Science.gov

Sample records for katarsis rock cafes

  1. Rock on Cafe: achieving sustainable systems changes in school lunch programs.

    PubMed

    Johnston, Yvonne; Denniston, Ray; Morgan, Molly; Bordeau, Mark

    2009-04-01

    The rising rate of overweight poses a significant threat to the health of children. Because roughly one third of a child's dietary intake occurs during school hours and because both health and academic outcomes have been linked to children's nutrition, school nutrition policies and programs have been identified as a key area for intervention. This article describes the components, processes, and initial successes of a grassroots effort and innovative project to improve the nutritional quality of the School Lunch Program through a sustainable systems intervention and policy change across a regional area of upstate New York. The Rock on Cafe intervention was partially funded by the Steps to a Healthier New York program and promises to be a model for creating a school environment that supports healthy dietary behaviors among children. PMID:19454756

  2. Cafe Data

    ERIC Educational Resources Information Center

    DePaolo, Concetta A.; Robinson, David F.

    2011-01-01

    In this paper we present time series data collected from a cafe run by business students at a Midwestern public university. The data were collected over a ten-week period during the spring semester of 2010. These data can be used in introductory courses to illustrate basic concepts of time series and forecasting, including trend, seasonality, and…

  3. Crossroads Cafe Implementation Florida Evaluation.

    ERIC Educational Resources Information Center

    McLean, Teri

    The evaluation reviews the implementation of the "Crossroads Cafe" English language instruction program in Florida, focusing on the program's management, training, and overall effectiveness as measured by its impact on adult English-as-a-Second-Language (ESL) teachers and learners. "Crossroads Cafe" is a series of videotape recordings and closely…

  4. Why Cafe Worked

    SciTech Connect

    Greene, D.L.

    1997-08-01

    The frequently controversial Federal Automotive Fuel Economy Standards (a.k.a. Corporate Average Fuel Economy (CAFE) standards) have in fact been a notable success. This paper attempts to explain why the CAFE standards have been such a successful energy policy. It begins by demonstrating that economic theory does not relegate technology standards to permanent second best status. As a public policy aimed at correcting an externality, regulations can be the key part of a first best public policy response. To be sure, practical problems will arise in implementing either an effluent tax or a regulatory standard. Next, it is argued that in the oligopotistic automotive market a combination of satisfying behavior on the part of consumers and risk aversion on the part of producers makes it very likely that fuel economy standards will be more effective than even a motor fuel tax. This does not mean that gasoline or vehicle use taxes are not important or useful policy tools. Indeed, they are essential if policies are to be economically efficient. It means that taxes will be most effective and efficient if used in conjunction with fuel economy standards.

  5. Literacy Cafe: Making Writing Authentic

    ERIC Educational Resources Information Center

    Daniels, Erika

    2007-01-01

    The "Literacy Cafe," a celebration of genre study and student writing, offers students (and visitors!) a positive environment in which to engage in reading and discussion of writing without self-consciousness or fear of criticism. It works because students learn to recognize writing as a learning tool and a relevant, authentic skill in the real…

  6. A Cafe Scientifique for Teens

    NASA Astrophysics Data System (ADS)

    Hall, M.; Mayhew, M.

    2008-12-01

    It is well-known to those pursuing the quest to connect scientists to the public that an exceedingly hard-to- reach demographic is people of high school age. Typically, kids may tag along with their parents to museums until they reach adolescence, and then don't again appear in museums until they themselves have children. We have addressed this demographic challenge for free-choice-learning by developing a Cafe Scientifique program specifically for high school students. The Cafe Scientifique model for adults was developed in England and France, and has now spread like wildfire across the U.S. Typically, people come to a informal setting like a cafe, socialize and have food and drink, and then hear a short presentation by a scientist on a hot science topic in the news. This is followed by a period of lively discussion. We have followed this model for high school age students in four towns in northern New Mexico--Los Alamos, Santa Fe, Espanola, and Albuquerque--which represent a highly diverse demographic. We started this novel project with some trepidation, i.e. what if we build it and they don't come. But the program has proven popular beyond our expectations in all four towns. A part of the secret of success is the social setting, and-especially for this age group-the food provided. But we have also found that the kids are genuinely interested in the science topics, directing their own program, and interacting with scientists. We have often heard statements like, "I think it is important to be well-informed citizens". One of the most important aspects of the Cafes for the kids is to be able to discuss and argue about issues related to the science topic with the presenter and each other. It is an important part of the popularity that the Cafes do not involve school or parents, but also that we have strived to give the kids ownership of the program. Each town has a Youth Leadership Team-open to any teen-that discusses and prioritizes potential topics, conducts

  7. SPS Fabric of the Cosmos Cafe

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anish

    2012-02-01

    Hosted by Brian Greene and based on his best-selling book of the same title, The Fabric of the Cosmos is a new four- part NOVA series that explores the deepest mysteries of space and time. The program was kicked-off by 30 ``Cosmic Cafes'' being held around the country funded by an NSF grant which allows SPS-NOVA to fund SPS chapters for these events. During the summer I assisted in planning this kick-off, reviewing and suggesting revisions of resources related to the NOVA series to make them relevant to an SPS audience. I also got to organize and moderate the first ``Cosmic Cafe.'' The Cosmic cafe that I organized was discussion based, with our speaker Dr. James Gates starting with a short talk and then opening the floor up for questions. By organizing a ``Cosmic cafe,'' I got real hand experience about the challenges an SPS chapter would face while organizing a cafe themselves. Based on my experience I shall also discuss the effectiveness of the first ever themed science cafe blitz. A science caf'e is an informal discussion with an expert in a very casual location, usually a restaurant, coffee shop, or a bar. A science cafe is mostly discussion based, but has a lot of freedom for the format. A ``Cosmic'' cafe is a science cafe which is based around the topics discussed in the documentary ``The Fabric of the Cosmos.''

  8. Border Pedagogy Cafes: Grassroots Conversations that Matter

    ERIC Educational Resources Information Center

    Necochea, Juan; Cline, Zulmara

    2008-01-01

    This exploratory study uses qualitative methods to analyze the impact of conversations in the Border Pedagogy "Cafes" on more than 500 binational educators from the Tijuana/San Diego area on the U.S.-Mexico border. Four important themes emerged from the analysis that describe the impact of the cafes and offer a strong foundation on which to build…

  9. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  10. Developing a Science Cafe Program for Your University Library

    ERIC Educational Resources Information Center

    Scaramozzino, Jeanine Marie; Trujillo, Catherine

    2010-01-01

    The Science Cafe is a national movement that attempts to foster community dialog and inquiry on scientific topics in informal venues such as coffee houses, bookstores, restaurants and bars. The California Polytechnic State University, San Luis Obispo, Robert E. Kennedy Library staff have taken the Science Cafe model out of bars and cafes and into…

  11. Big Ideas behind Daily 5 and CAFE

    ERIC Educational Resources Information Center

    Boushey, Gail; Moser, Joan

    2012-01-01

    The Daily 5 and CAFE were born out of The Sister's research and observations of instructional mentors, their intense desire to be able to deliver highly intentional, focused instruction to small groups and individuals while the rest of the class was engaged in truly authentic reading and writing, and their understanding that a one size fits all…

  12. The Business Cafe Project: Viewing to Browsing?

    ERIC Educational Resources Information Center

    Salmon, Gilly

    2001-01-01

    Describes and discusses critically a unique experiment called The Business Cafe that used a combination of broadcast television and an interactive Web site to reach people interested in business and management. Outlines the nine broadcasts, which were collaborations between the Open University (United Kingdom) and the BBC (British Broadcasting…

  13. Working in the Cafe: Lessons in Group Dialogue

    ERIC Educational Resources Information Center

    Prewitt, Vana

    2011-01-01

    Purpose: The purpose of this paper is to report on findings related to the use of a large group intervention method known as The World Cafe. Design/methodology/approach: The intervention method and its philosophical genesis are described, along with lessons learned from observation, personal use, and interviews with cafe participants. Findings:…

  14. Working in the Cafe: Lessons in Group Dialogue

    ERIC Educational Resources Information Center

    Prewitt, Vana

    2011-01-01

    Purpose: The aim of this paper is to report on findings related to the use of a large group intervention method known as The World Cafe. Design/methodology/approach: The intervention method and its philosophical genesis are described along with lessons learned from observation, personal use, and interviews with cafe participants. Findings: While…

  15. The Consequences of Internet Cafe use on Turkish College Students' Social Capital

    ERIC Educational Resources Information Center

    Koc, Mustafa; Ferneding, Karen Ann

    2007-01-01

    This paper draws on a part of the doctoral research study that investigates the potential impacts of Internet cafe use on Turkish college students' social capital. In this study, Internet cafe usage was portrayed by the amount of time spent and the frequency of online activities engaged at the cafes. Social capital, on the other hand, was…

  16. CAFE: A New Relativistic MHD Code

    NASA Astrophysics Data System (ADS)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  17. Accommodation, Cafes and Restaurants. Industry Training Monograph No. 8.

    ERIC Educational Resources Information Center

    Dumbrell, Tom

    Australia's accommodation, cafes, and restaurants industry represents more than half of the nation's total tourism and hospitality employment. It accounts for roughly 4.5% of all jobs in Australia (400,000 workers). Since 1987, the number of jobs in the sector has risen from about 257,000 to about 372,000. Approximately 57% of employees are…

  18. Learning Science at Internet Cafes: Reflections on a Bulgarian Experience

    ERIC Educational Resources Information Center

    Dunne, Mick; Smith, Malcolm

    2004-01-01

    In-service education using information and communication technology (ICT) to teach science is particularly demanding when working in under-resourced locations or where resources are in heavy demand. This article is based on Inset carried out by the authors working with teachers and a university lecturer in a Bulgarian Internet cafe. The use of…

  19. Building Nutrition Skills with the Breakfast Cafe Webquest

    ERIC Educational Resources Information Center

    Nelson, Diane

    2005-01-01

    This article describes the nutrition component of a Home and Career Skills curriculum at Hommocks Middle School (Larchmont, NY) that includes the Breakfast Cafe Webquest, which encourages 7th graders to increase the amounts of fruits and vegetables in their diets as well as reduce serving sizes. Using this Webquest, students "help the Breakfast…

  20. What Can We Learn from the Word Writing CAFE?

    ERIC Educational Resources Information Center

    Bromley, Karen; Vandenberg, Amy; White, Jennifer

    2007-01-01

    Building on the work of an earlier article ["The Word Writing CAFE: Assessing Student Writing for Complexity, Accuracy, and Fluency," Dorothy J. Leal, "Reading Teacher," 59 (4) Dec 2005 (EJ738016)], these authors investigated the use of a simple assessment tool with a different audience to yield similar useful results. (Contains 3 figures and 4…

  1. 75 FR 21044 - Notice of Centennial Challenges 2011 CAFE Green Flight Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... SPACE ADMINISTRATION Notice of Centennial Challenges 2011 CAFE Green Flight Challenge AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Centennial Challenges 2011 CAFE Green Flight... Flight Challenge is scheduled and teams that wish to compete may register. Centennial Challenges is...

  2. Teaching Cafe' Waiter Skills to Adults with Intellectual Disability: A Real Setting Study

    ERIC Educational Resources Information Center

    Cavkaytar, Atilla

    2012-01-01

    The purpose of the study was to examine effectiveness of the Cafe' Waiter Education Program by providing the least prompting to three adult subjects with intellectual disability in a real-life setting. A multiple probe research design across subjects was used. Cafe' waiter skills included five main tasks incorporating 125 skill steps. Task…

  3. Educational Computer Use in Leisure Contexts: A Phenomenological Study of Adolescents' Experiences at Internet Cafes

    ERIC Educational Resources Information Center

    Cilesiz, Sebnem

    2009-01-01

    Computer use is a widespread leisure activity for adolescents. Leisure contexts, such as Internet cafes, constitute specific social environments for computer use and may hold significant educational potential. This article reports a phenomenological study of adolescents' experiences of educational computer use at Internet cafes in Turkey. The…

  4. The Word Writing CAFE: Assessing Student Writing for Complexity, Accuracy, and Fluency

    ERIC Educational Resources Information Center

    Leal, Dorothy J.

    2005-01-01

    The Word Writing CAFE is a new assessment tool designed for teachers to evaluate objectively students' word-writing ability for fluency, accuracy, and complexity. It is designed to be given to the whole class at one time. This article describes the development of the CAFE and provides directions for administering and scoring it. The author also…

  5. Study of implementation level of tobacco restriction policy in cafes and restaurants of Georgia.

    PubMed

    Gvinianidze, K; Bakhturidze, G; Magradze, G

    2012-05-01

    Before year 2008 smoking was partially restricted in cafes and restaurants of Georgia. In 2009 Georgian Parliament adopted amendment in law "Concerning Tobacco Control" and strengthened partial restriction in cafes and restaurants, namely required that 50% of territory of those facilities must be smoke free. To observe status of implementation of tobacco control legislation in field of prohibition/restriction of smoking in cafes and restaurants conducted observation of those facilities and in-depth interviews of their owners/staff. Observation in cafes and restaurants were done in big regional centers of Georgia, namely in Tbilisi (Capital), Telavi, Kutaisi, Batumi, Rustavi, Gori, Akhaltsikhe and Zugdidi. At all 176 cafés/restaurants were observed (22,4% of all registered cafes/restaurants in Georgia). For qualitative part of the study 1-2 persons from staff of the cafe or restaurant or its owner available during the observation was interviewed. Field work was done during 2011-2012. It must be mentioned that during this period was not observed any important change in legislation and/or enforcement of smoking ban/restrictions in those facilities. Study instrument were guide for observer that contained two parts - observational and open-ended questions for owners and staff. Observation of cafes/restaurants in Georgia shows that 89,8% of them violate existing restriction on smoking. All restaurants and 85% of cafes violate the law. Only 18 (10,2%) cafes are in compliance with the legislation and all of them have total ban. Despite to the fact that more than 50% of observed cafes/restaurants were located in Tbilisi, absolute majority (88,1%) of smoke free facilities are in regions (mainly in Kutaisi, Zugdidi and Gori). Qualitative study of owners/staff of the facilities found factors that probably are influential in determination of smoking status of cafes/restaurants. Namely, decisions on those kinds of issues are made by owners according to business interest and

  6. Magnetic properties of superstoichiometric CaFe2O4 + δ obtained by thermobaric synthesis

    NASA Astrophysics Data System (ADS)

    Lobanovsky, L. S.; Trukhanov, S. V.

    2011-05-01

    The crystal structure and magnetic properties of the superstoichiometric (with respect to oxygen) CaFe2O4 + δ compound have been studied at temperatures of 5-300 K and in magnetic fields from 0 to ±10 T. The unit cell volume of this compound is found to exceed that of the initial stoichiometric CaFe2O4 composition. The results of studying the temperature and field dependences of the magnetization and magnetic susceptibility indicate the formation of ferrimagnetic ordering in CaFe2O4 + δ below the Neel temperature (180 K).

  7. Users manual for CAFE-3D : a computational fluid dynamics fire code.

    SciTech Connect

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma

    2005-03-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.

  8. CAFE: Calar Alto Fiber-fed Échelle spectrograph

    NASA Astrophysics Data System (ADS)

    Aceituno, J.; Sánchez, S. F.; Grupp, F.; Lillo, J.; Hernán-Obispo, M.; Benitez, D.; Montoya, L. M.; Thiele, U.; Pedraz, S.; Barrado, D.; Dreizler, S.; Bean, J.

    2013-04-01

    We present here CAFE, the Calar Alto Fiber-fed Échelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alemán (CAHA). CAFE is a single-fiber, high-resolution (R ~ 70 000) spectrograph, covering the wavelength range between 3650-9800 Å. It was built on the basis of the common design for Échelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to V ~ 13-14 mag with a precision as good as a few tens of m s-1. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, as is the wavelength coverage; there is no filter wheel, etc. Particular care was taken with the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2 m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfills the specifications and can achieve the planned goals. In particular, the results show that the instrument is more efficient than anticipated, reaching a signal-to-noise of ~20 for a stellar object as faint as V ~ 14.5 mag in ~2700 s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (highly precise radial velocities in moving groups or stellar associations), or astrochemistry.

  9. The game of science: A grounded theory of the Cafe Scientifique experience

    NASA Astrophysics Data System (ADS)

    Rabe, Lisa A.

    Science Cafes are independent groups organized throughout the world for discussion of scientific topics. Little is known about the nature of this informal learning environment. A grounded-theory study was conducted to determine what attendees perceived as the essential qualities of the Cafe Scientifique experience in one science Cafe in the Western United States. Interviews with 12 attendees were transcribed and analyzed using ATLAS-ti. Concept maps and a grounded theory describing the essential characteristics were created. Member checking was used during theory generation. Findings are described in the context of a game metaphor, whereby scientific discussion at the Cafe is viewed as an intellectual game. The grounded theory describes the game of science being played at Cafe Scientifique involving attendees as players, social norms as rules for the game, an expert as the steward of truth, topics as the content for game play, interaction as playing of the game, and intellectual stimulation as the prize for playing. During the game, ideas were identified through a short presentation followed by a question-and-answer session. During this exchange, attendees heard about, analyzed, synthesized, and applied new information. As a result of the game play, players won a prize---intellectual stimulation. The Cafe Scientifique phenomenon provides insight into informal adult education. This study suggests the need for additional study of intellectual play in adult education, the role of curiosity and desire to explore new ways of thinking, and the developmental drive in adults to seek intellectual stimulation. The essential characteristics of Cafe Scientifique may be transferable to other informal adult-education settings.

  10. Smoke-free cafe in an unregulated European city: highly welcomed and economically successful

    PubMed Central

    Kunzli, N; Mazzoletti, P; Adam, M; Gotschi, T; Mathys, P; Monn, C; Brandli, O

    2003-01-01

    Objective: In a unique setting with two identical cafes, which only differed in their smoking ordinances, this study assessed the influence of smoking policies on the choice of the cafe, investigated regulatory preferences among customers, and evaluated the claim that smoking cafes have better sales performance in a city without smoking bans. Methods: In a parallel assessment, customers of both cafes answered a questionnaire. Sales were compared and air pollutants were measured to confirm air quality differences. Results: The two customer groups (n = 177) differed only with regard to smoking status (p < 0.01). The smoking regulation was the most often cited selection criterion (83%). In the non-smoking café, 89% indicated that they were usually annoyed by smoke in coffee houses, and 62% would avoid or leave cafes for this reason. Two thirds stated that all cafe/restaurants should offer the opportunity of a smoke-free environment. However, almost half stated that mandatory regulations are not needed and that customers should make individual arrangements based on tolerance and courtesy. Those who were informed about the health effects of secondhand smoke were more likely to call for clear policies. Whereas sales showed no differences, tips were 22% (p < 0.001) higher in the non-smoking cafe. Conclusion: In a generation raised in smoking friendly environments, customers paradoxically ask for a landmark shift towards smoke-free opportunities, while substantially adhering to the tobacco industry paradigm of promoting "tolerance" rather than smoke-free policies. Given the clear preference of a large number of customers, hospitality businesses could, however, greatly profit from offering smoke-free environments even in the absence of regulatory policies. PMID:12958388

  11. Physical properties of Rh substituted CaFe2As2 tuned by annealing/quenching

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Bud'Ko, Sergey; Canfield, Paul

    2014-03-01

    Our previous work on CaFe2As2 single crystal grown out of FeAs flux has shown that a process of annealing and quenching can be used as an additional control parameter which can tune the ground state of CaFe2As2 systematically. We have also shown that CaFe2As2 is very pressure sensitive. Therefore, unlike the BaFe2As2 system, the effect of 4d transition metal substitution on CaFe2As2 is expected to be largely different from that of 3d transition metal substitution (e.g. cobalt or nickel substitution). In this talk we will present results of measurements on a Rh substituted CaFe2As2 system with different annealing/quenching temperatures. Phase diagrams with substitution level and annealing/quenching temperature as independent parameters are constructed and compared with that of other transition metal substitutions. Supported by the U.S. Department of Energy Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  12. [Knowledge and attitude of workers and patrons in coffee houses, cafes, restaurants about cigarette smoke].

    PubMed

    Fidan, Fatma; Sezer, Murat; Unlü, Mehmet; Kara, Ziya

    2005-01-01

    A legislation about smoking restriction in all workplaces is under consideration in Turkey. In our study we evaluated the knowledge and attitudes of workers and patrons of cafes, restaurants and coffee houses about smoking ban in their work places. Twenty eight owners, 67 workers and 242 patrons in 12 coffee house, 12 restaurants and 7 cafes were interviewed. A desire to work in a smoke-free workplace was most frequent (79.8%) among coffee house group and 63.9% in cafe group, 57.8% in restaurants group. Smoking ban was most frequently requested by coffee house group and least frequently by cafe group. Coffee house and cafe groups were supposing a decrease in the number of patrons and incomes with such a legislation, whereas restaurant group was thinking that no change will occur. 45.4% of the coffee house patrons stated that they would less frequently visit that workplace in case of a smoking ban, whereas 47.8% of restaurant patrons stated that there would be no change with their frequency to visit there. A desire to work in a smoke-free workplace and requesting a smoking ban for all workplaces were more frequent among nonsmokers. Smokers stated that their frequency to visit those places would decrease in case of a smoking ban, whereas nonsmokers stated an increase in their frequency to visit those places. We think that informing the owners and workers of coffee houses, restaurants and cafes about these facts is very important and would increase the compliance to such a legislation. PMID:16456735

  13. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  14. Stockholm's Cafe 84: A Unique Day Program for Jewish Survivors of Concentration Camps.

    ERIC Educational Resources Information Center

    Fried, Hedi; Waxman, Howard M.

    1988-01-01

    Describes Cafe 84, a day program in Sweden for survivors of German concentration camps, which offers organized but informal activities so that members can socialize and discuss current feelings and memories. Claims large membership as well as reports of reduced symptoms and increased well-being are evidence of program's success. (Author/ABL)

  15. The Petrol Station and the Internet Cafe: Rural Technospaces for Youth.

    ERIC Educational Resources Information Center

    Laegran, Anne Sofie

    2002-01-01

    A study in two Norwegian villages focused on the local gas station and the Internet cafe as "technospaces" for rural youth cultures--spaces at the intersection of technology and human interaction. The car and the Internet were given different symbolic and utility values in various youth subcultures. Local contexts influenced technology usage…

  16. CAFES 2009 New Student Survey Report. Survey Research Center Report 2010/3

    ERIC Educational Resources Information Center

    Speerstra, Mandy; Trechter, David

    2010-01-01

    During Academic Day, September 1, 2009, incoming freshmen and transfer students in the College of Agriculture, Food and Environmental Sciences (CAFES) were asked to complete a one-page questionnaire designed to find out: (1) how they learned about UW-River Falls as an option for their tertiary education; (2) what factors most influenced their…

  17. Crossroads Cafe: An ESOL Program for Adult Learners. Formative Evaluation Study, Summer 1996 Pilot Implementation.

    ERIC Educational Resources Information Center

    Spiegel, Seymour; Rayman, Irene C.

    The reports presents findings of a formative evaluation of "Crossroads Cafe," an adult-level distance learning program designed to teach English to speakers of other languages (ESOL). The study focused on how 22 programs were implemented in 6 different regions of New York State. The program is a collaborative efforts of the Department of…

  18. Speakeasy Studio and Cafe: Information Literacy, Web-based Library Instruction, and Technology.

    ERIC Educational Resources Information Center

    Jacobs, Mark

    2001-01-01

    Discussion of academic library instruction and information literacy focuses on a Web-based program developed at Washington State University called Speakeasy Studio and Cafe that is used for bibliographic instruction. Highlights include the research process; asking the right question; and adapting to students' differing learning styles. (LRW)

  19. The Poetry Cafe Is Open! Teaching Literary Devices of Sound in Poetry Writing

    ERIC Educational Resources Information Center

    Kovalcik, Beth; Certo, Janine L.

    2007-01-01

    A six-week long intervention that introduced second graders to poetry writing is described in this article, ending in a classroom "poetry cafe" culminating event. This article details the established classroom "writing workshop" structure and environment and the perceptions and observations of how students responded to the instruction. Four poetry…

  20. Change-Agent-for-Equity (CAFE) Model: A Framework for School Counselor Identity

    ERIC Educational Resources Information Center

    Mason, Erin C. M.; Ockerman, Melissa S.; Chen-Hayes, Stuart F.

    2013-01-01

    Significant recent influences in the profession have provided clear direction about what school counseling programs should look like but have not explicitly defined the professional identity necessary to enact these programs. A Change-Agent-for-Equity (CAFE) Model draws from the American School Counselor Association National Model (2003, 2005,…

  1. Infrared spectroscopy of rare-earth-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Xing, Zhen; Huffman, T. J.; Xu, Peng; Qazilbash, M. M.; Saha, S. R.; Drye, Tyler; Paglione, J.

    2014-03-01

    Recently, rare-earth doping in CaFe2As2 has been used to tune its electronic, magnetic, and structural properties. The substitution of rare-earth ions at the alkaline-earth sites leads to the suppression of the spin-density wave (SDW) phase transition in CaFe2As2. For example, Pr substitution results in a paramagnetic metal in the tetragonal phase that is susceptible to a low temperature structural transition to a collapsed tetragonal phase. However, La-doped CaFe2As2 remains in the uncollapsed tetragonal structure down to the lowest measured temperatures. Both the uncollapsed and collapsed tetragonal structures exhibit superconductivity with maximum Tc reaching 47 K, the highest observed in inter-metallics albeit with a small superconducting volume fraction. In this work, we perform ab-plane infrared spectroscopy of rare-earth-doped CaFe2As2 at different cryogenic temperatures. Our aim is to ascertain the contributions of electron doping and chemical pressure to the charge and lattice dynamics of this iron-arsenide system.

  2. The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults

    PubMed Central

    LoBue, Vanessa; Thrasher, Cat

    2014-01-01

    Emotional development is one of the largest and most productive areas of psychological research. For decades, researchers have been fascinated by how humans respond to, detect, and interpret emotional facial expressions. Much of the research in this area has relied on controlled stimulus sets of adults posing various facial expressions. Here we introduce a new stimulus set of emotional facial expressions into the domain of research on emotional development—The Child Affective Facial Expression set (CAFE). The CAFE set features photographs of a racially and ethnically diverse group of 2- to 8-year-old children posing for six emotional facial expressions—angry, fearful, sad, happy, surprised, and disgusted—and a neutral face. In the current work, we describe the set and report validity and reliability data on the set from 100 untrained adult participants. PMID:25610415

  3. Thermal expansion of CaFe2As2: effect of annealing and cobalt doping

    NASA Astrophysics Data System (ADS)

    Bud'Ko, Sergey L.; Ran, Sheng; Canfield, Paul C.

    2013-03-01

    Careful choice of Co concentration and annealing/quenching temperature in the Ca(Fe1-xCox)2As2 series allows for tuning the ground state of the from orthorhombic-antiferromagnetic to superconducting to collapsed tetragonal.In this talk temperature-dependent, c-axis, thermal expansion measurements on several sets of Co-doped CaFe2As2 single crystals that were subjected to a variety of annealing conditions will be presented. These samples were chosen to cover all salient regions of the 3D x -Tanneal - T phase diagram. The thermal expansion signatures of different types of phase transitions observed in these series will be discussed and comparison with the other measurements will be made. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract No. DE-AC02-07CH11358.

  4. Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Saparov, B.; Durakiewicz, T.; Chikina, A.; Danzenbächer, S.; Vyalikh, D. V.; Graf, M. J.; Sefat, A. S.

    2014-05-01

    Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.

  5. Complex temperature evolution of the electronic structure of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-03-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe2As2, which is a parent compound of high temperature superconductors—CaFe2As2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe2As2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature.

  6. CaFe2As2 Under In-Plane Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Frampton, Miles; Zieve, Rena; Dioguardi, Adam

    2014-03-01

    Many unconventional superconductors have a planar crystal structure, with a resulting two-dimensional character that favors superconductivity. They tend to have anisotropic behavior and can be very sensitive to uniaxial pressure. Since these materials often grow preferentially as platelets perpendicular to the crystalline c axis, applying in-plane pressure is challenging. We present a new setup for studying thin samples under uniaxial pressure and our results on CaFe2As2. CaFe2As2 undergoes a magnetic transition simultaneously with a tetragonal-to-orthorhombic structural transition. In-plane uniaxial pressure detwins the orthorhombic phase and accentuates the difference between the axes. We find a significant change in Ts as well as anisotropy of the in-plane resistivity that increases with pressure.

  7. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  8. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  9. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  10. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events

    PubMed Central

    Korla, Praveen Kumar; Cheng, Jack; Huang, Chien-Hung; Tsai, Jeffrey J. P.; Liu, Yu-Hsuan; Kurubanjerdjit, Nilubon; Hsieh, Wen-Tsong; Chen, Huey-Yi; Ng, Ka-Lok

    2015-01-01

    Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain–domain interactions, protein–protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist’s mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop ‘novel’ therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE PMID:26384373

  11. Electronic and magnetic properties of Ca(Fe1-xCox)2 As2 studied by 75As NMR

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuji; Roy, Beas; Ran, Shen; Bud'Ko, Sergey L.; Canfield, Paul C.

    2014-03-01

    Recently much attention has been paid to CaFe2As2 because the magnetic and electronic properties of the system can be controlled by changing the heat treatment conditions. CaFe2As2 annealed at 400 C for 24 hours undergoes a phase transition from a high-temperature tetragonal paramagnetic state to a low temperature orthorhombic antiferromagnetic state at TN ~ 160K. On the other hand, CaFe2As2 quenched from 960 C to room temperature shows a transition to a collapsed tetragonal non-magnetic phase below Ts ~ 90 K. In order to investigate the difference in electronic and magnetic properties of the two different CaFe2As2 samples from a microscopic point of view, we have carried 75As-NMR spectra and spin-lattice relaxation measurements. We also performed 75As-NMR measurements on Co-doped CaFe2As2 superconductor. Based on our NMR data, we will discuss similarities and difference in magnetic fluctuations in the systems, and compare the NMR data with inelastic neutron scattering data. Supported by USDOE under the Contract No. DE-AC02-07CH11358.

  12. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  13. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  14. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  15. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    PubMed

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. PMID:26497000

  16. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  17. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    NASA Astrophysics Data System (ADS)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  18. The Garden Cafe. An experiment in vocational education in the Philippines.

    PubMed

    Olson, J R

    1992-07-01

    The author visited Bohol, a picturesque island in the Philippines 350 miles south of Manila, in 1986 and 1990 to observe and record the emerging deaf culture. Before the Peace Corps started a school program on the island some eight years ago, deaf children grew up functionally illiterate. Those who have not been found and are not enrolled in the fledgling school program still do, as they are completely isolated from the deaf community. This article describes heroic efforts to teach vocational skills to the deaf in Bohol. The project not only succeeded but led to the island's best restaurant, The Garden Cafe. PMID:1414869

  19. Stripes and antiphase boundaries in CaFe2O4

    NASA Astrophysics Data System (ADS)

    Stock, Chris; Rodriguez, Efrain; Green, Mark; Lee, Nara; Cheong, S.-W.

    2015-03-01

    We report on the magnetic structure and spin dynamics in CaFe2O4 based upon an orthorhombic structure. The magnetic structure consists of two competing magnetic phases based upon stripes of S =5/2 Fe3+ ions. The magnetic dynamics illustrate that the coupling is primarily two dimensional. On application of a magnetic field, antiphase magnetic boundaries can be introduced into the lattice and frozen in at low temperatures. We investigate the structure and dynamics of these domains using polarized and unpolarized neutron scattering and discuss how the triangular geometry allow these localized defects to be energetically favorable. Carnegie Trust for the Universities of Scotland, Royal Society, and EPSRC.

  20. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  1. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  2. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  3. L'enseignement du francais par ordinateur: Les programmes conversationnels au Cafe (Cours autodidactique de francais ecrit) [Teaching French by Computer: Conversational Programs in "Cafe" (Self-instructional Course in Written French)].

    ERIC Educational Resources Information Center

    Landriault, Bernard; Connolly, Guy

    1980-01-01

    Computer technology has been used to develop "Cafe," a self-instructional course in written French communication, which is offered to the general public by the University of Montreal. The course consists of three workbooks containing 1200 items dealing with vocabulary, spelling, punctuation, agreements, morphology, syntax, and fine points of…

  4. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  5. Complex structures of different CaFe2As2 samples

    PubMed Central

    Saparov, Bayrammurad; Cantoni, Claudia; Pan, Minghu; Hogan, Thomas C.; II, William Ratcliff; Wilson, Stephen D.; Fritsch, Katharina; Gaulin, Bruce D.; Sefat, Athena S.

    2014-01-01

    The interplay between magnetism and crystal structures in three CaFe2As2 samples is studied. For the nonmagnetic quenched crystals, different crystalline domains with varying lattice parameters are found, and three phases (orthorhombic, tetragonal, and collapsed tetragonal) coexist between TS = 95 K and 45 K. Annealing of the quenched crystals at 350°C leads to a strain relief through a large (~1.3%) expansion of the c-parameter and a small (~0.2%) contraction of the a-parameter, and to local ~0.2 Å displacements at the atomic-level. This annealing procedure results in the most homogeneous crystals for which the antiferromagnetic and orthorhombic phase transitions occur at TN/TS = 168(1) K. In the 700°C-annealed crystal, an intermediate strain regime takes place, with tetragonal and orthorhombic structural phases coexisting between 80 to 120 K. The origin of such strong shifts in the transition temperatures are tied to structural parameters. Importantly, with annealing, an increase in the Fe-As length leads to more localized Fe electrons and higher local magnetic moments on Fe ions. Synergistic contribution of other structural parameters, including a decrease in the Fe-Fe distance, and a dramatic increase of the c-parameter, which enhances the Fermi surface nesting in CaFe2As2, are also discussed. PMID:24844399

  6. Waterpipe cafes in Baltimore, Maryland: Carbon monoxide, particulate matter, and nicotine exposure

    PubMed Central

    Torrey, Christine M; Moon, Katherine A; Williams, D' Ann L; Green, Tim; Cohen, Joanna E; Navas-Acien, Ana; Breysse, Patrick N

    2015-01-01

    Waterpipe smoking has been growing in popularity in the United States and worldwide. Most tobacco control regulations remain limited to cigarettes. Few studies have investigated waterpipe tobacco smoke exposures in a real world setting. We measured carbon monoxide (CO), particulate matter (PM)2.5, and airborne nicotine concentrations in seven waterpipe cafes in the greater Baltimore area. Area air samples were collected between two and five hours, with an average sampling duration of three hours. Waterpipe smoking behaviors were observed at each venue. Indoor air samplers for CO, PM2.5, and airborne nicotine were placed in the main seating area 1–2 m above the floor. Indoor airborne concentrations of PM2.5 and CO were markedly elevated in waterpipe cafes and exceeded concentrations that were observed in cigarette smoking bars. Air nicotine concentrations, although not as high as in venues that allow cigarette smoking, were markedly higher than in smoke-free bars and restaurants. Concentrations of PM approached occupational exposure limits and CO exceeded occupational exposure guidelines suggesting that worker protection measures need to be considered. This study adds to the literature indicating that both employees and patrons of waterpipe venues are at increased risk from complex exposures to secondhand waterpipe smoke. PMID:24736103

  7. Waterpipe cafes in Baltimore, Maryland: Carbon monoxide, particulate matter, and nicotine exposure.

    PubMed

    Torrey, Christine M; Moon, Katherine A; Williams, D' Ann L; Green, Tim; Cohen, Joanna E; Navas-Acien, Ana; Breysse, Patrick N

    2015-01-01

    Waterpipe smoking has been growing in popularity in the United States and worldwide. Most tobacco control regulations remain limited to cigarettes. Few studies have investigated waterpipe tobacco smoke exposures in a real world setting. We measured carbon monoxide (CO), particulate matter (PM)2.5, and airborne nicotine concentrations in seven waterpipe cafes in the greater Baltimore area. Area air samples were collected between two and five hours, with an average sampling duration of three hours. Waterpipe smoking behaviors were observed at each venue. Indoor air samplers for CO, PM2.5, and airborne nicotine were placed in the main seating area 1-2 m above the floor. Indoor airborne concentrations of PM2.5 and CO were markedly elevated in waterpipe cafes and exceeded concentrations that were observed in cigarette smoking bars. Air nicotine concentrations, although not as high as in venues that allow cigarette smoking, were markedly higher than in smoke-free bars and restaurants. Concentrations of PM approached occupational exposure limits and CO exceeded occupational exposure guidelines suggesting that worker protection measures need to be considered. This study adds to the literature indicating that both employees and patrons of waterpipe venues are at increased risk from complex exposures to secondhand waterpipe smoke. PMID:24736103

  8. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  9. Complex structures of different CaFe2As2 samples

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Cantoni, Claudia; Pan, Minghu; Hogan, Thomas C.; , William Ratcliff, II; Wilson, Stephen D.; Fritsch, Katharina; Gaulin, Bruce D.; Sefat, Athena S.

    2014-02-01

    The interplay between magnetism and crystal structures in three CaFe2As2 samples is studied. For the nonmagnetic quenched crystals, different crystalline domains with varying lattice parameters are found, and three phases (orthorhombic, tetragonal, and collapsed tetragonal) coexist between TS = 95 K and 45 K. Annealing of the quenched crystals at 350°C leads to a strain relief through a large (~1.3%) expansion of the c-parameter and a small (~0.2%) contraction of the a-parameter, and to local ~0.2 Å displacements at the atomic-level. This annealing procedure results in the most homogeneous crystals for which the antiferromagnetic and orthorhombic phase transitions occur at TN/TS = 168(1) K. In the 700°C-annealed crystal, an intermediate strain regime takes place, with tetragonal and orthorhombic structural phases coexisting between 80 to 120 K. The origin of such strong shifts in the transition temperatures are tied to structural parameters. Importantly, with annealing, an increase in the Fe-As length leads to more localized Fe electrons and higher local magnetic moments on Fe ions. Synergistic contribution of other structural parameters, including a decrease in the Fe-Fe distance, and a dramatic increase of the c-parameter, which enhances the Fermi surface nesting in CaFe2As2, are also discussed.

  10. Would the "Real" Girl Gamer Please Stand Up? Gender, LAN Cafes and the Reformulation of the "Girl" Gamer

    ERIC Educational Resources Information Center

    Beavis, Catherine; Charles, Claire

    2007-01-01

    In this paper we consider the significance of cyber "LAN" cafes as sites where on and off-line practices meet in way that complicates binary notions of the gendered gamer. Existing research into computer games culture suggests a male dominated environment and points to girls' lower levels of competence and participation in games. Building on…

  11. Calorimetric study of the superconducting and normal state properties of Ca(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, M.; Harnagea, L.; Singh, S.; Stockert, U.; Wurmehl, S.; Leps, N.; Klingeler, R.; Wolter, A. U. B.; Büchner, B.

    2012-12-01

    We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shifts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x >= 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc ~ 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be μ0H(c)2 = 11.5 T and μ0H(ab)c2 = 19.4 T for the c and ab directions, respectively.

  12. From School to Cafe and Back Again: Responding to the Learning Demands of the Twenty-First Century

    ERIC Educational Resources Information Center

    McWilliam, Erica

    2011-01-01

    This paper traces the historical origins of formal and informal lifelong learning to argue that optimal twenty-first-century education can and should draw on the traditions of both the school and the coffee house or cafe. For some time now, educational policy documents and glossy school brochures have come wrapped in the mantle of lifelong…

  13. DIFFERENTIATING PASSENGER VEHICLES BY FUEL ECONOMY: STRATEGIC INCENTIVES AND THE COST-EFFECTIVENESS OF TRADABLE CAFE STANDARDS

    EPA Science Inventory

    The welfare and distributional effects of alternative fuel economy regulations will be compared, including an increase in existing CAFE standards, allowing for tradable credits, and implementing other design options in a trading scheme, such as sliding standards based on ve...

  14. (En)Countering Social and Environmental Messages in the Rainforest Cafe [sic], Children's Picturebooks, and Other Visual Culture Sites

    ERIC Educational Resources Information Center

    Reisberg, Mira; Han, Sandrine

    2009-01-01

    Our study critically examines social and environmental messages in a range of visual sites educating about rainforest environments. We focus primarily on the Rainforest Cafe, an international series of rainforest-themed edutainment restaurant/stores, whose inherent contradictions between consumption and conservation are quite disturbing when…

  15. Combined effects of annealing/quenching and transition metal substitution on physical properties of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Bud'Ko, Sergey; Canfield, Paul

    2013-03-01

    Our previous work on CaFe2As2 single crystals grown out of FeAs flux has shown that a process of annealing and quenching can be used as an additional control parameter which can tune the ground state of CaFe2As2 systematically, in a manner similar to applied pressure. With combined effect of annealing/quenching and transition metal substitution, CaFe2As2 system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal. In this talk we will present systematic studies of the combined effects of annealing/quenching and chemical substitution with various transition metals (Co, Ni, Rh) on the physical properties of CaFe2As2 and construct phase diagrams for different substitution levels and different annealing/quenching temperatures. Supported by the U.S. Department of Energy Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  16. Pressure-induced change of the electronic state in the tetragonal phase of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Yui; Ikeda, Shugo; Kuse, Tetsuji; Kobayashi, Hisao

    2014-07-01

    We have investigated the electronic states of single-crystal CaFe2As2 under hydrostatic pressure using 57Fe Mössbauer spectroscopy and magnetization measurements. The center shift and the quadrupole splitting were refined from observed 57Fe Mössbauer spectra using the single-crystalline sample under pressure at room temperature. A discontinuous decrease in the pressure dependence of the refined center shift was observed at 0.33 GPa without any anomaly in the pressure dependence of the refined quadrupole splitting, indicating a purely electronic state change in CaFe2As2 with a tetragonal structure. Such a change is shown to be reflected in the peak-like anomalies observed in the pressure dependences of the magnetic susceptibility at 0.26 GPa above 150 K. Our results reveal that this pressure-induced electronic state change suppresses the tetragonal-to-orthorhombic structural phase transition accompanied by an antiferromagnetic ordering. We further observed superconductivity in CaFe2As2 below ˜8 K around 0.33 GPa although our sample was not in a single phase at this pressure. These findings suggest that the electronic state change observed in CaFe2As2 with the tetragonal structure is relevant to the appearance of the pressure-induced superconductivity in AFe2As2.

  17. Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.

    57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.

  18. Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    Most of the advances in volcanology during the past 20 years have concerned the recognition, interpretation, and mode of emplacement of pyroclastic rocks. The literature on pyroclastic rocks is widely scattered, in part because the field draws from sedimentology, igneous petrology, physics, and fluid mechanics, and there have been few review papers on the topic. Fisher and Schmincke have done the discipline of volcanology and all field-oriented geologists a great service in assembling material from a wide range of sources in this comprehensive treatment of pyroclastic rocks. With its introduction to the petrology of magmas involved in explosive eruptions in chapter 2 and a complete treatment of magma rheology and the behavior of dissolved and exsolving magmatic volatiles in chapter 3, they lay sufficient groundwork that anyone with a rudimentary knowledge of geology can understand the book.

  19. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  20. Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.

    2016-07-01

    CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.

  1. CARMENES at PPVI. High-Resolution Spectroscopy of M Dwarfs with FEROS, CAFE and HRS

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Montes, D.; Jeffers, S.; Caballero, J. A.; Zechmeister, M.; Mundt, R.; Reiners, A.; Amado, P. J.; Casal, E.; Cortés-Contreras, M.; Modroño, Z.; Ribas, I.; Rodríguez-López, C.; Quirrenbach, A.

    2013-07-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing ~500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsini with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2m La Silla , CAFE at 2.2m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  2. First-principles study of CaFe2As2 under pressure

    NASA Astrophysics Data System (ADS)

    Widom, Michael; Quader, Khandker

    2013-07-01

    We perform first-principles calculations on CaFe2As2 under hydrostatic pressure. Our total-energy calculations show that though the striped antiferromagnetic (AFM) orthorhombic (OR) phase is favored at P=0, a nonmagnetic collapsed tetragonal (cT) phase with diminished c parameter is favored for P>0.36 GPa, in agreement with experiments. Rather than a mechanical instability, this is an enthalpically driven transition from the higher volume OR phase to the lower volume cT phase. A simple thermodynamic model provides an interpretation of the finite-temperature phase boundaries of the cT phase. Calculations of electronic density of states reveal pseudogaps in both OR and cT phases. Band-structure analysis provides insight into the origin of the pseudogaps while revealing the location and nature of hybridized Fe-d and As-p bonding orbitals.

  3. The iron phosphate CaFe3(PO4)3O

    PubMed Central

    Hidouri, Mourad; Ben Amara, Mongi

    2009-01-01

    A new iron phosphate, calcium triiron(III) tris­(phosphate) oxide, CaFe3(PO4)3O, has been isolated and shown to exhibit a three-dimensional structure built by FeO6 octa­hedra, FeO5 trigonal bipyramids and PO4 tetra­hedra. The FeOx (x = 5, 6) polyhedra are linked through common corners and edges, forming [Fe6O28]∞ chains with branches running along [010]. Adjacent chains are connected by the phosphate groups via common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported SrFe3(PO4)3O and Bi0.4Fe3(PO4)3O structures, in which the Ca2+ cations occupy a single symmetry non-equivalent cavity. PMID:21583300

  4. The iron phosphate CaFe(3)(PO(4))(3)O.

    PubMed

    Hidouri, Mourad; Ben Amara, Mongi

    2009-01-01

    A new iron phosphate, calcium triiron(III) tris-(phosphate) oxide, CaFe(3)(PO(4))(3)O, has been isolated and shown to exhibit a three-dimensional structure built by FeO(6) octa-hedra, FeO(5) trigonal bipyramids and PO(4) tetra-hedra. The FeO(x) (x = 5, 6) polyhedra are linked through common corners and edges, forming [Fe(6)O(28)](∞) chains with branches running along [010]. Adjacent chains are connected by the phosphate groups via common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported SrFe(3)(PO(4))(3)O and Bi(0.4)Fe(3)(PO(4))(3)O structures, in which the Ca(2+) cations occupy a single symmetry non-equivalent cavity. PMID:21583300

  5. Retention Cafe.

    ERIC Educational Resources Information Center

    Goldwasser, Donna

    2000-01-01

    Employers in the hospitality industry are attempting to retain workers with such methods as using personality typing when selecting employees, offering a variety of fringe benefits, and selecting employees who want a career instead of a job. (JOW)

  6. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  7. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  8. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  9. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  10. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  11. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  12. Unconventional superconductivity in CaFe0.85Co0.15AsF evidenced by torque measurements

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Li, X. J.; Mu, G.; Hu, T.

    Out-of-plane angular dependent torque measurements were performed on CaFe0.85Co0.15AsF single crystals. Abnormal superconducting fluctuation, featured by enhanced diamagnetism with magnetic field, is detected up to about 1.5 times superconducting transition temperature Tc. Compared to cuprate superconductors, the fluctuation effect in iron-based superconductor is less pronounced. Anisotropy parameter γ is obtained from the mixed state torque data and it is found that γ shows both magnetic field and temperature depenence, pointing to multiband superconductivity. The temperature dependence of penetration depth λ (T) suggests unconventional superconductivity in CaFe0.85Co0.15AsF.

  13. The non-magnetic collapsed tetragonal phase of CaFe2As2 and superconductivity in the iron pnictides

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2014-03-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences. Work at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences.

  14. Mechanically-induced disorder in CaFe2As2: A 57Fe Mössbauer study

    DOE PAGESBeta

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'ko, Sergey L.

    2015-10-17

    57Fe Mössbauer spectroscopy was used to perform a microscopic study on the extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that themore » antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. Additional electronic and asymmetry information was obtained from the isomer shift and quadrupole splitting. Similar isomer shift values in the magnetic phase for samples with different degrees of strain, indicate that the stain does not bring any significant variation of the electronic density at 57Fe nucleus position. As a result, the absolute values of quadrupole shift in the magnetic phase decrease and approach zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position.« less

  15. The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.

    2016-01-01

    Measurements are presented and analysed of the strength of the Ca II triplet lines in red giants in Galactic globular and open clusters, and in a sample of red giants in the LMC disc that have significantly different [Ca/Fe] abundance ratios to the Galactic objects. The Galactic objects are used to generate a calibration between Ca II triplet line strength and [Fe/H], which is then used to estimate [Fe/H]CaT for the LMC stars. The values are then compared with the [Fe/H]spec determinations from high-dispersion spectroscopy. After allowance for a small systematic offset, the two abundance determinations are in excellent agreement. Further, as found in earlier studies, the difference is only a very weak function of the [Ca/Fe] ratio. For example, changing [Ca/Fe] from +0.3 to -0.2 causes the Ca II-based abundance to underestimate [Fe/H]spec by only ˜0.15 dex, assuming a Galactic calibration. Consequently, the Ca II triplet approach to metallicity determinations can be used without significant bias to study stellar systems that have substantially different chemical evolution histories.

  16. CAFE: A Computer Tool for Accurate Simulation of the Regulatory Pool Fire Environment for Type B Packages

    SciTech Connect

    Gritzo, L.A.; Koski, J.A.; Suo-Anttila, A.J.

    1999-03-16

    The Container Analysis Fire Environment computer code (CAFE) is intended to provide Type B package designers with an enhanced engulfing fire boundary condition when combined with the PATRAN/P-Thermal commercial code. Historically an engulfing fire boundary condition has been modeled as {sigma}T{sup 4} where {sigma} is the Stefan-Boltzman constant, and T is the fire temperature. The CAFE code includes the necessary chemistry, thermal radiation, and fluid mechanics to model an engulfing fire. Effects included are the local cooling of gases that form a protective boundary layer that reduces the incoming radiant heat flux to values lower than expected from a simple {sigma}T{sup 4} model. In addition, the effect of object shape on mixing that may increase the local fire temperature is included. Both high and low temperature regions that depend upon the local availability of oxygen are also calculated. Thus the competing effects that can both increase and decrease the local values of radiant heat flux are included in a reamer that is not predictable a-priori. The CAFE package consists of a group of computer subroutines that can be linked to workstation-based thermal analysis codes in order to predict package performance during regulatory and other accident fire scenarios.

  17. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  18. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  19. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  20. CAFE: a seismic investigation of water percolation in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Abers, G. A.; Creager, K. C.; Malone, S. D.; MacKenzie, L.; Zhang, Z.; van Keken, P. E.; Wech, A. G.; Sweet, J. R.; Melbourne, T. I.; Hacker, B. R.

    2008-12-01

    Subduction zones transport water into the Earth's interior. The subsequent release of this water through dehydration reactions may trigger intraslab earthquakes and arc volcanism, regulate slip on the plate interface, control plate buoyancy, and regulate the long-term budget of water on the planet's surface. As part of Earthscope, we have undertaken an experiment named CAFE (Cascadia Arrays for Earthscope) seeking to better constrain these effects in the Cascadia subduction zone. The basic experiment has four components: (1) a 47-element broadband imaging array of Flexible Array instruments integrated with Bigfoot; (2) three small-aperture seismic arrays with 15 additional short-period instruments near known sources of Episodic Tremor and Slip (ETS) events; (3) analysis of the PBO and PANGA GPS data sets to define the details of episodic slip events; and (4) integrative modeling with complementary constraints from petrology and geodynamics. Here, we present a summary of the results that have been obtained to date by CAFE, with a focus on high-resolution seismic imaging. A 250 km-long by 120 km-deep seismic profile extending eastward from the Washington coast was generated by 2-D Generalized Radon Transform Inversion of the broadband data. It images the subducted crust as a shallow-dipping, low-velocity layer from 20km depth beneath the coast to 40km depth beneath the forearc. The termination of the low-velocity layer is consistent with the depth at which hydrated metabasalts of the subducted crust are expected to undergo eclogitization, a reaction that is accompanied by the release of water and an increase in seismic velocities. Slab earthquakes are located in both the oceanic crust and mantle at depths <40 km, and exclusively in the oceanic mantle at greater depth, as would be expected if they are related to slab dehydration. Two ETS events have occurred during the course of the deployment. They were precisely located and are confined to the region above which the

  1. Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2As2 family of materials.

    PubMed

    Ortenzi, L; Gretarsson, H; Kasahara, S; Matsuda, Y; Shibauchi, T; Finkelstein, K D; Wu, W; Julian, S R; Kim, Young-June; Mazin, I I; Boeri, L

    2015-01-30

    We report a combination of Fe Kβ x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx)2. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx)2. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx)2 (x=0.055) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides. PMID:25679903

  2. Structural Origin of the Anomalous Temperature Dependence of the Local Magnetic Moments in the CaFe2As2 Family of Materials

    NASA Astrophysics Data System (ADS)

    Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.

    2015-01-01

    We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

  3. Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.

    PubMed

    Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W

    2016-07-01

    CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1  ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet. PMID:27419585

  4. Paramagnetic Spin Correlations in CaFe2As2 Single Crystals

    SciTech Connect

    Omar Diallo, Souleymane; Pratt, Daniel; Fernandes, Rafael; Tian, Wei; Zarestky, J. L.; Lumsden, Mark D; Perring, T. G.; Broholm, C.; Ni, Ni; Budko, S L; Canfield, Paul; Li, Haifeng; Vaknin, D; Kreyssig, A.; Goldman, A. I.; Mcqueeney, R J

    2010-01-01

    Magnetic correlations in the paramagnetic phase of CaFe2As2(TN=172 K) have been examined by means of inelastic neutron scattering from 180 K ( 1.05TN) up to 300 K (1.8TN). Despite the first-order nature of the magnetic ordering, strong but short-ranged antiferromagnetic (AFM) correlations are clearly observed. These correlations, which consist of quasielastic scattering centered at the wave vector QAFM of the low-temperature AFM structure, are observed up to the highest measured temperature of 300 K and at high energy transfer ( >60 meV). The L dependence of the scattering implies rather weak interlayer coupling in the tetragonal c direction corresponding to nearly two-dimensional fluctuations in the (ab) plane. The spin correlation lengths within the Fe layer are found to be anisotropic, consistent with underlying fluctuations of the AFM stripe structure. Similar to the cobalt-doped superconducting BaFe2As2 compounds, these experimental features can be adequately reproduced by a scattering model that describes short-ranged and anisotropic spin correlations with overdamped dynamics.

  5. Mott transition in CaFe2O4 at around 50 GPa

    NASA Astrophysics Data System (ADS)

    Greenberg, Eran; Rozenberg, Gregory Kh.; Xu, Weiming; Pasternak, Moshe P.; McCammon, Catherine; Glazyrin, Konstantin; Dubrovinsky, Leonid S.

    2013-12-01

    Electrical transport and magnetic properties of CaFe2O4 have been studied at pressures up to 70 GPa using Fe57 Mössbauer spectroscopy (MS), Raman spectroscopy, and electrical resistance measurements. These studies have shown the onset of the Mott transition (MT) at a pressure of around 50 GPa, leading to the collapse of Fe3+ magnetic moments and to the insulator-metal (IM) transition. The observed onset of the MT corroborates with the recently reported isostructural transition accompanied by a 12% decrease in the Fe polyhedral volume. An analysis of the alterations of the electrical transport, magnetic, and structural properties with pressure increase and at the transition range suggests that the coinciding IM transition, magnetic moment, and volume collapse at around 50 GPa are caused by the closure of the Hubbard gap driven by the high-spin to low-spin (HS-LS) transition. At that, since MS did not reveal any evidence of a preceding LS state, it could be inferred that the HS-LS transition immediately leads to an IM transition and complete collapse of magnetism.

  6. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  7. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  8. Temperature dependent tunneling study of CaFe1.96Ni0.04As2 single crystals

    NASA Astrophysics Data System (ADS)

    Dutta, Anirban; Thamizhavel, A.; Gupta, Anjan K.

    2014-04-01

    We report on temperature dependent scanning tunneling microscopy and spectroscopy studies on CaFe1.96Ni0.04As2 single crystals in 5.4 - 19.7 K temperature range across the normal metal - superconductor transition temperature, TC = 14K. The in-situ cleaved crystals show reasonably flat surface with signatures of atomic resolution. The tunnel spectra show significant spatial inhomogeneity below TC, which reduces significantly as the temperature goes above the TC. We discuss these results in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the quantum critical point.

  9. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  10. In-plane structural and electronic anisotropy in de-twinned CaFe2As2 compounds

    NASA Astrophysics Data System (ADS)

    Blomberg, Erick; Tanatar, M. A.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Prozorov, R.

    2013-03-01

    In-plane structural and electronic anisotropy has been studied in a wide range of iron-based superconductors by detwinning via uniaxial stress or strain. In particular, materials based on BaFe2As2 (''112'') are among the most studied systems, where different dopants, annealing protocols and different flux growths were extensively explored. However CaFe2As2 remains a much less studied compound and it exhibits properties quite different from Ba-based 122's. Here we report polarized-light microscopy and electric transport measurements of strain-detwinned CaFe2As2 compounds. Our results reveal unusual evolution of the structural, electronic and magnetic properties dependent on annealing, growth from Sn flux vs FeAs flux, and doping, as compared to BaFe2As2. Among the key observations are the differences in twin domain evolution, and a hysteresis in structural and electronic anisotropy upon warming and cooling. This work was supported by the Department of Energy Office of Science, Basic Energy Sciences under Contract No. DE-AC02-O7CH11358.

  11. A Tale of Blue Rain Cafe: A Study on the Online Narrative Construction about a Community of English Learners on the Chinese Mainland

    ERIC Educational Resources Information Center

    Gao, Xuesong

    2007-01-01

    The study analyzes a strand of online discussion messages entitled "a Tale of Blue Rain Cafe" from an online community of English learners on the Chinese mainland. The strand of messages was part of the collective reflection made by members of an English learning club on their participation. Using sociocultural learning theory, the paper explores…

  12. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation.

    PubMed

    Vadivel, S; Maruthamani, D; Habibi-Yangjeh, A; Paul, Bappi; Dhar, Siddhartha Sankar; Selvam, Kaliyamoorthy

    2016-10-15

    Hybrid organic/inorganic nanocomposites comprised of calcium ferrite (CaFe2O4) and graphitic carbon nitride (g-C3N4) were prepared via a simple two-step process. The hybridized CaFe2O4/g-C3N4 heterostructure was characterized by a variety of techniques, including X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, electrochemical impedance spectroscopy (EIS), and photoelectrochemical studies. Photocatalytic activity of the prepared samples was evaluated against degradation of methylene blue (MB) under visible-light irradiation. The photocatalytic activity of CaFe2O4 30%/g-C3N4 nanocomposite, as optimum photocatalyst, for degradation of MB was superior to the pure CaFe2O4 and g-C3N4 samples. It was demonstrated that the photogenerated holes and superoxide ion radicals were the two main reactive species towards the photocatalytic degradation of MB over the nanocomposite. Based on the experimental results, a possible photocatalytic mechanism for the MB degradation over the nanocomposite was proposed. This work may provide some inspiration for the fabrication of spinel ferrites with efficient photocatalytic performance. PMID:27421115

  13. Imaging Subduction, Episodic Tremor and Slip in the Pacific Northwest: Cascadia Arrays For Earthscope (CAFE)

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Rondenay, S.; Creager, K. C.; Malone, S. D.; Zhang, Z.; Wech, A. G.; Sweet, J. R.; Melbourne, T. I.; Hacker, B. R.

    2007-12-01

    Subduction delivers fluids into the Earth's mantle by transport of hydrated crust downward in subducting plates. These fluids are released at depth and may be responsible for a wide variety of phenomena including weakened thrust faults, episodic tremor and slip (ETS), intraslab earthquakes, forearc serpentinization, and arc magmatism. Cascadia is the volcanic arc associated with the youngest subducting plate, and hence a primary EarthScope target. In 2006 we launched Cascadia Arrays For Earthscope (CAFE), an EarthScope effort utilizing Flexible Array, Transportable Array, and PBO facilities, and integrating these data with complementary constraints from geodynamics and geochemistry. Seismic imaging, the emphasis of this presentation, is employed to illuminate (i) the descending oceanic plate, from where fluids are expelled by metamorphism, and (ii) the mantle wedge, where fluids migrate to produce hydrous phases such as serpentine or, beneath the volcanic arc, primary magmas, and (iii) the interface between them where ETS may be produced. The experiment traverses a section of the Cascadia system where earthquakes extend to nearly 100 km depth, thus permitting an investigation of the relationship between the release of fluids and the generation of Wadati-Benioff-zone earthquakes, and crosses regions of ETS excitation. The basic experiment has four components: (1) a 47-element broadband imaging array of Flexible Array instruments integrated with Bigfoot; (2) three small-aperture seismic arrays with 15 additional short-period instruments near known sources of ETS; (3) analysis of the PBO and PANGA GPS data sets to define the details of episodic slip events; and (4) integrative modeling. Sixty-two seismographs were deployed in July 2006; here we present a first look at the experiment and the data collected. Initial data recovery has been excellent, with approximately 12 months of continuous data recovered as of this writing, most delivered to the IRIS DMC. This time

  14. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  15. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  16. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  17. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  18. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  19. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  20. Dramatic changes in the electronic structure upon transition to the collapsed tetragonal phase in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Dhaka, R. S.; Jiang, Rui; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; Kaminski, Adam; Tomić, Milan; Valentí, Roser; Lee, Yongbin

    2014-01-01

    We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe2As2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.

  1. Thermal expansion of CaFe2As2: Effect of cobalt doping and postgrowth thermal treatment

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ran, Sheng; Canfield, Paul C.

    2013-08-01

    We report thermal expansion measurements on Ca(Fe1-xCox)2As2 single crystals with different thermal treatment, with samples chosen to represent four different ground states observed in this family. For all samples, thermal expansion is anisotropic with different signs of the in-plane and c-axis thermal expansion coefficients in the high temperature, tetragonal phase. The features in thermal expansion associated with the phase transitions are of opposite signs as well, pointing to a different response of transition temperatures to the in-plane and the c-axis stress. These features, and consequently the inferred pressure derivatives, are very large, clearly and substantially exceeding those in the Ba(Fe1-xCox)2As2 family. For all transitions the c-axis response is dominant.

  2. Radial velocity confirmation of Kepler-91 b. Additional evidence of its planetary nature using the Calar Alto/CAFE instrument

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Henning, Th.; Mancini, L.; Ciceri, S.; Figueira, P.; Santos, N. C.; Aceituno, J.; Sánchez, S. F.

    2014-08-01

    The object transiting the star Kepler-91 was recently assessed as being of planetary nature. The confirmation was achieved by analysing the light-curve modulations observed in the Kepler data. However, quasi-simultaneous studies claimed a self-luminous nature for this object, thus rejecting it as a planet. In this work, we apply anindependent approach to confirm the planetary mass of Kepler-91b by using multi-epoch high-resolution spectroscopy obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). We obtain the physical and orbital parameters with the radial velocity technique. In particular, we derive a value of 1.09 ± 0.20 MJup for the mass of Kepler-91b, in excellent agreement with our previous estimate that was based on the orbital brightness modulation.

  3. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  4. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  5. Microcracks in lunar rocks

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1979-01-01

    Lunar samples contain abundant open microcracks that have closure characteristics completely unlike any shocked terrestrial rock; however, the microcracks present in the lunar rocks before the rocks reached the surface of the moon were likely similar to the microcracks in the shocked terrestrial rocks. Because the microcracks present in the lunar rocks in situ inside the moon were different, radically different, from the microcracks present today in returned lunar samples, any property that is sensitive to microcracks measured on the returned lunar samples is inappropriate for predicting that property as a function of depth in the moon. Therefore, many data that have been measured already on lunar samples simply do not apply to rocks in situ inside the moon. A plausible mechanism with which to account for the difference in microcrack characteristics of lunar samples on the surface of the moon and the microcrack characteristics of lunar rock in situ inside the moon is thermal cycling during residence on the moon's surface.

  6. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    SciTech Connect

    Furukawa, Yuji; Roy, Beas; Ran, Sheng; Budko, Sergey L.; Canfield, Paul C.

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  7. Inter-plane resistivity in single crystals Ca(Fe1-xCox)2As2 with doping level variation

    NASA Astrophysics Data System (ADS)

    Tanatar, Makariy; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Prozorov, Ruslan

    2013-03-01

    CaFe2As2 undergoes sharp first order tetragonal-to-orthorhombic phase transition on cooling below TSM=175 K, accompanied by stripe type antiferromagnetic ordering. The transition temperature can be suppressed to zero by application of pressure, revealing collapsed tetragonal high pressure phase, and partial superconductivity. It can also be suppressed by Co substitution of Fe. This doping suppresses structural and magnetic instabilities and induces bulk superconductivity with Tc up to 17 K Ca(Fe1-xCox)2As2 with x=2.8%. Here we report systematics of the temperature-dependent inter-plane resistivity in this Co-doped series of compounds over complete doping phase diagram. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  8. Interplay of Superconductivity and Fermi-Liquid Transport in Rh-Doped CaFe2As2 with Lattice-Collapse Transition

    NASA Astrophysics Data System (ADS)

    Danura, Masataka; Kudo, Kazutaka; Oshiro, Yoshihiro; Araki, Shingo; Kobayashi, Tatsuo C.; Nohara, Minoru

    2011-10-01

    Ca(Fe1-xRhx)2As2 undergoes successive phase transitions with increasing Rh doping in the T = 0 limit. The antiferromagnetic-metal phase with orthorhombic structure at 0.00 ≤ x ≤ 0.020 is driven to a superconducting phase with uncollapsed-tetragonal (ucT) structure at 0.020 ≤ x ≤ 0.024; a non-superconducting collapsed-tetragonal (cT) phase takes over at x ≥ 0.024. The breakdown of Fermi-liquid transport is observed in the ucT phase above Tc. In the adjacent cT phase, Fermi-liquid transport is restored along with a disappearance of superconductivity. This interplay of superconductivity and Fermi-liquid transport suggests the essential role of magnetic fluctuations in the emergence of superconductivity in doped CaFe2As2.

  9. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.

    PubMed

    Kim, Eun Sun; Kang, Hyun Joon; Magesh, Ganesan; Kim, Jae Young; Jang, Ji-Wook; Lee, Jae Sung

    2014-10-22

    A bismuth vanadate photoanode was first fabricated by the metal-organic decomposition method and particles of calcium ferrite were electrophoretically deposited to construct a heterojunction photoanode. The characteristics of the photoanodes were investigated in photoelectrochemical water oxidation under simulated 1 sun (100 mW cm(-2)) irradiation. Relative to the pristine BiVO4 anode, the formation of the heterojunction structure of CaFe2O4/BiVO4 increased the photocurrent density by about 60%. The effect of heterojunction formation on the transfer of charge carriers was investigated using hydrogen peroxide as a hole scavenger. It was demonstrated that the heterojunction formation reduced the charge recombination on the electrode surface with little effect on bulk recombination. The modification with an oxygen evolving catalyst, cobalt phosphate (Co-Pi), was also beneficial for improving the efficiency of CaFe2O4/BiVO4 heterojunction photoanode mainly by increasing the stability. PMID:25232699

  10. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  11. The Rock Physics Handbook

    NASA Astrophysics Data System (ADS)

    Mavko, Gary; Mukerji, Tapan; Dvorkin, Jack

    2003-10-01

    The Rock Physics Handbook conveniently brings together the theoretical and empirical relations that form the foundations of rock physics, with particular emphasis on seismic properties. It also includes commonly used models and relations for electrical and dielectric rock properties. Seventy-six articles concisely summarize a wide range of topics, including wave propagation, AVO-AVOZ, effective media, poroelasticity, pore fluid flow and diffusion. The book contains overviews of dispersion mechanisms, fluid substitution, and Vp-Vs relations. Useful empirical results on reservoir rocks and sediments, granular media, tables of mineral data, and an atlas of reservoir rock properties complete the text. This distillation of an otherwise scattered and eclectic mass of knowledge is presented in a form that can be immediately applied to solve real problems. Geophysics professionals, researchers and students as well as petroleum engineers, well log analysts, and environmental geoscientists will value The Rock Physics Handbook as a unique resource.

  12. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  13. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  14. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  15. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  16. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  17. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  18. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  19. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  20. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  1. Effect of directional strain on the phase diagram of Ca(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Drachuk, G.; Tanatar, M. A.; Bud'Ko, S. L.; Prozorov, R.; Canfield, P. C.

    The iron-based superconductor Ca(Fe1-xCox)2As2 is exceptionally sensitive to directional stress with ab -plane compression stabilizing and c-axis compression de-stabilizing the orthorhombic antiferromagnetic phase. Due to differential thermal expansion between a sample and a substrate, an effective in-plane compressive strain can be exerted on it upon cooling. We found that this strain induces a phase transition even in overdoped compositions where the usual magneto-structural transition, observed in underdoped compounds, does not occur in the unstrained state. The induced transition has been characterized by 4-probe resistivity, elastoresistivity (the derivative of resistivity with respect to deformations), polarized light microscopy and Mössbauer spectroscopy. We found a pronounced increase of the resistivity and a divergence of the elastoresistivity coefficients, which is a signature of the tetragonal-to-orthorhombic transition in other iron-based superconductors. The polarized light images directly show the formation of a particularly rich domain pattern below the transition in these samples. This work was supported by the Ames Laboratory, US DOE, under Contract No. DE-AC02-07CH11358.

  2. Angular dependent torque measurements on CaFe0.88Co0.12AsF

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.

    2016-08-01

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF (Ca1 1 1 1) single crystals. In the normal state, the torque data shows \\sin 2θ angular dependence and H 2 magnetic field dependence, as a result of paramagnetism. In the mixed state, the torque signal is a combination of the vortex torque and paramagnetic torque, and the former allows the determination of the anisotropy parameter γ. At T   =  11.5 K, γ (11.5 K ≃ 0.5 T c)  =  19.1, which is similar to the result of SmFeAsO0.8F0.2, γ ≃ 23 at T≃ 0.4{{T}\\text{c}} . So the 11 1 1 is more anisotropic compared to 11 and 122 families of iron-based superconductors. This may suggest that the electronic coupling between layers in 1 1 1 1 is less effective than in 11 and 122 families.

  3. Cafe Variome: general-purpose software for making genotype-phenotype data discoverable in restricted or open access contexts.

    PubMed

    Lancaster, Owen; Beck, Tim; Atlan, David; Swertz, Morris; Thangavelu, Dhiwagaran; Veal, Colin; Dalgleish, Raymond; Brookes, Anthony J

    2015-10-01

    Biomedical data sharing is desirable, but problematic. Data "discovery" approaches-which establish the existence rather than the substance of data-precisely connect data owners with data seekers, and thereby promote data sharing. Cafe Variome (http://www.cafevariome.org) was therefore designed to provide a general-purpose, Web-based, data discovery tool that can be quickly installed by any genotype-phenotype data owner, or network of data owners, to make safe or sensitive content appropriately discoverable. Data fields or content of any type can be accommodated, from simple ID and label fields through to extensive genotype and phenotype details based on ontologies. The system provides a "shop window" in front of data, with main interfaces being a simple search box and a powerful "query-builder" that enable very elaborate queries to be formulated. After a successful search, counts of records are reported grouped by "openAccess" (data may be directly accessed), "linkedAccess" (a source link is provided), and "restrictedAccess" (facilitated data requests and subsequent provision of approved records). An administrator interface provides a wide range of options for system configuration, enabling highly customized single-site or federated networks to be established. Current uses include rare disease data discovery, patient matchmaking, and a Beacon Web service. PMID:26224250

  4. Angular dependent torque measurements on CaFe0.88Co0.12AsF.

    PubMed

    Xiao, H; Gao, B; Ma, Y H; Li, X J; Mu, G; Hu, T

    2016-08-17

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF (Ca1 1 1 1) single crystals. In the normal state, the torque data shows [Formula: see text] angular dependence and H (2) magnetic field dependence, as a result of paramagnetism. In the mixed state, the torque signal is a combination of the vortex torque and paramagnetic torque, and the former allows the determination of the anisotropy parameter γ. At T   =  11.5 K, γ (11.5 K ≃ 0.5 T c)  =  19.1, which is similar to the result of SmFeAsO0.8F0.2, [Formula: see text] at [Formula: see text]. So the 11 1 1 is more anisotropic compared to 11 and 122 families of iron-based superconductors. This may suggest that the electronic coupling between layers in 1 1 1 1 is less effective than in 11 and 122 families. PMID:27346165

  5. Magnetism and magnetocaloric effect study of CaFe0.7Co0.3O3

    NASA Astrophysics Data System (ADS)

    Xia, H. L.; Y Yin, Y.; Dai, J. H.; Y Yang, J.; Qin, X. M.; Jin, C. Q.; Long, Y. W.

    2015-04-01

    The CaFe0.7Co0.3O3 single crystal was grown for the first time by a two-step method and its magnetism and magnetocaloric effect were investigated. This compound experiences a second-order paramagnetism-to-ferromagnetism transition in a wide temperature window between 200 and 150 K due to the presence of multiple ferromagnetic interactions. Since the spin entropy is gradually released above the ferromagnetic Curie temperature (˜177 K), no sharp λ-type anomaly is observed in specific heat. On the basis of magnetization measurements, however, a considerable entropy change is found in this perovskite oxide. More interesting, this compound exhibits a broadening working temperature, and a significant refrigerant capacity (˜355 J kg-1 at 6 T) which is comparable with those found in some giant magnetocaloric alloys with first-order magnetic transitions. The present study therefore provides an example on how to enhance the refrigerant capacity by extending the working temperature of magnetocaloric material.

  6. Evidence for interface superconductivity in rare-earth doped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Deng, L. Z.; Wei, F. Y.; Xue, Y. Y.; Chu, C. W.

    2014-03-01

    To unravel to the mysterious non-bulk superconductivity up to 49K observed in rare-earth (R =La, Ce, Pr and Nd) doped CaFe2As2 single-crystals whose Tc is higher than that of any known compounds consisting of one or more of its constituent elements of R, Ca, Fe, and As at ambient or under pressures, systematic magnetic, compositional and structural have carried out on different rare-earth-doped (Ca1-xRx) Fe2As2 samples. We have detected extremely large magnetic anisotropy, doping-level independent Tc, unexpected superparamagnetic clusters associated with As vacancies and their close correlation with the superconducting volume fraction, the existence of mesoscopic-2D structures and Josephson-junction arrays in this system. These observations lead us to conjecture that the Tc enhancement may be associated with naturally occurring chemical interfaces and thus provided evidence for the possible interface-enhanced Tc in naturally-grown single crystals of Fe-based superconductors.

  7. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  8. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  9. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  10. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  11. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  12. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  13. Our World: Lunar Rock

    NASA Video Gallery

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  14. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  15. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  16. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  17. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  18. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  19. Layered Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Now that solar conjunction is over so that communication between Earth and Mars is no longer blocked by the Sun, NASA's Mars Exploration Rover Spirit is continuing its trek through the 'Columbia Hills' in Gusev Crater. Straight ahead, in the foreground of this image, is a horizontally layered rock dubbed 'Tetl,' which scientists hope to investigate. Layering can be either volcanic or sedimentary in origin; researchers aim to determine which of these processes created this rock. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba,' just to the right, toward the middle of this image. Spirit took this image with its navigation camera on its 263rd martian day, or sol (Sept. 28, 2004).

  20. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  1. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  2. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  3. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  4. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  5. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  6. Influence of Cr doping on the magnetic structure of the FeAs-strips compound CaFe4As3: A single-crystal neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Manuel, P.; Chapon, L. C.; Trimarchi, G.; Todorov, I. S.; Chung, D. Y.; Ouladdiaf, B.; Gutmann, M. J.; Freeman, A. J.; Kanatzidis, M. G.

    2013-09-01

    We have studied the magnetic structure of a Cr-doped iron-arsenide compound CaFe4As3 by means of single crystal neutron diffraction. The neutron data reveal that below 90 K, an antiferromagnetic structure with propagation vector k=0 is adopted. Refinement of the magnetic structure using one of the modes allowed by symmetry analysis indicates that two of the four Fe sites, including the one where the selective substitution Fe/Cr happens, bear reduced magnetic moments. Density functional theory calculations confirm the stability of such a magnetic arrangement.

  7. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  8. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  9. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  10. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  11. Ladon Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rocks exposed by the fluids that carved the Ladon Valles system in the Erythraeum region of Mars. These rocks are so ancient that their sediments were deposited, cemented to form rock, and then eroded by the water (or other liquid) that carved Ladon Valles, so far back in Martian history that such liquids could still flow on the planet's surface.

    Location near: 20.8oS, 30.0oW Image width: 3 km (1.9 mi Illumination from: upper left Season: Southern Spring

  12. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  13. West Candor Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock exposures in western Candor Chasma, part of the vast Valles Marineris trough system. Most of west Candor's interior includes exposures of layered rock with very few superimposed impact craters. The rock may be very ancient, but the lack of craters suggests that the erosion of these materials is on-going.

    Location near: 6.3oS, 76.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  14. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  15. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-348, 2 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired in March 2003 shows dozens of repeated layers of sedimentary rock in a western Arabia Terra crater at 8oN, 7oW. Wind has sculpted the layered forms into hills somewhat elongated toward the lower left (southwest). The dark patches at the bottom (south) end of the image are drifts of windblown sand. These sedimentary rocks might indicate that the crater was once the site of a lake--or they may result from deposition by wind in a completely dry, desert environment. Either way, these rocks have something important to say about the geologic history of Mars. The area shown is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  16. Dipping Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 May 2004 The central peak of Oudemans Crater, located at the edge of the Labyrinthus Noctis trough system, consists of steeply-dipping rock layers that were uplifted and tilted by the meteor impact that formed the crater. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The banded features are layers of light-toned, possibly sedimentary, rock that were brought to the surface and uplifted by the impact process that formed the crater and its central peak. Oudemans Crater's central peak serves as a means for probing the nature of rock that lies beneath the plains cut by the Labyrinthus Noctis troughs, which are part of the vast Valles Marineris system. This March 2004 picture is located near 10.2oS, 92.0oW. The image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  17. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  18. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  20. Layered Rocks In Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), image shows exposures of finely-bedded sedimentary rocks in western Melas Chasma, part of the vast Valles Marineris trough system. Rocks similar to these occur in neighboring west Candor Chasma, as well. The picture is located near 9.1oS, 74.5oW, and covers an area about 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the left/upper left.

  1. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers of sedimentary rock in a crater in western Arabia Terra. Layered rock records the history of a place, but an orbiter image alone cannot tell the entire story. These materials record some past episodes of deposition of fine-grained material in an impact crater that is much larger than the image shown here. The picture is located near 3.4oN, 358.7oW, and covers an area 3 km (1.9 mi.) wide. Sunlight illuminates the scene from the lower left.

  2. Rock Outcrops near Hellas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in a pitted and eroded region just northeast of Hellas Planitia. The light-toned materials are most likely sedimentary rocks deposited early in martian history (but long after the Hellas Basin formed by a giant asteroid or comet impact). The scene also includes a plethora of large dark-toned, windblown ripples. The image is located near 27.2oS, 280.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  3. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  4. Sedimentary Rock Remnants

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows knobs of remnant, wind-eroded, layered sedimentary rock that once completely covered the floor of a crater located west of the Sinus Meridiani region of Mars. Sedimentary rock outcrops are common throughout the Sinus Meridiani region and its surrounding cratered terrain.

    Location near: 2.2oN, 7.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  5. Layered Rocks in Ritchey

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 May 2004 This March 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light- and dark-toned layered rock outcrops on the floor of Ritchey Crater, located near 28.9oS, 50.8oW. Some or all of these rocks may be sedimentary in origin. Erosion has left a couple of buttes standing on a more erosion-resistant plain. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  6. Remnant Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    29 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of small yardangs -- wind eroded hills -- on the plains immediately west of Meridiani Planum. These yardangs are the remains of layered, sedimentary rock that once covered this area. The few craters visible in this 3 km (1.9 mi) -wide scene are all exhumed from beneath the rocks that comprise the yardang hills. The image is located near 0.4oS, 7.2oW. Sunlight illuminates the picture from the lower left.

  7. Layered Rocks of Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    04 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops exposed by erosion in southern Melas Chasma, one of the major Valles Marineris troughs. Such outcrops are common in southern Melas; they resemble the rock outcrops seen in some of the chaotic terrains and other Valles Marineris chasms. This image is located near 11.9oS, 74.6oW, and is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  8. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  9. Antiferromagnetic Spin Fluctuations and Pseudogap Behavior in Ca(Fe1-xCox)2 As2 Studied by 5As NMR

    NASA Astrophysics Data System (ADS)

    Cui, Jinfang; Ran, Sheng; Bud'Ko, Sergey; Canfield, Paul; Furukawa, Yuji

    2015-03-01

    75 As NMR measurements of single-crystalline Ca(Fe1-xCox)2 As2 have been carried out for four different doping concentration crystals (x = 0.023, 0.028, 0.033, 0.059) annealed at 350°C. Co-doped CaFe2As2 is a compound in 122 family of iron-pnictide superconductors with three principle phases exhibited: paramagnetic (PM), antiferromagnetic (AFM) and superconducting (SC) states. The magnetic phase transition to AFM state occurs at TN = 180K at x =0 and is suppressed to TN = 53K for x =0.028, which is accompanied by a structural phase transition from tetragonal to orthorhombic phases. 75As NMR was used to study the low energy spin dynamics via Knight shift (K) and spin-lattice relaxation rate (1/T1) measurements. From our analysis of the temperature dependence of both K and (T1T)-1 in x =0.028 (TN = 53K), 0.033 (Tc = 9K) and 0.059 (Tc = 10K), we found a gradual decrease of AFM spin fluctuations below T* = 88K for x =0.028, 72K for x =0.033 and 41K for x =0.059, respectively, indicating the possible pseudogap behavior in spin excitation spectrum in the system. Supported by USDOE under the Contract No. DE-AC02-07CH11358.

  10. The 'PUCE CAFE' Project: the First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits

    PubMed Central

    2011-01-01

    Background Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. Conclusion We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research. PMID:21208403

  11. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    PubMed Central

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-01-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477

  12. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    SciTech Connect

    Colucci, Janet E.; Duran, Maria Fernanda; Bernstein, Rebecca A.

    2013-08-20

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 {+-} 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 {+-} 0.09 and +0.24 {+-} 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.

  13. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure.

    PubMed

    Gonnelli, R S; Daghero, D; Tortello, M; Ummarino, G A; Bukowski, Z; Karpinski, J; Reuvekamp, P G; Kremer, R K; Profeta, G; Suzuki, K; Kuroki, K

    2016-01-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477

  14. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    DOE PAGESBeta

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-21

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent at low temperaturesmore » in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less

  15. Electronic inhomogeneities in the superconducting phase of CaFe1.96Ni0.04As2 single crystals

    NASA Astrophysics Data System (ADS)

    Dutta, Anirban; Kumar, Neeraj; Thamizhavel, A.; Gupta, Anjan K.

    2015-02-01

    Superconductivity in CaFe2-xNixAs2 emerges in close proximity to an antiferromagnetic (AFM) ordered parent state and the AFM phase overlaps with superconducting (SC) phase for a small range of x-values. We present scanning tunneling microscopy and spectroscopy study of an underdoped CaFe2-xNixAs2 single crystal in the vicinity of the boundary of the two phases. Both resistivity and magnetic susceptibility measurements show a superconducting TC of 15 K and from later we deduce a superconducting fraction of 1.2%. Topographic images show reasonably flat surface with signatures of atomic resolution. Spectra between 120 K and 20 K are spatially homogeneous and show signatures of spin density wave (SDW) gap. Below TC, spectra show significant spatial inhomogeneity with a depression in density of states in±5 meV energy range. Inhomogeneity reduces significantly as the temperature goes above TC and disappears completely far above TC. These observations are discussed in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the SC dome boundary on the underdoped side of the phase diagram.

  16. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    NASA Astrophysics Data System (ADS)

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-05-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.

  17. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-01

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.

  18. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  19. Rocking and Rolling Rattlebacks

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical and…

  20. Reducing Rock Climbing Risks.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1998-01-01

    Provides checklists that can be used as risk-management tools to evaluate rock-climbing programs: developing goals, policies, and procedures; inspecting the climbing environment; maintaining and inspecting equipment; protecting participants; and managing staff (hiring, training, retraining, and evaluating) and campers (experience level, needs, and…

  1. Slippery Rock University

    ERIC Educational Resources Information Center

    Arnhold, Robert W.

    2008-01-01

    Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…

  2. The River Rock School.

    ERIC Educational Resources Information Center

    Gereaux, Teresa Thomas

    1999-01-01

    In the early 1920s, the small Appalachian community of Damascus, Virginia, used private subscriptions and volunteer labor to build a 15-classroom school made of rocks from a nearby river and chestnut wood from nearby forests. The school building's history, uses for various community activities, and current condition are described. (SV)

  3. Prestressed rock truss

    SciTech Connect

    Johnson, S.F.

    1981-06-23

    A roof support system for mines in which prestressed rock trusses are bolted to the roof of the mine with roof bolts which each extend beyond the width of the mine gallery and the method of installing said trusses into position.

  4. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  5. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  6. Joint Commission on rock properties

    NASA Astrophysics Data System (ADS)

    A joint commission on Rock Properties for Petroleum Engineers (RPPE) has been established by the International Society of Rock Mechanics and the Society of Petroleum Engineers to set up data banks on the properties of sedimentary rocks encountered during drilling. Computer-based data banks of complete rock properties will be organized for sandstones (GRESA), shales (ARSHA) and carbonates (CARCA). The commission hopes to access data sources from members of the commission, private companies and the public domain.

  7. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  8. Realistic Expectations for Rock Identification.

    ERIC Educational Resources Information Center

    Westerback, Mary Elizabeth; Azer, Nazmy

    1991-01-01

    Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…

  9. A look at carbonate rocks

    SciTech Connect

    Bowsher, A.I. )

    1994-03-01

    Important ore deposits are found in carbonate rocks, and large volumes of oil and gas are also produced from carbonate rocks on a worldwide basis. Reservoir types and productive capability are most often related to rock type and the facies to which the rock belongs. Broad new understanding of carbonate rocks came with the publication of Classification of Carbonate Rocks-A Symposium (AAPG Memoir 1, 1962). The principal parameters of carbonate rocks are (1) chemical composition, (2) grade size, (3) sorting and packing, (4) identification of grains in the rock, (5) cement, (6) color, (7) alteration of recrystallization, and (8) porosity. Original porosity in carbonate rocks relates to kind and packing of original particles. Secondary porosity is reduced by infilling that usually relates to some particles, or is enhanced because some types of grains are dissolved. Carbonate sediments are organic detritus. The range of solubility of organic detritus is very large. Fossils present in the carbonates are clues as to the source of the detritus in the rock. Additional research is needed in faunal relations of facies and of rock types. Ore recovery, well completion, and EOR are more successful when the parameters of carbonate rocks are extensively studied. A simplified approach to carbonate description is discussed.

  10. Soil and rock 'Yogi'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several possible targets of study for rover Sojourner's Alpha Proton X-Ray Spectrometer (APXS) instrument are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. The smaller rock at left has been dubbed 'Barnacle Bill,' while the larger rock at right, approximately 3-4 meters from the lander, is now nicknamed 'Yogi.' Barnacle Bill is scheduled to be the first object of study for the APXS. Portions of a petal and deflated airbag are also visible at lower right.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Sedimentary Rock Outcrops

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded layered rock outcrops in a crater north of Meridiani Planum near 2.7oN, 359.1oW. The dozens and dozens of sedimentary rock layers of repeated thickness and similar physical properties at this location suggest that they may have been deposited in a lacustrine (lake) setting. The crater in which these layers occur may once have been completely filled and buried, as is the case for many craters in the Sinus Meridiani region. This image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  12. Sedimentary Rock Near Coprates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-420, 13 July 2003

    This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle camera images, one from 2001, the other from 2003, shows light-toned, layered, sedimentary rock outcrops exposed on the floor of a trough that parallels Coprates Chasma in the Valles Marineris system. Layered rocks form the pages from which the history of a place can be read. It may be many years before the story is read, but or now at least we know where one of the books of martian history is found. This picture is located near 15.2oS, 60.1oW. Sunlight illuminates the scene from the left.

  13. Schiaparelli's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 October 2004 Schiaparelli Basin is a large, 470 kilometer (292 miles) impact crater located east of Sinus Meridiani. The basin might once have been the site of a large lake--that is, if the sedimentary rocks exposed on its northwestern floor were deposited in water. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meter per pixel (5 ft per pixel) view of some of the light-toned, finely-bedded sedimentary rocks in northwestern Schiaparelli. The image is located near 1.0oS, 346.0oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  14. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    15 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of layered, sedimentary rock in eastern Gale Crater. North-central Gale Crater is the site of a mound that is more than several kilometers thick and largely composed of sedimentary rocks that record a complex history of deposition and erosion. At one time, Gale Crater might have been completely filled and buried beneath the martian surface.

    Location near: 4.9oS, 221.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  15. Poroelasticity of rock

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton's coefficient and undrained Poisson's ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  16. Terby Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 December 2003 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops in Terby Crater, located near 27.7oS, 285.4oW. The layered sediments in Terby are several kilometers thick, attesting to a long history of deposition in this ancient basin. The picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  17. Eroded Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-372, 26 May 2003

    This high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded, layered sedimentary rock exposures in an unnamed western Arabia Terra crater at 8oN, 7oW. The dark material is windblown sand; much of the erosion of these layers may have also been caused by wind. Sunlight illuminates the scene from the left.

  18. Ripples and Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rock outcrops and large dark-toned, windblown ripples in Aram Chaos.

    Location near: 3.0oN, 20.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  19. Iani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rocks exposed by erosion in the Iani Chaos region of Mars.

    Location near: 4.2oS, 18.7oW Image width: 1 km (0.6 mi) Illumination from: upper left Season: Southern Winter

  20. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered, sedimentary rock outcrops in southwestern Melas Chasma, one of the troughs of the vast Valles Marineris system. Sunlight illuminates this scene from the upper left; it is located near 9.8oS, 76.0oW, and covers an area about 3 km (1.9 mi) wide.

  1. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  2. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  3. Salty Martian Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which produces a spectrum, or fingerprint, of chemicals in martian rocks and soil. The instrument contains a radioisotope, curium-244, that bombards a designated area with alpha particles and X-rays, causing a cascade of reflective fluorescent X-rays. The energies of these fluorescent X-rays are unique to each atom in the periodic table, allowing scientists to determine a target's chemical composition.

    Both 'Tarmac' and 'McKittrick' are located within the small crater where Opportunity landed. The full spectra are expressed as X-ray intensity (logarithmic scale) versus energy. When comparing two spectra, the relative intensities at a given energy are proportional to the elemental concentrations, however these proportionality factors can be complex. To be precise, scientists extensively calibrate the instrument using well-analyzed geochemical standards.

    Both the alpha particle X-ray spectrometer and the rock abrasion tool are located on the rover's instrument deployment device, or arm.

  4. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S., Jr.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  5. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  6. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  7. Local probe studies of Fe hyperfine field in CaFe2As2 by time differential perturbed angular distribution (TDPAD) spectroscopy and ab initio methods

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Kumar, Neeraj; Thamizhavel, A.; Layek, S.; Hossain, Z.; Srivastava, S. K.

    2013-03-01

    Applying the γ-ray perturbed angular distribution technique we have measured the magnetic hyperfine field and spin relaxation time of recoil implanted 54Fe in single and polycrystalline CaFe2As2 over the temperature range 20-360 K, encompassing both tetragonal and orthorhombic structural phases of the material. The magnetic response of Fe in the high temperature tetragonal phase (T ⩾ 180 K), show Curie-Weiss type local susceptibility and Korringa like spin relaxation, reflecting the presence of localized moment on Fe. In the orthorhombic phase, the spin rotation spectra of 54Fe show two magnetic hyperfine field components, both exhibiting quasi two dimensional magnetic ordering. The experimentally measured hyperfine field and Fe moment show good agreement with results obtained from ab initio calculations performed within the frame work of local spin density approximation (LSDA).

  8. Rock Pore Structure as Main Reason of Rock Deterioration

    NASA Astrophysics Data System (ADS)

    Ondrášik, Martin; Kopecký, Miloslav

    2014-03-01

    Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze

  9. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1-xCox)2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

    DOE PAGESBeta

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1–xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as inmore » the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1–xCox)2As2.« less

  10. Superconducting properties and pseudogap from preformed Cooper pairs in the triclinic (CaFe1-xPtxAs ) 10Pt3As8

    NASA Astrophysics Data System (ADS)

    Surmach, M. A.; Brückner, F.; Kamusella, S.; Sarkar, R.; Portnichenko, P. Y.; Park, J. T.; Ghambashidze, G.; Luetkens, H.; Biswas, P. K.; Choi, W. J.; Seo, Y. I.; Kwon, Y. S.; Klauss, H.-H.; Inosov, D. S.

    2015-03-01

    Using a combination of muon-spin relaxation (μ SR ) , inelastic neutron scattering (INS), and nuclear magnetic resonance (NMR), we investigated the novel iron-based superconductor with a triclinic crystal structure (CaFe1-xPtxAs ) 10Pt3As8 (Tc=13 K), containing platinum-arsenide intermediary layers. The temperature dependence of the superfluid density obtained from the μ SR relaxation-rate measurements indicates the presence of two superconducting gaps, Δ1≫Δ2 . According to our INS measurements, commensurate spin fluctuations are centered at the (π ,0 ) wave vector, like in most other iron arsenides. Their intensity remains unchanged across Tc, indicating the absence of a spin resonance typical for many Fe-based superconductors. Instead, we observed a peak in the spin-excitation spectrum around ℏ ω0=7 meV at the same wave vector, which persists above Tc and is characterized by the ratio ℏ ω0/kBTc≈6.2 , which is significantly higher than typical values for the magnetic resonant modes in iron pnictides (˜4.3 ) . The temperature dependence of magnetic intensity at 7 meV revealed an anomaly around T*=45 K related to the disappearance of this new mode. A suppression of the spin-lattice relaxation rate, 1 /T1T , observed by NMR immediately below T* without any notable subsequent anomaly at Tc, indicates that T* could mark the onset of a pseudogap in (CaFe1-xPtxAs ) 10Pt3As8 , which is likely associated with the emergence of preformed Cooper pairs.

  11. Staff Development: Cafe Style

    ERIC Educational Resources Information Center

    Arns, Jennifer

    2008-01-01

    In most cases, memorable learning opportunities are fun, collaborative, and influential. Jennifer Arns, instructional programs director for the Organization for Education Technology and Curriculum, outlines the EdTech Professional Development Cadre, a refreshing and engaging PD approach. (Contains 3 resources.)

  12. From Cafeteria to Cafe.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    If school architects, cafeteria designers, and some food service personnel have their way, the long, grey serving line characterizing most school cafeterias will go the way of meatloaf and mashed potatoes. This means booths and restaurant-like tables, school colors, brightly lit menu boards, windows overlooking courtyards, and mall-like…

  13. The Hard Probe Cafe

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The advent of finite temperature lattice QCD in 1980 confirmed that hot strongly interacting matter will be transformed into a new medium of deconfined quarks and gluons, the primordial quark-gluon plasma. It was thus natural to see if this state of the early universe could somehow still be produced today, in terrestrial laboratories. An experimental program based on high energy nuclear collisions was developed at a meeting which Maurice Jacob and I convened in Bielefeld in 1982, and in the mid-eighties the planning and construction of "heavy ion experiments" was well underway both at CERN and at Brookhaven. At the 1987 Quark Matter Meeting in Nordkirchen/Germany, the first results were reported.

  14. Rock mechanics for hard rock nuclear waste repositories

    SciTech Connect

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff (Nevada Test Site).

  15. Evolution of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Veizer, J.; MacKenzie, F. T.

    2003-12-01

    For almost a century, it has been recognized that the present-day thickness and areal extent of Phanerozoic sedimentary strata increase progressively with decreasing geologic age. This pattern has been interpreted either as reflecting an increase in the rate of sedimentation toward the present (Barrell, 1917; Schuchert, 1931; Ronov, 1976) or as resulting from better preservation of the younger part of the geologic record ( Gilluly, 1949; Gregor, 1968; Garrels and Mackenzie, 1971a; Veizer and Jansen, 1979, 1985).Study of the rocks themselves led to similarly opposing conclusions. The observed secular (=age) variations in relative proportions of lithological types and in chemistry of sedimentary rocks (Daly, 1909; Vinogradov et al., 1952; Nanz, 1953; Engel, 1963; Strakhov, 1964, 1969; Ronov, 1964, 1982) were mostly given an evolutionary interpretation. An opposing, uniformitarian, approach was proposed by Garrels and Mackenzie (1971a). For most isotopes, the consensus favors deviations from the present-day steady state as the likely cause of secular trends.This chapter attempts to show that recycling and evolution are not opposing, but complementary, concepts. It will concentrate on the lithological and chemical attributes of sediments, but not deal with the evolution of sedimentary mineral deposits (Veizer et al., 1989) and of life ( Sepkoski, 1989), both well amenable to the outlined conceptual treatment. The chapter relies heavily on Veizer (1988a) for the sections dealing with general recycling concepts, on Veizer (2003) for the discussion of isotopic evolution of seawater, and on Morse and Mackenzie (1990) and Mackenzie and Morse (1992) for discussion of carbonate rock recycling and environmental attributes.

  16. Rocking and Rolling Rattlebacks

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2013-12-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical , 2 and others are purely descriptive. It is surprising that there is still no simple physical explanation. By that, I mean an explanation that can be given to a high school student and one that does not involve an obscure set of complicated equations.

  17. Sedimentary Rocks in Ganges

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows portions of two massifs composed of light-toned, sedimentary rock in Ganges Chasma, part of the Valles Marineris trough system. On the steeper slopes in this vista, dry talus shed from the outcrop has formed a series of dark fans. Surrounded by dark, windblown sand, these landforms are located near 8.6oS, 46.8oW. The image covers an area approximately 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  18. Aram Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location.

    Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  19. Sedimentary Rocks in Melas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows a butte and several other landforms eroded into light-toned, layered, sedimentary rock in southern Melas Chasma. Melas is part of the vast Valles Marineris trough system.

    Location near: 11.8oS, 74.6oW Image width: 3.0 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  20. Sedimentary Rock in Candor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 February 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dozens of light- and a few dark-toned sedimentary rock layers exposed by faulting and erosion in western Candor Chasma, part of the vast Valles Marineris trough system.

    Location near: 6.5oS, 77.0oW Image width: 3.0 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  1. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  2. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 August 2004 Light-toned, layered, sedimentary rock outcrops are common within the vast martian Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a recent example from southern Melas Chasma at 1.5 m/pixel (5 ft/pixel) resolution. The image is located near 11.3oS, 73.9oW, and covers an area about 1.8 km (1.1 mi) across. Sunlight illuminates the scene from the upper left.

  3. From stones to rocks

    NASA Astrophysics Data System (ADS)

    Mortier, Marie-Astrid; Jean-Leroux, Kathleen; Cirio, Raymond

    2013-04-01

    With the Aquila earthquake in 2009, earthquake prediction is more and more necessary nowadays, and people are waiting for even more accurate data. Earthquake accuracy has increased in recent times mainly thanks to the understanding of how oceanic expansion works and significant development of numerical seismic prediction models. Despite the improvements, the location and the magnitude can't be as accurate as citizen and authorities would like. The basis of anticipating earthquakes requires the understanding of: - The composition of the earth, - The structure of the earth, - The relations and movements between the different parts of the surface of the earth. In order to answer these questions, the Alps are an interesting field for students. This study combines natural curiosity about understanding the predictable part of natural hazard in geology and scientific skills on site: observing and drawing landscape, choosing and reading a representative core drilling, replacing the facts chronologically and considering the age, the length of time and the strength needed. This experience requires students to have an approach of time and space radically different than the one they can consider in a classroom. It also limits their imagination, in a positive way, because they realize that prediction is based on real data and some of former theories have become present paradigms thanks to geologists. On each location the analyzed data include landscape, core drilling and the relation established between them by students. The data is used by the students to understand the meaning, so that the history of the formation of the rocks tells by the rocks can be explained. Until this year, the CBGA's perspective regarding the study of the Alps ground allowed students to build the story of the creation and disappearance of the ocean, which was a concept required by French educational authorities. But not long ago, the authorities changed their scientific expectations. To meet the

  4. Schiaparelli Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-403, 26 June 2003

    Some of the most important high resolution imaging results of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) experiment center on discoveries about the presence and nature of the sedimentary rock record on Mars. This old meteor impact crater in northwestern Schiaparelli Basin exhibits a spectacular view of layered, sedimentary rock. The 2.3 kilometer (1.4 miles) wide crater may have once been completely filled with sediment; the material was later eroded to its present form. Dozens of layers of similar thickness and physical properties are now expressed in a wedding cake-like stack in the middle of the crater. Sunlight illuminating the scene from the left shows that the circle, or mesa top, at the middle of the crater stands higher than the other stair-stepped layers. The uniform physical properties and bedding of these layers might indicate that they were originally deposited in a lake (it is possible that the crater was at the bottom of a much larger lake, filling Schiaparelli Basin); alternatively, the layers were deposited by settling out of the atmosphere in a dry environment. This picture was acquired on June 3, 2003, and is located near 0.9oS, 346.2oW.

  5. A smart rock

    NASA Astrophysics Data System (ADS)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  6. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  7. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John

    1999-01-01

    We study our Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are now on top of a mountain may once have been at the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of Earth in space. One spin of Earth on its axis is a day, and one trip around the Sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  8. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John, Jr.

    1993-01-01

    We study out Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are not on top of a mountain may once have been on the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of the Earth in space. One spin of Earth on its axis is a day, and one trip around the sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  9. 'They of the Great Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'

  10. Building The Bell Rock Lighthouse

    ERIC Educational Resources Information Center

    Shallcross, David C.

    2005-01-01

    Ever since the first mariners sailed off the east coast of Scotland the Bell Rock has claimed many vessels and countless lives. Also known as the Inch Cape Rocks they lie 18 km off the coast at Arbroath. Located near the mouth of the Firth of Forth and its important shipping ports these dangerous rocks cover an area some 440 m long and 90 m wide.…

  11. [Hearing disorders and rock music].

    PubMed

    Lindhardt, Bjarne Orskov

    2008-12-15

    Only few studies have investigated the frequency of hearing disorders in rock musicians. Performing rock music is apparently associated with a hearing loss in a fraction of musicians. Tinnitus and hyperacusis are more common among rock musicians than among the background population. It seems as if some sort of resistance against further hearing loss is developed over time. The use of ear protection devices have not been studied systematically but appears to be associated with diminished hearing loss. PMID:19128557

  12. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  13. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  14. Electromagnetic emissions during rock blasting

    NASA Astrophysics Data System (ADS)

    O'Keefe, S. G.; Thiel, D. V.

    1991-05-01

    Radio emissions during quarry blasting have been recorded in the audio frequency band. Three distinct mechanisms are suggested to explain the observed results; rock fracture at the time of the explosion, charged rocks discharging on impact with the pit floor and micro-fracture of the remaining rock wall due to pressure adjustment of the bench behind the blast. The last mechanism was evident by a train of discrete impulses recorded for up to one minute after the blast. It is assumed that during this time the rock behind the blast was subjected to a significant change in pressure. This may be related to ELF observations during earthquakes.

  15. Ready to Rock and Roll

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard-identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet)toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  16. Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2013-11-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  17. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  18. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  19. Light-toned Rock

    NASA Technical Reports Server (NTRS)

    2006-01-01

    1 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a scene reminiscent of some of the Mars Exploration Rover (MER-B), Opportunity, images of terrain in the vicinity of Erebus Crater -- a substrate of light-toned rock, broken into polygonal forms, overlain by large, dark-toned, ripple-like drifts. However, this scene is many hundreds of kilometers away from Meridiani Planum -- it lies on the floor of an old impact crater near the northwest rim of the giant Hellas Basin.

    Location near: 21.0oS, 312.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. Yogi the rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. The soil in the foreground will be the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists will be able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Meridiani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-545, 15 November 2003

    Northern Sinus Meridiani is a region of vast exposures of layered, sedimentary rock. Buried within these layers are many filled impact craters. Erosion has re-exposed several formerly-buried craters in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. Arrows 1 and 2 indicate craters that are still emerging from beneath layered material; arrow 3 indicates a crater that has been fully re-exposed. This image is located near 5.1oN, 2.7oW. The area shown is about 3 km (1.9 mi) wide and illuminated from the left/upper left.

  2. Celebrated Moon Rocks

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2009-12-01

    The Need for Lunar Samples and Simulants: Where Engineering and Science Meet sums up one of the sessions attracting attention at the annual meeting of the Lunar Exploration Analysis Group (LEAG), held November 16-19, 2009 in Houston, Texas. Speakers addressed the question of how the Apollo lunar samples can be used to facilitate NASA's return to the Moon while preserving the collection for scientific investigation. Here is a summary of the LEAG presentations of Dr. Gary Lofgren, Lunar Curator at the NASA Johnson Space Center in Houston, Texas, and Dr. Meenakshi (Mini) Wadhwa, Professor at Arizona State University and Chair of NASA's advisory committee called CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials). Lofgren gave a status report of the collection of rocks and regolith returned to Earth by the Apollo astronauts from six different landing sites on the Moon in 1969-1972. Wadhwa explained the role of CAPTEM in lunar sample allocation.

  3. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  4. The Rock Climbing Teaching Guide.

    ERIC Educational Resources Information Center

    Kudlas, John

    The product of 10 years of rock climbing instruction, this guide provides material from which an instructor can teach basic climbing concepts and safety skills as well as conduct a safe, enjoyable rock climbing class in a high school setting. It is designed for an instructor with limited experience in climbing; however, the need for teacher…

  5. Bakhtin's Dialogics and Rock Lyrics.

    ERIC Educational Resources Information Center

    Knight, Jeff Parker

    Rock music is ideological both implicitly (in its intrinsic valuing of change, and resistance to authority, for instance), and explicitly (in political records from activist artists such as John Lennon and U2). The texts of the rock genre offer rhetorical experiences. A dialogic conception may help scholars to account for and describe the…

  6. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  7. Further Reflections on Little Rock

    ERIC Educational Resources Information Center

    Allen, Danielle S.

    2007-01-01

    The famous photo of Hazel Bryan jeering at Elizabeth Eckford as a mob helped drive Elizabeth from Central High School in Little Rock, Arkansas, on September 4, 1957, compels meditation on the nature of democratic politics. This scene is commemorative of the Little Rock events where school segregation was rampant. The author believes that the photo…

  8. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  9. Small-Town Rock Trade

    ERIC Educational Resources Information Center

    Robarge, Thomas J.

    1977-01-01

    Describes an eighth grade rock exchange project in which small groups of students researched, then wrote letters to schools throughout the United States requesting samples of local rocks and minerals. Provides experience in use of the atlas and letter writing. (CS)

  10. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  11. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  12. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  13. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Shotgun cartridge rock breaker

    DOEpatents

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  15. Fracturing of rocks by ice

    NASA Astrophysics Data System (ADS)

    Vlahou, Ioanna; Grae Worster, M.

    2009-11-01

    Frost damage, caused by the freezing of water-saturated media, affects plant roots, pavements and the foundations of buildings, and is a major erosional force in rocks. The process has been studied extensively in the case of soils, and mechanisms such as the formation of ice lenses have been identified. Here, we consider the freezing of water in a three-dimensional cavity in a water-saturated, porous, elastic rock. Initially, the expansion of water as it freezes causes flow away from the solidification front, into the porous rock. The Darcy flow in the porous medium controls the pressure field and therefore the freezing temperature. At later times, disjoining thermomolecular forces create a pre-melted film of water between the ice and the rock and cause flow of pore water from the surrounding rock into the cavity. We find that the disjoining forces between the ice and the rock have the dominant effect, so we focus on those later times when the cavity is ice-filled. We solve the coupled set of integro-differential equations governing the elastic stress in the rock and the flow through its pores to determine the evolution of the shape and extent of the ice-filled cavity.

  16. Source rock potential in Pakistan

    SciTech Connect

    Raza, H.A. )

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceous rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.

  17. Synthesis, structure and chemical bonding of CaFe2-xRhxSi2 (x=0, 1.32, and 2) and SrCo2Si2

    NASA Astrophysics Data System (ADS)

    Hlukhyy, Viktor; Hoffmann, Andrea V.; Fässler, Thomas F.

    2013-07-01

    The finding of superconductivity in Ba0.6K0.4Fe2As2 put the attention on the investigation of compounds that crystallize with ThCr2Si2 structure type such as AT2X2 (A=alkali/alkaline earth/rare earth element; T=transition metal and X=element of the 13-15th group). In this context the silicides CaFe2Si2, CaFe0.68(6)Rh1.32(6)Si2, CaRh2Si2 and SrCo2Si2 have been synthesized by reaction of the elements under an argon atmosphere. Single crystals were obtained by special heat treatment in welded niobium/tantalum ampoules. The compounds were investigated by means of powder and single crystal X-ray diffraction. All compounds crystallize in the ThCr2Si2-type structure with space group I4/mmm (No. 139): a=3.939(1) Å, c=10.185(1) Å, R1=0.045, 85 F2 values, 8 variable parameters for CaFe2Si2; a=4.0590(2) Å, c=9.9390(8) Å, R1=0.030, 90 F2 values, 10 variable parameters for CaFe0.68(6)Rh1.32(6)Si2; a=4.0695(1) Å, c=9.9841(3) Å, R1=0.031, 114 F2 values, 9 variable parameters for CaRh2Si2; and a=3.974(1) Å, c=10.395(1) Å, R1=0.036, 95 F2 values, 8 variable parameters for SrCo2Si2. The structure of SrCo2Si2 contains isolated [Co2Si2]2- 2D-layers in the ab-plane whereas in CaFe2-xRhxSi2 the [T2Si2] layers (T=Fe and Rh) are interconnected along the c-axis via Si3Si bonds resulting in a three-dimentional (3D) [T2Si2]2- polyanions and therefore belong to the so-called collapsed form of the ThCr2Si2-type structure. The SrCo2Si2 and CaRh2Si2 are isoelectronic to the parent 122 iron-pnictide superconductors AeFe2As2 (Ae=alkaline earth elements), whereas CaFe2Si2 is a full substituted variant (As/Si) of CaFe2As2. The crystal chemistry and chemical bonding in the title compounds are discussed in terms of LMTO band structure calculations and a topological analysis using the Electron Localization Function (ELF).

  18. Rock Dusting Leaves 'Mickey Mouse' Mark

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.

  19. Approaching Rock Target No. 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.

  20. Multiverso: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  1. Dynamics of rock varnish formation

    SciTech Connect

    Raymond, R. Jr.; Reneau, S.L.; Guthrie, G.D. Jr.; Bish, D.L.; Harrington, C.D.

    1991-01-01

    Our studies of rock varnish from the southwestern United States suggest that the Mn-phase in rock varnish has neither the chemistry nor the crystal structure of birnessite. Rather, the Mn-rich phase is non-crystalline and contains Ba, Ca, Fe, Al, and P. Unknowns concerning the formation of this non-crystalline Mn phase must be resolved before researchers are able to define chemical parameters of rock varnish formation based upon conditions of formation of the Mn phase. 6 refs., 9 figs.

  2. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  3. Fluid and rock interaction in permeable volcanic rock

    SciTech Connect

    Lindley, J.I.

    1985-02-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K/sub 2/O as much as 130% of their original values at the expense of Na/sub 2/O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta/sup 18/O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta/sup 18/ of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals.

  4. Evidence of Spin Resonance Signal in Oxygen Free Superconducting CaFe0.88Co0.12AsF: An Inelastic Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Price, Stephen; Su, Yixi; Xiao, Yinguo; Adroja, Devashibhai T.; Guidi, Tatiana; Mittal, Ranjan; Nandi, Shibabrata; Matsuishi, Satoru; Hosono, Hideo; Brückel, Thomas

    2013-10-01

    The spin excitation spectrum of optimally doped superconducting CaFe0.88Co0.12AsF (Tc˜ 22 K) was studied by means of time-of-flight (ToF) inelastic neutron scattering experiments on a powder sample for temperatures above and below Tc and energies up to 15 meV. In the superconducting state, the spin resonance signal is observed as an enhancement of spectral weight of particle hole excitations of approximately 1.5 times relative to normal state excitations. The resonance energy ER˜ 7 meV scales to Tc via 3.7 kBTc which is in reasonable agreement to the scaling relation reported for other Fe-based compositions. For energies below 5 meV the spectrum of spin flip particle hole excitations in the superconducting state exhibits a strong reduction in spectral weight, indicating the opening of the spin gap. Nonetheless, a complete suppression of magnetic response cannot be observed. In contrast, the normal state spin excitations are not gapped and strongly two dimensional spin fluctuations persist up to temperatures at least as high as 150 K.

  5. Optical spectroscopy study of the collapsed tetragonal phase of CaFe2(As0.935P0.065)2 single crystals

    NASA Astrophysics Data System (ADS)

    Wang, X. B.; Wang, H. P.; Dong, T.; Chen, R. Y.; Wang, N. L.

    2014-10-01

    We present an optical spectroscopy study on P-doped CaFe2As2 which experiences a structural phase transition from tetragonal to collapsed tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of low-frequency spectral weight and the emergence of a feature near 3200 cm -1 (0.4 eV) in optical conductivity across the transition, indicating an abrupt reconstruction of band structure. The appearance of the feature is related to the interband transition arising from the sinking of hole bands near the Γ point below Fermi level in the cT phase, as expected from the density function theory calculations in combination with the dynamical mean field theory. However, the reduction of Drude spectral weight is at variance with those calculations. The measurement also indicates an absence of the abnormal spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase, suggesting a suppression of the electron correlation effect.

  6. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  7. City Rocks and National Standards.

    ERIC Educational Resources Information Center

    Becker, Martin; Slattery, William; Finegan-Stoll, Colleen

    1998-01-01

    Presents a weeklong earth science module that allows students to explore the relationships between natural and manufactured materials. Relates rocks and minerals in the earth science curriculum to observations students make in their urban and suburban travels. (DDR)

  8. The Rock Your Students Dig.

    ERIC Educational Resources Information Center

    McCombs, John P.

    1990-01-01

    Described is a field trip in which eighth grade earth science students map the rock types located on the side of a mountain. Pretrip preparation, equipment, procedures, and posttrip analysis are discussed. (CW)

  9. 'White Rock' of Pollack Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 January 2004 The famous 'White Rock' of Pollack Crater has been known for three decades; it was originally found in images acquired by the Mariner 9 spacecraft in 1972. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) close-up view, obtained in October 2003, shows some of the light-toned, wind-eroded sedimentary rock that makes up 'White Rock.' It is not actually white, except when viewed in a processed, grayscale image (in color, it is more of a light butterscotch to pinkish material). The sediment that comprises 'White Rock' was deposited in Pollack Crater a long time ago, perhaps billions of years ago; the material was later eroded by wind. Dark, windblown ripples are present throughout the scene. This picture is located near 8.2oS, 335.1oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. Rock expansion caused by ultrasound

    NASA Astrophysics Data System (ADS)

    Hedberg, C.; Gray, A.

    2013-12-01

    It has during many years been reported that materials' elastic modulus decrease when exposed to influences like mechanical impacts, ultrasound, magnetic fields, electricity and even humidity. Non-perfect atomic structures like rocks, concrete, or damaged metals exhibit a larger effect. This softening has most often been recorded by wave resonance measurements. The motion towards equilibrium is slow - often taking hours or days, which is why the effect is called Slow Dynamics [1]. The question had been raised, if a material expansion also occurs. 'The most fundamental parameter to consider is the volume expansion predicted to occur when positive hole charge carriers become activated, causing a decrease of the electron density in the O2- sublattice of the rock-forming minerals. This decrease of electron density should affect essentially all physical parameters, including the volume.' [2]. A new type of configuration has measured expansion of a rock subjected to ultrasound. A PZT was used as a pressure sensor while the combined thickness of the rock sample and the PZT sensor was held fixed. The expansion increased the stress in both the rock and the PZT, which gave an out-put voltage from the PZT. Knowing its material properties then made it possible to calculate the rock expansion. The equivalent strain caused by the ultrasound was approximately 3 x 10-5. The temperature was monitored and accounted for during the tests and for the maximum expansion the increase was 0.7 C, which means the expansion is at least to some degree caused by heating of the material by the ultrasound. The fraction of bonds activated by ultrasound was estimated to be around 10-5. References: [1] Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soils, Concrete. Wiley-VCH 2009 [2] M.M. Freund, F.F. Freund, Manipulating the Toughness of Rocks through Electric Potentials, Final Report CIF 2011 Award NNX11AJ84A, NAS Ames 2012.

  11. 'Mazatzal' Rock on Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spirit took this navigation camera image of the 2-meter-wide (6.6-foot-wide) rock called 'Mazatzal' on sol 76, March 21, 2004. Scientists intend to aggressively analyze this target with Spirit's microscopic imager, Moessbauer spectrometer and alpha particle X-ray spectrometer before brushing and 'digging in' with the rock abrasion tool on upcoming sols.

    Mazatzal stood out to scientists because of its large size, light tone and sugary surface texture. It is the largest rock the team has seen at the rim of the crater informally named 'Bonneville.' It is lighter-toned than previous rock targets Adirondack and Humphrey. Its scalloped pattern may be a result of wind sculpting, a very slow process in which wind-transported silt and sand abrade the rock's surface, creating depressions. This leads scientists to believe that Mazatzal may have been exposed to the wind in this location for an extremely long time.

    The name 'Mazatzal' comes from a mountain range and rock formation that was deposited around 1.2 billion years ago in the Four Peaks area of Arizona.

  12. Institute for Rock Magnetism established

    NASA Astrophysics Data System (ADS)

    Banerjee, Subir K.

    There is a new focal point for cooperative research in advanced rock magnetism. The University of Minnesota in Minneapolis has established an Institute for Rock Magnetism (IRM) that will provide free access to modern equipment and encourage visiting fellows to focus on important topics in rock magnetism and related interdisciplinary research. Funding for the first three years has been secured from the National Science Foundation, the W.M. Keck Foundation, and the University of Minnesota.In the fall of 1986, the Geomagnetism and Paleomagnetism (GP) section of the AGU held a workshop at Asilomar, Calif., to pinpoint important and emerging research areas in paleomagnetism and rock magnetism, and the means by which to achieve them. In a report of this workshop published by the AGU in September 1987, two urgent needs were set forth. The first was for interdisciplinary research involving rock magnetism, and mineralogy, petrology, sedimentology, and the like. The second need was to ease the access of rock magnetists and paleomagnetists around the country to the latest equipment in modern magnetics technology, such as magneto-optics or electronoptics. Three years after the publication of the report, we announced the opening of these facilities at the GP section of the AGU Fall 1990 Meeting. A classified advertisement inviting applications for visiting fellowships was published in the January 22, 1991, issue of Eos.

  13. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  14. Early Archaean rocks of Sarmatia

    NASA Astrophysics Data System (ADS)

    Shumlyanskyy, Leonid; Claesson, Stefan; Bibikova, Elena; Billström, Kjell

    2013-04-01

    Sarmatia, one of the three main crustal segments of the Precambrian East-European platform, comprises the Ukrainian shield and the Voronezh crystalline massif which are separated by the Late Palaeozoic Dnieper-Donets Depression. It is composed of a collage of terrains that were formed during over 2 billion years, from c. 3.8 to c. 1.7 Ga; some of these terrains can be traced across the Dnieper-Donets Depression. Geochronological and isotope-geochemical investigations have shown that significant portions of Sarmatia were formed already in the Early Archaean. In the Ukrainian shield Early Archaean rocks are known from the Dniester-Bug and Azov domains. Enderbites of the Dniester-Bug Series, which occur intercalated with mafic and ultramafic rocks, contain zircons as old as 3.75-3.78 Ga (Claesson et al., 2006; 2012) while initial Hf isotope ratios indicate derivation from mildly depleted sources. In the Azov domain the oldest rocks known belong to the Novopavlivka complex, which includes orthogneisses, enderbites, migmatites and related granites with up to 1 m thick enclaves of pyroxenite and peridotite, amphibolites, and schists. Zircons separated from two pyroxenite samples have yielded ages of 3633 ± 16 and 3640 ± 11 Ma, while zircons from enderbite gave 3609 ± 5 Ma (Bibikova and Williams, 1990). Zircons extracted from metasediments of the Soroki and Fedorivka greenstone belts, Azov domain, have yielded ages up to 3785 Ma (Bibikova et al, 2010) and ɛHf values of -1.6 to 1.8 for the oldest zircons. Finally, recent multigrain U-Pb dating of heavily deformed tonalitic gneisses of the Verkhnyotokmakska Stratum, Azov Domain, has given an age of 3560 ± 70 Ma (Scherbak et al., 2011). The oldest rocks of the Voronezh crystalline massif belong to the Oboyan Complex which is composed of mafic igneous rocks and sediments metamorphosed into amphibolites and gneisses. Most probably, this complex includes rocks of different ages and origins. Individual igneous zircons from

  15. Seismic response of rock joints and jointed rock mass

    SciTech Connect

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.

  16. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  17. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  18. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  19. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  20. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect

    Not Available

    1980-01-01

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  1. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  2. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  3. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  4. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  5. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  6. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  7. Surface uplift, uplift of rocks, and exhumation of rocks

    SciTech Connect

    England, P. ); Molnar, P. )

    1990-12-01

    Uplift of the surface of mountain belts requires forces that are comparable in magnitude to those associated with plate motion, and therefore determination of rates of surface uplift could provide important information on the dynamics of mountain ranges. Rates of uplift of the surfaces of mountain ranges have not, however, been quantified sufficiently well that they provide useful constraints on those processes. Many reports of surface uplift in mountain ranges are based on mistaking exhumation of rocks or uplift of rocks for surface uplift, and provide no information whatsoever on the rates of surface uplift.

  8. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  9. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. 2012 Problem 10: Rocking Bottle

    NASA Astrophysics Data System (ADS)

    Li, Yaohua; Gao, Wenli; Wang, Sihui; Zhou, Huijun

    2015-10-01

    In this paper, the motion of a bottle partly filled with water is investigated. Two stages of motion showing different kinetic properties, named as "moving stage" and "rocking stage", can be clearly identified in the experiment. In the moving stage, the bottle moves forward with a short period vibration, while in the rocking stage, the bottle oscillates with a significantly longer period around a certain spot. Theoretical and numerical methods are employed to explain these phenomena. By simplifying the system into a rigid body model, it is found that in the moving stage, classical mechanical method gives results that fit our experiment well. And the rocking stage is thought to be the result of the asymmetric torque generated by the gravity of a liquid layer adhered to the inside wall of the bottle.

  11. Martian sediments and sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Markun, C. D.

    1988-01-01

    Martian sediments and sedimentary rocks, clastic and nonclastic, should represent a high priority target in any future return-sample mission. The discovery of such materials and their subsequent analysis in terrestrial laboratories, would greatly increase the understanding of the Martian paleoclimate. The formation of Martian clastic sedimentary rocks, under either present, low-pressure, xeric conditions or a postulated, high-pressure, hydric environment, depends upon the existence of a supply of particles, various cementing agents and depositional basins. A very high resolution (mm-cm range) photographic reconnaissance of these areas would produce a quantum jump in the understanding of Martian geological history. Sampling would be confined to more horizontal (recent) surfaces. Exploration techniques are suggested for various hypothetical Martian sedimentary rocks.

  12. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  13. Why are the Tcs so high in rare-earth doped CaFe2As2 single crystals and ultrathin FeSe epi-films?

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2015-03-01

    Recent reports of non-bulk superconductivity with unexpectedly high onset-Tcs up to 49 K in the Pr-doped CaFe2As2 [(Ca,Pr)122] single crystals and up to 100 K in one-unit-cell (1UC) FeSe epi-films, respectively, offer an unusual opportunity to seek an answer to the question posed in the title. Through systematic compositional, structural, resistive, and magnetic investigations on (Ca,R)122 single crystals with R = La, Ce, Pr, and Nd, we have observed a doping-level-independent Tc, a large magnetic anisotropy, and the existence of mesoscopic-2D structures in these crystals, thus providing evidence consistent with the proposed interface-enhanced Tc in these naturally assembled Fe-based superconductors. Similar resistive and magnetic measurements were also made on the 1-4UC FeSe ultra thin epi-films. We have detected a Meissner state below 1 Oe with extensive weak-links up to ~ 20 K, unconnected small superconducting patches up to ~ 40 K, and an unusual dispersion of diamagnetic moment with frequency up to 80 K. The unusual frequency dependences of the diamagnetic moment observed in the films at different temperature ranges suggest that collective excitations of electron and/or spin nature may exist in the FeSe films below 20 K and 40-80 K. The experimental results will be presented and the implications discussed. Collaborators: Liangzi Deng, Bing Lv, Fengyan Wei, and Yu-Yi Xue, University of Houston; Li-Li Wang, Xu-Cun Ma, and Qi-Kun Xue, Tsinghua University, Beijing.

  14. Combined effects of transition metal (Ni and Rh) substitution and annealing/quenching on the physical properties of CaFe2As2

    SciTech Connect

    Ran, S; Bud'ko, S L; Straszheim, W E; Canfield, P C

    2014-08-01

    We performed systematic studies of the combined effects of annealing/quenching temperature (TA/Q) and T=Ni, Rh substitution (x) on the physical properties of Ca(Fe1-xTx)2As2. We constructed two-dimensional, TA/Q-x phase diagrams for the low-temperature states for both substitutions to map out the relations between ground states and compared them with that of Co substitution. Ni substitution, which brings one more extra electron per substituted atom and suppresses the c-lattice parameter at roughly the same rate as Co substitution, leads to a similar parameter range of antiferromagnetic/orthorhombic phase space in the TA/Q-x space as that found for Co substitution, but the parameter range for superconductivity has been shrunk (roughly by a factor of 2). This result is similar to what is found when Co- and Ni-substituted BaFe2As2 are compared. On the other hand, Rh substitution, which brings the same amount of extra electrons as does Co substitution, but suppresses the c-lattice parameter more rapidly, has a different phase diagram. The collapsed tetragonal phase exists much more pervasively, to the exclusion of the normal, paramagnetic, tetragonal phase. The range of antiferromagnetic/orthorhombic phase space is noticeably reduced, and the superconducting region is substantially suppressed, essentially truncated by the collapsed tetragonal phase. In addition, we found that whereas for Co substitution there was no difference between phase diagrams for samples annealed for 1 or 7 days, for Ni and Rh substitutions a second, reversible effect of annealing was revealed by 7-day anneals.

  15. Lubrication of rotary rock bits

    SciTech Connect

    MacPhail, J.; Gardner, H.

    1996-12-01

    The rotary rock bit is designed so that both the bearings and cutting structure work together as one unit. Should the bearings wear prematurely before the cutting structure is worn out, then the complete bit will rapidly deteriorate leading to a shortened bit life. The optimum bit run is when the bearings and cutting structure wear out simultaneously, having obtained a good footage and rate of penetration. This paper discusses reasons why users of rotary air blast hole bits encounter premature bit failure due to bearing failure. It also discusses a lubrication system designed for rotary rock bits to combat bearing failure.

  16. Sedimentary Rocks in Ladon Vallis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 January 2004 This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture of an outcrop of light-toned, layered, sedimentary rock exposed by erosion in Ladon Vallis. These rocks preserve clues to the martian past. However, like books in a library, one needs to go there and check them out if one wishes to read what the layers have to say. This November 2003 picture is located near 21.1oS, 29.8oW, and covers an area 3km (1.9 mi.) wide. Sunlight illuminates the scene from the left.

  17. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  18. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  19. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  20. Rock 14068 - An unusual lunar breccia.

    NASA Technical Reports Server (NTRS)

    Helz, R. T.

    1972-01-01

    Rock 14068 is a walnut-sized clast of dark breccia from station C1 near Cone Crater. The rock's dominant component is an olivine-rich groundmass. Petrographic and chemical studies were made of polished sections of the rock. The origin of the material is discussed. It is thought possible that the melt was produced by remelting a preexisting lunar rock of the same composition. Another possibility considered is that the rock composition constitutes a mixture of several rock types of partly meteoritic origin.

  1. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  2. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  3. The Alum Rock Voucher Program.

    ERIC Educational Resources Information Center

    Southwest Network, Hayward, CA.

    During the 1972-73 school year, the Alum Rock Voucher Program, an experimental program, was begun in 6 neighborhood schools in East San Jose, California. The program was designed to allow greater parent participation and choice in their children's education. This illustrated, bilingual pamphlet, written as a story told by 2 caricatures, discusses…

  4. Rock Music and Music Videos.

    PubMed

    Hendren; Strasburger

    1993-10-01

    Sex, violence, sexual violence, drugs, suicide, satanic worship, and racism are common themes in modern rock lyrics. The authors examine their effect on adolescent development and identity, concluding with a discussion of the roles of parents and health care professionals in addressing the problem. PMID:10356234

  5. Texture of Rock at 'Jibsheet'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A bulbous texture is evident in this rock target at the outcrop called 'Jibsheet' in this view from the microscopic imager on NASA's Mars Exploration Rover Spirit. Frames making up this mosaic image of a target dubbed 'Reef' were taken during the rover's 481st martian day, or sol (May 11, 2005).

  6. Relevance of Computational Rock Physics

    NASA Astrophysics Data System (ADS)

    Dvorkin, J. P.

    2014-12-01

    The advent of computational rock physics has brought to light the often ignored question: How applicable are controlled-experiment data acquired at one scale to interpreting measurements obtained at a different scale? An answer is not to use a single data point or even a few data points but rather find a trend that links two or more rock properties to each other in a selected rock type. In the physical laboratory, these trends are generated by measuring a significant number of samples. In contrast, in the computational laboratory, these trends are hidden inside a very small digital sample and can be derived by subsampling it. Often, the internal heterogeneity of measurable properties inside a small sample mimics the large-scale heterogeneity, making the tend applicable in a range of scales. Computational rock physics is uniquely tooled for finding such trends: Although it is virtually impossible to subsample a physical sample and consistently conduct the same laboratory experiments on each of the subsamples, it is straightforward to accomplish this task in the computer.

  7. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  8. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; McSween, Harry Y.; Ming, Douglas W.; Morris, Richard V.; Ruff, Steven W.; Wang, Alian; Yen, Albert

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  9. 'They of the Great Rocks'-3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.

  10. Rock strength under confined shock conditions

    SciTech Connect

    Scholz, C.H.

    1982-10-01

    This report addresses the laboratory measurements of the static strength of rock needed to simulate the response of rock to an underground explosion. The approach is to identify the variables that affect the strength of rock and to discuss each effect in terms of the underlying processes that cause it. Most of the report is the result of a literature review, although some new analyses and concepts are presented. Attention is directed at three basic rock types: low porosity brittle rock such as granodiorite, high porosity brittle rock such as volcanic tuff, and a rock that may be ductile under the relevant conditions, salt. These three rock types are sufficiently different that somewhat different constitutive laws may have to be used to model their behavior.

  11. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  12. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  13. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  14. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  15. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  16. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  17. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  18. Fungal leaching of titanium from rock.

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1971-01-01

    Penicillium simplicissimum is found to solubilize up to 80% of the titanium in granitic rocks but less than 2% of the titanium in basaltic rocks. These findings were made in investigating the interactions of microorganisms with rocks and minerals of the biosphere in studies aimed at developing experiments for the detection of extraterrestrial life.

  19. Feet injuries in rock climbers.

    PubMed

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  20. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  1. Poroelasticity of rock. Progress report

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton`s coefficient and undrained Poisson`s ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  2. Virtual Rover Drives Toward Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows a screenshot from the software used by engineers to test and drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course. Here, engineers simulated Spirit's first post-egress drive on Mars Sunday. The 3-meter (10-foot) drive totaled approximately 30 minutes, including time to stop and take images. The rover drove toward its first rock target, a mountain-shaped rock called Adirondack. The blue line denotes the path of the rover's 'belly button,' as engineers like to call it, as the rover drove toward Adirondack. The virtual 3-D world around the rover was built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige.

  3. Promoting research in rock deformation

    NASA Astrophysics Data System (ADS)

    Kirby, Steve

    In response to informal discussions at the 1988 AGU Spring Meeting in Baltimore, Md., a dinner colloquium was held December 5, 1988, in San Francisco. Our purpose was to explore ways of promoting basic research in rock deformation, for which no professional organization exists that spans the full range of research interests. In spite of an informal distribution of announcements of the meeting, 54 people attended.Rock deformation is the materials science of the crystalline and amorphous materials that make up the solid Earth. As such, it includes not only the physical processes responsible for brittle and ductile deformation but also the important chemical processes that influence time-dependent inelastic deformation. Consequently, there is a continuing need to engage interest and collaboration from materials scientists, mineral physicists, metallurgists, surface chemists, and geochemists in the study of the inelastic mechanical behavior of these complex materials.

  4. Origin of lunar feldspathic rocks

    NASA Technical Reports Server (NTRS)

    Walker, D.; Grove, T. L.; Longhi, J.; Stolper, E. M.; Hays, J. F.

    1973-01-01

    Melting experiments and petrographic studies of lunar feldspathic rocks reveal possible genetic relationships among several compositionally and mineralogically distinct groups of lunar rocks and soil fragments. Dry, low PO2 partial melting of crustal anorthositic norites of the anorthositic-noritic-troctolitic (ANT) suite produces liquids of the KREEP-Fra Mauro basalt type; dry, low PO2 partial melting of pink spinel troctolite (PST) produces liquids of the 'very high alumina basalt' or microtroctolite type. Both ANT and PST are probable components of the primitive terra crust. If crystal fractionation in a cooling basaltic liquid could have produced such a crust, it would also produce a mafic interior capable of yielding mare basalts by later remelting at depth.

  5. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Feet injuries in rock climbers

    PubMed Central

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  7. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  8. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  9. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  10. Thermal conductivity of carbonate rocks

    USGS Publications Warehouse

    Thomas, J., Jr.; Frost, R.R.; Harvey, R.D.

    1973-01-01

    The thermal conductivities of several well-defined carbonate rocks were determined near 40??C. Values range from 1.2 W m-1 C-1 for a highly porous chalk to 5.1 W m-1 C-1 for a dolomite. The thermal conductivity of magnesite (5.0) is at the high end of the range, and that for Iceland Spar Calcite (3.2) is near the middle. The values for limestones decrease linearly with increasing porosity. Dolomites of comparable porosity have greater thermal conductivities than limestones. Water-sorbed samples have expected greater thermal conductivities than air-saturated (dry) samples of the same rock. An anomalously large increase in the thermal conductivity of a water-sorbed clayey dolomite over that of the same sample when dry is attributed to the clay fraction, which swells during water inhibition, causing more solid-to-solid contacts within the dolomite framework. Measurements were made with a Colora Thermoconductometer. Chemical and mineralogical analyses were made and tabulated. Porosity of the rocks was determined by mercury porosimetry and also from density measurements. The Iceland Spar Calcite and magnesite were included for reference. ?? 1973.

  11. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  12. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  13. The Call of the Dark Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color rendering from NASA's Mars Exploration Rover Spirit shows a set of darker rocks dubbed 'Toltecs' lying southeast of the rover's current position. These rocks are believed to be basaltic, or volcanic, in composition, because their spectral properties match those of other basaltic rocks studied in Gusev Crater. Scientists hope to use these presumably unaltered rocks as a geologic standard for comparison to altered rocks in the area, such as 'Clovis.' This image was taken with the panoramic camera's 600-, 530-, and 480-nanometer filters on sol 220 (Aug. 15, 2004).

  14. The Call of the Dark Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the Mars Exploration Rover Spirit shows a group of darker rocks dubbed 'Toltecs,' lying to the southeast of the rover's current position. The rocks are believed to be basaltic, or volcanic, in composition because their color and spectral properties resemble those of basaltic rocks studied so far at Gusev Crater. Scientists hope to use these presumably unaltered rocks as a geologic standard for comparison to altered rocks in the area, such as 'Clovis.' This image was taken by the 750-, 530- and 430-nanometer filters of rover's panoramic camera on sol 220 (August 15, 2004).

  15. Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals

    USGS Publications Warehouse

    Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.

    1970-01-01

    On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.

  16. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR AFTER REMODELING INTO OFFICE SPACE. DATED FEBRUARY 13, 1943. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  17. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. LOOKING NORTH AFTER ADDITION OF CONICAL ROOF. ORIGINALLY PUBLISHED 1887. - Rock Island Arsenal, Building No. 53, North Avenue North of Midpoint, Rock Island, Rock Island County, IL

  18. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION IN UNALTERED CONDITION. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 61, Rodman Avenue & First Street, Rock Island, Rock Island County, IL

  19. 8. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATON IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 68, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  20. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  1. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR, LOOKING WEST. DATED OCTOBER 2, 1945. - Rock Island Arsenal, Building No. 138, Second Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL

  2. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND WEST ELEVATIONS IN UNALTERED CONDITION. DATED APRIL 18, 1941. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL

  3. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ORIGINAL OPEN INTERIOR PLAN. DATED APRIL 7, 1942. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL

  4. 7. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 62, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  5. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 103, Rodman Avenue & First Street, Rock Island, Rock Island County, IL

  6. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST ELEVATION IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 280, Sylvan Drive, Rock Island, Rock Island County, IL

  7. 9. Photograph of photograph in possession of Rock Island Arsenal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of photograph in possession of Rock Island Arsenal Historical Office. WEST AND NORTH ELEVATIONS. ORIGINALLY PUBLISHED 1887. - Rock Island Arsenal, Building No. 90, East Avenue between North Avenue & King Drive, Rock Island, Rock Island County, IL

  8. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  9. Rock Magnetism: Successes and Mysteries

    NASA Astrophysics Data System (ADS)

    Dunlop, D. J.

    2011-12-01

    Louis Néel once proposed making ships "invisible" (i.e., magnetically undetectable) by giving them a permanent or remanent magnetism that would cancel the signal induced by the Earth's magnetic field. Like much of rock magnetism, this borders on the magical. Rocks possess a magnetic memory that verges on the phenomenal. An adequate magnetic lifetime for your credit card is until its expiry date and one must avoid exposure to magnetic fields and heat. But a rock's magnetic memory is forever, and the recipe for that durability includes, for igneous and metamorphic rocks, exposure to ancient fields while hot - near the Curie temperature in fact. The thermal remanent magnetism (TRM) thus produced is largely immune to later field changes at lower temperatures although luckily a fraction - a partial TRM overprint - does record later heating events, e.g., burial during major orogenies. When we lift the veil and look closely, on a microscale or nanoscale, it is perplexing to understand why paleomagnetism works so well when rocks seemingly contain so few of Néel's ideal recorders: single-domain grains with tightly coupled atomic spins. In larger grains with multiple domains, the walls between neighbouring domains move readily, like dislocations in crystals, enlarging some domains at the expense of others. This mutability makes any magnetic memory of multi-domain grains suspect. But around the threshold between single-domain and multi-domain structures - a specific grain size that varies widely from one magnetic mineral to another - there are recent predictions and observations of novel structures, including linked magnetic moments of nearby grains and interfacial moments of exsolved phases, that could go some way towards explaining why single-domain-like behaviour is so widespread. Many magnetic properties show an almost continuous variation with grain size, quite unlike the expected discontinuity at the single-domain threshold. Among these is initial susceptibility which

  10. Carbonate rock depositional models: A microfacies approach

    SciTech Connect

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  11. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  12. Lander and Mini Matterhorn rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard the Sojourner rover took this image of the Sagan Memorial Station on Sol 26. The angular resolution of the camera is about three milliradians (.018 degrees) per pixel, which is why the image appears grainy. The field of view of each rover camera is about 127 degrees horizontally and 90 degrees vertically.

    Features seen on the lander include (from left to right): the Atmospheric Structure Instrument/Meteorology Package (ASI/MET) mast with windsocks; the low-gain antenna mast, the Imager for Mars Pathfinder (IMP) on its mast at center; the disc-shaped high-gain antenna at right, and areas of deflated airbags. The dark circle on the lander body is a filtered vent that allowed air to escape during launch, and allowed the lander to repressurize upon landing. The high-gain antenna is pointed at Earth. The large rock Yogi, which Sojourner has approached and studied, as at the far right of the image. Mini Matterhorn is the large rock situated in front of the lander at left.

    The horizontal line at the center of the image is due to differences in light-metering for different portions of the image. The shadow of Sojourner and its antenna are visible at the lower section of the image. The antenna's shadow falls across a light-colored rock.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  13. Mars Rocks Continue to Fascinate

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Proving once again that Mars is a complex and fascinating place, NASA's Opportunity rover has entered new terrain and is providing scientists with more discoveries and puzzles to solve. 'One of the things we've been wondering,' said principal investigator Steve Squyres, 'is whether the rounded concretions we call 'blueberries' are the same everywhere. It turns out they're not. The berries are more numerous here, and some seem to be smaller than any we've ever seen.'

    This microscopic image of a drill hole cut into a martian rock nicknamed 'Ice Cream' by the rover's rock abrasion tool shows cross sections of round concretions 1 to 2 millimeters (0.04 to 0.08 inches) wide. Science team members are debating whether the grayish-looking smudges that are not as round are concretions or some other feature.

    Opportunity is now almost 4 kilometers (2.5 miles) south of 'Endurance Crater,' where the rover spent from May through December of 2004 reading the story of a watery past recorded in the martian rocks. After exiting 'Endurance' on martian day, or sol, 316 (Dec. 13, 2004), Opportunity turned south and continued the trek across land where no human has trod, demonstrating that endurance is more than just a name.

    Opportunity took this mosaic of images with its microscopic imager on sol 546 (Aug. 6, 2005). The area shown is approximately 6 centimeters (2.4 inches) wide. The shaded portions on the left side of each quadrangle in the mosaic are silhouettes of the rover's robotic arm.

  14. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  15. Infiltration flux distributions in unsaturated rock deposits andtheir potential implications for fractured rock formations

    SciTech Connect

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-11-01

    Although water infiltration through unconsolidated rocks and fractured rock formations control flow and transport to groundwater, spatial distributions of flow paths are poorly understood. Infiltration experiments conducted on packs of rocks showed that a well-constrained distribution of fluxes develops despite differences in rock type (angular diabase and sandstone, and subangular serpentinite), rock size (30 to 200mm), and packing (up to 42 rock layers). Fluxes stabilize into a geometric (exponential) distribution that keeps about half of the system depleted of flow, retains a small fraction of high flow regions, and has a characteristic scale determined by the rock size. Modification of a statistical mechanical model shows that gravity-directed, random flowpaths evolve to the observed flux distribution, and that it represents the most probable distribution. Key similarities between infiltration in rock deposits and fractured rock formations indicate that the geometric flow distribution may also apply in the latter systems.

  16. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  17. Big Bang Day : Physics Rocks

    ScienceCinema

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  18. Big Bang Day : Physics Rocks

    SciTech Connect

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  19. Numerical study of rock blasting

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Yudin, A. S.; Kuznetsova, N. S.

    2015-10-01

    The paper presents numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole. Considered in the study is the influence of the pulse shape and rock properties on the pattern of irreversible deformation and cracking. It is found that a fractured zone bounded by a plastically deformed contour always arises around the explosion site. Comparison of elastoplastic deformation and fracture induced in the concrete block by explosion pulses of different durations and amplitudes shows that shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency.

  20. Ambient resonance of rock arches

    NASA Astrophysics Data System (ADS)

    Starr, Alison Margaret

    Resonant frequencies of structural elements are related to fundamental material properties of mass and stiffness, and monitoring over time can thus serve as an indirect indictor of internal mechanical change. Until now, however, this methodology has not been applied to natural rock structures such as arches and towers. We evaluated the resonance characteristics of four rock arches in southeastern Utah, combining in-situ ambient vibration measurements with numerical modal analysis. At each location, we measured the spectral and polarization attributes of ambient vibrations using up to two broadband seismometers. Ambient vibration spectra measured on the arches showed clear peaks at distinct frequencies (typically between 1-10 Hz), which we interpret as resonant frequencies, as opposed to the relatively flat spectra recorded on nearby bedrock. Polarization analysis helped us identify the orientations of vibration and explore resonant mode shapes. We then verified the measured resonant frequencies through 3D finite-element numerical modal analysis, and in most cases we were able to match the fundamental along with several higher-order modes. Repeat occupation and short-term continuous ambient vibration monitoring were aimed at assessing daily and seasonal changes in resonant frequencies, which in turn may provide evidence of internal mechanical change; Mesa Arch in Canyonlands National Park served as the main focus for our repeat measurements. Results revealed that minor, reversible changes in resonant frequencies can be created by thermal effects, i.e., changes in bulk material stiffness as the arch expands and contracts on daily and seasonal time scales. No irreversible change in the resonant frequency of Mesa Arch was detected over the period of this study. Our research provides the first step towards monitoring the long-term structural health of natural rock arches as they change through time or in the wake of a damaging event. We have shown that the resonance

  1. Microcraters on Apollo 15 and 16 rocks

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.; Mckay, D. S.; Fruland, R. M.; Moore, H. J.

    1973-01-01

    Microcrater frequency distributions, determined for 11 Apollo 16 rocks and three Apollo 15 rocks, fall into four categories. Category 1 rocks (68415, 68416, 62235) are angular, cratered on one side only, and have moderate crater densities. Category 2 rocks (60016, 66075, 61175) are subrounded, cratered on all sides, and have distributions suggestive of the steady state. Category 3 rocks (61015, 62295) are subangular and cratered on only one side, but the crater frequency distributions have some of the characteristics of category 2 rocks. Category 4 rocks (15015, 15017, 15076, 60335) are angular, cratered on only one side, and have moderated to very low crater densities. The crater frequency distributions of categories 1 and 4 have properties indicating the possibility of estimating the time they were exposed to micrometeor bombardment. Category 1 rocks appear to have been exposed for 2 to 3 m.y. These rocks, particularly 68415, 68416, and 69935, may be ejecta from South Ray Crater, indicating an age of 2 to 3 m.y. for South Ray Crater. Category 4 rocks have been exposed for much shorter periods.

  2. Infiltration Flow Path Distributions in Unsaturated Rocks

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2004-12-01

    Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy

  3. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    ERIC Educational Resources Information Center

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  4. Electrical properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Morrison, H.

    1973-01-01

    The mechanism by which atmospheric moisture affects the conductivity and dielectric constant of rock specimens was studied in time and frequency domains. It is suggested that adsorbed water molecules alter the surface conductivity in a manner similar to that observed in semiconductors and insulators. Powdered basalts show a low-frequency dispersion produced by the atmospheric moisture remaining in the pore system of the sample in a high vacuum; this effect is attributed to isolated adsorption centers. Simulated lunar permafrost at 100 K and a vacuum of 10 to the -8th power torr together with data on lunar samples contaminated with atmospheric moisture and the dielectric properties of ice at various temperatures indicate that, if permafrost exists in the moon it should present a relaxation peak at approximately 300 Hz; for temperatures up to 263 K it may go up to 20 KHz. It is concluded that in order to have electrical steady state conditions in rock samples it is necessary to have volume charge accumulations at interfaces within the sample and at the electrode sample interface. A method for measuring heterogeneous dielectrics with non-negligible ohmic and dielectric conductivities is proposed and experimentally verified.

  5. Multisensor classification of sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    1988-01-01

    A comparison is made between linear discriminant analysis and supervised classification results based on signatures from the Landsat TM, the Thermal Infrared Multispectral Scanner (TIMS), and airborne SAR, alone and combined into extended spectral signatures for seven sedimentary rock units exposed on the margin of the Wind River Basin, Wyoming. Results from a linear discriminant analysis showed that training-area classification accuracies based on the multisensor data were improved an average of 15 percent over TM alone, 24 percent over TIMS alone, and 46 percent over SAR alone, with similar improvement resulting when supervised multisensor classification maps were compared to supervised, individual sensor classification maps. When training area signatures were used to map spectrally similar materials in an adjacent area, the average classification accuracy improved 19 percent using the multisensor data over TM alone, 2 percent over TIMS alone, and 11 percent over SAR alone. It is concluded that certain sedimentary lithologies may be accurately mapped using a single sensor, but classification of a variety of rock types can be improved using multisensor data sets that are sensitive to different characteristics such as mineralogy and surface roughness.

  6. Recent progress in rock magnetism

    NASA Astrophysics Data System (ADS)

    Courtillot, Vincent

    Availability of affordable high-performance computers has spurred research into the mathematical modelling of magnetic domain structures, stability of magnetic remanences and their experimental verification. Further, a recently substantially increased amount of observations of magnetic minerals other than magnetite in natural rocks has intitiated studies of their fundamental magnetic properties. To provide a forum for discussion of the latest developments covering these important subjects, two symposia were organized at the XXI General Assembly of the International Union of Geodesy and Geophysics (Boulder, Colorado, USA, July 2-14, 1995): New Approaches in Rock Magnetism (convened by S.L. Halgedahl and F. Heider) and Properties of minor magnetic minerals (convened by MJ. Dekkers and E. McClelland). In total 62 contributions were presented. This special section of Geophysical Research Letters comprises 19 papers, meeting, hopefully some of the most significant. The four convenors assisted me as associate-editors in preparing this special issue, and I would like to thank them. The time taken by many reviewers is also appreciated. I hope the reader will get a feeling of the excitement that was evident during the Boulder meeting and will find this a useful collection of articles for later use.

  7. DOE hot dry rock program

    SciTech Connect

    Nunz, G.J.

    1980-01-01

    Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

  8. Petroleum geology of carbonate rocks

    SciTech Connect

    Billo, S.M.

    1995-09-01

    Where oil and gas supervene in reservoirs consisting of both limestone and dolomite, the dolomite and dolomitic rocks are usually the more prolific producers of petroleum. Even the dismissal by some oil explorers of primary or evaporitic dolostones from the category of reservoir rocks have recently been challenged; for example, by the discovery of more than 500 million barrels of oil in a primary dolomite and associated dolomitized portion of the Trenton (Ordovician) limestone of the Lima-Indiana field across the Cincinnati and Findlay arches. Permeability decreased updip where oil in the magnesian phase of the limestone disposed a stratigraphic trap. Oil geologists found that both porosity and permeability developed during dolomitization. Temperature and pressure, time, pH, Eh, and salinity are all important controls. Evaporation of sea water past the point of calcium sulphate precipitation suppresses the chemically inhibiting influence of calcium sulphate in solution on dolomite precipitation and increases the Mg/Ca ration from 1:1 at low salinities to over 5:1 or 10:1 in a hypersaline environment.

  9. Multiversos: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Arias, A.; García, N.

    2011-11-01

    Imagine that you can use your fingers only for typing target coordinates at thetelescope, reduce images and spectra with IRAF, or write papers for Astronomy &Astrophysics, but you would never be able to play an electric guitar.Imagine that you love music, work in front of the computer always withheadphones, and dream of playing with your favourite rock band in a tumultuousconcert.Imagine that you are an astronomer who, after a "cosmic fluke", share stagewith the band which themes you have always hummed since you were a teenager.Imagine that you were born for rock, played a main role in the best Spanishalbum of the 90s (Omega, with Enrique Morente), and your songs arerutinary played by Radio 3, but you would never be able to detect an exoplanetor a galaxy at a high redshift.Imagine that you love Astronomy, try to see the Moon craters and Andromeda withyour small telescope through the light pollution of your city, and explain yourdaughter that Pluto is not a planet any longer. Imagine that you are a musician who, after a "cosmic fluke", give a talk justafter a Nobel laureate that discovered the cosmic microwave backgroundradiation.Such "cosmic flukes" sometimes happen. If you were not at the dinner of the SEA meeting and do not believe us, visithttp://www.myspace.com/antonioariasmultiverso or open the proceedings DVD andlisten "El ordenador simula el nacimiento de las estrella...".

  10. New A2/3-xRh2O4 compounds with the CaFe2O4 structure where A is a rare earth or Bi.

    PubMed

    Mizoguchi, Hiroshi; Zakharov, L N; Ramirez, A P; Marshall, W J; Sleight, A W; Subramanian, M A

    2009-01-01

    New compounds of the type R(2/3-x)Rh(2)O(4) with the CaFe(2)O(4) structure have been prepared, where R is a rare earth. For crystals grown in a Bi/V/O flux, the rare earth was partially replaced by Bi. No evidence of ordering of the A cation vacancies is found, but the A cations are displaced from the ideal A cation site by about 0.24 A. Electrical conductivity measurements on crystals suggest that the materials are degenerate semiconductors with Seebeck measurements showing p-type behavior. This is consistent with our observation that x in R(2/3-x)Rh(2)O(4) ranges up to about 0.09. The compounds were also characterized by magnetic susceptibility and diffuse reflectance measurements. PMID:19049419

  11. Why Tc of (CaFeAs)10Pt3.58As8 is twice as high as (CaFe0.95Pt0.05As)10Pt3As8

    NASA Astrophysics Data System (ADS)

    Thirupathaiah, S.; Stürzer, T.; Zabolotnyy, V. B.; Johrendt, D.; Büchner, B.; Borisenko, S. V.

    2013-10-01

    Recently discovered (CaFe1-xPtxAs)10Pt3As8 and (CaFeAs)10Pt4-yAs8 superconductors are very similar materials having the same elemental composition and structurally similar superconducting FeAs slabs. Yet the maximal critical temperature achieved by changing Pt concentration is approximately twice higher in the latter. Using angle-resolved photoemission spectroscopy (ARPES) we compare the electronic structure of their optimally doped compounds and find drastic differences. Our results highlight the sensitivity of critical temperature to the details of fermiology and point to the decisive role of band-edge singularities in the mechanism of high-Tc superconductivity.

  12. 'Pot of Gold' and 'Rotten Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004).

    To the right is a set of rocks referred to as 'Rotten Rocks' for their resemblance to rotting loaves of bread. The insides of these rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  13. 'They of the Great Rocks'-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'

  14. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  15. Metamorphosed ultramafic rocks in east Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.; Dorais, M. J.

    1986-01-01

    The compositional and mineralogical characteristics of Archean ultramafic rocks in Kangerdlugssuaq Fjord are summarized: the first provides information important to understanding the primary character of the rock suite, whereas the latter provides data necessary to determine the conditions of their equilibrium during the latest metamorphism. This information will be of value in determining the affinity of the suite to similar Archean rocks in other areas of the North Atlantic craton.

  16. Reappraisal of hydrocarbon biomarkers in Archean rocks

    NASA Astrophysics Data System (ADS)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  17. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    PubMed

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  18. Internet Roadside Cafe #6. [Videotape.

    ERIC Educational Resources Information Center

    American Library Association Video/Library Video Network, Towson, MD.

    This 30-minute videotape takes an in-depth look at World Wide Web business transactions, potential risks, client privacy and security issues by asking businesses and consumers how they do business on the Internet. Also featured in the program is advice about choosing a secure password, the use of credit cards for Web purchasing and a review of…

  19. Learning through the Kids Cafe.

    ERIC Educational Resources Information Center

    Jones, Gloria

    1995-01-01

    Discusses the role of middle-school children supported by the community in organizing a project to feed needy children: running the project, and providing an educational activity prior to each meal. Describes academic outcomes of project, such as developing skills in language arts, math, and creative problem solving; and learning about nutrition.…

  20. Meteorite Linked to Rock at Meridiani

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This meteorite, a basalt lava rock nearly indistinguishable from many Earth rocks, provided the first strong proof that meteorites could come from Mars. Originally weighing nearly 8 kilograms (17.6 pounds), it was collected in 1979 in the Elephant Moraine area of Antarctica. The side of the cube at the lower left in this image measures 1 centimeter (0.4 inches).

    This picture shows a sawn face of this fine-grained gray rock. (The vertical stripes are saw marks.) The black patches in the rock are melted rock, or glass, formed when a large meteorite hit Mars near the rock. The meteorite impact probably threw this rock, dubbed 'EETA79001,' off Mars and toward Antarctica on Earth. The black glass contains traces of martian atmosphere gases.

    The Mars Exploration Rover Opportunity has discovered that a rock dubbed 'Bounce' at Meridiani Planum has a very similar mineral composition to this meteorite and likely shares common origins. Bounce itself is thought to have originated outside the area surrounding Opportunity's landing site; an impact or collision likely threw the rock away from its primary home.

  1. Evaluation of multiband photography for rock discrimination

    NASA Technical Reports Server (NTRS)

    Raines, G. L.

    1974-01-01

    An evaluation is presented of the multiband photography concept that tonal differences between rock formations on aerial photography can be improved through the selection of the appropriate bands. The concept involves: (1) acquiring band reference data for the rocks being considered; (2) selecting the best combination of bands to discriminate the rocks using these reference data; (3) acquiring aerial photography using these selected bands; and (4) extracting the desired geologic information in an optimum manner. The test site geology and rock reflectance are discussed in detail. The evaluation found that the differences in contrast ratios are not statistically significant, and the spectral information in different bands is not advantageous.

  2. Rock Art of the Greater Southwest

    NASA Astrophysics Data System (ADS)

    Krupp, Edwin C.

    Archaeoastronomical studies in the American Southwest began in 1955 with recognition of what seemed to be pictorial eyewitness records of the Crab supernova of 1054 AD In time, reports of seasonally significant light-and-shadow effects on rock art and associations of rock art with astronomical alignments also emerged. Most astronomical rock art studies remained problematic, however, because criteria for proof of ancient intent were elusive. Disciplined methods for assessing cultural function were difficult to develop, but review of ethnographically documented astronomical traditions of California Indians and of Indians in the American Southwest subsequently increased confidence in the value of some astronomical rock art initiatives.

  3. New eyes on eastern California rock varnish

    SciTech Connect

    Krinsley, D.H.; Dorn, R.I. )

    1991-05-01

    This article presents findings from recent investigations of how rock varnish forms and describes the manner in which this understanding can aid researchers. Rock varnish is typically a glossy-brown to black coating that commonly develops on rock surfaces in arid climates. It may take tens of thousands of years to form a complete coating over rock surfaces. A number of hypotheses have been proposed to explain the occurrence of rock varnish. The following explanations originated during examination of rock varnishes in the Mojave Desert: (1) the role of pollen in providing manganese, (2) the role of lichens in somehow catalyzing varnish accretion, (3) physical and chemical changes at the rock surface, and (4) the role of bacteria in concentrating manganese. Recent findings using backscatter electron microscopy are given researchers additional insights into this phenomenon. This technology permits researchers to view rock varnish chemistry and texture simultaneously and permits sources of varnish constituents, origin of manganese enhancement in varnish, reliable rock varnish dating, and new microscopic textures to be studied in great detail. It is now apparent that a number of varnish accretion processes occur other than deposition in even layers.

  4. Regulation of ROCK activity in cancer.

    PubMed

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-03-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)-loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  5. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  6. Rayleigh wave studies in lunar rocks.

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1972-01-01

    An ultrasonic surface wave technique described by the author (1971) is used to verify a hypothesis that links the seismic wave propagation velocities in lunar crust, much too low as compared to those on earth, to the extensive fracturing of lunar rock in the absence of liquids and gases which changed drastically the elastic and inelastic properties of lunar rock. Measurements on lunar rock samples and synthetic analogs suggest that the presence of microfractures have influence on both the wave velocity and Q factor in lunar rocks.

  7. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  8. Kissing Mars Rocks with the Rover's RATs: An Educational Exercise to Understand Drilling Rocks on Mars

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Whelley, P. L.; Bleacher, J. E.; Cave, S. R.; Zabala-Aliberto, V. A.; Zabala, A. A.; Greeley, R.

    2007-03-01

    This abstract discusses an E/PO exercise we created for elementary school children that uses Hershey Kisses and straws to simulate the drilling of different rocks on Mars by the MER Rock Abrasion Tool.

  9. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    PubMed

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis. PMID:26826790

  10. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  11. Elastic Properties of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Melendez Martinez, Jaime

    Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic

  12. Some influences of rock strength and strain rate on propagation of rock avalanches

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth; Rait, Kim

    2016-04-01

    Rock avalanches are extreme and destructive mass movements in which large volumes of rock (typically >1 million cubic metres) travel at high speeds, covering large distances, and the occurrence of which is highly unpredictable. The "size effect" in rock avalanches, whereby those with larger volumes produce greater spreading efficiency (as defined by an increase in normalised runout) or lower farboschung angle (defined as the tangent of the ratio of fall height to runout length), is well known. Studies have shown that rock strength is a controlling factor in the mobility of rock avalanches - that is, mass movements involving lower strength rock are generally found to produce greater mobility as evidenced by the spread of deposits or low farboschung angle. However, there are conflicting ideas as to how and why this influence is manifested. This paper discusses different theories of rock comminution in light of numerical simulations of rock clasts undergoing normal and shear induced loading, experimental work on rock avalanche behaviour, and dynamic fracture mechanics. In doing so, we introduce the idea of thresholds of strain rate for the production of dynamic fragmentation (as opposed to pseudo-static clast crushing) that are based, inter alia, on static rock strength. To do this, we refer to data from physical models using rock analogue materials, field data on chalk cliff collapses, and field statistics from documented rock avalanches. The roles of normal and shear loading and loading rate within a rock avalanche are examined numerically using 3D Discrete Element Method models of rock clasts loaded to failure. Results may help to reconcile the observations that large rock avalanches in stronger materials tend not to fragment as much as those in weaker materials and also possess lower mobility, while small cliff collapses (typically > 1000 cubic metres) in weak chalk can exhibit rock avalanche-like behaviour at much smaller volumes.

  13. Abiogenic methanogenesis in crystalline rocks

    SciTech Connect

    Lollar, B.S.; Frape, S.K. ); Weise, S.M. , Neuherberg ); Fritz, P. ); Macko, S.A. ); Welhan, J.A. )

    1993-12-01

    Isotopically anomalous CH[sub 4]-rich gas deposits are found in mining sites on both the Canadian and Fennoscandian shields. With [delta][sup 13]C[sub CH4] values from -22.4 to -48.5% and [delta]D[sub CH4] values from -133 to -372%, these methane deposits cannot be accounted for by conventional processes for bacterial or thermogenic methanogenesis. Compositionally the gases are similar to other CH[sub 4]-rich gas occurrences found in Canadian and Fennoscandian shield rocks. However, the isotopically anomalous gases of this study are characterized by unexpectedly high concentrations of H[sub 2] gas, ranging from several volume percent up to 30 vol%. The H[sub 2] gases are consistently depleted in the heavy isotope, with [delta]D[sub H[sub 2

  14. Hydrologic imaging of fractured rock

    SciTech Connect

    Karasaki, Kenzi; Cohen, A.; Cook, P.; Freifeld, B.; Grossenbacher, K.; Peterson, J.; Vasco, D.

    1995-12-31

    Various geophysical and hydrologic tests were conducted in a cluster of nine wells to image the hydrologic connections of a fractured rock mass. Results of intra-borehole flow surveys and cross-hole radar and seismic tomography surveys correlated very well, and indicated that there is a major feature at a depth of 30m. Systematic injection tests were conducted in all nine wells. Three to four intervals in each well were isolated using pneumatic packers. Each interval was equipped with a high resolution pressure transducer. Some 130 injections tests were conducted, and more than 4,100 cross-hole transient pressure measurements were obtained. A computer algorithm was developed to analyze such massive interference data systematically. As a result of the analysis, an image of the fracture connections emerged which is consistent with the geophysical data.

  15. Manufactured caverns in carbonate rock

    DOEpatents

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  16. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. PMID:27156090

  17. Hydraulic conductivity of rock fractures

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs.

  18. Rock avalanches caused by earthquakes: Source characteristics

    USGS Publications Warehouse

    Keefer, D.K.

    1984-01-01

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed ofintensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  19. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  20. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  1. Little Rock Split as Historic Date Nears

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2007-01-01

    Fifty years ago, nine black students walked through the doors of Little Rock Central High School, guarded by U.S. Army and National Guard troops dispatched to protect them from angry white residents protesting integration. Now, Arkansas is inviting the world to turn its eyes to Little Rock--this time, to see how far the city has come since those…

  2. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  3. Rock Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  4. Preparation for Moving a Rock on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander enlarged a trench beside a rock called 'Headless' during the mission's 115th Martian day (Sept. 20, 2008) in preparation for sliding the rock into the trench. The lander's Surface Stereo Imager took this image later that afternoon, showing the enlarged trench and the rock.

    The robotic arm successfully moved the rock two days later.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    Headless is about the size and shape of a VHS videotape. The trench, called 'Neverland,' was excavated to about 3 centimeters (1.2 inches) deep near the rock. The ground surface between the rock and the lip of the trench slopes downward about 3 degrees toward the trench.

    This image was taken at about 4:35 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  5. Making "Rock Hounds" of "City Slickers."

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; Nye, Osborne

    1980-01-01

    Described are ways in which urban "rocks" (building stones, curbstones, sidewalks, etc.) can be used as resources for earth science teachers. Discussed are such activities as: classifying buildings according to rock type and mineral composition, extrapolating geologic history by examining common building materials, economics of stone industry, and…

  6. Using Rock Music To Teach History.

    ERIC Educational Resources Information Center

    Hoffman, Paul Dennis

    1985-01-01

    A secondary history teacher describes how he uses rock and roll music to help students study and interpret modern American history. Besides being a lot of fun to teach, a rock unit makes students realize that even contemporary music has a place in history. (RM)

  7. Hot-dry-rock feasibility study

    SciTech Connect

    Not Available

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  8. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability. PMID:17759365

  9. Circular Signs of the Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by Mars Exploration Rover Opportunity's front hazard-avoidance camera, providing a circular sign of the success of the rover's first grinding of a rock. The round, shallow hole seen in this image is on a rock dubbed 'McKittrick,' located in the 'El Capitan' area of the larger outcrop near Opportunity's landing site.

    Opportunity used its rock abrasion tool to grind off a patch of rock 45.5 millimeters (1.8 inches) in diameter during the 30th martian day, or sol, of its mission (Feb. 23, 2004). The grinding exposed fresh rock for close inspection by the rover's microscopic imager and two spectrometers located on its robotic arm. The Honeybee Robotics team, which designed and operates the rock abrasion tool, determined the depth of the cut at 'McKittrick' to be 4.4 millimeters (0.17 inches) deep.

    On sol 34 (Feb. 27, 2004), the rover is scheduled to grind into its second target on the 'El Capitan' area, a rock dubbed 'Guadalupe' in the upper middle part of this image. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  10. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS, BEFORE REMOVAL OF CHIMNEY, FINIALS, GINGERBREAD, AND VARIEGATED SLATE ROOFING. DATED C. 1876. - Rock Island Arsenal, Building No. 321, Rodman Avenue & Rock Island Avenue, Rock Island, Rock Island County, IL

  11. Apollo 16 rocks - Petrology and classification.

    NASA Technical Reports Server (NTRS)

    Wilshire, H. G.; Stuart-Alexander, D. E.; Jackson, E. D.

    1973-01-01

    The Apollo 16 rocks are classified in three broad intergradational groups: (1) crystalline rocks, subdivided into igneous rocks and metaclastic rocks, (2) glass, and (3) breccias, which are subdivided into five groups on the basis of clast and matrix colors. Most of the rocks were derived by impact brecciation of an anorthosite-norite suite but may represent ejecta from more than one major basin. First-cycle breccias are believed to have consisted of clasts of crushed anorthosite-norite in a fine-grained partly fused matrix with a chemical composition similar to that of the clasts. Most of the other recognized breccia types could have been produced by rebrecciation of first-cycle breccias.

  12. Evidence of Ancient Blisters in Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the panoramic camera on the Mars Exploration Rover Spirit shows scoriaceous rocks (rocks containing holes or cavities) on the ground, as well as a transition from rocky terrain (foreground) to smoother terrain (background). Spirit is heading toward the smoother terrain on its way to the 'Columbia Hills.' The holes in some of the rocks may have resulted from 'blisters' formed by water vapor as it escaped lava. This indicates that the rocks were chilled atop an ancient lava flow. Porous rocks such as these, now appearing in abundance, have not been seen since early in the mission. Scientists believe they may have been covered by crater ejecta. This image was taken on sol 110 (April 24, 2004) at a region dubbed 'site 35.'

  13. Kinetics of crystallization of igneous rocks

    SciTech Connect

    Kirkpatrick, R.J.

    1981-01-01

    The geochemistry of igneous rocks is discussed, with the primary objectives of bringing together the theories underlying the kinetics of crystallization of igneous rocks and illustrating the use of these theories in understanding experimental and observational data. The primary purpose of the chapter is to introduce current thinking about the kinetics of igneous rocks and to provide a basis for understanding other work. A basic assumption made in the discussion is that the rate of any chemical reaction, including the crystallization of igneous rocks, is zero at equilibrium and proceeds at a finite rate only at a finite deviation from equilibrium. As such, an understanding of the processes operating in igneous rocks requires an understanding of how deviation from equilibrium affects the rates and mechanisms of the processes occurring during crystallization. These processes are detailed, with special emphasis given to nucleation and crystal growth. (JMT)

  14. First Grinding of a Rock on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  15. Introduction to carbonate sediments and rocks

    SciTech Connect

    Scoffin, T.P.

    1987-01-01

    The first chapter has a brief introduction to carbonate minerals and chemistry. Carbonate grains, deposition processes, and diagenesis are included in chapters 2 through 4 respectively. Chapter 5 is about carbonate environments and describes how carbonate sediments are formed in terrestrial and various marine conditions. Ancient limestones are discussed in chapter 6 and examples of representative carbonate sequences from the geologic record are included. The Permian limestone reef complex in the Guadalupe Mountains of midwestern US is included as a classic ancient limestone example in chapter 6. The book concludes with an appraisal of the economic aspects of carbonate sediments and rocks. Carbonate rocks and minerals are important as building stones, as raw materials in the manufacture of cement, and as reservoir rocks for oil and natural gas accumulation. About 40% of the world's oil is produced from carbonate rocks. In addition, valuable deposits of lead, zinc, and other metals are found in carbonate host rocks.

  16. The magnetic fabric of fault rocks

    NASA Astrophysics Data System (ADS)

    Ferre, Eric

    2015-04-01

    The magnetic fabric of rocks generally informs about principal strain directions and strain magnitude. The main prerequisites for such fabrics to be deemed meaningful is to be carried by a sufficiently large number of grains and for the grains to be uniformly distributed throughout the volume of deformed rock. Clearly these conditions tend not to be met in fault rocks which is the main reason why magnetic fabrics are typically applied to materials that have undergone continuous and plastic strain, such as magmatic rocks. New advances in our understanding of magnetic fabrics now allow to expand their application to discontinuous, brittle strain and consequently to track deformation in fault rocks. Here we present a review of three case studies exemplifying the applications of the anisotropy of magnetic susceptibility (AMS) in fault rocks. 1. The Bitterroot shear zone in Montana shows spectacular quartzofeldspathic C-S mylonites from Montana. These rocks, deformed in conditions ranging from high-temperature magmatic to cataclastic constitute an excellent example to monitor the variations of the magnetic fabric (principal axes, degree of anisotropy, shape parameter) in a context in which the kinematic directions remain constant while temperature decreases. 2. The carbonate ultracataclasites from the Heart Mountain detachment in Wyoming represent a case of catastrophic, large-scale slide approaching seismic velocities. While the dominant deformation mechanism is cataclastic flow, synkinematic breakdown of pyrrhotite and recrystallization into magnetite results in surprisingly consistent AMS fabrics. 3. The pseudotachylytes of the Dora Maira Massif in Italy display coherent AMS fabrics that are oblique with respect to the seismic slip plane. The combination of fabrics in the host-rock and pseudotachylyte veins provides a full kinematic solution (slip plane, slip direction, slip sense) for a single seismic event. While the magnetic fabric of fault rocks has received far

  17. Permanganate diffusion and reaction in sedimentary rocks.

    PubMed

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. PMID:24566296

  18. Modelling Fracture Propagation in Anisotropic Rock Mass

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Siren, Topias; Rinne, Mikael

    2015-05-01

    Anisotropic rock mass is often encountered in rock engineering, and cannot be simplified as an isotropic problem in numerical models. A good understanding of rock fracturing processes and the ability to predict fracture initiation and propagation in anisotropic rock masses are required for many rock engineering problems. This paper describes the development of the anisotropic function in FRACOD—a specialized fracture propagation modelling software—and its recent applications to rock engineering issues. Rock anisotropy includes strength anisotropy and modulus anisotropy. The level of complexity in developing the anisotropic function for strength anisotropy and modulus anisotropy in FRACOD is significantly different. The strength anisotropy function alone does not require any alteration in the way that FRACOD calculates rock stress and displacement, and therefore is relatively straightforward. The modulus anisotropy function, on the other hand, requires modification of the fundamental equations of stress and displacement in FRACOD, a boundary element code, and hence is more complex and difficult. In actual rock engineering, the strength anisotropy is often considered to be more pronounced and important than the modulus anisotropy, and dominates the stability and failure pattern of the rock mass. The modulus anisotropy will not be considered in this study. This paper discusses work related to the development of the strength anisotropy in FRACOD. The anisotropy function has been tested using numerical examples. The predicted failure surfaces are mostly along the weakest planes. Predictive modelling of the Posiva's Olkiluoto Spalling Experiment was made. The model suggests that spalling is very sensitive to the direction of anisotropy. Recent observations from the in situ experiment showed that shear fractures rather than tensile fractures occur in the holes. According to the simulation, the maximum tensile stress is well below the tensile strength, but the maximum

  19. Impact loads of falling rocks

    NASA Astrophysics Data System (ADS)

    Gerber, W.

    2009-04-01

    Depending on the chosen protection system the planning engineer has to proceed differently. If the impact energies stay below 3'000 - 5'000 kJ solutions using flexible protection systems are recommended in many cases being the most efficient solution. Since 2001, such systems are type tested in Switzerland. The results are published on the internet (www.umwelt-schweiz.ch/typenpruefung). Therefore, the engineers can concentrate on the design of the anchorage and do not need to consider the brake down process of the falling rock because its details including the acting forces within the barrier are given. This is different to the design of rockfall protection earth dams. Here, the evidence of the structural safety is the major task and questions like the following ones have to be answered: What magnitude are the forces that have to be carried for a certain kinetic energy? How are the forces influenced by mass or impact velocity? What is the influence of the soil properties such as strength, density and friction angle? How deep does the rock penetrate? Previous research on the impact loads on the cushion layer of protection galleries were performed by EPFL in the mid-nineties and led to a Swiss Guideline (ASTRA/SBB 1998) to calculate an equivalent static load for the structure underneath. This approach also delivers a function to predict the penetration depth. This contribution now checks whether above approach can also be used to design earth dams or how it can be modified. For that, the results of previous experiments performed by different institutions were analysed and, if possible, compared to the guideline. This could confirm above mentioned function to predict the penetration depth. In addition, an experimental series with different bodies (800 kg, 4000 kg) falling from different heights (2 - 15 m) on differently conditioned soils were performed. Measurements were taken through accelerometers attached to the blocks and measuring the vertical deceleration. The

  20. Rocks in motion: a one parameter description

    NASA Astrophysics Data System (ADS)

    Haug, O. T.; Rosenau, M.; Leever, K.; Oncken, O.

    2013-12-01

    Rock fall, slide and avalanches are dynamically different phenomena of rocks in motion: falls are mostly dominated by free fall and elastic impacts, slides by friction at their base and avalanches by granular flow. Despite these dynamical differences, the properties of the material involved can be viewed similar, and the main (and only?) difference is typically the size of the systems (falls: 10 meters, slides: 102 meters, avalanches: 103 meters). If only size matters: can gravitational rock movements be described in a simple quantitative framework without losing any underlying physics? To explore the dynamics of gravitational rock movements we performed a dimensional analysis combined with experimental validation. Dimensional analysis suggests 9 dimensionless parameters that describe the system, one of which is Π = C/ρgh, where ρ is density, h height and C cohesion of the material and g is the gravitational acceleration. This dimensionless number describes how strong the material is compared to its size, and varies from < 103 for rock falls to > 10-4 for rock avalanches. Can this parameter be used to describe the spectrum of dynamics for rocks in motions in a physically meaningful way? To test this, we performed experiments using labscale rock analogues. Gravitational rock movements are modeled under normal gravity conditions, by releasing material down a 1 meter planar slope at an angle of 45°. The material used is a cemented granular material, the cohesion of which can be controlled over several order of magnitude (101 to 106 Pa). The experiments are monitored using a 50 Hz digital camera. Surface velocities are quantified using a Particle Image Velocimetry while other physical parameters (fragment size distribution, position, friction) are measured using optical image analysis. We perform experiments where the initial value of Π (Π0) is varied over 7 orders of magnitude (10-2 to 104), mapping a parameters space large enough to study a wide range of

  1. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of

  2. Rock avalanches: significance and progress (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, T. R.

    2013-12-01

    1. The probability distribution of landslide volumes follows a power-law indicating that large rock avalanches dominate the terrestrial sediment supply from mountains, and that their source area morphologies dominate mountain topography. 2. Large rock slope failures (~ 106 m3 or greater) often mobilise into rock avalanches, which can travel extraordinarily long distances with devastating effect. This hypermobility has been the subject of many investigations; we have demonstrated that it can be explained quantitatively and accurately by considering the energetics of the intense rock fragmentation that always occurs during motion of a large rock mass. 3. Study of rock avalanche debris psd shows that the energy used in creating new rock surface area during fragmentation is not lost to surface energy, but is recycled generating a high-frequency elastic energy field that reduces the frictional resistance to motion during runout. 4. Rock avalanches that deposit on glaciers can eventually form large terminal moraines that have no connection with any climatic event; unless these are identified as rock-avalanche-influenced they can confuse palaeoclimatic inferences drawn from moraine ages. Rock-avalanche-derived fines, however, can be identified in moraine debris up to ten thousand years old by the characteristic micron-scale agglomerates that form during intense fragmentation, and which are absent from purely climatically-induced moraines; there is thus a strong case for re-examining existing palaeoclimatic databases to eliminate potentially rock-avalanche-influenced moraine ages. 5. Rock avalanches (especially coseismic ones) are a serious hazard, being very destructive in their own right; they also block river valleys, forming landslide dams and potentially devastating dambreak floods, and subsequent severe decade-scale aggradation of downstream fans and floodplains. Rock avalanches falling into lakes or fiords can cause catastrophic tsunami that pose a serious risk to

  3. Turning Bread into Rocks: A Multisensory Unit Opener.

    ERIC Educational Resources Information Center

    Smith, Shaw

    2000-01-01

    Presents an earth science activity on rocks to demonstrate the vital links between minerals and rocks. Uses different kinds of breads to demonstrate that rocks, like breads, are composed of various ingredients in different proportions. (ASK)

  4. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  5. 80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED SHEET 5; SEPTEMBER, 1922. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. View of Highway 140 and Overhang Rock. Location of junction ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Highway 140 and Overhang Rock. Location of junction with Old Coulterville Road behind rock. Looking north-northwest - All Year Highway, Between Arch Rock & Yosemite Valley, El Portal, Mariposa County, CA

  7. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Rock weathering and Carbon cycle

    NASA Astrophysics Data System (ADS)

    Strozza, Patrick

    2010-05-01

    In the history of the Earth system, we can find indicators of hot or glacial periods, as well as brutal climatic change… How can we explain those climate variations on a geological timescale ? One of the causative agents is probably the fluctuation of atmospheric CO2 amounts, (gas responsible for the greenhouse effect). A concrete study of some CO2 fluxes between Earth system reservoirs (atmo, hydro and lithosphere) is proposed in this poster. Hydrogencarbonate is the major ion in river surface waters and its amount is so high that it can not be explained by a simple atmospheric Carbon diffusion. From a simple measurement of river HCO3- concentration, we can estimate the consumption of atmospheric CO2 that arises from carbonate and silicate weathering processes. Practical experiments are proposed. These are carried out in the local environment, and are conform to the curriculums of Chemistry and Earth sciences. These tests enable us to outline long-term Carbon cycles and global climatic changes. Key words : Erosion, rock weathering, CO2 cycle, Hydrogencarbonate in waters, climatic changes

  9. Spirit Studies Rock Outcrop at 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Spirit acquired this false-color image at 11:48 local true solar time on Mars on the rover's 746th Martian day, or sol (Feb. 26, 2006), after using the rock abrasion tool to brush the surfaces of rock targets informally named 'Stars' (left) and 'Crawfords' (right). Small streaks of dust extend for several centimeters behind the small rock chips and pebbles in the dusty, red soils. Because the rover was looking southwest when this image was taken, the wind streaks indicate that the dominant wind direction was from the southeast.

    The targets Stars and Crawfords are on a rock outcrop located on top of 'Home Plate.' The outcrop is informally named 'James 'Cool Papa' Bell,' after a Negro Leagues Hall of Famer who played for both the Pittsburgh Crawfords and the Kansas City Stars. To some science team members, the two brushed spots resemble the eyes of a face, with rocks below and between the eyes as a nose and layered rocks at the bottom of the image as a mouth.

    The image combines frames taken by Spirit's panoramic camera through the camera's 753-nanometer, 535-namometer, and 432-nanometer filters. It is enhanced to emphasize color differences among the rocks, soils and brushed areas. The blue circular area on the left, Stars, was brushed on 761 (Feb. 22, 2006). The one on the right, Crawfords, was brushed on sol 763 (Feb. 25, 2006).

  10. The fracture criticality of crustal rocks

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart

    1994-08-01

    The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before

  11. Classifying rock lithofacies using petrophysical data

    NASA Astrophysics Data System (ADS)

    Al-Omair, Osamah; Garrouch, Ali A.

    2010-09-01

    This study automates a type-curve technique for estimating the rock pore-geometric factor (λ) from capillary pressure measurements. The pore-geometric factor is determined by matching the actual rock capillary pressure versus wetting-phase saturation (Pc-Sw) profile with that obtained from the Brooks and Corey model (1966 J. Irrigation Drainage Proc. Am. Soc. Civ. Eng. 61-88). The pore-geometric factor values are validated by comparing the actual measured rock permeability to the permeability values estimated using the Wyllie and Gardner model (1958 World Oil (April issue) 210-28). Petrophysical data for both carbonate and sandstone rocks, along with the pore-geometric factor derived from the type-curve matching, are used in a discriminant analysis for the purpose of developing a model for rock typing. The petrophysical parameters include rock porosity (phi), irreducible water saturation (Swi), permeability (k), the threshold capillary-entry-pressure (Pd), a pore-shape factor (β), and a flow-impedance parameter (n) which is a property that reflects the flow impedance caused by the irreducible wetting-phase saturation. The results of the discriminant analysis indicate that five of the parameters (phi, k, Pd, λ and n) are sufficient for classifying rocks according to two broad lithology classes: sandstones and carbonates. The analysis reveals the existence of a significant discriminant function that is mostly sensitive to the pore-geometric factor values (λ). A discriminant-analysis classification model that honours both static and dynamic petrophysical rock properties is, therefore, introduced. When tested on two distinct data sets, the discriminant-analysis model was able to predict the correct lithofacies for approximately 95% of the tested samples. A comprehensive database of the experimentally collected petrophysical properties of 215 carbonate and sandstone rocks is provided with this study.

  12. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice.

    PubMed

    Kasahara, David I; Mathews, Joel A; Park, Chan Y; Cho, Youngji; Hunt, Gabrielle; Wurmbrand, Allison P; Liao, James K; Shore, Stephanie A

    2015-10-01

    Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction. PMID:26276827

  13. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  14. Microcrater populations on Apollo 17 rocks

    NASA Technical Reports Server (NTRS)

    Schneider, E.; Hoerz, F.

    1974-01-01

    Approximately 6000 microcraters were investigated using binocular microscope techniques on Apollo 17 rocks 70215, 72215, 72235, 72395, 72435, 73216, 73218, 73275, 74275, 76135, 76136, and 79155. The crater populations observed have identical characteristics to those obtained from previous missions. Special emphasis was placed on assessing the influence of target properties on the observable crater populations. Although these properties cannot be quantitatively evaluated at present, the empirical results indicate that crater populations on glass, breccia, and crystalline rock surfaces may differ fundamentally. As a consequence, lunar surface exposure ages of individual rocks based on micrometeoroid craters may be subject to criticism.

  15. Lunar rock compositions and some interpretations.

    PubMed

    Engel, A E; Engel, C G

    1970-01-30

    Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elemizents and the initial compositions of the earth and moon. PMID:17781481

  16. Lunar rock compositions and some interpretations

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1970-01-01

    Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elements and the initial compositions of the earth and moon.

  17. Nonmarine upper cretaceous rocks, Cook Inlet, Alaska

    SciTech Connect

    Magoon, L.B.; Griesbach, F.B.; Egbert, R.M.

    1980-08-01

    A section of Upper Cretaceous (Maestrichtian) nonmarine sandstone, conglomerate, and siltstone with associated coal is exposed near Saddle mountain on the northwest flank of Cook Inlet basin, the only known surface exposure of nonmarine Upper Cretaceous rocks in the Cook Inlet area. The section, at least 83.3 m thick, unconformably overlies the Upper Jurassic Naknek Formation and is unconformably overlain by the lower Tertiary West Foreland Formation. These upper Cretaceous rocks correlate lithologically with the second or deeper interval of nonmarine Upper Cretaceous rocks penetrated in the lower Cook Inlet COST 1 well.

  18. Erosion and the rocks of Venus

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1976-01-01

    Photographs of the surface of Venus returned by the Venera 9 and 10 spacecraft have revealed the presence of smooth and angular rockline forms. Two mechanisms previously suggested (Sagan, 1975) for erosion of crater ramparts on the surface of Venus might also explain the erosion of rocks. Chemical weathering by the hydrochloric, hydrofluoric, and sulfuric acids present in the atmosphere of Venus may have been sufficient to erode angular projections of silicous rocks. Alternatively, the contours of rocks containing such low-melting materials as NaOH, KOH, HgS and KNO2 may have softened as the result of exposure to the high surface temperatures of the planet.

  19. Dynamic response of tunnels in jointed rocks

    SciTech Connect

    Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.

    1993-09-01

    The current proposed site for an underground nuclear waste repository is at Yucca Mountain, Nevada. The host rock is a jointed tuff. The question is: how will the repository behave under strong earthquake motion. The basic requirement for analysis is an ability to follow the dynamic motion of a multiplicity of discrete particles, i.e., rock blocks separated by joints and faults. The authors describe the application of the discrete element method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis.

  20. Glazed lunar rocks: origin by impact.

    PubMed

    Morgan, J W; Laul, J C; Ganapathy, R; Anders, E

    1971-05-01

    The glassy coating of lunar rock 12017 is enriched in 15 trace elements relative to the crystalline interior. It apparently consists chiefly of shock-melted rock, somewhat richer in rare earth elements and alkali metals than rock 12017 itself. The glass has been contaminated by about 0.5 percent carbonaceous-chondrite-like material or, alternatively, by a mixture of 0.06 to 0.3 percent fractionated meteoritic material and approximately 10 to 15 percent local soil. The glazing seems to represent molten material splashed from a nearby meteorite impact and not in situ melting by a sudden increase in solar luminosity. PMID:17802215

  1. Rock types present in lunar highland soils

    NASA Technical Reports Server (NTRS)

    Reid, A. M.

    1974-01-01

    Several investigators have studied soils from the lunar highlands with the objective of recognizing the parent rocks that have contributed significant amounts of material to these soils. Comparing only major element data, and thus avoiding the problems induced by individual classifications, these data appear to converge on a relatively limited number of rock types. The highland soils are derived from a suite of highly feldspathic rocks comprising anorthositic gabbros (or norites), high alumina basalts, troctolites, and less abundant gabbroic (or noritic) anorthosites, anorthosites, and KREEP basalts.

  2. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    PubMed

    Norris, Richard D; Norris, James M; Lorenz, Ralph D; Ray, Jib; Jackson, Brian

    2014-01-01

    The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice. PMID:25162535

  3. Terrestrial impact melt rocks and glasses

    NASA Astrophysics Data System (ADS)

    Dressler, B. O.; Reimold, W. U.

    2001-12-01

    The effects of meteorite and comet impact on Earth are rock brecciation, the formation of shock metamorphic features, rock melting, and the formation of impact structures, i.e. simple craters, complex craters, and multi-ring basins. Large events, such as the 65-Ma Chicxulub impact, are believed to have had catastrophic environmental effects that profoundly influenced the development of life on Earth. In this review, an attempt is made to summarize some of the voluminous literature on impact melting, one important aspect of planetary impact, provide some comments on this process, and to make suggestions for future research. The products of impact melting are glasses, impact melt rocks, and pseudotachylites. Our treatise deals mainly with the geological setting, petrography, and major-element chemistry of melt rocks and glasses. Impact glasses, in several petrographic aspects, are similar to volcanic glasses, but they are associated with shock metamorphosed mineral and rock fragments and, in places, with siderophile element anomalies suggestive of meteoritic contamination. They are found in allogenic breccia deposits within (fall-back 'suevite') and outside (fall-out 'suevite') impact craters and, as spherules, in distal ejecta. Large events, such as the K/T boundary Chicxulub impact, are responsible for the formation of worldwide ejecta horizons which are associated with siderophile element anomalies and shock metamorphosed mineral and rock debris. Impact glasses have a bulk chemical composition that is homogeneous but exemptions to this rule are common. On a microscopic scale, however, impact glasses are commonly strikingly heterogeneous. Tektites are glasses ejected from craters over large distances. They are characterized by very low water and volatile contents and element abundances and ratios that are evidence that tektites formed by melting of upper crustal, sedimentary rocks. Four tektite strewn-fields are known, three of which can be tied to specific impact

  4. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  5. Rock Port Celebrates New Technology Center.

    ERIC Educational Resources Information Center

    Grones, Freda

    1997-01-01

    Discusses the advantages dome architecture gave to a new school technology center in Rock Port, Missouri. Advantages cover energy cost savings, lighting, storage space, aesthetics, accessibility, and convenience. (GR)

  6. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  7. PSYCHOPHYSICAL BENEFITS OF ROCK-CLIMBING ACTIVITY.

    PubMed

    Gallotta, Maria Chiara; Emerenziani, Gian Pietro; Monteiro, Maria Dolores; Iasevoli, Luigi; Iazzoni, Sara; Baldari, Carlo; Guidetti, Laura

    2015-12-01

    The aim of the study was to compare the psychophysical effects of rock climbing with a supervised fitness training in adults. Thirty-three healthy participants (M age=32 yr., SD=7) participated in rock climbing or in fitness training. The participants' functional fitness, anxiety, and mood states were tested before and after 3 mo. of training. There was significant improvement of physical fitness in both groups after the intervention period. Anxiety significantly decreased after each single training session at the end of both courses. Differential effects in the rock-climbing group, as compared to the fitness group, emerged only on Vigor. Specifically, the rock-climbing group showed a decreasing trend in Vigor while the fitness group showed an increasing trend of Vigor after the intervention. PMID:26654990

  8. Igneous rocks from Apollo 16 rake samples

    NASA Technical Reports Server (NTRS)

    Dowty, E.; Keil, K.; Prinz, M.

    1974-01-01

    Results are reported for a study of seven holocrystalline feldspathic rocks (including a spinel troctolite and six melt rocks) and one mare basalt clast from the Apollo-16 rake samples. The composition and grain structure of each rock is described in detail. Only the spinel troctolite is considered a good candidate for a primary igneous cumulate formed during the original differentiation of the lunar crust. It is shown that the melt rocks probably resulted from shock melting followed by rapid crystallization of heterogeneous highland material and that compositional variations are probably due to mixing of various amounts of heterogeneous cumulates and KREEP components. It is suggested that the mare basalt clast may have been derived from Mare Fecunditatis, although the nearest mare to the Apollo-16 site is Nectaris.

  9. A rock in a hard place.

    PubMed

    Gray, C

    1998-10-20

    Federal Minister of Health Allan Rock appears committed to improved funding for the health care system, but this may be a hard sell in cabinet. He outlined his views during the CMA's recent annual meeting in Whitehorse. PMID:9834729

  10. Getting lunar ilmenite: From soils or rocks

    SciTech Connect

    Vaniman, D.T.; Heiken, G.H.

    1989-01-01

    Lunar soils or rocks can be mined as sources of ilmenite for producing oxygen. However, separable crystals of loose ilmenite in lunar soils are rare (<2%) and small (<200 {mu}); most ilmenite in the regolith is locked together with silicate minerals as rock fragments. Since fragmentation of rock sources must be attempted to win appreciable amounts of ilmenite ({approximately}10% or more), selective collection of high-Ti basalt fragments larger than 1 cm for fragmentation and ilmenite beneficiation may be advantageous over extensive processing of fine lunar soil. Many alternative processing schemes for fragmenting rocks on the Moon have been proposed; one process which was tested early in the Apollo program successfully disaggregated lunar and terrestrial basalts by passive exposure to low-pressure alkali (K) vapor. This process is worthy of reinvestigation. 14 refs., 3 figs.

  11. Wing rock suppression using forebody vortex control

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  12. Searching for Nectaris Basin Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.

    2015-07-01

    Because Nectaris Basin is a key stratigraphic marker for lunar bombardment, we are conducting an effort to identify Nectaris basin impact-melt rocks, to model their emplacement, and to examine sites where Nectaris impact melt is abundant.

  13. Origin of magnetic fabrics in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Biedermann, A. R.; Kunze, K.; Zappone, A. S.; Hirt, A. M.

    2015-04-01

    The magnetic fabric of a rock, defined by the anisotropy of magnetic susceptibility (AMS), is often used as a tectonic indicator. In order to establish a quantitative relationship between AMS and mineral texture, it is important to understand the single crystal intrinsic AMS of each mineral that contributes to the AMS of the rock. The AMS and crystallographic preferred orientation (CPO) of amphiboles, olivine and pyroxenes has been analyzed in a series of amphibolites, peridotites and pyroxenites that do show preferred mineral alignment. The CPO of each mineral phase was determined based on electron backscatter diffraction (EBSD). Whole- rock AMS was computed based on the CPO and single crystal AMS of the respective minerals. A comparison between measured and modelled magnetic anisotropy shows that the directions of the principal susceptibility axes agree well in amphibolite and peridotite. Pyroxenite is a good example for competing AMS fabrics in polyphase rocks.

  14. Seismic and micromechanical studies of rock fracture

    NASA Astrophysics Data System (ADS)

    Young, R. Paul; Hazzard, James F.; Pettitt, Will S.

    2000-06-01

    “Earthquakes” occur as the result of stress redistribution on major fractures in the earth's crust and are also observed as scaled phenomena along grain boundaries and microcracks. Earthquake seismology has significantly contributed to our knowledge of fault processes, but our fundamental understanding of how micro-fractures progressively weaken rocks and how this contributes to macro-deformation processes is far from understood. Recent advances in particulate mechanics now mean fracture processes can be modelled dynamically to study the micromechanics of fracturing in rock. In addition, advances in recording and analysing very high frequency acoustic emissions (AE) allow for detailed examination of micro-cracking. The paper describes how particle models and AE monitoring techniques can be used in conjunction to test specific hypotheses about natural and induced rock fracture processes at the grain scale. Intermediate scale processes (between laboratory and field studies) are also studied by examining rock fracture in an underground research laboratory.

  15. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  16. 'Palenque' Rock: Tempting Target, Poor Location

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    A rock dubbed 'Palenque' in the 'Columbia Hills' of Mars has contrasting textures in upper and lower portions. This view of the rock combines two frames taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's 278th martian day (Oct. 14, 2004). The layers meet each other at an angular unconformity that may mark a change in environmental conditions between the formation of the two portions of the rock. Scientists would have liked the rover to take a closer look, but Palenque is not on a north-tilted slope, which is the type of terrain needed to keep the rover's solar panels tilted toward the winter sun. The exposed portion of the rock is about 100 centimeters (39 inches) long.

  17. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  18. Sarcocystis calchasi encephalitis in a rock pigeon

    PubMed Central

    USHIO, Nanako; WATANABE, Ken-ichi; CHAMBERS, James K.; SHIBATO, Tokuhiro; NAKAYAMA, Hiroyuki; UCHIDA, Kazuyuki

    2015-01-01

    A rock pigeon (Columba livia) caught in Akihabara, Tokyo, showed neurological symptoms, such as head tilt and circling. Pathological examinations revealed abundant Sarcocystic cysts in the skeletal muscle and myocardium with mild myositis, and numerous schizonts and sarcocysts with severe multifocal granulomatous T-lymphocytic infiltration in the central nervous system. A Sarcocystis calchasi-specific gene was detected in the muscle and brain. This case indicates S. calchasi was distributed in Japan and caused severe encephalitis to rock pigeons. PMID:26062567

  19. Sarcocystis calchasi encephalitis in a rock pigeon.

    PubMed

    Ushio, Nanako; Watanabe, Ken-ichi; Chambers, James K; Shibato, Tokuhiro; Nakayama, Hiroyuki; Uchida, Kazuyuki

    2015-11-01

    A rock pigeon (Columba livia) caught in Akihabara, Tokyo, showed neurological symptoms, such as head tilt and circling. Pathological examinations revealed abundant Sarcocystic cysts in the skeletal muscle and myocardium with mild myositis, and numerous schizonts and sarcocysts with severe multifocal granulomatous T-lymphocytic infiltration in the central nervous system. A Sarcocystis calchasi-specific gene was detected in the muscle and brain. This case indicates S. calchasi was distributed in Japan and caused severe encephalitis to rock pigeons. PMID:26062567

  20. World petroleum systems with Jurassic source rocks

    SciTech Connect

    Klemme, H.D. )

    1993-11-08

    Fourteen petroleum systems with Upper Jurassic source rocks contain one quarter of the world's discovered oil and gas. Eleven other systems with Lower and Middle Jurassic source rocks presently have a minor but significant amount of discovered oil and gas. The purpose of this article is to review the systems geologically, describe their location in space and time on a continental scale, estimate their relative petroleum system recovery efficiencies, and outline the effect their essential elements and processes have on their petroleum plumbing.

  1. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Technicians examine largest lunar rock sample collected

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Three Brown and Root/Northrop technicians in the Nonsterile Nitrogen Laboratory in the Lunar Receiving Laboratory (LRL) peer through glass at the much-discussed basketball size rock which Apollo 14 crewmen brought back from the Fra Mauro area of the Moon. They are, left to right, Linda Tyler, Nancy L. Trent and Sandra Richards (21244); Dr. Daniel Anderson, an aerospace technologist and test director in the LRL, looks at basketball size rock through a microscope (21245).

  3. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  4. NASA "Rocks" Problem-Based Learning

    ERIC Educational Resources Information Center

    Johnson, Carla J.

    2004-01-01

    A rock investigation set up as a problem-based learning mini-unit for the author's seventh grade integrated science students. To start this unit, she explains to students that NASA has sent us a container of rocks that they would like to have identified. It is up to the students to assume the role of geologists and come up with some way to…

  5. Peralkaline silicic volcanic rocks in northwestern nevada.

    PubMed

    Noble, D C; Chipman, D W; Giles, D L

    1968-06-21

    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin. PMID:17800671

  6. Tunnel boring machine performance in sedimentary rock

    SciTech Connect

    Nelson, P.

    1983-01-01

    Full-face tunnel boring machine (TBM) performance during the excavation of six tunnels is considered in terms of utilization, penetration rate, and cutter wear. Construction records for over 75,000 ft (22,860m) of tunnel in sedimentary rock are analyzed, and the results are used to investigate factors affecting TBM performance. Machine utilization is strongly affected by site specific conditions, including geology, construction planning, and contractor practice. The relative importance of each of 21 downtime causes is discussed, and recommendations are made for modifications in excavation system design which could help to reduce delays. Effects of machine operation rate were investigated. The interrelationship among penetration, thrust, and rolling force is analyzed with a three-dimensional model which provides a rational basis for explaining variations in cutter forces and penetration rate as a function of rock type. The most useful rock index for estimating TBM performance in sedimentary rock is shown to be a combination of Schmidt Hammer rebound and abrasion hardness. Variation in cutter wear is considered as a function of position on the cutterhead and the rock type being excavated. Rolling distances for center cutters are less sensitive to rock type than for other positions. A fracture mechanics approach, of use in modeling the process chip formation, is proposed. The use of fracture material properties for empirical prediction of TBM performance is reported. Recommendations are made for future work, and observations and records required for future performance evaluations are summarized.

  7. Marine source rocks of New Zeland

    SciTech Connect

    Murray, A.P.; Norgate, C.; Summons, R.E.

    1996-12-31

    Exploration in New Zealand is moving beyond the Taranaki Basin with its mainly terrestrial source rocks. Good to excellent quality marine source rocks exist and have generated oil in the Northland, East Coast W North Taranaki Basins. These high quality source rocks are Wespread throughout the late Cretaceous - Paleocene passive margin sequence in these basins as well in offshore Canterbury and the Great South Basin. This paper details the character, distribution, generative capacity and maturation behavior of the two main source units and shows how they can be correlated to the numerous seeps and oil impregnations found in the East Coast and Northland Basins. As well as being useful in basin modelling, kinetic maturation parameters for these two source rock facies help to explain differences in the biomarker and isotopic composition of seep oils and also explain trends in Rock Eval Tmax which are unrelated to maturity. In the East Coast Basin alone, the raw oil potential of the Waipawa Black Shale approaches 80 billion barrels. An understanding of the marine source rocks described here is crucial to evaluating the hydrocarbon prospectivity of New Zealand away from the Taranaki Basin.

  8. Marine source rocks of New Zeland

    SciTech Connect

    Murray, A.P.; Norgate, C.; Summons, R.E. )

    1996-01-01

    Exploration in New Zealand is moving beyond the Taranaki Basin with its mainly terrestrial source rocks. Good to excellent quality marine source rocks exist and have generated oil in the Northland, East Coast W North Taranaki Basins. These high quality source rocks are Wespread throughout the late Cretaceous - Paleocene passive margin sequence in these basins as well in offshore Canterbury and the Great South Basin. This paper details the character, distribution, generative capacity and maturation behavior of the two main source units and shows how they can be correlated to the numerous seeps and oil impregnations found in the East Coast and Northland Basins. As well as being useful in basin modelling, kinetic maturation parameters for these two source rock facies help to explain differences in the biomarker and isotopic composition of seep oils and also explain trends in Rock Eval Tmax which are unrelated to maturity. In the East Coast Basin alone, the raw oil potential of the Waipawa Black Shale approaches 80 billion barrels. An understanding of the marine source rocks described here is crucial to evaluating the hydrocarbon prospectivity of New Zealand away from the Taranaki Basin.

  9. Calcic myrmekite in anorthositic and gabbroic rocks

    SciTech Connect

    Schiffries, C.M.; Dymek, R.F.

    1985-01-01

    Myrmekite is a common feature of granitic plutonic rocks and quartzo-feldspathic gneisses, but it is rarely reported in anorthositic and gabbroic rocks. The authors have identified myrmekitic intergrowths of quartz and calcic plagioclase in a variety of plagioclase-rich cumulate rocks, including samples from a number of massif anorthosites and layered igneous intrusions. It appears that calcic myrmekite has been frequently overlooked, and is a common accessory feature in these rock types. Chemical and textural characteristics of myrmekite in the St-Urbain massif anorthosite (Quebec) and the Bushveld Igneous Complex (South Africa) have several features in common, but this myrmekite appears to be fundamentally different from that described by most previous investigators. Whereas myrmekite typically consists of a vermicular intergrowth of sodic plagioclase and quartz that occurs adjacent to alkali feldspar, the intergrowths in these rocks contain highly calcic plagioclase and lack the intervening alkali feldspar. In addition, the plagioclase in the myrmekite is more calcic than that in the surrounding rock. The boundary between the myrmekite and the host material is generally extremely sharp, although reverse zoning of host plagioclase may obscure the contact in some cases. The textural and chemical evidence is consistent with a replacement origin for these intergrowths; the proportion of quartz in the myrmekite is in close agreement with the predicted amount of silica that is generated by the theoretical replacement reaction. It appears that water played a key role in the replacement process.

  10. Quantification of rock fall processes on recently deglaciated rock slopes, Gepatsch glacier, Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2014-05-01

    The recently deglaciated area in alpine glacier forefields is characterized by intensified mass movement processes in particular debris flows, shallow landslides and rockfalls. Due to enhanced geomorphic activity, rock slopes adjacent to shrinking glaciers contribute in a substantial way to the sediment budget. In this study, direct measurements of rock fall intensity are conducted by rock fall collector nets and natural sediment traps. The study area is a high mountain (1750-3520m a.s.l) catchment, which is recently about 30% glaciated. The extension of the Gepatsch glacier has been reducing since the little ice age maximum in the mid of the 19th century with an average annual shrinking rate of a few decameters at its tongue. The first results of the direct measurements demonstrate that on the recently deglaciated rock slopes, rock fall intensity is at least one order of magnitude higher (2,38-6,64 g/m2/d - corresponding backweathering rate: 0,3-0,9 mm/a) than on rock slopes which had has ice free since the last Pleistocene deglaciation (0,04-0,38 g/m2/d - backweathering rate: 0,005-0,05 mm/a). The highest rock fall intensity is attributed to the recent deglaciated rock slopes which are located close to larger fault systems (>60 g/m2/d - backweathering rate: >8 mm/a). Rock fall intensity shows also considerable intra-annual variations which are related to cold climate weathering processes and rainstorm activity.

  11. Rock Cracking Indices for Improved Tunnel Support Design: A Case Study for Columnar Jointed Rock Masses

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Hao, Xian-Jie; Jiang, Quan; Li, Shao-jun; Hudson, John A.

    2016-06-01

    Measurements indicate that the development of cracking is a key feature relating to the strength and collapse of a columnar jointed rock mass. In this context, a new support design method utilising rock cracking indices for columnar jointed rock mass under high stress is proposed to restrain the development of cracking in the surrounding rock mass. The method involves limiting the cracking evolution of the surrounding rock mass by designing the appropriate parameters and time of installation of the support system. Two indices are suggested: the allowable depth of the excavation damaged zone (EDZ); and the allowable damage extent of the rock mass in the EDZ. The method involves limiting the evolution of cracking in the surrounding rock mass by designing the parameters and time of installation of the support system. The support system should have a suitable stiffness and installation time so as to restrain the evolution of the depth and damage extent of the EDZ within the surrounding rock. Therefore, the depth and damage extent of the EDZ, as well as the axial stress in the anchor bolts, are calculated at different distances between the support location and the tunnel working face to find the appropriate stiffness and installation time of the support system. The method has been successfully adopted to determine the thickness of shotcrete, the arrangement and installation time of rockbolts, and other parameters, for five large diversion tunnels at the Baihetan hydropower station, China, which were excavated in columnar jointed rock masses.

  12. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  13. Exploring fault rocks at the nanoscale

    NASA Astrophysics Data System (ADS)

    Viti, Cecilia

    2010-05-01

    The mechanical properties of a fault are strongly dependent on mineralogy and microstructure of the fault rocks. X-ray diffraction (XRD) methods, combined with optical and scanning electron microscopies (OM and SEM, respectively), are the conventional tools to investigate bulk mineralogy and microstructures of the fault rocks. However, fault rocks are often formed by ultrafine-grained minerals (below 1 - 2 microns, i.e., below the resolution limits of OM and SEM), requiring the use of a high-resolution technique, such as the transmission electron microscopy (TEM), that combines images, diffraction and chemical data, down to the nanoscale. Here, I summarize a few examples of TEM study on fault rocks, obtained from both nature and deformation experiments and covering different kinds of rocks, from carbonates to ultramafics and quartz-feldspatic rocks. In particular: 1) Mineralogical and micro/nanostructural study of fault core samples from the Zuccale low-angle normal fault (Elba Island, Italy; carbonatic protolite). TEM investigation showed large amounts of oriented and interconnected talc lamellae, affected by intense interlayer delamination, giving rise to "sublamellae" down to 10 - 20 nm thick. This peculiar nanotexture suggests easy frictional sliding along an almost infinite number of sliding surfaces, thus explaining the weakness of this fault. 2) Mineralogical and micro/nanostructural characterization of the slip zones produced by high-velocity friction experiments on carbonatic and ultramafic rocks. TEM investigation of the slip zones revealed thermal decomposition (by frictional heating) of the starting minerals (dolomite and antigorite, respectively), and allowed the accurate characterization of the high-temperature, ultrafine-grained mineral assemblages (grain size from a few nm to 200 nm). 3) Mineralogical and micro/nanostructural study of a natural pseudotachylite in quartz-feldspatic rocks (northern Victoria land, Antarctica), showing thermal

  14. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern

  15. Detection of anorthosite rocks on Mars

    NASA Astrophysics Data System (ADS)

    Carter, J.; Poulet, F.; Flahaut, J.; Ody, A.

    2012-12-01

    The surface of Mars is primarily made up of basaltic (volcanic) rocks comprised of pyroxene, olivine and intermediate felsic plagioclase minerals [e.g. 1,2] and additionally a smaller fraction of sedimentary rocks, at times composed of hydrated salt and clay minerals [3,4]. A few localized eruptive sequences may indicate some compositional evolution from basaltic to dacitic rocks [1], but these remain in essence volcanic rocks. Using the CRISM (Compact Imaging Reconnaissance Spectrometer for Mars) near-infrared imaging spectrometer orbiting Mars [5], we report the detection of a new rock type on Mars, anorthosite. Anorthosite is a highly felsic (>90% plagioclase, <10% mafic minerals) non-volcanic igneous rock which peculiar composition requires very specific formation processes. On Earth, anorthosite is a rare rock found mostly in plutonic rocks in continental areas sharing locations with granitoid rocks. Anorthosite is also a major component of the lunar crust and ubiquitous in the lunar highlands where it is interpreted to be the result of the crystallisation of the primordial magma ocean of the Moon > 4.3 Gyrs ago [6]. At least 8 anorthosite exposures have been found scattered over the southern highlands of Mars. These are found in the rims of large (D > 50 km) craters or as outcrops in massif units. The unit age for these anorthosite exposures places their formation early in the planet's history (> 4 Gyrs). The massifs exposures are interpreted as deep crustal material uplifted from the Hellas basin forming event [7], which together with the crater rim exposures, suggest a formation at depth in all cases. The preferential co-occurrence of Al-rich clays mixed with several anorthosite exposures also suggests that these rocks were later altered by water at or near the surface. On Mars, there are several reasons to explain why such rocks would not have been formed during its primordial differentiation. In particular, the production of significant quantities of

  16. Gusev Rocks Solidified from Lava (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  17. Gusev Rocks Solidified from Lava (3-D)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  18. 27 CFR 9.203 - Saddle Rock-Malibu.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Saddle Rock-Malibu. 9.203... Saddle Rock-Malibu. (a) Name. The name of the viticultural area described in this section is “Saddle Rock-Malibu”. For purposes of part 4 of this chapter, “Saddle Rock-Malibu” is a term of...

  19. 9. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SECOND FLOOR, EAST WING. MOTORIZED MACHINING EQUIPMENT USED IN MANUFACTURE OF MACHINE GUN PARTS. SHOWN IN THE FOREGROUND IS A PRATT & WHITNEY VERTICAL MILLING MACHINE. DATED JANUARY 21, 1943. - Rock Island Arsenal, Building No. 68, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  20. Soil Genesis and Development, Lesson 1 - Rocks and Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All soil ultimately forms from rocks or their weathering products. Geologists classify rocks according to their origins. General rock types can weather to give soils with distinctive properties. The objectives of this lesson are: 1. To be able to classify rocks based on visual characteristics accord...