Sample records for kata nenryo denchi

  1. Energetics of basic karate kata.

    PubMed

    Bussweiler, Jens; Hartmann, Ulrich

    2012-12-01

    Knowledge about energy requirements during exercises seems necessary to develop training concepts in combat sport Karate. It is a commonly held view that the anaerobic lactic energy metabolism plays a key role, but this assumption could not be confirmed so far. The metabolic cost and fractional energy supply of basic Karate Kata (Heian Nidan, Shotokan style) with duration of about 30 s were analyzed. Six male Karateka [mean ± SD (age 29 ± 8 years; height 177 ± 5 cm, body mass 75 ± 9 kg)] with different training experience (advanced athletes, experts, elite athletes) were examined while performing one time and two time continuously the sport-specific movements. During Kata performance oxygen uptake was measured with a portable spirometric device, blood lactate concentrations were examined before and after testing and fractional energy supply was calculated. The results have shown that on average 52 % of the energy supply for one Heian Nidan came from anaerobic alactic metabolism, 25 % from anaerobic lactic and 23 % from aerobic metabolism. For two sequentially executed Heian Nidan and thus nearly doubling the duration, the calculated percentages were 33, 25 and 42 %. Total energy demand for one Kata and two Kata was approximately 61 and 99 kJ, respectively. Despite measured blood lactate concentrations up to 8.1 mmol l(-1), which might suggest a dominance of lactic energy supply, a lactic fraction of only 17-31 % during these relatively short and intense sequences could be found. A heavy use of lactic energy metabolism had to be rejected.

  2. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-05

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of "group spell" upon Shotokan black-belt performance of Heian kata.

    PubMed

    Layton, C; Moran, P

    1999-10-01

    11 experienced black-belt subjects were individually timed on each of the five Heian kata and then timed again when performing as part of a group. The pull of the group had a significant effect upon timing on two of the kata.

  4. Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa

    PubMed Central

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J.; Mahtani, Harry K.; Li, Qian; VanderWielen, Bradley D.; Makris, Thomas M.; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D.; Irvin, Randall T.; Schurr, Michael J.; Lancaster, Jack R.; Kovall, Rhett A.; Hassett, Daniel J.

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (K d ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  5. Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction.

    PubMed

    Xu, X Q; Li, L P; Pan, S Q

    2001-11-01

    Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A

  6. Changes in Shotokan karate black-belt Heian kata performance times: a longitudinal study.

    PubMed

    Layton, C; Lawrence, J M; Moran, P

    1999-12-01

    10 experienced black-belt subjects were individually timed on each of the five Heian kata and then timed again four years later. Performance time increased significantly in four of the kata, and this was interpreted as a positive progression.

  7. Kata techniques training consistently decreases stereotypy in children with autism spectrum disorder.

    PubMed

    Bahrami, Fatimah; Movahedi, Ahmadreza; Marandi, Sayed Mohammad; Abedi, Ahmad

    2012-01-01

    The effects of 14 weeks of Kata techniques training on stereotypic behaviors of children with autism spectrum disorders (ASD) were investigated. The study included 30 eligible (diagnosed ASD, school age) children with ages ranging from 5 to 16 years whom they assigned to an exercise (n=15) or a no-exercise control group (n=15). Participants of the exercise group received Kata techniques instruction four times per week for 14 weeks (56 sessions). Stereotypy was assessed at baseline (pre-intervention), week 14 (post-intervention), and at one month follow up in both groups. Results showed that Kata techniques training significantly reduced stereotypy in the exercise group. Following participation in Kata techniques training, stereotypy decreased from baseline levels by a M of 42.54% across participants. Interestingly, after 30 days of no practice, stereotypy in the exercise group remained significantly decreased compared to pre-intervention time. The participants of the control group did not show significant changes in the stereotypy. Teaching martial arts techniques to children with ASD for a long period of time consistently decreased their stereotypic behaviors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Time taken as a determinant of advancement in Shotokan karate black-belt Heian kata performance.

    PubMed

    Layton, C; Avenell, L

    1999-12-01

    30 experienced black-belt subjects were individually timed on each of the five Heian kata. Significant relationships were found between years of training and increased performance time on all the kata and for four with age controlled. The multiple correlation was significant.

  9. Differences in kata performance time and distance from a marker for experienced Shotokan karateka under normal sighted and blindfolded conditions.

    PubMed

    Layton, Clive; Avenell, Leon

    2002-08-01

    10 experienced Shotokan karateka were tested on performance time and distance from a marker on the five Heian kata under normal sighted and blind-folded conditions. Whilst each kata's line of movement is different, it is the intention to start and finish at the same location. Analysis showed that despite an average of 16.8 yr. of training, whilst timing was not significantly affected on four of the kata by subjects being deprived of the visual sense, the group's mean change in distance from an original marker was significant for performances on three of the kata.

  10. Kata Techniques Training Consistently Decreases Stereotypy in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Bahrami, Fatimah; Movahedi, Ahmadreza; Marandi, Sayed Mohammad; Abedi, Ahmad

    2012-01-01

    The effects of 14 weeks of Kata techniques training on stereotypic behaviors of children with autism spectrum disorders (ASD) were investigated. The study included 30 eligible (diagnosed ASD, school age) children with ages ranging from 5 to 16 years whom they assigned to an exercise (n = 15) or a no-exercise control group (n = 15). Participants of…

  11. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain.

    PubMed

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Comparison of Two Variants Of a Kata Technique (Unsu): The Neuromechanical Point of View

    PubMed Central

    Camomilla, Valentina; Sbriccoli, Paola; Mario, Alberto Di; Arpante, Alessandro; Felici, Francesco

    2009-01-01

    The objective of this work was to characterize from a neuromechanical point of view a jump performed within the sequence of Kata Unsu in International top level karateka. A modified jumping technique was proposed to improve the already acquired technique. The neuromechanical evaluation, paralleled by a refereeing judgment, was then used to compare modified and classic technique to test if the modification could lead to a better performance capacity, e.g. a higher score during an official competition. To this purpose, four high ranked karateka were recruited and instructed to perform the two jumps. Surface electromyographic signals were recorded in a bipolar mode from the vastus lateralis, rectus femoris, biceps femoris, gluteus maximus, and gastrocnemious muscles of both lower limbs. Mechanical data were collected by means of a stereophotogrammetric system and force platforms. Performance was associated to parameters characterizing the initial conditions of the aerial phase and to the CoM maximal height. The most critical elements having a negative influence on the arbitral evaluation were associated to quantitative error indicators. 3D reconstruction of the movement and videos were used to obtain the referee scores. The Unsu jump was divided into five phases (preparation, take off, ascending flight, descending flight, and landing) and the critical elements were highlighted. When comparing the techniques, no difference was found in the pattern of sEMG activation of the throwing leg muscles, while the push leg showed an earlier activation of RF and GA muscles at the beginning of the modified technique. The only significant improvement associated with the modified technique was evidenced at the beginning of the aerial phase, while there was no significant improvement of the referee score. Nevertheless, the proposed neuromechanical analysis, finalized to correlate technique features with the core performance indicators, is new in the field and is a promising tool to

  13. Performance time transformed by count as a determinant of difficulty in the Shotokan karate Heian kata set.

    PubMed

    Layton, C; Lawrence, J M

    1997-06-01

    Black-belt subjects (10 men) were timed on each of the five Heian kata and the scores transformed by count. Trend analyses showed that increased performance time was significantly related to assumed complexity in Heian ranking.

  14. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa.

    PubMed

    Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S

    2016-05-01

    Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.

  15. The intra-oceanic Cretaceous (~ 108 Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon

    2016-09-01

    The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* < 1 for the Aulan sample with initial εHf of + 8.6 ± 0.2 is interpreted as the magma dominated by contributions from fluid fluxing of the mantle wedge and lesser contributions of low temperature melt from subducted slab sediment, in an oceanic setting. This mechanism can explain the sub-DM initial εHf value, without the need to invoke melting of significantly older (continental) crust in an Andean setting. We interpret the Kata-Rash igneous rocks as a fragment of the Late Cretaceous suprasubduction zone system (named here the Kata-Rash arc) that most likely developed within the Neotethys Ocean rather than at a continental margin. Subsequently during the latest Cretaceous

  16. Optimizing value utilizing Toyota Kata methodology in a multidisciplinary clinic.

    PubMed

    Merguerian, Paul A; Grady, Richard; Waldhausen, John; Libby, Arlene; Murphy, Whitney; Melzer, Lilah; Avansino, Jeffrey

    2015-08-01

    Value in healthcare is measured in terms of patient outcomes achieved per dollar expended. Outcomes and cost must be measured at the patient level to optimize value. Multidisciplinary clinics have been shown to be effective in providing coordinated and comprehensive care with improved outcomes, yet tend to have higher cost than typical clinics. We sought to lower individual patient cost and optimize value in a pediatric multidisciplinary reconstructive pelvic medicine (RPM) clinic. The RPM clinic is a multidisciplinary clinic that takes care of patients with anomalies of the pelvic organs. The specialties involved include Urology, General Surgery, Gynecology, and Gastroenterology/Motility. From May 2012 to November 2014 we performed time-driven activity-based costing (TDABC) analysis by measuring provider time for each step in the patient flow. Using observed time and the estimated hourly cost of each of the providers we calculated the final cost at the individual patient level, targeting clinic preparation. We utilized Toyota Kata methodology to enhance operational efficiency in an effort to optimize value. Variables measured included cost, time to perform a task, number of patients seen in clinic, percent value-added time (VAT) to patients (face to face time) and family experience scores (FES). At the beginning of the study period, clinic costs were $619 per patient. We reduced conference time from 6 min/patient to 1 min per patient, physician preparation time from 8 min to 6 min and increased Medical Assistant (MA) preparation time from 9.5 min to 20 min, achieving a cost reduction of 41% to $366 per patient. Continued improvements further reduced the MA preparation time to 14 min and the MD preparation time to 5 min with a further cost reduction to $194 (69%) (Figure). During this study period, we increased the number of appointments per clinic. We demonstrated sustained improvement in FES with regards to the families overall experience with their providers

  17. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    PubMed

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Moonlighting of Helicobacter pylori catalase protects against complement-mediated killing by utilising the host molecule vitronectin

    PubMed Central

    Richter, Corinna; Mukherjee, Oindrilla; Ermert, David; Singh, Birendra; Su, Yu-Ching; Agarwal, Vaibhav; Blom, Anna M.; Riesbeck, Kristian

    2016-01-01

    Helicobacter pylori is an important human pathogen and a common cause of peptic ulcers and gastric cancer. Despite H. pylori provoking strong innate and adaptive immune responses, the bacterium is able to successfully establish long-term infections. Vitronectin (Vn), a component of both the extracellular matrix and plasma, is involved in many physiological processes, including regulation of the complement system. The aim of this study was to define a receptor in H. pylori that binds Vn and determine the significance of the interaction for virulence. Surprisingly, by using proteomics, we found that the hydrogen peroxide-neutralizing enzyme catalase KatA is a major Vn-binding protein. Deletion of the katA gene in three different strains resulted in impaired binding of Vn. Recombinant KatA was generated and shown to bind with high affinity to a region between heparin-binding domain 2 and 3 of Vn that differs from previously characterised bacterial binding sites on the molecule. In terms of function, KatA protected H. pylori from complement-mediated killing in a Vn-dependent manner. Taken together, the virulence factor KatA is a Vn-binding protein that moonlights on the surface of H. pylori to promote bacterial evasion of host innate immunity. PMID:27087644

  19. [Injuries in Karate Sports: A Survey Performed During the World Championship 2014].

    PubMed

    Tischer, T; Lembcke, B; Ellenrieder, M; Glass, Ä; Weigert, W; Mittelmeier, W

    2016-12-01

    Background: In literature, the competitive sport of modern karate is almost always characterised as a combat sport involving injuries caused by impact effects and physical contact with opponents. There is a lack of data regarding the outcome after karate injuries, specifically with a view to the contact-free Kata karate. Methods: Performing a random test using a questionnaire, we collected data concerning regular medical treatment, prior surgeries of the locomotor system, and medical care. This study included 300 athletes from 65 countries (average age: 24.1 years; 176 male, 124 female) participating in the Karate World Cup 2014. Seven participants competed in both disciplines, 87 only in the Kata discipline, and 206 only in Kumite (the discipline involving physical contact with opponents). The statistical analysis was performed using a two-sided Chi-square test and the Fisher's exact test. Results : Recurrent medical treatment was most commonly required for the knee region (Kata 28.7 %, Kumite 26.7 %). In Kata the shoulder region came second (22.9 %), in Kumite the ankle region (21.8 %), followed by hand and foot in both groups. Medical treatment of the elbow area was more frequent in the Kata Group (p = 0.033), while in Kumite athletes' hand (p = 0.002) and foot injuries (p = 0.007) prevailed. Prior surgeries of athletes of both disciplines most commonly concerned the knee, followed by the ankle region in the Kata group and by the hand and head region in the Kumite group. Statistically significant differences between the two disciplines were found in head injuries (p = 0.004), which commonly do not occur in the Kata discipline. During the World Cup, 56.0 % of the athletes had no individual medical care and 24.6 % received no sports-related medical care in their home countries. Conclusion: Although the risk of injuries in Kumite Karate has been reduced by the introduction of gumshields, hand and foot protectors as well as a reform of

  20. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-04-30

    ISS023-E-029806 (30 April 2010) --- Kata Tjuta, Australia is featured in this image photographed by an Expedition 23 crew member on the International Space Station. Located in the Northern Territory of Australia, Uluru – Kata Tjuta National Park hosts some of the world’s most spectacular examples of inselbergs, or isolated mountains. The most famous of these inselbergs is Uluru (also known as Ayers Rock). An equally massive inselberg located approximately 30 kilometers to the northwest is known as Kata Tjuta– like Uluru, this is a sacred site to the native Anangu or Aboriginal people. Explorers named the highest peak Mount Olga, with the entire grouping of rocks informally known as “the Olgas”. Mount Olga has a peak elevation of 1,069 meters above sea level, making it 206 meters higher than Uluru. Kata Tjuta is comprised of gently dipping Mount Currie Conglomerate, a sedimentary rock that includes abundant rounded fragments of other rock types (here, primarily granite with less abundant basalt and rhyolite) in a coarse sandy matrix. Geologists interpret the Mount Currie Conglomerate as a remnant of a large fan of material rapidly eroded from mountains uplifted approximately 550 million years ago. Subsequent burial under younger sediments consolidated the eroded materials to form the conglomerate exposed at the surface today. In this photograph, afternoon sunlight highlights the rounded summits of Kata Tjuta against the surrounding sandy plains. Sand dunes are visible at upper right; while in other areas (image top and image left) sediments washed from the rocks have been anchored by a variety of grasses and bushes adapted to the arid climate. Green vegetation in the ephemeral stream channels that drain Kata Tjuta (bottom center) provides colorful contrast with the red rocks and surrounding soils. Large gaps in the rocks (highlighted by shadows) are thought to be fractures that have been enlarged due to erosion.

  1. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    PubMed Central

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-01-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2. PMID:28252030

  2. Molecular identification and characterisation of catalase and catalase-like protein genes in urease-positive thermophilic Campylobacter (UPTC).

    PubMed

    Nakajima, T; Kuribayashi, T; Moore, J E; Millar, B C; Yamamoto, S; Matsuda, Motoo

    2016-01-01

    Thermophilic Campylobacter are important bacterial pathogens of foodborne diseases worldwide. These organisms' physiology requires a microaerophilic atmosphere. To date, little is known about the protective catalase mechanism in urease-positive thermophilic campylobacters (UPTC); hence, it was the aim of this study to identify and characterise catalase and catalase-like protein genes in these organisms. Catalase (katA) and catalase (Kat)-like protein genes from the Japanese UPTC CF89-12 strain were molecularly analysed and compared with C. lari RM2100 and other C. lari and thermophilic Campylobacter reference isolates. A possible open reading frame of 1,422 base pairs, predicted to encode a peptide of 474 amino acid residues, with calculated molecular weight of 52.7 kilo Daltons for katA, was identified within UPTC CF89-12. A probable ribosome binding site, two putative promoters and a putative ρ-independent transcription terminator were also identified within katA. A similar katA cluster also existed in the C. lari RM2100 strain, except that this strain carries no DcuB genes. However, the Kat-like protein gene or any other homologue(s) were never identified in the C. lari RM2100 strain, or in C. jejuni and C. upsaliensis. This study demonstrates the presence of catalase/catalase-like protein genes in UPTC organisms. These findings are significant in that they suggest that UPTC organisms have the protective genetic capability of helping protect the organisms from toxic oxygen stress, which may help them to survive in physiologically harsh environments, both within human and animal hosts, as well as in the natural environment.

  3. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    NASA Astrophysics Data System (ADS)

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-03-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.

  4. Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni.

    PubMed

    Flint, Annika; Sun, Yi-Qian; Stintzi, Alain

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.

  5. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    PubMed Central

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  6. Genes Important for Catalase Activity in Enterococcus faecalis

    PubMed Central

    Baureder, Michael; Hederstedt, Lars

    2012-01-01

    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595

  7. OxyR Is a Key Regulator in Response to Oxidative Stress in Streptomyces avermitilis.

    PubMed

    Liu, Xingchao; Sun, Meng; Cheng, Yaqing; Yang, Renjun; Wen, Ying; Chen, Zhi; Li, Jilun

    2016-02-02

    The role of the H2O2-sensing transcriptional regulator OxyR in oxidative stress responses in Streptomyces avermitilis was investigated. An oxyR deletion mutant was more sensitive to H2O2 and tert-butyl hydroperoxide than was the wild-type strain, indicating that OxyR mediates the defensive system against H2O2 and organic peroxide. Evidence presented herein suggests that in cells treated with exogenous H2O2, the oxidized form of OxyR activated expression of ahpCD by binding to a palindromic sequence of the promoter region. Oxidized OxyR also induced expression of other antioxidant enzymes (KatA1, KatA2, KatA3, OhrB1) and oxidative stress regulators (CatR, OhrR, σR). The thiol-oxidative stress regulator gene sigR was regulated at the transcription level by OxyR. We conclude that OxyR is necessary to activate transcription of sigR from the σR-dependent promoter to express an unstable larger isoform of σR during oxidative stress. In response to oxidative stress, OxyR facilitates rapid production of H2O2-scavenging enzymes to repair oxidative damage through direct regulation and cascaded regulation of CatR, OhrR, and σR.

  8. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain.

    PubMed

    Handtke, Stefan; Albrecht, Dirk; Zühlke, Daniela; Otto, Andreas; Becher, Dörte; Schweder, Thomas; Riedel, Kathrin; Hecker, Michael; Voigt, Birgit

    2017-04-26

    Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtilis katA gene by katX2 we could significantly enhance its resistance to H 2 O 2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2.

  9. Honey-sensitive Pseudomonas aeruginosa mutants are impaired in catalase A.

    PubMed

    Bolognese, Fabrizio; Bistoletti, Michela; Barbieri, Paola; Orlandi, Viviana Teresa

    2016-09-01

    The antimicrobial power of honey seems to be ascribable to several factors, including oxidative and osmotic stress. The aim of this study was to find genetic determinants involved in the response to honey stress in the opportunistic pathogen Pseudomonas aeruginosa, chosen as model micro-organism. A library of transposon mutants of P. aeruginosa PAO1 was constructed and only four mutants unable to grow in presence of fir honeydew honey were selected. All four mutants were impaired in the major H2O2-scavenging enzyme catalase A (KatA). The knockout of katA gene caused sensitivity, as expected, not only to hydrogen peroxide but also to different types of honey including Manuka GMO 220 honey. Genetic complementation, as well as the addition of PAO1 supernatant containing extracellular catalase, restored tolerance to honey stress in all the mutants. As P. aeruginosa PAO1 catalase KatA copes with H2O2 stress, it is conceivable that the antimicrobial activity of honey is, at least partially, due to the presence of hydrogen peroxide in honey or the ability of honey to induce production of hydrogen peroxide. The katA-deficient mutants could be used as tester micro-organisms to compare the power of different types of natural and curative honeys in eliciting oxidative stress mediated by hydrogen peroxide.

  10. The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression.

    PubMed

    Kim, Jung-Hoon; Yang, Yoon-Mo; Ji, Chang-Jun; Ryu, Su-Hyun; Won, Young-Bin; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2017-06-01

    PerR, a member of Fur family protein, is a metal-dependent H 2 O 2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerR BL , PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerR BL . PerR BL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerR BS . However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H 2 O 2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerR BL and PerR BS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.

  11. The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus.

    PubMed

    Vicente, Claudia S L; Nascimento, Francisco X; Ikuyo, Yoriko; Cock, Peter J A; Mota, Manuel; Hasegawa, Koichi

    2016-04-23

    Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this

  12. Mathematics and Martial Arts as Connected Art Forms

    ERIC Educational Resources Information Center

    Hekimoglu, Serkan

    2010-01-01

    Parallels between martial arts and mathematics are explored. Misguided public perception of both disciplines, students' misconceptions, and the similarities between proofs and katas are among the striking commonalities between martial arts and mathematics. The author also reflects on what he has learned in his martial arts training, and how this…

  13. Pattern Recognition of Cardiovascular and Psychomotor Variability in Response to Pharmacological Agent.

    DTIC Science & Technology

    1985-06-10

    research. 7. A. Sleep research, chronobiology , and performance research have developed as three separate areas, but there is (and should be) growing...and Oxygen Uptake Response to performance of Xarate Kata, Journal ot Sports Medicine, Vol. 22, 1982. (6] D.A. Sideris, J.N. Nanas, S.Thomakos, and...DOWNGRADING SCHEDULE Approved for public release; distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER

  14. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses.

    PubMed

    Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Mills, Dominic C; Wren, Brendan W; Dorrell, Nick

    2015-01-01

    The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment.

  15. The Stringent Response Controls Catalases in Pseudomonas aeruginosa and Is Required for Hydrogen Peroxide and Antibiotic Tolerance

    PubMed Central

    Khakimova, Malika; Ahlgren, Heather G.; Harrison, Joe J.; English, Ann M.

    2013-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing. PMID:23457248

  16. Spectrum of female commercial sex work in Bangui, Central African Republic

    PubMed Central

    Longo, Jean De Dieu; Simaléko, Marcel Mbéko; Ngbale, Richard; Grésenguet, Gérard; Brücker, Gilles; Bélec, Laurent

    2017-01-01

    Abstract Classification of professional and non-professional female sex workers (FSWs) into different categories, never previously reported in the Central African Republic (CAR), may be useful to assess the dynamics of the human immunodeficiency virus (HIV) epidemic, design operational intervention programmes to combat HIV and other sexually transmitted infections (STIs) and to adapt these programmes to the broad spectrum of sexual transactions in the CAR. Our study proposes a socio-behavioural classification of FSWs living in the CAR and engaged in transactional and commercial sex. Thus, the aims of the study were these: (i) to categorize FSWs according to socio-anthropologic criteria in Bangui and (ii) to examine the association between a selection of demographic and risk variables with the different categories of female sex work as an outcome. A cross-sectional questionnaire survey was conducted in 2013 to describe the spectrum of commercial sex work (CSW) in Bangui among 345 sexually active women having more than 2 sexual partners, other than their regular partner, during the prior 3 months and reporting to have received money or gifts in return for their sexual relationships. According to socio-behavioural characteristics, FSWs were classified into six different categories. Professional FSWs, constituting 32.5% of the interviewed women, were divided in two categories: pupulenge (13.9%), i.e., dragonflies (sometimes called gba moundjou, meaning literally look at the White) consisting of roamers, who travel around the city to hotels and nightclubs seeking wealthy clients, with a preference for French men; and the category of kata (18.6%), i.e., FSWs working in poor neighbourhoods. Non-professional FSWs, constituting 67.5% of the interviewed women, were divided into four categories: street and market vendors (20.8%), students (19.1%), housewives (15.7%) and unskilled civil servants (11.9%). In general, CSW in the CAR presents a remarkably heterogeneous phenomenon

  17. Spectrum of female commercial sex work in Bangui, Central African Republic.

    PubMed

    Longo, Jean De Dieu; Simaléko, Marcel Mbéko; Ngbale, Richard; Grésenguet, Gérard; Brücker, Gilles; Bélec, Laurent

    2017-12-01

    Classification of professional and non-professional female sex workers (FSWs) into different categories, never previously reported in the Central African Republic (CAR), may be useful to assess the dynamics of the human immunodeficiency virus (HIV) epidemic, design operational intervention programmes to combat HIV and other sexually transmitted infections (STIs) and to adapt these programmes to the broad spectrum of sexual transactions in the CAR. Our study proposes a socio-behavioural classification of FSWs living in the CAR and engaged in transactional and commercial sex. Thus, the aims of the study were these: (i) to categorize FSWs according to socio-anthropologic criteria in Bangui and (ii) to examine the association between a selection of demographic and risk variables with the different categories of female sex work as an outcome. A cross-sectional questionnaire survey was conducted in 2013 to describe the spectrum of commercial sex work (CSW) in Bangui among 345 sexually active women having more than 2 sexual partners, other than their regular partner, during the prior 3 months and reporting to have received money or gifts in return for their sexual relationships. According to socio-behavioural characteristics, FSWs were classified into six different categories. Professional FSWs, constituting 32.5% of the interviewed women, were divided in two categories: pupulenge (13.9%), i.e., dragonflies (sometimes called gba moundjou, meaning literally look at the White) consisting of roamers, who travel around the city to hotels and nightclubs seeking wealthy clients, with a preference for French men; and the category of kata (18.6%), i.e., FSWs working in poor neighbourhoods. Non-professional FSWs, constituting 67.5% of the interviewed women, were divided into four categories: street and market vendors (20.8%), students (19.1%), housewives (15.7%) and unskilled civil servants (11.9%). In general, CSW in the CAR presents a remarkably heterogeneous phenomenon. Risk

  18. Mixed Communities of Mucoid and Nonmucoid Pseudomonas aeruginosa Exhibit Enhanced Resistance to Host Antimicrobials

    PubMed Central

    Malhotra, Sankalp; Limoli, Dominique H.; English, Anthony E.; Parsek, Matthew R.

    2018-01-01

    ABSTRACT Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF). P. aeruginosa mucoid conversion, defined by overproduction of the exopolysaccharide alginate, correlates with accelerated decline in CF patient lung function. Recalcitrance of the mucoid phenotype to clearance by antibiotics and the immune response is well documented. However, despite advantages conferred by mucoidy, mucoid variants often revert to a nonmucoid phenotype both in vitro and in vivo. Mixed populations of mucoid isolates and nonmucoid revertants are recovered from CF lungs, suggesting a selective benefit for coexistence of these variants. In this study, cocultures of mucoid and nonmucoid variants exhibited enhanced resistance to two host antimicrobials: LL-37, a cationic antimicrobial peptide, and hydrogen peroxide (H2O2). Alginate production by mucoid isolates protected nonmucoid variants in consortia from LL-37, as addition of alginate exogenously to nonmucoid variants abrogated LL-37 killing. Conversely, nonmucoid revertants shielded mucoid variants from H2O2 stress via catalase (KatA) production, which was transcriptionally repressed by AlgT and AlgR, central regulators of alginate biosynthesis. Furthermore, extracellular release of KatA by nonmucoid revertants was dependent on lys, encoding an endolysin implicated in autolysis and extracellular DNA (eDNA) release. Overall, these data provide a rationale to study interactions of P. aeruginosa mucoid and nonmucoid variants as contributors to evasion of innate immunity and persistence within the CF lung. PMID:29588399

  19. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    PubMed

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Benz[a]anthracene Biotransformation and Production of Ring Fission Products by Sphingobium sp. Strain KK22

    PubMed Central

    Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Hamamura, Natsuko

    2013-01-01

    A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter−1 benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter−1) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(−)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended. PMID:23686261

  1. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions.

    PubMed

    Oh, Euna; McMullen, Lynn; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.

  2. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.

    PubMed

    Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao

    2017-03-01

    Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.

  3. KatG and KatE Confer Acinetobacter Resistance to Hydrogen Peroxide but Sensitize Bacteria to Killing by Phagocytic Respiratory Burst

    PubMed Central

    Sun, Daqing; Crowell, Sara A.; Harding, Christian M.; De Silva, P. Malaka; Harrison, Alistair; Fernando, Dinesh M.; Mason, Kevin M.; Santana, Estevan; Loewen, Peter C.; Kumar, Ayush; Liu, Yusen

    2016-01-01

    Aims Catalase catalyzes the degradation of H2O2. Acinetobacter species have four predicted catalase genes, katA, katE, katG, and katX. The aims of the present study seek to determine which catalase(s) plays a predominant role in determining the resistance to H2O2, and to assess the role of catalase in Acinetobacter virulence. Main Methods Mutants of A. baumannii and A. nosocomialis with deficiencies in katA, katE, katG, and katX were tested for sensitivity to H2O2, either by halo assays or by liquid culture assays. Respiratory burst of neutrophils, in response to A. nosocomialis, was assessed by chemiluminescence to examine the effects of catalase on the production of reactive oxygen species (ROS)1 in neutrophils. Bacterial virulence was assessed using a Galleria mellonella larva infection model. Key findings The capacities of A. baumannii and A. nosocomialis to degrade H2O2 are largely dependent on katE. The resistance of both A. baumannii and A. nosocomialis to H2O2 is primarily determined by the katG gene, although katE also plays a minor role in H2O2 resistance. Bacteria lacking both the katG and katE genes exhibit the highest sensitivity to H2O2. While A. nosocomialis bacteria with katE and/or katG were able to decrease ROS production by neutrophils, these cells also induced a more robust respiratory burst in neutrophils than did cells deficient in both katE and katG. We also found that A. nosocomialis deficient in both katE and katG was more virulent than the wildtype A. nosocomialis strain. Significance Our findings suggest that inhibition of Acinetobacter catalase may help to overcome the resistance of Acinetobacter species to microbicidal H2O2 and facilitate bacterial disinfection. PMID:26860891

  4. Mixed Communities of Mucoid and Nonmucoid Pseudomonas aeruginosa Exhibit Enhanced Resistance to Host Antimicrobials.

    PubMed

    Malhotra, Sankalp; Limoli, Dominique H; English, Anthony E; Parsek, Matthew R; Wozniak, Daniel J

    2018-03-27

    Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF). P. aeruginosa mucoid conversion, defined by overproduction of the exopolysaccharide alginate, correlates with accelerated decline in CF patient lung function. Recalcitrance of the mucoid phenotype to clearance by antibiotics and the immune response is well documented. However, despite advantages conferred by mucoidy, mucoid variants often revert to a nonmucoid phenotype both in vitro and in vivo Mixed populations of mucoid isolates and nonmucoid revertants are recovered from CF lungs, suggesting a selective benefit for coexistence of these variants. In this study, cocultures of mucoid and nonmucoid variants exhibited enhanced resistance to two host antimicrobials: LL-37, a cationic antimicrobial peptide, and hydrogen peroxide (H 2 O 2 ). Alginate production by mucoid isolates protected nonmucoid variants in consortia from LL-37, as addition of alginate exogenously to nonmucoid variants abrogated LL-37 killing. Conversely, nonmucoid revertants shielded mucoid variants from H 2 O 2 stress via catalase (KatA) production, which was transcriptionally repressed by AlgT and AlgR, central regulators of alginate biosynthesis. Furthermore, extracellular release of KatA by nonmucoid revertants was dependent on lys , encoding an endolysin implicated in autolysis and extracellular DNA (eDNA) release. Overall, these data provide a rationale to study interactions of P. aeruginosa mucoid and nonmucoid variants as contributors to evasion of innate immunity and persistence within the CF lung. IMPORTANCE P. aeruginosa mucoid conversion within lungs of cystic fibrosis (CF) patients is a hallmark of chronic infection and predictive of poor prognosis. The selective benefit of mixed populations of mucoid and nonmucoid variants, often isolated from chronically infected CF patients, has not been explored. Here, we show that mixed-variant communities of P. aeruginosa demonstrate advantages

  5. Financial Assets [share, bonds] & Ancylia

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-

    2016-11-01

    Instead Elaine Scarry: "Thermonuclear monarchy" reinvent Carry Nation since Aug 17, 1965 the Republic of Indonesia's President speech: "Reach to the Star", for "cancellation" usually found in External Debt herewith retrieved from "the Window of theWorld": Ancylia, feast in March, a month named after Mars, the god of war. "On March 19 they used to put on their biggest performance of gymnastics in order to "bribe" their god for another good year", further we have vacancy & "vacuum tube"- Bulat Air karena Pembuluh, Bulat Kata karena Mufakat" proverb from Minangkabau, West Sumatra. Follows March 19, 1984 are first prototype flight of IAI Astra Jet as well as March 19, 2012 invoice accompanies Electric car Kujang-193, Fainancial Assets [share, bonds] are the answer for "infrastructure" & state owned enterprises assets to be hedged first initial debt per capita accordances. Heartfelt gratitudes to HE. Mr. Ir. Sarwono Kusumaatmadja/PT. Smartfren INDONESIA.

  6. The effect of skin fatty acids on Staphylococcus aureus.

    PubMed

    Neumann, Yvonne; Ohlsen, Knut; Donat, Stefanie; Engelmann, Susanne; Kusch, Harald; Albrecht, Dirk; Cartron, Michael; Hurd, Alexander; Foster, Simon J

    2015-03-01

    Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.

  7. Risk factors for HIV infection among female sex workers in Bangui, Central African Republic.

    PubMed

    Longo, Jean De Dieu; Simaleko, Marcel Mbeko; Diemer, Henri Saint-Calvaire; Grésenguet, Gérard; Brücker, Gilles; Belec, Laurent

    2017-01-01

    The aims of the study were i) to categorize female sex workers (FSW) according to socio-anthropologic criteria in Bangui; ii) to examine the association between a selection of demographic and risk variables with the different categories of female sex work as outcome, and iii) to investigate factors associated with HIV status. A cross-sectional questionnaire survey was conducted to describe the spectrum of commercial sex work in Bangui among 345 sexually active women. After collection of social and behavioral characteristics, each woman received a physical examination and a blood sample was taken for biological analyses, including HIV testing. The relationships between sociodemographic characteristics, behavioral variables involved in high risk for HIV as well as biological results were investigated by bivariate analysis in relationship with FSW categories as main outcomes, and by bivariate analysis followed by multivariate logistic regression analysis in relationship with HIV as the main outcome. The strength of statistical associations was measured by crude and adjusted Odds ratios (OR) and their 95% confidence intervals. The typology of FSW comprised six different categories. Two groups were the "official" professional FSW primarily classified according to their locations of work [i) "kata"(18.55%) representing women working in poor neighborhoods of Bangui; ii) "pupulenge" (13.91%) working in hotels and night clubs to seek white men]. Four groups were "clandestine" nonprofessional FSW classified according to their reported main activity [i) "market and street vendors" (20.86%); ii) "schoolgirls or students" (19.13%) involved in occasional transactional sex (during holidays); iii) "housewives or unemployed women" (15.65%); iv) "civil servants" (11.88%) working as soldiers or in the public sector]. The overall prevalence of HIV-1 was 19.12% (66/345). HIV varied according to FSW categories. Thus, among professional FSW, the HIV prevalence was 6-fold higher in "kata

  8. In Vitro Assembly of Catalase*

    PubMed Central

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-01-01

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. PMID:25148685

  9. In vitro assembly of catalase.

    PubMed

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-10-10

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mechanism of antagonistic effects of Andrographis paniculata methanolic extract against Staphylococcus aureus.

    PubMed

    Hussain, Roslinah Mohamad; Razak, Zayan Nabilah Rasyidah Abd; Saad, Wan Mazlina Md; Mustakim, Maimunah

    2017-07-01

    To investigate the effects of Andrographis paniculata (Burm.f.) Wall. Ex Nees (A. paniculata) on expressions and activities of catalase, superoxide dismutase and alkylhydroperoxide reductase C in Staphylococcus aureus (S. aureus) with respect to its survival in vitro. Antioxidative property of methanolic leaves extract of A. paniculata (0.06 mg/mL). Minimum inhibitory concentration (MIC) was determined by its ability to reduce hydrogen peroxide (H 2 O 2 ) toxicity against S. aureus ATCC 25923 [(3.8 × 10 8 ) cfu/mL]. Effects of the extract on expressions of katA (encoding catalase), sodA and sodM [encoding superoxide dismutases (SODs)], and ahpC [encoding alkylhydroperoxide reductase C (AhpC)] in S. aureus were determined by RT-qPCR and corresponding enzyme activity assays were performed. Nitroblue tetrazolium reduction (NBT) assay was performed to determine effects of the extract on intracellular and extracellular levels of O 2- in S. aureus. Cells challenged with 7.5 mmol/L H 2 O 2 showed 0% survival in 30 min whereas 25% survived after treatment with the extract and H 2 O 2 . Cells that were treated with the extract alone had 43% survival in the same exposure period. Expressions of sodA and sodM genes in extract-treated cells were lowered 0.8-fold and 0.7-fold, respectively with decrease in total SOD activity of 26.8 U compared to untreated cells, 32.4 U (P < 0.05). In contrast, extract-treated S. aureus cells showed 3.3-fold increase in katA expression with corresponding increase in catalase activity of 1.828 U compared to untreated cells which was 1.248 U, (P < 0.05). More profoundly, ahpC expression was increased 61-fold in extract-treated cells, (P < 0.05) with corresponding increase in AhpC activity of 0.018 U compared to untreated cells, 0.012 U, (P < 0.05). Extract-treated cells had significantly lower intra- and extracellular O 2 - levels with absorbance readings (A 575 nm ) of 0.340 and 0.524 compared to untreated cells

  11. The study of H. pylori putative candidate factors for single- and multi-component vaccine development.

    PubMed

    Mirzaei, Nasrin; Poursina, Farkhondeh; Moghim, Sharareh; Rashidi, Niloufar; Ghasemian Safaei, Hajieh

    2017-09-01

    Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.

  12. Potential risk factors for onset of severe neck and shoulder discomfort (Katakori) in urban Japanese workers.

    PubMed

    Sawada, Takayuki; Matsudaira, Ko; Muto, Yumiko; Koga, Tadashi; Takahashi, Masaya

    2016-06-10

    Katakori is a Japanese word, and there is no clear English translation. Katakori consists of two terms, Kata means neck and shoulder, kori means stiffness. Consequently, Katakori is defined as neck and shoulder discomfort or dull pain. Katakori is a major somatic complaint and has a large impact on workers. To examine the association between onset of severe Katakori and potential risk factors in Japanese workers, a prospective cohort study, entitled "Cultural and Psychosocial Influence on Disability (CUPID)", was conducted. Self-administered questionnaires were distributed twice: at baseline and 1 year after baseline. Logistic regression was used to explore the risk factors of onset of severe Katakori. Of those 1,398, the incidence of severe Katakori onset after 1 year was 3.0% (42 workers). Being female (adjusted odds ratio: 2.39, 95% confidence interval: 1.18-4.86), short sleep duration (adjusted odds ratio: 2.86, 95% confidence interval: 1.20-6.82) and depressed mood with some issues at work (adjusted odds ratio: 3.11, 95% confidence interval: 1.38-7.03) were significantly associated with onset of severe Katakori. Psychosocial factors as well as gender difference were associated with onset of severe Katakori. We suggest that mental health support at the workplace is important to prevent severe Katakori.

  13. Effects of Cognitive, Motor, and Karate Training on Cognitive Functioning and Emotional Well-Being of Elderly People

    PubMed Central

    Jansen, Petra; Dahmen-Zimmer, Katharina

    2012-01-01

    The present study investigated the influence of cognitive, motor, and Karate (accordingly the guidelines of the German-Karate-Federation, DKV) training on the cognitive functioning and mental state of older people between 67 and 93 years of age. The three training groups each consisted of 12 elderly participants; the waiting control group included 9 participants. Before the training, participants were evaluated with cognitive measurements (cognitive speed: number-connection test, number–symbol test; memory performance: digit-span test, blocking-tapping test, figure test) and a measurement of emotional well-being. After this pre-testing they participated the specific training in on average sixteen 1-h training sessions. The cognitive training exercised inductive thinking ability, the motor training worked on easy stretching and mobilization techniques, and the Karate training taught tasks of self-defense, partner training, and Katas. After completion of the training sessions, all tests were applied again. The results show no significant difference in cognitive improvement dependent on group between the three training conditions. However a significant improvement was found in the emotional mental state measurement for the Karate group compared to the waiting control group. This result suggests that the integrated involvement in Karate leads to a feeling of self-worth and that, even in elderly people, integration of new sports helps to improve quality of life. PMID:22363311

  14. Synergistic Roles of Helicobacter pylori Methionine Sulfoxide Reductase and GroEL in Repairing Oxidant-damaged Catalase*

    PubMed Central

    Mahawar, Manish; Tran, ViLinh; Sharp, Joshua S.; Maier, Robert J.

    2011-01-01

    Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4–5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant. PMID:21460217

  15. Community Profiling of Culturable Fluorescent Pseudomonads in the Rhizosphere of Green Gram (Vigna radiata L.)

    PubMed Central

    Sarma, Rupak K.; Gogoi, Animesh; Dehury, Budheswar; Debnath, Rajal; Bora, Tarun C.; Saikia, Ratul

    2014-01-01

    Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19%) showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA) and pyoluteorin (PLT). Production efficiency of inherent level of plant growth promoting (PGP) traits among the 120 isolates demonstrated that 10 (8%) solubilised inorganic phosphates, 25 (20%) produced indoles and 5 (4%) retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP) traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28–93% (p = 0.05). Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator. PMID:25279790

  16. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  17. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ1 -dehydrogenase and catalase in Bacillus subtilis.

    PubMed

    Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S

    2017-01-01

    3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.

  18. Sport Injuries of Karate During Training: An Epidemiologic Study in Iran.

    PubMed

    Ziaee, Vahid; Shobbar, Montazer; Lotfian, Sara; Ahmadinejad, Mahdi

    2015-06-01

    Karate is a public sport that has athletes in various age ranges and abundant active sport clubs in Iran. The pattern of injury in this sport in Iranian athletes seems different from other countries. This study was performed with the purpose of considering the incidence and type of injury of karate athletes aged below 30 years from Tehran, Iran clubs. In a cross-sectional study, 10 karate clubs were selected in Tehran. Clubs were selected based on a cluster method from 5 different geographical regions of Tehran. All injuries were collected based on athletes' or clubs' weekly report with a designed questionnaire. The injuries were classified according to: low, medium and severe injury. Collected data was analyzed with SPSS software version 17. 620 athletes were studied totally and incidence rate of injury per athletes was 16.1% and 20.2 per 100 athletes. Ninety percent of injuries were during bout practice, 6% during fitness and 4% during kata. The rate of injury was more common in athletes with weight less than 70 kg and lower sport experience (P ≤ 0.05). The commonest locations for injury were head and neck followed by trunk, lower and upper limb, respectively. Just 2 cases needed surgical intervention and no one led to decreased level of consciousness. The most common type of injury was contusion, bruise and superficial scratch (64%). Severe injury was uncommon in this study and similar to other Iranian studies head and neck had the most injuries. Athletes with lower experience and lower weight were associated with higher injuries.

  19. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis

    PubMed Central

    2016-01-01

    Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress. PMID:27935957

  20. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures

    PubMed Central

    Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.

    2015-01-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  1. KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function.

    PubMed

    Bihani, Subhash C; Chakravarty, Dhiman; Ballal, Anand

    2016-04-01

    Manganese catalases (Mn-catalases), a class of H2O2 detoxifying proteins, are structurally and mechanistically distinct from the commonly occurring catalases, which contain heme. Active site of Mn-catalases can serve as template for the synthesis of catalase mimetics for therapeutic intervention in oxidative stress related disorders. However, unlike the heme catalases, structural aspects of Mn-catalases remain inadequately explored. The genome of the ancient cyanobacterium Anabaena PCC7120, shows the presence of two Mn-catalases, KatA and KatB. Here, we report the biochemical and structural characterization of KatB. The KatB protein (with a C-terminal his-tag) was over-expressed in Escherichia coli and purified by affinity chromatography. On the addition of Mn(2+) to the E. coli growth medium, a substantial increase in production of the soluble KatB protein was observed. The purified KatB protein was an efficient catalase, which was relatively insensitive to inhibition by azide. Crystal structure of KatB showed a hexameric assembly with four-helix bundle fold, characteristic of the Ferritin-like superfamily. With canonical Glu4His2 coordination geometry and two terminal water ligands, the KatB active site was distinctly different from that of other Mn-catalases. Interestingly, the KatB active site closely resembled the active sites of ruberythrin/bacterioferritin, bi-iron members of the Ferritin-like superfamily. The KatB crystal structure provided fundamental insights into the evolutionary relationship within the Ferritin-like superfamily and further showed that Mn-catalases can be sub-divided into two groups, each with a distinct active site configuration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Prediction of Bacillus weihenstephanensis acid resistance: the use of gene expression patterns to select potential biomarkers.

    PubMed

    Desriac, N; Postollec, F; Coroller, L; Sohier, D; Abee, T; den Besten, H M W

    2013-10-01

    Exposure to mild stress conditions can activate stress adaptation mechanisms and provide cross-resistance towards otherwise lethal stresses. In this study, an approach was followed to select molecular biomarkers (quantitative gene expressions) to predict induced acid resistance after exposure to various mild stresses, i.e. exposure to sublethal concentrations of salt, acid and hydrogen peroxide during 5 min to 60 min. Gene expression patterns of unstressed and mildly stressed cells of Bacillus weihenstephanensis were correlated to their acid resistance (3D value) which was estimated after exposure to lethal acid conditions. Among the twenty-nine candidate biomarkers, 12 genes showed expression patterns that were correlated either linearly or non-linearly to acid resistance, while for the 17 other genes the correlation remains to be determined. The selected genes represented two types of biomarkers, (i) four direct biomarker genes (lexA, spxA, narL, bkdR) for which expression patterns upon mild stress treatment were linearly correlated to induced acid resistance; and (ii) nine long-acting biomarker genes (spxA, BcerKBAB4_0325, katA, trxB, codY, lacI, BcerKBAB4_1716, BcerKBAB4_2108, relA) which were transiently up-regulated during mild stress exposure and correlated to increased acid resistance over time. Our results highlight that mild stress induced transcripts can be linearly or non-linearly correlated to induced acid resistance and both approaches can be used to find relevant biomarkers. This quantitative and systematic approach opens avenues to select cellular biomarkers that could be incremented in mathematical models to predict microbial behaviour. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

    PubMed

    Xie, Yanping; He, Yiping; Irwin, Peter L; Jin, Tony; Shi, Xianming

    2011-04-01

    The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.

  4. Sport Injuries of Karate During Training: An Epidemiologic Study in Iran

    PubMed Central

    Ziaee, Vahid; Shobbar, Montazer; Lotfian, Sara; Ahmadinejad, Mahdi

    2015-01-01

    Background: Karate is a public sport that has athletes in various age ranges and abundant active sport clubs in Iran. The pattern of injury in this sport in Iranian athletes seems different from other countries. Objectives: This study was performed with the purpose of considering the incidence and type of injury of karate athletes aged below 30 years from Tehran, Iran clubs. Materials and Methods: In a cross-sectional study, 10 karate clubs were selected in Tehran. Clubs were selected based on a cluster method from 5 different geographical regions of Tehran. All injuries were collected based on athletes’ or clubs’ weekly report with a designed questionnaire. The injuries were classified according to: low, medium and severe injury. Collected data was analyzed with SPSS software version 17. Results: 620 athletes were studied totally and incidence rate of injury per athletes was 16.1% and 20.2 per 100 athletes. Ninety percent of injuries were during bout practice, 6% during fitness and 4% during kata. The rate of injury was more common in athletes with weight less than 70 kg and lower sport experience (P ≤ 0.05). The commonest locations for injury were head and neck followed by trunk, lower and upper limb, respectively. Just 2 cases needed surgical intervention and no one led to decreased level of consciousness. The most common type of injury was contusion, bruise and superficial scratch (64%). Conclusions: Severe injury was uncommon in this study and similar to other Iranian studies head and neck had the most injuries. Athletes with lower experience and lower weight were associated with higher injuries. PMID:26448843

  5. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures.

    PubMed

    Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L

    2015-09-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. The effect of lactate concentration on the handgrip strength during judo bouts.

    PubMed

    Bonitch-Góngora, Juan G; Bonitch-Domínguez, Juan G; Padial, Paulino; Feriche, Belen

    2012-07-01

    Judo is a combat sport in which the athletes attempt to hold and control their adversary through gripping techniques (kumi-kata) to apply opportune throwing techniques (nage-waza). Twelve male judo athletes, representing national teams, were recruited to investigate the changes in the maximal isometric strength in both hands before (pre) and after (post) 4 judo bouts and its relationship with the maximal blood lactic acid concentration. The subjects performed a maximal isometric contraction with each hand immediately before and after each bout. A blood sample was taken at 1, 3, and 14 minutes after each bout, and the lactic acid concentration was determined. An overall effect of the successive bouts on the maximal isometric handgrip strength of prebouts was observed for both hands (p < 0.05) but not in that of postbouts (p > 0.05). The dominant hand showed an overall decrease in the maximal isometric strength because of the bout, with the decrease being significant for the first, third, and fourth bouts (p < 0.05). The nondominant hand only showed a significant decrease in the first prebout and postbout (p < 0.05). We observed an inverse relationship between the maximal isometric handgrip strength of postbouts and maximum lactic acid concentration (Lacmax), and between the maximal isometric handgrip strength of postbouts and the lactic acid concentration at minute 14 of the recovery period (Lac14) (p < 0.05). These results show that successive judo bouts significantly reduce the maximal isometric strength of both hands and may suggest that fatigue of each hand depends on different factors. An enhanced understanding of the behavior of the isometric handgrip strength, and the factors that affect grip fatigue during judo bouts in the dominant and nondominant hands, can aid coaches in developing optimal training and exercise interventions that are aimed at mitigating decreases in the capacity of judo athletes to perform a grip.

  7. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation.

    PubMed

    Vinckx, Tiffany; Wei, Qing; Matthijs, Sandra; Noben, Jean-Paul; Daniels, Ruth; Cornelis, Pierre

    2011-06-01

    In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.

  8. Icm/Dot-Independent Entry of Legionella pneumophila into Amoeba and Macrophage Hosts

    PubMed Central

    Bandyopadhyay, Purnima; Xiao, Huifang; Coleman, Hope A.; Price-Whelan, Alexa; Steinman, Howard M.

    2004-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, expresses a type IVB secretion apparatus that translocates bacterial proteins into amoeba and macrophage hosts. When stationary-phase cultures are used to infect hosts, the type IVB apparatus encoded by the icm/dot genes is required for entry, delay of phagosome-lysosome fusion, and intracellular multiplication within host cells. Null mutants with mutations in icm/dot genes are defective in these phenotypes. Here a new model is described in which hosts are infected with stationary-phase cultures that have been incubated overnight in pH 6.5 buffer. This model is called Ers treatment because it enhances the resistance to acid, hydrogen peroxide, and antibiotic stress beyond that of stationary-phase cultures. Following Ers treatment entry into amoeba and macrophage hosts does not require dotA, which is essential for Legionella virulence phenotypes when hosts are infected with stationary-phase cultures, dotB, icmF, icmV, or icmX. Defective host entry is also suppressed for null mutants with mutations in the KatA and KatB catalase-peroxidase enzymes, which are required for proper intracellular growth in amoeba and macrophage hosts. Ers treatment-induced suppression of defective entry is not associated with increased bacterial adhesion to host cells or with morphological changes in the bacterial envelope but is dependent on protein expression during Ers treatment. By using proteomic analysis, Ers treatment was shown to induce a protein predicted to contain eight tetratricopeptide repeats, a motif previously implicated in enhanced entry of L. pneumophila. Characterization of Ers treatment-dependent changes in expression is proposed as an avenue for identifying icm/dot-independent factors that function in the entry of Legionella into amoeba and macrophage hosts. PMID:15271914

  9. Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis▿†

    PubMed Central

    Wilks, Jessica C.; Kitko, Ryan D.; Cleeton, Sarah H.; Lee, Grace E.; Ugwu, Chinagozi S.; Jones, Brian D.; BonDurant, Sandra S.; Slonczewski, Joan L.

    2009-01-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K+/H+ antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids. PMID:19114526

  10. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    PubMed

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  11. Insights into the Function of a Second, Nonclassical Ahp Peroxidase, AhpA, in Oxidative Stress Resistance in Bacillus subtilis

    PubMed Central

    Broden, Nicole J.; Flury, Sarah; King, Alyssa N.; Schroeder, Braden W.; Coe, Gabrielle Dierker

    2016-01-01

    ABSTRACT Organisms growing aerobically generate reactive oxygen-containing molecules, such as hydrogen peroxide (H2O2). These reactive oxygen molecules damage enzymes and DNA and may even cause cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes, two of which appear to be the primary enzymes responsible for detoxifying peroxides during vegetative growth: a catalase (encoded by katA) and an alkylhydroperoxide reductase (Ahp, encoded by ahpC). AhpC uses two redox-active cysteine residues to reduce peroxides to nontoxic molecules. A specialized thioredoxin-like protein, AhpF, is then required to restore oxidized AhpC back to its reduced state. Curiously, B. subtilis has two genes encoding Ahp: ahpC and ahpA. Although AhpC is well characterized, very little is known about AhpA. In fact, numerous bacterial species have multiple ahp genes; however, these additional Ahp proteins are generally uncharacterized. We seek to understand the role of AhpA in the bacterium's defense against toxic peroxide molecules in relation to the roles previously assigned to AhpC and catalase. Our results demonstrate that AhpA has catalytic activity similar to that of the primary enzyme, AhpC. Furthermore, our results suggest that a unique thioredoxin redox protein, AhpT, may reduce AhpA upon its oxidation by peroxides. However, unlike AhpC, which is expressed well during vegetative growth, our results suggest that AhpA is expressed primarily during postexponential growth. IMPORTANCE B. subtilis appears to produce nine enzymes designed to protect cells against peroxides; two belong to the Ahp class of peroxidases. These studies provide an initial characterization of one of these Ahp homologs and demonstrate that the two Ahp enzymes are not simply replicates of each other, suggesting that they instead are expressed at different times during growth of the cells. These results highlight the need to further study the Ahp homologs to better

  12. Risk factors for HIV infection among female sex workers in Bangui, Central African Republic

    PubMed Central

    Diemer, Henri Saint-Calvaire; Grésenguet, Gérard; Brücker, Gilles; Belec, Laurent

    2017-01-01

    professional FSW, the HIV prevalence was 6-fold higher in "kata" than "pupulenge" (39.13% versus 6.30%; P = 0.001). Among nonprofessional FSW, the "vendors" showed the highest HIV prevalence (31.91%), which was higher than in "students" (6.10%; P = 0.001), "civil servants" (9.83%; P = 0.005), and "housewives" (13.00%; P = 0.01). In bivariate analysis, the following variables showed statistically significant association with risk for HIV infection: nationality; age of first sexual intercourse; self-assessment of HIV risk; knowledge of HIV status; anal sex practice with last clients; irregular condom use in last week; consumption of alcohol; other psycho-active substances; past history of STIs; HBs Ag; HSV-2 and bacterial vaginosis. However, the variable “sex workers categories” dichotomized into professional versus nonprofessional FSW was no longer associated with HIV. In multivariate logistical regression analysis, HIV infection was strongly associated with nationality (15.65% versus 3.77%) [adjusted OR (aOR) 3.39: 95% CI:1.25–9.16, P<0.05]; age of first sexual intercourse (21.10% versus 14.00%) (aOR 2.13: 95% CI: 1.03–4.39, P<0.05); anal sex practice with last clients (43.40% versus 11.50%) (aOR 4.31: 95% CI:2.28–8.33, P<0.001); irregular condom use in past week (33.50% versus 3.00%) (aOR 5.49: 95% CI:1.89–15.98, P<0.001); alcohol consumption before sex (34.70% versus 7.80%) (aOR 2.69: 95% CI:1.22–4.96, P<0.05); past history of STIs (41.00% versus 10.80%) (aOR 2.46: 95% CI:1.22–4.97, P<0.05) and bacterial vaginosis (29.80% versus 4.29%) (aOR 6.36: 95% CI: 2.30–17.72, P<0.001). Conclusion Our observations highlight the high level of vulnerability for HIV acquisition of both poor professional “kata” and nonprofessional “street vendor” FSW categories. These categories should be particularly taken into account when designing specific prevention programs for STIs/HIV control purposes. PMID:29108022

  13. Obituary for Péter Csizmadia

    NASA Astrophysics Data System (ADS)

    2010-04-01

    This conference proceedings is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, a computer expert and one of the best Hungarian mountaineers who has been missing since the end of October 2009 and whose last scientific presentation occurred during the 5th Workshop of Young Researchers in Astronomy and Astrophysics, 2-4 September 2009, Budapest. Péter Csizmadia Péter Csizmadia 1972-2009 The accident: Péter Csizmadia, along with three other young Hungarian mountaineers (Kata Tolnay, Vera Mikolovits, and Balázs Pechtol) disappeared in China's Sichuan region near the Ren Zhong Feng peak of the Himalayas, in the early morning of 23 October 2009. A huge part of a glacier fell, resulting in an extraordinary ice and stone avalanche that covered the valley where they had their camp for the night. Neither their bodies nor their belongings were found by the ground and helicopter rescue teams. A brief CV: Péter Csizmadia was born in 1972. He received an MSc in physics (1996) and a PhD in heavy ion physics (2003) both of these degrees were issued by Eötvös University (Budapest, Hungary). At the beginning of his career his main research interest was centred around quark hadronization (1995-2005). Later he joined the relativity group of RMKI and worked on numerical simulations in general relativity, investigating problems such as cosmological inflation and gravitational collapse in general relativity (2005-2009). In 2005, Péter joined to our relativity group and started to work on the first version of a high precision adaptive mesh refinement (AMR) code, called GridRipper. He was the founder and he remained the main developer of GridRipper until his disappearance. Due to his efforts GridRipper became a fourth order precision AMR code implemented as C++/Java classes for solving hyperbolic systems of partial differential equations numerically. The already implemented and tested applications include the study of various dynamical systems