Sample records for kaskad opredelenie vremennykh

  1. iss031e140701

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140701 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  2. iss031e140699

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140699 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  3. Engineering Margin Factors Used in the Design of the VVER Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Lizorkin, M. P.; Shishkov, L. K.

    2017-12-01

    The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.

  4. Electron-Muon Identification by Atmospheric Shower and Electron Beam in a New EAS Detector Concept

    NASA Astrophysics Data System (ADS)

    Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.

    2015-03-01

    We present results demonstrating the time resolution and μ/e separation capabilities of a new concept for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10-200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  5. Spacecraft Solar Particle Event (SPE) Shielding: Shielding Effectiveness as a Function of SPE model as Determined with the FLUKA Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina

    2010-01-01

    Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event

  6. Cosmic ray knee and new physics at the TeV scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barceló, Roberto; Masip, Manuel; Mastromatteo, Iacopo, E-mail: rbarcelo@ugr.es, E-mail: masip@ugr.es, E-mail: mastroma@sissa.it

    2009-06-01

    We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E{sup −2.7} to E{sup −3.1} the cross section must grow like E{sup 0.4+β}more » above the knee, where β = 0.3–0.6 parametrizes the energy dependence of the age (τ∝E{sup −β}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m{sub χ}/m{sub p}) E{sub knee} ≈ 10{sup 8} GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.« less

  7. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The radiation fields around a proton therapy facility: A comparison of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ottaviano, G.; Picardi, L.; Pillon, M.; Ronsivalle, C.; Sandri, S.

    2014-02-01

    A proton therapy test facility with a beam current lower than 10 nA in average, and an energy up to 150 MeV, is planned to be sited at the Frascati ENEA Research Center, in Italy. The accelerator is composed of a sequence of linear sections. The first one is a commercial 7 MeV proton linac, from which the beam is injected in a SCDTL (Side Coupled Drift Tube Linac) structure reaching the energy of 52 MeV. Then a conventional CCL (coupled Cavity Linac) with side coupling cavities completes the accelerator. The linear structure has the important advantage that the main radiation losses during the acceleration process occur to protons with energy below 20 MeV, with a consequent low production of neutrons and secondary radiation. From the radiation protection point of view the source of radiation for this facility is then almost completely located at the final target. Physical and geometrical models of the device have been developed and implemented into radiation transport computer codes based on the Monte Carlo method. The scope is the assessment of the radiation field around the main source for supporting the safety analysis. For the assessment independent researchers used two different Monte Carlo computer codes named FLUKA (FLUktuierende KAskade) and MCNPX (Monte Carlo N-Particle eXtended) respectively. Both are general purpose tools for calculations of particle transport and interactions with matter, covering an extended range of applications including proton beam analysis. Nevertheless each one utilizes its own nuclear cross section libraries and uses specific physics models for particle types and energies. The models implemented into the codes are described and the results are presented. The differences between the two calculations are reported and discussed pointing out disadvantages and advantages of each code in the specific application.

  9. DETERMINATION OF C1 AND Cx CELLULOLYTIC ACTIVITIES IN ENZYME PREPARATIONS OF MOLD FUNGI (Opredelenie C1 i Cx Tsellyuloliticheskikh Aktivnostei v Fermentnykh Preparatakh iz Plesnevykh Gribov),

    DTIC Science & Technology

    Trichotecium roseum, Aspergillus awamory, Asp. niger , Asp. flavus. Differences in the distribution of C1 - and Cx - activities in the preparations of various strains of the same fungus (Asp. awamory, Asp. oryzae) are shown. (Author)

  10. Spacecraft Solar Particle Event (SPE) Shielding: Shielding Effectiveness as a Function of SPE Model as Determined with the FLUKA Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Atwell, W. A.; Reddell, B.; Rojdev, K.

    2010-12-01

    In the this paper, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event effect (SEE) environments behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i.e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations are fully three dimensional with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. FLUKA is a fully integrated and extensively verified Monte Carlo simulation package for the interaction and transport of high-energy particles and nuclei in matter. The effects are reported of both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. SPE heavy ion spectra are not addressed. Our results, in agreement with previous studies, show that use of the Exponential form of the event spectra can seriously underestimate spacecraft SPE TID and SEE environments in some, but not all, shielding mass cases. The SPE spectra investigated are taken from four specific SPEs that produced ground-level events (GLEs) during solar cycle 23 (1997-2008). GLEs are produced by highly energetic solar particle events (ESP), i.e., those that contain significant fluences of 700 MeV to 10 GeV protons. Highly energetic SPEs are implicated in increased rates of spacecraft anomalies and spacecraft failures. High-energy protons interact with Earth’s atmosphere via nuclear reaction to produce secondary particles, some of which are neutrons that can be detected at the Earth’s surface by the global neutron monitor network. GLEs are one part of the overall SPE resulting from a particular solar flare or coronal mass ejection event on the sun. The ESP part of the particle event, detected by spacecraft