case, the spatial variability of As concentrations in the top 20 m of the shallow aquifers can to a large extent be attributed to groundwater age controlled by the hydrogeological heterogeneity in the local groundwater flow system.

  12. Hydrogeologic setting, conceptual groundwater flow system, and hydrologic conditions 1995–2010 in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Bellino, Jason C.; Kuniansky, Eve L.; O'Reilly, Andrew M.; Dixon, Joann F.

    2018-05-04

    The hydrogeologic setting and groundwater flow system in Florida and parts of Georgia, Alabama, and South Carolina is dominated by the highly transmissive Floridan aquifer system. This principal aquifer is a vital source of freshwater for public and domestic supply, as well as for industrial and agricultural uses throughout the southeastern United States. Population growth, increased tourism, and increased agricultural production have led to increased demand on groundwater from the Floridan aquifer system, particularly since 1950. The response of the Floridan aquifer system to these stresses often poses regional challenges for water-resource management that commonly transcend political or jurisdictional boundaries. To help water-resource managers address these regional challenges, the U.S. Geological Survey (USGS) Water Availability and Use Science Program began assessing groundwater availability of the Floridan aquifer system in 2009.The current conceptual groundwater flow system was developed for the Floridan aquifer system and adjacent systems partly on the basis of previously published USGS Regional Aquifer-System Analysis (RASA) studies, specifically many of the potentiometric maps and the modeling efforts in these studies. The Floridan aquifer system extent was divided into eight hydrogeologically distinct subregional groundwater basins delineated on the basis of the estimated predevelopment (circa 1880s) potentiometric surface: (1) Panhandle, (2) Dougherty Plain-Apalachicola, (3) Thomasville-Tallahassee, (4) Southeast Georgia-Northeast Florida-South South Carolina, (5) Suwannee, (6) West-central Florida, (7) East-central Florida, and (8) South Florida. The use of these subregions allows for a more detailed analysis of the individual basins and the groundwater flow system as a whole.The hydrologic conditions and associated groundwater budget were updated relative to previous RASA studies to include additional data collected since the 1980s and to reflect the

  13. Using MODFLOW with CFP to understand conduit-matrix exchange in a karst aquifer during flooding

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Screaton, E.; Martin, J. B.; Gulley, J.; Brown, A.

    2011-12-01

    Karst springs may reverse flow when allogenic runoff increases river stage faster than groundwater heads and may exchange of surface water with groundwater in the surrounding aquifer matrix. Recharged flood water is rich in nutrients, metals, and organic matter and is undersaturated with respect to calcite. Understanding the physical processes controlling this exchange of water is critical to understanding metal cycling, redox chemistry and dissolution in the subsurface. Ultimately the magnitude of conduit-matrix exchange should be governed by head gradients between the conduit and the aquifer which are affected by the hydraulic conductivity of the matrix, conduit properties and antecedent groundwater heads. These parameters are interrelated and it is unknown which ones exert the greatest control over the magnitude of exchange. This study uses MODFLOW-2005 coupled with the Conduit Flow Processes (CFP) package to determine how physical properties of conduits and aquifers influence the magnitude of surface water-groundwater exchange. We use hydraulic data collected during spring reversals in a mapped underwater cave that sources Madison Blue Spring in north-central Florida to explore which factors are most important in governing exchange. The simulation focused on a major flood in 2009, when river stage increased by about 10 meters over 9 days. In a series of simulations, we varied hydraulic conductivity, conduit diameter, roughness height and tortuosity in addition to antecedent groundwater heads to estimate the relative effects of each parameter on the magnitude of conduit-matrix exchange. Each parameter was varied across plausible ranges for karst aquifers. Antecedent groundwater heads were varied using well data recorded through wet and dry seasons throughout the spring shed. We found hydraulic conductivity was the most important factor governing exchange. The volume of exchange increased by about 61% from the lowest value (1.8x10-6 m/d) to the highest value (6 m

  14. Hydrologic data and groundwater-flow simulations in the Brown Ditch Watershed, Indiana Dunes National Lakeshore, near Beverly Shores and Town of Pines, Indiana

    USGS Publications Warehouse

    Lampe, David C.

    2016-03-15

    The results of this study can be used by water-resource managers to understand how surrounding ditches affect water levels in Great Marsh and other inland wetlands and residential areas. The groundwater model developed can be applied to answer questions about how alterations to the drainage system in the area affects water levels in the public and residential areas surrounding Great Marsh. The modeling methods developed in this study provide a template for other studies of groundwater flow and groundwater/surface-water interactions within the shallow surficial aquifer in northern Indiana, and in similar hydrologic settings that include surficial sand aquifers in coastal areas.

  15. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    NASA Astrophysics Data System (ADS)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off

  16. Ground-water hydrology and water quality of Irwin Basin at Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.; Londquist, Clark J.

    1997-01-01

    Geohydrologic data were collected from Irwin Basin at Fort Irwin National Training Center in the Mojave Desert of southern California by the U.S. Geological Survey during 199296 to deter mine the quantity and quality of ground water available in this basin. In addition to data collected from existing wells and test holes, 17 monitoring sites were constructed in Irwin Basin to provide data on subsurface geology, ground-water levels, and ground-water quality. Eleven of these sites were multiple-well monitoring sites that were constructed to provide depth-dependent geohydrologic data in the aquifer system. The aquifer system of Irwin Basin, defined on the basis of hydrologic data collected from wells in Irwin Basin, consists of an upper and a lower aquifer. A 1994 water-table contour map shows that a cone of depression beneath Irwin Basin well field has developed as a result of ground-water development. Water-quality samples collected from Irwin Basin wells to determine potential sources of ground-water degradation indicate that water in three areas in the basin contains high nitrate and dissolved-solids concentrations. The stable isotopes of oxygen and hydrogen indicate that present-day precipitation is not a major source of recharge in this basin. Tritium and carbon-14 data indicate that most of the basin was recharged before 1953 and that this water may be more than 14,000 years old.

  17. Spatial and Temporal Mapping of Distributed Surface and Groundwater Stable Isotopes Enables New insights into Hydrologic Processes Operating at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Cole, A.; Boutt, D. F.

    2017-12-01

    Isotopic analyses of d18O and d2H of water transiting the hydrologic cycle have allowed hydrologists to better understand the portioning of water between the different components of the water cycle. Isoscapes on a large spatial scale have been created to show isotopic variation in waters as a function of elevation, temperature, distance to coast and precipitation. This has not been done on a 10,000 sq mi area, sub-regional scale or for that matter exhaustively sampled the important components of the terrestrial hydrologic cycle (groundwater, surface water and soil waters). We present the spatial and temporal isotopic results of an ongoing study across Massachusetts, USA, to establish an isotopic baseline for the region. Our current database consists of water samples from 50 precipitation sites, 333 ground water sites and 421 surface water sites. The isotopic signature of d18O and d2H of the samples are measured by a wavelength scanned cavity ring-down spectrometry on un-acidified water samples by a Picarro Cavity Ring Down Spectrometer (L2120-I) analyzer. Our results show that groundwater ranges from -11 to -1 ‰ δ18O across Massachusetts. Wells show a correlation with elevation; at higher elevations groundwater is more depleted in the heavy isotopes than compared with wells located at a lower elevation. Surface, groundwater and precipitation depict a seasonal evaporative enrichment, with waters being lighter during the months and heavier during the summer months. Based on Massachusetts location relative to the coast, there is a large variability in the mean d18O of precipitation with rain being heavy near the coast and lighter with increasing distance from the coast. HYSPLIT trajectory models will be used to determine how source affects isotopic composition. Within Massachusetts the isotopic composition of groundwater in till, glacial fluvial and bedrock aquifers are distinct which indicates the potential for surface and groundwater interaction. Our data also

  18. Preliminary characterization of an alpine karst aquifer in a complex geological setting using the KARSYS approach. Picos de Europa, North Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Malard, Arnauld; Jeannin, Pierre-Yves; Jiménez-Sánchez, Montserrat; García-Sansegundo, Joaquín; Meléndez, Mónica; Sendra, Gemma

    2013-04-01

    Research applied to karst aquifers linked to a homogeneous limestone in high mountain areas affected by several tectonic events is a hard task, due to methodological constraints and the uncertainties of the geological data. The KARSYS approach (Jeannin et al. 2012) is based on the combination of existing geological data and basic principles of karst hydraulic, allowing for characterizing the geometry of an aquifer considering a smaller amount of data than other methods. The Picos de Europa (North Spain) is an alpine karst massif with a surface area of 700 km2, peaks up to 2,648 m and fluvial gorges up to 2,000 m deep, including about 270 km of cave passage. The bedrock is mainly composed of Ordovician quartzite covered by massive Carboniferous limestone and is affected by two systems of thrusts and other faults. The most of the geological structures are from Variscan orogeny (Carboniferous in age), some of them could be originated or modified during the Permian-Mesozoic extensional episode, and the others were originated or reactivated during the Alpine Orogeny. Therefore, the Picos de Europa can be considered as a complex geological environment in which usual hydrogeological methods are difficult to use. The aim of this study is to characterize the geometry of the Picos de Europa aquifers applying the KARSYS approach. The approach includes: 1) the identification of aquifer and aquiclude formations; 2) the inventory of the main springs; 3) the establishment of a 3D geological model, focused on the aquifer boundaries; 4) the implementation of the hydraulic features within the 3D model and the delineation of the karst system. The main aquifer of the Picos de Europa is developed within the Carboniferous limestone and displays a complex geometry generally limited and divided into several unconfined groundwater bodies by Ordovician to Carboniferous rocks related to the thrusts. The lowest limit of the aquifer is marked by the N-dipping detachment level of the thrusts

  19. Use of isotopically-tagged isolates of E. coli for tracking bacterial movement in karst environments

    NASA Astrophysics Data System (ADS)

    Bandy, A.; Fryar, A. E.; Macko, S. A.; Cook, K.

    2014-12-01

    Because of limited filtration and turbulent flow, karst aquifers are more susceptible to microbial contamination than clastic aquifers. Assessment of microbial transport in groundwater is complicated by the need to identify tracers that have a low detection limit, have minimal background concentrations, behave like the organisms of interest, and are non-pathogenic. We are assessing transport of two non-pathogenic isolates of Escherichia coli (E. coli) compared to traditional groundwater tracers in epikarst above Cave Springs Cavern near Bowling Green, KY, and in a karst conduit that emerges at Royal Spring in Georgetown, KY. The E. coli isolate exhibiting higher attachment efficiency in saturated granular columns contains the iha gene, while the isolate exhibiting lower attachment efficiency contains the kps gene. For the field experiments, bacteria are being grown on media enriched in 13C or 15N. Isotopically-tagged bacteria will be injected with rhodamine WT as a solute tracer and fluorescent microspheres as an abiotic particulate tracer. We will monitor breakthrough of the tracers in the cave and at the spring; based on a previous field test, we anticipate that particulate tracers may be remobilized during subsequent storm events. E. coli will be quantified by molecular methods (qPCR) and dual isotope analysis. Preliminary findings suggest that these two methods may be complementary, with each method having detection limitations.

  20. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  1. A new species of karst-adapted Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from a threatened karst region in Pahang, Peninsular Malaysia.

    PubMed

    Grismer, L Lee; Wood, Perry L; Mohamed, Maketab; Chan, Kin Onn; Heinz, Heather M; Sumarli, Alex S-I; Chan, Jacob A; Loredo, Ariel I

    2013-12-12

    A new species of karst-adapted gekkonid lizard of the genus Cnemaspis Strauch is described from Gua Gunting and Gua Goyang in a karst region of Merapoh, Pahang, Peninsular Malaysia whose unique limestone formations are in immediate danger of being quarried. The new species differs from all other species of Cnemaspis based on its unique suite of morphological and color pattern characters. Its discovery underscores the unique biodiversity endemic to karst regions and adds to a growing list of karst-adapted reptiles from Peninsular Malaysia. We posit that new karst-adapted species endemic to limestone forests will continue to be discovered and these regions will harbor a significant percentage of Peninsular Malaysia's biodiversity and thusly should be conserved rather than quarried.

  2. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations

    NASA Astrophysics Data System (ADS)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans

    2015-04-01

    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  3. The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China

    NASA Astrophysics Data System (ADS)

    He, Qiufang; Yang, Pingheng; Yuan, Wenhao; Jiang, Yongjun; Pu, Junbin; Yuan, Daoxian; Kuang, Yinglun

    2010-08-01

    The Qingmuguan subterranean river system is located in the suburb of Chongqing, China, and it is the drinking water source that local people downstream rely on. The study aims to provide a scientific basis for groundwater protection in that area, using a hydrogeological framework, tracer tests, hydrological online monitoring, and hydrochemical and microbiological investigation, including heterotrophic plate count (HPC) and the analysis of denitrifying bacteria (DNB) and nitrobacteria (NB). The tracer tests proved simple and direct connections between two important sinkholes and the main springs, and also proved that the underground flows here are fast and turbulent. DNB and NB analyses revealed that the main recharge to the underground river in the dry season is the soil-leached water passing through the fissures of the epikarst, while in the rainy season, it is the surface water flow through sinkholes. The hydrochemical and microbiological data confirmed the notable impact of agriculture and sewage on the spring water quality. In the future, groundwater protection here should focus on targeted vulnerability mapping that yields different protection strategies for different seasons.

  4. Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers

    USGS Publications Warehouse

    Reimann, T.; Geyer, T.; Shoemaker, W.B.; Liedl, R.; Sauter, M.

    2011-01-01

    Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dual-hydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduit-matrix interaction during free-surface flow. Copyright 2011 by the American Geophysical Union.

  5. Description and Evaluation of Numerical Groundwater Flow Models for the Edwards Aquifer, South-Central Texas

    USGS Publications Warehouse

    Lindgren, Richard J.; Taylor, Charles J.; Houston, Natalie A.

    2009-01-01

    incorporates improvements over previous models by using (1) a user-friendly interface, (2) updated computer codes (MODFLOW-96 and MODFLOW-2000), (3) a finer grid resolution, (4) less-restrictive boundary conditions, (5) an improved discretization of hydraulic conductivity, (6) more accurate estimates of pumping stresses, (7) a long transient simulation period (54 years, 1947-2000), and (8) a refined representation of high-permeability zones or conduits. All of the models except the MODFLOW-DCM conduit model have limitations resulting from the use of Darcy's law to simulate groundwater flow in a karst aquifer system where non-Darcian, turbulent flow might actually dominate. The MODFLOW-DCM conduit model is an improvement in the ability to simulate karst-like flow conditions in conjunction with porous-media-type matrix flow. However, the MODFLOW-DCM conduit model has had limited application and testing and currently (2008) lacks commercially available pre- and post-processors. The MODFLOW conduit-flow and diffuse-flow Edwards aquifer models are limited by the lack of calibration for the northern part of the Barton Springs segment (Travis County) and their reliance on the use of the calibrated hydraulic conductivity and storativity values from the calibrated Barton Springs segment GAM model. The major limitation of the Barton Springs segment GAM and recalibrated GAM models is that they were calibrated to match measured water levels and springflows for a restrictive range of hydrologic conditions, with each model having different hydraulic conductivity and storativity values appropriate to the hydrologic conditions that were simulated. The need for two different sets of hydraulic conductivity and storativity values increases the uncertainty associated with the accuracy of either set of values, illustrates the non-uniqueness of the model solution, and probably most importantly demonstrates the limitations of using a one-layer model to represent the heterogeneous hydrostratigraph

  6. Hydrologic Evaluation of a Humid Climate Poplar Phytoremediation Barrier

    NASA Astrophysics Data System (ADS)

    Swensen, K.; Rabideau, A. J.

    2016-12-01

    The emplacement of hybrid poplar trees to function as phytoremediation barriers is an appealing and sustainable groundwater management strategy because of low maintenance costs and the potential to extract large amounts of groundwater without pumping. While the effectiveness of poplar barriers has been assessed by groundwater quality monitoring, less attention has been given to physical hydrologic evaluations needed to improve barrier designs. In this research, a five year hydrologic evaluation was conducted at a poplar phytoremediation site in western NY, with the goal of quantifying ETg (evapotranspiration from groundwater) as a measure of the barrier's effectiveness in a humid climate. To consider transpiration from both vadose zone and groundwater, the hydrologic evaluation included four components: physical ET measurements, theoretical ET calculations, analysis of diurnal groundwater table fluctuations, and vadose zone modeling. The direct measurements of ETT (total) were obtained using sap flow meters installed on multiple trees within the barrier. These data were interpreted using a regression model that included theoretical ET calculations and site-specific measurements of weather parameters and poplar trunk area. Application of this model was challenged by the spatial variation in rooting depth as determined by tree excavations. To further quantify the removal of groundwater by the phytobarrier (ETg), the White Method was applied to interpret diurnal groundwater fluctuations from monitoring wells located within the barrier, in conjunction with a variably saturated-saturated flow model configured to confirm water extraction from ETg. Taken together, the results of this five year hydrologic evaluation highlight the complexity in quantifying humid climate groundwater extraction, as a large number of variables were found to influence these rates. Improved understanding of these controls will contribute to improved barrier designs that maximize ETg.

  7. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  8. A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands

    USGS Publications Warehouse

    Winter, Thomas C.

    1988-01-01

    Wetlands occur in geologic and hydrologic settings that enhance the accumulation or retention of water. Regional slope, local relief, and permeability of the land surface are major controls on the formation of wetlands by surface-water sources. However, these landscape features also have significant control over groundwater flow systems, which commonly play a role in the formation of wetlands. Because the hydrologic system is a continuum, any modification of one component will have an effect on contiguous components. Disturbances commonly affecting the hydrologic system as it relates to wetlands include weather modification, alteration of plant communities, storage of surface water, road construction, drainage of surface water and soil water, alteration of groundwater recharge and discharge areas, and pumping of groundwater. Assessments of the cumulative effects of one or more of these disturbances on the hydrologic system as related to wetlands must take into account uncertainty in the measurements and in the assumptions that are made in hydrologic studies. For example, it may be appropriate to assume that regional groundwater flow systems are recharged in uplands and discharged in lowlands. However, a similar assumption commonly does not apply on a local scale, because of the spatial and temporal dynamics of groundwater recharge. Lack of appreciation of such hydrologic factors can lead to misunderstanding of the hydrologic function of wetlands within various parts of the landscape and mismanagement of wetland ecosystems.

  9. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  10. What Can We Learn About Karst Aquifer Heterogeneity From Pumping Tests

    NASA Astrophysics Data System (ADS)

    Marechal, J. C.; Dewandel, B.; Ladouche, B.; Fleury, P.

    2016-12-01

    Due to the complexity and duality of flows, well-test interpretation into karst systems constitutes a challenging task for hydrogeologists. This is especially true when the pumping well intersects karst heterogeneities such as the conduit network. The method of diagnostic plots, widely used in oil industry, can be applied to karst hydrogeology. In this paper, the classical response of a well-test into a karst conduit is described on a log-log drawdown derivative curve. It allows identifying successive flow regimes corresponding to the contribution of various karst aquifer subsystems (fractured matrix, karst conduit, main karst drainage network) to the pumped well. In heterogeneous karst systems, the log-log diagnostic plot of drawdown and its derivative in the pumping well can help identifying departures in flow-geometry from the classical homogeneous radial case. Classically, the diagnostic plot can be divided into several portions with: (a) early data used for identifying the karst conduit storage; (b) intermediate data for identifying the type of aquifer model that should be used (e.g. double porosity, anisotropy...); and (c) late data for identifying the possible boundaries. This is illustrated on three examples from Mediterranean karsts in southern France. A one-month duratio pumping test on a well intersecting the main karst drainage network of the Cent-Fonts karst system shows (i) a preliminary contribution of the karst conduit storage capacity followed by (ii) linear flows into the fractured matrix. A pumping test on a well intersecting a small karst conduit of the Corbières karst system shows the existence of (i) bi-linear flow within both the karst conduit and the fractured matrix at early times, followed by (ii) radial flows within the fractured matrix and (iii) finally the contribution of a major karst cavity. A two-months duration pumping test on a deep confined karst aquifer under low permeability rocks into the Gardanne basin shows the existence of

  11. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    USDA-ARS?s Scientific Manuscript database

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  12. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    NASA Astrophysics Data System (ADS)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  13. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  14. Using stable isotopes and major ions to identify hydrological processes and geochemical characteristics in a typical karstic basin, Guizhou, Southwest China.

    PubMed

    Han, Zhiwei; Tang, Changyuan; Wu, Pan; Zhang, Ruixue; Zhang, Chipeng

    2014-01-01

    The investigation of hydrological processes is very important for water resource development in karst basins. In order to understand these processes associated with complex hydrogeochemical evolution, a typical basin was chosen in Houzai, southwest China. The basin was hydrogeologically classified into three zones based on hydrogen and oxygen isotopes as well as the field surveys. Isotopic values were found to be enriched in zone 2 where paddy fields were prevailing with well-developed underground flow systems, and heavier than those in zone 1. Zone 3 was considered as the mixture of zones 1 and 2 with isotopic values falling in the range between the two zones. A conceptual hydrological model was thus proposed to reveal the probable hydrological cycle in the basin. In addition, major processes of long-term chemical weathering in the karstic basin were discussed, and reactions between water and carbonate rocks proved to be the main geochemical processes in karst aquifers.

  15. On the optimal selection of interpolation methods for groundwater contouring: An example of propagation of uncertainty regarding inter-aquifer exchange

    NASA Astrophysics Data System (ADS)

    Ohmer, Marc; Liesch, Tanja; Goeppert, Nadine; Goldscheider, Nico

    2017-11-01

    The selection of the best possible method to interpolate a continuous groundwater surface from point data of groundwater levels is a controversial issue. In the present study four deterministic and five geostatistical interpolation methods (global polynomial interpolation, local polynomial interpolation, inverse distance weighting, radial basis function, simple-, ordinary-, universal-, empirical Bayesian and co-Kriging) and six error statistics (ME, MAE, MAPE, RMSE, RMSSE, Pearson R) were examined for a Jurassic karst aquifer and a Quaternary alluvial aquifer. We investigated the possible propagation of uncertainty of the chosen interpolation method on the calculation of the estimated vertical groundwater exchange between the aquifers. Furthermore, we validated the results with eco-hydrogeological data including the comparison between calculated groundwater depths and geographic locations of karst springs, wetlands and surface waters. These results show, that calculated inter-aquifer exchange rates based on different interpolations of groundwater potentials may vary greatly depending on the chosen interpolation method (by factor >10). Therefore, the choice of an interpolation method should be made with care, taking different error measures as well as additional data for plausibility control into account. The most accurate results have been obtained with co-Kriging incorporating secondary data (e.g. topography, river levels).

  16. One-Week Module on Stochastic Groundwater Modeling

    ERIC Educational Resources Information Center

    Mays, David C.

    2010-01-01

    This article describes a one-week introduction to stochastic groundwater modeling, intended for the end of a first course on groundwater hydrology, or the beginning of a second course on stochastic hydrogeology or groundwater modeling. The motivation for this work is to strengthen groundwater education, which has been identified among the factors…

  17. Wetland Hydrological Connectivity: A Classification Approach ...

    EPA Pesticide Factsheets

    Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to repre

  18. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    NASA Astrophysics Data System (ADS)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  19. Developing A National Groundwater-Monitoring Network In Korea

    NASA Astrophysics Data System (ADS)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  20. An Integrated Hydrologic Model and Remote Sensing Synthesis Approach to Study Groundwater Extraction During a Historic Drought in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Thatch, L. M.; Maxwell, R. M.; Gilbert, J. M.

    2017-12-01

    Over the past century, groundwater levels in California's San Joaquin Valley have dropped more than 30 meters in some areas due to excessive groundwater extraction to irrigate agricultural lands and feed a growing population. Between 2012 and 2016 California experienced the worst drought in its recorded history, further exacerbating this groundwater depletion. Due to lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. We use a synthesis of integrated hydrologic model simulations and remote sensing products to quantify the impact of drought and groundwater pumping on the Central Valley water tables. The Parflow-CLM model was used to evaluate groundwater depletion in the San Joaquin River basin under multiple groundwater extraction scenarios simulated from pre-drought through recent drought years. Extraction scenarios included pre-development conditions, with no groundwater pumping; historical conditions based on decreasing groundwater level measurements; and estimated groundwater extraction rates calculated from the deficit between the predicted crop water demand, based on county land use surveys, and available surface water supplies. Results were compared to NASA's Gravity Recover and Climate Experiment (GRACE) data products to constrain water table decline from groundwater extraction during severe drought. This approach untangles various factors leading to groundwater depletion within the San Joaquin Valley both during drought and years of normal recharge to help evaluate which areas are most susceptible to groundwater overdraft, as well as further evaluating the spatially and temporally variable sustainable yield. Recent efforts to improve water management and ensure reliable water supplies are highlighted by California's Sustainable Groundwater Management Act (SGMA) which mandates Groundwater Sustainability Agencies to determine the maximum quantity of groundwater that can be withdrawn through

  1. Hydrologic considerations in defining isolated wetlands

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  2. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    USGS Publications Warehouse

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  3. Modeling turbidity and flow at daily steps in karst using ARIMA/ARFIMA-GARCH error models

    NASA Astrophysics Data System (ADS)

    Massei, N.

    2013-12-01

    Hydrological and physico-chemical variations recorded at karst springs usually reflect highly non-linear processes and the corresponding time series are then very often also highly non-linear. Among others, turbidity, as an important parameter regarding water quality and management, is a very complex response of karst systems to rain events, involving direct transfer of particles from point-source recharge as well as resuspension of particles previously deposited and stored within the system. For those reasons, turbidity modeling has not been well taken in karst hydrological models so far. Most of the time, the modeling approaches would involve stochastic linear models such ARIMA-type models and their derivatives (ARMA, ARMAX, ARIMAX, ARFIMA...). Yet, linear models usually fail to represent well the whole (stochastic) process variability, and their residuals still contain useful information that can be used to either understand the whole variability or to enhance short-term predictability and forecasting. Model residuals are actually not i.i.d., which can be identified by the fact that squared residuals still present clear and significant serial correlation. Indeed, high (low) amplitudes are followed in time by high (low) amplitudes, which can be seen on residuals time series as periods of time during which amplitudes are higher (lower) then the mean amplitude. This is known as the ARCH effet (AutoRegressive Conditional Heteroskedasticity), and the corresponding non-linear process affecting residuals of a linear model can be modeled using ARCH or generalized ARCH (GARCH) non-linear modeling, which approaches are very well known in econometrics. Here we investigated the capability of ARIMA-GARCH error models to represent a ~20-yr daily turbidity time series recorded at a karst spring used for water supply of the city of Le Havre (Upper Normandy, France). ARIMA and ARFIMA models were used to represent the mean behavior of the time series and the residuals clearly

  4. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    USGS Publications Warehouse

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  5. Negative effects of land-use changes in the karst setting of Apulia, southern Italy

    NASA Astrophysics Data System (ADS)

    Parise, Mario

    2010-05-01

    machineries, and favoured by discutable policy of subsidies from the European Community, stone clearing was intensively performed. Wide sectors of Apulia were affected by land use changes, resulting in destruction of the epikarst (Williams, 2008), and of the karst ecosystems therein present as well, through removal of the stones, even of large size, crushing and production of a gravel-size field where to establish crops such as wheat or vineyards. Loss of the natural karst landscape had therefore to be registered over wide territories in the region (Parise & Pascali, 2003). In addition, removal of the original soil had as direct consequence an increase in the erosional processes on the occasion of the main rainstorms, even at those sites characterized by low to very low gradients. Stones of larger size were often piled near cave entrances, or dumped into caves and swallow holes, thus producing a serious danger to cavers, and sometimes impeding the access to important karst caves. All the above changes resulted in heavy degradation of karst, and especially promoted severe erosion in many areas of the region. In some cases, formation of erosional features combined to persistent droughts, thus developing a tendency toward desertification (Sharma, 1998), as already observed in other areas of the Mediterranean basin (Yair, 1983; Atalay, 1999; Geeson et alii, 2002). References Atalay I. (1999) Land use in the karstic lands in the Mediterranean region. Int. J. Speleol., vol. 26B(1/4), p. 111-118. Geeson N.A., Brandt C.J. & Thornes J.B. (Eds.) (2002) Mediterranean desertification. John Wiley & Sons, 440 pp. Parise M. & Pascali V. (2003) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environmental Geology, vol. 44, p. 247-256. Sharma K.D. (1998) The hydrologic indicators of desertification. J. Arid Environ., vol. 39, p. 121-132. Williams P.W. (2008) The role of the epikarst in karst and cave hydrogeology: a review. International Journal of

  6. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    NASA Astrophysics Data System (ADS)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  7. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed

    NASA Astrophysics Data System (ADS)

    Deirmendjian, Loris; Abril, Gwenaël

    2018-03-01

    Streams and rivers emit significant amounts of CO2 and constitute a preferential pathway of carbon transport from terrestrial ecosystems to the atmosphere. However, the estimation of CO2 degassing based on the water-air CO2 gradient, gas transfer velocity and stream surface area is subject to large uncertainties. Furthermore, the stable isotope signature of dissolved inorganic carbon (δ13C-DIC) in streams is strongly impacted by gas exchange, which makes it a useful tracer of CO2 degassing under specific conditions. For this study, we characterized the annual transfers of dissolved inorganic carbon (DIC) along the groundwater-stream-river continuum based on DIC concentrations, stable isotope composition and measurements of stream discharges. We selected a homogeneous, forested and sandy lowland watershed as a study site, where the hydrology occurs almost exclusively through drainage of shallow groundwater (no surface runoff). We observed the first general spatial pattern of decreases in pCO2 and DIC and an increase in δ13C-DIC from groundwater to stream orders 1 and 2, which was due to the experimentally verified faster degassing of groundwater 12C-DIC compared to 13C-DIC. This downstream enrichment in 13C-DIC could be modelled by simply considering the isotopic equilibration of groundwater-derived DIC with the atmosphere during CO2 degassing. A second spatial pattern occurred between stream orders 2 and 4, consisting of an increase in the proportion of carbonate alkalinity to the DIC accompanied by the enrichment of 13C in the stream DIC, which was due to the occurrence of carbonate rock weathering downstream. We could separate the contribution of these two processes (gas exchange and carbonate weathering) in the stable isotope budget of the river network. Thereafter, we built a hydrological mass balance based on drainages and the relative contribution of groundwater in streams of increasing order. After combining with the dissolved CO2 concentrations, we

  8. California Groundwater Units

    USGS Publications Warehouse

    Johnson, Tyler D.; Belitz, Kenneth

    2014-01-01

    The California Groundwater Units dataset classifies and delineates areas within the State of California into one of three groundwater-based polygon units: (1) those areas previously defined as alluvial groundwater basins or subbasins, (2) highland areas that are adjacent to and topographically upgradient of groundwater basins, and (3) highland areas not associated with a groundwater basin, only a hydrogeologic province. In total, 938 Groundwater Units are represented. The Groundwater Units dataset relates existing groundwater basins with their newly delineated highland areas which can be used in subsequent hydrologic studies. The methods used to delineate groundwater-basin-associated highland areas are similar to those used to delineate a contributing area (such as for a lake or water body); the difference is that highland areas are constrained to the immediately surrounding upslope (upstream) area. Upslope basins have their own delineated highland. A geoprocessing tool was created to facilitate delineation of highland areas for groundwater basins and subbasins and is available for download.

  9. A fully integrated SWAT-MODFLOW hydrologic model

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...

  10. U.S. Geological Survey ground-water studies in Missouri

    USGS Publications Warehouse

    Smith, B.J.

    1993-01-01

    The activities of the USGS Water Resources Division in Missouri are conducted by scientists, technicians, and support staff in offices in Rolla, Olivette, and Independence. During 1992, the USGS had cooperative or cost-sharing agreements with about 30 Federal, State, and local agencies involving 20 hydrologic investigations in Missouri; 12 of these investigations included studies of groundwater quantity and quality. Several examples of groundwater studies by the USGS that address specific groundwater issues in Missouri include the occurrence of pesticides, groundwater flow and quality in the Missouri River alluvium near Kansas City, groundwater flow in claypan soils, radioactive- and nitroaromatic-compound contami- nation at Weldon Spring, and hydrologic monitoring of a wetland complex. (USGS)

  11. Hydrogeology of Virginia

    USGS Publications Warehouse

    Nelms, David L.; Harlow, George; Bruce, T. Scott; Bailey, Christopher M.; Sherwood, W. Cullen; Eaton, L. Scott; Powars, David S.

    2016-01-01

    The hydrogeology of Virginia documented herein is in two parts. Part 1 consists of an overview and description of the hydrogeology within each regional aquifer system in the Commonwealth. Part 2 includes discussions of hydrogeologic research topics of current relevance including: 1. the Chesapeake Bay impact structure, 2. subsidence/compaction in the Coastal Plain, 3. groundwater age and aquifer susceptibility, 4. the occurrence of groundwater at depth in fractured-rock and karst terrains, and 5. hydrologic response of wells to earthquakes around the world.

  12. Using delta15N- and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China.

    PubMed

    Liu, Cong-Qiang; Li, Si-Liang; Lang, Yun-Chao; Xiao, Hua-Yun

    2006-11-15

    Nitrate pollution of the karstic groundwater is an increasingly serious problem with the development of Guiyang, the capital city of Guizhou Province, southwest China. The higher content of NO3- in groundwater compared to surface water during both summer and winter seasons indicates that the karstic groundwater system cannot easily recover once contaminated with nitrate. In order to assess the sources and conversion of nitrate in the groundwater of Guiyang, we analyzed the major ions, delta(15)N-NH4+, delta(15)N-NO3-, and delta(18)O-NO3- in surface and groundwater samples collected during both summer and winter seasons. The results show that nitrate is the major dominant species of nitrogen in most water samples and there is a big variation of nitrate sources in groundwater between winter and summer season, due to fast response of groundwater to rain or surface water in the karst area. Combined with information on NO3- /Cl-, the variations of the isotope values of nitrate in the groundwater show a mixing process of multiple sources of nitrate, especially in the summer season. Chemical fertilizer and nitrification of nitrogen-containing organic materials contribute nitrate to suburban groundwater, while the sewage effluents and denitrification mainly control the nitrate distribution in urban groundwater.

  13. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris

    In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (U aq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time seriesmore » trends for U aq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in U aq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U aq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While U aq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less

  14. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

    DOE PAGES

    Zachara, John M.; Chen, Xingyuan; Murray, Chris; ...

    2016-03-04

    In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (U aq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time seriesmore » trends for U aq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in U aq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U aq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While U aq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less

  15. Multi-tracer investigation of groundwater residence time in a karstic aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Land, Lewis; Huff, G. F.

    2010-03-01

    Several natural and anthropogenic tracers have been used to evaluate groundwater residence time within a karstic limestone aquifer in southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge, on the northeast margin of the Roswell Artesian Basin. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for threatened and endangered species, there is concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding karst conduit flow. A better understanding of groundwater residence time is required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results indicate that the artesian aquifer contains a significant component of water recharged within the last 10-50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.

  16. Multi-Tracer Investigation of Groundwater Residence Time in a Karstic Aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Land, L. A.; Huff, R.

    2009-12-01

    Several natural and anthropogenic tracers are used to evaluate groundwater residence time within the karstic limestone aquifer of the Roswell Artesian Basin, southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for a number of threatened and endangered species, Refuge managers have expressed concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding the role of karst conduit flow. A better understanding of groundwater residence time is thus required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results of tracer investigations indicate that the artesian aquifer contains a significant component of water recharged within the last 10 to 50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.

  17. Use of molecular markers to compare Escherichia coli transport to traditional groundwater tracers in epikarst

    USDA-ARS?s Scientific Manuscript database

    Bacterial contamination of karst aquifers is a concern as water quality across the globe deteriorates in the face of decreasing water security. Traditional groundwater tracers (dye and microspheres) do not exhibit surface properties similar to bacteria and pathogens and therefore are not good proxie...

  18. Coastal groundwater discharge for the U.S. East and Gulf Coasts calculated with three-dimensional groundwater flow models

    NASA Astrophysics Data System (ADS)

    Befus, K. M.; Kroeger, K. D.; Smith, C. G.; Swarzenski, P. W.

    2017-12-01

    Fresh groundwater discharge to coastal environments contribute to the physical and chemical conditions of coastal waters. At regional scales, groundwater fluxes remain poorly constrained, representing uncertainty in both water and chemical budgets that have implications for downstream ecosystem health and for how human activities alter coastal hydrologic processes. Coastal groundwater discharges remain widely unconstrained due to the interconnectedness of highly heterogeneous hydrogeologic frameworks and hydrologic conditions. We use regional-scale, three-dimensional groundwater flow models with the best available hydrostratigraphic framework data to calculate the magnitude of groundwater discharging from coastal aquifers to coastal waterbodies along the eastern U.S. In addition, we constrain the inland areas that contribute to coastal groundwater discharges using particle tracking. We find that 27 km3/yr of groundwater enters coastal waters of the eastern U.S. and Gulf of Mexico and was over 175,000 km2. The contributing areas to coastal groundwater discharge extended kilometers inland and often were supplied by recharge occurring tens of kilometers inland. These results suggest that coastal groundwater discharges rely on larger contributing areas and potentially transport more dissolved constituents than previously calculated, which are important factors for constraining the role of groundwater in coastal chemical budgets and its impacts on coastal ecosystems.

  19. Synergetic use of Sentinel-1 and 2 to improve agro-hydrological modeling. Results of groundwater pumping estimates in south-India and nitrogen excess in south-west of France

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Le Page, M.; Kerr, Y. H.; Selles, A.; Mermoz, S.; Al-Bitar, A.; Muddu, S.; Gascoin, S.; Marechal, J. C.; Durand, P.; Salmon-Monviola, J.; Ceschia, E.; Bustillo, V.

    2016-12-01

    Nitrogen transfers at agricultural catchment level are intricately linked to water transfers. Agro-hydrological modeling approaches aim at integrating spatial heterogeneity of catchment physical properties together with agricultural practices to spatially estimate the water and nitrogen cycles. As in hydrology, the calibration schemes are designed to optimize the performance of the temporal dynamics and biases in model simulations, while ignoring the simulated spatial pattern. Yet, crop uses, i.e. transpiration and nitrogen exported by harvest, are the main fluxes at the catchment scale, highly variable in space and time. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to reset soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model. This study takes two agro-hydrological contexts as demonstrators: 1-spatial nitrogen excess estimation in south-west of France, and 2-groundwater extraction for rice irrigation in south-India. Spatio-temporal patterns are involved in respectively surface water contamination due to over-fertilization and local groundwater shortages due to over-pumping for above rice inundation. Optimized Leaf Area Index profiles are simulated at the satellite images pixel level using an agro-hydrological model to reproduce spatial and temporal crop growth dynamics in south-west of France, improving the in-stream nitrogen fluxes by 12%. Accurate detection of irrigated area extents are obtained with the thresholding method based on optical indices, with a kappa of 0.81 for the dry season 2016. The actual monsoon season is monitored and will be presented. These extents drive the groundwater pumping and are highly variable in time (from 2 to 8% of the total area).

  20. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  1. Futuristic isotope hydrology in the Gulf region

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, U.; Hadi, Khaled

    2018-03-01

    The Gulf region is one of the most water-stressed parts in the world. Water in the region is very scarce, shortage of supply and lacking of renewable water resources, while the demand for water is growing day by day. It is thus essential to implement modern approaches and technologies in addressing water-related issues. In this context, isotope hydrology will provide invaluable aid. Some of the most important areas of futuristic applications of isotope hydrology include evaluation of aquifer recharge, storage and their recovery system, understanding of dynamic changes due to long-term exploitation of the groundwater, development and management of shared groundwater aquifers, fresh groundwater discharge along the Arabian Gulf, identification and quantification of hydrocarbon contamination in groundwater; soil moisture and solute movement in unsaturated zone, paleoclimate reconstruction, etc. Literature survey suggests, in general, not many isotope studies on the above have been reported.

  2. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  3. Highway runoff in areas of karst topography.

    DOT National Transportation Integrated Search

    2004-01-01

    Karst terrain is characterized by sinkholes, depressions, caves, and underground drainage, generally underlain by soluble rocks such as limestone and dolomite. Because natural filtration through soil is limited in karst areas, pollutants in highway s...

  4. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  5. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources.Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system.Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  6. Study of Basin Recession Characteristics and Groundwater Storage Properties

    NASA Astrophysics Data System (ADS)

    Yen-Bo, Chen; Cheng-Haw, Lee

    2017-04-01

    Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only

  7. Numerical modeling of the agricultural-hydrologic system in Punjab, India

    NASA Astrophysics Data System (ADS)

    Nyblade, M.; Russo, T. A.; Zikatanov, L.; Zipp, K.

    2017-12-01

    The goal of food security for India's growing population is threatened by the decline in freshwater resources due to unsustainable water use for irrigation. The issue is acute in parts of Punjab, India, where small landholders produce a major quantity of India's food with declining groundwater resources. To further complicate this problem, other regions of the state are experiencing groundwater logging and salinization, and are reliant on canal systems for fresh water delivery. Due to the lack of water use records, groundwater consumption for this study is estimated with available data on crop yields, climate, and total canal water delivery. The hydrologic and agricultural systems are modeled using appropriate numerical methods and software. This is a state-wide hydrologic numerical model of Punjab that accounts for multiple aquifer layers, agricultural water demands, and interactions between the surface canal system and groundwater. To more accurately represent the drivers of agricultural production and therefore water use, we couple an economic crop optimization model with the hydrologic model. These tools will be used to assess and optimize crop choice scenarios based on farmer income, food production, and hydrologic system constraints. The results of these combined models can be used to further understand the hydrologic system response to government crop procurement policies and climate change, and to assess the effectiveness of possible water conservation solutions.

  8. Karst database development in Minnesota: Design and data assembly

    USGS Publications Warehouse

    Gao, Y.; Alexander, E.C.; Tipping, R.G.

    2005-01-01

    The Karst Feature Database (KFD) of Minnesota is a relational GIS-based Database Management System (DBMS). Previous karst feature datasets used inconsistent attributes to describe karst features in different areas of Minnesota. Existing metadata were modified and standardized to represent a comprehensive metadata for all the karst features in Minnesota. Microsoft Access 2000 and ArcView 3.2 were used to develop this working database. Existing county and sub-county karst feature datasets have been assembled into the KFD, which is capable of visualizing and analyzing the entire data set. By November 17 2002, 11,682 karst features were stored in the KFD of Minnesota. Data tables are stored in a Microsoft Access 2000 DBMS and linked to corresponding ArcView applications. The current KFD of Minnesota has been moved from a Windows NT server to a Windows 2000 Citrix server accessible to researchers and planners through networked interfaces. ?? Springer-Verlag 2005.

  9. Evaluating groundwater flow using passive electrical measurements

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  10. [Substances transport in an underground river of typical karst watershed during storm events].

    PubMed

    Yang, Ping-Heng; Kuang, Ying-Lun; Yuan, Wen-Hao; Jia, Peng; He, Qiu-Fang; Lin, Yu-Shi

    2009-11-01

    Hydrologic process, turbidity, suspended particles matters (SPM), major cations and TOC concentrations during two storm events in late April 2008 were monitored at Jiangjia Spring which is the outlet of Qingmu Guan underground river system. Scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) analyses of SPM were also performed in order to investigate the transport characteristics of substances, such as SPM, turbidity and major cations in the underground river of typical karst watershed. The results show that at a single and well-developed karst conduit of Jiangjia Spring, discharge, turbidity, and concentrations of SPM, major cations and TOC respond promptly to the rainfall. The carbonate-derived cations including Ca2+, Mg2+ and Sr2+ are subject to dilution effect during the rising limb of discharge. The elevation in turbidity and SPM concentration is a result of the gradual increase of allochthonous substances (soil) flux input from the surface. Al3+, Fe, Mn, Ba2+ and TOC are concomitant substances of SPM. And their concentrations are ascending with turbid rise. The flux of SPM in diameter > 0.45 microm in the underground river is about 9.7 tons during the events. The bad water quality suggests us that the spring water is unfit to drink without purification during the period of rising and recession time of discharge at Jiangjia Spring. Thus, soil erosion and nutrient losing not only strongly destroy the fragile karst ecological environment, but also lead to non-point source pollution, and seriously threaten the drinking water safety of locals.

  11. Gypsum-karst problems in constructing dams in the USA

    USGS Publications Warehouse

    Johnson, K.S.

    2008-01-01

    Gypsum is a highly soluble rock and is dissolved readily to form caves, sinkholes, disappearing streams, and other karst features that typically are also present in limestones and dolomites. Gypsum karst is widespread in the USA and has caused problems at several sites where dams were built, or where dam construction was considered. Gypsum karst is present (at least locally) in most areas where gypsum crops out, or is less than 30-60 m below the land surface. These karst features can compromise on the ability of a dam to hold water in a reservoir, and can even cause collapse of a dam. Gypsum karst in the abutments or foundation of a dam can allow water to pass through, around, or under a dam, and solution channels can enlarge quickly, once water starts flowing through such a karst system. The common procedure for controlling gypsum karst beneath the dam is a deep cut-off trench, backfilled with impermeable material, or a close-spaced grout curtain that hopefully will fill all cavities. In Oklahoma, the proposed Upper Mangum Dam was abandoned before construction, because of extensive gypsum karst in the abutments and impoundment area. Catastrophic failure of the Quail Creek Dike in southwest Utah in 1989 was due to flow of water through an undetected karstified gypsum unit beneath the earth-fill embankment. The dike was rebuilt, at a cost of US $12 million, with construction of a cut-off trench 600 m long and 25 m deep. Other dams in the USA with severe gypsum-karst leakage problems in recent years are Horsetooth and Carter Lake Dams, in Colorado, and Anchor Dam, in Wyoming. ?? 2007 Springer-Verlag.

  12. Analysis of the maximum discharge of karst springs

    NASA Astrophysics Data System (ADS)

    Bonacci, Ognjen

    2001-07-01

    Analyses are presented of the conditions that limit the discharge of some karst springs. The large number of springs studied show that, under conditions of extremely intense precipitation, a maximum value exists for the discharge of the main springs in a catchment, independent of catchment size and the amount of precipitation. Outflow modelling of karst-spring discharge is not easily generalized and schematized due to numerous specific characteristics of karst-flow systems. A detailed examination of the published data on four karst springs identified the possible reasons for the limitation on the maximum flow rate: (1) limited size of the karst conduit; (2) pressure flow; (3) intercatchment overflow; (4) overflow from the main spring-flow system to intermittent springs within the same catchment; (5) water storage in the zone above the karst aquifer or epikarstic zone of the catchment; and (6) factors such as climate, soil and vegetation cover, and altitude and geology of the catchment area. The phenomenon of limited maximum-discharge capacity of karst springs is not included in rainfall-runoff process modelling, which is probably one of the main reasons for the present poor quality of karst hydrological modelling. Résumé. Les conditions qui limitent le débit de certaines sources karstiques sont présentées. Un grand nombre de sources étudiées montrent que, sous certaines conditions de précipitations extrêmement intenses, il existe une valeur maximale pour le débit des sources principales d'un bassin, indépendante des dimensions de ce bassin et de la hauteur de précipitation. La modélisation des débits d'exhaure d'une source karstique n'est pas facilement généralisable, ni schématisable, à cause des nombreuses caractéristiques spécifiques des écoulements souterrains karstiques. Un examen détaillé des données publiées concernant quatre sources karstiques permet d'identifier les raisons possibles de la limitation de l'écoulement maximal: (1

  13. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  14. Isotope hydrology of deep groundwater in Syria: renewable and non-renewable groundwater and paleoclimate impact

    NASA Astrophysics Data System (ADS)

    Al-Charideh, A.; Kattaa, B.

    2016-02-01

    The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (-7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60-80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (-7.0 ‰) is also similar to modern precipitation with a 14C range of 15-45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (-8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.

  15. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  16. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  17. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.

    USGS Publications Warehouse

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.

    1996-01-01

    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  18. Sustainable groundwater management in California

    USGS Publications Warehouse

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  19. Analysis of Groundwater Anomalies Estimated by GRACE and GLDAS Satellite-based Hydrological Model in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lotfata, A.; Ambinakudige, S.

    2017-12-01

    Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.

  20. Age Distribution of Groundwater

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.

    2012-04-01

    Groundwater at the discharge point comprises a mixture of water from different flow lines with different travel time and therefore has no discrete age but an age distribution. The age distribution can be assessed by measuring how a pulse shaped tracer moves through the groundwater system. Detection of the time delay and the dispersion of the peak in the groundwater compared to the tracer input reveals the mean residence time and the mixing parameter. Tritium from nuclear weapons testing in the early 1960s resulted in a peak-shaped tritium input to the whole hydrologic system on earth. Tritium is the ideal tracer for groundwater because it is an isotope of hydrogen and therefore is part of the water molecule. Tritium time series data that encompass the passage of the bomb tritium pulse through the groundwater system in all common hydrogeologic situations in New Zealand demonstrate a semi-systematic pattern between age distribution parameters and hydrologic situation. The data in general indicate high fraction of mixing, but in some cases also indicate high piston flow. We will show that still, 45 years after the peak of the bomb tritium, it is possible to assess accurately the parameters of age distributions by measuring the tail of the bomb tritium.

  1. A model of depressional wetland formation in low-relief karst landscapes

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Bianchi, T. S.; Watts, A.

    2014-12-01

    Karst landscapes are formed by the self-reinforcing dissolution of limestone and other soluble rocks, and these positive feedbacks can create a variety of landforms depending on initial topography, climate, bedrock characteristics, and potentially, the activity of biota. In Big Cypress National Preserve (BICY), a low-relief karst landscape in southwestern FL (USA), depressional wetlands, are interspersed within an upland matrix in a regular pattern. This landscape is characterized by over-dispersion of wetland patches, periodic variation in bedrock depth and soil thickness, and distinct bi-modality of these and other soil properties. We hypothesize that the structure of the BICY landscape reflects the concurrent effects of local positive feedbacks among hydroperiod, vegetation productivity and bedrock dissolution; these local processes may ultimately be constrained by landscape scale limitations of water volume. We further hypothesize that low relief and shallow water tables are essential boundary conditions for the emergence of regular patterning of wetlands. To explore these hypotheses, we have developed a quasi-spatial model of a single nascent wetland and its catchment, where the expansion of the wetland basin is driven by acidity associated with belowground root production and aquatic metabolism and their effects on carbonate mineral dissolution, and by the lateral and vertical discharge of water between wetlands and bedrock porosity. This model can, depending on boundary conditions, recreate a range of karst features, including vertical dissolution holes, extensive wetlands that overtake the entire basin, or smaller wetlands whose size equilibrates at a small proportion of the catchment area. This last endpoint, a landform similar to those observed in BICY, occurs only in response to relatively shallow water tables, limited hydrologic inputs, and strong positive feedbacks of biotic activity on dissolution.

  2. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    USGS Publications Warehouse

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  3. Hydrogeochemistry and isotope hydrology of surface water and groundwater systems in the Ellembelle district, Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Edjah, A. K. M.; Akiti, T. T.; Osae, S.; Adotey, D.; Glover, E. T.

    2017-05-01

    An integrated approach based on the hydrogeochemistry and the isotope hydrology of surface water and groundwater was carried out in the Ellembelle district of the Western Region of Ghana. Measurement of physical parameters (pH, temperature, salinity, total dissolved solutes, total hardness and conductivity), major ions (Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, SO4 2- and NO3 -), and stable isotopes (δ2H and δ18O) in 7 rivers, 13 hand-dug wells and 18 boreholes were taken. Na+ was the dominant cation and HCO3 - was the dominant anion for both rivers and groundwater. The dominant hydrochemical facies for the rivers were Na-K-HCO3 - type while that of the groundwater (hand-dug wells and boreholes) were Na-Cl and Na-HCO3 - type. According to the Gibbs diagram, majority of the rivers fall in the evaporation-crystallization field and majority of the hand-dug wells and the boreholes fall in the rock dominance field. From the stable isotope composition measurements, all the rivers appeared to be evaporated, 60 % of the hand-dug wells and 70 % of the boreholes clustered along and in between the global meteoric water line and the local meteoric water line, suggesting an integrative and rapid recharge from meteoric origin.

  4. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments

    NASA Astrophysics Data System (ADS)

    Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao

    2015-09-01

    Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.

  5. Transport of agricultural contaminants through karst soil

    USDA-ARS?s Scientific Manuscript database

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  6. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  7. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  8. The genetic structure of the chloride ion runoff on the example of karst and non-karst geosystems of Arkhangelsk oblast

    NASA Astrophysics Data System (ADS)

    Khayrullina, D. N.; Kurzhanova, A. A.

    2018-01-01

    This paper deals with the estimate the structure of the chloride ion runoff from the karst (on the example of the Sula river basin) and non-karst (on the example of the Vaga river basin) geosystems of Arkhangelsk oblast. The contribution of the surface component predominates in the structure of the chloride ion runoff.For example, the input of surface ion runoff is 49% (for the Sula river basin), 55% (for the Vaga river basin). In time aspect the highest values of variability of the components of the chloride ion runoff are noted for karst geosystems and vary from 38.5% to 55.4% and from 24.7% to 42.9% - for non-karst geosystems.Finally, there is prevalence of the local factors influence because the atmospheric component decreases while ion runoff increases.

  9. Book review: Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier “saturated” indicating that the pressure of the pore water is greater than atmospheric. Briefly stated, recharge is downward flux across the water table. The term “groundwater recharge” can refer either to the multiple interacting processes generating and controlling the flux or to the fluxR itself. When referring to flux, R can represent either (1) a value integrated over large areas and long periods of time or (2) a point value, or instantaneous flux density, that varies erratically as well as continuously in time and space. Knowing how R is distributed through space and time is required for understanding the dynamics of groundwater flow and transport in any watershed, aquifer, or selected domain of interest and for understanding heads, flow paths, and discharges to streams, wetlands, and other surface water bodies. Clearly among the most important of hydrologic fluxes, R is also one of the most difficult to measure. Advancements in hydrologic science have proceeded surprisingly in lockstep with advances in determining R.

  10. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  11. Hydroeconomic modeling of sustainable groundwater management

    NASA Astrophysics Data System (ADS)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  12. An Experimental Investigation of Infiltration in a Shallow Karst System

    NASA Astrophysics Data System (ADS)

    Bellin, A.; Becker, M. W.; Borsato, A.

    2008-12-01

    We present preliminary results of a field investigation of infiltration in a karst terrain in the Dolomiti del Brenta ridge, North-East Italy. A sub-horizontal cave 40 m deep drains a small catchment of about 6,000 m2 at the elevation of 2,600 m a.s.l. in a fractured triassic dolomite formation. The surface is characterized by a thin soil cover, vertical fractures, and karst collapse features (dolines). Water infiltrates through the dolines and vertical shafts which are connected to an unsaturated cave system. Within the cave, water discharge, temperature, and electric conductivity are recorded. Meterological conditions were measured at a weather station installed within the cave contributing area. Furthermore, in order to study residence time distribution in the summer 2007 we conducted a tracer experiment by injecting fluorescein in one of the dolines and recording its concentration within the cave. The recorded time series are statistically non-stationary with a wavelet spectrum strongly variable in time. However, a closer inspection of the water discharge wavelet spectrum reveals three periods in which the local power spectrum is nearly time invariant: November-April, April -July and August-October. In the first period we observe a slow exponential decline of the water discharge. The season is dominated by release of water from subsurface storage, in absence of surface input. In the second period, the system is dominated by snowmelt with a time lag that reduces from 9 hours to 1 hour through the melting season. The variation in time apparently corresponds with reduction in snowpack thickness. In the final period, the system is dominated by rainfall. The lag time in this period is on the order of 1 hour or less. These results suggest that in this hydrologic system the distribution of the residence time, and thus the transfer function relating input to output signals, is not state invariant, as typically assumed in applications. Rather, hydraulic residence time

  13. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    NASA Astrophysics Data System (ADS)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  14. Identifying the groundwater basin boundaries, using environmental isotopes: a case study

    NASA Astrophysics Data System (ADS)

    Demiroğlu, Muhterem

    2017-06-01

    Groundwater, which is renewable under current climatic conditions separately from other natural sources, in fact is a finite resource in terms of quality and fossil groundwater. Researchers have long emphasized the necessity of exploiting, operating, conserving and managing groundwater in an efficient and sustainable manner with an integrated water management approach. The management of groundwater needs reliable information about changes on groundwater quantity and quality. Environmental isotopes are the most important tools to provide this support. No matter which method we use to calculate the groundwater budget and flow equations, we need to determine boundary conditions or the physical boundaries of the domain. The Groundwater divide line or basin boundaries that separate the two adjacent basin recharge areas from each other must be drawn correctly to be successful in defining complex groundwater basin boundary conditions. Environmental isotope data, as well as other methods provide support for determining recharge areas of the aquifers, especially for karst aquifers, residence time and interconnections between aquifer systems. This study demonstrates the use of environmental isotope data to interpret and correct groundwater basin boundaries giving as an example the Yeniçıkrı basin within the main Sakarya basin.

  15. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  16. Characterization of the hydrologic resources of San Miguel County, New Mexico, and identification of hydrologic data gaps, 2011

    USGS Publications Warehouse

    Matherne, Anne Marie; Stewart, Anne M.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with San Miguel County, New Mexico, conducted a study to assess publicly available information regarding the hydrologic resources of San Miguel County and to identify data gaps in that information and hydrologic information that could aid in the management of available water resources. The USGS operates four continuous annual streamgages in San Miguel County. Monthly discharge at these streamgages is generally bimodally distributed, with most runoff corresponding to spring runoff and to summer monsoonal rains. Data compiled since 1951 on the geology and groundwater resources of San Miguel County are generally consistent with the original characterization of depth and availability of groundwater resources and of source aquifers. Subsequent exploratory drilling identified deep available groundwater in some locations. Most current (2011) development of groundwater resources is in western San Miguel County, particularly in the vicinity of El Creston hogback, the hogback ridge just west of Las Vegas, where USGS groundwater-monitoring wells indicate that groundwater levels are declining. Regarding future studies to address identified data gaps, the ability to evaluate and quantify surface-water resources, both as runoff and as potential groundwater recharge, could be enhanced by expanding the network of streamgages and groundwater-monitoring wells throughout the county. A series of seepage surveys along the lengths of the rivers could help to determine locations of surface-water losses to and gains from the local groundwater system and could help to quantify the component of streamflow attributable to irrigation return flow; associated synoptic water-quality sampling could help to identify potential effects to water quality attributable to irrigation return flow. Effects of groundwater withdrawals on streamflow could be assessed by constructing monitoring wells along transects between production wells and stream reaches

  17. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  18. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E.; Sutanudjaja, E.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and also supplies water for agricultural and industrial activities. During times of drought, the large natural groundwater storage provides a buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a transient global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013) combined with information about e.g. aquifer thickness and presence of less permeable, impermeable, and semi-impermeable layers. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. We validated simulated groundwater heads with observations, from North America and Australia, resulting in a coefficient of determination of 0.8 and 0.7 respectively. This shows that it is feasible to build a global groundwater model using best available

  19. An examination of short-term variations in water quality at a karst spring in Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.; Meiman, J.

    1996-01-01

    Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods. A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time. A phreatic conduit segment,more » calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring. A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water. The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations. Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin.« less

  20. Explicit modeling of groundwater-surface water interactions using a simple bucket-type model

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan

    2017-04-01

    Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes