Sample records for kava-derived compounds mediating

  1. Kava

    MedlinePlus

    ... more information. Common Names: kava, kava kava, ava pepper, ava root, kawa Latin Name: Piper methysticum Background ... South Pacific and is a member of the pepper family. Pacific islanders have used kava in ceremonies ...

  2. Stress-induced insomnia treated with kava and valerian: singly and in combination.

    PubMed

    Wheatley, David

    2001-06-01

    Kava and valerian are herbal remedies that are claimed to have anxiolytic and sedative properties respectively, without dependence potential or any appreciable side effects. In this pilot study, 24 patients suffering from stress-induced insomnia were treated for 6 weeks with kava (LI-150), 120 mg daily. This was followed by a 2-week 'wash-out' period off treatment, and then, five patients having dropped out, 19 received valerian (LI-156), 600 mg daily, for another 6 weeks. Then there was a further 2-week period off treatment, and a final 6 weeks of treatment of these 19 patients with the two compounds combined (kava + valerian). Stress was measured in three areas: social, personal and life events; insomnia in three areas also: time to fall asleep, hours slept and waking mood. Total stress severity was significantly relieved by both compounds individually (p < 0.01), with no significant differences between them; and there was also improvement with the combination, significant in the case of insomnia (p < 0.05). On direct questioning, 16 patients (67%) reported no side effects on kava, 10 (53%) on valerian and 10 (53%) on the combination. The 'commonest' effect was vivid dreams with kava + valerian (4 cases (21%)) and with valerian alone (3 cases (16%)), followed by gastric discomfort and dizziness with kava (3 cases each (3 %)). These results are considered to be extremely promising but further studies may be required to determine the relative roles of the two compounds for such indications. Copyright 2001 John Wiley & Sons, Ltd.

  3. In vitro cytotoxicity of nonpolar constituents from different parts of kava plant (Piper methysticum).

    PubMed

    Jhoo, Jin-Woo; Freeman, James P; Heinze, Thomas M; Moody, Joanna D; Schnackenberg, Laura K; Beger, Richard D; Dragull, Klaus; Tang, Chung-Shih; Ang, Catharina Y W

    2006-04-19

    Kava (Piper methysticum), a perennial shrub native to the South Pacific islands, has been used to relieve anxiety. Recently, several cases of severe hepatotoxicity have been reported from the consumption of dietary supplements containing kava. It is unclear whether the kava constituents, kavalactones, are responsible for the associated hepatotoxicity. To investigate the key components responsible for the liver toxicity, bioassay-guided fractionation was carried out in this study. Kava roots, leaves, and stem peelings were extracted with methanol, and the resulting residues were subjected to partition with a different polarity of solvents (hexane, ethyl acetate, n-butanol, and water) for evaluation of their cytotoxicity on HepG2 cells based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase and aspartate aminotransferase enzyme leakage assays. Organic solvent fractions displayed a much stronger cytotoxicity than water fractions for all parts of kava. The hexane fraction of the root exhibited stronger cytotoxic effects than fractions of root extracted with other solvents or extracts from the other parts of kava. Further investigations using bioassay-directed isolation and analysis of the hexane fraction indicated that the compound responsible for the cytotoxicity was flavokavain B. The identity of the compound was confirmed by (1)H and (13) C NMR and MS techniques.

  4. Kava and valerian in the treatment of stress-induced insomnia.

    PubMed

    Wheatley, D

    2001-09-01

    Kava and valerian are herbal remedies, claimed to have anxiolytic and sedative properties respectively, without dependence potential or any appreciable side-effects. In this pilot study, 24 patients suffering from stress-induced insomnia were treated for 6 weeks with kava 120 mg daily. This was followed by 2 weeks off treatment and then, 5 having dropped out, 19 received valerian 600 mg daily for another 6 weeks. Stress was measured in three areas: social, personal and life-events; insomnia in three areas also: time to fall asleep, hours slept and waking mood. Total stress severity was significantly relieved by both compounds (p < 0.01) with no significant differences between them; as was also insomnia (p < 0.01). The proportion of patients with no side-effects was 58% with each drug respectively and the 'commonest' effect was vivid dreams with valerian (16%), followed by dizziness with kava (12% ). These compounds may be useful in the treatment of stress and insomnia but further studies are required to determine their relative roles for such indications. Copyright 2001 John Wiley & Sons, Ltd.

  5. Saccade and cognitive impairment associated with kava intoxication.

    PubMed

    Cairney, Sheree; Maruff, Paul; Clough, Alan R; Collie, Alex; Currie, Jon; Currie, Bart J

    2003-10-01

    Kava is an extract from the Piper methysticum Forst. f. plant that has social and spiritual importance in Pacific islands societies. Herbal remedies that contain kava are used for the psychiatric treatment of anxiety and insomnia. Laboratory studies have found only subtle, if any, changes on cognitive or motor functions from the acute effects of consuming small clinical doses of kava products. Intoxication from recreational doses of kava has not been studied. The performance of individuals intoxicated from drinking kava (n=11) was compared with a control group (n=17) using saccade and cognitive tests. On average, intoxicated individuals had consumed 205 g of kava powder each (approximately 150 times clinical doses) in a group session that went for 14.4 h and ended 8 h prior to testing. Intoxicated kava drinkers showed ataxia, tremors, sedation, blepharospasm and elevated liver enzymes (GGT and ALP), together with saccadic dysmetria, saccadic slowing and reduced accuracy performing a visual search task that only became evident as the task complexity increased. Kava intoxication is characterized by specific abnormalities of movement coordination and visual attention but normal performance of complex cognitive functions. Saccade abnormalities suggest disruption of cerebellar and GABAergic functions. Copyright 2003 John Wiley & Sons, Ltd.

  6. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4 phenotypes

    PubMed Central

    Gardner, Stephanie F.; Hubbard, Martha A.; Williams, D. Keith; Gentry, W. Brooks; Khan, Ikhlas A.; Shah., Amit

    2007-01-01

    Objectives Phytochemical-mediated modulation of cytochrome P-450 activity may underlie many herb-drug interactions. Single time-point, phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal (Hydrastis canadensis), black cohosh (Cimicifuga racemosa), kava kava (Piper methysticum), or valerian (Valeriana officinalis) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Methods Twelve healthy volunteers (6 females) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquine were administered before (baseline) and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 using 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquine urinary recovery ratios (8-hour collection), respectively. The content of purported “active” phytochemicals was determined for each supplement. Results Comparisons of pre- and post-supplementation phenotypic ratio means revealed significant inhibition (~40%) of CYP2D6 (difference = −0.228; 95% CI = −0.268 to −0.188) and CYP3A4/5 (difference = −1.501; 95% CI = −1.840 to −1.163) activity for goldenseal. Kava produced significant reductions (~40%) in CYP2E1 only (difference = −0.192; 95% CI = −0.325 to −0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference = −0.046; 95% CI = −0.085 to −0.007), but the magnitude of the effect (~7%) did not appear clinically relevant. No significant changes in phenotypic ratios were observed for valerian. Conclusions Botanical

  7. Pacific island ‘Awa (Kava) extracts, but not isolated kavalactones, promote pro-inflammatory responses in model mast cells

    PubMed Central

    Shimoda, Lori M.N.; Park, Christy; Stokes, Alexander J.; Gomes, Henry Halenani; Turner, Helen

    2013-01-01

    Kava (‘Awa) is a traditional water-based beverage in Pacific island communities, prepared from the ground root and stems of Piper methysticum. Kava use is associated with an ichthyotic dermatitis and delayed type hypersensitivity reactions. In the current study we collated preparative methodologies from cultural practitioners and recreational kava users in various Pacific communities. We standardized culturally-informed aqueous extraction methods and prepared extracts that were subjected to basic physicochemical analysis. Mast cells exposed to these extracts displayed robust intracellular free calcium responses, and concomitant release of pro-inflammatory mediators. In contrast, mast cells were refractory to single or combinatorial stimulation with kavalactones including methysticin, dihydromethysticin and kavain. Moreover, we reproduced a traditional modification of the kava preparation methodology, pre-mixing with the mucilage of Hibiscus taliaceus, and observed its potentiating effect on the activity of aqueous extracts in mast cells. Taken together, these data indicate that water extractable active ingredients may play a role in the physiological and pathophysiological effects of kava, and suggests that mast cell activation may be a mechanistic component of kava-related skin inflammations. PMID:22473598

  8. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes.

    PubMed

    Gurley, Bill J; Gardner, Stephanie F; Hubbard, Martha A; Williams, D Keith; Gentry, W Brooks; Khan, Ikhlas A; Shah, Amit

    2005-05-01

    Phytochemical-mediated modulation of cytochrome P450 (CYP) activity may underlie many herb-drug interactions. Single-time point phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal ( Hydrastis canadensis ), black cohosh ( Cimicifuga racemosa ), kava kava ( Piper methysticum ), or valerian ( Valeriana officinalis ) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Twelve healthy volunteers (6 women) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquin (INN, debrisoquine), were administered before (baseline) and at the end of supplementation. Presupplementation and postsupplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 by use of 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquin urinary recovery ratios (8-hour collection), respectively. The content of purported "active" phytochemicals was determined for each supplement. Comparisons of presupplementation and postsupplementation phenotypic ratio means revealed significant inhibition (approximately 40%) of CYP2D6 (difference, -0.228; 95% confidence interval [CI], -0.268 to -0.188) and CYP3A4/5 (difference, -1.501; 95% CI, -1.840 to -1.163) activity for goldenseal. Kava produced significant reductions (approximately 40%) in CYP2E1 only (difference, -0.192; 95% CI, -0.325 to -0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference, -0.046; 95% CI, -0.085 to -0.007), but the magnitude of the effect (approximately 7%) did not appear to be clinically relevant. No significant changes in phenotypic

  9. Herbicidal and Fungicidal Activities of Lactones in Kava (Piper methysticum).

    PubMed

    Xuan, T D; Elzaawely, A A; Fukuta, M; Tawata, S

    2006-02-08

    This is the first report showing that kava lactones are plant and plant fungus growth inhibitors. Aqueous extract of kava roots showed high allelopathic potential and strongly suppressed germination and growth of lettuce, radish, barnyardgrass, and monochoria. Nine kava lactones were detected using GC-MS including desmethoxyyagonin, kavain, 7,8-dihydrokavain, hydroxykavain, yagonin, 5,6,7,8-tetrahydroxyyagonin, methysticin, dihydromethysticin, and 11-hydroxy-12-methoxydihydrokavain. Quantities of desmethoxyyagonin, kavain, 7,8-dihydrokavain, yagonin, methysticin, and dihydromethysticin detected were 4.3, 6.9, 18.6, 5.7, 1.4, and 5.4 mg/g of dry weight, respectively. These six major lactones in kava roots showed great herbicidal and antifungal activities. Growth of lettuce and barnyardgrass were significantly inhibited at 1-10 ppm, and four plant fungi including Colletotrichum gloeosporides, Fusarium solani, Fusarium oxysporum, and Trichoderma viride were significantly inhibited at 10-50 ppm. The biological activities of kava lactones were characterized by different double-bond linkage patterns in positions 5,6 and 7,8. The findings of this study suggest that kava lactones may be useful for the development of bioactive herbicides and fungicides.

  10. PCR-DGGE analysis of bacterial community dynamics in kava beverages during refrigeration.

    PubMed

    Dong, J; Kandukuru, P; Huang, A S; Li, Y

    2011-07-01

    Kava beverages are highly perishable even under refrigerated conditions. This study aimed to investigate the bacterial community dynamics in kava beverages during refrigeration.  Four freshly made kava beverages were obtained from kava bars and stored at 4°C. On days 0, 3 and 6, the aerobic plate count (APC), lactic acid bacteria (LAB) count and yeast and mould count (YMC) of the samples were determined. Meanwhile, bacterial DNA was extracted from each sample and subjected to the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Moreover, species-specific PCR assays were employed to identify predominant Pseudomonas spp. involved in kava spoilage. Over the storage period, the APC, LAB count and YMC of the four kava beverages all increased, whereas their pH values decreased. The DGGE profile revealed diverse bacterial populations in the samples. LAB, such as Weissella soli, Lactobacillus spp. and Lactococcus lactis, were found in the kava beverages. Species-specific PCR assays detected Pseudomonas putida and Pseudomonas fluorescens in the samples; Ps. fluorescens became dominant during refrigeration. LAB and Pseudomonas may play a significant role in the spoilage of kava beverages. This study provides important information that may be used to extend the shelf life of kava beverages. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. The Health Effects of Kava/Sakau and Betel Nut.

    ERIC Educational Resources Information Center

    Lee, Harvey

    For generations Pacific Islanders have used kava root and betel nut for a variety of cultural, medicinal, and ceremonial purposes: to overcome social barriers and lubricate social interactions; to cure bodily afflictions; and to accompany traditional and religious rituals. Kava, also known as ava, sakau, and yaqona has a long tradition as a…

  12. Kava Linked to Liver Damage

    MedlinePlus

    ... of these countries to remove kava from the market. Although liver damage appears to be rare, the ... are marketed to men, women, children, and the elderly. Advice to Consumers Safety is a concern for ...

  13. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog

    PubMed Central

    Warmka, Janel K.; Solberg, Eric L.; Zeliadt, Nicholette A.; Srinivasan, Balasubramanian; Charlson, Aaron T.; Xing, Chengguo; Wattenberg, Elizabeth V.

    2012-01-01

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. PMID:22771807

  14. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    PubMed

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. German Kava Ban Lifted by Court: The Alleged Hepatotoxicity of Kava (Piper methysticum) as a Case of Ill-Defined Herbal Drug Identity, Lacking Quality Control, and Misguided Regulatory Politics.

    PubMed

    Kuchta, Kenny; Schmidt, Mathias; Nahrstedt, Adolf

    2015-12-01

    Kava, the rhizome and roots of Piper methysticum, are one of the most important social pillars of Melanesian societies. They have been used for more than 1000 years in social gatherings for the preparation of beverages with relaxing effects. During the colonial period, extract preparations found their way into Western medicinal systems, with experience especially concerning the treatment of situational anxiety dating back more than 100 years. It therefore came as a surprise when the safety of kava was suddenly questioned based on the observation of a series of case reports of liver toxicity in 1999 and 2000. These case reports ultimately led to a ban of kava products in Europe - a ban that has been contested because of the poor evidence of risks related to kava. Only recently, two German administrative courts decided that the decision of the regulatory authority to ban kava as a measure to ensure consumer safety was inappropriate and even associated with an increased risk due to the higher risk inherent to the therapeutic alternatives. This ruling can be considered as final for at least the German market, as no further appeal has been pursued by the regulatory authorities. However, in order to prevent further misunderstandings, especially in other markets, the current situation calls for a comprehensive presentation of the cardinal facts and misconceptions concerning kava and related drug quality issues. Georg Thieme Verlag KG Stuttgart · New York.

  16. Coltsfoot as a potential cause of deep vein thrombosis and pulmonary embolism in a patient also consuming kava and blue vervain.

    PubMed

    Freshour, Jessica E; Odle, Brian; Rikhye, Somi; Stewart, David W

    2012-09-01

    To report a case of deep vein thrombosis (DVT) with symptomatic pulmonary embolism (PE) possibly associated with the use of coltsfoot, kava, or blue vervain. A 27-year-old white male presented with leg pain and swelling, tachycardia, and pleuritic chest pain. He had no significant medical history. A medication history revealed extensive herbal medication use including: coltsfoot, passionflower, red poppy flower petals, wild lettuce, blue lily flowers, wild dagga flowers, Diviners Three Burning Blend® (comprised of salvia divinorum, blue lily, and wild dagga), kava-kava, St. John's Wort, blue vervain, and Dreamer's Blend® (comprised of Calea zacatechichi, vervain, Entada rheedii, wild lettuce, and Eschscholzia californica). Lower extremity Doppler ultrasound and computed topography (CT) of the chest revealed DVT and PE. A hypercoagulable work-up was negative. The patient was treated with enoxaparin and warfarin and was discharged home. While no distinct agent can be identified as a sole cause of this venous thromboembolic event, coltsfoot could potentially affect coagulation through its effect on vascular endothelial cells as they regulate nitric oxide. Nitric oxide is a known mediator of platelet activity and coagulation, particularly in the pulmonary vasculature. Kava and vervain have estrogenic properties. Of the medications consumed by this self-proclaimed "herbalist," coltsfoot is a potential cause of venous thromboembolic disease (VTE).

  17. In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones.

    PubMed

    Nerurkar, Pratibha V; Dragull, Klaus; Tang, Chung-Shih

    2004-05-01

    Kava herbal supplements have been recently associated with acute hepatotoxicity, leading to the ban of kava products in approximately a dozen countries around the world. It is suspected that some alkaloids from aerial kava may have contributed to the problem. Traditionally, Pacific Islanders use primarily the underground parts of the shrub to prepare the kava beverage. However, some kava herbal supplements may contain ingredients from aerial stem peelings. The aim of this study was to test the in vitro effects of a major kava alkaloid, pipermethystine (PM), found mostly in leaves and stem peelings, and kavalactones such as 7,8-dihydromethysticin (DHM) and desmethoxyyangonin (DMY), which are abundant in the roots. Exposure of human hepatoma cells, HepG2, to 100 microM PM caused 90% loss in cell viability within 24 h, while 50 microM caused 65% cell death. Similar concentrations of kavalactones did not affect cell viability for up to 8 days of treatment. Mechanistic studies indicate that, in contrast to kavalactones, PM significantly decreased cellular ATP levels, mitochondrial membrane potential, and induced apoptosis as measured by the release of caspase-3 after 24 h of treatment. These observations suggest that PM, rather than kavalactones, is capable of causing cell death, probably in part by disrupting mitochondrial function. Thus, PM may contribute to rare but severe hepatotoxic reactions to kava.

  18. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: effects of milk thistle, black cohosh, goldenseal, kava kava, St. John's wort, and Echinacea.

    PubMed

    Gurley, Bill J; Swain, Ashley; Hubbard, Martha A; Williams, D Keith; Barone, Gary; Hartsfield, Faith; Tong, Yudong; Carrier, Danielle J; Cheboyina, Shreekar; Battu, Sunil K

    2008-07-01

    Cytochrome P450 2D6 (CYP2D6), an important CYP isoform with regard to drug-drug interactions, accounts for the metabolism of approximately 30% of all medications. To date, few studies have assessed the effects of botanical supplementation on human CYP2D6 activity in vivo. Six botanical extracts were evaluated in three separate studies (two extracts per study), each incorporating 16 healthy volunteers (eight females). Subjects were randomized to receive a standardized botanical extract for 14 days on separate occasions. A 30-day washout period was interposed between each supplementation phase. In study 1, subjects received milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa). In study 2, kava kava (Piper methysticum) and goldenseal (Hydrastis canadensis) extracts were administered, and in study 3 subjects received St. John's wort (Hypericum perforatum) and Echinacea (Echinacea purpurea). The CYP2D6 substrate, debrisoquine (5 mg), was administered before and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP2D6 using 8-h debrisoquine urinary recovery ratios (DURR). Comparisons of pre- and post-supplementation DURR revealed significant inhibition (approximately 50%) of CYP2D6 activity for goldenseal, but not for the other extracts. Accordingly, adverse herb-drug interactions may result with concomitant ingestion of goldenseal supplements and drugs that are CYP2D6 substrates.

  19. Driving following Kava Use and Road Traffic Injuries: A Population-Based Case-Control Study in Fiji (TRIP 14).

    PubMed

    Wainiqolo, Iris; Kafoa, Berlin; Kool, Bridget; Robinson, Elizabeth; Herman, Josephine; McCaig, Eddie; Ameratunga, Shanthi

    2016-01-01

    To investigate the association between kava use and the risk of four-wheeled motor vehicle crashes in Fiji. Kava is a traditional beverage commonly consumed in many Pacific Island Countries. Herbal anxiolytics containing smaller doses of kava are more widely available. Data for this population-based case-control study were collected from drivers of 'case' vehicles involved in serious injury-involved crashes (where at least one road user was killed or admitted to hospital for 12 hours or more) and 'control' vehicles representative of 'driving time' in the study base. Structured interviewer administered questionnaires collected self-reported participant data on demographic characteristics and a range of risk factors including kava use and potential confounders. Unconditional logistic regression models estimated odds ratios relating to the association between kava use and injury-involved crash risk. Overall, 23% and 4% of drivers of case and control vehicles, respectively, reported consuming kava in the 12 hours prior to the crash or road survey. After controlling for assessed confounders, driving following kava use was associated with a four-fold increase in the odds of crash involvement (Odds ratio: 4.70; 95% CI: 1.90-11.63). The related population attributable risk was 18.37% (95% CI: 13.77-22.72). Acknowledging limited statistical power, we did not find a significant interaction in this association with concurrent alcohol use. In this study conducted in a setting where recreational kava consumption is common, driving following the use of kava was associated with a significant excess of serious-injury involved road crashes. The precautionary principle would suggest road safety strategies should explicitly recommend avoiding driving following kava use, particularly in communities where recreational use is common.

  20. Driving following Kava Use and Road Traffic Injuries: A Population-Based Case-Control Study in Fiji (TRIP 14)

    PubMed Central

    Wainiqolo, Iris; Kafoa, Berlin; Kool, Bridget; Robinson, Elizabeth; Herman, Josephine; McCaig, Eddie; Ameratunga, Shanthi

    2016-01-01

    Objective To investigate the association between kava use and the risk of four-wheeled motor vehicle crashes in Fiji. Kava is a traditional beverage commonly consumed in many Pacific Island Countries. Herbal anxiolytics containing smaller doses of kava are more widely available. Methods Data for this population-based case-control study were collected from drivers of ‘case’ vehicles involved in serious injury-involved crashes (where at least one road user was killed or admitted to hospital for 12 hours or more) and ‘control’ vehicles representative of ‘driving time’ in the study base. Structured interviewer administered questionnaires collected self-reported participant data on demographic characteristics and a range of risk factors including kava use and potential confounders. Unconditional logistic regression models estimated odds ratios relating to the association between kava use and injury-involved crash risk. Findings Overall, 23% and 4% of drivers of case and control vehicles, respectively, reported consuming kava in the 12 hours prior to the crash or road survey. After controlling for assessed confounders, driving following kava use was associated with a four-fold increase in the odds of crash involvement (Odds ratio: 4.70; 95% CI: 1.90–11.63). The related population attributable risk was 18.37% (95% CI: 13.77–22.72). Acknowledging limited statistical power, we did not find a significant interaction in this association with concurrent alcohol use. Conclusion In this study conducted in a setting where recreational kava consumption is common, driving following the use of kava was associated with a significant excess of serious-injury involved road crashes. The precautionary principle would suggest road safety strategies should explicitly recommend avoiding driving following kava use, particularly in communities where recreational use is common. PMID:26930404

  1. Oxidative Stress Modulation and ROS-Mediated Toxicity in Cancer: A Review on In Vitro Models for Plant-Derived Compounds.

    PubMed

    Vallejo, María José; Salazar, Lizeth; Grijalva, Marcelo

    2017-01-01

    Medicinal and aromatic plants (MAPs) are known and have been long in use for a variety of health and cosmetics applications. Potential pharmacological usages that take advantage of bioactive plant-derived compounds' antimicrobial, antifungal, anti-inflammatory, and antioxidant properties are being developed and many new ones explored. Some phytochemicals could trigger ROS-mediated cytotoxicity and apoptosis in cancer cells. A lot of effort has been put into investigating novel active constituents for cancer therapeutics. While other plant-derived compounds might enhance antioxidant defenses by either radical scavenging or stimulation of intracellular antioxidant enzymes, the generation of reactive oxygen species (ROS) leading to oxidative stress is one of the strategies that may show effective in damaging cancer cells. The biochemical pathways involved in plant-derived bioactive compounds' properties are complex, and in vitro platforms have been useful for a comprehensive understanding of the mechanism of action of these potential anticancer drugs. The present review aims at compiling the findings of particularly interesting studies that use cancer cell line models for assessment of antioxidant and oxidative stress modulation properties of plant-derived bioactive compounds.

  2. Hepatotoxicity Induced by “the 3Ks”: Kava, Kratom and Khat

    PubMed Central

    Pantano, Flaminia; Tittarelli, Roberta; Mannocchi, Giulio; Zaami, Simona; Ricci, Serafino; Giorgetti, Raffaele; Terranova, Daniela; Busardò, Francesco P.; Marinelli, Enrico

    2016-01-01

    The 3Ks (kava, kratom and khat) are herbals that can potentially induce liver injuries. On the one hand, growing controversial data have been reported about the hepatotoxicity of kratom, while, on the other hand, even though kava and khat hepatotoxicity has been investigated, the hepatotoxic effects are still not clear. Chronic recreational use of kratom has been associated with rare instances of acute liver injury. Several studies and case reports have suggested that khat is hepatotoxic, leading to deranged liver enzymes and also histopathological evidence of acute hepatocellular degeneration. Numerous reports of severe hepatotoxicity potentially induced by kava have also been highlighted, both in the USA and Europe. The aim of this review is to focus on the different patterns and the mechanisms of hepatotoxicity induced by “the 3Ks”, while trying to clarify the numerous aspects that still need to be addressed. PMID:27092496

  3. Toxicology and carcinogenesis studies of kava kava extract (CAS No. 9000-38-8) in F344/N rats and B6C3F1 mice (Gavage Studies).

    PubMed

    2012-03-01

    Kava beverages, made from dried roots of the shrub Piper methysticum, have been used ceremonially and socially in the South Pacific and in Europe since the 1700s. The drink is reported to have pleasant mild psychoactive effects, similar to alcoholic beverages. In the United States, kava kava is an herbal product used extensively as an alternative to anti-anxiety drugs such as Xanax and Valium. It has also been reported as being used to help children with hyperactivity and as a skin-conditioning agent in cosmetics. Kava kava was nominated by the National Cancer Institute for study because of its increasing use as a dietary supplement in the mainstream United States market and reports of liver toxicity among humans. Male and female F344/N rats and B6C3F1 mice received kava kava extract in corn oil by gavage for 2 weeks, 3 months, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, Escherichia coli, and mouse peripheral blood erythrocytes. 2-WEEK STUDY IN RATS: Groups of five male and five female rats were administered kava kava extract in corn oil by gavage at doses of 0, 0.125, 0.25, 0.5, 1.0, or 2.0 g/kg body weight, 5 days per week for 16 days. One female rat administered 2.0 g/kg kava kava extract died on day 3 of the study. Mean body weights of all dosed groups of rats were similar to those of the vehicle controls. Clinical findings included abnormal breathing, ataxia, and lethargy in the 2.0 g/kg groups of males and females and ataxia and lethargy in the 1.0 g/kg group of females. Liver weights were significantly increased in 1.0 and 2.0 g/kg males and in 0.5 g/kg or greater females compared to the vehicle controls. Minimal hepatocellular hypertrophy occurred in all 2.0 g/kg males and in all females administered 0.25 g/kg or greater. 2-WEEK STUDY IN MICE: Groups of five male and five female mice were administered kava kava extract in corn oil by gavage at doses of 0, 0.125, 0.25, 0.5, 1.0, or 2.0 g/kg body weight, 5 days per week

  4. A systematic review of the safety of kava extract in the treatment of anxiety.

    PubMed

    Stevinson, Clare; Huntley, Alyson; Ernst, Edzard

    2002-01-01

    This paper systematically reviews the clinical evidence relating to the safety of extracts of the herbal anxiolytic kava (Piper methysticum). Literature searches were conducted in four electronic databases and the reference lists of all papers located were checked for further relevant publications. Information was also sought from the spontaneous reporting schemes of the WHO and national drug safety bodies and ten manufacturers of kava preparations were contacted. Data from short-term post-marketing surveillance studies and clinical trials suggest that adverse events are, in general, rare, mild and reversible. However, published case reports indicate that serious adverse events are possible including dermatological reactions, neurological complications and, of greatest concern, liver damage. Spontaneous reporting schemes also suggest that the most common adverse events are mild, but that serious ones occur. Controlled trials suggest that kava extracts do not impair cognitive performance and vigilance or potentiate the effects of central nervous system depressants. However, a possible interaction with benzodiazepines has been reported. It is concluded that when taken as a short-term monotherapy at recommended doses, kava extracts appear to be well tolerated by most users. Serious adverse events have been reported and further research is required to determine the nature and frequency of such events.

  5. The health and social effects of drinking water-based infusions of kava: a review of the evidence.

    PubMed

    Rychetnik, Lucie; Madronio, Christine M

    2011-01-01

    To review the evidence on the health and social effects of drinking kava; a water-based infusion of the roots of the kava plant. Included all empirical studies of the effects of kava published 1987-2008 reporting health and social outcomes. Evidence appraised on study design (level of evidence) and standard epidemiological criteria for causality. Causality indicated: scaly skin rash, weight loss, raised Gamma Glutamyl Transpeptidase liver enzyme levels, nausea, loss of appetite or indigestion; Association indicated but causality unclear: red sore eyes, impotence or loss of sexual drive, self-reported poor health, raised cholesterol, and loss of time and money, low motivation and 'slow/lazy' days following use, reduced alcohol consumption and related violence; Association hypothesised: fits or seizures, Melioidosis, Ischaemic Heart Disease, protective effects for cancer; No association indicated: cognitive performance; No association suggested: cognitive impairment, liver toxicity or permanent liver damage, other pneumonia; No association hypothesised: hallucinations. The health and social implications of chronic kava drinking can be significant for individuals and communities, although most effects of even heavy consumption appear to be reversible when consumption is stopped. An Australia-wide ban on commercial importation of kava has been in place since mid-2007, but there is no published literature to date on the impact of the ban. © 2010 Australasian Professional Society on Alcohol and other Drugs.

  6. Potential for interaction of kava and St. John's wort with drugs.

    PubMed

    Singh, Yadhu N

    2005-08-22

    The present interest and widespread use of herbal remedies has created the possibility of interaction between them and pharmaceutical drugs if they are used simultaneously. Before the recent reports of apparent hepatotoxicity associated with its use, kava (Piper methysticum Forst. F.), was one of the top 10 selling herbal remedies in Europe and North America. This adverse effect was not previously encountered with the traditional beverage which was prepared as a water infusion in contrast to the commercial products which are extracted with organic solvents. Kavalactones, the active principles in kava, are potent inhibitors of several of the CYP 450 enzymes, suggesting a high potential for causing pharmacokinetic interactions with drugs and other herbs which are metabolized by the same CYP 450 enzymes. Furthermore, some kavalactones have been shown to possess pharmacological effects, such as blockade of GABA receptors and sodium and calcium ion channels, which may lead to pharmacodynamic interactions with other substances which possess similar pharmacological proprieties. St. John's wort (Hypericum perforatum L.), used extensively for the treatment of mild to moderate clinical depression, has long been considered safer than the conventional pharmaceutical agents. However, its ability, through its active constituents hypericin, pseudohypericin and hyperforin, to induce intestinal P-glycoprotein/MRD1 and both intestinal and hepatic CYP3A4 enzyme, could markedly reduce the distribution and disposition of their co-substrates. In addition, St. John's wort is a potent uptake inhibitor of the neurotransmitters serotonin, norepinephrine and dopamine all of which have a role in mood control. Consequently, the very real potential for a pharmacodynamic interaction between the herb and pharmaceutical drugs which share this mechanism of action and, like St. John's wort, are used for mood elevation. However, presently there is very little evidence to substantiate actual

  7. The social, cultural and medicinal use of kava for twelve Tongan born men living in Auckland, New Zealand.

    PubMed

    Nosa, Vili; Ofanoa, Malakai

    2009-02-01

    Kava consumption is a very popular practise amongst Pacific people especially amongst the Tongan communities. The purpose of this paper is to identify some of the key cultural, social and medicinal elements of kava use amongst Tongan men. Twelve face to face interviews in this study were undertaken. The paper argues that kava drinking is strongly linked to many of the ceremonial, social and cultural obligations that are deeply embedded within the Tongan culture. The positive uses of kava include medicinal purposes, male bonding, alternative to alcohol consumption, reaffirming and establishing relationships amongst other Tongan men, The men also stated negative uses of kava such as it made them lazy, tired so they were not able to go to work, a lack of sexual activities by being too tired have sex with their partners, and very expensive to buy in New Zealand. The aim of this paper is to discuss and examine the social, cultural and medicinal kava use amongst twelve Tongan born men living in Auckland, New Zealand. The study used qualitative methods, specifically individual interviews were conducted in Tongan or English. Participants were recruited through community networks in Auckland. A number of Tongan churches, Tongan medical clinics such as Langimailie, and kava clubs were approached to recruit participants. The open ended interview schedule covered themes such as access, quantity, frequency, and problems associated with kava use. The interviews were conducted by a Tongan researcher either in English or Tongan. All interviews were translated and transcribed into English. A thematic analysis based on multiple readings of the transcripts was used The analysis identified commonalities and differences. The study was granted ethical approval by the University of Auckland Human Subjects Ethics Committee in December 2004. Interviews were conducted at the beginning of 2005. Interviews were undertaken in a place where the participants felt comfortable. Interview times

  8. Melanogenesis stimulation in murine B16 melanoma cells by Kava (Piper methysticum) rhizome extract and kavalactones.

    PubMed

    Matsuda, Hideaki; Hirata, Noriko; Kawaguchi, Yoshiko; Naruto, Shunsuke; Takata, Takanobu; Oyama, Masayoshi; Iinuma, Munekazu; Kubo, Michinori

    2006-04-01

    Melanogenesis stimulation activity of aqueous ethanolic extracts obtained from several different parts of five Piper species, namely Piper longum, P. kadsura, P. methysticum, P. betle, and P. cubeba, were examined by using cultured murine B16 melanoma cells. Among them, the extract of P. methysticum rhizome (Kava) showed potent stimulatory effect on melanogenesis as well as P. nigrum leaf extract. Activity-guided fractionation of Kava extract led to the isolation of two active kavalactones, yangonin (2) and 7,8-epoxyyangonin (5), along with three inactive kavalactones, 5,6-dehydrokawain (1), (+)-kawain (3) and (+)-methysticin (4), and a glucosylsterol, daucosterin (6). 7,8-Epoxyyangonin (5) showed a significant stimulatory effect on melanogenesis in B16 melanoma cells. Yangonin (2) exhibited a weak melanogenesis stimulation activity.

  9. Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts

    PubMed Central

    Upadhyay, Abhinav; Mooyottu, Shankumar; Yin, Hsinbai; Surendran Nair, Meera; Bhattaram, Varunkumar; Venkitanarayanan, Kumar

    2015-01-01

    Many pathogenic bacteria and fungi produce potentially lethal toxins that cause cytotoxicity or impaired cellular function either at the site of colonization or other locations in the body through receptor-mediated interactions. Various factors, including biotic and abiotic environments, competing microbes, and chemical cues affect toxin expression in these pathogens. Recent work suggests that several natural compounds can modulate toxin production in pathogenic microbes. However, studies explaining the mechanistic basis for their effect are scanty. This review discusses the potential of various plant-derived compounds for reducing toxin production in foodborne and other microbes. In addition, studies highlighting their anti-toxigenic mechanism(s) are discussed. PMID:28930207

  10. Inhibitory Effects of Polyacetylene Compounds from Panax ginseng on Neurotrophin Receptor-Mediated Hair Growth.

    PubMed

    Suzuki, Aoi; Matsuura, Daisuke; Kanatani, Hirotoshi; Yano, Shingo; Tsunakawa, Mitsuo; Matsuyama, Shigeru; Shigemori, Hideyuki

    2017-01-01

    Neurotrophins play an important role in the control of the hair growth cycle. Therefore, neurotrophin receptor antagonists have therapeutic potential for the treatment of hair growth disorders. In this study, we investigated the inhibitory effect of Panax ginseng, a medicinal plant commonly used to treat alopecia, on the binding of neurotrophins to their receptors. In addition, we isolated and characterized the bioactive compounds of P. ginseng extracts. P. ginseng hexane extracts strongly inhibited brain-derived neurotrophic factor (BDNF)-TrkB and β-nerve growth factor (β-NGF)-p75 neurotrophin receptor (p75NTR) binding. Furthermore, we identified the following 6 polyacetylene compounds as the bioactive components in P. ginseng hexane extract: panaxynol (1), panaxydol (2), panaxydol chlorohydrin (3), 1,8-heptadecadiene-4,6-diyne-3,10-diol (4), panaxytriol (5), and dihydropanaxacol (6). In particular, compounds 4, 5, and 6 significantly inhibited BDNF-TrkB binding in a dose-dependent manner. To identify the structural component mediating the inhibitory effect, we investigated the effects of the hydroxyl moiety in these compounds. We found that the inhibitory effect of panaxytriol (5) was strong, whereas the inhibitory effect of Ac-panaxytriol (7) was relatively weak. Our findings suggest that P. ginseng-derived polyacetylenes with a hydroxyl moiety might provide therapeutic benefits to patients with hair growth disorders such as alopecia by inhibiting the binding of neurotrophins to their receptors. Although saponins have been proposed to be the primary mediators of the effects of P. ginseng on hair growth, this study revealed that polyacetylene compounds exert similar effects.

  11. Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain.

    PubMed

    Lim, Eun Yeong; Kim, Yun Tai

    2016-01-01

    Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.

  12. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  13. Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain

    PubMed Central

    Lim, Eun Yeong

    2016-01-01

    Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment. PMID:27891521

  14. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    PubMed Central

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  15. Aqua mediated synthesis of bio-active compounds.

    PubMed

    Panda, Siva S

    2013-05-01

    Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.

  16. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  17. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chao-Feng

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less

  18. Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress.

    PubMed

    Dan, Yinghui; Zhang, Song; Zhong, Heng; Yi, Hochul; Sainz, Manuel B

    2015-02-01

    Agrobacterium tumefaciens caused tissue browning leading to subsequent cell death in plant transformation and novel anti-oxidative compounds enhanced Agrobacterium -mediated plant transformation by mitigating oxidative stress. Browning and death of cells transformed with Agrobacterium tumefaciens is a long-standing and high impact problem in plant transformation and the agricultural biotechnology industry, severely limiting the production of transgenic plants. Using our tomato cv. MicroTom transformation system, we demonstrated that Agrobacterium caused tissue browning (TB) leading to subsequent cell death by our correlation study. Without an antioxidant (lipoic acid, LA) TB was severe and associated with high levels of GUS transient expression and low stable transformation frequency (STF). LA addition shifted the curve in that most TB was intermediate and associated with the highest levels of GUS transient expression and STF. We evaluated 18 novel anti-oxidative compounds for their potential to enhance Agrobacterium-mediated transformation, by screening for TB reduction and monitoring GUS transient expression. Promising compounds were further evaluated for their effect on MicroTom and soybean STF. Among twelve non-antioxidant compounds, seven and five significantly (P < 0.05) reduced TB and increased STF, respectively. Among six antioxidants four of them significantly reduced TB and five of them significantly increased STF. The most efficient compound found to increase STF was melatonin (MEL, an antioxidant). Optimal concentrations and stages to use MEL in transformation were determined, and Southern blot analysis showed that T-DNA integration was not affected by MEL. The ability of diverse compounds with different anti-oxidative mechanisms can reduce Agrobacterium-mediated TB and increase STF, strongly supporting that oxidative stress is an important limiting factor in Agrobacterium-mediated transformation and the limiting factor can be controlled by these

  19. Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1β Production

    PubMed Central

    2016-01-01

    IL-1β is one of the main proinflammatory cytokines that regulates a broad range of immune responses and also participates in several physiological processes. The canonical production of IL-1β requires multiprotein complexes called inflammasomes. One of the most intensively studied inflammasome complexes is the NLRP3 inflammasome. Its activation requires two signals: one signal “primes” the cells and induces the expression of NLRP3 and pro-IL-1β, while the other signal leads to the assembly and activation of the complex. Several stimuli were reported to function as the second signal including reactive oxygen species, lysosomal rupture, or cytosolic ion perturbation. Despite very intensive studies, the precise function and regulation of the NLRP3 inflammasome are still not clear. However, many chronic inflammatory diseases are related to the overproduction of IL-1β that is mediated via the NLRP3 inflammasome. In this review, we aimed to provide an overview of studies that demonstrated the effect of plant-derived natural compounds on NLRP3 inflammasome-mediated IL-1β production. Although many of these studies lack the mechanistic explanation of their action, these compounds may be considered as complementary supplements in the treatment of chronic inflammatory diseases, consumed as preventive agents, and may also be considered as molecular tools to study NLRP3 function. PMID:27672241

  20. Quantification of acidic compounds in complex biomass-derived streams

    DOE PAGES

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; ...

    2016-05-10

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkalinemore » pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here as well excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.« less

  1. Monomers, polymers and articles containing the same from sugar derived compounds

    DOEpatents

    Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.

    2016-11-29

    Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.

  2. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.

    PubMed

    Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L

    2011-05-01

    Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    PubMed Central

    Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.

    2018-01-01

    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021

  4. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  5. The risk-benefit profile of commonly used herbal therapies: Ginkgo, St. John's Wort, Ginseng, Echinacea, Saw Palmetto, and Kava.

    PubMed

    Ernst, Edzard

    2002-01-01

    Because use of herbal remedies is increasing, a risk-benefit profile of commonly used herbs is needed. This article provides a clinically oriented overview of the efficacy and safety of ginkgo, St. John's wort, ginseng, echinacea, saw palmetto, and kava. Wherever possible, assessments are based on systematic reviews of randomized clinical trials. Encouraging data support the efficacy of some of these popular herbal medicinal products, and the potential for doing good seems greater than that for doing harm. The published evidence suggests that ginkgo is of questionable use for memory loss and tinnitus but has some effect on dementia and intermittent claudication. St. John's wort is efficacious for mild to moderate depression, but serious concerns exist about its interactions with several conventional drugs. Well-conducted clinical trials do not support the efficacy of ginseng to treat any condition. Echinacea may be helpful in the treatment or prevention of upper respiratory tract infections, but trial data are not fully convincing. Saw palmetto has been shown in short-term trials to be efficacious in reducing the symptoms of benign prostatic hyperplasia. Kava is an efficacious short-term treatment for anxiety. None of these herbal medicines is free of adverse effects. Because the evidence is incomplete, risk-benefit assessments are not completely reliable, and much knowledge is still lacking.

  6. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    PubMed Central

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799

  7. Anticancer effects of garlic and garlic-derived compounds for breast cancer control.

    PubMed

    Tsubura, Airo; Lai, Yen-Chang; Kuwata, Maki; Uehara, Norihisa; Yoshizawa, Katsuhiko

    2011-03-01

    Garlic and garlic-derived compounds reduce the development of mammary cancer in animals and suppress the growth of human breast cancer cells in culture. Oil-soluble compounds derived from garlic, such as diallyl disulfide (DADS), are more effective than water-soluble compounds in suppressing breast cancer. Mechanisms of action include the activation of metabolizing enzymes that detoxify carcinogens, the suppression of DNA adduct formation, the inhibition of the production of reactive oxygen species, the regulation of cell-cycle arrest and the induction of apoptosis. Selenium-enriched garlic or organoselenium compounds provide more potent protection against mammary carcinogenesis in rats and greater inhibition of breast cancer cells in culture than natural garlic or the respective organosulfur analogues. DADS synergizes the effect of eicosapentaenoic acid, a breast cancer suppressor, and antagonizes the effect of linoleic acid, a breast cancer enhancer. Moreover, garlic extract reduces the side effects caused by anti-cancer agents. Thus, garlic and garlic-derived compounds are promising candidates for breast cancer control.

  8. Psychoactive substances of the South Seas: betel, kava and pituri.

    PubMed

    Cawte, J

    1985-03-01

    Before white man brought his alcohol to the South Pacific, the indigenes were using many wild plants possessing psychoactive properties. The most prominent were betel in much of Melanesia, kava in much of Polynesia, and pituri in much of Australia. The use of each of these three drugs was widespread, institutionalised as a ritual and the occasion for extensive trade. Each was valued for its effect in reducing tension or in producing altered states of consciousness. Each was also capable of inducing intoxication. Since few physicians nowadays have had my opportunity to observe the use of all three of these substances, their main features are recalled here. Attention is paid to their traditional use and probable future use, to their pharmacological and clinical properties, and to their place in the zeitgeist of people and period. There is no indication that these substances will be espoused by the drug enthusiasts of the West as avidly as other ethno-psychopharmacological agents such as Peruvian coca leaf, the Indian hemp, the Asian poppy, or the American tobacco. The possibility, however, of some use in the West cannot be discounted.

  9. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds.

    PubMed

    Wang, Weicang; Yang, Haixia; Johnson, David; Gensler, Catherine; Decker, Eric; Zhang, Guodong

    2017-09-01

    The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth

    PubMed Central

    Zhou, YingJun; Liu, Yiliang Ellie; Cao, JianGuo; Zeng, GuangYao; Shen, Cui; Li, YanLan; Zhou, MeiChen; Chen, Yiding; Pu, Weiping; Potters, Louis; Shi, Eric Y.

    2009-01-01

    Purpose Lignans such as secoisolariciresinol diglucoside (SDG) in flaxseed, are metabolizes to bioactive mammalian lignans of END and ENL. Because mammalian lignans have chemical structural similarity to the natural estrogen, they are thought to behave like selective estrogen receptor modulators (SERM) and therefore have anticancer effect against hormone-related cancers. We isolated a series of lignan compounds, named as Vitexins, from the seed of Chinese herb Vitex Negundo. Experimental Design We purified several Vitexin lignan compounds. Cytotoxic and antitumor effects were analyzed in cancer cells and in tumor xenograft models. In vivo metabolism of Vitexins was determined in rat. Results Contrasts to the classical lignans, Vitexins were not metabolized to END and ENL. A mixture of Vitexins EVn-50 and purified Vitexin compound VB1 have cytotoxic effect on breast, prostate, and ovarian cancer cells and induces apoptosis with cleavage in PARP protein, up-regulation of Bax, and down-regulation of Bcl-2. This induction of apoptosis seems to be mediated by activation of caspases because inhibition of caspases activity significantly reduced induced apoptosis. We demonstrated a broad antitumor activity of EVn-50 on seven tumor xenograft models including breast, prostate, liver, and cervical cancers. Consistent with in vitro data, EVn-50 treatment induced apoptosis, down-regulated of Bcl-2, and up-regulated Bax in tumor xenografts. Conclusion Vitexin is a class of nature lignan compounds, whose action and anticancer effect is mediated by the mechanisms different from the classical lignans. Vitexin induced antitumor effect and cytotoxic activity is exerted through proapoptotic process, which is mediated by a decreased Bcl-2/Bax ratio and activation of caspases. PMID:19671865

  11. A phosphine mediated sequential annulation process of 2-tosylaminochalcones with MBH carbonates to construct functionalized aza-benzobicyclo[4.3.0] derivatives.

    PubMed

    Zhang, Qinglong; Zhu, Yannan; Jin, Hongxing; Huang, You

    2017-04-04

    A novel phosphine mediated sequential annulation process to construct functionalized aza-benzobicyclo[4.3.0] derivatives has been developed involving a one-pot sequential catalytic and stoichiometric process, which generates a series of benzobicyclo[4.3.0] compounds containing one quaternary center with up to 94% yield and 20 : 1 dr value. In this reaction, MBH carbonates act as 1,2,3-C 3 synthons.

  12. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    PubMed Central

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  13. Long-term monitoring of Sgr A* at 7 mm with VERA and KaVA

    NASA Astrophysics Data System (ADS)

    Akiyama, K.; Kino, M.; Sohn, B.; Lee, S.; Trippe, S.; Honma, M.

    2014-05-01

    We present the results of radio monitoring observations of Sgr A* at 7 mm (i.e. 43 GHz) with the VLBI Exploration of Radio Astrometry (VERA), which is a VLBI array in Japan. VERA provides angular resolution on millisecond scales, resolving structures within 100 Schwarzschild radii of Sgr A* , similar to the Very Large Baseline Array (VLBA). We performed multi-epoch observations of Sgr A* in 2005 - 2008, and started monitoring it again with VERA from 2013 January to trace the current G2 encounter event. Our preliminary results in 2013 show that Sgr A* on mas scales has been in an ordinary state as of August 2013, although some fraction of the G2 cloud already passed the pericenter of Sgr A* in April 2013. We will continue monitoring Sgr A* with VERA and the newly developed KaVA (KVN and VERA Array).

  14. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    PubMed

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  16. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.

    PubMed

    Webb, Benjamin A; Karl Compton, K; Castañeda Saldaña, Rafael; Arapov, Timofey D; Keith Ray, W; Helm, Richard F; Scharf, Birgit E

    2017-01-01

    The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpX PR and McpX 34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpX PR with dissociation constants (K d ) in the nanomolar range for choline and glycine betaine, micromolar K d for stachydrine and trigonelline and a K d in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding. © 2016 John Wiley & Sons Ltd.

  17. Detoxification of tabun at physiological pH mediated by substituted β-cyclodextrin and glucose derivatives containing oxime groups.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Tenberken, Oliver; Thiermann, Horst; Worek, Franz; Kubik, Stefan; Reiter, Georg

    2012-12-16

    The ability of 13 β-cyclodextrin and 2 glucose derivatives containing substituents with oxime groups as nucleophilic components to accelerate the degradation of tabun at physiological pH has been evaluated. To this end, a qualitative and a quantitative enzymatic assay as well as a highly sensitive enantioselective GC-MS assay were used. In addition, an assay was developed that provided information about the mode of action of the investigated compounds. The results show that attachment of pyridinium-derived substituents with an aldoxime group in 3- or 4-position to a β-cyclodextrin ring affords active compounds mediating tabun degradation. Activities differ depending on the structure, the number, and the position of the substituent on the ring. Highest activity was observed for a β-cyclodextrin containing a 4-formylpyridinium oxime residue in 6-position of one glucose subunit, which detoxifies tabun with a half-time of 10.2 min. Comparison of the activity of this compound with that of an analog in which the cyclodextrin ring was replaced by a glucose residue demonstrated that the cyclodextrin is not necessary for activity but certainly beneficial. Finally, the results provide evidence that the mode of action of the cyclodextrin involves covalent modification of its oxime group rendering the scavenger inactive after reaction with the first tabun molecule. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study

    PubMed Central

    Shahraki, Omolbanin; Edraki, Najmeh; Khoshneviszadeh, Mehdi; Zargari, Farshid; Ranjbar, Sara; Saso, Luciano; Firuzi, Omidreza; Miri, Ramin

    2017-01-01

    Overexpression of the efflux pump P-glycoprotein (P-gp) is one of the important mechanisms of multidrug resistance (MDR) in many tumor cells. In this study, 26 novel 5-oxo-hexahydroquinoline derivatives containing different nitrophenyl moieties at C4 and various carboxamide substituents at C3 were designed, synthesized and evaluated for their ability to inhibit P-gp by measuring the amount of rhodamine 123 (Rh123) accumulation in uterine sarcoma cells that overexpress P-gp (MES-SA/Dx5) using flow cytometry. The effect of compounds with highest MDR reversal activities was further evaluated by measuring the alterations of MES-SA/Dx5 cells’ sensitivity to doxorubicin (DXR) using MTT assay. The results of both biological assays indicated that compounds bearing 2-nitrophenyl at C4 position and compounds with 4-chlorophenyl carboxamide at C3 demonstrated the highest activities in resistant cells, while they were devoid of any effect in parental nonresistant MES-SA cells. One of the active derivatives, 5c, significantly increased intracellular Rh123 at 100 µM, and it also significantly reduced the IC50 of DXR by 70.1% and 88.7% at 10 and 25 µM, respectively, in MES-SA/Dx5 cells. The toxicity of synthesized compounds against HEK293 as a noncancer cell line was also investigated. All tested derivatives except for 2c compound showed no cytotoxicity. A molecular dynamics simulation study was also performed to investigate the possible binding site of 5c in complex with human P-gp, which showed that this compound formed 11 average H-bonds with Ser909, Thr911, Arg547, Arg543 and Ser474 residues of P-gp. A good agreement was found between the results of the computational and experimental studies. The findings of this study show that some 5-oxo-hexahydroquinoline derivatives could serve as promising candidates for the discovery of new agents for P-gp-mediated MDR reversal. PMID:28243063

  19. Molecular Modeling and Experimental Investigations of Nonlinear Optical Compounds Monosubstituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatiana V.; Nesterov, Vladimir N.; Antipin, Mikhail Yu.; Clark, Ronald D.; Sanghadasa, Mohan; Cardelino, Beatriz H.; Moore, Craig E.; Frazier, Donald O.

    1999-01-01

    A search for potential nonlinear optical compounds was performed using the Cambridge Structure Database and molecular modeling. We investigated a series of monosubstituted derivatives of dicyanovinylbenzene, since the nonlinear optical (NLO) properties of such derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were studied earlier. The molecular geometry of these compounds was investigated with x-ray analysis and discussed along with the results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the planarity of the molecules of this series has been revealed. Two new compounds from the series studied, ortho-F and para-Cl-dicyanovinylbenzene, according to powder measurements, were found to be NLO compounds in the crystal state about 10 times more active than urea. The peculiarities of crystal structure formation in the framework of balance between van der Waals and electrostatic interactions have been discussed. The crystal shape of DIVA and two new NLO compounds have been calculated on the basis of the known crystal structure.

  20. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  1. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCAmore » transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.« less

  2. Synthesis of Some Novel Thiadiazole Derivative Compounds and Screening Their Antidepressant-Like Activities.

    PubMed

    Can, Nafiz Öncü; Can, Özgür Devrim; Osmaniye, Derya; Demir Özkay, Ümide

    2018-03-21

    Novel thiadiazole derivatives were synthesized through the reaction of acetylated 2-aminothiadiazole and piperazine derivatives. The chemical structures of the compounds were clarified by Infrared Spectroscopy (IR), ¹H Nuclear Magnetic Resonance Spectroscopy (¹H-NMR), 13 C Nuclear Magnetic Resonance Spectroscopy ( 13 C-NMR) and Electronspray Ionisation Mass Spectroscopy (ESI-MS) spectroscopic methods. Antidepressant-like activities were evaluated by the tail-suspension (TST) and modified forced swimming (MFST) methods. Besides, possible influence of the test compounds on motor activities of the animals were examined by activity cage tests. In the TST, administration of the compounds 2c , 2d , 2e , 2f , 2g and 2h significantly decreased the immobility time of mice regarding the control values. Further, in the MFST, the same compounds reduced the total number of immobility behaviors while increasing swimming performance. However, no change was observed in the total number of climbing behaviors. These data suggested that compounds 2c , 2d , 2e , 2f , 2g and 2h possess notable antidepressant-like activities. Reference drug fluoxetine (10 mg/kg) was also exhibited its antidepressant activity, as expected. No significant difference was seen between the locomotor activity values of the test groups signifying that observed antidepressant-like activities are specific. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME) properties for the obtained compounds were performed and obtained data supported the antidepressant-like potential of these novel thiadiazole derivatives.

  3. Synthesis and Biological Evaluation of Ginsenoside Compound K Derivatives as a Novel Class of LXRα Activator.

    PubMed

    Huang, Yan; Liu, Hongmei; Zhang, Yingxian; Li, Jin; Wang, Chenping; Zhou, Li; Jia, Yi; Li, Xiaohui

    2017-07-24

    Compound K is one of the active metabolites of Panaxnotoginseng saponins, which could attenuate the formation of atherosclerosis in mice modelsvia activating LXRα. We synthesized and evaluated a series of ginsenoside compound K derivatives modified with short chain fatty acids. All of the structures of this class of ginsenoside compound K derivative exhibited comparable or better biological activity than ginsenoside compound K. Especially structure 1 exhibited the best potency (cholesteryl ester content: 41.51%; expression of ABCA1 mRNA: 319%) and low cytotoxicity.

  4. Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system.

    PubMed

    Wang, Chen; Yin, Ying-Hao; Wei, Ying-Jie; Shi, Zi-Qi; Liu, Jian-Qun; Liu, Li-Fang; Xin, Gui-Zhong

    2017-09-15

    Metabolites derived from herbal compounds are becoming promising sources for discovering new drugs. However, the rapid identification of metabolites from biological matrixes is limited by massive endogenous interference and low abundance of metabolites. Thus, by using zebrafish larvae as the biotransformation system, we herein proposed and validated an integrated strategy for rapid identification of metabolites derived from herbal compounds. Two pivotal steps involved in this strategy are to differentiate metabolites from herbal compounds and match metabolites with their parent compounds. The differentiation step was achieved by cross orthogonal partial least-squares discriminant analysis. Automatic matching analysis was performed on R Project based on a self-developed program, of which the number of matched ionic clusters and its corresponding percentage between metabolite and parent compound were taken into account to assess their similarity. Using this strategy, 46 metabolites screened from incubation water samples of zebrafish treated with total Epimedium flavonoids (EFs) could be matched with their corresponding parent compounds, 37 of them were identified and validated by the known metabolic pathways and fragmentation patterns. Finally, 75% of the identified EFs metabolites were successfully detected in urine samples of rats treated with EFs. These experimental results indicate that the proposed strategy using zebrafish larvae as the biotransformation system will facilitate the rapid identification of metabolites derived from herbal compounds, which shows promising perspectives in providing additional resources for pharmaceutical developments from natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  6. Molecular Modeling and Experimental Study of Nonlinear Optical Compounds: Mono-Substituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatyana V.; Nesterov, Vladimir N.; Antipin, Mikhael Y.; Clark, R. D.; Sanghadasa, M.; Cardelino, B. H.; Moore, C. E.; Frazier, Donald O.

    2000-01-01

    A search for potential nonlinear optical (NLO) compounds has been performed using the Cambridge Structural Database and molecular modeling. We have studied a series of mono-substituted derivatives of dicyanovinylbenzene as the NLO properties of one of its derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were described earlier. The molecular geometry in the series of the compounds studied was investigated with an X- ray analysis and discussed along with results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the molecular planarity has been revealed. Two new compounds from the series studied were found to be active for second harmonic generation (SHG) in the powder. The measurements of SHG efficiency have shown that the o-F- and p-Cl-derivatives of dicyanovinylbenzene are about 10 and 20- times more active than urea, respectively. The peculiarities of crystal structure formation in the framework of balance between the van der Waals and electrostatic interactions have been discussed. The crystal morphology of DIVA and two new SHG-active compounds have been calculated on the basis of their known crystal structures.

  7. Possible importance of macrophage-derived mediators in acute malaria.

    PubMed Central

    Clark, I A; Virelizier, J L; Carswell, E A; Wood, P R

    1981-01-01

    Tumor necrosis factor, lymphocyte-activating factor, and enhanced levels of type I interferon were found in serum samples taken 2 h after mice infected with Plasmodium vinckei subsp. petteri received a small intravenous injection of endotoxin. These three mediators are among those released when mice receive an endotoxin injection 2 weeks after Mycobacterium bovis BCG or Corynebacterium parvum have been administered. There is indirect evidence that this wider range of mediators is also released in P. vinckei subsp. petteri-infected mice given parenteral endotoxin. A recent report that endotoxin is detectable in the plasma of malaria-infected mice and children implies that these mediators may also be released in the acute phase of the natural infection. We propose that these macrophage-derived mediators may be important in the glucocorticoid antagonism, bone marrow depression, fever, hypergammaglobulinemia, splenomegaly, elevation of serum amyloid A, consumptive coagulopathy, and shock syndrome with associated organ damage which can accompany malaria. The intraerythrocytic parasite death seen at crisis in some malarias, as well as the subsequent development of specific protective immunity, may also depend on these mediators. PMID:6166564

  8. Catalytic reduction of pralidoxime in pharmaceuticals by macrocyclic Ni(II) compounds derived from orthophthalaldehyde.

    PubMed

    Reddy, P Muralidhar; Prasad, Adapa V S S; Rohini, Rondla; Ravinder, Vadde

    2008-08-01

    Efficient catalytic method for the reduction of pralidoxime to its amine derivative by macrocyclic Ni(II) compounds has been developed. Ten macrocyclic Schiff base Ni(II) compounds were synthesized via non-template synthesis by treating the corresponding macrocycles with nickel chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, (1)H NMR, (13)C NMR, mass, electronic spectra, conductance, magnetic, thermal studies and their structures have been proposed. These compounds were used as catalysts for the reduction of pralidoxime to its amino derivative. The reduced pralidoxime was also characterized by spectral analysis and catalytic cycle has been established. The reduced product was determined spectrophotometrically by treating with ninhydrin reagent and the percent yields were found to be in the range of 75.12-82.36%.

  9. Awareness of Derivation and Compounding in Chinese-English Biliteracy Acquisition

    ERIC Educational Resources Information Center

    Zhang, Dongbo; Koda, Keiko

    2014-01-01

    This study examines the intra-and inter-lingual relationships between first and second language morphological awareness and reading comprehension among grade 6 Chinese learners of English as a foreign language in China. Morphological awareness measures covered compounding as well as derivation. Hierarchical regression analyses revealed that within…

  10. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma.

    PubMed

    Hu, Yangyang; Wang, Shengpeng; Wu, Xu; Zhang, Jinming; Chen, Ruie; Chen, Meiwan; Wang, Yitao

    2013-10-07

    Hepatocellular carcinoma (HCC) as the major histological subtype of primary liver cancer remains one of the most common malignancies worldwide. Due to the complicated molecular pathogenesis of HCC, the option for effective systemic treatment is quite limited. There exists a critical need to explore and evaluate possible alternative strategies for effective control of HCC. With a long history of clinical use, Chinese herbal medicine (CHM) is emerging as a noticeable choice for its multi-level, multi-target and coordinated intervention effects against HCC. With the aids of phytochemistry and molecular biological approaches, in the past decades many CHM-derived compounds have been carefully studied through both preclinical and clinical researches and have shown great potential in novel anti-HCC natural product development. The present review aimed at providing the most recent developments on anti-HCC compounds derived from CHM, especially their underlying pharmacological mechanisms. A systematic search of anti-HCC compounds from CHM was carried out focusing on literatures published both in English (PubMed, Scopus, Web of Science and Medline) and in Chinese academic databases (Wanfang and CNKI database). In this review, we tried to give a timely and comprehensive update about the anti-HCC effects and targets of several representative CHM-derived compounds, namely curcumin, resveratrol, silibinin, berberine, quercetin, tanshinone II-A and celastrol. Their mechanisms of anti-HCC behaviors, potential side effects or toxicity and future research directions were discussed. Herbal compounds derived from CHM are of much significance in devising new drugs and providing unique ideas for the war against HCC. We propose that these breakthrough findings may have important implications for targeted-HCC therapy and modernization of CHM. Copyright © 2013. Published by Elsevier Ireland Ltd.

  11. Cyclocurcumin, a curcumin derivative, exhibits immune-modulating ability and is a potential compound for the treatment of rheumatoid arthritis as predicted by the MM-PBSA method.

    PubMed

    Fu, Min; Chen, Lihui; Zhang, Limin; Yu, Xiao; Yang, Qingrui

    2017-05-01

    The control and treatment of rheumatoid arthritis is a challenge in today's world. Therefore, the pursuit of natural disease-modifying antirheumatic drugs (DMRDs) remains a top priority in rheumatology. The present study focused on curcumin and its derivatives in the search for new DMRDs. We focused on prominent p38 mitogen-activated protein (MAP) kinase p38α which is a prime regulator of tumor necrosis factor-α (TNF-α), a key mediator of rheumatoid arthritis. In the present study, we used the X-ray crystallographic structure of p38α for molecular docking simulations and molecular dynamic simulations to study the binding modes of curcumin and its derivatives with the active site of p38α. The ATP-binding domain was used for evaluating curcumin and its derivatives. Molecular docking simulation results were used to select 4 out of 8 compounds. These 4 compounds were simulated using GROMACS molecular simulation platform; the results generated were subjected to molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations. The results showed cyclocurcumin as a potential natural compound for development of a potent DMRD. These data were further supported by inhibition of TNF-α release from lipopolysaccharide (LPS)-stimulated human macrophages following cyclocurcumin treatment.

  12. Mechanisms of Nanoparticle Mediated siRNA Transfection by Melittin-Derived Peptides

    PubMed Central

    Hou, Kirk K.; Pan, Hua; Ratner, Lee; Schlesinger, Paul H.; Wickline, Samuel A.

    2014-01-01

    Traditional peptide-mediated siRNA transfection via peptide transduction domains exhibits limited cytoplasmic delivery of siRNA due to endosomal entrapment. This work overcomes these limitations with the use of membrane-destabilizing peptides derived from melittin for the knockdown of NFkB signaling in a model of adult T-Cell leukemia/lymphoma. While the mechanism of siRNA delivery into the cytoplasmic compartment by peptide transduction domains has not been well studied, our analysis of melittin derivatives indicates that concurrent nanocomplex disassembly and peptide-mediated endosomolysis are crucial to siRNA transfection. Importantly, in the case of the most active derivative, p5RHH, this process is initiated by acidic pH, indicating that endosomal acidification after macropinocytosis can trigger siRNA release into the cytoplasm. These data provide general principles regarding nanocomplex response to endocytosis which may guide the development of peptide/siRNA nanocomplex-based transfection. PMID:24053333

  13. Methanogenic degradation kinetics of phenolic compounds in aquifer-derived microcosms

    USGS Publications Warehouse

    Godsy, E.M.; Goerlitz, D.F.; Grbic-Galic, D.

    1992-01-01

    In this segment of a larger multidisciplinary study of the movement and fate of creosote derived compounds in a sand-and-gravel aquifer, we present evidence that the methanogenic degradation of the major biodegradable phenolic compounds and concomitant microbial growth in batch microcosms derived from contaminated aquifer material can be described using Monod kinetics. Substrate depletion and bacterial growth curves were fitted to the Monod equations using nonlinear regression analysis. The method of Marquardt was used for the determination of parameter values that best fit the experimental data by minimizing the residual sum of squares. The Monod kinetic constants (??max, Ks, Y, and kd) that describe phenol, 2-, 3-, and 4-methylphenol degradation and concomitant microbial growth were determined under conditions that were substantially different from those previously reported for microcosms cultured from sewage sludge. The Ks values obtained in this study are approximately two orders of magnitude lower than values obtained for the anaerobic degradation of phenol in digesting sewage sludge, indicating that the aquifer microorganisms have developed enzyme systems that are adapted to low nutrient conditions. The values for kd are much less than ??max, and can be neglected in the microcosms. The extremely low Y values, approximately 3 orders of magnitude lower than for the sewage sludge derived cultures, and the very low numbers of microorganisms in the aquifer derived microcosms suggest that these organisms use some unique strategies to survive in the subsurface environment. ?? 1992 Kluwer Academic Publishers.

  14. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Qilu; Zhao, Leping; Wang, Yi

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52Emore » cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.« less

  15. Platelet-derived HMGB1 is a critical mediator of thrombosis.

    PubMed

    Vogel, Sebastian; Bodenstein, Rebecca; Chen, Qiwei; Feil, Susanne; Feil, Robert; Rheinlaender, Johannes; Schäffer, Tilman E; Bohn, Erwin; Frick, Julia-Stefanie; Borst, Oliver; Münzer, Patrick; Walker, Britta; Markel, Justin; Csanyi, Gabor; Pagano, Patrick J; Loughran, Patricia; Jessup, Morgan E; Watkins, Simon C; Bullock, Grant C; Sperry, Jason L; Zuckerbraun, Brian S; Billiar, Timothy R; Lotze, Michael T; Gawaz, Meinrad; Neal, Matthew D

    2015-12-01

    Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis. Mice lacking HMGB1 in platelets exhibited increased bleeding times as well as reduced thrombus formation, platelet aggregation, inflammation, and organ damage during experimental trauma/hemorrhagic shock. Platelets were the major source of HMGB1 within thrombi. In trauma patients, HMGB1 expression on the surface of circulating platelets was markedly upregulated. Moreover, evaluation of isolated platelets revealed that HMGB1 is critical for regulating platelet activation, granule secretion, adhesion, and spreading. These effects were mediated via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent protein kinase I (cGKI). Thus, we establish platelet-derived HMGB1 as an important mediator of thrombosis and identify a HMGB1-driven link between MyD88 and GC/cGKI in platelets. Additionally, these findings suggest a potential therapeutic target for patients sustaining trauma and other inflammatory disorders associated with abnormal coagulation.

  16. Highly efficient cyclosarin degradation mediated by a β-cyclodextrin derivative containing an oxime-derived substituent.

    PubMed

    Zengerle, Michael; Brandhuber, Florian; Schneider, Christian; Worek, Franz; Reiter, Georg; Kubik, Stefan

    2011-01-01

    The potential of appropriately substituted cyclodextrins to act as scavengers for neurotoxic organophosphonates under physiological conditions was evaluated. To this end, a series of derivatives containing substituents with an aldoxime or a ketoxime moiety along the narrow opening of the β-cyclodextrin cavity was synthesized, and the ability of these compounds to reduce the inhibitory effect of the neurotoxic organophosphonate cyclosarin on its key target, acetylcholinesterase, was assessed in vitro. All compounds exhibited a larger effect than native β-cyclodextrin, and characteristic differences were noted. These differences in activity were correlated with the structural and electronic parameters of the substituents. In addition, the relatively strong effect of the cyclodextrin derivatives on cyclosarin degradation and, in particular, the observed enantioselectivity are good indications that noncovalent interactions between the cyclodextrin ring and the substrate, presumably involving the inclusion of the cyclohexyl moiety of cyclosarin into the cyclodextrin cavity, contribute to the mode of action. Among the nine compounds investigated, one exhibited remarkable activity, completely preventing acetylcholinesterase inhibition by the (-)-enantiomer of cyclosarin within seconds under the conditions of the assay. Thus, these investigations demonstrate that decoration of cyclodextrins with appropriate substituents represents a promising approach for the development of scavengers able to detoxify highly toxic nerve agents.

  17. Highly efficient cyclosarin degradation mediated by a β-cyclodextrin derivative containing an oxime-derived substituent

    PubMed Central

    Zengerle, Michael; Brandhuber, Florian; Schneider, Christian; Worek, Franz; Reiter, Georg

    2011-01-01

    Summary The potential of appropriately substituted cyclodextrins to act as scavengers for neurotoxic organophosphonates under physiological conditions was evaluated. To this end, a series of derivatives containing substituents with an aldoxime or a ketoxime moiety along the narrow opening of the β-cyclodextrin cavity was synthesized, and the ability of these compounds to reduce the inhibitory effect of the neurotoxic organophosphonate cyclosarin on its key target, acetylcholinesterase, was assessed in vitro. All compounds exhibited a larger effect than native β-cyclodextrin, and characteristic differences were noted. These differences in activity were correlated with the structural and electronic parameters of the substituents. In addition, the relatively strong effect of the cyclodextrin derivatives on cyclosarin degradation and, in particular, the observed enantioselectivity are good indications that noncovalent interactions between the cyclodextrin ring and the substrate, presumably involving the inclusion of the cyclohexyl moiety of cyclosarin into the cyclodextrin cavity, contribute to the mode of action. Among the nine compounds investigated, one exhibited remarkable activity, completely preventing acetylcholinesterase inhibition by the (−)-enantiomer of cyclosarin within seconds under the conditions of the assay. Thus, these investigations demonstrate that decoration of cyclodextrins with appropriate substituents represents a promising approach for the development of scavengers able to detoxify highly toxic nerve agents. PMID:22238531

  18. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    NASA Astrophysics Data System (ADS)

    De Rosa, Margherita; La Manna, Pellegrino; Talotta, Carmen; Soriente, Annunziata; Gaeta, Carmine; Neri, Placido

    2018-04-01

    In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs), we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under "on-water" conditions with a significant selectivity toward the reactants. Under "on-water conditions" the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of common organic reactions.

  19. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    PubMed

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  20. Antileishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives.

    PubMed

    Peixoto, Juliana A; Andrade E Silva, Márcio Luis; Crotti, Antônio E M; Cassio Sola Veneziani, Rodrigo; Gimenez, Valéria M M; Januário, Ana H; Groppo, Milton; Magalhães, Lizandra G; Dos Santos, Fransérgio F; Albuquerque, Sérgio; da Silva Filho, Ademar A; Cunha, Wilson R

    2011-02-22

    The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.

  1. Ca(2+)-mediated prostaglandin E2 induction reduces haematoporphyrin-derivative-induced cytotoxicity of T24 human bladder transitional carcinoma cells in vitro.

    PubMed Central

    Penning, L C; Keirse, M J; VanSteveninck, J; Dubbelman, T M

    1993-01-01

    The effects of haematoporphyrin-derivative-mediated photodynamic treatment on arachidonic acid metabolism and its relation to clonogenicity have been studied in human bladder-tumour cells. Photodynamic treatment resulted in a transient release of arachidonic acid-derived compounds; prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) especially were strongly increased. This release was reduced by chelation of intracellular Ca2+ with Quin-2 or by lowering the extracellular Ca2+ concentration in the medium with EGTA, presumably resulting in inhibition of phospholipase A2. A similar reduction was obtained when indomethacin, an inhibitor of the cyclo-oxygenase pathway, was added prior to light exposure. These three treatments enhanced the photosensitivity, as revealed by the clonogenicity assay. Incubation with PGE2 prior to light exposure, but not with TXB2, protected against reproductive-cell death. The results of these experiments suggest that Ca(2+)-mediated activation of cyclo-oxygenase, resulting in increased levels of PGE2, participates in a cellular-defence mechanism against photodynamic cell killing. PMID:8503851

  2. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells

    PubMed Central

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  3. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells.

    PubMed

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects.

  4. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  5. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  6. Applications of several spectral techniques to characterize coordination compounds derived from 2,6-diacetylpyridine derivative

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Sharma, Amit Kumar

    2009-09-01

    The coordination compounds of Cr III, Mn II and Co II metal ions derived from quinquedentate 2,6-diacetylpyridine derivative have been synthesized and characterized by using the various physicochemical studies like stoichiometric, molar conductivity and magnetic, and spectral techniques like IR, NMR, mass, UV and EPR. The general stoichiometries of the complexes are found to be [Cr(H 2L)X] and [M(HL)X], where M = Mn(II) and Co(II); H 2L = dideprotonated ligand, HL = monodeprotonated ligand and X = NO 3-, Cl - and OAc -. The studies reveal that the complexes possess monomeric compositions with six coordinated octahedral geometry (Cr III and Mn II complexes) and six coordinated tetragonal geometry (Co II complexes).

  7. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  8. Novel antiprotozoal products: imidazole and benzimidazole N-oxide derivatives and related compounds.

    PubMed

    Aguirre, Gabriela; Boiani, Mariana; Cerecetto, Hugo; Gerpe, Alejandra; González, Mercedes; Sainz, Yolanda Fernández; Denicola, Ana; De Ocáriz, Carmen Ochoa; Nogal, Juan José; Montero, David; Escario, José Antonio

    2004-05-01

    The syntheses and biological evaluation of the first anti-protozoa imidazole N-oxide and benzimidazole N-oxide and their derivatives are reported. They were tested in vitro against two different protozoa, Trypanosoma cruzi and Trichomonas vaginalis. Derivative 7c, ethyl-1-(i-butyloxycarbonyloxy)-6-nitrobenzimid-azole-2-carboxylate, displayed activity on both protozoa. Lipophilicity and redox potential were experimentally determined in order to study the relationship with activity of the compounds. These properties are well related with the observed bioactivity. Imidazole and benzimidazole N-oxide derivatives are becoming leaders for further chemical modifications and advanced biological studies.

  9. Protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine induced acute liver injury in rats.

    PubMed

    Akashi, Iwao; Kagami, Keisuke; Hirano, Toshihiko; Oka, Kitaro

    2009-04-01

    The protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced acute liver injury in rats were investigated. Wistar rats were orally administered saline (control) or one of the test compounds (caffeine, chlorogenic acid, trigonelline, nicotinic acid or eight pyrazinoic acids) at a dose of 100 mg/kg, respectively. This was followed by intraperitoneal injection with LPS (100 mug/kg)/D-GalN (250 mg/kg) 1 h after administration of the test compounds. Blood samples were collected up to 12 h after LPS/D-GalN injection, followed by determination of plasma aspartate aminotransferase, alanine aminotransferase, tumour necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10) levels. Plasma aspartate aminotransferase and alanine aminotransferase levels were significantly increased after LPS/D-GalN-treatment, but were suppressed by pretreatment with caffeine (n = 5), nicotinic acid, non-substituted pyrazinoic acid or 5-methylpyrazinoic acid (n = 6, respectively) 12 h after LPS/D-GalN-treatment (P < 0.01, respectively). Moreover, the animals pretreated with these test compounds showed significantly higher survival rates (83-100%) compared with the control (23%). Only pretreatment with caffeine significantly suppressed the LPS/D-GalN induced elevation of plasma TNF-alpha levels 1 and 2 h after LPS/D-GalN-treatment (P < 0.01, respectively). Pretreatment with caffeine, nicotinic acid or non-substituted pyrazinoic acid activated the LPS/D-GalN induced elevation of plasma IL-10 levels at 1 and 2 h, although there were no statistically significant differences in IL-10 levels between control and nicotinic acid or non-substituted pyrazinoic acid treated rats. The results suggest that caffeine, nicotinic acid, non-substituted pyrazinoic acid and 5-methylpyrazinoic acid can protect against LPS/D-GalN induced acute liver injury, which may be mediated by the reduction of TNF-alpha production and/or increasing IL-10 production.

  10. Lung-Derived Mediators Induce Cytokine Production in Downstream Organs via an NF-κ B-Dependent Mechanism

    PubMed Central

    Patterson, E. K.; Yao, L. J.; Ramic, N.; Lewis, J. F.; Cepinskas, G.; McCaig, L.; Veldhuizen, R. A. W.; Yamashita, C. M.

    2013-01-01

    In the setting of acute lung injury, levels of circulating inflammatory mediators have been correlated with adverse outcomes. Previous studies have demonstrated that injured, mechanically ventilated lungs represent the origin of the host inflammatory response; however, mechanisms which perpetuate systemic inflammation remain uncharacterized. We hypothesized that lung-derived mediators generated by mechanical ventilation (MV) are amplified by peripheral organs in a “feed forward” mechanism of systemic inflammation. Herein, lung-derived mediators were collected from 129X1/SVJ mice after 2 hours of MV while connected to the isolated perfused mouse lung model setup. Exposure of liver endothelial cells to lung-derived mediators resulted in a significant increase in G-CSF, IL-6, CXCL-1, CXCL-2, and MCP-1 production compared to noncirculated control perfusate media (P < 0.05). Furthermore, inhibition of the NF-κB pathway significantly mitigated this response. Changes in gene transcription were confirmed using qPCR for IL-6, CXCL-1, and CXCL-2. Additionally, liver tissue obtained from mice subjected to 2 hours of in vivo MV demonstrated significant increases in hepatic gene transcription of IL-6, CXCL-1, and CXCL-2 compared to nonventilated controls. Collectively, this data demonstrates that lung-derived mediators, generated in the setting of MV, are amplified by downstream organs in a feed forward mechanism of systemic inflammation. PMID:23606793

  11. Synthesis, Characterization, and Anticancer Activity of Novel Lipophilic Emodin Cationic Derivatives.

    PubMed

    Yang, Xiang; Zhao, Wenna; Hu, Xiufang; Hao, Xianxiao; Hong, Fang; Wang, Jianlong; Xiang, Liping; Zhu, Yunhui; Yuan, Yaofeng; Ho, Rodney J Y; Wang, Wenfeng; Shao, Jingwei

    2015-12-01

    Seventeen novel emodin derivatives were synthesized, and the structures were confirmed by IR, H NMR, MS, and elemental analysis. The cytotoxic activity of the derivatives was evaluated against A375, BGC-823, HepG2, and HELF cells by MTT assay. Compound 9a with highest potency and low toxicity was selected to further investigate its detailed molecular mechanism. The lead compound 9a induced a loss of the mitochondrial transmembrane potential (▵Ψm), an increase in reactive oxygen species (ROS), release of cytochrome c and activation of caspase-3 and caspase-9. In addition, the confocal study showed that emodin derivative 9a (containing asymmetric hydrocarbon tails) was mainly localized in mitochondria, demonstrating a key role of the mitochondria-mediated apoptosis pathway in cancer cells. Taken together, the results demonstrate that embodin derivative 9a preferentially regulates the ROS-mediated apoptosis in A375 cells through the induction of cytochrome c expression and activation of caspase-3 and caspase-9 proteins. © 2015 John Wiley & Sons A/S.

  12. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    PubMed

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A new compound, withangulatin A, promotes type II DNA topoisomerase-mediated DNA damage.

    PubMed

    Juang, J K; Huang, H W; Chen, C M; Liu, H J

    1989-03-31

    Withangulatin A, a new compound with a known chemical structure and from the antitumor Chinese herb Physalis angulata L, was found to act on topoisomerase II to induce topoisomerase II-mediated DNA damage in vitro. It has two effective dosage ranges of approximate 0.5 and 20 microM, with about one-third the activity of 20 microM VM-26.

  14. Highly Functionalized 1,2–Diamino Compounds through Reductive Amination of Amino Acid-Derived β–Keto Esters

    PubMed Central

    Pérez-Faginas, Paula; Aranda, M. Teresa; García-López, M. Teresa; Infantes, Lourdes; Fernández-Carvajal, Asia; González-Ros, José Manuel; Ferrer-Montiel, Antonio; González-Muñiz, Rosario

    2013-01-01

    1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically relevant compounds. In this respect, amino acid-derived β–keto esters are a suitable starting point for the synthesis of β,γ–diamino ester derivatives through a two-step reductive amination procedure with either simple amines or α–amino esters. AcOH and NaBH3CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be chromatographically separated. Transformation of the β,γ–diamino esters into pyrrolidinone derivatives allows the configuration assignment of the linear compounds, and constitutes an example of their potential application in the generation of molecular diversity. PMID:23308167

  15. Sulfonamide derivatives of styrylheterocycles as a potent inhibitor of COX-2-mediated prostaglandin E2 production.

    PubMed

    Lim, Chaemin; Lee, Minhee; Park, Eun-Jung; Cho, Ran; Park, Hyen-Joo; Lee, Seong Jin; Cho, Heeyeong; Lee, Sang Kook; Kim, Sanghee

    2010-12-01

    The overproduction of prostaglandin E(2) (PGE(2)) plays an important role in a variety of pathophysiological processes including inflammation and carcinogenesis. Therefore, the modulation of PGE(2) production is a promising target in the design of chemotherapeutic agents. In the present study, the inhibitory effects of a series of styrylheterocycles having either a p-SO(2)NH(2) or p-SO(2)Me group on the production of cyclooxygenase-2-mediated PGE(2) were evaluated in lipopolysaccharide-stimulated RAW264.7 murine macrophages. Among the series of styrylheterocycle derivatives, (E)-4-(2-(thiophen-3-yl)vinyl)benzenesulfonamide exhibited a potent inhibitory activity, with an IC(50) value of 0.013 μM. The inhibitory activity against the overproduction of PGE(2) by the active compound was found to be due in part to the suppression of COX-2 mRNA expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Trace analysis of carbonyl compounds by liquid chromatography-mass spectrometry after collection as 2,4-dinitrophenylhydrazine derivatives.

    PubMed

    Sakuragawa, A; Yoneno, T; Inoue, K; Okutani, T

    1999-06-04

    This study describes the utilization of carbonyl- 2,4-dinitrophenylhydrazine (DNPH) derivatives for the determination of a micro amount of carbonyl compounds in air by liquid chromatography-mass spectrometry (LC-MS). After the carbonyl compounds are collected using a Waters Sep-Pak C18 cartridge column with-impregnated DNPH on octadecylsilica, they are eluted by acetonitrile as carbonyl-DNPH derivatives. A 20-mm3 aliquot of eluent is injected into the LC-MS system. The four derivatives (formaldehyde-, acetaldehyde-, acrolein- and acetone-DNPH) were eluted within 7 min with acetonitrile-water (60:40, v/v) as the mobile phase. The proposed method offers sub-ppb sensitivity and good reproducibility and was applied to the determination of these carbonyl compounds in actual air samples from store rooms, laboratories and offices. The relative standard deviations for these samples (n = 6) were 1 to 3%.

  17. Pharmacokinetics and bioequivalence of ranitidine and bismuth derived from two compound preparations

    PubMed Central

    Zhou, Quan; Ruan, Zou-Rong; Yuan, Hong; Jiang, Bo; Xu, Dong-Hang

    2006-01-01

    AIM: To evaluate the bioequivalence of ranitidine and bismuth derived from two compound preparations. METHODS: The bioavailability was measured in 20 healthy male Chinese volunteers following a single oral dose (equivalent to 200 mg of ranitidine and 220 mg of bismuth) of the test or reference products in the fasting state. Then blood samples were collected for 24 h. Plasma concentrations of ranitidine and bismuth were analyzed by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The non-compartmental method was used for pharmacokinetic analysis. Log-transformed Cmax, AUC(0-t) and AUC(0-infinity) were tested for bioequivalence using ANOVA and Schuirmann two-one sided t-test. Tmax was analyzed by Wilcoxon’s test. RESULTS: Various pharmacokinetic parameters of ranitidine derived from the two compound preparations, including Cmax, AUC(0-t), AUC(0-infinity), Tmax and T1/2, were nearly consistent with previous observations. These parameters derived from test and reference drug were as follows: Cmax (0.67 ± 0.21 vs 0.68 ± 0.22 mg/L), AUC(0-t) (3.1 ± 0.6 vs 3.0 ± 0.7 mg/L per hour), AUC(0-infinity) (3.3 ± 0.6 vs 3.2 ± 0.8 mg/L per hour), Tmax (2.3 ± 0.9 vs 2.1 ± 0.9 h) and T1/2 (2.8 ± 0.3 vs 3.1 ± 0.4 h). In addition, double-peak absorption profiles of ranitidine were found in some Chinese volunteers. For bismuth, those parameters derived from test and reference drug were as follows: Cmax (11.80 ± 7.36 vs 11.40 ± 6.55 μg/L), AUC(0-t) (46.65 ± 16.97 vs 47.03 ± 21.49 μg/L per hour), Tmax (0.50 ± 0.20 vs 0.50 ± 0.20 h) and T1/2 (10.2 ± 2.3 vs 13.0 ± 6.9 h). Ninety percent of confidence intervals for the test/reference ratio of Cmax, AUC(0-t) and AUC(0-infinity) derived from both ranitidine and bismuth were found within the bioequivalence acceptable range of 80%-125%. No significant difference was found in Tmax derived from both ranitidine and bismuth. CONCLUSION: The two compound preparations

  18. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; He, Yu-Min; Kazuma, Kohei; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko

    2016-01-01

    The methanolic extract and its subfractions from red peony root, the dried roots of Paeonia lactiflora Pallas showed potent antiallergic effects, as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 16 monoterpene derivatives, including 3 new compounds, paeoniflorol (1), 4'-hydroxypaeoniflorigenone (2) and 4-epi-albiflorin (3), together with 13 known ones (4-16). The chemical structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidences. Among the isolated monoterpene derivatives, nine compounds showed potent anti-allergic effects and compound 1 was the most effective. A primary structure-activity relationship of monoterpene derivatives was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  20. COLBALT-MEDIATED ACTIVATION OF PEROXYMONOSULFATE AND SULFATE RADICAL ATTACK ON PHENOLIC COMPOUNDS, IMPLICATIONS OF CHLORIDE IONS

    EPA Science Inventory

    This study reports on the sulfate radical pathway of room temperature degradation of two phenolic compounds in water. The radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from...

  1. Anti-influenza virus activity of a salcomine derivative mediated by inhibition of viral RNA synthesis.

    PubMed

    Takizawa, Naoki; Kimura, Tomoyuki; Watanabe, Takumi; Shibasaki, Masakatsu

    2018-06-01

    Influenza virus infection is a major threat to global health. Although vaccines and anti-influenza virus drugs are available, annual influenza virus epidemics result in severe illness, and an influenza pandemic occurs every 20-30 years. To identify candidate anti-influenza virus compounds, we screened approximately 5,000 compounds in an in-house library. We identified MZ7465, a salcomine derivative, as a potent inhibitor of influenza virus propagation. We analyzed the antiviral propagation mechanism of the hit compound by determining the amounts of viral proteins and RNA in infected cells treated with or without the hit compound. Treatment of infected cells with MZ7465 decreased both viral protein and RNA synthesis. In addition, an in vitro assay showed that viral RNA synthesis was directly inhibited by MZ7465. These results suggest that salcomine and its derivatives are potential candidates for the treatment of influenza virus infections.

  2. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems

    PubMed Central

    Johannes, Christian; Majcherczyk, Andrzej

    2000-01-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713

  3. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannes, C.; Majcherczyk, A.

    2000-02-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less

  4. Tannins and Tannin-Related Derivatives Enhance the (Pseudo-)Halogenating Activity of Lactoperoxidase.

    PubMed

    Gau, Jana; Prévost, Martine; Van Antwerpen, Pierre; Sarosi, Menyhárt-Botond; Rodewald, Steffen; Arnhold, Jürgen; Flemmig, Jörg

    2017-05-26

    Several hydrolyzable tannins, proanthocyanidins, tannin derivatives, and a tannin-rich plant extract of tormentil rhizome were tested for their potential to regenerate the (pseudo-)halogenating activity, i.e., the oxidation of SCN - to hypothiocyanite - OSCN, of lactoperoxidase (LPO) after hydrogen peroxide-mediated enzyme inactivation. Measurements were performed using 5-thio-2-nitrobenzoic acid in the presence of tannins and related substances in order to determine kinetic parameters and to trace the LPO-mediated - OSCN formation. The results were combined with docking studies and molecular orbital analysis. The - OSCN-regenerating effect of tannin derivatives relates well with their binding properties toward LPO as well as their occupied molecular orbitals. Especially simple compounds like ellagic acid or methyl gallate and the complex plant extract were found as potent enzyme-regenerating compounds. As the (pseudo-)halogenating activity of LPO contributes to the maintenance of oral bacterial homeostasis, the results provide new insights into the antibacterial mode of action of tannins and related compounds. Furthermore, chemical properties of the tested compounds that are important for efficient enzyme-substrate interaction and regeneration of the - OSCN formation by LPO were identified.

  5. A phenotypic screening approach to identify anticancer compounds derived from marine fungi.

    PubMed

    Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

    2014-04-01

    This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.

  6. A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides.

    PubMed

    Sultana, Nasim; Afolayan, A J

    2007-08-01

    Arctotis arctotoides is a perennial herb used medicinally for the treatment of various ailments in the Eastern Cape, South Africa. Different extracts of the plant were investigated for their antimicrobial constituents. This led to the isolation and identification of a new daucosterol derivative 3-O-[beta-D-(6'-nonadeanoate)glucopyranosyl]-beta-sitosterol and seven known compounds namely: serratagenic acid, stigmasterol, daucosterol, zaluzanin D, dehydrocostuslactone, nepetin, and pedalitin. The structures of the compounds were elucidated on the basis of spectral analysis, including homo and hetero nuclear correlation NMR experiments (COSY, NOESY, HMQC, HMBC) and mass spectra as well as by comparison with available data in the literature. The compounds exhibited antibacterial activity except stigmasterol, daucosterol and dehydrocostuslactone. Nepetin was the most active against Bacillus subtilis and Staphylococcus aureus with the minimum inhibitory concentrations of 4 microg mL( - 1) and 31 microg mL( - 1), respectively, while others exhibited moderate activity.

  7. A Dereplication and Bioguided Discovery Approach to Reveal New Compounds from a Marine-Derived Fungus Stilbella fimetaria

    PubMed Central

    Kildgaard, Sara; Subko, Karolina; Phillips, Emma; Goidts, Violaine; de la Cruz, Mercedes; Díaz, Caridad; Gotfredsen, Charlotte H.; Frisvad, Jens C.; Nielsen, Kristian F.; Larsen, Thomas O.

    2017-01-01

    A marine-derived Stilbella fimetaria fungal strain was screened for new bioactive compounds based on two different approaches: (i) bio-guided approach using cytotoxicity and antimicrobial bioassays; and (ii) dereplication based approach using liquid chromatography with both diode array detection and high resolution mass spectrometry. This led to the discovery of several bioactive compound families with different biosynthetic origins, including pimarane-type diterpenoids and hybrid polyketide-non ribosomal peptide derived compounds. Prefractionation before bioassay screening proved to be a great aid in the dereplication process, since separate fractions displaying different bioactivities allowed a quick tentative identification of known antimicrobial compounds and of potential new analogues. A new pimarane-type diterpene, myrocin F, was discovered in trace amounts and displayed cytotoxicity towards various cancer cell lines. Further media optimization led to increased production followed by the purification and bioactivity screening of several new and known pimarane-type diterpenoids. A known broad-spectrum antifungal compound, ilicicolin H, was purified along with two new analogues, hydroxyl-ilicicolin H and ilicicolin I, and their antifungal activity was evaluated. PMID:28805711

  8. New Therapeutic Agent against Arterial Thrombosis: An Iridium(III)-Derived Organometallic Compound.

    PubMed

    Hsia, Chih-Wei; Velusamy, Marappan; Tsao, Jeng-Ting; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Lee, Lin-Wen; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-12-05

    Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir) is considered a potential alternative. We recently developed an Ir(III)-derived complex, [Ir(Cp*)1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine Cl]BF₄ (Ir-11), which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP) release, intracellular Ca 2+ mobilization, P-selectin expression, and OH · formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2-PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells.

  9. Effect of oxygen compounds addition on the hydrocracking of coal derived liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Yoshiki; Kodera, Yoichi; Kamo, Tohru

    1998-12-31

    Coal derived liquid from liquefaction, coking and low temperature pyrolysis contains considerable amounts of alkylphenols with alkylbenzenes and alkylnaphthalenes. To produce and purify useful chemicals from coal-derived liquid, hydrocracking and hydrotreating of alkylphenol mixture is a very important process. In this study the effects of oxygen compounds such as dimethylcarbonate (DMC) addition on the hydrocracking of alkylphenols and coal-derived liquid were investigated to decrease hydrogen consumption due to the production of water from the removal of OH group. From the hydrocracking of 3,5-dimethylphenol (3,5-DMP) without DMC at 700 C, residence time of 3--10 sec under hydrogen-to-reactant molar ratio of moremore » than 10 using atmospheric flow apparatus with quartz reactor, m-xylene and m-cresol were produced with the production ratio of 1:1.8. However the dehydroxylation to produce m-xylene was decreased by the addition of 10% DMC with the 50% increased production ratio of 1:2.7. These are considered due to the strong interaction between OH group and DMC. Similar reaction behavior was observed in the hydrocracking of 2,5-DMP and the production ratio of (o-cresol + m-cresol)/p-xylene slightly increased from 3.0 to 3.5 by the addition of DMC. On the other hand, the products distribution did not change with and without DMC in the case of 2,6-DMP. This indicates the interaction is hindered by steric effect by the neighboring CH{sub 3} group. The effect of other oxygen compounds on the hydrocracking and the products distribution from the hydrocracking of coal-derived liquids is also discussed.« less

  10. Inhibition of Mast Cell-Mediated Allergic Responses by Arctii Fructus Extracts and Its Main Compound Arctigenin.

    PubMed

    Kee, Ji-Ye; Hong, Seung-Heon

    2017-11-01

    The Arctium lappa seeds (Arctii Fructus) and its major active compound, arctigenin (ARC), are known to have anticancer, antiobesity, antiosteoporosis, and anti-inflammatory activities. However, the effect of Arctii Fructus and ARC on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, we attempted to investigate the antiallergic activity of Arctii Fructus and ARC on mast cells and experimental mouse models. Arctii Fructus water extract (AFW) or ethanol extract (AFE) and ARC reduced the production of histamine and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and TNF-α in mast cells. AFW, AFE, and ARC inhibited phosphorylation of MAPKs and NF-κB in activated mast cells. Moreover, IgE-mediated passive cutaneous anaphylaxis and compound 48/80-induced anaphylactic shock were suppressed by AFW, AFE, and ARC administration. These results suggest that Arctii Fructus and ARC are potential therapeutic agents against allergic inflammatory diseases.

  11. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  12. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arca, Elisabetta; Lany, Stephan; Perkins, John D.

    We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn 3MoN 4 and ZnMoN 2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn 3MoN 4 to ZnMoN 2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN 2 stoichiometry, in contrast to the Zn 3MoN 4 stoichiometry, where ordered wurtzite is predicted to be the ground state.more » The formation of Zn 3MoN 4-ZnMoN 2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn 3MoN 4 to +IV in ZnMoN 2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as 'redox-mediated stabilization.' The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn 3MoN 4 and ZnMoN 2 compounds. The smooth change in the Mo oxidation state between Zn 3MoN 4 and ZnMoN 2 stoichiometries leads to a continuous change in optoelectronic properties - from resistive and semitransparent Zn 3MoN 4 to conductive and absorptive ZnMoN 2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.« less

  13. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides

    DOE PAGES

    Arca, Elisabetta; Lany, Stephan; Perkins, John D.; ...

    2018-03-01

    We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn 3MoN 4 and ZnMoN 2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn 3MoN 4 to ZnMoN 2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN 2 stoichiometry, in contrast to the Zn 3MoN 4 stoichiometry, where ordered wurtzite is predicted to be the ground state.more » The formation of Zn 3MoN 4-ZnMoN 2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn 3MoN 4 to +IV in ZnMoN 2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as 'redox-mediated stabilization.' The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn 3MoN 4 and ZnMoN 2 compounds. The smooth change in the Mo oxidation state between Zn 3MoN 4 and ZnMoN 2 stoichiometries leads to a continuous change in optoelectronic properties - from resistive and semitransparent Zn 3MoN 4 to conductive and absorptive ZnMoN 2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.« less

  14. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...

    2017-05-17

    In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less

  15. Synthesis of phenanthridine derivatives by microwave-mediated cyclization of o-furyl(allylamino)arenes.

    PubMed

    Read, Matthew Lovell; Gundersen, Lise-Lotte

    2013-02-01

    A novel and efficient synthesis of phenanthridines and aza analogues is reported. The key step is a microwave-mediated intramolecular Diels-Alder cyclization of o-furyl(allylamino)arenes. In the presence of a catalytic amount of acid, the DA-adduct reacts further to give the dihydrophenanthridines, which easily can be oxidized to fully aromatic compounds by air in the presence of UV light or by DDQ.

  16. Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds.

    PubMed

    Avdieiev, Stanislav; Gera, Lajos; Havrylyuk, Dmytro; Hodges, Robert S; Lesyk, Roman; Ribrag, Vincent; Vassetzky, Yegor; Kavsan, Vadym

    2014-08-01

    Glioblastoma (GB), the most aggressive brain tumour, and mantle cell lymphoma (MCL), a rare but very aggressive type of lymphoma, are highly resistant to chemotherapy. GB and MCL chemotherapy gives very modest results, the vast majority of patients experience recurrent disease. To find out the new treatment modality for drug-resistant GB and MCL cells, combining of bradykinin (BK) antagonists with conventional temozolomide (TMZ) treatment, and screening of thiazolidinones derivatives were the main objectives of this work. As it was revealed here, BKM-570 was the lead compound among BK antagonists under investigation (IC50 was 3.3 μM) in human GB cells. It strongly suppressed extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation. BK antagonists did not decrease the viability of MCL cells, thus showing the cell-specific mode, while thiazolidinone derivatives, a novel group of promising anti-tumour compounds inhibited proliferation of MCL cells: IC₅₀ of ID 4526 and ID 4527 compounds were 0.27 μM and 0.16 μM, correspondingly. However, single agents are often not effective in clinic due to activation of collateral pathways in tumour cells. We demonstrated a strong synergistic effect after combinatorial treatment by BKM-570 together with TMZ that drastically increased cytotoxic action of this drug in rat and human glioma cells. Small proportion of cells was still viable after such treatment that could be explained by presence of TMZ-resistant cells in the population. It is possible to expect that the combined therapy aimed simultaneously at different elements of tumourigenesis will be more effective with lower drug concentrations than the first-line drug temozolomide used alone in clinics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae.

    PubMed

    Reis de Sá, Leandro Figueira; Toledo, Fabiano Travanca; de Sousa, Bruno Artur; Gonçalves, Augusto César; Tessis, Ana Claudia; Wendler, Edison P; Comasseto, João V; Dos Santos, Alcindo A; Ferreira-Pereira, Antonio

    2014-07-26

    Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals.

  18. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749

  19. Two compounds in bed bug feces are sufficient to elicit off-host aggregation by bed bugs, Cimex lectularius.

    PubMed

    Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A

    2017-01-01

    After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  1. Antiangiogenic activity of semisynthetic biotechnological heparins: low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists.

    PubMed

    Presta, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Belleri, Mirella; Tanghetti, Elena; Leali, Daria; Urbinati, Chiara; Bugatti, Antonella; Ronca, Roberto; Nicoli, Stefania; Moroni, Emanuela; Stabile, Helena; Camozzi, Maura; Hernandez, German Andrés; Mitola, Stefania; Dell'Era, Patrizia; Rusnati, Marco; Ribatti, Domenico

    2005-01-01

    Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives. Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and alpha(v)beta3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/alpha(v)beta3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane. LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/alpha(v)beta3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds.

  2. A role for 12/15-lipoxygenase-derived proresolving mediators in postoperative ileus: protectin DX-regulated neutrophil extravasation.

    PubMed

    Stein, Kathy; Stoffels, Melissa; Lysson, Mariola; Schneiker, Bianca; Dewald, Oliver; Krönke, Gerhard; Kalff, Jörg C; Wehner, Sven

    2016-02-01

    Resolution of inflammation is an active counter-regulatory mechanism involving polyunsaturated fatty acid-derived proresolving lipid mediators. Postoperative intestinal motility disturbances, clinically known as postoperative ileus, occur frequently after abdominal surgery and are mediated by a complex inflammation of the intestinal muscularis externa. Herein, we tested the hypothesis that proresolving lipid mediators are involved in the resolution of postoperative ileus. In a standardized experimental model of postoperative ileus, we detected strong expression of 12/15-lipoxygenase within the postoperative muscularis externa of C57BL/6 mice, predominately located within CX3CR1(+)/Ly6C(+) infiltrating monocytes rather than Ly6G(+) neutrophils. Mass spectrometry analyses demonstrated that a 12/15-lipoxygenase increase was accompanied by production of docosahexaenoic acid-derived lipid mediators, particularly protectin DX and resolvin D2, and their common precursor 17-hydroxy docosahexaenoic acid. Perioperative administration of protectin DX, but not resolvin D2 diminished blood-derived leukocyte infiltration into the surgically manipulated muscularis externa and improved the gastrointestinal motility. Flow cytometry analyses showed impaired Ly6G(+)/Ly6C(+) neutrophil extravasation after protectin DX treatment, whereas Ly6G(-)/Ly6C(+) monocyte numbers were not affected. 12/15-lipoxygenase-deficient mice, lacking endogenous protectin DX synthesis, demonstrated increased postoperative leukocyte levels. Preoperative intravenous administration of a docosahexaenoic acid-rich lipid emulsion reduced postoperative leukocyte infiltration in wild-type mice but failed in 12/15-lipoxygenase-deficient mice mice. Protectin DX application reduced leukocyte influx and rescued 12/15-lipoxygenase-deficient mice mice from postoperative ileus. In conclusion, our results show that 12/15-lipoxygenase mediates postoperative ileus resolution via production of proresolving docosahexaenoic

  3. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds.

    PubMed

    Radivojevic, Jelena; Skaro, Sanja; Senerovic, Lidija; Vasiljevic, Branka; Guzik, Maciej; Kenny, Shane T; Maslak, Veselin; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2016-01-01

    A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.

  4. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  5. [Experimental evaluation of actoprotective activity of nitrogen-containing heterocyclic compounds derivatives in extreme conditions].

    PubMed

    Tsublova, E G; Ivanova, T G; Ivanova, T N; Iasnetsov, V V

    2013-07-01

    In experiments on nonlinear male mice the ability of new derivatives of nitrogen-containing heterocyclic compounds to increase the physical working capacity in conditions of hyperthermia, hypothermia and acute normobaric hypoxia and hypercapnia has been investigated. It is established, that pyridine derivative IBHF-11 has more expressed positive action in the said conditions. It provided increase of the working capacity of animals at all kinds of extreme influence, and the value of positive action was comparable, and in conditions of acute normobaric hypoxia and hypercapnia exceeded those at the reference products bemitil and bromantan.

  6. Novel water-soluble curcumin derivative mediating erectile signaling.

    PubMed

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  7. Inhibitory Effect of Natural Anti-Inflammatory Compounds on Cytokines Released by Chronic Venous Disease Patient-Derived Endothelial Cells

    PubMed Central

    Tisato, Veronica; Zauli, Giorgio; Rimondi, Erika; Gianesini, Sergio; Brunelli, Laura; Menegatti, Erica; Zamboni, Paolo; Secchiero, Paola

    2013-01-01

    Large vein endothelium plays important roles in clinical diseases such as chronic venous disease (CVD) and thrombosis; thus to characterize CVD vein endothelial cells (VEC) has a strategic role in identifying specific therapeutic targets. On these bases we evaluated the effect of the natural anti-inflammatory compounds α-Lipoic acid and Ginkgoselect phytosome on cytokines/chemokines released by CVD patient-derived VEC. For this purpose, we characterized the levels of a panel of cytokines/chemokines (n = 31) in CVD patients' plasma compared to healthy controls and their release by VEC purified from the same patients, in unstimulated and TNF-α stimulated conditions. Among the cytokines/chemokines released by VEC, which recapitulated the systemic profile (IL-8, TNF-α, GM-CSF, INF-α2, G-CSF, MIP-1β, VEGF, EGF, Eotaxin, MCP-1, CXCL10, PDGF, and RANTES), we identified those targeted by ex vivo treatment with α-Lipoic acid and/or Ginkgoselect phytosome (GM-CSF, G-CSF, CXCL10, PDGF, and RANTES). Finally, by investigating the intracellular pathways involved in promoting the VEC release of cytokines/chemokines, which are targeted by natural anti-inflammatory compounds, we documented that α-Lipoic acid significantly counteracted TNF-α-induced NF-κB and p38/MAPK activation while the effects of Ginkgo biloba appeared to be predominantly mediated by Akt. Our data provide new insights into the molecular mechanisms of CVD pathogenesis, highlighting new potential therapeutic targets. PMID:24489443

  8. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Deepa B.; Padukudru, Mahesh A.; Chitturi, CH. M. Kumari; Vimalambike, Manjunath G.

    2017-01-01

    Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis. PMID:29190639

  9. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC).

    PubMed

    Anantharaju, Preethi G; Reddy, Deepa B; Padukudru, Mahesh A; Chitturi, Ch M Kumari; Vimalambike, Manjunath G; Madhunapantula, SubbaRao V

    2017-01-01

    Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis.

  10. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Anti-Inflammatory and Analgesic Effects of the Marine-Derived Compound Excavatolide B Isolated from the Culture-Type Formosan Gorgonian Briareum excavatum

    PubMed Central

    Lin, Yen-You; Lin, Sung-Chun; Feng, Chien-Wei; Chen, Pei-Chin; Su, Yin-Di; Li, Chi-Min; Yang, San-Nan; Jean, Yen-Hsuan; Sung, Ping-Jyun; Duh, Chang-Yih; Wen, Zhi-Hong

    2015-01-01

    In recent years, several marine-derived compounds have been clinically evaluated. Diterpenes are secondary metabolites from soft coral that exhibit anti-inflammatory, anti-tumor and cytotoxic activities. In the present study, we isolated a natural diterpene product, excavatolide B, from cultured Formosan gorgonian Briareum excavatum and investigated its anti-inflammatory activities. We found that excavatolide B significantly inhibited the mRNA expression of the proinflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-challenged murine macrophages (RAW 264.7). We also examined the anti-inflammatory and anti-nociceptive effects of excavatolide B on intraplantar carrageenan-induced inflammatory responses. Excavatolide B was found to significantly attenuate carrageenan-induced nociceptive behaviors, mechanical allodynia, thermal hyperalgesia, weight bearing deficits and paw edema. In addition, excavatolide B inhibited iNOS, as well as the infiltration of immune cells in carrageenan-induced inflammatory paw tissue. PMID:25923315

  12. Predicting reactivity of model DOM compounds towards chlorine with mediated electrochemical oxidation.

    PubMed

    de Vera, Glen Andrew; Gernjak, Wolfgang; Radjenovic, Jelena

    2017-05-01

    Chlorine demand of a water sample depends on the characteristics of dissolved organic matter (DOM). It is an important parameter for water utilities used to assess oxidant and/or disinfectant consumption of source waters during treatment and distribution. In this study, model compounds namely resorcinol, tannic acid, vanillin, cysteine, tyrosine, and tryptophan were used to represent the reactive moieties of complex DOM mixtures. The reactivity of these compounds was evaluated in terms of Cl 2 demand and electron donating capacity (EDC). The EDC was determined by mediated electrochemical oxidation (MEO) which involves the use of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as an electron shuttle. The Cl 2 demand of readily oxidizable compounds (resorcinol, tannic acid, vanillin, and cysteine) was found to correlate well with EDC (R 2  = 0.98). The EDC values (mol e - /mol C) of the model compounds are as follows: 1.18 (cysteine) > 0.77 (resorcinol) > 0.59 (vanillin) > 0.52 (tannic acid) > 0.36 (tryptophan) > 0.19 (tyrosine). To determine the effect of pre-oxidation on EDC, ozone was added (0.1 mol O 3 /mol C) into each model compound solution. Ozonation caused a general decrease in EDC (10-40%), chlorine demand (10-30%), and UV absorbance (10-40%), except for tyrosine which showed both increased UV 275 and EDC. Before and after ozonation, 24 h disinfection byproduct (DBP) formation potential tests (Cl 2 residual = 1.5 mg/L) were conducted to evaluate the use of EDC for DBP formation prediction. The results indicate that there was no significant correlation between the EDC of the model compounds and the formation potentials of adsorbable organic chlorine, trichloromethane, and trichloroacetic acid. This suggests that while EDC correlates with Cl 2 demand, chlorine consumption may not directly translate to DBP formation because oxidation reactions may dominate over substitution reactions. Overall, this study provides useful insights

  13. Structure and diffusion of furans and other cellulose-derived compounds in solvents via MD simulation

    NASA Astrophysics Data System (ADS)

    Rabideau, Brooks; Ismail, Ahmed

    2011-03-01

    There is now a large push towards the development of energy sources that are both environmentally friendly and sustainable; with the conversion of cellulose derived from biomass into biofuels being one promising route. In this conversion, a variety of intermediary compounds have been identified, which appear critical to successful expansion of the process to an industrial scale. Here we examine the structure and diffusion of these furans and acids derived from cellulose within ionic liquids via molecular dynamic simulation. Ionic liquids have shown the ability to dissolve cellulose with certain `green' benefits over existing, conventional solvents. Specifically, we study the solvation properties of these chemicals by examining the pair correlation functions of solute with solvent, and by exploring the agglomeration and separation of these chemicals from the solvent as well as the hydrogen bonding between species. Additionally, we determine the diffusion constant of these compounds in ionic liquid and aqueous solvents.

  14. Gracilins: Spongionella-derived promising compounds for Alzheimer disease.

    PubMed

    Leirós, Marta; Alonso, Eva; Rateb, Mostafa E; Houssen, Wael E; Ebel, Rainer; Jaspars, Marcel; Alfonso, Amparo; Botana, Luis M

    2015-06-01

    Alzheimer disease (AD) is a neurodegenerative pathology that is strongly linked with oxidative stress and mitochondrial dysfunction. The unclear origin of AD lead researchers to study several drug targets and it has been proposed that a multi-target drug would be a more promising candidate. Gracilins are sponge-derived diterpenoid compounds that have been described to act as antioxidants through mitochondrial targeting and through the induction of Nrf2 translocation. In this work gracilin H, A and L and tetrahydroaplysulphurin-1 have been studied in two neuroblastoma cellular models. First the BE(2)-M17 cell line has been used as a model for APP metabolism studies and next, SH-SY5Y-TMHT441 cells were used for AD drugs screening targeting tau phosphorylation. In vitro assays showed that gracilins were able to inhibit BACE1, reduce tau hyperphosphorylation and inhibit ERK. These positive results lead us to test gracilin H and L in 3xTg-AD mice. After chronic intraperitoneal treatments, a preliminary behavioral test pointed a positive trend on learning and spatial memory of mice treated with these compounds. Moreover in vivo assays confirmed the previous results. Amyloid-β42 and hyperphosphorylated tau levels were decreased after treatments and the ERK inhibition was also observed. This research highlights new bioactivities for gracilins, such as BACE1 and ERK inhibition, and provides more evidence for their potential therapeutic application in neurodegenerative diseases due to their multi-target activities, especially in AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Antinociceptive Agents.

    PubMed

    Altıntop, Mehlika Dilek; Can, Özgür Devrim; Demir Özkay, Ümide; Kaplancıklı, Zafer Asım

    2016-08-01

    In the current work, new 1,3,4-thiadiazole derivatives were synthesized and investigated for their antinociceptive effects on nociceptive pathways of nervous system. The effects of these compounds against mechanical, thermal and chemical stimuli were evaluated by tail-clip, hot-plate and acetic acid-induced writhing tests, respectively. In addition, activity cage was performed to assess the locomotor activity of animals. The obtained data indicated that compounds 3b, 3c, 3d, 3e, 3g and 3h increased the reaction times of mice both in the hot-plate and tail-clip tests, indicating the centrally mediated antinociceptive activity of these compounds. Additionally, the number of writhing behavior was significantly decreased by the administration of compounds 3a, 3c, 3e and 3f, which pointed out the peripherally mediated antinociceptive activity induced by these four compounds. According to the activity cage tests, compounds 3a, 3c and 3f significantly decreased both horizontal and vertical locomotor activity of mice. Antinociceptive behavior of these three compounds may be non-specific and caused by possible sedative effect or motor impairments.

  16. Plant-derived compounds in treatment of leishmaniasis

    PubMed Central

    Oryan, A

    2015-01-01

    Leishmaniasis is a neglected public health problem caused by the protozoan species belonging to the genus Leishmania affecting mostly the poor populations of developing countries. The causative organism is transmitted by female sandflies. Cutaneous, mucocutaneous, and visceral clinical manifestations are the most frequent forms of leishmaniasis. Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, paromomycin, miltefosin and liposomal amphotericin B. However, the application of these drugs is limited due to low efficacy, life-threatening side effects, high toxicity, induction of parasite resistance, length of treatment and high cost. Given the fact that antileishmanial vaccines may not become available in the near future, the search for better drugs should be continued. Natural products may offer an unlimited source of chemical diversity to identify new drug modules. New medicines should be less toxic or non-toxic, safe, more efficient, less expensive and readily available antileishmanial agents, especially for low-income populations. In the present review, special focus is on medicinal plants used against leishmanaiasis. The bioactive phytocompounds present in the plant derivatives including the crude extracts, essential oils, and other useful compounds can be a good source for discovering and producing new antileishmanial medicines. PMID:27175144

  17. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.

    PubMed

    Treibmann, Stephanie; Hellwig, Anne; Hellwig, Michael; Henle, Thomas

    2017-12-06

    Fructose and dicarbonyl compounds resulting from fructose in heated foods have been linked to pathophysiological pathways of several metabolic disorders. Up to now, very little has been known about the Maillard reaction of fructose in food. Heyns rearrangement compounds (HRCs), the first stable intermediates of the Maillard reaction between amino components and fructose, have not yet been quantitated as protein-bound products in food. Therefore, the HRCs glucosyllysine and mannosyllysine were synthesized and characterized by NMR. Protein-bound HRCs in cookies containing various sugars and in commercial bakery products were quantitated after enzymatic hydrolysis by RP-HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Protein-bound HRCs were quantitated for the first time in model cookies and in commercial bakery products containing honey, banana, and invert sugar syrup. Concentrations of HRCs from 19 to 287 mg/kg were found, which were similar to or exceeded the content of other frequently analyzed Maillard reaction products, such as N-ε-carboxymethyllysine (10-76 mg/kg), N-ε-carboxyethyllysine (2.5-53 mg/kg), and methylglyoxal-derived hydroimidazolone 1 (10-218 mg/kg) in the analyzed cookies. These results show that substantial amounts of HRCs form during food processing. Analysis of protein-bound HRCs in cookies is therefore useful to evaluate the Maillard reaction of fructose.

  18. Indole compounds may be promising medicines for ulcerative colitis.

    PubMed

    Sugimoto, Shinya; Naganuma, Makoto; Kanai, Takanori

    2016-09-01

    Indole compounds are extracted from indigo plants and have been used as blue or purple dyes for hundreds of years. In traditional Chinese medicine, herbal agents in combination with Qing-Dai (also known as indigo naturalis) have been used to treat patients with ulcerative colitis (UC) and to remedy inflammatory conditions. Recent studies have noted that indole compounds can be biosynthesized from tryptophan metabolites produced by various enzymes derived from intestinal microbiota. In addition to their action on indole compounds, the intestinal microbiota produce various tryptophan metabolites that mediate critical functions through distinct pathways and enzymes. Furthermore, some indole compounds, such as indigo and indirubin, act as ligands for the aryl hydrocarbon receptor. This signaling pathway stimulates mucosal type 3 innate lymphoid cells to produce interleukin-22, which induces antimicrobial peptide and tight junction molecule production, suggesting a role for indole compounds during the mucosal healing process. Thus, indole compounds may represent a novel treatment strategy for UC patients. In this review, we describe the origin and function of this indole compound-containing Chinese herb, as well as the drug development of indole compounds.

  19. 6-shogaol, a major compound in ginger, induces aryl hydrocarbon receptor-mediated transcriptional activity and gene expression.

    PubMed

    Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto

    2014-06-18

    Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation.

  20. Novel iridium (III)‑derived organometallic compound for the inhibition of human platelet activation.

    PubMed

    Shyu, Kou-Gi; Velusamy, Marappan; Hsia, Chih-Wei; Yang, Chih-Hao; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Sheu, Joen-Rong; Li, Jiun-Yi

    2018-05-01

    Since cisplatin achieved clinical success, transition metal platinum (Pt) drugs have been effectively used for the treatment of cancer. Iridium (Ir) compounds are considered to be potential alternatives to Pt compounds, as they possess promising anticancer effects with minor side effects. Platelet activation is associated with the metastasis and progression of cancer, and also with arterial thrombosis. Therefore, it is necessary to develop novel, effective antithrombotic agents. An Ir (III)‑derived complex, [Ir (Cp*) 1‑(2‑pyridyl)‑3‑(3‑methoxyphenyl)imidazo[1,5‑a]pyridine Cl]BF4 (Ir‑3), was developed as a novel antiplatelet drug. Ir‑3 exerted more potent inhibitory activity on platelet aggregation stimulated by collagen compared with other agonists, including thrombin. In collagen‑activated platelets, Ir‑3 also inhibited adenosine trisphosphate release, intracellular Ca+2 mobilization and surface P‑selectin expression, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), protein kinase B (Akt) and c‑Jun N‑terminal kinase (JNK) 1, but not p38 mitogen‑activated protein kinase or extracellular signal‑regulated kinases. Ir‑3 did not markedly affect phorbol 12, 13‑dibutyrate‑stimulated platelet aggregation. Neither the adenylate cyclase inhibitor SQ22536 nor the guanylate cyclase inhibitor 1H‑[1, 2, 4] oxadiazolo [4,3‑a]quinoxalin‑1‑one significantly reversed the Ir‑3‑mediated inhibition of platelet aggregation. Furthermore, Ir‑3 had no considerable diminishing effects on OH radical signals in collagen‑stimulated platelets or Fenton reaction solution. In conclusion, Ir‑3 serves a novel function in the inhibition of platelet aggregation through inhibiting the PLCγ2‑PKC cascade, and the subsequent suppression of Akt and JNK1 activation. Therefore, Ir‑3 may be a potential novel therapeutic agent for the treatment of thromboembolic disorders, or the interplay between platelets and

  1. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids

    PubMed Central

    2013-01-01

    Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from “very active” to “weakly active”. However, only the compounds which showed anti-malarial activities from “very active” to “moderately active” are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria. PMID:24330395

  2. Glucosinolate-derived compounds as a green manure for controlling Escherichia coli O157:H7 and Salmonella in soil

    USDA-ARS?s Scientific Manuscript database

    Plants from the Brassica family contain glucosinolate-derived compounds (GDC) which may act as natural antimicrobials in soil. Consequently, Brassica cover crops planted after harvest of the primary crop in the fall, and/or ntercropped during the growing season, could provide benefits derived from...

  3. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections.

    PubMed

    Gómez-Calderón, Cecilia; Mesa-Castro, Carol; Robledo, Sara; Gómez, Sergio; Bolivar-Avila, Santiago; Diaz-Castillo, Fredyc; Martínez-Gutierrez, Marlen

    2017-01-18

    The transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide, due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral effects on DENV and CHIKV infections in those same cells. Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic fractionation, leading to the identification of four compounds: two coumarins, derived from M. americana; and lupeol acetate and voacangine derived from T. cymosa.. The cytotoxicity of each compound was subsequently assessed by the MTT method (at concentrations from 400 to 6.25 μg/mL). Pre- and post-treatment antiviral assays were performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis. The compounds showed low toxicity at concentrations ≤ 200 μg/mL. The compounds coumarin A and coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during the implementation of the two experimental strategies employed here (post-treatment with inhibition percentages greater than 50%, p < 0.01; and pre-treatment with percentages of inhibition greater than 40%, p < 0.01). However, the lupeol acetate and voacangine compounds, which were derived from the T. cymosa plant, only significantly inhibited the DENV infection during the post-treatment strategy (at inhibition percentages greater than 70%, p < 0.01). In vitro, the coumarins are capable of

  4. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects.

    PubMed

    Sánchez-Salgado, Juan Carlos; Bilbao-Ramos, Pablo; Dea-Ayuela, María Auxiliadora; Hernández-Luis, Francisco; Bolás-Fernández, Francisco; Medina-Franco, José L; Rojas-Aguirre, Yareli

    2018-05-10

    Leishmaniasis is a neglected tropical disease that currently affects 12 million people, and over 1 billion people are at risk of infection. Current chemotherapeutic approaches used to treat this disease are unsatisfactory, and the limitations of these drugs highlight the necessity to develop treatments with improved efficacy and safety. To inform the rational design and development of more efficient therapies, the present study reports a chemoinformatic approach using the ChEMBL database to retrieve benzimidazole as a target scaffold. Our analysis revealed that a limited number of studies had investigated the antileishmanial effects of benzimidazoles. Among this limited number, L. major was the species most commonly used to evaluate the antileishmanial effects of these compounds, whereas L. amazonensis and L. braziliensis were used least often in the reported studies. The antileishmanial activities of benzimidazole derivatives were notably variable, a fact that may depend on the substitution pattern of the scaffold. In addition, we investigated the effects of a benzimidazole derivative on promastigotes and amastigotes of L. infantum and L. amazonensis using a novel fluorometric method. Significant antileishmanial effects were observed on both species, with L. amazonensis being the most sensitive. To the best of our knowledge, this chemoinformatic analysis represents the first attempt to determine the relevance of benzimidazole scaffolds for antileishmanial drug discovery using the ChEMBL database. The present findings will provide relevant information for future structure-activity relationship studies and for the investigation of benzimidazole-derived drugs as potential treatments for leishmaniasis.

  5. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds.

    PubMed

    Bourbonnais, R; Paice, M G; Freiermuth, B; Bodie, E; Borneman, S

    1997-12-01

    Laccase-catalyzed oxygen delignification of kraft pulp offers some potential as a replacement for conventional chemical bleaching and has the advantage of requiring much lower pressure and temperature. However, chemical mediators are required for effective delignification by laccase, and their price is currently too high at the dosages required. To date, most studies have employed laccase from Trametes versicolor. We have found significant differences in reactivity between laccases from different fungi when they are tested for pulp delignification in the presence of the mediators 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). A more detailed study of T. versicolor laccase with ABTS and HBT showed that HBT gave the most extensive delignification over 2 h but deactivated the enzyme, and therefore a higher enzyme dosage was required. Other mediators, including 1-nitroso-2-naphthol-3,6-disulfonic acid, 4-hydroxy-3-nitroso-1-naphthalenesulfonic acid, promazine, chlorpromazine, and Remazol brilliant blue, were also tested for their ability to delignify kraft pulp. Studies with dimeric model compounds indicated that the mechanisms of oxidation by ABTS and HBT are different. In addition, oxygen uptake by laccase is much slower with HBT than with ABTS. It is proposed that the dication of ABTS and the 1-oxide radical of HBT, with redox potentials in the 0.8- to 0.9-V range, are required for pulp delignification.

  6. The perspective of caffeine and caffeine derived compounds in therapy.

    PubMed

    Pohanka, M

    2015-01-01

    Caffeine (1,3,7-trimethylxanthine) is a plant secondary metabolite with a significant impact on multiple processes and regulatory pathways in the body. Though major part of the population meets caffeine via coffee, tea or chocolate, it has also an important role in pharmacology and it is used as a supplementary substance in medicaments. Currently, the ability of caffeine to ameliorate some neurodegenerative disorders is proved in some studies. This review describes basic data about caffeine including toxicity, pharmacokinetics, biological mechanism of the action, and metabolism. Beside this, promising applications of caffeine, new medicaments and derivatives are discussed. Relevant papers and inventions are depicted in the manuscript. Caffeine is a pharmacologically promising substance that deserves big consideration in the current research and development. The compound has several reasons to be an object of scientific interest and to be used for pharmacology purposes. Despite an extensive research for a long time, no significantly negative effects on human health were proved hence caffeine can be considered as a completely safe compound. The recent data about amelioration of neurodegenerative and other disorders are promising and deserving more work on the issue. ARTICLE HIGHLIGHTS: Caffeine is a purine alkaloid from plants and it has a broad use in current pharmacology. Caffeine is a competitive antagonist of neurotransmitter adenosine on adenosine receptors. The substance is added as a supplementary to drugs and food.Besides interfering on adenosine receptors, caffeine interacts with acetylcholinesterase, monoamine oxidase, phosphodiesterase, ryanodine receptors and others.Current research is devoted to the role of caffeine in neurodegenerative diseases and immunity alteration. New chemical compounds based on caffeine moiety are prepared (Tab. 4, Fig. 6, Ref. 149).

  7. Assessment of the significance of patent-derived information for the early identification of compound-target interaction hypotheses.

    PubMed

    Senger, Stefan

    2017-04-21

    Patents are an important source of information for effective decision making in drug discovery. Encouragingly, freely accessible patent-chemistry databases are now in the public domain. However, at present there is still a wide gap between relatively low coverage-high quality manually-curated data sources and high coverage data sources that use text mining and automated extraction of chemical structures. To secure much needed funding for further research and an improved infrastructure, hard evidence is required to demonstrate the significance of patent-derived information in drug discovery. Surprisingly little such evidence has been reported so far. To address this, the present study attempts to quantify the relevance of patents for formulating and substantiating hypotheses for compound-target interactions. A manually-curated set of 130 compound-target interaction pairs annotated with what are considered to be the earliest patent and publication has been produced. The analysis of this set revealed that in stark contrast to what has been reported for novel chemical structures, only about 10% of the compound-target interaction pairs could be found in publications in the scientific literature within one year of being reported in patents. The average delay across all interaction pairs is close to 4 years. In an attempt to benchmark current capabilities, it was also examined how much of the benefit of using patent-derived information can be retained when a bioannotated version of SureChEMBL is used as secondary source for the patent literature. Encouragingly, this approach found the patents in the annotated set for 72% of the compound-target interaction pairs. Similarly, the effect of using the bioactivity database ChEMBL as secondary source for the scientific literature was studied. Here, the publications from the annotated set were only found for 46% of the compound-target interaction pairs. Patent-derived information is a significant enabler for formulating compound

  8. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  9. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents

    PubMed Central

    Zhang, Xiao-Fei; Sun, Rong-qin; Jia, Yi-fan; Chen, Qing; Tu, Rong-Fu; Li, Ke-ke; Zhang, Xiao-Dong; Du, Run-Lei; Cao, Ri-hui

    2016-01-01

    A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment. PMID:27625151

  10. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  11. Synthesis and serotonergic activity of variously substituted (3-amido)phenylpiperazine derivatives and benzothiophene-4-piperazine derivatives: novel antagonists for the vascular 5-HT1B receptor.

    PubMed

    Moloney, Gerard P; Garavelas, Agatha; Martin, Graeme R; Maxwell, Miles; Glen, Robert C

    2004-04-01

    The synthesis and vascular 5-HT(1B) receptor activity of a novel series of substituted 3-amido phenylpiperazine and 4-(4-methyl-1-piperazinyl)-1-benzo[b]thiophene derivatives is described. Modifications to the amido linked sidechains of the 3-amidophenyl-piperazine derivatives and to the 2-sidechain of the 1-benzo[b]thiophene derivatives have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B) receptor of pK(B) > 7.0. From the 3-amidophenyl-piperazine series, N-(4-(4-chlorophenyl)thiazol-2-yl-3-(4-methyl-1-piperazinyl)benzamide (30) and from the benzo[b]thiophene-4-piperazine series N-(2-ethylphenyl)-4-(4-methyl-1- piperazinyl)-1-benzo[b]thiophene-2-carboxamide (38) were identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B) receptor mediated agonist activity in the rabbit femoral artery) and competitive vascular 5-HT(1B) receptor antagonist. The affinity of compounds from these two series of compounds for the vascular 5-HT(1B) receptor is discussed as well as a proposed mode of binding to the receptor pharmacophore.

  12. Chemical compound-based direct reprogramming for future clinical applications

    PubMed Central

    Takeda, Yukimasa; Harada, Yoshinori; Yoshikawa, Toshikazu; Dai, Ping

    2018-01-01

    Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy. PMID:29739872

  13. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives.

    PubMed

    MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J

    1999-11-01

    To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.

  14. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators

    PubMed Central

    Sirimahachaiyakul, Pornthep; Sood, Ravi F.; Muffley, Lara A.; Seaton, Max; Lin, Cheng-Ta; Qiao, Liang; Armaly, Jeffrey S.; Hocking, Anne M.; Gibran, Nicole S.

    2015-01-01

    Introduction Abnormal pigmentation following cutaneous injury causes significant patient distress and represents a barrier to recovery. Wound depth and patient characteristics influence scar pigmentation. However, we know little about the pathophysiology leading to hyperpigmentation in healed shallow wounds and hypopigmentation in deep dermal wound scars. We sought to determine whether dermal fibroblast signaling influences melanocyte responses. Methods and Materials Epidermal melanocytes from three Caucasians and three African-Americans were genotyped for single nucleotide polymorphisms (SNPs) across the entire genome. Melanocyte genetic profiles were determined using principal component analysis. We assessed melanocyte phenotype and gene expression in response to dermal fibroblast-conditioned medium and determined potential mesenchymal mediators by proteome profiling the fibroblast-conditioned medium. Results Six melanocyte samples demonstrated significant variability in phenotype and gene expression at baseline and in response to fibroblast-conditioned medium. Genetic profiling for SNPs in receptors for 13 identified soluble fibroblast-secreted mediators demonstrated considerable heterogeneity, potentially explaining the variable melanocyte responses to fibroblast-conditioned medium. Discussion Our data suggest that melanocytes respond to dermal fibroblast-derived mediators independent of keratinocytes and raise the possibility that mesenchymal-epidermal interactions influence skin pigmentation during cutaneous scarring. PMID:26418010

  15. Effect of nitric oxide-releasing derivative of indomethacin on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    PubMed

    Choe, So-Hui; Choi, Eun-Young; Hyeon, Jin-Yi; Choi, In Soon; Kim, Sung-Jo

    2017-10-14

    The purpose of this study was to investigate the influences of NCX 2121, a nitric oxide (NO)-releasing derivative of indomethacin, upon the generation of proinflammatory mediators using murine macrophages activated by lipopolysaccharide (LPS) isolated from Prevotella intermedia, which is one of the pathogens implicated in periodontal diseases. Inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their relevant mRNA were significantly attenuated by NCX 2121 in RAW264.7 cells activated by P. intermedia LPS. NCX 2121 was much more effective than the parental compound indomethacin in reducing these proinflammatory mediators. NCX 2121 triggered induction of heme oxygenase-1 (HO-1) in cells exposed to P. intermedia LPS, and its inhibitory influence upon P. intermedia LPS-elicited NO generation was notably blocked by SnPP treatment. NCX 2121 attenuated NF-κB-dependent SEAP release induced by P. intermedia LPS. NCX 2121 did not display inhibitory action towards IκB-α degradation triggered by LPS. Instead, it significantly diminished nuclear translocation as well as DNA-binding action of NF-κB p50 subunit elicited by P. intermedia LPS. Further, NCX 2121 significantly up-regulated SOCS1 mRNA expression in cells challenged with P. intermedia LPS. In summary, NCX 2121 down-regulates P. intermedia LPS-elicited generation of NO, IL-1β and IL-6 in murine macrophages in a mechanism that involves anti-inflammatory HO-1 induction as well as decrement of NF-κB activation, which may be associated with SOCS1 expression. NCX 2121 may have potential benefits as a host immunomodulatory agent for the therapy of periodontal disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. NCX 4040, a nitric oxide-donating aspirin derivative, inhibits Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    PubMed

    Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Park, Hae Ryoun; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2015-12-05

    In this study, the effects and underlying mechanisms of NCX 4040, a nitric oxide (NO)-donating aspirin derivative, on the production of proinflammatory mediators were examined using murine macrophages exposed to lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in the etiology of periodontal disease. NCX 4040 significantly reduced P. intermedia LPS-induced production of inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. Notably, NCX 4040 was much more effective than the parental compound aspirin in reducing LPS-induced production of inflammatory mediators. NCX 4040 induced the expression of heme oxygenase-1 (HO-1) in cells treated with P. intermedia LPS, and the suppressive effect of NCX 4040 on LPS-induced NO production was significantly reversed by SnPP, a competitive HO-1 inhibitor. NCX 4040 did not influence LPS-induced phosphorylation of JNK and p38. IκB-α degradation as well as nuclear translocation and DNA-binding activities of NF-κB p65 and p50 subunits induced by P. intermedia LPS were significantly reduced by NCX 4040. Besides, LPS-induced phosphorylation of STAT1 and STAT3 was significantly down-regulated by NCX 4040. Further, NCX 4040 elevated the SOCS1 mRNA in cells stimulated with LPS. This study indicates that NCX 4040 inhibits P. intermedia LPS-induced production of NO, IL-1β and IL-6 in murine macrophages through anti-inflammatory HO-1 induction and suppression of NF-κB, STAT1 and STAT3 activation, which is associated with the activation of SOCS1 signaling. NCX 4040 could potentially be a promising tool in the treatment of periodontal disease, although further studies are required to verify this. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease

    PubMed Central

    Lee, In-Ah; Kamba, Alan; Low, Daren; Mizoguchi, Emiko

    2014-01-01

    Family 18 chitinases have a binding capacity with chitin, a polymer of N-acetylglucosamine. Recent studies strongly suggested that chitinase 3-like 1 (CHI3L1, also known as YKL-40) and acidic mammalian chitinase, the two major members of family 18 chitinases, play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), bronchial asthma and several other inflammatory disorders. Based on the data from high-throughput screening, it has been found that three methylxanthine derivatives, caffeine, theophylline, and pentoxifylline, have competitive inhibitory effects against a fungal family 18 chitinase by specifically interacting with conserved tryptophans in the active site of this protein. Methylxanthine derivatives are also known as adenosine receptor antagonists, phosphodiesterase inhibitors and histone deacetylase inducers. Anti-inflammatory effects of methylxanthine derivatives have been well-documented in the literature. For example, a beneficial link between coffee or caffeine consumption and type 2 diabetes as well as liver cirrhosis has been reported. Furthermore, theophylline has a long history of being used as a bronchodilator in asthma therapy, and pentoxifylline has an immuno-modulating effect for peripheral vascular disease. However, it is still largely unknown whether these methylxanthine derivative-mediated anti-inflammatory effects are associated with the inhibition of CHI3L1-induced cytoplasmic signaling cascades in epithelial cells. In this review article we will examine the above possibility and summarize the biological significance of methylxanthine derivatives in intestinal epithelial cells. We hope that this study will provide a rationale for the development of methylxanthine derivatives, in particular caffeine, -based anti-inflammatory therapeutics in the field of IBD and IBD-associated carcinogenesis. PMID:24574789

  18. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease.

    PubMed

    Lee, In-Ah; Kamba, Alan; Low, Daren; Mizoguchi, Emiko

    2014-02-07

    Family 18 chitinases have a binding capacity with chitin, a polymer of N-acetylglucosamine. Recent studies strongly suggested that chitinase 3-like 1 (CHI3L1, also known as YKL-40) and acidic mammalian chitinase, the two major members of family 18 chitinases, play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), bronchial asthma and several other inflammatory disorders. Based on the data from high-throughput screening, it has been found that three methylxanthine derivatives, caffeine, theophylline, and pentoxifylline, have competitive inhibitory effects against a fungal family 18 chitinase by specifically interacting with conserved tryptophans in the active site of this protein. Methylxanthine derivatives are also known as adenosine receptor antagonists, phosphodiesterase inhibitors and histone deacetylase inducers. Anti-inflammatory effects of methylxanthine derivatives have been well-documented in the literature. For example, a beneficial link between coffee or caffeine consumption and type 2 diabetes as well as liver cirrhosis has been reported. Furthermore, theophylline has a long history of being used as a bronchodilator in asthma therapy, and pentoxifylline has an immuno-modulating effect for peripheral vascular disease. However, it is still largely unknown whether these methylxanthine derivative-mediated anti-inflammatory effects are associated with the inhibition of CHI3L1-induced cytoplasmic signaling cascades in epithelial cells. In this review article we will examine the above possibility and summarize the biological significance of methylxanthine derivatives in intestinal epithelial cells. We hope that this study will provide a rationale for the development of methylxanthine derivatives, in particular caffeine, -based anti-inflammatory therapeutics in the field of IBD and IBD-associated carcinogenesis.

  19. Reactivities of Various Mediators and Laccases with Kraft Pulp and Lignin Model Compounds

    PubMed Central

    Bourbonnais, R.; Paice, M. G.; Freiermuth, B.; Bodie, E.; Borneman, S.

    1997-01-01

    Laccase-catalyzed oxygen delignification of kraft pulp offers some potential as a replacement for conventional chemical bleaching and has the advantage of requiring much lower pressure and temperature. However, chemical mediators are required for effective delignification by laccase, and their price is currently too high at the dosages required. To date, most studies have employed laccase from Trametes versicolor. We have found significant differences in reactivity between laccases from different fungi when they are tested for pulp delignification in the presence of the mediators 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). A more detailed study of T. versicolor laccase with ABTS and HBT showed that HBT gave the most extensive delignification over 2 h but deactivated the enzyme, and therefore a higher enzyme dosage was required. Other mediators, including 1-nitroso-2-naphthol-3,6-disulfonic acid, 4-hydroxy-3-nitroso-1-naphthalenesulfonic acid, promazine, chlorpromazine, and Remazol brilliant blue, were also tested for their ability to delignify kraft pulp. Studies with dimeric model compounds indicated that the mechanisms of oxidation by ABTS and HBT are different. In addition, oxygen uptake by laccase is much slower with HBT than with ABTS. It is proposed that the dication of ABTS and the 1-oxide radical of HBT, with redox potentials in the 0.8- to 0.9-V range, are required for pulp delignification. PMID:16535747

  20. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria.

    PubMed

    Dos Santos, Fernanda M; de Souza, Maria Gorete; Crotti, Antônio E Miller; Martins, Carlos H G; Ambrósio, Sérgio R; Veneziani, Rodrigo C S; E Silva, Márcio L Andrade; Cunha, Wilson R

    2012-04-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.

  1. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria

    PubMed Central

    dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.

    2012-01-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892

  2. Suppression of Coronary Atherosclerosis by Helix B Surface Peptide, a Nonerythropoietic, Tissue-Protective Compound Derived from Erythropoietin

    PubMed Central

    Ueba, Hiroto; Shiomi, Masashi; Brines, Michael; Yamin, Michael; Kobayashi, Tsutomu; Ako, Junya; Momomura, Shin-ichi; Cerami, Anthony; Kawakami, Masanobu

    2013-01-01

    Erythropoietin (EPO), a type I cytokine originally identified for its critical role in hematopoiesis, has been shown to have nonhematopoietic, tissue-protective effects, including suppression of atherosclerosis. However, prothrombotic effects of EPO hinder its potential clinical use in nonanemic patients. In the present study, we investigated the antiatherosclerotic effects of helix B surface peptide (HBSP), a nonerythropoietic, tissue-protective compound derived from EPO, by using human umbilical vein endothelial cells (HUVECs) and human monocytic THP-1 cells in vitro and Watanabe heritable hyperlipidemic spontaneous myocardial infarction (WHHLMI) rabbits in vivo. In HUVECs, HBSP inhibited apoptosis (≈70%) induced by C-reactive protein (CRP), a direct mediator of atherosclerosis. By using a small interfering RNA approach, Akt was shown to be a key molecule in HBSP-mediated prevention of apoptosis. HBSP also attenuated CRP-induced production of tumor necrosis factor (TNF)-α and matrix metalloproteinase-9 in THP-1 cells. In the WHHLMI rabbit, HBSP significantly suppressed progression of coronary atherosclerotic lesions as assessed by mean cross-sectional stenosis (HBSP 21.3 ± 2.2% versus control peptide 38.0 ± 2.7%) and inhibited coronary artery endothelial cell apoptosis with increased activation of Akt. Furthermore, TNF-α expression and the number of M1 macrophages and M1/M2 macrophage ratio in coronary atherosclerotic lesions were markedly reduced in HBSP-treated animals. In conclusion, these data demonstrate that HBSP suppresses coronary atherosclerosis, in part by inhibiting endothelial cell apoptosis through activation of Akt and in association with decreased TNF-α production and modified macrophage polarization in coronary atherosclerotic lesions. Because HBSP does not have the prothrombotic effects of EPO, our study may provide a novel therapeutic strategy that prevents progression of coronary artery disease. PMID:23648638

  3. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds.

    PubMed

    Tafrihi, Majid; Nakhaei Sistani, Roohollah

    2017-07-01

    Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.

  4. Immune Homeostasis: Effects of Chinese Herbal Formulae and Herb-Derived Compounds on Allergic Asthma in Different Experimental Models.

    PubMed

    Liu, Lu; Wang, Lin-Peng; He, Shan; Ma, Yan

    2018-05-01

    Allergic asthma is thought to arise from an imbalance of immune regulation, which is characterized by the production of large quantities of IgE antibodies by B cells and a decrease of the interferon-γ/interleukin-4 (Th1/Th2) ratio. Certain immunomodulatory components and Chinese herbal formulae have been used in traditional herbal medicine for thousands of years. However, there are few studies performing evidence-based Chinese medicine (CM) research on the mechanisms and effificacy of these drugs in allergic asthma. This review aims to explore the roles of Chinese herbal formulae and herb-derived compounds in experimental research models of allergic asthma. We screened published modern CM research results on the experimental effects of Chinese herbal formulae and herb-derived bioactive compounds for allergic asthma and their possible underlying mechanisms in English language articles from the PubMed and the Google Scholar databases with the keywords allergic asthma, experimental model and Chinese herbal medicine. We found 22 Chinese herb species and 31 herb-derived anti-asthmatic compounds as well as 12 Chinese herbal formulae which showed a reduction of airway hyperresponsiveness, allergen-specifific immunoglobulin E, inflflammatory cell infifiltration and a regulation of Th1 and Th2 cytokines in vivo, in vitro and ex vivo, respectively. Chinese herbal formulae and herbderived bioactive compounds exhibit immunomodulatory, anti-inflflammatory and anti-asthma activities in different experimental models and their various mechanisms of action are being investigated in modern CM research with genomics, proteomics and metabolomics technologies, which will lead to a new era in the development of new drug discovery for allergic asthma in CM.

  5. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation

    PubMed Central

    Wagner, Anika Eva; Terschluesen, Anna Maria; Rimbach, Gerald

    2013-01-01

    A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways. PMID:24454992

  6. Fomiroid A, a Novel Compound from the Mushroom Fomitopsis nigra, Inhibits NPC1L1-Mediated Cholesterol Uptake via a Mode of Action Distinct from That of Ezetimibe

    PubMed Central

    Chiba, Tomohiro; Sakurada, Tsuyoshi; Watanabe, Rie; Yamaguchi, Kohji; Kimura, Yasuhisa; Kioka, Noriyuki; Kawagishi, Hirokazu; Matsuo, Michinori; Ueda, Kazumitsu

    2014-01-01

    Hypercholesterolemia is one of the key risk factors for coronary heart disease, a major cause of death in developed countries. Suppression of NPC1L1-mediated dietary and biliary cholesterol absorption is predicted to be one of the most effective ways to reduce the risk of hypercholesterolemia. In a screen for natural products that inhibit ezetimibe glucuronide binding to NPC1L1, we found a novel compound, fomiroid A, in extracts of the mushroom Fomitopsis nigra. Fomiroid A is a lanosterone derivative with molecular formula C30H48O3. Fomiroid A inhibited ezetimibe glucuronide binding to NPC1L1, and dose-dependently prevented NPC1L1-mediated cholesterol uptake and formation of esterified cholesterol in NPC1L1-expressing Caco2 cells. Fomiroid A exhibited a pharmacological chaperone activity that corrected trafficking defects of the L1072T/L1168I mutant of NPC1L1. Because ezetimibe does not have such an activity, the binding site and mode of action of fomiroid A are likely to be distinct from those of ezetimibe. PMID:25551765

  7. Organosulfur compounds and possible mechanism of garlic in cancer

    PubMed Central

    Omar, S.H.; Al-Wabel, N.A.

    2009-01-01

    Garlic (Allium sativum), a member of the family Liliaceae, contains an abundance of chemical compounds that have been shown to possess beneficial effects to protect against several diseases, including cancer. Evidence supports the protective effects of garlic in stomach, colorectal, breast cancer in humans. The protective effects appear to be related to the presence of organosulfur compounds, predominantly allyl derivatives, which also have been shown to inhibit carcinogenesis in forestomach, esophagus, colon, mammary gland and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Organosulfur compounds in garlic are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans. PMID:23960721

  8. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  9. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    PubMed

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  10. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01.

    PubMed

    Luo, Xiaowei; Zhou, Xuefeng; Lin, Xiuping; Qin, Xiaochu; Zhang, Tianyu; Wang, Junfeng; Tu, Zhengchao; Yang, Bin; Liao, Shengrong; Tian, Yongqi; Pang, Xiaoyan; Kaliyaperumal, Kumaravel; Li, Jian Lin; Tao, Huaming; Liu, Yonghong

    2017-08-01

    Eleven diketopiperazine and fumiquinazoline alkaloids (1-11) together with a tetracyclic triterpenoid helvolic acid (12) were obtained from the cultures of a deep-sea derived fungus Aspergillus sp. SCSIO Ind09F01. The structures of these compounds (1-12) were determined mainly by the extensive NMR, ESIMS spectra data and by comparison with previously described compounds. Besides, anti-tuberculosis, cytotoxic, antibacterial, COX-2 inhibitory and antiviral activities of these compounds were evaluated. Gliotoxin (3), 12,13-dihydroxy-fumitremorgin C (11) and helvolic acid (12) exhibited very strong anti-tuberculosis activity towards Mycobacterium tuberculosis with the prominent MIC 50 values of <0.03, 2.41 and 0.894 μM, respectively, which was here reported for the first time. Meanwhile gliotoxin also displayed significant selective cytotoxicities against K562, A549 and Huh-7 cell lines with the IC 50 values of 0.191, 0.015 and 95.4 μM, respectively.

  11. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    NASA Astrophysics Data System (ADS)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  12. Hydroquinone; A Novel Bioactive Compound from Plant-Derived Smoke Can Cue Seed Germination of Lettuce

    PubMed Central

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus,Aloe vera,Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from G. biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10, and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control. PMID:28553632

  13. Hydroquinone; A Novel Bioactive Compound from Plant-Derived Smoke Can Cue Seed Germination of Lettuce.

    PubMed

    Kamran, Muhammad; Khan, Abdul L; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus , Aloe vera , Ginkgo biloba , and Cymbopogon jwarancusa . Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from G. biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n -hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1 . This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10, and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  14. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  15. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells.

    PubMed

    Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha

    2012-07-01

    Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.

  16. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications

    PubMed Central

    Vardanyan, Ruben S; Hruby, Victor J

    2014-01-01

    Fentanyl and its analogs have been mainstays for the treatment of severe to moderate pain for many years. In this review, we outline the structural and corresponding synthetic strategies that have been used to understand the structure–biological activity relationship in fentanyl-related compounds and derivatives and their biological activity profiles. We discuss how changes in the scaffold structure can change biological and pharmacological activities. Finally, recent efforts to design and synthesize novel multivalent ligands that act as mu and delta opioid receptors and NK-1 receptors are discussed. PMID:24635521

  17. Graft-Derived CCL2 Increases Graft Injury During Antibody-Mediated Rejection of Cardiac Allografts

    PubMed Central

    Abe, Toyofumi; Su, Charles A.; Iida, Shoichi; Baldwin, William M.; Nonomura, Norio; Takahara, Shiro; Fairchild, Robert L.

    2015-01-01

    The pathogenic role of macrophages in antibody-mediated rejection (AMR) remains unclear. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic factor for monocytes and macrophages. The current studies used a murine model of AMR to investigate the role of graft-derived CCL2 in AMR and how macrophages may participate in antibody-mediated allograft injury. B6.CCR5−/−/CD8−/− recipients rejected MHC-mismatched wild type A/J allografts with high donor-reactive antibody titers and diffuse C4d deposition in the large vessels and myocardial capillaries, features consistent with AMR. In contrast, A/J.CCL2−/− allografts induced low donor-reactive antibody titers and C4d deposition at day 7 post-transplant. Decreased donor-reactive CD4 T cells producing IFN-γ were induced in response to A/J.CCL2−/− vs. wild type allografts. Consequently, A/J.CCL2−/− allograft survival was modestly but significantly longer than A/J allografts. Macrophages purified from wild type allografts expressed high levels of IL-1β and IL-12p40 and this expression and the numbers of classically activated macrophages were markedly reduced in CCL2-deficient allografts on day 7. The results indicate that allograft-derived CCL2 plays an important role in directing classically activated macrophages into allografts during AMR and that macrophages are important contributors to the inflammatory environment mediating graft tissue injury in this pathology, suggesting CCL2 as a therapeutic target for AMR. PMID:25040187

  18. The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells.

    PubMed

    Dubon, Maria Jose; Park, Ki-Sook

    2016-04-01

    Substance P (SP) is known to induce the mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) and thus participates in wound repair. However, the cellular and molecular mechanisms responsible for the SP-mediated migration of BM-MSCs were not fully understood. In the present study, we studied the molecular mechanisms that mediate the migration of the BM-derived MSC-like cell line ST2 in response to SP. Using a migration assay and western blot analysis, we noted that SP induced the chemotactic migration of ST2 cells through the intrinsic activation of extracellular signal-regulated kinases (ERKs) and protein kinase B (Akt), the phosphorylated expression levels of which were increased. We noted that Src is involved in the SP-mediated migration of ST2 cells and that focal adhesion kinase (FAK) was activated in the ST2 cells following SP treatment. Membrane ruffling increased in the ST2 cells after SP treatment, as was clearly demonstrated by immunocytochemical analysis. Importantly, using a blocking antibody against N-cadherin (GC-4), we studied cell migration and noted that SP mediated the migration of the ST2 cells through N-cadherin. The present study thus advanced our understanding of the mechanisms through which SP induces BM-MSC migration.

  19. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics.

    PubMed

    Jian, Bo; Hou, Wensheng; Wu, Cunxiang; Liu, Bin; Liu, Wei; Song, Shikui; Bi, Yurong; Han, Tianfu

    2009-06-25

    Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification. In the present study, we developed an A. rhizogenes-mediated transformation of Superroot-derived L. corniculatus for gene function investigation, combining the efficient A. rhizogenes-mediated transformation and the rapid regeneration system of Superroot. The transformation system using A. rhizogenes K599 harbouring pGFPGUSPlus was improved by validating some parameters which may influence the transformation frequency. Using stem sections with one node as explants, a 2-day pre-culture of explants, infection with K599 at OD(600) = 0.6, and co-cultivation on medium (pH 5.4) at 22 degrees C for 2 days enhanced the transformation frequency significantly. As proof of concept, Superroot-derived L. corniculatus was transformed with a gene from wheat encoding an Na+/H+ antiporter (TaNHX2) using the described system. Transgenic Superroot plants were obtained and had increased salt tolerance, as expected from the expression of TaNHX2. A rapid and efficient tool for gene function investigation in L. corniculatus was developed, combining the simplicity and high efficiency of the Superroot regeneration system and the availability of A. rhizogenes-mediated transformation. This system was improved by validating some parameters influencing the transformation frequency, which could reach 92% based on GUS detection. The combination

  20. Marine derived bioactive compounds for treatment of Alzheimer's disease.

    PubMed

    Lakshmi, Sreeja; Prakash, Parvathi; Essa, Musthafa M; Qoronfleh, Walid M; Akbar, Mohammed; Song, Byoung-Joon; Kumar, Suresh; Elumalai, Preetham

    2018-06-01

    Alzheimer's disease (AD ) is mounting as social and economic encumbrance which are accompanied by deficits in cognition and memory. Over the past decades, Alzheimer's disease (AD) holds the frontline as one of the biggest healthcare issues in the world. AD is an age related neurodegenerative disorder marked by a decline in memory and an impairment of cognition. Inspite of tedious scientific effort, AD is still devoid of pharmacotherapeutic strategies for treatment as well as prevention. Current treatment strategies using drugs are symbolic in nature as they treat disease manifestation though are found effective in treating cognition. Inclination of science towards naturopathic treatments aiming at preventing the disease is highly vocal. Application of marine-derived bioactive compounds, has been gaining attention as mode of therapies against AD. Inspired by the vastness and biodiversity richness of the marine environment,  role of  marine metabolites in developing new therapies targeting brain with special emphasis to neurodegeneration is heading as an arable field. This review summarizes select-few examples highlighted as therapeutical applications for neurodegenerative disorders with special emphasis on AD.

  1. Determination of phenolic compounds derived from hydrolysable tannins in biological matrices by RP-HPLC.

    PubMed

    Díez, María Teresa; García del Moral, Pilar; Resines, José Antonio; Arín, María Jesús

    2008-08-01

    An RP-HPLC method for the determination of four phenolic compounds: gallic acid (GA), pyrogallol (PY), resorcinol (RE) and ellagic acid (EA), derived from hydrolysable tannins is reported. Separation was achieved on a SunFire C18 (250 x 4.6 mm id, 5 microm) column at 40 degrees C with gradient elution. UV detection at 280 nm was applied. The developed method was validated in terms of linearity, accuracy and precision. Satisfactory repeatability and between day precision were noticed with RSD values lower than 3%. Recoveries from different biological samples ranged from 91.50 to 105.25%. The LODs were estimated as 1.70 mg/L for PY, 1.68 mg/L for GA, 1.52 mg/L for RE and 0.98 mg/L for EA with a 20 microL injection volume. The method was applied for the determination of these compounds in oak leaves and in ruminal fluid and urine samples taken from beef cattle fed with oak leaves. The proposed method could be used in ruminant nutrition studies to verify the effect that a diet rich in tannins have on ruminal fermentation and to determine the toxicity of these compounds.

  2. Nocardiopsis species: a potential source of bioactive compounds.

    PubMed

    Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V

    2016-01-01

    Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. © 2015 The Society for Applied Microbiology.

  3. Inhibitory effects and molecular mechanisms of garlic organosulfur compounds on the production of inflammatory mediators.

    PubMed

    You, Sixiang; Nakanishi, Eri; Kuwata, Hiroko; Chen, Jihua; Nakasone, Yasushi; He, Xi; He, Jianhua; Liu, Xiangxin; Zhang, Shirui; Zhang, Bin; Hou, De-Xing

    2013-11-01

    Garlic is used for both culinary and medicinal purposes by many cultures. The garlic organosulfur compounds (GOSCs) are thought to be bioactive components. This study aims to clarify the antiinflammatory effects and molecular mechanisms of GOSCs in both cell and animal models. RAW264.7 cells were treated with six kinds of GOSCs to screen their influence on cyclooxygenase-2 and inducible nitric oxide synthase expression by Western blotting. Prostaglandin E2 and nitrite were measured by ELISA and Griess reaction, respectively. Cytokines in culture medium were assayed by the multiplex technology. Proteins were detected by Western blotting. Mouse paw edema was induced by LPS. The results revealed that diallyl trisulfide (DATS) was a strongest inhibitor for cyclooxygenase and inducible nitric oxide synthase among GOSCs, and reduced the levels of LPS-induced IL-6, IL-10, IL-12(p70), KC, MCP-1, and TNF-α. Cellular signaling analysis revealed that DATS downregulated AKT1/TGF-β-activated kinase-mediated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Furthermore, DATS activated Nrf2-mediated expression of HO-1 and NQO1 and reduced LPS-induced intracellular reactive oxygen species, which may contribute to suppress inflammatory mediator production. Finally, in vivo data demonstrated that DATS attenuated LPS-induced mouse paw edema. DATS as a potential inhibitor revealed antiinflammatory effect in both cell and animal models by downregulating AKT1/TGF-β-activated kinase-mediated NFκB and MAPK signaling pathways. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Astrocytes mediated the nootropic and neurotrophic effects of Sarsasapogenin-AA13 via upregulating brain-derived neurotrophic factor.

    PubMed

    Dong, Dong; Mao, Yu; Huang, Cui; Jiao, Qian; Pan, Hui; Ma, Lei; Wang, Rui

    2017-01-01

    Rhizoma Anemarrhena , a widely used traditional Chinese medicine, has previously been shown to have neuroprotective effect. Sarsasapogenin-AA13 (AA13) is a novel synthetic derivative of Sarsasapogenin, which is extracted from Rhizoma Anemarrhena . The aim of this study is to investigate the nootropic and neurotrophic effects of AA13 and underlying mechanisms. In vitro , cell viability of rat primary astrocytes treated with AA13 and neurons cultured with conditioned medium of AA13-treated rat primary astrocytes was tested by MTT assays. In vivo , a pharmacological model of cognitive impairment induced by scopolamine was employed and spatial memory of the mice was assessed by Morris water maze. This study found that AA13 increased cell viability of primary astrocytes and AA13-treated astrocyte-conditioned medium enhanced the survival rate of primary neurons. Interestingly, AA13 markedly enhanced the level of BDNF in astrocytes. Furthermore, AA13 (6 mg/kg) improved the cognitive deficits in animal models (p<0.05) and BDNF and PSD95 levels were increased in brain. Therefore, we hypothesize that AA13 exerts nootropic and neurotrophic activities through astrocytes mediated upregulation of BDNF secretion. The results suggest that AA13 could be a potential compound for cognitive impairment after further research.

  5. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles

    PubMed Central

    Myint, Khine; Li, Yan; Paxton, James; McKeage, Mark

    2015-01-01

    The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In

  6. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles.

    PubMed

    Myint, Khine; Li, Yan; Paxton, James; McKeage, Mark

    2015-01-01

    The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In

  7. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    PubMed

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions*

    PubMed Central

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A.; Brown, Elizabeth E.; Sanderson, Ralph D.

    2016-01-01

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. PMID:26601950

  9. Phenotypic Characterization of Toxic Compound Effects on Liver Spheroids Derived from iPSC Using Confocal Imaging and Three-Dimensional Image Analysis.

    PubMed

    Sirenko, Oksana; Hancock, Michael K; Hesley, Jayne; Hong, Dihui; Cohen, Avrum; Gentry, Jason; Carlson, Coby B; Mann, David A

    2016-09-01

    Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro.

  10. 3-Nitroasterric Acid Derivatives from an Antarctic Sponge-Derived Pseudogymnoascus sp. Fungus.

    PubMed

    Figueroa, Luis; Jiménez, Carlos; Rodríguez, Jaime; Areche, Carlos; Chávez, Renato; Henríquez, Marlene; de la Cruz, Mercedes; Díaz, Caridad; Segade, Yuri; Vaca, Inmaculada

    2015-04-24

    Four new nitroasterric acid derivatives, pseudogymnoascins A-C (1-3) and 3-nitroasterric acid (4), along with the two known compounds questin and pyriculamide, were obtained from the cultures of a Pseudogymnoascus sp. fungus isolated from an Antarctic marine sponge belonging to the genus Hymeniacidon. The structures of the new compounds were determined by extensive NMR and MS analyses. These compounds are the first nitro derivatives of the known fungal metabolite asterric acid. Several asterric acid derivatives isolated from other fungal strains have shown antibacterial and antifungal activities. However, the new compounds described in this work were inactive against a panel of bacteria and fungi (MIC > 64 μg/mL).

  11. Stereoselective synthesis of the 5'-hydroxy-5'-phosphonate derivatives of cytidine and cytosine arabinoside.

    PubMed

    Chen, Xuemei; Wiemer, Andrew J; Hohl, Raymond J; Wiemer, David F

    2002-12-27

    Both the (R)- and (S)-5'-hydroxy 5'-phosphonate derivatives of cytidine and cytosine arabinoside (ara-C) have been prepared via phosphite addition or a Lewis acid mediated hydrophosphonylation of appropriately protected 5'-nucleoside aldehydes. Phosphite addition to a cytosine aldehyde protected as the 2',3'-acetonide gave predominately the 5'R isomer, while phosphite addition to the corresponding 2',3'-bis TBS derivative favored the 5'S stereochemistry. In contrast, phosphite addition to the 2',3'-bis TBS protected aldehyde derived from ara-C gave only the 5'R adduct. However, TiCl(4)-mediated hydrophosphonylation of the same ara-C aldehyde favored the 5'S stereoisomer by a 2:1 ratio. Once all four of the diastereomers were in hand, the stereochemistry of these compounds could be assigned based on their spectral data or that obtained from their O-methyl mandelate derivatives. After hydrolysis of the phosphonate esters and various protecting groups, the four alpha-hydroxy phosphonic acids were tested for their ability to serve as substrates for the enzyme nucleoside monophosphate kinase and for their toxicity to K562 cells.

  12. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN

    PubMed Central

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M.; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-01-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. PMID:25503107

  13. Elucidating the Role of CD84 and AHR in Modulation of LPS-Induced Cytokines Production by Cruciferous Vegetable-Derived Compounds Indole-3-Carbinol and 3,3′-Diindolylmethane

    PubMed Central

    Wang, Thomas T. Y.; Pham, Quynhchi; Kim, Young S.

    2018-01-01

    Modulation of the immune system by cancer protective food bioactives has preventive and therapeutic importance in prostate cancer, but the mechanisms remain largely unclear. The current study tests the hypothesis that the diet-derived cancer protective compounds, indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM), affect the tumor microenvironment by regulation of inflammatory responses in monocytes and macrophages. We also ask whether I3C and DIM act through the aryl hydrocarbon (AHR)-dependent pathway or the signaling lymphocyte activation molecule (SLAM) family protein CD84-mediated pathway. The effect of I3C and DIM was examined using the human THP-1 monocytic cell in its un-differentiated (monocyte) and differentiated (macrophage) state. We observed that I3C and DIM inhibited lipopolysaccharide (LPS) induction of IL-1β mRNA and protein in the monocyte form but not the macrophage form of THP-1. Interestingly, CD84 mRNA but not protein was inhibited by I3C and DIM. AHR siRNA knockdown experiments confirmed that the inhibitory effects of I3C and DIM on IL-1β as well as CD84 mRNA are regulated through AHR-mediated pathways. Additionally, the AHR ligand appeared to differentially regulate other LPS-induced cytokines expression. Hence, cross-talk between AHR and inflammation-mediated pathways, but not CD84-mediated pathways, in monocytes but not macrophages may contribute to the modulation of tumor environments by I3C and DIM in prostate cancer. PMID:29364159

  14. New carboxamide derivatives bearing benzenesulphonamide as a selective COX-II inhibitor: Design, synthesis and structure-activity relationship

    PubMed Central

    Okoro, Uchechukwu Chris; Ahmad, Hilal

    2017-01-01

    Sixteen new carboxamide derivatives bearing substituted benzenesulphonamide moiety (7a-p) were synthesized by boric acid mediated amidation of appropriate benzenesulphonamide with 2-amino-4-picoline and tested for anti-inflammatory activity. One compound 7c showed more potent anti-inflammatory activity than celecoxib at 3 h in carrageenan-induced rat paw edema bioassay. Compounds 7g and 7k also showed good anti-inflammatory activity comparable to celecoxib. Compound 7c appeared selectivity index (COX-2/COX-1) better than celecoxib. Compound 7k appeared selectivity index (COX-2/COX-1) a little higher than the half of celecoxib while compound 7g is non-selective for COX-2. The LD50 of compounds 7c, 7g and 7k were comparable to celecoxib. PMID:28922386

  15. Food and Food Constituents, Acute Effects on Human Behavior

    DTIC Science & Technology

    2002-12-01

    include the following: individual amino acids; herbal products such as ginkgo biloba, St. John’s wort, kava kava and ginseng; weight loss products, which...for example, melatonin, ginkgo biloba, ephedrine, St. John’s won, and kava kava. Many of these naturally occurring products would be classified as drugs

  16. Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators.

    PubMed

    Harizi, Hedi; Gualde, Norbert

    2006-08-01

    Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO). Many secreted products of activated APC can act by themselves in an autocrine manner and modulate their function. Moreover, the cross-interaction between endogenous bioactive molecules regulates the function of professional APC with important consequences for their ability to activate and sustain immune and inflammatory responses, and to regulate immune homeostasis. Although neglected for many years when compared to their role in cardiovascular homeostasis, cancer and inflammation, the importance of eicosanoids in immunology is becoming more defined. The role of prostaglandin (PG) E2 (PGE2), one of the best known and most well studied eicosanoids, is of particular interest. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. Uniquely among haematopoietic cytokines, interleukin-10 (IL-10) is a pleiotropic molecule that displays both immunostimulatory and immunoregulatory activities. IL-10 has attached much attention because of its anti-inflammatory properties. It modulates expression of cytokines, soluble mediators and cell surface molecules by cells of myeloid origin, particularly macrophages and DC. We previously reported that PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may be considered as an important model to study complex interactions between endogenous mediators, and autocrine IL-10 plays a pivotal role in the crossregulation of AA-derived lipid mediators, cytokines, and NO, with critical effects on immune and inflammatory responses.

  17. The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease.

    PubMed

    Finkelstein, David I; Billings, Jessica L; Adlard, Paul A; Ayton, Scott; Sedjahtera, Amelia; Masters, Colin L; Wilkins, Simon; Shackleford, David M; Charman, Susan A; Bal, Wojciech; Zawisza, Izabela A; Kurowska, Ewa; Gundlach, Andrew L; Ma, Sheri; Bush, Ashley I; Hare, Dominic J; Doble, Philip A; Crawford, Simon; Gautier, Elisabeth Cl; Parsons, Jack; Huggins, Penny; Barnham, Kevin J; Cherny, Robert A

    2017-06-28

    Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD.

  18. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2013-10-01

    Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects...studies have not been carried out as yet. Our hypothesis is that novel polyunsaturated fatty acid derived lipid mediators of inflammation, i.e., lipoxins

  19. Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism.

    PubMed Central

    Sestili, Piero; Diamantini, Giuseppe; Bedini, Annalida; Cerioni, Liana; Tommasini, Ilaria; Tarzia, Giorgio; Cantoni, Orazio

    2002-01-01

    The protective effects of selected members from a series of caffeic acid esters and flavonoids were tested in various toxicity paradigms using U937 cells, previously shown to be sensitive to either iron chelators or bona fide radical scavengers or to both classes of compounds. It was found that all the protective polyphenols were active at very low concentrations and that their effects were observed only under those conditions in which iron chelators also afforded protection. Consistently, active polyphenolic compounds, unlike the inactive ones, effectively chelated iron in an in vitro system. It follows that, at least under the experimental conditions utilized in the present study, the most prominent activity of these polyphenolic compounds resides in their ability to chelate iron. Further studies revealed that the protective effects afforded by the caffeic acid esters and flavonoids were largely mediated by the catechol moiety and that the relative biological potency of these compounds was a direct function of their lipophilicity. PMID:11988084

  20. Natural Products from Deep-Sea-Derived Fungi ̶ A New Source of Novel Bioactive Compounds?

    PubMed

    Daletos, Georgios; Ebrahim, Weaam; Ancheeva, Elena; El-Neketi, Mona; Song, Weiguo; Lin, Wenhan; Proksch, Peter

    2018-01-01

    Over the last two decades, deep-sea-derived fungi are considered to be a new source of pharmacologically active secondary metabolites for drug discovery mainly based on the underlying assumption that the uniqueness of the deep sea will give rise to equally unprecedented natural products. Indeed, up to now over 200 new metabolites have been identified from deep-sea fungi, which is in support of the statement made above. This review summarizes the new and/or bioactive compounds reported from deepsea- derived fungi in the last six years (2010 - October 2016) and critically evaluates whether the data published so far really support the notion that these fungi are a promising source of new bioactive chemical entities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qiang; Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou; Zhou, Yangliang

    2014-06-20

    Highlights: • Selenadiazole derivatives could be used as an effective and low toxic sensitizer for radiotherapy. • Selenadiazole derivatives enhances radiation-induced growth inhibition on A375 cells through induction of G2/M arrest. • ROS-mediated signaling pathways play important roles in radiosensitization of selenadiazole derivatives. - Abstract: X-ray-based radiotherapy represents one of the most effective ways in treating human cancers. However, radioresistance and side effect remain as the most challenging issue. This study describes the design and application of novel selenadiazole derivatives as radiotherapy sensitizers to enhance X-ray-induced inhibitory effects on A375 human melanoma and Hela human cervical carcinoma cells. The resultsmore » showed that, pretreatment of the cells with selenadiazole derivatives dramatically enhance X-ray-induced growth inhibition and colony formation. Flow cytometry analysis indicates that the sensitization by selenadiazole derivatives was mainly caused by induction of G2/M cell cycle arrest. Results of Western blotting demonstrated that the combined treatment-induced A375 cells growth inhibition was achieved by triggering reactive oxygen species-mediated DNA damage involving inactivation of AKT and MAPKs. Further investigation revealed that selenadiazole derivative in combination with X-ray could synergistically inhibit the activity of thioredoxin reductase-1 in A375 cells. Taken together, these results suggest that selenadiazole derivatives can act as novel radiosensitizer with potential application in combating human cancers.« less

  2. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae).

    PubMed

    Kostić, Miroslav; Popović, Zorica; Brkić, Dejan; Milanović, Slobodan; Sivcev, Ivan; Stanković, Sladjan

    2008-11-01

    Ethanol solutions of essential oil of Ocimum basilicum and its main component, linalool (both isomer forms), all in three concentrations, as well as botanical standard Bioneem (0.5%), were tested for their toxicity and antifeedant activity against the second instar gypsy moth larvae in the laboratory bioassay. The essential oil of O. basilicum was subjected to gas chromatography analysis, and totally 37 compounds were detected, of which linalool was predominantly present. All tested solutions showed low to moderate larvicidal effect in both residual toxicity test and in chronic larval mortality bioassay. Chronic mortality tests showed that obtained mortality was a consequence of starving rather than ingestion of treated leaves. However, antifeedant index achieved by application of tested solutions in feeding choice assay was remarkable. Foliar application of all tested compounds deterred feeding by L2 in the same percent as Bioneem. Antifeedant index was relatively high at all tested treatments (85-94%); moreover, the larval desensitization to repelling volatiles has not occurred after five days of observation. Low toxic and high antifeedant properties make these plant-derived compounds suitable for incorporation in integrated pest management programs, especially in urban environments.

  3. Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus

    PubMed Central

    Krol, Ewelina; Wandzik, Ilona; Szewczyk, Boguslaw

    2017-01-01

    Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives of uridine (designated IW3 and IW7) targeting the glycan processing steps during maturation of viral glycoproteins show good anti-influenza virus activity and may be a promising alternative approach for the development of new anti-influenza therapy. In this study, a number of IW3 and IW7 analogues with different structural modifications in 2-deoxy sugar or uridine parts were synthesized and evaluated for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay in vitro, we showed that compounds 2, 3, and 4 exerted the most inhibitory effect on influenza virus A/ostrich/Denmark/725/96 (H5N2) infection in Madin-Darby canine kidney (MDCK) cells, with 50% inhibitory concentrations (IC50) for virus growth ranging from 82 to 100 (μM) without significant toxicity for the cells. The most active compound (2) showed activity of 82 μM with a selectivity index value of 5.27 against type A (H5N2) virus. Additionally, compound 2 reduced the formation of HA glycoprotein in a dose-dependent manner. Moreover, an analysis of physicochemical properties of studied compounds demonstrated a significant linear correlation between lipophilicity and antiviral activity. Therefore, inhibition of influenza A virus infection by conjugates of uridine and 2-deoxy sugars is a new promising approach for the development of new derivatives with anti-influenza activities. PMID:28777309

  4. Design and synthesis of a novel candidate compound NTI-007 targeting sodium taurocholate cotransporting polypeptide [NTCP]-APOA1-HBx-Beclin1-mediated autophagic pathway in HBV therapy.

    PubMed

    Zhang, Jin; Fu, Lei-Lei; Tian, Mao; Liu, Hao-Qiu; Li, Jing-Jing; Li, Yan; He, Jun; Huang, Jian; Ouyang, Liang; Gao, Hui-Yuan; Wang, Jin-Hui

    2015-03-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a multiple transmembrane transporter predominantly expressed in the liver, functioning as a functional receptor for HBV. Through our continuous efforts to identify NTCP as a novel HBV target, we designed and synthesized a series of new compounds based on the structure of our previous compound NT-5. Molecular docking and MD simulation validated that a new compound named NTI-007 can tightly bind to NTCP, whose efficacy was also measured in vitro virological examination and cytotoxicity studies. Furthermore, autophagy was observed in NTI-007 incubated HepG2.2.15 cells, and results of q-PCR and Western blotting revealed that NTI-007 induced autophagy through NTCP-APOA1-HBx-Beclin1-mediated pathway. Taken together, considering crucial role of NTCP in HBV infection, NTCP-mediated autophagic pathway may provide a promising strategy of HBV therapy and given efficacy of NTI-007 triggering autophagy. Our study suggests pre-clinical potential of this compound as a novel anti-HBV drug candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  6. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  7. Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

    PubMed Central

    Feng, Chien-Wei; Hung, Han-Chun; Huang, Shi-Ying; Chen, Chun-Hong; Chen, Yun-Ru; Chen, Chun-Yu; Yang, San-Nan; Wang, Hui-Min David; Sung, Ping-Jyun; Sheu, Jyh-Horng; Tsui, Kuan-Hao; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies. PMID:27763504

  8. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn; Fan, Xiaohong; Chen, Aoling

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphicalmore » abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.« less

  9. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.

    PubMed

    Ghorbanzadeh, Mehdi; van Ede, Karin I; Larsson, Malin; van Duursen, Majorie B M; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; van den Berg, Martin; Denison, Michael S; Ringsted, Tine; Andersson, Patrik L

    2014-07-21

    For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO

  10. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  11. Design of new disulfide-based organic compounds for the improvement of self-healing materials.

    PubMed

    Matxain, Jon M; Asua, José M; Ruipérez, Fernando

    2016-01-21

    Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these

  12. Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.

    PubMed

    Holvoet, Paul; Rull, Anna; García-Heredia, Anabel; López-Sanromà, Sílvia; Geeraert, Benjamine; Joven, Jorge; Camps, Jordi

    2015-03-01

    There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro.

    PubMed

    López-Barrera, Dunia Maria; Vázquez-Sánchez, Kenia; Loarca-Piña, Ma Guadalupe Flavia; Campos-Vega, Rocio

    2016-12-01

    Spent coffee grounds (SCG), rich in dietary fiber can be fermented by colon microbiota producing short-chain fatty acids (SCFAs) with the ability to prevent inflammation. We investigated SCG anti-inflammatory effects by evaluating its composition, phenolic compounds, and fermentability by the human gut flora, SCFAs production, nitric oxide and cytokine expression of the human gut fermented-unabsorbed-SCG (hgf-NDSCG) fraction in LPS-stimulated RAW 264.7 macrophages. SCG had higher total fiber content compared with coffee beans. Roasting level/intensity reduced total phenolic contents of SCG that influenced its colonic fermentation. Medium roasted hgf-NDSCG produced elevated SCFAs (61:22:17, acetate, propionate and butyrate) after prolonged (24h) fermentation, suppressed NO production (55%) in macrophages primarily by modulating IL-10, CCL-17, CXCL9, IL-1β, and IL-5 cytokines. SCG exerts anti-inflammatory activity, mediated by SCFAs production from its dietary fiber, by reducing the release of inflammatory mediators, providing the basis for SCG use in the control/regulation of inflammatory disorders. The results support the use of SGC in the food industry as dietary fiber source with health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model.

    PubMed

    Umbaugh, Charles Samuel; Diaz-Quiñones, Adriana; Neto, Manoel Figueiredo; Shearer, Joseph J; Figueiredo, Marxa L

    2018-01-19

    Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.

  15. Digestibility of Bovine Serum Albumin and Peptidomics of the Digests: Effect of Glycation Derived from α-Dicarbonyl Compounds.

    PubMed

    Sheng, Bulei; Larsen, Lotte Bach; Le, Thao T; Zhao, Di

    2018-03-21

    α-Dicarbonyl compounds, which are widely generated during sugar fragmentation and oil oxidation, are important precursors of advanced glycation end products (AGEs). In this study, the effect of glycation derived from glyoxal (GO), methylglyoxal (MGO) and diacetyl (DA) on the in vitro digestibility of bovine serum albumin (BSA) was investigated. Glycation from α-dicarbonyl compounds reduced digestibility of BSA in both gastric and intestinal stage of digestion according to measurement of degree of hydrolysis. Changes in peptide composition of digests induced by glycation were displayed, showing absence of peptides, occurrence of new peptides and formation of peptide-AGEs, based on the results obtained using liquid chromatography electron-spray-ionization tandem mass spectrometry (LC-ESI-MS/MS). Crosslinked glycation structures derived from DA largely reduced the sensitivity of glycated BSA towards digestive proteases based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results. Network structures were found to remain in the digests of glycated samples by transmission electron microscope (TEM), thus the impact of AGEs in unabsorbed digests on the gut flora should be an interest for further studies.

  16. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  17. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-derived Inhibitory Compounds

    PubMed Central

    Ibraheem, Omodele; Ndimba, Bongani K.

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains. PMID:23847442

  18. Allium vegetables and organosulfur compounds: do they help prevent cancer?

    PubMed Central

    Bianchini, F; Vainio, H

    2001-01-01

    Allium vegetables have been shown to have beneficial effects against several diseases, including cancer. Garlic, onions, leeks, and chives have been reported to protect against stomach and colorectal cancers, although evidence for a protective effect against cancer at other sites, including the breast, is still insufficient. The protective effect appears to be related to the presence of organosulfur compounds and mainly allyl derivatives, which inhibit carcinogenesis in the forestomach, esophagus, colon, mammary gland, and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Allium vegetables and organosulfur compounds are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans. PMID:11673117

  19. Allium vegetables and organosulfur compounds: do they help prevent cancer?

    PubMed

    Bianchini, F; Vainio, H

    2001-09-01

    Allium vegetables have been shown to have beneficial effects against several diseases, including cancer. Garlic, onions, leeks, and chives have been reported to protect against stomach and colorectal cancers, although evidence for a protective effect against cancer at other sites, including the breast, is still insufficient. The protective effect appears to be related to the presence of organosulfur compounds and mainly allyl derivatives, which inhibit carcinogenesis in the forestomach, esophagus, colon, mammary gland, and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Allium vegetables and organosulfur compounds are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans.

  20. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    PubMed

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading

    Treesearch

    Junfeng Feng; Zhongzhi Yang; Chung-yun Hse; Qiuli Su; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The renewable phenolic compounds produced by directional liquefaction of biomass are a mixture of complete fragments decomposed from native lignin. These compounds are unstable and difficult to use directly as biofuel. Here, we report an efficient in situ catalytic hydrogenation method that can convert phenolic compounds into saturated cyclohexanes. The process has...

  2. Selective Small Molecule Compounds Increase BMP-2 Responsiveness by Inhibiting Smurf1-mediated Smad1/5 Degradation

    PubMed Central

    Cao, Yu; Wang, Cheng; Zhang, Xueli; Xing, Guichun; Lu, Kefeng; Gu, Yongqing; He, Fuchu; Zhang, Lingqiang

    2014-01-01

    The ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) negatively regulates bone morphogenetic protein (BMP) pathway by ubiquitinating certain signal components for degradation. Thus, it can be an eligible pharmacological target for increasing BMP signal responsiveness. We established a strategy to discover small molecule compounds that block the WW1 domain of Smurf1 from interacting with Smad1/5 by structure based virtual screening, molecular experimental examination and cytological efficacy evaluation. Our selected hits could reserve the protein level of Smad1/5 from degradation by interrupting Smurf1-Smad1/5 interaction and inhibiting Smurf1 mediated ubiquitination of Smad1/5. Further, these compounds increased BMP-2 signal responsiveness and the expression of certain downstream genes, enhanced the osteoblastic activity of myoblasts and osteoblasts. Our work indicates targeting Smurf1 for inhibition could be an accessible strategy to discover BMP-sensitizers that might be applied in future clinical treatments of bone disorders such as osteopenia. PMID:24828823

  3. Readily Available Chiral Benzimidazoles-Derived Guanidines as Organocatalysts in the Asymmetric α-Amination of 1,3-Dicarbonyl Compounds.

    PubMed

    Benavent, Llorenç; Puccetti, Francesco; Baeza, Alejandro; Gómez-Martínez, Melania

    2017-08-11

    The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di- t -butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from ( R )-1-phenylethan-1-amine ( 1 ) and ( S )-1-(2-naphthyl)ethan-1-amine ( 3 ) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products.

  4. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    PubMed Central

    Abidi, Ahlem; Oueslati, Yosra

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308

  5. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals.

    PubMed

    Kanda, Takehiro; Ozawa, Makoto; Tsukiyama-Kohara, Kyoko

    2016-03-31

    Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.

  6. Iridium-mediated isomerization-cyclization of bicyclic Pauson-Khand derived allylic alcohols.

    PubMed

    Kavanagh, Yvonne; Chaney, Cíara M; Muldoon, Jimmy; Evans, Paul

    2008-11-07

    Treatment of 2-(toluene-4-sulfonyl)-2,3,4,4a,5,6-hexahydro-1H-[2]pyrindin-6-ol 10, accessed from the diastereoselective Luche reduction of a Pauson-Khand derived bicylic cyclopentenone, with a catalytic amount of (1,5-cyclooctadiene)(pyridine)(tricyclohexylphosphine)iridium(I) hexafluorophosphate 1 (Crabtree's catalyst) under a hydrogen atmosphere resulted in the formation of 4-(toluene-4-sulfonyl)-2-oxa-4-azatricyclo[5.2.1.0(3,8)]decane 12 as a single diastereoisomer. This process is likely to proceed via an initial Ir(I)-mediated isomerization of the alkene to form an N-sulfonyl enamine 11, followed by cyclization. Evidence to support this came when, after short reaction periods, 11 was isolated, characterized spectroscopically, and on resubmission to the reaction conditions formed 12.

  7. Electride Mediated Surface Enhanced Raman Scattering (SERS)

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2016-01-01

    An electride may provide surface enhanced Raman scattering (SERS). The electride, a compound where the electrons serve as anions, may be a ceramic electride, such as a conductive ceramic derived from mayenite, or an organic electride, for example. The textured electride surface or electride particles may strongly enhance the Raman scattering of organic or other Raman active analytes. This may also provide a sensitive method for monitoring the chemistry and electronic environment at the electride surface. The results are evidence of a new class of polariton (i.e., a surface electride-polariton resonance mechanism) that is analogous to the surface plasmon-polariton resonance that mediates conventional SERS.

  8. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  9. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Saiyang; Li, Tingyu; Zhang, Yanbing

    A new series of 20 brominated chalcone derivatives were designed, synthesized, and investigated for their effects against the growth of four cancer cell lines (EC109, SKNSH, HepG2, MGC803). Among them, compound 19 which given chemical name of H72, was the most potent one on gastric cancer cell lines (i.e. MGC803, HGC27, SGC7901) with IC{sub 50s} ranged from 3.57 to 5.61 μM. H72 exhibited less cytotoxicity to non-malignant gastric epithelial cells GES-1. H72 treatment of MGC803 and HGC27 induced generation of reactive oxygen species (ROS) leading to activation of caspase 9/3 cascade and mitochondria mediated apoptosis. H72 also up-regulated the expressionmore » of DR5, DR4 and Bim{sub EL}, and down-regulated the expression of Bid, Bcl-xL, and XIAP. N-acetyl cysteine (NAC), a ROS scavenger completely blocked these effects of H72 in MGC803 cells. Intraperitoneal administration of H72 significantly inhibited the growth of MGC803 cells in vivo in a xenograft mouse model without observed toxicity. These results indicated that H72 is a lead brominated chalcone derivate and deserves further investigation for prevention and treatment of gastric cancer. - Highlights: • 20 brominated chalcone derivatives were designed and synthesized. • H72 caused potent cytotoxic activity against MGC803 and less against GES1. • H72 led to activation of caspase 9/3 cascade and mitochondria mediated apoptosis. • H72 induced generation of reactive oxygen species (ROS). • H72 significantly inhibited the growth of MGC803 cells in vivo.« less

  10. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp; Yanagihara, Kazuyoshi; Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, suchmore » as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.« less

  11. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives.

    PubMed

    Tabassum, Sumaiya; Govindaraju, Santhosh; Khan, Riyaz-ur-Rahaman; Pasha, Mohamed Afzal

    2015-05-01

    An efficient synthesis of a novel series of twelve substituted 2-amino-3-cyano-4H-pyran derivatives was achieved by a one-pot three-component cyclocondensation reaction of heteroaryl aldehydes, malononitrile and active methylene compounds catalyzed by iodine in aqueous medium under ultrasound irradiation. In comparison with conventional methods, our protocol is convenient and offers several advantages, such as shorter reaction time, higher yields, milder conditions and environmental friendliness. We have herein successfully demonstrated the synergistic outcome of multi-component reaction (MCR) and sonication to offer a facile route for the design of these derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Pollen derived low molecular compounds enhance the human allergen specific immune response in vivo.

    PubMed

    Gilles-Stein, S; Beck, I; Chaker, A; Bas, M; McIntyre, M; Cifuentes, L; Petersen, A; Gutermuth, J; Schmidt-Weber, C; Behrendt, H; Traidl-Hoffmann, C

    2016-10-01

    Besides allergens, pollen release bioactive, low molecular weight compounds that modulate and stimulate allergic reactions. Clinical relevance of these substances has not been investigated to date. To elucidate the effect of a non-allergenic, low molecular weight factors from aqueous birch pollen extracts (Bet-APE < 3 kDa) on the human allergic immune response in vivo. Birch and grass pollen allergic individuals underwent skin prick testing with allergen alone, allergen plus Bet-APE < 3 kDa, or allergen plus pre-identified candidate substances from low molecular pollen fraction. Nasal allergen challenges were performed in non-atopic and pollen allergic individuals using a 3 day repeated threshold challenge battery. Subjects were either exposed to allergen alone or to allergen plus Bet-APE< 3 kDa. Local cytokine levels, nasal secretion weights, nasal congestion and symptom scores were determined. Skin prick test reactions to pollen elicited larger weals when allergens were tested together with the low molecular weight compounds from pollen. Similar results were obtained with candidate pollen-associated lipid mediators. In nasal lining fluids of allergic patients challenged with allergen plus Bet-APE < 3 kDa, IL-8 and IgE was significantly increased as compared to allergen-only challenged patients. These patients also produced increased amounts of total nasal secretion and reported more severe rhinorrhea than the allergen-only challenged group. Low molecular compounds from pollen enhance the allergen specific immune response in the skin and nose. They are therefore of potential clinical relevance in allergic patients. © 2016 John Wiley & Sons Ltd.

  13. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.

  14. Compounds, compositions, pharmaceutical compositions, and methods of use

    DOEpatents

    Hammond, Gerald B.; Jin, Zhuang; Bates, Paula J.; Reyes-Reyes, Elsa Merit

    2016-11-15

    Certain embodiments of the invention include compositions comprising a compound of Formula (I), and salts, isomers, and derivatives thereof. Pharmaceutical compositions of some embodiments of the present invention comprise a compound of Formula (I), and salts, isomers, and derivatives thereof. Other embodiments of this invention include methods for treating disease (e.g., cancer) and methods for administering a compound of Formula (I), and salts, isomers, and derivatives thereof.

  15. Photolytic fate and genotoxicity of benzophenone-derived compounds and their photodegradation mixtures in the aqueous environment.

    PubMed

    Kotnik, Kristina; Kosjek, Tina; Žegura, Bojana; Filipič, Metka; Heath, Ester

    2016-03-01

    This study investigates the environmental fate of eight benzophenone derivatives (the pharmaceutical ketoprofen, its phototransformation products 3-ethylbenzophenone and 3-acetylbenzophenone, and five benzophenone-type UV filters) by evaluating their photolytic behaviour. In addition, the genotoxicity of these compounds and the produced photodegradation mixtures was studied. Laboratory-scale irradiation experiments using a medium pressure UV lamp revealed that photodegradation of benzophenones follows pseudo-first-order kinetics. Ketoprofen was the most photolabile (t1/2 = 0.8 min), while UV filters were more resistant to UV light with t1/2 between 17 and 99 h. The compounds were also exposed to irradiation by natural sunlight and showed similar photostability as predicted under laboratory conditions. Solar photodegradation experiments were performed in distilled water, lake and seawater, and revealed that photosensitizers present in natural waters significantly affect the photolytic behaviour of the investigated compounds. In this case, the presence of lake water resulted in accelerated photodecomposition, while seawater showed different effects on photodegradation, depending on a compound. Further, it was shown that the transformation products of ketoprofen 3-ethylbenzophenone and 3-acetylbenzophenone were formed under environmental conditions when ketoprofen was exposed to natural sunlight. Genotoxicity testing of parent benzophenone compounds using the SOS/umuC assay revealed that UV filters exhibited weak genotoxic activity in the presence of a metabolic activation system, however the concentrations tested were much higher than found in the environment (≥125 μg mL(-1)). After irradiation of benzophenones, the produced photodegradation mixtures showed that, with the exception of benzophenone that exhibited weak genotoxic activity, all the other compounds tested did not elicit any activity when exposed to UV light. Copyright © 2015 Elsevier Ltd. All rights

  16. Vibrational frequencies of transition metal chloride and oxo compounds using effective core potential analytic second derivatives

    NASA Astrophysics Data System (ADS)

    Russo, Thomas V.; Martin, Richard L.; Hay, P. Jeffrey; Rappé, Anthony K.

    1995-06-01

    The application of analytic second derivative techniques to quantum chemical calculations using effective core potentials is discussed. Using a recent implementation of these techniques, the vibrational frequencies of transition metal compounds are calculated including the chlorides TiCl4, ZrCl4, and HfCl4, the oxochlorides CrO2Cl2, MoO2Cl2, WO2Cl2, and VOCl3, and the oxide OsO4. Results are compared to previous calculations and with experimental results.

  17. The effects of imidacloprid combined with endosulfan on IgE-mediated mouse bone marrow-derived mast cell degranulation and anaphylaxis.

    PubMed

    Shi, Lin-Bo; Xu, Hua-Ping; Wu, Yu-Jie; Li, Xin; Gao, Jin-Yan; Chen, Hong-Bing

    2018-06-01

    Low levels of endosulfan are known to stimulate mast cells to release allergic mediators, while imidacloprid can inhibit IgE-mediated mast cell degranulation. However, little information about the effects of both pesticides together on mast cell degranulation is available. To measure the effects, IgE-activated mouse bone marrow-derived mast cells (BMMCs) were treated with imidacloprid and endosulfan, individually, and simultaneously at equi-molar concentrations in tenfold steps ranging from 10 -4 to 10 -11  M, followed by measuring several allergy-related parameters expressed in BMMCs: the mediator production and influx of Ca 2+ , the phosphorylation content of NF-κB in the FcεRI signaling pathway. Then, the effects of the mixtures on IgE-induced passive systemic anaphylaxis (PSA) of BALB/c was detectded. This study clearly showed that the application of equi-molar mixtures of both pesticides with 10 -4 -10 -5  M significantly inhibited the IgE-mediated mouse bone marrow-derived mast cells degranulation in vitro and 10 -4  M of them decreased IgE-mediated PSA in vivo, as the application of imidacloprid at the same concentration alone did. Morever endosulfan alone had no remarkable stimulatory effects on any of the factors measured. In conclusion, simultaneous application of equi-molar concentrations of both pesticides generally showed highly similar responses compared to the responses to imidacloprid alone, suggesting that the effects of the mixture could be solely attributed to the effects of imidacloprid. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN.

    PubMed

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-04-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  19. Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds.

    PubMed

    González-Delgado, José A; Escobar, Gustavo; Arteaga, Jesús F; Barrero, Alejandro F

    2014-02-03

    The synthesis of a cyclohexane skeleton possessing different oxygenated functional groups at C-3, C-8 and C-9, and a D1,6-double bond has been accomplished in 10 steps with an overall 17% yield. This compound is a key intermediate for access to a wide range of compounds of the bioactive trisporoid family. The synthetic sequence consists of the preparation of a properly functionalized epoxygeraniol derivative, and its subsequent stereoselective cyclization mediated by Ti(III). This last step implies a domino process that starts with a homolytic epoxide opening followed by a radical cyclization and regioselective elimination. This concerted process gives access to the cyclohexane moiety with stereochemical control of five of its six carbon atoms.

  20. In Silico Analysis of the Potential of the Active Compounds Fucoidan and Alginate Derived from Sargassum Sp. as Inhibitors of COX-1 and COX-2.

    PubMed

    Dewi, Lestari

    2016-06-01

    The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2.

  1. Multifunctional Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)-3-methoxypropanamides with Anticonvulsant and Antinociceptive Properties.

    PubMed

    Abram, Michał; Zagaja, Mirosław; Mogilski, Szczepan; Andres-Mach, Marta; Latacz, Gniewomir; Baś, Sebastian; Łuszczki, Jarogniew J; Kieć-Kononowicz, Katarzyna; Kamiński, Krzysztof

    2017-10-26

    The focused set of new pyrrolidine-2,5-diones as potential broad-spectrum hybrid anticonvulsants was described. These derivatives integrate on the common structural scaffold the chemical fragments of well-known antiepileptic drugs such as ethosuximide, levetiracetam, and lacosamide. Such hybrids demonstrated effectiveness in two of the most widely used animal seizure models, namely, the maximal electroshock (MES) test and the psychomotor 6 Hz (32 mA) seizure models. Compound 33 showed the highest anticonvulsant activity in these models (ED 50 MES = 79.5 mg/kg, ED 50 6 Hz = 22.4 mg/kg). Compound 33 was also found to be effective in pentylenetetrazole-induced seizure model (ED 50 PTZ = 123.2 mg/kg). In addition, 33 demonstrated effectiveness by decreasing pain responses in formalin-induced tonic pain, in capsaicin-induced neurogenic pain, and notably in oxaliplatin-induced neuropathic pain in mice. The pharmacological data of stereoisomers of compound 33 revealed greater anticonvulsant activity by R(+)-33 enantiomer in both MES and 6 Hz seizure models.

  2. Ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) for analysis of lignin-derived monomeric compounds in processed lignin samples.

    PubMed

    Prothmann, Jens; Sun, Mingzhe; Spégel, Peter; Sandahl, Margareta; Turner, Charlotta

    2017-12-01

    The conversion of lignin to potentially high-value low molecular weight compounds often results in complex mixtures of monomeric and oligomeric compounds. In this study, a method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) has been developed. Seven different columns were explored for maximum selectivity. Makeup solvent composition and ion source settings were optimised using a D-optimal design of experiment (DoE). Differently processed lignin samples were analysed and used for the method validation. The new UHPSFC/QTOF-MS method showed good separation of the 40 compounds within only 6-min retention time, and out of these, 36 showed high ionisation efficiency in negative electrospray ionisation mode. Graphical abstract A rapid and selective method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS).

  3. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

    DOEpatents

    Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

    2017-05-02

    The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phoshpate and/or ribulose 5-phospate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

  4. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

    DOEpatents

    Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

    2016-07-05

    The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

  5. Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition.

    PubMed

    Bi, Xiuli; Xia, Xichun; Mou, Teng; Jiang, Bowen; Fan, Dongdong; Wang, Peng; Liu, Yafei; Hou, Yue; Zhao, Yuqing

    2014-11-05

    Numerous compounds isolated from Ginseng have been shown to exhibit various biological activities, including antioxidant, anti-carcinogenic, anti-mutagenic, and anti-tumor activities. Recent research has focused on the potential values of these compounds in the prevention and treatment of human cancers. The anti-tumor activity of 25-hydroxyprotopanaxadiol (25-OH-PPD), a natural compound isolated from Panax ginseng, has been established in previous study. In the current study, we investigated the anti-tumor activity of three derivatives of 25-OH-PPD, namely xl, 1c, and 8b with respect to lung cancer. All three compounds significantly inhibited the growth of the human lung cancer cells A549 and H460. Oral administration of these compounds significantly inhibited the growth of xenograft tumors in mice without affecting body weight. Further mechanistic study demonstrated that these compounds could decrease the expression levels of β-catenin and its downstream targets Cyclin D1, CDK4, and c-myc in lung cancer cells. Taken together, the results suggested that the anti-growth activity exerted by these 25-OH-PPD derivatives against lung cancer cells probably involved β-catenin-mediated signaling pathway, a finding that could have important implication for chemotherapeutic strategy aiming at the treatment of lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. General and highly α-regioselective zinc-mediated prenylation of aldehydes and ketones.

    PubMed

    Zhao, Li-Ming; Jin, Hai-Shan; Wan, Li-Jing; Zhang, Li-Ming

    2011-03-18

    A simple, efficient, and general α-prenylation approach for the synthesis of a variety of α-prenylated alcohols has been successfully developed. A wide range of α-prenylated alcohol derivatives could be obtained in good yields by highly α-regioselective zinc-mediated prenylation of various aldehydes and ketones with prenyl bromide at 120 °C in HMPA. By simply altering the reaciton solvent and temperature, the method allows the achievement of a highly notable opposite regiocontrol, providing the expected regiochemical product. The method provides a convenient route for the direct α-prenylation of carbonyl compounds in a highly α-regioselective manner using a cheap and convenient mediator. Two possible pathways are proposed to account for the formation of these synthetically difficult-to-obtain molecules.

  7. Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3-O-glucoside in Wine Model Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins).

    PubMed

    Azevedo, Joana; Fernandes, Ana; Oliveira, Joana; Brás, Natércia F; Reis, Sofia; Lopes, Paulo; Roseira, Isabel; Cabral, Miguel; Mateus, Nuno; de Freitas, Victor

    2017-10-04

    The aim of this study was to evaluate the reactivity of phenolic compounds extracted from cork stoppers to wine model solutions with two major wine components, namely, (+)-catechin and malvidin-3-O-glucoside. Besides the formation of some compounds already described in the literature, these reactions also yielded a new family of ellagitannin-derived compounds, named herein as corklins. This new family of compounds that were found to result from the interaction between ellagitannins in alcoholic solutions and (+)-catechin were structurally characterized by mass spectroscopy, nuclear magnetic resonance, and computational methods.

  8. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  9. The Isolation of a New S-Methyl Benzothioate Compound from a Marine-Derived Streptomyces sp.

    PubMed Central

    Mahyudin, Nor Ainy; Blunt, John W.; Cole, Anthony L. J.; Munro, Murray H. G.

    2012-01-01

    The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D 1H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach. PMID:22291452

  10. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds.

    PubMed

    Passalacqua, Thais Gaban; Dutra, Luiz Antonio; de Almeida, Letícia; Velásquez, Angela Maria Arenas; Torres, Fabio Aurelio Esteves; Yamasaki, Paulo Renato; dos Santos, Mariana Bastos; Regasini, Luis Octavio; Michels, Paul A M; Bolzani, Vanderlan da Silva; Graminha, Marcia A S

    2015-08-15

    Chalcones form a class of compounds that belong to the flavonoid family and are widely distributed in plants. Their simple structure and the ease of preparation make chalcones attractive scaffolds for the synthesis of a large number of derivatives enabling the evaluation of the effects of different functional groups on biological activities. In this Letter, we report the successful synthesis of a series of novel prenylated chalcones via Claisen-Schmidt condensation and the evaluation of their effect on the viability of the Trypanosomatidae parasites Leishmania amazonensis, Leishmania infantum and Trypanosoma cruzi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation

    PubMed Central

    Stead, Rebecca; Musa, Moji G.; Bryant, Claire L.; Lanham, Stuart A.; Johnston, David A.; Reynolds, Richard; Torrens, Christopher; Fraser, Paul A.; Clough, Geraldine F.

    2016-01-01

    Objectives: The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. Methods: Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18–32 μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. Results: EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. Conclusion: This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a ‘second hit’ (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function. PMID:26682783

  12. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation.

    PubMed

    Stead, Rebecca; Musa, Moji G; Bryant, Claire L; Lanham, Stuart A; Johnston, David A; Reynolds, Richard; Torrens, Christopher; Fraser, Paul A; Clough, Geraldine F

    2016-03-01

    The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18-32  μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a 'second hit' (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function.

  13. Antagonism of Human Formyl Peptide Receptor 1 with Natural Compounds and their Synthetic Derivatives

    PubMed Central

    Schepetkin, Igor A.; Khlebnikov, Andrei I.; Kirpotina, Liliya N.; Quinn, Mark T.

    2015-01-01

    Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small-molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca2+ mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes. PMID:26382576

  14. Synthesis of glycoside derivatives of hydroxyanthraquinone with ability to dissolve and inhibit formation of crystals of calcium oxalate. Potential compounds in kidney stone therapy.

    PubMed

    Frackowiak, Anna; Skibiński, Przemysław; Gaweł, Wiesław; Zaczyńska, Ewa; Czarny, Anna; Gancarz, Roman

    2010-03-01

    Synthesis of glycosyl derivatives of hydroxyanthraquinones (6-10) potentially useful for kidney stone therapy is presented. These compounds were analyzed as inhibitors of calcium oxalate crystals formation as well as substances with the ability of dissolving crystalline calcium oxalate. In addition, the effect of the compounds obtained on real kidney stones was analyzed by ex vivo tests. The tests on L929 and A545 cell lines have shown that the compounds obtained were not cytotoxic. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  15. Bilayer Effects of Antimalarial Compounds

    PubMed Central

    Ramsey, Nicole B.; Andersen, Olaf S.

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613

  16. Bilayer Effects of Antimalarial Compounds.

    PubMed

    Ramsey, Nicole B; Andersen, Olaf S

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  17. Syntheses, Structural Characterization and Thermoanalysis of Transition-Metal Compounds Derived from 3,5-Dinitropyridone

    PubMed Central

    Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)2(H2O)4, 4, Zn(4DNPO)2(H2O)4, 8, and Cd(4DNPO)2(H2O)4, 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) Å, β = 97.9840(10)° for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) Å, β = 97.3500(10)° for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) Å, β 96.6500(10)° for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and π-π stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides. PMID:20526459

  18. Syntheses, Structural Characterization and Thermoanalysis of Transition-Metal Compounds Derived from 3,5-Dinitropyridone.

    PubMed

    Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2009-09-28

    Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)(2)(H(2)O)(4), 4, Zn(4DNPO)(2)(H(2)O)(4), 8, and Cd(4DNPO)(2)(H(2)O)(4), 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) A, beta = 97.9840(10) degrees for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) A, beta = 97.3500(10) degrees for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) A, beta 96.6500(10) degrees for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and pi-pi stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides.

  19. Reversion of the P-glycoprotein-mediated multidrug resistance of cancer cells by FK-506 derivatives.

    PubMed

    Jachez, B; Boesch, D; Grassberger, M A; Loor, F

    1993-04-01

    FK-506 is a resistance-modulating agent (RMA) for tumor cells whose multidrug resistance (MDR) involves a P-glycoprotein (Pgp)-mediated anti-cancer drug efflux. The family of FK-506 relatives and derivatives includes analogs which display a whole range of chemosensitizing strengths, from no detectable RMA activity to a complete reversion of the MDR phenotype. Similarly, FK-506 analogs display a whole range of immunosuppressive activities, including inactive ones. FK-506 was compared for RMA activity with 11 FK-506 analogs which were at least 20-fold less active than FK-506 for the inhibition of the bi-directional mixed lymphocyte reaction displayed the whole range of RMA activity. One such strong RMA derivative of FK-506 (SDZ 280-629) was further shown able to restore completely daunomycin retention by highly resistant MDR P388 tumor cells.

  20. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids

    PubMed Central

    2014-01-01

    Malaria is currently a public health concern in many countries in the world due to various factors which are not yet under check. Drug discovery projects targeting malaria often resort to natural sources in the search for lead compounds. A survey of the literature has led to a summary of the major findings regarding plant-derived compounds from African flora, which have shown anti-malarial/antiplasmodial activities, tested by in vitro and in vivo assays. Considerations have been given to compounds with activities ranging from “very active” to “weakly active”, leading to >500 chemical structures, mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylenes, xanthones, quinones, steroids and lignans. However, only the compounds that showed anti-malarial activity, from “very active” to “moderately active”, are discussed in this review. PMID:24602358

  1. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans.

    PubMed

    Stefanello, Sílvio Terra; Gubert, Priscila; Puntel, Bruna; Mizdal, Caren Rigon; de Campos, Marli Matiko Anraku; Salman, Syed M; Dornelles, Luciano; Avila, Daiana Silva; Aschner, Michael; Soares, Félix Alexandre Antunes

    Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS), is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are β-selenoamines (1-phenyl-3-( p -tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS (1,2-bis (2-methoxyphenyl) diselenide (C3) and 1,2-bis p -tolyldiselenide (C4). Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 μM) and heat shock (35 °C). Moreover, we evaluated Caenorhabditis elegans behavior, GST-4::GFP (glutathione S-transferase) expression and the activity of acetylcholinesterase (AChE). All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in Caenorhabditis elegans . Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability) was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

  2. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function

    PubMed Central

    Gonzalez, Eric J.; Merrill, Liana

    2014-01-01

    Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered. PMID:24760999

  3. A mechanistic review on plant-derived natural compounds as dietary supplements for prevention of inflammatory bowel disease.

    PubMed

    Farzaei, Mohammad Hosein; Bahramsoltani, Roodabeh; Abdolghaffari, Amir Hossein; Sodagari, Hamid Reza; Esfahani, Shadi A; Rezaei, Nima

    2016-06-01

    Inflammatory bowel disease (IBD) is a recurrent idiopathic inflammatory condition, characterized by disruption of the gut mucosal barrier. This mechanistic review aims to highlight the significance of plant-derived natural compounds as dietary supplements, which can be used in addition to restricted conventional options for the prevention of IBD and induction of remission. Various clinical trials confirmed the effectiveness and tolerability of natural supplements in patients with IBD. Mounting evidence suggests that these natural compounds perform their protective and therapeutic effect on IBD through numerous molecular mechanisms, including anti-inflammatory and immunoregulatory, anti-oxidative stress, modulation of intracellular signaling transduction pathways, as well as improving gut microbiota. In conclusion, natural products can be considered as dietary supplements with therapeutic potential for IBD, provided that their safety and efficacy is confirmed in future well-designed clinical trials with adequate sample size.

  4. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  5. Practical Synthesis, Antidepressant, and Anticonvulsant Activity of 3-Phenyliminoindolin-2-one Derivatives.

    PubMed

    Ma, Jian-Yin; Quan, Ying-Chun; Jin, Hong-Guo; Zhen, Xing-Hua; Zhang, Xue-Wu; Guan, Li-Ping

    2016-03-01

    Herein, a series of 3-phenyliminoindolin-2-one derivatives were designed, synthesized, and screened for their antidepressant and anticonvulsant activities. The IR spectra of the compounds afforded NH stretching (3340-3346 cm(-1)) bands and C=O stretching (1731-1746 cm(-1)). In the (1)H-NMR spectra of the compounds, N-H protons of indoline ring were observed at 10.65-10.89 ppm generally as broad bands, and (13)C-NMR spectra of the compounds C=O were seen at 161.72-169.27 ppm. Interestingly, compounds 3o, 3p and 3r significantly shortened immobility time in the The forced swimming test (FST) and The tail suspension test (TST) at 50 mg/kg dose levels. In addition, compound 3r exhibited higher levels of efficacy than the reference standard fluoxetine but had no effect on locomotor activity in the open-field test. Compound 3r significantly increased serotonin and norepinephrine and the metabolite 5-hydroxyindoleacetic acid in mouse brain, suggesting that the effects of compound 3r may be mediated through these neurotransmitters. In the seizure screen, 15 compounds showed some degree against PTZ-induced seizure at a dose of 100 mg/kg, and the tested compounds did not show any neurotoxicity at a dose of 300 mg/kg in the rotarod test. © 2015 John Wiley & Sons A/S.

  6. Biocatalyst mediated production of 6β,11α-dihydroxy derivatives of 4-ene-3-one steroids.

    PubMed

    Kolet, Swati P; Niloferjahan, Siddiqui; Haldar, Saikat; Gonnade, Rajesh; Thulasiram, Hirekodathakallu V

    2013-11-01

    Biotransformation of steroids with 4-ene-3-one functionality such as progesterone (I), testosterone (II), 17α-methyltestosterone (III), 4-androstene-3,17-dione (IV) and 19-nortestosterone (V) were studied by using a fungal system belonging to the genera of Mucor (M881). The fungal system efficiently and quantitatively converted these steroids in regio- and stereo-selective manner into corresponding 6β,11α-dihydroxy compounds. Time course experiments suggested that the transformation was initiated by hydroxylation at 6β- or 11α-(10β-hydroxy in case of V) to form monohydroxy derivatives which upon prolonged incubation were converted into corresponding 6β,11α-dihydroxy derivatives. The fermentation studies carried out using 5L table-top fermentor with substrates (I and II) clearly indicates that 6β,11α-dihydroxy derivatives of steroids with 4-ene-3-one functionality can be produced in large scale by using M881. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sirtuins and resveratrol-derived compounds: a model for understanding the beneficial effects of the Mediterranean diet.

    PubMed

    Russo, Matteo A; Sansone, Luigi; Polletta, Lucia; Runci, Alessandra; Rashid, Mohammad M; De Santis, Elena; Vernucci, Enza; Carnevale, Ilaria; Tafani, Marco

    2014-01-01

    The beneficial effects of the Mediterranean diet (MD) had been first observed about 50 years ago. Consumption of fresh vegetables and fruits, cereals, red wine, nuts, legumes, etc. has been regarded as the primary factor for protection from many human pathologies by the Mediterranean diet. Subsequently, this was attributed to the presence of polyphenols and their derivatives that, by exerting an anti-inflammatory and anti-oxidative effect, can be involved in the prevention of many diseases. Clinical trials, observational studies and meta-analysis have demonstrated an antiageing effect of MD accompanied by a reduced risk of age-related pathologies, such as cardiovascular, metabolic and neurodegenerative diseases, as well as cancer. The scientific explanation of such beneficial effects was limited to the reduction of the oxidative stress by compounds present in the MD. However, recently, this view is changing thanks to new studies aimed to uncover the molecular mechanism(s) activated by components of this diet. In particular, a new class of proteins called sirtuins have gained the attention of the scientific community because of their antiageing effects, their ability to protect from cardiovascular, metabolic, neurodegenerative diseases, cancer and to extend lifespan in lower organisms as well as in mammals. Interestingly, resveratrol a polyphenol present in grapes, nuts and berries has been shown to activate sirtuins and such activation is able to explain most of the beneficial effects of the MD. In this review, we will highlight the importance of MD with particular attention to the possible molecular pathways that have been shown to be influenced by it. We will describe the state of the art leading to demonstrate the important role of sirtuins as principal intracellular mediators of the beneficial effects of the MD. Finally, we will also introduce how Mediterranean diet may influence microbioma composition and stem cells function.

  8. Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives.

    PubMed

    Huang, Ai-Ling; Zhang, Yi-Long; Ding, Hai-Wen; Li, Bo; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2018-05-28

    Hesperetin has been known to exert several activities such as anti-oxidant, antitumor and anti-inflammatory. To find hesperetin derivatives showing better activity, sixteen novel hesperetin derivatives were designed and synthesized. The new obtained compounds were investigated for their anti-inflammatory activity by inhibiting interleukin-1β (IL-1β), interleukin-6 (IL-6) and production of nitric oxide (NO) in mouse RAW264.7 macrophages, and the structure-activity relationship of them was discussed. Among them, the compound 1l, 2c demonstrated more effective inhibitory activity of IL-1β and IL-6, meanwhile, the compound 1l showed the best inhibition of NO production. The results of NO inhibition study were basically accord with the molecular docking results of inducible nitric oxide synthase (iNOS). Furthermore, the expression of LPS-induced iNOS and components of NF-κB signaling pathway were reduced by compound 1l. Our results suggest that the inhibitory effect of compound 1l on LPS-stimulated inflammatory mediator production in RAW 264.7 cells is associated with the suppression of NF-κB signaling pathway and inhibition of iNOS protein and iNOS activity. From in vivo study, it was also observed that compound 1l had hepato-protective and anti-inflammatory effects in CCl 4 -induced acute liver injury mouse models. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Induction of colonic aberrant crypts in mice by feeding apparent N-nitroso compounds derived from hot dogs

    PubMed Central

    Davis, Michael E; Lisowyj, Michal P; Zhou, Lin; Wisecarver, James L; Gulizia, James M; Shostrom, Valerie K; Naud, Nathalie; Corpet, Denis E; Mirvish, Sidney S

    2012-01-01

    Nitrite-preserved meats (e.g., hot dogs) may help cause colon cancer because they contain N-nitroso compounds. We tested whether purified hot-dog-derived total apparent N-nitroso compounds (ANC) could induce colonic aberrant crypts, which are putative precursors of colon cancer. We purified ANC precursors in hot dogs and nitrosated them to produce ANC. In preliminary tests, CF1 mice received 1 or 3 i.p. injections of 5mg azoxymethane (AOM)/kg. In Experiments 1 and 2, female A/J mice received ANC in diet. In Experiment 1, ANC dose initially dropped sharply because the ANC precursors had mostly decomposed but, later in Experiment 1 and throughout Experiment 2, ANC remained at 85 nmol/g diet. Mice were killed after 8 (AOM tests) or 17–34 (ANC tests) wk. Median numbers of aberrant crypts in the distal 2 cm of the colon for 1 and 3 AOM injections, CF1 controls, ANC (Experiment 1), ANC (Experiment 2),and untreated A/J mice were 31, 74, 12, 20, 12, and 5–6, with P < 0.01 for both ANC tests. Experiment 2 showed somewhat increased numbers of colonic mucin-depleted foci in the ANC-treated group. We conclude that hot-dog-derived ANC induced significant numbers of aberrant crypts in the mouse colon. PMID:22293095

  10. Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin

    PubMed Central

    Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan

    2010-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoaging and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum contains anthocyanins and hydrolyzable tannins and possesses strong anti-oxidant and anti-tumor promoting properties. In this study, we determined the effect of pomegranate derived products POMx juice, POMx extract and pomegranate oil (POMo) against UVB-mediated damage using reconstituted human skin (EpiDerm™ FT-200). EpiDerm was treated with POMx juice (1-2 μl/0.1 ml/well), POMx extract (5-10 μg/0.1 ml/well), and POMo (1-2 μl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm2) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoaging by western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers, (ii) 8-dihydro-2′-deoxyguanosine, (iii) protein oxidation, and (iv) PCNA protein expression. We also found that pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12), and (vi) tropoelastin. Gelatin zymography revealed that pomegranate derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate derived products may be useful against UVB-induced damage to human skin. PMID:19320737

  11. Controlled thermal decomposition of NaSi to derive silicon clathrate compounds

    NASA Astrophysics Data System (ADS)

    Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke; Yamanaka, Shoji

    2009-01-01

    Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 °C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na 8Si 46. Type II clathrate compound Na xSi 136 was obtained as a single phase at a decomposition temperature <440 °C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 °C. The type II clathrate compound was thermally more stable, and retained at least up to 550 °C in vacuum.

  12. Deriving Flood-Mediated Connectivity between River Channels and Floodplains: Data-Driven Approaches

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Shao, Quanxi; Zhang, Yongyong

    2017-03-01

    The flood-mediated connectivity between river channels and floodplains plays a fundamental role in flood hazard mapping and exerts profound ecological effects. The classic nearest neighbor search (NNS) fails to derive this connectivity because of spatial heterogeneity and continuity. We develop two novel data-driven connectivity-deriving approaches, namely, progressive nearest neighbor search (PNNS) and progressive iterative nearest neighbor search (PiNNS). These approaches are illustrated through a case study in Northern Australia. First, PNNS and PiNNS are employed to identify flood pathways on floodplains through forward tracking. That is, progressive search is performed to associate newly inundated cells in each time step to previously inundated cells. In particular, iterations in PiNNS ensure that the connectivity is continuous - the connection between any two cells along the pathway is built through intermediate inundated cells. Second, inundated floodplain cells are collectively connected to river channel cells through backward tracing. Certain river channel sections are identified to connect to a large number of inundated floodplain cells. That is, the floodwater from these sections causes widespread floodplain inundation. Our proposed approaches take advantage of spatial-temporal data. They can be applied to achieve connectivity from hydro-dynamic and remote sensing data and assist in river basin planning and management.

  13. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells.

    PubMed

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-10-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.

  14. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    PubMed

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one derivatives as potential inhibitors of chorismate mutase.

    PubMed

    Mallikarjuna Rao, V; Mahesh Kumar, P; Rambabu, D; Kapavarapu, Ravikumar; Shobha Rani, S; Misra, Parimal; Pal, Manojit

    2013-12-01

    A series of novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives were designed, synthesized and evaluated in vitro as potential inhibitors of chorismate mutase (CM). All these compounds were prepared via a multi-component reaction (MCR) involving sequential I2-mediated Biginelli reaction followed by Cu-free Sonogashira coupling. Some of them showed promising inhibitory activities when tested at 30μM. One compound showed dose dependent inhibition of CM with IC50 value of 14.76±0.54μM indicating o-alkynylphenyl substituted DHPM as a new scaffold for the discovery of promising inhibitors of CM. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hetero-metallic {3d-4f-5d} complexes: preparation and magnetic behavior of trinuclear [(L(Me2)Ni-Ln){W(CN)(8)}] compounds (Ln = Gd, Tb, Dy, Ho, Er, Y; L(Me2) = Schiff base) and variable SMM characteristics for the Tb derivative.

    PubMed

    Sutter, Jean-Pascal; Dhers, Sébastien; Rajamani, Raghunathan; Ramasesha, S; Costes, Jean-Pierre; Duhayon, Carine; Vendier, Laure

    2009-07-06

    Assembling bimetallic {Ni-Ln}(3+) units and {W(CN)(8)}(3-) is shown to be an efficient route toward heteronuclear {3d-4f-5d} compounds. The reaction of either the binuclear [{L(Me2)Ni(H(2)O)(2)}{Ln(NO(3))(3)}] complexes or their mononuclear components [L(Me2)Ni] and Ln(NO(3))(3) with (HNBu(3))(3){W(CN)(8)} in dmf followed by diffusion of tetrahydrofuran yielded the trinuclear [{L(Me2)NiLn}{W(CN)(8)}] compounds 1 (Ln = Y), 2a,b (Gd), 3a,b (Tb), 4 (Dy), 5 (Ho), and 6 (Er) as crystalline materials. All of the derivatives possess the trinuclear core resulting from the linkage of the {W(CN)(8)} to the Ni center of the {Ni-Ln} unit. Differences are found in the solvent molecules acting as ligands and/or in the lattice depending on the crystallization conditions. For all the compounds ferromagnetic {Ni-W} and {Ni-Ln} (Ln = Gd, Tb, Dy, and Er} interactions are operative resulting in high spin ground states. Parameterization of the magnetic behaviors for the Y and Gd derivatives confirmed the strong cyano-mediated {Ni-W} interaction (J(NiW) = 27.1 and 28.5 cm(-1)) compared to the {Ni-Gd} interaction (J(NiGd) = 2.17 cm(-1)). The characteristic features for slow relaxation of the magnetization are observed for two Tb derivatives, but these are modulated by the crystal phase. Analysis of the frequency dependence of the alternating current susceptibility data yielded U(eff)/k(B) = 15.3 K and tau(0) = 4.5 x 10(-7) s for one derivative whereas no maxima of chi(M)'' appear above 2 K for the second one.

  17. On the CH...Cu agostic interaction: chiral copper(II) compounds with ephedrine and pseudoephedrine derivatives.

    PubMed

    Castro, Miguel; Cruz, Julián; López-Sandoval, Horacio; Barba-Behrens, Norah

    2005-08-14

    The ephedrine derivative, (H2ceph), yields [Cu(Hceph)2], showing a CH...Cu(II) agostic interaction; while in the analogous compound [Cu(Hcpse)2], with pseudoephedrine (H2cpse), that interaction is absent, despite the fact that these two diasteromers differ only in the orientation of the methyl and phenyl groups: erythro in H2ceph and threo in H2cpse. The X-ray crystal structure of [Cu(Hceph)2], indicates a Cu...HC length of 2.454 A and the theoretical study reveals the formation of a Cu...HC bond since the associated electronic density shows both a bond critical point and a bond ring critical point.

  18. Synthetic chromanol derivatives and their interaction with complex III in mitochondria from bovine, yeast, and Leishmania.

    PubMed

    Monzote, L; Stamberg, W; Patel, A; Rosenau, T; Maes, L; Cos, P; Gille, L

    2011-10-17

    Synthetic chromanol derivatives (TMC4O, 6-hydroxy-2,2,7,8-tetramethyl-chroman-4-one; TMC2O, 6-hydroxy-4,4,7,8-tetramethyl-chroman-2-one; and Twin, 1,3,4,8,9,11-hexamethyl-6,12-methano-12H-dibenzo[d,g][1,3]dioxocin-2,10-diol) share structural elements with the potent inhibitor of the mitochondrial cytochrome (cyt) bc(1) complex stigmatellin. Studies with isolated bovine cyt bc(1) complex demonstrated that these compounds partially inhibit the mammalian enzyme. The aim of this work was to comparatively investigate these toxicological aspects of synthetic vitamin E derivatives in mitochondria of different species. The chromanols and atovaquone as reference compound were evaluated for their inhibition of the cyt bc(1) activity in mitochondrial fractions from bovine hearts, yeast, and Leishmania. In addition, compounds were evaluated in vitro for their inhibitory activity against whole-cell Leishmania and mouse peritoneal macrophages. In these organisms, the chromanols showed a species-selective inhibition of the cyt bc(1) activity different from that of atovaquone. While in atovaquone the side chain mediates species-selectivity, the marked differences for TMC2O and TMC4O in cyt bc(1) inhibition suggests that direct substitution of the chromanol headgroup will control selectivity in these compounds. Low micromolar concentrations of TMC2O (IC(50) = 9.5 ± 0.5 μM) inhibited the growth of Leishmania, and an esterified TMC2CO derivative inhibited the cyt bc(1) activity with an IC(50) of 4.9 ± 0.9 μM. These findings suggest that certain chromanols also exhibit beyond their antioxidative properties antileishmanial activities and that TMC2O derivatives could be useful toward the development of highly active antiprotozoal compounds.

  19. Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators.

    PubMed

    Said Fatahala, Samar; Hasabelnaby, Sherifa; Goudah, Ayman; Mahmoud, Ghada I; Helmy Abd-El Hameed, Rania

    2017-03-17

    A new series of pyrrolopyridines and pyrrolopyridopyrimidines have been synthesized from aminocyanopyrroles. The synthesized compounds have been characterized by FTIR, ¹H-NMR and mass spectroscopy. The final compounds have been screened for in vitro pro-inflammatory cytokine inhibitory and in vivo anti-inflammatory activity. The biological results revealed that among all tested compounds some fused pyrroles, namely the pyrrolopyridines 3i and 3l , show promising activity. A docking study of the active synthesized molecules confirmed the biological results and revealed a new binding pose in the COX-2 binding site.

  20. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.

    PubMed

    Zhang, Xinghua; Zhang, Qi; Wang, Tiejun; Ma, Longlong; Yu, Yuxiao; Chen, Lungang

    2013-04-01

    Inexpensive non-sulfided Ni-based catalysts were evaluated for hydrodeoxygenation (HDO) using guaiacol as model compound. SiO2-ZrO2 (SZ), a complex oxide synthesized by precipitation method with different ratio of Si/Zr, was impregnated with Ni(NO3)2·6H2O and calcined at 500°C. Conversion rates and product distribution for guaiacol HDO at 200-340°C were determined. Guaiacol conversion reached the maximum at 300°C in the presence of Ni/SZ-3. When HDO reaction was carried out with real lignin-derived phenolic compounds under the optimal conditions determined for guaiacol, the total yield of hydrocarbons was 62.81%. These hydrocarbons were comprised of cyclohexane, alkyl-substituted cyclohexane and alkyl-substituted benzene. They have high octane number, would be the most desirable components for fungible liquid transportation fuel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres.

    PubMed

    González, Sheyla; Ibáñez, Elena; Santaló, Josep

    2011-09-01

    Efforts to efficiently derive embryonic stem cells (ESC) from isolated blastomeres have been done to minimize ethical concerns about human embryo destruction. Previous studies in our laboratory indicated a poor derivation efficiency of mouse ESC lines from isolated blastomeres at the 8-cell stage (1/8 blastomeres) due, in part, to a low division rate of the single blastomeres in comparison to their counterparts with a higher number of blastomeres (2/8, 3/8 and 4/8 blastomeres). Communication and adhesion between blastomeres from which the derivation process begins could be important aspects to efficiently derive ESC lines. In the present study, an approach consisting in the adhesion of a chimeric E-cadherin (E-cad-Fc) to the blastomere surface was devised to recreate the signaling produced by native E-cadherin between neighboring blastomeres inside the embryo. By this approach, the division rate of 1/8 blastomeres increased from 44.6% to 88.8% and a short exposure of 24 h to the E-cad-Fc produced an ESC derivation efficiency of 33.6%, significantly higher than the 2.2% obtained from the control group without E-cad-Fc. By contrast, a longer exposure to the same chimeric protein resulted in higher proportions of trophoblastic vesicles. Thus, we establish an important role of E-cadherin-mediated adherens junctions in promoting both the division of single 1/8 blastomeres and the efficiency of the ESC derivation process.

  2. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    PubMed

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Carrier-mediated translocation of uridine diphosphate glucose into the lumen of endoplasmic reticulum-derived vesicles from rat liver.

    PubMed Central

    Vanstapel, F; Blanckaert, N

    1988-01-01

    Radiolabeled UDPGlc incubated with rough endoplasmic reticulum (RER)-derived microsomes from rat liver became associated with the vesicles. This microsomal uptake of nucleotide sugar was time and temperature dependent. Analysis of the molecular species containing radiolabel revealed that initial uptake represented entry of predominantly intact UDPGlc in the microsomes. Conclusive evidence for proper translocation of UDPGlc across the microsomal membrane into the intravesicular space was obtained by demonstrating that UDPGlc was transported into an osmotically sensitive compartment. Microsomal uptake of UDPGlc exhibited features characteristic of carrier-mediated transport including saturation, specificity, and countertransport. Inhibition and trans-stimulation studies showed that other uridine-containing nucleotide sugars and 5'-UMP were substrates of the postulated microsomal carrier system for UDPGlc, while cytosine- or guanosine-containing nucleotides and non-5'-uridine monophosphates were, at best, very poor substrates. UDPGlc translocation activities were lower in smooth microsomal fractions than in the RER-derived vesicles, indicating that contamination with Golgi membranes could not be responsible for microsomal transport of UDPGlc. Our findings suggest that rat liver endoplasmic reticulum possesses a carrier system mediating proper translocation of UDPGlc and 5'-uridine-substituted structural analogues across the membrane. PMID:3417868

  4. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages

    PubMed Central

    Liu, Yan-gang; Chen, Ji-kuai; Zhang, Zi-teng; Ma, Xiu-juan; Chen, Yong-chun; Du, Xiu-ming; Liu, Hong; Zong, Ying; Lu, Guo-cai

    2017-01-01

    A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation. PMID:28151471

  5. Protection of ATP-Depleted Cells by Impermeant Strychnine Derivatives

    PubMed Central

    Dong, Zheng; Venkatachalam, Manjeri A.; Weinberg, Joel M.; Saikumar, Pothana; Patel, Yogendra

    2001-01-01

    Glycine and structurally related amino acids with activities at chloride channel receptors in the central nervous system also have robust protective effects against cell injury by ATP depletion. The glycine receptor antagonist strychnine shares this protective activity. An essential step toward identification of the molecular targets for these compounds is to determine whether they protect cells through interactions with intracellular targets or with molecules on the outer surface of plasma membranes. Here we report cytoprotection by a cell-impermeant derivative of strychnine. A strychnine-fluorescein conjugate (SF) was synthesized, and impermeability of plasma membranes to this compound was verified by fluorescence confocal microscopy. In an injury model of Madin-Darby canine kidney cells, ATP depletion led to lactate dehydrogenase release. SF prevented lactate dehydrogenase leakage without ameliorating ATP depletion. This was accompanied by preservation of cellular ultrastructure and exclusion of vital dyes. SF protection was also shown for ATP-depleted rat hepatocytes. On the other hand, when a key structural motif in the active site of strychnine was chemically blocked, the SF lost its protective effect, establishing strychnine-related specificity for SF protection. Cytoprotective effects of the cell-impermeant strychnine derivative provide compelling evidence suggesting that molecular targets on the outer surface of plasma membranes may mediate cytoprotection by strychnine and glycine. PMID:11238050

  6. The Chemistry of Nitroxyl-Releasing Compounds

    PubMed Central

    DuMond, Jenna F.

    2011-01-01

    Abstract Nitroxyl (HNO) demonstrates a diverse and unique biological profile compared to nitric oxide, a redox-related compound. Although numerous studies support the use of HNO as a therapeutic agent, the inherent chemical reactivity of HNO requires the use of donor molecules. Two general chemical strategies currently exist for HNO generation from nitrogen-containing molecules: (i) the disproportionation of hydroxylamine derivatives containing good leaving groups attached to the nitrogen atom and (ii) the decomposition of nitroso compounds (X-N=O, where X represents a good leaving group). This review summarizes the synthesis and structure, the HNO-releasing mechanisms, kinetics and by-product formation, and alternative reactions of six major groups of HNO donors: Angeli's salt, Piloty's acid and its derivatives, cyanamide, diazenium diolate-derived compounds, acyl nitroso compounds, and acyloxy nitroso compounds. A large body of work exists defining these six groups of HNO donors and the overall chemistry of each donor requires consideration in light of its ability to produce HNO. The increasing interest in HNO biology and the potential of HNO-based therapeutics presents exciting opportunities to further develop HNO donors as both research tools and potential treatments. Antioxid. Redox Signal. 14, 1637–1648. PMID:21235345

  7. Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema.

    PubMed Central

    Inoue, H.; Mori, T.; Shibata, S.; Koshihara, Y.

    1989-01-01

    1. The anti-inflammatory effects of glycyrrhetinic acid and its derivatives on TPA (12-O-tetradecanoylphorbol-13-acetate)-induced mouse ear oedema were studied. The mechanisms of TPA-induced ear oedema were first investigated with respect to the chemical mediators. 2. The formation of ear oedema reached a maximum 5 h after TPA application (2 micrograms per ear) and the prostaglandin E2 (PGE2) production of mouse ear increased with the oedema formation. 3. TPA-induced ear oedema was prevented by actinomycin D and cycloheximide (0.1 mg per ear, respectively) when applied during 60 min after TPA treatment. 4. Of glycyrrhetinic acid derivatives examined, dihemiphthalate derivatives (IIe, IIe', IIIa, IIIa', IVa, IVa') most strongly inhibited ear oedema on both topical (ID50, 1.6 mg per ear for IIe, 2.0 mg per ear for IIIa and 1.6 mg per ear for IVa) and oral (ID50, 88 mg kg-1 for IIe', 130 mg kg-1 for IIIa' and 92 mg kg-1 for IVa') administration. 5. Glycyrrhetinic acid (Ia) and its derivatives applied 30 min before TPA treatment were much more effective in inhibiting oedema than when applied 30 min after TPA. A dihemiphthalate of triterpenoid compound IVa completely inhibited oedema, even when applied 3 h before TPA treatment. 6. Glycyrrhetinic acid (Ia) and deoxoglycyrrhetol (IIa), the parent compounds, produced little inhibition by oral administration at less than 200 mg kg-1. 7. These results suggest that the dihemiphthalate derivatives of triterpenes derived from glycyrrhetinic acid by chemical modification are useful for the treatment of skin inflammation by both topical and oral application. PMID:2924072

  8. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

    PubMed Central

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443

  9. Platelet-Derived Growth Factor-BB Protects Mesenchymal Stem Cells (MSCs) Derived From Immune Thrombocytopenia Patients Against Apoptosis and Senescence and Maintains MSC-Mediated Immunosuppression

    PubMed Central

    Zhang, Jia-min; Feng, Fei-er; Wang, Qian-ming; Zhu, Xiao-lu; Fu, Hai-xia; Xu, Lan-ping; Liu, Kai-yan

    2016-01-01

    Immune thrombocytopenia (ITP) is characterized by platelet destruction and megakaryocyte dysfunction. Mesenchymal stem cells (MSCs) from ITP patients (MSC-ITP) do not exhibit conventional proliferative abilities and thus exhibit defects in immunoregulation, suggesting that MSC impairment might be a mechanism involved in ITP. Platelet-derived growth factor (PDGF) improves growth and survival in various cell types. Moreover, PDGF promotes MSC proliferation. The aim of the present study was to analyze the effects of PDGF-BB on MSC-ITP. We showed that MSC-ITP expanded more slowly and appeared flattened and larger. MSC-ITP exhibited increased apoptosis and senescence compared with controls. Both the intrinsic and extrinsic pathways account for the enhanced apoptosis. P53 and p21 expression were upregulated in MSC-ITP, but inhibition of p53 with pifithrin-α markedly inhibited apoptosis and senescence. Furthermore, MSCs from ITP patients showed a lower capacity for inhibiting the proliferation of activated T cells inducing regulatory T cells (Tregs) and suppressing the synthesis of anti-glycoprotein (GP)IIb-IIIa antibodies. PDGF-BB treatment significantly decreased the expression of p53 and p21 and increased survivin expression in MSC-ITP. In addition, the apoptotic rate and number of senescent cells in ITP MSCs were reduced. Their impaired ability for inhibiting activated T cells, inducing Tregs, and suppressing the synthesis of anti-GPIIb-IIIa antibodies was restored after PDGF-BB treatment. In conclusion, we have demonstrated that PDGF-BB protects MSCs derived from ITP patients against apoptosis, senescence, and immunomodulatory defects. This protective effect of PDGF-BB is likely mediated via the p53/p21 pathway, thus potentially providing a new therapeutic approach for ITP. Significance Immune thrombocytopenia (ITP) is characterized by platelet destruction and megakaryocyte dysfunction. Platelet-derived growth factor (PDGF) improves growth and survival in various

  10. The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds.

    PubMed

    Auger, Cyril; Chaabi, Mehdi; Anselm, Eric; Lobstein, Annelise; Schini-Kerth, Valérie B

    2010-07-01

    Phenolic extracts from red wine (RWPs) have been shown to induce nitric oxide (NO)-mediated vasoprotective effects, mainly by causing the PI3-kinase/Akt-dependent activation of endothelial NO synthase (eNOS). RWPs contain several hundreds of phenolic compounds. The aim of the present study was to identify red wine phenolic compounds capable of activating eNOS in endothelial cells using multi-step fractionation. The red wine phenolic extract was fractionated using Sephadex LH-20 and preparative RP-HPLC approaches. The ability of a fraction to activate eNOS was assessed by determining the phosphorylation level of Akt and eNOS by Western blot analysis, and NO formation by electron spin resonance spectroscopy. Tentative identification of phenolic compounds in fractions was performed by MALDI-TOF and HPLC-MS techniques. Separation of RWPs by Sephadex LH-20 generated nine fractions (fractions A to I), of which fractions F, G, H and I caused significant eNOS activation. Fraction F was then subjected to semi-preparative RP-HPLC to generate ten subfractions (subfraction SF1 to SF10), all of which caused eNOS activation. The active fractions and subfractions contained mainly procyanidins and anthocyanins. Isolation of phenolic compounds from SF9 by semi-preparative RP-HLPC lead to the identification of petunidin-O-coumaroyl-glucoside as a potent activator of eNOS.

  11. Inhibition of Efflux Transporter-Mediated Fungicide Resistance in Pyrenophora tritici-repentis by a Derivative of 4′-Hydroxyflavone and Enhancement of Fungicide Activity

    PubMed Central

    Reimann, Sven; Deising, Holger B.

    2005-01-01

    Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029

  12. Cytotoxicity of compounds from Xylopia aethiopica towards multi-factorial drug-resistant cancer cells.

    PubMed

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Zeino, Maen; Efferth, Thomas

    2015-12-15

    Multidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines. The present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4',5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry. Flavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production. Compounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Diazo compounds in the chemistry of fullerenes

    NASA Astrophysics Data System (ADS)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  14. pH dependent synthesis of two zinc(II) compounds derived from 5-aminotetrazole-1-isopropanoic acid for treatment of cancer cells

    NASA Astrophysics Data System (ADS)

    Zhai, Chun; Yang, Zhan Yong; Xu, Duo; Wang, Zhi Kang; Hao, Xin Yu; Shi, Yu Jie; Yang, Gao Wen; Li, Qiao Yun

    2018-02-01

    pH is sometimes fundamental to the formation of coordination compounds. Here we report two new Zn(II)-tetrazole-carboxylate coordination compounds derived from Hatzipa, namely two dimensional [Zn(atzipa)2]n (1) and [Zn(atzipa)2(H2O)(EtOH)]n (2), where Hatzipa = 5-aminotetrazole-1-isopropanoic acid. The structures of the two compounds are controlled by pH value of the reaction system. Compound 1 crystallizes in an achiral space group while 2 in a chiral space group P2(1)2(1)2. Furthermore, nanoparticles (NPs) of the two compounds can be obtained by co-precipitation with PEG-5000 (Polyethylene Glycol-5000). And [Zn(atzipa)2]n (1) NPs with a relatively low IC50 (half-maximal inhibitory concentration) on Hela cells of 23 μg/mL (6.1 μM) is superior to [Zn(atzipa)2(H2O)(EtOH)]n (2) NPs (58 μg/mL, 13.2 μM). Both NPs of the two compounds can inhibit the migration of Hela cells and compound 1NPs can be used as a cell imaging agent. The results show that pH influences the resulting structures and [Zn(atzipa)2]n (1) NPs capable of inhibiting the growth of tumor in vitro may be a potential candidate against cancer.

  15. In Silico Analysis of the Potential of the Active Compounds Fucoidan and Alginate Derived from Sargassum Sp. as Inhibitors of COX-1 and COX-2

    PubMed Central

    Dewi, Lestari

    2016-01-01

    Introduction: The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. Aim: The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. Material and methods: The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Results: Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. Conclusion: The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2. PMID:27594740

  16. Web server to identify similarity of amino acid motifs to compounds (SAAMCO).

    PubMed

    Casey, Fergal P; Davey, Norman E; Baran, Ivan; Varekova, Radka Svobodova; Shields, Denis C

    2008-07-01

    Protein-protein interactions are fundamental in mediating biological processes including metabolism, cell growth, and signaling. To be able to selectively inhibit or induce protein activity or complex formation is a key feature in controlling disease. For those situations in which protein-protein interactions derive substantial affinity from short linear peptide sequences, or motifs, we can develop search algorithms for peptidomimetic compounds that resemble the short peptide's structure but are not compromised by poor pharmacological properties. SAAMCO is a Web service ( http://bioware.ucd.ie/ approximately saamco) that facilitates the screening of motifs with known structures against bioactive compound databases. It is built on an algorithm that defines compound similarity based on the presence of appropriate amino acid side chain fragments and a favorable Root Mean Squared Deviation (RMSD) between compound and motif structure. The methodology is efficient as the available compound databases are preprocessed and fast regular expression searches filter potential matches before time-intensive 3D superposition is performed. The required input information is minimal, and the compound databases have been selected to maximize the availability of information on biological activity. "Hits" are accompanied with a visualization window and links to source database entries. Motif matching can be defined on partial or full similarity which will increase or reduce respectively the number of potential mimetic compounds. The Web server provides the functionality for rapid screening of known or putative interaction motifs against prepared compound libraries using a novel search algorithm. The tabulated results can be analyzed by linking to appropriate databases and by visualization.

  17. Nutrition Influences Caffeine-Mediated Sleep Loss in Drosophila.

    PubMed

    Keebaugh, Erin S; Park, Jin Hong; Su, Chenchen; Yamada, Ryuichi; Ja, William W

    2017-11-01

    Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4.

    PubMed

    Lin, Yan; Yu, Le-Xing; Yan, He-Xin; Yang, Wen; Tang, Liang; Zhang, Hui-Lu; Liu, Qiong; Zou, Shan-Shan; He, Ya-Qin; Wang, Chao; Wu, Meng-Chao; Wang, Hong-Yang

    2012-09-01

    Robust clinical and epidemiologic data support the role of inflammation as a key player in hepatocellular carcinoma (HCC) development. Our previous data showed that gut-derived lipopolysaccharide (LPS) promote HCC development by activating Toll-like receptor 4 (TLR4) expressed on myeloid-derived cells. However, the effects of gut-derived LPS on other types of liver injury models are yet to be studied. The purpose of this study was to determine the importance of gut-derived LPS and TLR4 signaling in a T-cell-mediated hepatitis-Con A-induced hepatitis model, which mimic the viral hepatitis. Reduction of endotoxin using antibiotics regimen or genetic ablation of TLR4 in mice significantly alleviate Con A-induced liver injury by inhibiting the infiltration of T lymphocytes into the liver and the activation of CD4(+) T lymphocytes as well as the production of T helper 1 cytokines; in contrast, exogenous LPS can promote Con A-induced hepatitis and CD4(+) T cells activation in vivo and in vitro. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored Con A-induced liver injury and inflammation, indicating the major cell target of LPS. In addition, TLR4 may positively regulate the target hepatocellular apoptosis via the perforin/granzyme B pathway. These data suggest that gut-derived LPS and TLR4 play important positive roles in Con A-induced hepatitis and modulation of the gut microbiotia may represent a new avenue for therapeutic intervention to treat acute hepatitis induced by hepatitis virus infection, thus to prevent hepatocellular carcinoma.

  19. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake wasmore » measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake.

  20. High performance of a cobalt–nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives

    PubMed Central

    Zhou, Peng; Jiang, Liang; Wang, Fan; Deng, Kejian; Lv, Kangle; Zhang, Zehui

    2017-01-01

    Replacement of precious noble metal catalysts with low-cost, non-noble heterogeneous catalysts for chemoselective reduction and reductive coupling of nitro compounds holds tremendous promise for the clean synthesis of nitrogen-containing chemicals. We report a robust cobalt–nitrogen/carbon (Co–Nx/C-800-AT) catalyst for the reduction and reductive coupling of nitro compounds into amines and their derivates. The Co–Nx/C-800-AT catalyst was prepared by the pyrolysis of cobalt phthalocyanine–silica colloid composites and the subsequent removal of silica template and cobalt nanoparticles. The Co–Nx/C-800-AT catalyst showed extremely high activity, chemoselectivity, and stability toward the reduction of nitro compounds with H2, affording full conversion and >97% selectivity in water after 1.5 hours at 110°C and under a H2 pressure of 3.5 bar for all cases. The hydrogenation of nitrobenzene over the Co–Nx/C-800-AT catalyst can even be smoothly performed under very mild conditions (40°C and a H2 pressure of 1 bar) with an aniline yield of 98.7%. Moreover, the Co–Nx/C-800-AT catalyst has high activity toward the transfer hydrogenation of nitrobenzene into aniline and the reductive coupling of nitrobenzene into other derivates with high yields. These processes were carried out in an environmentally friendly manner without base and ligands. PMID:28232954

  1. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities.

    PubMed

    Drollette, Brian D; Hoelzer, Kathrin; Warner, Nathaniel R; Darrah, Thomas H; Karatum, Osman; O'Connor, Megan P; Nelson, Robert K; Fernandez, Loretta A; Reddy, Christopher M; Vengosh, Avner; Jackson, Robert B; Elsner, Martin; Plata, Desiree L

    2015-10-27

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.

  2. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities

    PubMed Central

    Drollette, Brian D.; Hoelzer, Kathrin; Warner, Nathaniel R.; Darrah, Thomas H.; Karatum, Osman; O’Connor, Megan P.; Nelson, Robert K.; Fernandez, Loretta A.; Reddy, Christopher M.; Vengosh, Avner; Jackson, Robert B.; Elsner, Martin; Plata, Desiree L.

    2015-01-01

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (0–8 ppb) and diesel range organic compounds (DRO; 0–157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation. PMID:26460018

  3. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  4. In vivo suppression of solid Ehrlich cancer via chlorophyllin derivative mediated PDT: an albino mouse tumour model

    NASA Astrophysics Data System (ADS)

    Gomaa, Iman; Saraya, Hend; Zekri, Maha; Abdel-Kader, Mahmoud

    2015-03-01

    In this study, copper chlorophyllin was used as a photosensitizer for photodynamic therapy (PDT) in Ehrlich tumour mouse model. Six groups of animals comprising 5 animals per group were subcutaneously transplanted with 1x106 Ehrlich tumour cells. A single dose of 200 μg/gm body weight chlorophylin derivative was administered by intravenous (IV) or intratumoral (IT) routes. Mice were exposed to monochromatic red laser of 630 nm for 1 h, and tumour regression was followed up for three consecutive months post treatment. Several Biochemical, histological and molecular tests were performed in order to evaluate the efficacy and safety of the applied treatment. An interest has been also directed towards investigating the molecular mechanisms underlying chlorophyllin derivative mediated PDT. PDT-treated animals via either the IV or IT routes showed significant decrease in tumour size 72 h post-treatment. Tumours at the IV-PDT group disappeared totally within a week with no recurrence over three months follow up. In the IT-PDT, the decrease in tumour size at the first week was interrupted by a slight increase; however never reached the original size. Histological examination of tumour tissues of the IV-PDT group at 24 h post treatment demonstrated restoring the normal muscle tissue architecture, and the biochemical assays indicated normal liver functions. The immunohistochemical analysis of caspase-3, and the quantitative PCR results of caspases-8 and 9 proved the presence of extrinsic apoptotic pathway after cholorphyllin derivative-mediated PDT. In conclusion IV-PDT strategy proved better cure rate than the IT-PDT, with no recurrence over three months of follow up.

  5. Biotransformation of Various Substituted Aromatic Compounds to Chiral Dihydrodihydroxy Derivatives

    PubMed Central

    Raschke, Henning; Meier, Michael; Burken, Joel G.; Hany, Roland; Müller, Markus D.; Van Der Meer, Jan Roelof; Kohler, Hans-Peter E.

    2001-01-01

    The biotransformation of four different classes of aromatic compounds by the Escherichia coli strain DH5α(pTCB 144), which contained the chlorobenzene dioxygenase (CDO) from Pseudomonas sp. strain P51, was examined. CDO oxidized biphenyl as well as monochlorobiphenyls to the corresponding cis-2,3-dihydro-2,3-dihydroxy derivatives, whereby oxidation occurred on the unsubstituted ring. No higher substituted biphenyls were oxidized. The absolute configurations of several monosubstituted cis-benzene dihydrodiols formed by CDO were determined. All had an S configuration at the carbon atom in meta position to the substituent on the benzene nucleus. With one exception, the enantiomeric excess of several 1,4-disubstituted cis-benzene dihydrodiols formed by CDO was higher than that of the products formed by two toluene dioxygenases. Naphthalene was oxidized to enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. All absolute configurations were identical to those of the products formed by toluene dioxygenases of Pseudomonas putida UV4 and P. putida F39/D. The formation rate of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene was significantly higher (about 45 to 200%) than those of several monosubstituted cis-benzene dihydrodiols and more than four times higher than the formation rate of cis-benzene dihydrodiol. A new gas chromatographic method was developed to determine the enantiomeric excess of the oxidation products. PMID:11472901

  6. Heme Mediates Cytotoxicity from Artemisinin and Serves as a General Anti-Proliferation Target

    PubMed Central

    Zhang, Shiming; Gerhard, Glenn S.

    2009-01-01

    Heme (Fe2+ protoporphyrin IX) is an essential molecule that has been implicated the potent antimalarial action of artemisinin and its derivatives, although the source and nature of the heme remain controversial. Artemisinins also exhibit selective cytotoxicity against cancer cells in vitro and in vivo. We demonstrate that intracellular heme is the physiologically relevant mediator of the cytotoxic effects of artemisinins. Increasing intracellular heme synthesis through the addition of aminolevulinic acid, protoporphyrin IX, or transferrin-bound iron increased the cytotoxicity of dihydroartemisinin, while decreasing heme synthesis through the addition of succinyl acetone decreased its cytotoxic activity. A simple and robust high throughput assay was developed to screen chemical compounds that were capable of interacting with heme. A natural products library was screened which identified the compound coralyne, in addition to artemisinin, as a heme interacting compound with heme synthesis dependent cytotoxic activity. These results indicate that cellular heme may serve a general target for the development of both anti-parasitic and anti-cancer therapeutics. PMID:19862332

  7. Causal mediation analysis with multiple causally non-ordered mediators.

    PubMed

    Taguri, Masataka; Featherstone, John; Cheng, Jing

    2018-01-01

    In many health studies, researchers are interested in estimating the treatment effects on the outcome around and through an intermediate variable. Such causal mediation analyses aim to understand the mechanisms that explain the treatment effect. Although multiple mediators are often involved in real studies, most of the literature considered mediation analyses with one mediator at a time. In this article, we consider mediation analyses when there are causally non-ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect effects through the two mediators considered separately may diverge from the joint natural indirect effect when there are additive interactions between the effects of the two mediators on the outcome. Therefore, we derive an equation for the joint natural indirect effect based on the individual mediation effects and their interactive effect, which helps us understand how the mediation effect works through the two mediators and relative contributions of the mediators and their interaction. We also discuss an extension for three mediators. The proposed method is illustrated using data from a randomized trial on the prevention of dental caries.

  8. Thymocyte emigration is mediated by active movement away from stroma-derived factors

    PubMed Central

    Poznansky, Mark C.; Olszak, Ivona T.; Evans, Richard H.; Wang, Zhengyu; Foxall, Russell B.; Olson, Douglas P.; Weibrecht, Kathryn; Luster, Andrew D.; Scadden, David T.

    2002-01-01

    T cells leave the thymus at a specific time during differentiation and do not return despite elaboration of known T cell chemoattractants by thymic stroma. We observed differentiation stage–restricted egress of thymocytes from an artificial thymus in which vascular structures or hemodynamics could not have been playing a role. Hypothesizing that active movement of cells away from a thymic product may be responsible, we demonstrated selective reduction in emigration from primary thymus by inhibitors of active movement down a concentration gradient (chemofugetaxis). Immature intrathymic precursors were insensitive to an emigration signal, whereas mature thymocytes and peripheral blood T cells were sensitive. Thymic stroma was noted to elaborate at least two proteins capable of inducing emigration, one of which was stromal cell–derived factor-1. Thymic emigration is mediated, at least in part, by specific fugetaxis-inducing factors to which only mature cells respond. PMID:11956248

  9. Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds

    PubMed Central

    Conte, Raffaele; Marturano, Valentina; Peluso, Gianfranco; Calarco, Anna; Cerruti, Pierfrancesco

    2017-01-01

    Phytocompounds have been used in medicine for decades owing to their potential in anti-inflammatory applications. However, major difficulties in achieving sustained delivery of phyto-based drugs are related to their low solubility and cell penetration, and high instability. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in the pharmaceutical sector. This review focuses on the recent advances in nanocarrier-mediated drug delivery of bioactive molecules of plant origin in the field of anti-inflammatory research. In particular, special attention is paid to the relationship between structure and properties of the nanocarrier and phytodrug release behavior. PMID:28350317

  10. Method of preparing metallocene compounds

    DOEpatents

    Rosenblum, Myron; Matchett, Stephen A.

    1992-01-01

    This invention describes a novel method of preparing metallocene compounds. The invention is based on synthesis of novel bis cyclopentadienides that, under appropriate conditions, will either encapsulate a transition metal to produce a metallocene such as ferrocene, or ferrocene derivative, or will yield a polymeric metallocene. Compounds produced by this process are useful as catalysts in propulsion systems, or as anti-knock compounds in gasolines.

  11. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review.

    PubMed

    Arshad, Laiba; Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Haque, Md Areeful

    2017-01-01

    The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents.

  12. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review

    PubMed Central

    Arshad, Laiba; Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Haque, Md. Areeful

    2017-01-01

    The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents. PMID:28194110

  13. Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinolol in Caco-2 cells.

    PubMed

    Mertens-Talcott, Susanne U; De Castro, Whocely Victor; Manthey, John A; Derendorf, Hartmut; Butterweck, Veronika

    2007-04-04

    Many studies investigating drug interactions with citrus compounds focus on the major grapefruit furanocoumarins bergamottin, dihydroxybergamottin, and the flavonoid naringenin. This study evaluated the influence of polymethoxylated flavones (PMFs), tangeretin, nobiletin, 3,5,6,7,8,3,4'-heptamethoxyflavone, and sinensetin, as well as other minor occurring citrus phenols, hesperetin, limettin, 7-OH-coumarin, 7-geranyloxycoumarin, and eriodictyol, on P-glycoprotein-mediated transport of the beta-blocker talinolol using the Caco-2 cell monolayer model and was used to determine the structure-function aspects of the interaction. The transport of talinolol across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of the calcium-channel blocker verapamil (a known inhibitor of P-glycoprotein) and citrus compounds. A sigmoid dose-response model was used to fit the data and to estimate the IC50 values of the potential inhibitors. Results from this study show that PMFs significantly decreased talinolol transport from the basolateral to apical side, where tangeretin had the lowest IC50 of 3.2 micromol/L, followed by nobiletin, heptamethoxyflavone, and sinensetin with IC50 values of 3.5, 3.8, and 3.9 micromol/L, respectively. However, the efficacy of the compounds did not appear to be dependent on the number of methoxy groups. Other citrus compounds did not have any significant effect on the transport of talinolol. This study suggests that PMFs have a high potential in the interaction with P-gp-mediated talinolol transport in Caco-2 cells. Based on their relatively low concentrations (< or =3 microg/mL) in citrus, the clinical relevance of these interactions needs to be further elucidated in in vivo studies.

  14. Co(III) as mediator in phenol destruction using electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Herlina, Herlina; Derlini, Derlini; Muhammad, Razali

    2017-03-01

    Mediated electrochemical oxidation is one of the method for oxidation of organic compound by using a mediator. This method has been developed because have several advantages which low cost and efficient, the exhaust gas does not contain toxic materials and hazardous waste and the process take place at a relatively low temperature. Electrochemical oxidation of organic compounds using metal ion mediator is one alternative method that is appropriate for the treatment of organic waste. Co(III) is a strong oxidizing agent used as a mediator has been prepared in Pt electrodes. The concentration of Co(III) formed during oxidation determined by potentiometric titration where Co(III) aliquot was added into Fe(II) excess solution and the remaining Fe(II) which did not react has been titrated with Ce(IV). In optimum condition, Co(III) was then used to oxidize the organic compound into carbon dioxide. The parameters has been studied are the standard oxidation potential of mediator, acid concentration and temperature. The results obtained at potential of 6 Volt, with nitric acid 4 M and temperature of 25°C give result 23.86% where Co (II) is converted to Co(III) within 2 hours. The addition of silver nitrate can increase the concentration of Co(III). At the optimum conditions, the mediator ion Co(III) can destructed to 66.44% of phenol compound oxidized into carbon dioxide.

  15. Aryl Hydrocarbon Receptor activation by diesel exhaust particles mediates epithelium-derived cytokines expression in severe allergic asthma.

    PubMed

    Weng, Chih-Ming; Wang, Chun-Hua; Lee, Meng-Jung; He, Jung-Re; Huang, Hsin-Yu; Chao, Ming-Wei; Chung, Kian Fan; Kuo, Han-Pin

    2018-04-19

    Exposure to environmental pollutants promotes Th2 cell responses. Aryl hydrocarbon receptor (AhR) activation aggravates allergic responses. Epithelium-derived thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33 are implicated in the dysregulation of Th2 immune responses in severe allergic asthma. Bronchial biopsies of 28 allergic severe asthma and 6 mild asthma subjects from highly polluted areas were analyzed for AhR nuclear translocation (NT), cytokine expression and gene activation. Cultured primary epithelial cells were stimulated with diesel exhausted particles (DEP) to determine AhR-mediated IL-33, Il-25 and TSLP synthesis and release. Primary bronchial epithelial cells exposed to DEP showed up-regulation of IL-33, IL-25 and TSLP. These effects were abolished by knock-down of AhR by siRNA. Increased AhR/ARNT binding to promoters of IL-33, IL-25, and TSLP was found using chromatin immunoprecipitation (ChIP) assay. Allergic severe asthma with high AhR NT had higher bronchial gene and protein expression of IL-33, IL-25 and TSLP. These patients derived clinical benefit from anti-IgE treatment. AhR activation by DEP mediates up-regulation of IL-33, IL-25 and TSLP with Th2 activation, potentially linking environmental pollution and allergic severe asthma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    PubMed Central

    Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-01-01

    Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515

  17. Controlled thermal decomposition of NaSi to derive silicon clathrate compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke

    Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 deg. C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na{sub 8}Si{sub 46}. Type II clathrate compound Na{sub x}Si{sub 136} was obtained as a single phase at a decomposition temperature <440 deg. C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 deg. C. The type II clathratemore » compound was thermally more stable, and retained at least up to 550 deg. C in vacuum. - Graphical Abstract: The optimal condition to prepare type II silicon clathrate Na{sub x}Si{sub 136} with minimal contamination of the type I phase is proposed. The starting NaSi should be thermally decomposed below 440 deg. C, and the rapid removal of Na vapor evolved is essentially important.« less

  18. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    PubMed

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  19. Territrem and Butyrolactone Derivatives from a Marine-Derived Fungus Aspergillus Terreus

    PubMed Central

    Nong, Xu-Hua; Wang, Yi-Fei; Zhang, Xiao-Yong; Zhou, Mu-Ping; Xu, Xin-Ya; Qi, Shu-Hua

    2014-01-01

    Seventeen lactones including eight territrem derivatives (1–8) and nine butyrolactone derivatives (9–17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1–3 and 9–10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1–17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 ± 0.6, 4.5 ± 0.6 nM, respectively. This is the first time it has been reported that 3, 6, 10, 12 had evident antiviral activity towards HSV-1 with IC50 values of 16.4 ± 0.6, 6.34 ± 0.4, 21.8 ± 0.8 and 28.9 ± 0.8 μg·mL−1, respectively. Antifouling bioassay tests showed that compounds 1, 11, 12, 15 had potent antifouling activity with EC50 values of 12.9 ± 0.5, 22.1 ± 0.8, 7.4 ± 0.6, 16.1 ± 0.6 μg·mL−1 toward barnacle Balanus amphitrite larvae, respectively. PMID:25522319

  20. Biochemical effects and growth inhibition in MCF-7 cells caused by novel sulphonamido oxa-polyamine derivatives.

    PubMed

    Pavlov, V; Lin, P Kong Thoo; Rodilla, V

    2002-04-01

    The novel polyamine derivatives sulphonamido oxa-spermine (oxa-Spm) and sulphonamido oxa-spermidine (oxa-Spd) exhibited rapid cytotoxic action towards MCF-7 human breast cancer cells with IC50 values of 4.35 and 6.47 pM, respectively, after 24-h drug exposure. Neither compound is a substrate of serum amine oxidase. Both oxa-Spm and oxa-Spd caused cell shrinkage, as determined by phase-contrast microscopy. After incubation with 10 microM of either compound for 8 h, the cells underwent chromatin condensation and nuclear fragmentation. However, no clear DNA ladder was obtained by electrophoresis. The sulphonamido oxa-polyamine derivatives and especially oxa-Spd enhanced the activity of polyamine oxidase (PAO), an enzyme capable of oxidising N1-acetylated spermine and spermidine to spermidine and putrescine, respectively, generating cytotoxic H2O2 and 3-acetamidopropanal as by-products. The intracellular polyamine content was only marginally reduced in response to drug treatment. In conclusion, our data show that these novel sulphonamido oxa-polyamine derivatives possess high cytotoxic activity against MCF-7 cells and indicate that induction of PAO may mediate their cytotoxicity via apoptosis.

  1. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation.

    PubMed

    Nov, Ori; Kohl, Ayelet; Lewis, Eli C; Bashan, Nava; Dvir, Irit; Ben-Shlomo, Shani; Fishman, Sigal; Wueest, Stephan; Konrad, Daniel; Rudich, Assaf

    2010-09-01

    Central obesity is frequently associated with adipose tissue inflammation and hepatic insulin resistance. To identify potential individual mediators in this process, we used in vitro systems and assessed if insulin resistance in liver cells could be induced by secreted products from adipocytes preexposed to an inflammatory stimulus. Conditioned medium from 3T3-L1 adipocytes pretreated without (CM) or with TNFalpha (CM-TNFalpha) was used to treat Fao hepatoma cells. ELISAs were used to assess the concentration of several inflammatory mediators in CM-TNFalpha. CM-TNFalpha-treated Fao cells exhibited about 45% diminution in insulin-stimulated phosphorylation of insulin receptor, insulin receptor substrate proteins, protein kinase B, and glycogen synthase kinase-3 as compared with CM-treated cells, without changes in the total abundance of these protein. Insulin increased glycogenesis by 2-fold in CM-treated Fao cells but not in cells exposed to CM-TNFalpha. Expression of IL-1beta mRNA was elevated 3-fold in TNFalpha-treated adipocytes, and CM-TNFalpha had 10-fold higher concentrations of IL-1beta but not TNFalpha or IL-1alpha. IL-1beta directly induced insulin resistance in Fao, HepG2, and in primary rat hepatocytes. Moreover, when TNFalpha-induced secretion/production of IL-1beta from adipocytes was inhibited by the IL-1 converting enzyme (ICE-1) inhibitor II (Ac-YVAD-CMK), insulin resistance was prevented. Furthermore, liver-derived cells treated with IL-1 receptor antagonist were protected against insulin resistance induced by CM-TNFalpha. Finally, IL-1beta secretion from human omental fat explants correlated with body mass index (R(2) = 0.639, P < 0.01), and the resulting CM induced insulin resistance in HepG2 cells, inhibitable by IL-1 receptor antagonist. Our results suggest that adipocyte-derived IL-1beta may constitute a mediator in the perturbed cross talk between adipocytes and liver cells in response to adipose tissue inflammation.

  2. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products.

    PubMed

    Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda

    2018-01-15

    An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  4. Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate-derived Streptomyces sp.

    PubMed

    Naik, D N; Wahidullah, S; Meena, R M

    2013-03-01

    The study aimed to discover quorum sensing (QS) inhibitors from marine sponge-derived actinomycetes and analyse its inhibitory activities against QS-mediated virulence factors in Pseudomonas aeruginosa. Seventy-two actinomycetes isolated from marine invertebrates collected from the western coast of India were screened against the QS indicator strain Chromobacterium violaceum CV12472. Methanol extracts of 12 actinomycetes showing inhibition of violacein production were accessed for downregulation of QS-mediated virulence factors like swarming, biofilm formation, pyocyanin, rhamnolipid and LasA production in Ps. aeruginosa ATCC 27853. The isolates NIO 10068, NIO 10058 and NIO 10090 exhibited very good anti-QS activity, with NIO 10068 being the most promising one. Mass spectrometric analysis of NIO 10068 methanol extract revealed the presence of cinnamic acid and linear dipeptides proline-glycine and N-amido-α-proline in the active extract. Detailed investigation suggested that although linear dipeptide Pro-Gly is to some extent responsible for the observed biological activity, cinnamic acid seems to be the main compound responsible for it. Marine-derived actinomycetes are a potential storehouse for QS inhibitors. This is the first report not only on marine sponge-associated Streptomyces for anti-QS in Ps. aeruginosa but also on cinnamic acid and proline-derived linear dipeptides proline-glycine as QS inhibitors. The results reveal that marine-derived actinomycetes may not only play a role in the defensive mechanism of their host but also lead to new molecules useful in the development of novel antivirulence drugs. © 2012 The Society for Applied Microbiology.

  5. Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    USGS Publications Warehouse

    Hunsinger, G.B.; Mitra, Siddhartha; Warrick, J.A.; Alexander, C.R.

    2008-01-01

    Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw-1, 1.3 to 6.9 ??g gdw-1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ?? 170.2 ng cm-2 a-1, 3.5 ?? 1.9 ??g cm-2 a-1 and 1.4 ?? 0.3 mg per 100 mg OC cm-2 a-1, over ???30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets. Copyright 2008 by the American Geophysical Union.

  6. Laccase-mediator catalyzed conversion of model lignin compounds

    USDA-ARS?s Scientific Manuscript database

    Laccases play an important role in the biological breakdown of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined a variety of laccases, both commercially prepared and crude extracts, for their ability to oxidize three model lignol compounds (p-coumaryl...

  7. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Kumari, Daman; Swaroop, Manju; Southall, Noel; Huang, Wenwei; Zheng, Wei; Usdin, Karen

    2015-07-01

    : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. ©AlphaMed Press.

  8. Target-mediated drug disposition model and its approximations for antibody-drug conjugates.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2014-02-01

    Antibody-drug conjugate (ADC) is a complex structure composed of an antibody linked to several molecules of a biologically active cytotoxic drug. The number of ADC compounds in clinical development now exceeds 30, with two of them already on the market. However, there is no rigorous mechanistic model that describes pharmacokinetic (PK) properties of these compounds. PK modeling of ADCs is even more complicated than that of other biologics as the model should describe distribution, binding, and elimination of antibodies with different toxin load, and also the deconjugation process and PK of the released toxin. This work extends the target-mediated drug disposition (TMDD) model to describe ADCs, derives the rapid binding (quasi-equilibrium), quasi-steady-state, and Michaelis-Menten approximations of the TMDD model as applied to ADCs, derives the TMDD model and its approximations for ADCs with load-independent properties, and discusses further simplifications of the system under various assumptions. The developed models are shown to describe data simulated from the available clinical population PK models of trastuzumab emtansine (T-DM1), one of the two currently approved ADCs. Identifiability of model parameters is also discussed and illustrated on the simulated T-DM1 examples.

  9. 4-Isopropyl-2,6-bis(1-phenylethyl)aniline 1, an Analogue of KTH-13 Isolated from Cordyceps bassiana, Inhibits the NF-κB-Mediated Inflammatory Response

    PubMed Central

    Yang, Woo Seok; Ratan, Zubair Ahmed; Kim, Gihyeon; Lee, Yunmi; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    The Cordyceps species has been a good source of compounds with anticancer and anti-inflammatory activities. Recently, we reported a novel compound (4-isopropyl-2,6-bis(1-phenylethyl)phenol, KTH-13) with anticancer activity isolated from Cordyceps bassiana and created several derivatives to increase its pharmacological activity. In this study, we tested one of the KTH-013 derivatives, 4-isopropyl-2,6-bis(1-phenylethyl)aniline 1 (KTH-13-AD1), with regard to anti-inflammatory activity under macrophage-mediated inflammatory conditions. KTH-13-AD1 clearly suppressed the production of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide (LPS) and sodium nitroprusside- (SNP-) treated macrophage-like cells (RAW264.7 cells). Similarly, this compound also reduced mRNA expression of inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α), as analyzed by RT-PCR and real-time PCR. Interestingly, KTH-13-AD1 strongly diminished NF-κB-mediated luciferase activities and nuclear translocation of NF-κB family proteins. In accordance, KTH-13-AD1 suppressed the upstream signaling pathway of NF-κB activation, including IκBα, IKKα/β, AKT, p85/PI3K, and Src in a time- and dose-dependent manner. The autophosphorylation of Src and NF-κB observed during the overexpression of Src was also suppressed by KTH-13-AD1. These results strongly suggest that KTH-13-AD1 has strong anti-inflammatory features mediated by suppression of the Src/NF-κB regulatory loop. PMID:26819495

  10. Pleuromutilin and its derivatives-the lead compounds for novel antibiotics.

    PubMed

    Tang, Y-Z; Liu, Y-H; Chen, J-X

    2012-01-01

    Due to the rapid onset of resistance to most antibacterial drugs, research efforts are focusing on new classes of antibacterials with different mechanisms of action from clinically used antibacterials. Pleuromutilin derivatives have received more and more scientific attention for their unique mechanism of action. Two pleuromutilin derivatives, tiamulin and valnemulin have been successfully developed as antibiotics for veterinary use. Retapamulin, another pleuromutilin derivative has been approved for use in humans in April 2007 by Food and Drug Administration (FDA). It has been shown that there is rarely cross-resistance between pleuromutilin derivatives and other antimicrobial agents, and the development of resistance bacterial is still low. This review will demonstrate mechanism of action of pleuromutilin derivatives and reveal the structure-activity relationship (SAR) of pleuromutilin derivatives. Additionally, the pleuromutilin antibacterial derivative agents in the market, such as tiamulin, valnemulin and retapamulin, will be discussed. It is proposed that new antibacterial agents might be developed from pleuromutilin derivatives in the future.

  11. Development of a new measurement system to detect selectively volatile organic compounds derived from the human body.

    PubMed

    Kanou, S; Nagaoka, T; Kobayashi, N; Kurahashi, M; Takeda, S; Aoki, T; Tsuji, T; Urano, T; Abe, T; Magatani, K

    2013-01-01

    A new concept expired gas measurement system used double cold-trap method was developed. The system could detect selectively volatile organic compound (VOC) derived from the human body. The gas chromatography (GC) profiles of healthy volunteer's expired gas collected by our system were analyzed. As a result, 60 VOCs were detected from the healthy volunteer's expired gas. We examined 14 VOCs among them further, which could be converted to the concentration from the GC profiles. The concentration of almost VOCs decreased when the subjects inspired purified air compared with the atmosphere. On the other hand, isoprene was almost the same. It was strongly suggested that these VOCs were derived from the human body because the concentration of these VOCs in the atmosphere were nearly zero. Expired gas of two sleep apnea syndrome (SAS) patients were analyzed as preliminary study. As a result of the study, the concentration of some VOCs contained in the expired gas of the SAS patients showed higher value than a healthy controls.

  12. Synthesis of novel carbazole derived substances using some organoboron compounds by palladium catalyzed and investigation of its semiconductor device characteristics

    NASA Astrophysics Data System (ADS)

    Gorgun, Kamuran; Caglar, Yasemin

    2018-04-01

    Carbazole compounds in particular represent one of the most intensely used and studied class of semiconducting materials. In this study, considering the information given in the literature the Ullman and Suzuki-Miyaura coupling reaction were carried out using carbazole, 1,4-dibromobenzene and pyrene-1-boronic acid. The synthesized carbazole derivatives are characterized by 1H NMR and elemental analysis. The spectroscopic and thermal properties of the synthesized novel carbazole derivative 9-(4-(pyren-4-yl)phenyl)-9H-carbazole (Cz-py) were investigated. And also, the n-Si/p-Cz:py heterojunction diode was fabricated. The electrical properties of this diode were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements.

  13. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  14. Hybridization-mediated anisotropic coupling in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Banerjea, Amitava; Cooper, Bernard R.; Thayamballi, Pradeep

    1984-09-01

    The magnetic behavior of a class of cerium and light actinide compounds containing moderately delocalized f electrons has been explained on the basis of an anisotropic two-ion interaction that arises from the hybridization of band electrons and the f electrons. This theory, first developed by Siemann and Cooper for cerium compounds using the treatment of Coqblin and Schrieffer for the hybridization, was later generalized by Thayamballi and Cooper to fn systems in the L-S and j-j coupling limits. We here extend the theory to the case of intermediate intraionic coupling and further include the possibility of long-period antiferromagnetic structures. In particular, we have considered the Pu3+(f5) ion in PuSb. The theory reproduces the experimentally observed magnetic behavior of PuSb quite closely, predicting a phase transition from a low-temperature ferromagnetic phase to a long-period antiferromagnetic phase at about 75 K, for a fitting to a Néel temperature of 85 K, with ordered moments close to the experimental values. However, while the modulation in the long-period antiferromagnetic phase has been experimentally observed to be longitudinal, the theory predicts a transverse modulation with moments aligned along the cube edge. We also present the T=0 magnetic excitation spectrum in the ferromagnetic phase calculated on the basis of this theory using the random-phase approximation.

  15. Spectral characterization and antibacterial activity of an isolated compound from Memecylon edule leaves.

    PubMed

    Srinivasan, R; Natarajan, D; Shivakumar, M S

    2017-03-01

    Memecylon edule Roxb. (Melastamataceae family) is a small evergreen tree reported as having ethnobotanical and pharmacological properties. The present study was aimed to investigate the spectral characterization and antibacterial activity of isolated pure compound (3β-hydroxyurs-12-en-28-oic acid (ursolic acid)) from Memecylon edule leaves by performing bioassay guided isolation method. The structure derivation of isolated compound was done by different spectral studies like UV, FT-IR, LC-MS, CHNS analysis, 1D ( 1 H, 13 C and DEPT-135) and 2D-NMR (HSQC and HMBC), respectively. About 99.29% purity of the compound was found in LC analysis. 1 H NMR spectrum results of compound shown 48 protons appear at different shielded region and most of the protons were present in aliphatic region. Whereas, 13 C NMR spectral data resulted seven methyl carbons (CH3), nine methylene carbons (CH2), seven methine carbons (CH) and six non-hydrogenated carbons (C) which are characteristic of pentacyclic triterpene. The isolated pure compound was tested for its antibacterial properties against targeted human pathogens by performing agar well diffusion, MIC and MBC assays and the result exhibits better growth inhibitory effects against S. epidermidis and S. pneumoniae, with the MIC values of 1.56 and 3.15μg/ml. The outcome of this study suggests that the bioactive compound is used for development of plant based drugs in pharmaceutical industry for combating microbial mediated diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Methyl-cyclopentadienyl Ruthenium Compounds with 2,2'-Bipyridine Derivatives Display Strong Anticancer Activity and Multidrug Resistance Potential.

    PubMed

    Côrte-Real, Leonor; Teixeira, Ricardo G; Gírio, Patrícia; Comsa, Elisabeta; Moreno, Alexis; Nasr, Rachad; Baubichon-Cortay, Hélène; Avecilla, Fernando; Marques, Fernanda; Robalo, M Paula; Mendes, Paulo; Ramalho, João P Prates; Garcia, M Helena; Falson, Pierre; Valente, Andreia

    2018-04-16

    New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η 5 -MeCp)(PPh 3 )(4,4'-R-2,2'-bpy)] + (Ru1, R = H; Ru2, R = CH 3 ; and Ru3, R = CH 2 OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P2 1 / c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P2 1 / n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.

  17. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    PubMed

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  18. Synthesis, biological evaluation and molecular modeling of 2-amino-2-phenylethanol derivatives as novel β2-adrenoceptor agonists.

    PubMed

    Ge, Xinyue; Mo, Yongmei; Xing, Gang; Ji, Lei; Zhao, Haiyan; Chen, Jianfang; He, Bin; Chen, Xuyao; Xing, Ruijuan; Li, Xiaoqiang; Zhao, Ying; Li, Jinyan; Yan, Haining; Woo, Anthony Yiu-Ho; Zhang, Yuyang; Lin, Bin; Pan, Li; Cheng, Maosheng

    2018-04-26

    A novel series of 2-amino-2-phenylethanol derivatives were developed as β 2 -adrenoceptor agonists. Among them, 2-amino-3-fluoro-5-(2-hydroxy-1-(isopropylamino)ethyl)benzonitrile (compound 2f) exhibited the highest activity (EC 50 = 0.25 nM) in stimulating β 2 -adrenoceptor-mediated cellular cAMP production with a 763.6-fold selectivity over the β 1 -adrenoceptor. The (S)-isomer of 2f was subsequently found to be 8.5-fold more active than the (R)-isomer. Molecular docking was performed to determine the putative binding modes of this new class of β 2 -adrenoceptor agonists. Taken together, these data show that compound 2f is a promising lead compound worthy of further study for the development of β 2 -adrenoceptor agonists. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria.

    PubMed

    Manner, Suvi; Fallarero, Adyary

    2018-05-03

    Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives ( n = 3040) was screened for anti-quorum sensing activity using Chromobacterium violaceum as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against C. violaceum , complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in Escherichia coli and Pseudomonas aeruginosa was further investigated. Finally, effects of these leads on swimming and swarming motility of P. aeruginosa were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.

  20. The Role of Memory for Compounds in Cue Competition

    ERIC Educational Resources Information Center

    Vandorpe, Stefaan; de Houwer, Jan; Beckers, Tom

    2007-01-01

    Revisions of common associative learning models incorporate a within-compound association mechanism in order to explain retrospective cue competition effects (e.g., [Dickinson, A., & Burke, J. (1996). Within-compound associations mediate the retrospective revaluation of causality judgements. "Quarterly Journal of Experimental Psychology, 49B", pp.…

  1. Gene expression response of Salmonella enterica serotype Enteritidis phage type 8 to the subinhibitory concentrations of the plant-derived compounds,trans-cinnamaldehyde,and eugenol

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two GRAS-status, plant-derived compounds, trans-cinnamaldehyde (TC) and eugenol (EG) significantly reduced S. Ent...

  2. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2.

    PubMed

    Orth, M; Unger, K; Schoetz, U; Belka, C; Lauber, K

    2018-01-04

    Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.

  3. Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro.

    PubMed

    Hošek, Jan; Bartos, Milan; Chudík, Stanislav; Dall'Acqua, Stefano; Innocenti, Gabbriella; Kartal, Murat; Kokoška, Ladislav; Kollár, Peter; Kutil, Zsófia; Landa, Přemysl; Marek, Radek; Závalová, Veronika; Žemlička, Milan; Šmejkal, Karel

    2011-04-25

    Cudraflavone B (1) is a prenylated flavonoid found in large amounts in the roots of Morus alba, a plant used as a herbal remedy for its reputed anti-inflammatory properties. The present study shows that this compound causes a significant inhibition of inflammatory mediators in selected in vitro models. Thus, 1 was identified as a potent inhibitor of tumor necrosis factor α (TNFα) gene expression and secretion by blocking the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus in macrophages derived from a THP-1 human monocyte cell line. The NF-κB activity reduction resulted in the inhibition of cyclooxygenase 2 (COX-2) gene expression. Compound 1 acts as a COX-2 and COX-1 inhibitor with higher selectivity toward COX-2 than indomethacin. Pretreatment of cells by 1 shifted the peak in an regulatory gene zinc-finger protein 36 (ZFP36) expression assay. This natural product has noticeable anti-inflammatory properties, suggesting that 1 potentially could be used for development as a nonsteroidal anti-inflammatory drug lead.

  4. Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains.

    PubMed

    Kanda, Teru; Furuse, Yuki; Oshitani, Hitoshi; Kiyono, Tohru

    2016-05-01

    The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This

  5. Cerebrospinal Fluid Cortisol Mediates Brain-Derived Neurotrophic Factor Relationships to Mortality after Severe TBI: A Prospective Cohort Study

    PubMed Central

    Munoz, Miranda J.; Kumar, Raj G.; Oh, Byung-Mo; Conley, Yvette P.; Wang, Zhensheng; Failla, Michelle D.; Wagner, Amy K.

    2017-01-01

    Distinct regulatory signaling mechanisms exist between cortisol and brain derived neurotrophic factor (BDNF) that may influence secondary injury cascades associated with traumatic brain injury (TBI) and predict outcome. We investigated concurrent CSF BDNF and cortisol relationships in 117 patients sampled days 0–6 after severe TBI while accounting for BDNF genetics and age. We also determined associations between CSF BDNF and cortisol with 6-month mortality. BDNF variants, rs6265 and rs7124442, were used to create a gene risk score (GRS) in reference to previously published hypothesized risk for mortality in “younger patients” (<48 years) and hypothesized BDNF production/secretion capacity with these variants. Group based trajectory analysis (TRAJ) was used to create two cortisol groups (high and low trajectories). A Bayesian estimation approach informed the mediation models. Results show CSF BDNF predicted patient cortisol TRAJ group (P = 0.001). Also, GRS moderated BDNF associations with cortisol TRAJ group. Additionally, cortisol TRAJ predicted 6-month mortality (P = 0.001). In a mediation analysis, BDNF predicted mortality, with cortisol acting as the mediator (P = 0.011), yielding a mediation percentage of 29.92%. Mediation effects increased to 45.45% among younger patients. A BDNF*GRS interaction predicted mortality in younger patients (P = 0.004). Thus, we conclude 6-month mortality after severe TBI can be predicted through a mediation model with CSF cortisol and BDNF, suggesting a regulatory role for cortisol with BDNF's contribution to TBI pathophysiology and mortality, particularly among younger individuals with severe TBI. Based on the literature, cortisol modulated BDNF effects on mortality after TBI may be related to known hormone and neurotrophin relationships to neurological injury severity and autonomic nervous system imbalance. PMID:28337122

  6. Pollinator-mediated selection on floral morphology: evidence for transgressive evolution in a derived hybrid lineage.

    PubMed

    Anton, K A; Ward, J R; Cruzan, M B

    2013-03-01

    Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long-term trait changes in derived hybrid lineages has received little attention. We compare pollinator-mediated selection on transgressive floral traits in both early-generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl-shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early-generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade-offs. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  7. Lipid mediators and their metabolism in the nucleous: implications for Alzheimer's disease.

    PubMed

    Farooqui, Akhlaq A

    2012-01-01

    Lipid mediators are important endogenous regulators derived from enzymatic degradation of glycerophospholipids, sphingolipids, and cholesterol by phospholipases, sphingomyelinases, and cytochrome P450 hydroxylases, respectively. In neural cells, lipid mediators are associated with proliferation, differentiation, oxidative stress, inflammation, and apoptosis. A major group of lipid mediators, which originates from the enzymatic oxidation of arachidonic acid, is called eicosanoids (i.e., prostaglandins, leukotrienes, thromboxanes, and lipoxins). The corresponding lipid mediators of docosahexaenoic acid metabolism are named as docosanoids. They include resolvins, protectins (neuroprotectins), and maresins. Docosanoids produce antioxidant, anti-inflammatory, and antiapoptotic effects in brain tissue. Other glycerophospholipid-derived lipid mediators are platelet activating factor, lysophosphatidic acid, and endocannabinoids. Degradation of sphingolipids also results in the generation of sphingolipid-derived lipid mediators, such as ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These mediators are involved in differentiation, growth, cell migration, and apoptosis. Similarly, cholesterol-derived lipid mediators, hydroxycholesterol, produce apoptosis. Abnormal metabolism of lipid mediators may be closely associated with pathogenesis of Alzheimer's disease.

  8. A new navigational mechanism mediated by ant ocelli.

    PubMed

    Schwarz, Sebastian; Wystrach, Antoine; Cheng, Ken

    2011-12-23

    Many animals rely on path integration for navigation and desert ants are the champions. On leaving the nest, ants continuously integrate their distance and direction of travel so that they always know their current distance and direction from the nest and can take a direct path to home. Distance information originates from a step-counter and directional information is based on a celestial compass. So far, it has been assumed that the directional information obtained from ocelli contribute to a single global path integrator, together with directional information from the dorsal rim area (DRA) of the compound eyes and distance information from the step-counter. Here, we show that ocelli mediate a distinct compass from that mediated by the compound eyes. After travelling a two-leg outbound route, untreated foragers headed towards the nest direction, showing that both legs of the route had been integrated. In contrast, foragers with covered compound eyes but uncovered ocelli steered in the direction opposite to the last leg of the outbound route. Our findings suggest that, unlike the DRA, ocelli cannot by themselves mediate path integration. Instead, ocelli mediate a distinct directional system, which buffers the most recent leg of a journey.

  9. Particle-size-dependent cytokine responses and cell damage induced by silica particles and macrophages-derived mediators in endothelial cell.

    PubMed

    Rong, Yi; Zhou, Ting; Cheng, Wenjuan; Guo, Jiali; Cui, Xiuqing; Liu, Yuewei; Chen, Weihong

    2013-11-01

    Epidemiological evidence reports silica dust exposure has been associated with increased risk of cardiovascular diseases, but the mechanisms are largely unknown. In this study, endothelial cells were exposed to increasing concentrations of two sizes silica particles and the soluble mediators released by macrophages treated with the same particles for 24 h. Expression and release of cytokines (IL-1β, TNF-α and IL-6) were measured by using ELISA. Cytotoxicity was measured by MTT assay and LDH release. We show that both ways induced increases in cell toxicity and cytokines in a dose-dependent manner. For smaller particles, the soluble mediators are more capable of increasing cytokines compared with the effect of particles directly. For larger particles, evaluating results of these two ways are similar. Either way, smaller particles make the increasing action of cell toxicity and cytokines more remarkable. Our results indicate both silica particle and macrophage-derived mediators can induce endothelial cell injury and inflammation and demonstrate the potential importance of the particle sizes in this effect. Copyright © 2013. Published by Elsevier B.V.

  10. The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds

    PubMed Central

    2017-01-01

    We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)2PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single ⟨100⟩-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P21/n and incorporates water molecules, with structural formula (C6H5CH2NH3)4Pb5I14·2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin–orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)2PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face-sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds. PMID:28677956

  11. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    PubMed

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris.

    PubMed

    Wangchuk, Phurpa; Pearson, Mark S; Giacomin, Paul R; Becker, Luke; Sotillo, Javier; Pickering, Darren; Smout, Michael J; Loukas, Alex

    2016-08-01

    Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds-luteolin (3) and (3R,6R)-linalool oxide acetate (1)-showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8-36.9 μg/mL) and T. muris (IC50 range = 9.7-20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths-T. muris and S. mansoni-and was effective against juvenile schistosomes, the stage that is refractory to the current

  13. Identification of the Beer Component Hordenine as Food-Derived Dopamine D2 Receptor Agonist by Virtual Screening a 3D Compound Database

    NASA Astrophysics Data System (ADS)

    Sommer, Thomas; Hübner, Harald; El Kerdawy, Ahmed; Gmeiner, Peter; Pischetsrieder, Monika; Clark, Timothy

    2017-03-01

    The dopamine D2 receptor (D2R) is involved in food reward and compulsive food intake. The present study developed a virtual screening (VS) method to identify food components, which may modulate D2R signalling. In contrast to their common applications in drug discovery, VS methods are rarely applied for the discovery of bioactive food compounds. Here, databases were created that exclusively contain substances occurring in food and natural sources (about 13,000 different compounds in total) as the basis for combined pharmacophore searching, hit-list clustering and molecular docking into D2R homology models. From 17 compounds finally tested in radioligand assays to determine their binding affinities, seven were classified as hits (hit rate = 41%). Functional properties of the five most active compounds were further examined in β-arrestin recruitment and cAMP inhibition experiments. D2R-promoted G-protein activation was observed for hordenine, a constituent of barley and beer, with approximately identical ligand efficacy as dopamine (76%) and a Ki value of 13 μM. Moreover, hordenine antagonised D2-mediated β-arrestin recruitment indicating functional selectivity. Application of our databases provides new perspectives for the discovery of bioactive food constituents using VS methods. Based on its presence in beer, we suggest that hordenine significantly contributes to mood-elevating effects of beer.

  14. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2016-10-01

    Based on a broad spectrum of biological activities of rhodanines, we synthesized aromatic amides and esters of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid (rhodanine-3-acetic acid) via carbodiimide- or PCl3-mediated coupling. Both esters and amides were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum using Ellman's spectrophotometric method. The derivatives exhibited mostly a moderate activity against both cholinesterases. IC50 values for AChE were in a closer concentration range of 24.05-86.85μM when compared to BChE inhibition (7.92-227.19μM). The esters caused the more efficient inhibition of AChE than amides and parent acid. The esterification and amidation of the rhodanine-3-acetic acid increased inhibition of BChE, even up to 26 times. Derivatives of 4-nitroaniline/phenol showed the activity superior to other substituents (H, Cl, CH3, OCH3, CF3). Rhodanines produced a balanced inhibition of both cholinesterases. Seven derivatives produced the more potent inhibition of AChE than rivastigmine, a clinically used drug; additional three compounds were comparable. Two amides exceeded inhibitory potency of rivastigmine towards BChE. Importantly, this is the first evidence that rhodanine-based compounds are able to inhibit BChE. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Odisolane, a Novel Oxolane Derivative, and Antiangiogenic Constituents from the Fruits of Mulberry (Morus alba L.).

    PubMed

    Lee, Seoung Rak; Park, Jun Yeon; Yu, Jae Sik; Lee, Sung Ok; Ryu, Ja-Young; Choi, Sang-Zin; Kang, Ki Sung; Yamabe, Noriko; Kim, Ki Hyun

    2016-05-18

    Mulberry, the fruit of Morus alba L., is known as an edible fruit and commonly used in Chinese medicines as a warming agent and as a sedative, tonic, laxative, odontalgic, expectorant, anthelmintic, and emetic. Systemic investigation of the chemical constituents of M. alba fruits led to the identification of a novel oxolane derivative, (R*)-2-((2S*,3R*)-tetrahydro-2-hydroxy-2-methylfuran-3-yl)propanoic acid (1), namely, odisolane, along with five known heterocyclic compounds (2-6). The structure of the new compound was elucidated on the basis of HR-MS, 1D and 2D NMR ((1)H-(1)H COSY, HSQC, HMBC, and NOESY) data analysis. Compound 1 has a novel skeleton that consists of 8 carbon units with an oxolane ring, which until now has never been identified in natural products. The isolated compounds were subjected to several activity tests to verify their biological function. Among them, compounds 1, 3, and 5 significantly inhibited cord formation in HUVECs. The action mechanism of compound 3, which had the strongest antiangiogenic activity, was mediated by decreasing VEGF, p-Akt, and p-ERK protein expression. These results suggest that compounds isolated from M. alba fruits might be beneficial in antiangiogenesis therapy for cancer treatment.

  16. Evaluation of the alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives in the cardiovascular system of the pithed rat.

    PubMed

    Ruffolo, R R; Messick, K

    1985-01-01

    The alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives were investigated in the cardiovascular system of the pithed rat. The 2,5- and 3,5-dimethoxy-substituted tolazoline derivatives produced vasopressor responses that were inhibited by the alpha-1 adrenoceptor antagonist, prazosin (0.1 mg/kg i.v.), and were not affected by the alpha-2 adrenoceptor antagonist, yohimbine (1 mg/kg i.v.), suggesting that these derivatives selectively activate postsynaptic vascular alpha-1 adrenoceptors. The 2,5- and 3,5-dimethoxy-substituted derivatives of tolazoline did not produce an alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rats and were therefore presumed to be devoid of alpha-2 adrenoceptor agonist activity. In contrast, 2,3-dimethoxytolazoline produced a vasopressor effect that was inhibited by yohimbine but not by prazosin, suggesting selective activation of postsynaptic vascular alpha-2 adrenoceptors. Consistent with this observation is the fact that 2,3-dimethoxytolazoline elicited a dose-dependent, alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rat. 3,4-Dimethoxytolazoline was a weak alpha-1 adrenoceptor agonist in the vasculature of the pithed rat and was devoid of agonist activity at alpha-2 adrenoceptors. However, 3,4-dimethoxytolazoline was found to be an alpha-2 adrenoceptor antagonist of similar potency as yohimbine. The results of the present study indicate that dimethoxy-substituted derivatives of tolazoline possess different activities and selectivities at alpha-1 and alpha-2 adrenoceptors depending upon the positions of substitution.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  18. Monosaccharides as Scaffolds for the Synthesis of Novel Compounds

    NASA Astrophysics Data System (ADS)

    Murphy, Paul V.; Velasco-Torrijos, Trinidad

    This chapter focuses on monosaccharides and scaffolds their derivatives as scaffolds for the synthesis of primarily bioactive compounds. Such carbohydrate derivatives have been designed to modulate mainly protein-protein and peptide-protein interactions although modulators of carbohydrate-protein and carbohydrate-nucleic acid interactions have also been of interest. The multiple hydroxyl groups that are present on saccharides have made pyranose, furanose and iminosugars ideal templates or scaffolds to which recognition or pharmacophoric groups can be grafted to generate novel compounds for medicinal chemistry. The synthesis of compounds for evaluations require strategies for regioselective reactions of saccharide hydroxyl groups and use of orthogonally stable protecting groups. Syntheses have been carried out on the solid phase and in solution. Also the use of uronic acids, amino sugars and sugar amino acids has facilitated the synthesis of peptidomimetics and prospecting libraries as they enable, through presence of amino or carboxylic acid groups, chemoselective approaches to be employed in solution and on solid phase. Sugar amino acids are readily incorporated, as peptide isosteres, to generate sugar-peptide hybrids or for the synthesis of novel carbopeptoids . The synthesis of new cyclic compounds, derived in part from saccharides, and their application as scaffolds is an emerging area and recent examples include spirocyclic compounds, benzodiazepine-saccharide hybrids and macrolide-saccharide hybrids. Potent bioactive saccharide derivatives have been identified that include enzyme inhibitors , somatostatin receptor ligands, integrin ligands, anti-viral compounds, shiga toxin inhibitors and cell growth inhibitors. Some saccharide derivatives have demonstrated improved cellular permeability when compared with peptides and are in clinical trials.

  19. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktailmore » consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.« less

  20. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens.

    PubMed

    Hagvall, Lina; Baron, Jens Malte; Börje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  1. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    PubMed

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  2. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Hee; Kim, Sang-Hyun; Eun, Jae-Soon

    2006-11-01

    In this study, we investigated the effect of the aqueous extract of Mosla dianthera (Maxim.) (AEMD) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as asthma, sinusitis and rheumatoid arthritis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. AEMD inhibited compound 48/80-induced systemic reactions in mice. AEMD decreased immunoglobulin E-mediated local allergic reactions, passive cutaneous anaphylaxis. AEMD attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, AEMDmore » attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-{alpha}, IL-8 and IL-6 secretion in human mast cells. The inhibitory effect of AEMD on the pro-inflammatory cytokines was nuclear factor-{kappa}B (NF-{kappa}B) dependent. AEMD decreased PMA and A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B. Our findings provide evidence that AEMD inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines and NF-{kappa}B in these effects.« less

  3. Secondary metabolites from marine-derived microorganisms.

    PubMed

    Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2014-01-01

    In the search for novel and bioactive molecules for drug discovery, marine-derived natural resources, especially marine microorganisms are becoming an important and interesting research area. This study covers the literature published after 2008 on secondary metabolites of marine-derived microorganisms. The emphasis was on new compounds with the relevant biological activities, strain information, and country of origin. New compounds without biological activity were not included.

  4. Chemical Preparation Laboratory for IND Candidate Compounds

    DTIC Science & Technology

    1989-01-31

    were prepared in strict compliance with "Current Good Manufacturing Procedures" (CGMP) guidelines. All inter- mediates and final products unreported...TO U.S. ARMY MEDICAL RESARCH INSTITUTE OF INFECTIOUS DISEASES (USANRIID) JANUARY 17. 1938 TO JANUARY 16. 1989 Production N.Compound Amount Control No...RESARCH INSTITUTE OF INFECTIOUS DISEASES (USAMRIID) JANUARY 17. 1988 TO JANUARY 16. 1989. Continued Production No. Compound Amount Control No. AVS 206 l-$-D

  5. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.

    PubMed

    Lara, L S; Moreira, C S; Calvet, C M; Lechuga, G C; Souza, R S; Bourguignon, S C; Ferreira, V F; Rocha, D; Pereira, M C S

    2018-01-20

    The limited efficacy of benznidazole (Bz) indicated by failures of current Phase II clinical trials emphasizes the urgent need to identify new drugs with improved safety and efficacy for treatment of Chagas disease (CD). Herein, we analyzed the efficacy of a series of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against different Trypanosoma cruzi discrete type units (DTUs) of relevant clinical forms of CD. Cytotoxic and trypanocidal effect of naphthoquinone derivatives were assessed in mammalian cells, trypomastigotes and intracellular amastigotes using, luminescent assays (CellTiter-Glo and T. cruzi Dm28c-luciferase) and/or counting with a light microscope. Reactive oxygen species (ROS) production and intracellular targets of promising compounds were assessed with 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCFDA) probe and ultrastructural analysis, respectively. ADMET properties were analyzed by in silico modeling. Most of the compounds showed low cytotoxic effect. Only two compounds (Compounds 2 and 11) had IC 50 values lower than Bz, showing higher susceptibility of bloodstream trypomastigotes. Compound 2 exhibited greater efficacy against trypomastigotes from different T. cruzi DTUs, even better than Bz against Brazil and CL strains. Ultrastructural analysis revealed changes in intracellular compartments, suggesting autophagy as one possible mechanism of action. Oxidative stress, induced by Compound 2, resulted in elevated level of ROS, leading to parasite death. Compound 2 was also effective against intracellular amastigotes, showing high selectivity index. ADMET analysis predicted good oral bioavailability, reduced drug metabolism and no carcinogenic potential for Compound 2. The data highlight Compound 2 as a hit compound and stimulate further structural and pharmacological optimization to potentiate its trypanocidal activity and selectivity. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT asmore » a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.« less

  7. Wide-range screening of anti-inflammatory compounds in tomato using LC-MS and elucidating the mechanism of their functions

    PubMed Central

    Mohri, Shinsuke; Takahashi, Haruya; Sakai, Maiko; Takahashi, Shingo; Waki, Naoko; Aizawa, Koichi; Suganuma, Hiroyuki; Ara, Takeshi; Matsumura, Yasuki; Shibata, Daisuke; Goto, Tsuyoshi; Kawada, Teruo

    2018-01-01

    Obesity-induced chronic inflammation is a key factor in type 2 diabetes. A vicious cycle involving pro-inflammatory mediators between adipocytes and macrophages is a common cause of chronic inflammation in the adipose tissue. Tomato is one of the most popular vegetables and is associated with a reduced risk of diabetes. However, the molecular mechanism underlying the effect of tomato on diabetes is unclear. In this study, we focused on anti-inflammatory compounds in tomato. We found that the extract of tomato reduced plasma glucose and inflammatory markers in mice. We screened anti-inflammatory fractions in tomato using lipopolysaccharide-stimulated RAW264.7 macrophages, and active compounds were estimated by liquid chromatography-mass spectrometry over a wide range. Surprisingly, a large number of compounds including oxylipin and coumarin derivatives were estimated as anti-inflammatory compounds. Especially, 9-oxo-octadecadienoic acid and daphnetin suppressed pro-inflammatory cytokines in RAW264.7 macrophages inhibiting mitogen-activated protein kinase phosphorylation and inhibitor of kappa B α protein degradation. These findings suggest that tomato containing diverse anti-inflammatory compounds ameliorates chronic inflammation in obese adipose tissue. PMID:29329333

  8. Pericocins A-D, New Bioactive Compounds from Periconia sp.

    PubMed

    Wu, Yue-Hua; Xiao, Gao-Keng; Chen, Guo-Dong; Wang, Chuan-Xi; Hu, Dan; Lian, Yun-Yang; Lin, Feng; Guo, Liang-Dong; Yao, Xin-Sheng; Gao, Hao

    2015-12-01

    One new dihydroisocoumarin, pericocin A (1), one new chromone, pericocin B (2), and two new α-pyrone derivatives, pericocins C-D (3-4), together with two known compounds, 3-(2-oxo-2H-pyran-6-yl)propanoic acid (5) and (E)-3-(2-oxo-2H-pyran-6-yl)acrylic acid (6), were isolated from the culture of the endolichenic fungus Periconia sp.. Their structures were elucidated by spectroscopic methods. All these compounds are derived from the polyketone biosynthetic pathway. Compound 1 was obtained as a mixture of enantiomers. The antimicrobial activity of compounds 1-5 was tested against Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans. Compounds 1-5 showed moderate antimicrobial activity against A. niger and weak activity against C. albicans.

  9. Synthesis and in vitro anti-proliferative effects of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives on various cancer cell lines.

    PubMed

    Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit

    2014-03-01

    A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCDmore » of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.« less

  11. Autoxidation of packed almonds as affected by maillard reaction volatile compounds derived from roasting.

    PubMed

    Severini, C; Gomes, T; De Pilli, T; Romani, S; Massini, R

    2000-10-01

    Shelled almonds of two Italian varieties, Romana and Pizzuta, peeled and unpeeled, were roasted and packed under different conditions: air (control), vacuum, and Maillard reaction volatile compounds (MRVc) derived from the roasting process. Samples were stored for approximately 8 months at room temperature, without light, and, at regular intervals, were collected and analyzed to evaluate the progress of lipid oxidation. Peroxide values, triglyceride oligopolymers, and oxidized triglycerides were evaluated during the storage time. Results showed that, although the MRVc atmosphere did not protect the lipid fraction of almonds as well as the vacuum condition; nevertheless, it was more protective than the control atmosphere, showing an antioxidant effect. The effect of the natural coating was a strong protection against lipid oxidation; in fact, only the unpeeled samples showed peroxide values lower than the threshold of acceptability (25 milliequiv of O(2)/kg of oil). Moreover, at the end of the storage period, Pizzuta almonds showed a greater deterioration than those of the Romana variety.

  12. Structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative and its mononuclear and trinuclear copper(II)-coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2014-11-01

    Multicopper oxidases are fundamental in a variety of biological processes in bacteria, fungi and vertebrates. The catalytic center in these enzymes is formed basically by three copper ions, bridged by oxygen bonds. In order to get insights into the reactivity of these complex systems, biomimetic compounds are usually synthesized. Accordingly, in this work, we studied structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative, as well as its corresponding mononuclear and trinuclear copper(II)-coordinated complexes by means of density functional theory. The calculations are compared with experimental results using measurements of the infrared spectra. It is obtained that the molecular configuration of the pseudoephedrine amino-alcohol derivative is stabilized by hydrogen bonding Osbnd H⋯N and by Csbnd H⋯π interactions that are not present in the mononuclear and trinuclear compounds. The coordination compounds show octahedral and square pyramid geometries, respectively, which are slightly distorted by Jahn-Teller effects. The analysis of their theoretical and experimental IR spectra reveals signals related with hydrogen bonding as well as metal-ligand vibrational modes. Regarding the electronic structure, the density of states was calculated in order to analyze the atomic orbital contributions present in these compounds. This analysis would provide useful insights about the optical behavior, for example, in the visible region of the spectrum of the coordinated compounds. At these energies, the optical absorption would be influenced by the orbital interaction of the Cu2+d orbitals with sp ones of the ligand, reflecting a decrease of the HOMO-LUMO gap of the organic ligand due to the presence of the copper(II) ions.

  13. Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors.

    PubMed

    Prasad, Suchita; Kumar, Bipul; Kumar, Shiv; Chand, Karam; Kamble, Shashank S; Gautam, Hemant K; Sharma, Sunil K

    2017-08-01

    Alzheimer's disease (AD), a neurodegenerative disorder, is a serious medical issue worldwide with drastic social consequences. Inhibition of cholinesterase is one of the rational and effective approaches to retard the symptoms of AD and, hence, consistent efforts are being made to develop efficient anti-cholinesterase agents. In pursuit of this, a series of 19 acetamide derivatives of chromen-2-ones were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential. All the synthesized compounds exhibited significant anti-AChE and anti-BChE activity, with IC 50 values in the range of 0.24-10.19 μM and 0.64-30.08 μM, respectively, using donepezil hydrochloride as the standard. Out of 19 compounds screened, 3 compounds, viz. 22, 40, and 43, caused 50% inhibition of AChE at 0.24, 0.25, and 0.25 μM, respectively. A kinetic study revealed them to be mixed-type inhibitors, binding with both the CAS and PAS sites of AChE. The above-selected compounds were found to be effective inhibitors of AChE-induced and self-mediated Aβ 1-42 aggregation. ADMET predictions demonstrated that these compounds may possess suitable blood-brain barrier (BBB) permeability. Hemolytic assay results revealed that these compounds did not lyse human RBCs up to a thousand times of their IC 50 value. MTT assays performed for the shortlisted compounds showed them to be negligibly toxic after 24 h of treatment with the SH-SY5Y neuroblastoma cells. These results provide insights for further optimization of the scaffolds for designing the next generation of compounds as lead cholinesterase inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.

  14. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    PubMed

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells.

    PubMed

    Battisti, Federico; Napoletano, Chiara; Rahimi Koshkaki, Hassan; Belleudi, Francesca; Zizzari, Ilaria Grazia; Ruscito, Ilary; Palchetti, Sara; Bellati, Filippo; Benedetti Panici, Pierluigi; Torrisi, Maria Rosaria; Caracciolo, Giulio; Altieri, Fabio; Nuti, Marianna; Rughetti, Aurelia

    2017-01-01

    Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8 + T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.

  16. Immunopathologic effects of scorpion venom on hepato-renal tissues: Involvement of lipid derived inflammatory mediators.

    PubMed

    Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima

    2015-10-01

    Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.

  17. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    PubMed

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  18. Is digitalis compound-induced cardiotoxicity, mediated through guinea-pig cardiomyocytes apoptosis?

    PubMed

    Ramirez-Ortega, Margarita; Zarco, Gabriela; Maldonado, Vilma; Carrillo, Jose F; Ramos, Pilar; Ceballos, Guillermo; Melendez-Zajgla, Jorge; Garcia, Noemí; Zazueta, Cecilia; Chanona, Jose; Suarez, Jorge; Pastelin, Gustavo

    2007-07-02

    Our aim in performing this study was to analyze in vivo the cell death mechanism induced by toxic doses of digitalis compounds on guinea-pig cardiomyocytes. We analyzed three study groups of five male guinea pigs each. Guinea pigs were intoxicated under anesthesia with ouabain or digoxin (at a 50-60% lethal dose); the control group did not receive digitalis. A 5-hours period elapsed before guinea pig hearts were extracted to obtain left ventricle tissue. We carried out isolation of mitochondria and cytosol, cytochrome c and caspase-3 and -9 determination, and electrophoretic analysis of nuclear DNA. TdT-mediated DUTP-X nick end labeling (TUNEL) reaction was performed in histologic preparations to identify in situ apoptotic cell death. Ultrastructural analysis was performed by electron microscopy. Electrophoretic analysis of DNA showed degradation into fragments of 200-400 base pairs in digitalis-treated groups. TUNEL reaction demonstrated the following: in the control group, <10 positive nuclei per field; in the digoxin-treated group, 2-14 positive nuclei per field, while in the ouabain-treated group counts ranged from 9-30 positive nuclei per field. Extracts from ouabain-treated hearts had an elevation of cytochrome c in cytosol and a corresponding decrease in mitochondria; this release of cytochrome c provoked activation of caspase-9 and -3. Electron microscopy revealed presence of autophagic vesicles in cytoplasm of treated hearts. Toxic dosages of digitalis at 50-60% of the lethal dose are capable of inducing cytochrome c release from mitochondria, processing of procaspase-9 and -3, and DNA fragmentation; these observations are mainly indicative of apoptosis, although a mixed mechanism of cell death cannot be ruled out.

  19. OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability.

    PubMed

    Banan, A; Fitzpatrick, L; Zhang, Y; Keshavarzian, A

    2001-02-01

    Rebamipide (OPC-12759), a quinolone derivative, and OPC-6535, a thiazol-carboxylic acid derivative, are compounds with ability to protect gastrointestinal (GI) mucosal integrity against reactive oxygen metabolites (ROM). The underlying mechanism of OPC-mediated protection remains poorly understood. It is now established that ROM can injure the mucosa by disruption of the cytoskeletal network, a key component of mucosal barrier integrity. We, therefore, investigated whether OPC compounds prevent the oxidation, disassembly, and instability of the cytoskeletal protein actin and, in turn, protect intestinal barrier function against ROM. Human intestinal (Caco-2) cell monolayers were pretreated with OPC (-12759 or -6535) prior to incubation with ROM (H2O2) or HOCl). Effects on cell integrity (ethidium homodimer-1), epithelial barrier function (fluorescein sulfonic acid clearance), and actin cytoskeletal integrity (high-resolution laser confocal) were then determined. Cells were also processed for quantitative immunoblotting of G- and F-actin to measure oxidation (carbonylation) and disassembly of actin. In monolayers exposed to ROM, preincubation with OPC compounds prevented actin oxidation, decreased depolymerized G-actin, and enhanced the stable F-actin. Concomitantly, OPC agents abolished both actin cytoskeletal disruption and monolayer barrier dysfunction. Data suggest for the first time that OPC drugs prevent oxidation of actin and lead to the protection of actin cytoskeleton and intestinal barrier integrity against oxidant insult. Accordingly, these compounds may be used as novel therapeutic agents for the treatment of a variety of oxidative inflammatory intestinal disorders with an abnormal mucosal barrier such as inflammatory bowel disease.

  20. OliveNet™: a comprehensive library of compounds from Olea europaea

    PubMed Central

    Bonvino, Natalie P; Liang, Julia; McCord, Elizabeth D; Zafiris, Elena; Benetti, Natalia; Ray, Nancy B; Hung, Andrew; Boskou, Dimitrios

    2018-01-01

    Abstract Accumulated epidemiological, clinical and experimental evidence has indicated the beneficial health effects of the Mediterranean diet, which is typified by the consumption of virgin olive oil (VOO) as a main source of dietary fat. At the cellular level, compounds derived from various olive (Olea europaea), matrices, have demonstrated potent antioxidant and anti-inflammatory effects, which are thought to account, at least in part, for their biological effects. Research efforts are expanding into the characterization of compounds derived from Olea europaea, however, the considerable diversity and complexity of the vast array of chemical compounds have made their precise identification and quantification challenging. As such, only a relatively small subset of olive-derived compounds has been explored for their biological activity and potential health effects to date. Although there is adequate information describing the identification or isolation of olive-derived compounds, these are not easily searchable, especially when attempting to acquire chemical or biological properties. Therefore, we have created the OliveNet™ database containing a comprehensive catalogue of compounds identified from matrices of the olive, including the fruit, leaf and VOO, as well as in the wastewater and pomace accrued during oil production. From a total of 752 compounds, chemical analysis was sufficient for 676 individual compounds, which have been included in the database. The database is curated and comprehensively referenced containing information for the 676 compounds, which are divided into 13 main classes and 47 subclasses. Importantly, with respect to current research trends, the database includes 222 olive phenolics, which are divided into 13 subclasses. To our knowledge, OliveNet™ is currently the only curated open access database with a comprehensive collection of compounds associated with Olea europaea. Database URL: https://www.mccordresearch.com.au PMID:29688352

  1. Leishmanicidal Activities of Novel Synthetic Furoxan and Benzofuroxan Derivatives

    PubMed Central

    Dutra, Luiz Antônio; de Almeida, Letícia; Passalacqua, Thais G.; Reis, Juliana Santana; Torres, Fabio A. E.; Martinez, Isabel; Peccinini, Rosangela Gonçalves; Chin, Chung Man; Chegaev, Konstantin; Guglielmo, Stefano; Fruttero, Roberta

    2014-01-01

    A novel series of furoxan (1,2,5-oxadiazole 2-oxide) (compounds 3, 4a and -b, 13a and -b, and 14a to -f) and benzofuroxan (benzo[c][1,2,5]oxadiazole 1-oxide) (compounds 7 and 8a to -c) derivatives were synthesized, characterized, and evaluated for in vitro activity against promastigote and intracellular amastigote forms of Leishmania amazonensis. The furoxan derivatives exhibited the ability to generate nitric oxide at different levels (7.8% to 27.4%). The benzofuroxan derivative 8a was able to increase nitrite production in medium supernatant from murine macrophages infected with L. amazonensis at 0.75 mM after 48 h. Furoxan and benzofuroxan derivatives showed remarkable leishmanicidal activity against both promastigote and intracellular amastigote forms. Compounds 8a, 14a and -b, and 14d exerted selective leishmanicidal activities superior to those of amphotericin B and pentamidine. In vitro studies at pH 5.4 reveal that compound 8a is stable until 8 h and that compound 14a behaves as a prodrug, releasing the active aldehyde 13a. These compounds have emerged as promising novel drug candidates for the treatment of leishmaniasis. PMID:24913171

  2. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    PubMed Central

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  3. Antiedematogenic activity of the indole derivative N-salicyloyltryptamine in animal models.

    PubMed

    Sousa-Neto, Benedito P; Gomes, Bruno S; Cunha, Francisco V M; Arcanjo, Daniel D R; Gutierrez, Stanley J C; Souza, Maria F V; Almeida, Fernanda R C; Oliveira, Francisco A

    2018-01-01

    The N-salicyloyltryptamine (NST) is an indole derivative compound analogue to the alkaloid N-benzoyltryptamine. In the present study, the antiedematogenic activity of NST was investigated in animal models. Firstly, the acute toxicity for NST was assessed according to the OECD Guideline no. 423. The potential NST-induced antiedematogenic activity was evaluated by carrageenan-induced paw edema in rats, as well as by dextran-, compound 48/80-, histamine-, serotonin-, capsaicine-, and prostaglandin E2-induced paw edema in mice. The effect of NST on compound 48/80-induced ex vivo mast cell degranulation on mice mesenteric bed was investigated. No death or alteration of behavioral parameters was observed after administration of NST (2000 mg/kg, i.p.) during the observation time of 14 days. The NST (100 and 200 mg/kg, i.p.) inhibited the carrageenan-induced edema from the 1st to the 5th hour (**p<0.01; ***p<0.001). The edematogenic activity induced by dextran, compound 48/80, histamine, serotonin, capsaicin, and prostaglandin E2 was inhibited by NST (100 mg/kg, i.p.) throughout the observation period (**p<0.01; ***p<0.001). The pretreatment with NST (50, 100 or 200 mg/kg, i.p) attenuates the compound 48/80-induced mast cell degranulation (**p<0.01; ***p<0.001). Thus, the inhibition of both mast cell degranulation and release of endogenous mediators are probably involved in the NST-induced antiedematogenic effect.

  4. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma

    PubMed Central

    Cai, Ting-Ting; Ye, Shu-Biao; Liu, Yi-Na; He, Jia; Chen, Qiu-Yan; Mai, Hai-Qiang; Zhang, Chuan-Xia; Cui, Jun; Zhang, Xiao-Shi; Zeng, Yi-Xin

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. PMID:28732079

  5. C1 Domain-Targeted Isophthalate Derivatives Induce Cell Elongation and Cell Cycle Arrest in HeLa Cells

    PubMed Central

    Talman, Virpi; Tuominen, Raimo K.; Gennäs, Gustav Boije af; Yli-Kauhaluoma, Jari; Ekokoski, Elina

    2011-01-01

    Diacylglycerol (DAG)-mediated signaling pathways, such as those mediated by protein kinase C (PKC), are central in regulating cell proliferation and apoptosis. DAG-responsive C1 domains are therefore considered attractive drug targets. Our group has designed a novel class of compounds targeted to the DAG binding site within the C1 domain of PKC. We have previously shown that these 5-(hydroxymethyl)isophthalates modulate PKC activation in living cells. In this study we investigated their effects on HeLa human cervical cancer cell viability and proliferation by using standard cytotoxicity tests and an automated imaging platform with machine vision technology. Cellular effects and their mechanisms were further characterized with the most potent compound, HMI-1a3. Isophthalate derivatives with high affinity to the PKC C1 domain exhibited antiproliferative and non-necrotic cytotoxic effects on HeLa cells. The anti-proliferative effect was irreversible and accompanied by cell elongation. HMI-1a3 induced down-regulation of retinoblastoma protein and cyclins A, B1, D1, and E. Effects of isophthalates on cell morphology, cell proliferation and expression of cell cycle-related proteins were different from those induced by phorbol 12-myristate-13-acetate (PMA) or bryostatin 1, but correlated closely to binding affinities. Therefore, the results strongly indicate that the effect is C1 domain-mediated. PMID:21629792

  6. Ag(I)-mediated homo and hetero pairs of guanosine and cytidine: monitoring by circular dichroism spectroscopy.

    PubMed

    Goncharova, Iryna

    2014-01-24

    Ag(I)-containing compounds are attractive as antibacterial and antifungal agents. The renewed interest in the application of silver(I) compounds has led to the need for detailed knowledge of the mechanism of their action. One of the possible ways is the coordination of Ag(I) to G-C pairs of DNA, where Ag(+) ions form Ag(I)-mediated base pairs and inhibit the transcription. Herein, a systematic chiroptical study on silver(I)-mediated homo and mixed pairs of the C-G complementary-base derivatives cytidine(C) and 5'-guanosine monophosphate(G) in water is presented. Ag(I)-mediated homo and hetero pairs of G and C and their self-assembled species were studied under two pH levels (7.0 and 10.0) by vibrational (VCD) and electronic circular dichroism(ECD). VCD was used for the first time in this field and showed itself to be a powerful method for obtaining specific structural information in solution. Based on results of the VCD experiments, the different geometries of the homo pairs were proposed under pH 7.0 and 10.0. ECD was used as a diagnostic tool to characterize the studied systems and as a contact point between the previously defined structures of the metal or proton mediated pairs of nucleobases and the systems studied here. On the basis of the obtained data, the formation of the self-assembled species of cytidine with a structure similar to the i-motif structure in DNA was proposed at pH 10.0. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Ag(I)-mediated homo and hetero pairs of guanosine and cytidine: Monitoring by circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Goncharova, Iryna

    2014-01-01

    Ag(I)-containing compounds are attractive as antibacterial and antifungal agents. The renewed interest in the application of silver(I) compounds has led to the need for detailed knowledge of the mechanism of their action. One of the possible ways is the coordination of Ag(I) to G-C pairs of DNA, where Ag+ ions form Ag(I)-mediated base pairs and inhibit the transcription. Herein, a systematic chiroptical study on silver(I)-mediated homo and mixed pairs of the C-G complementary-base derivatives cytidine(C) and 5‧-guanosine monophosphate(G) in water is presented. Ag(I)-mediated homo and hetero pairs of G and C and their self-assembled species were studied under two pH levels (7.0 and 10.0) by vibrational (VCD) and electronic circular dichroism(ECD). VCD was used for the first time in this field and showed itself to be a powerful method for obtaining specific structural information in solution. Based on results of the VCD experiments, the different geometries of the homo pairs were proposed under pH 7.0 and 10.0. ECD was used as a diagnostic tool to characterize the studied systems and as a contact point between the previously defined structures of the metal or proton mediated pairs of nucleobases and the systems studied here. On the basis of the obtained data, the formation of the self-assembled species of cytidine with a structure similar to the i-motif structure in DNA was proposed at pH 10.0.

  8. Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris

    PubMed Central

    Pearson, Mark S.; Giacomin, Paul R.; Becker, Luke; Sotillo, Javier; Pickering, Darren

    2016-01-01

    Background Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Methodology/Principal Findings Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds—luteolin (3) and (3R,6R)-linalool oxide acetate (1)—showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8–36.9 μg/mL) and T. muris (IC50 range = 9.7–20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Conclusions/Significance Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths—T. muris and S. mansoni—and was

  9. Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp.

    PubMed

    Song, Ren-Yu; Wang, Xiao-Bing; Yin, Guo-Ping; Liu, Rui-Huan; Kong, Ling-Yi; Yang, Ming-Hua

    2017-10-01

    Five new isocoumarin derivatives, pestalactone A-C (1-3) and pestapyrone D-E (4-5), together with two known compounds (6-7) were isolated from the solid cultures of the endophytic fungus Pestalotiopsis sp. obtained from Photinia frasery. Their structures were mainly determined by extensive spectroscopic analysis, Mo 2 (OCOCH 3 ) 4 -induced electronic circular dichroism (ECD), and ECD calculation. Compounds 1 and 2 were rare isocoumarin derivatives and derived from distinctive polyketide pathways. Compound 3 exhibited potent antifungal activity against Candida glabrata (ATCC 90030) with an MIC 50 value of 3.49±0.21μg/mL. Copyright © 2017. Published by Elsevier B.V.

  10. Electronic and structural aspects of p450-mediated drug metabolism.

    PubMed

    Lewis, David F V; Ito, Yuko; Lake, Brian G

    2009-04-01

    From a consideration of first principles for enzymes kinetics, we have employed theoretical methods which enable one to analyse the kinetics of cytochrome P450-mediated reactions which have been based on the known physicochemical principles underlying the majority of chemical or enzymatic reactions. A comparison is made between the correlation equations produced from the QSAR analysis of experimental P450 reaction rate data and those obtained from first principles, where there appears to be a generally satisfactory concordance between the two procedures. In this respect, we have developed expressions based on standard reaction kinetics theory which incorporate the Eyring and Marcus relationships. The analysis of P450-catalyzed reaction rates is elaborated to encompass a treatment of metabolic clearance, and satisfactory correlations are obtained with literature values for both intrinsic clearance and whole body clearance in terms of compound lipophilicity derived from log P data, where P is the octanol/water partition coefficient. The importance of ionization potential as a factor in the overall catalytic turnover of P450-mediated reactions is noted, especially in combination with the lipophilicity parameter, log P.

  11. Aminopropyl thiophene compounds

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation of regional blood flow by radioimaging of the brain.

  12. Highly sweet compounds of plant origin.

    PubMed

    Kim, Nam-Cheol; Kinghorn, A Douglas

    2002-12-01

    The demand for new alternative "low calorie" sweeteners for dietetic and diabetic purposes has increased worldwide. Although the currently developed and commercially used highly sweet sucrose substitutes are mostly synthetic compounds, the search for such compounds from natural sources is continuing. As of mid-2002, over 100 plant-derived sweet compounds of 20 major structural types had been reported, and were isolated from more than 25 different families of green plants. Several of these highly sweet natural products are marketed as sweeteners or flavoring agents in some countries as pure compounds, compound mixtures, or refined extracts. These highly sweet natural substances are reviewed herein.

  13. Design, synthesis and anticonvulsant activity of new hybrid compounds derived from N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)-propanamides and -butanamides.

    PubMed

    Kamiński, Krzysztof; Rapacz, Anna; Filipek, Barbara; Obniska, Jolanta

    2016-07-01

    The focused library of 21 new N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide, 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)propanamide, and 2-(2,5-dioxopyrrolidin-1-yl)butanamide derivatives as potential new hybrid anticonvulsant agents was synthesized. These hybrid molecules were obtained as close analogs of previously described N-benzyl derivatives and fuse the chemical fragments of clinically relevant antiepileptic drugs such as ethosuximide, levetiracetam, and lacosamide. The initial anticonvulsant screening was performed in mice (ip) using the 'classical' maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests, as well as in the six-Hertz (6Hz) model of pharmacoresistant limbic seizures. Applying the rotarod test, the acute neurological toxicity was determined. The broad spectra of activity across the preclinical seizure models in mice (ip) displayed compounds 4, 5, 11, and 19. The most favorable anticonvulsant properties demonstrated 4 (ED50 MES=96.9mg/kg, ED50scPTZ=75.4mg/kg, ED50 6Hz=44.3mg/kg) which showed TD50=335.8mg/kg in the rotarod test that yielded satisfying protective indexes (PI MES=3.5, PI scPTZ=4.4, PI 6Hz=7.6). Consequently, compound 4 revealed comparable or better safety profile than model antiepileptic drugs (AEDs): ethosuximide, lacosamide, and valproic acid. In the in vitro assays, compound 4 was observed as relatively effective binder to the neuronal voltage-sensitive sodium and diltiazem site of L-type calcium channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Trofosides A and B and other cytostatic steroid-derived compounds from the Far East starfish Trofodiscus über].

    PubMed

    Levina, E V; Kalinovskiĭ, A I; Andriiashchenko, P V; Menzorova, N I; Dmitrenok, P S

    2007-01-01

    Three new polar steroids identified as trofoside A, (20R,24S)-24-O-(3-O-methyl-beta-D-xylopyranosyl)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfoxy-(20R,24S)-5alpha-cholestane-3beta,6beta,8,15alpha,24-pentaol sodium salt, were isolated from Trofodiscus uber starfish extracts collected in the Sea of Okhotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3beta,6alpha,8,15beta-tetrahydroxy-5alpha-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius (C(min)) and terminating the cell division at the stage of the first division (C(min) embr.), as well as the concentrations causing 50% immobilization of sperm cells (ImC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono- and double chained glycosides with the monosaccharide fragment at C3 and C24 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.

  15. Adeno Associated Viral-mediated intraosseus labeling of bone marrow derived cells for CNS tracking

    PubMed Central

    Selenica, Maj-Linda B.; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B.; Nash, Kevin R.; Morgan, Dave; Gordon, Marcia N.; Lee, Daniel C.

    2016-01-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseus impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9–GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the

  16. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  17. Differential effects of ascorbate on endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine ciliary vascular bed and coronary artery.

    PubMed

    McNeish, Alister J; Nelli, Silvia; Wilson, William S; Dowell, Fiona J; Martin, William

    2003-03-01

    1. The ability of ascorbate to inhibit endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation was compared in the bovine perfused ciliary vascular bed and isolated rings of coronary artery. 2. Acetylcholine-induced, EDHF-mediated vasodilatation of the ciliary circulation was blocked following inclusion of ascorbate (50 micro M, 120 min) in the perfusion fluid. The blockade was highly selective since ascorbate had no effect on the vasodilator actions of the K(ATP) channel opener, levcromakalim, nor on the tonic vasodepressor action of basally released nitric oxide. 3. The possibility that concentration of ascorbate by the ciliary body was a prerequisite for blockade to occur was ruled out, since EDHF was still blocked when the anterior and posterior chambers were continuously flushed with Krebs solution or when both the aqueous and vitreous humour were drained. 4. Ascorbate at 50 micro M failed to affect bradykinin- or acetylcholine-induced, EDHF-mediated vasodilatation in rings of bovine coronary artery. Raising the concentration to 3 mM did produce blockade of EDHF, but this was nonselective, since vasodilator responses to endothelium-derived nitric oxide were also inhibited. 5. Thus, ascorbate (50 micro M) is not a universal blocker of EDHF. Whether its ability to block in the bovine ciliary circulation, but not in the coronary artery, is due to differences in the nature of EDHF at the two sites, differences in vessel size (resistance arterioles versus conduit artery), the presence or absence of flow, or to some other factor remains to be determined.

  18. Protection of ATP-depleted cells by impermeant strychnine derivatives: implications for glycine cytoprotection.

    PubMed

    Dong, Z; Venkatachalam, M A; Weinberg, J M; Saikumar, P; Patel, Y

    2001-03-01

    Glycine and structurally related amino acids with activities at chloride channel receptors in the central nervous system also have robust protective effects against cell injury by ATP depletion. The glycine receptor antagonist strychnine shares this protective activity. An essential step toward identification of the molecular targets for these compounds is to determine whether they protect cells through interactions with intracellular targets or with molecules on the outer surface of plasma membranes. Here we report cytoprotection by a cell-impermeant derivative of strychnine. A strychnine-fluorescein conjugate (SF) was synthesized, and impermeability of plasma membranes to this compound was verified by fluorescence confocal microscopy. In an injury model of Madin-Darby canine kidney cells, ATP depletion led to lactate dehydrogenase release. SF prevented lactate dehydrogenase leakage without ameliorating ATP depletion. This was accompanied by preservation of cellular ultrastructure and exclusion of vital dyes. SF protection was also shown for ATP-depleted rat hepatocytes. On the other hand, when a key structural motif in the active site of strychnine was chemically blocked, the SF lost its protective effect, establishing strychnine-related specificity for SF protection. Cytoprotective effects of the cell-impermeant strychnine derivative provide compelling evidence suggesting that molecular targets on the outer surface of plasma membranes may mediate cytoprotection by strychnine and glycine.

  19. Synthesis and anti-inflammatory effect of chalcones and related compounds.

    PubMed

    Hsieh, H K; Lee, T H; Wang, J P; Wang, J J; Lin, C N

    1998-01-01

    Mast cell and neutrophil degranulations are the important players in inflammatory disorders. Combined with potent inhibition of chemical mediators released from mast cells and neutrophil degranulations, it could be a promising anti-inflammatory agent. 2',5'-Dihydroxychalcone has been reported as a potent chemical mediator and cyclooxygenase inhibitor. In an effort to continually develop potent anti-inflammatory agents, a novel series of chalcone, 2'- and 3'-hydroxychalcones, 2',5'-dihydroxychalcones and flavanones were continually synthesized to evaluate their inhibitory effects on the activation of mast cells and neutrophils and the inhibitory effect on phlogist-induced hind-paw edema in mice. A series of chalcones and related compounds were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and the anti-inflammatory activities of these synthetic compounds were studied on inhibitory effects on the activation of mast cells and neutrophils. Some chalcones showed strong inhibitory effects on the release of beta-glucuronidase and histamine from rat peritoneal mast cells stimulated with compound 48/80. Almost all chalcones and 4'-hydroxyflavanone exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP). Some chalcones showed potent inhibitory effects on superoxide formation of rat neutrophils stimulated with fMLP/cytochalasin B (CB) or phorbol myristate acetate (PMA). 2',3-Dihydroxy-, 2',5'-dihydroxy-4-chloro-, and 2',5'-dihydroxychalcone showed remarkable inhibitory effects on hind-paw edema induced by polymyxin B in normal as well as in adrenalectomized mice. These results indicated that the anti-inflammatory effects of these compounds were mediated, at least partly, through the suppression of chemical mediators released from mast cells and neutrophils.

  20. Topical chlorophyll-pheophytin derivative-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premaligant lesions: an in vivo study

    NASA Astrophysics Data System (ADS)

    Hsu, Yih-Chih; Chiang, Chung-Pin; Chen, Jian Wen; Lee, Jeng-Woei; How, Mon-Hsin

    2010-02-01

    In Taiwan, oral cancer has become a prominent cancer because of its highest annual increase rate among all cancer diseases. Betel quid chewing habit is a major risk factor for oral precancerous and cancerous lesions and there are more than two million people who have this habit in Taiwan. Our previous studies showed that chlorophyll-pheophytin derivative (CPD)-mediated PDT is very effective for killing of SCC-4 cell lines in vitro. In order to decrease the systemic phototoxic effect of CPD, this study was designed to use a topical CPD-mediated PDT for treatment of DMBA-induced hamster buccal pouch precancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 8 to 10 weeks. Precancerous lesions of moderate to severe dysplasia were induced and proven by histological examination. These induced precancerous lesions were used for testing the efficacy of topical CPD-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when CPD reached its peak level in the lesional epithelial cells after topical application of CPD gel. We found that CPD reached its peak level in precancerous lesions about 1 hour (range, 0 to 30 hours) after topical application of CPD gel. The precancerous lesions in hamsters were then treated with topical CPD-mediated PDT (fluence rate: 200 mW/cm2; light exposure dose 100 J/cm2) using the portable WonderLight LED 635 nm fiber-guided light device once or twice a week. Visual and histological examination demonstrated that topical CPD-mediated PDT was partially effective treatment modality for DMBA-induced hamster buccal pouch precancerous lesions.

  1. Therapeutic Phytogenic Compounds for Obesity and Diabetes

    PubMed Central

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-01-01

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases. PMID:25421245

  2. Shikonin Derivative DMAKO-05 Inhibits Akt Signal Activation and Melanoma Proliferation.

    PubMed

    Yang, Yao-Yao; He, Hui-Qiong; Cui, Jia-Hua; Nie, Yun-Juan; Wu, Ya-Xian; Wang, Rui; Wang, Gang; Zheng, Jun-Nian; Ye, Richard D; Wu, Qiong; Li, Shao-Shun; Qian, Feng

    2016-06-01

    DMAKO-05((S)-1-((5E,8E)-5,8-bis(hydroxyimino)-1,4-dimethoxy-5,8-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 3-methylbutanoate) is a novel oxime derivative of shikonin, the major component extracted from Chinese herb Lithospermun erythrorhizon. Here, we report that DMAKO-05 had an antitumor activity against mouse melanoma cell line B16F0. Our studies indicated that DMAKO-05 not only inhibited B16F0 proliferation and migration but also led to cell cycle arrest at G1 phase and cell apoptosis, in which DMAKO-05 triggered mitochondrial-mediated apoptosis signal including caspase-9/3 and PARP. In response to DMAKO-05 treatment, the Akt-mediated survival signals were remarkably attenuated in B16F0 cells. Collectively, DMAKO-05 has a strong cytotoxicity in B16F0 cells via inhibiting Akt activation, inducing G1 arrest, and promoting B16F0 cell apoptosis. DMAKO-05 might serve as a potential candidate lead compound for melanoma. © 2016 John Wiley & Sons A/S.

  3. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities.

    PubMed

    Lorenzo, Jose M; Mousavi Khaneghah, Amin; Gavahian, Mohsen; Marszałek, Krystian; Eş, Ismail; Munekata, Paulo E S; Ferreira, Isabel C F R; Barba, Francisco J

    2018-05-17

    Natural bioactive compounds isolated from several aromatic plants have been studied for centuries due to their unique characteristics that carry great importance in food, and pharmaceutical, and cosmetic industries. For instance, several beneficial activities have been attributed to some specific compounds found in Thymus such as anti-inflammatory, antioxidant, antimicrobial, and antiseptic properties. Moreover, these compounds are classified as Generally Recognized as Safe (GRAS) which means they can be used as an ingrident of may food producs. Conventional extraction processes of these compounds and their derived forms from thyme leaves are well established. Hoewever, they present some important drawbacks such as long extraction time, low yield, high solvent consumption and degradation thermolabile compounds. Therefore, innovative extraction techniques such as ultrasound, microwave, enzyme, ohmic and heat-assisted methods can be useful strategies to enhance the exytraction yield and to reduce processing temperature, extraction time, and energy and solvent consumption. Furthermore, bioaccessibility and bioavailability aspects of these bioactive compounds as well as their metabolic fates are crucial for developing novel functional foods. Additionally, immobilization methods to improve stability, solubility, and the overall bioavailability of these valuable compounds are necessary for their commercial applications. This review aims to give an overall perspective of innovative extraction techniques to extract the targeted compounds with anti-inflammatory and antimicrobial activities. Moreover, the bioaccessi-bility and bioavailability of these compounds before and after processing discussed. In addition, some of the most important characteristics of thyme and their derived products discussed in this paper.

  4. Antimicrobial Potential of Benzimidazole Derived Molecules.

    PubMed

    Bansal, Yogita; Kaur, Manjinder; Bansal, Gulshan

    2017-10-31

    Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bis-benzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. [Synthesis and regulation of flavor compounds derived from brewing yeast: Esters].

    PubMed

    Loviso, Claudia L; Libkind, Diego

    2018-04-04

    During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product. Copyright © 2018 The Authors. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Pyridine group assisted addition of diazo-compounds to imines in the 3-CC reaction of 2-aminopyridines, aldehydes, and diazo-compounds.

    PubMed

    Gulevich, Anton V; Helan, Victoria; Wink, Donald J; Gevorgyan, Vladimir

    2013-02-15

    A novel three-component coupling (3-CC) reaction of 2-aminoazines, aromatic aldehydes, and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles as well as β-amino acid derivatives.

  7. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.

    PubMed

    Zhao, Di; Le, Thao T; Larsen, Lotte Bach; Li, Lin; Qin, Dan; Su, Guoying; Li, Bing

    2017-12-01

    α-Dicarbonyl compounds, which are widely found in common consumed food, are one of the precursors of advanced glycation end products (AGEs). In this study, the effect of glycation derived from glyoxal (GO), methylglyoxal (MGO) or butanedione (BU) on the in vitro digestibility of β-casein (β-CN) and β-lactoglobulin (β-Lg) was investigated. Glycation from α-dicarbonyl compounds reduced the in vitro digestibility of studied proteins in both gastric and intestinal stage. In addition, glycation substantially altered the peptides released through gastric and gastrointestinal digestion, as detected by liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-MS/MS). Crosslinked glycation structures derived from BU considerably reduced the sensitivity of glycated β-Lg towards digestive proteases, albeit to a lesser degree in glycated β-CN due to its intrinsic unordered structure. By contrast, non-crosslinked AGEs that formed adjacent to enzymatic cleavage sites did not block the enzymatic reaction in several cases, as evidenced by the corresponding digested peptides modified with glycation structures. These findings expand our understanding of the nutritional influence of α-dicarbonyl compounds and health impact of relevant dietary AGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis and antitumour activity of 4-aminoquinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.

    2016-07-01

    Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.

  9. Effect of Enzymatic Digestion of Protein Derivatives Obtained from Mucuna pruriens L. on Production of Proinflammatory Mediators by BALB/c Mouse Macrophages.

    PubMed

    Martínez Leo, Edwin E; Arana Argáez, Victor E; Acevedo Fernández, Juan J; Puc, Rosa Moo; Segura Campos, Maira R

    2018-04-25

    Inflammation is considered to be a major risk factor for the pathogenesis of chronic non-communicable diseases. Macrophages are important immune cells, which regulate inflammation and host defense by secretion of proinflammatory mediators. Obtaining biopeptides by enzymatic hydrolysis adds value to proteins of vegetative origin, such as Mucuna pruriens L. The present study evaluated the effect of enzymatic digestion of protein derivatives obtained from M. pruriens L. on the production of proinflammatory mediators by BALB/c mouse macrophages. Five different molecular weight peptide fractions were obtained (F > 10, 5-10, 3-5, 1-3, and < 1 kDa, respectively). At 300 μg/mL, F5-10 kDa inhibited 50.26 and 61.00% NO and H 2 O 2 production, respectively. Moreover, F5-10 kDa reduced the IL-6 and TNFα levels to 60.25 and 69.54%, respectively. After enzymatic digestive simulation, F5-10 kDa decreased the inflammatory mediators.

  10. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    PubMed Central

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  11. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    PubMed

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  12. Toll-like Receptor-mediated Down-regulation of the Deubiquitinase Cylindromatosis (CYLD) Protects Macrophages from Necroptosis in Wild-derived Mice*

    PubMed Central

    Schworer, Stephen A.; Smirnova, Irina I.; Kurbatova, Irina; Bagina, Uliana; Churova, Maria; Fowler, Trent; Roy, Ananda L.; Degterev, Alexei; Poltorak, Alexander

    2014-01-01

    Pathogen recognition by the innate immune system initiates the production of proinflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to the host defense against pathogens or cause damage to host tissues. Receptor-interacting protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate the mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen on the basis of RIP1-mediated necroptosis in wild-derived MOLF/EiJ mice, which diverged from classical laboratory mice over a million years ago. When compared with C57BL/6, MOLF/EiJ macrophages were resistant to RIP1-mediated necroptosis induced by Toll-like receptors. Using a forward genetic approach in a backcross panel of mice, we identified cylindromatosis (CYLD), a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNF receptor signaling, as the gene conferring the trait. We demonstrate that CYLD is required for Toll-like receptor-induced necroptosis and describe a novel mechanism by which CYLD is down-regulated at the transcriptional level in MOLF/EiJ macrophages to confer protection from necroptosis. PMID:24706750

  13. Progress in the field of physiologically active lanosterol compounds

    NASA Astrophysics Data System (ADS)

    Reshetova, I. G.; Tkhaper, R. K.; Kamernitskii, Alexey V.

    1992-08-01

    This review correlates the studies (up to 1991) on the isolation, structural determination, biological activity, and synthesis of physiologically active polyoxidised lanosterol derivatives of vegetable (inotodiol, ganoderic acids) and animal (seychellogenin) origin. The cytotoxic, cardiovascular, and other forms of activity of compounds of this type are of considerable interest in relation to their medical use. It is noted that the functionalised side chain (in an open form or containing lactones, lactols, etc.) is generally responsible for the activity exhibited by lanosterol derivatives. Two basic approaches to the derivation of these structures are defined: either by complete reconstruction of the side chain of lanosterol (degradation and rebuilding with oxygen-containing residues) or by progressive functionalisation of the Δ24-side chain of lanosterol. The synthesis of the known anticancer compound "inotodiol", seychellogenins, ganoderic acids, and other compounds are described. The bibliography includes 105 references.

  14. Causal Mediation Analysis of Survival Outcome with Multiple Mediators.

    PubMed

    Huang, Yen-Tsung; Yang, Hwai-I

    2017-05-01

    Mediation analyses have been a popular approach to investigate the effect of an exposure on an outcome through a mediator. Mediation models with multiple mediators have been proposed for continuous and dichotomous outcomes. However, development of multimediator models for survival outcomes is still limited. We present methods for multimediator analyses using three survival models: Aalen additive hazard models, Cox proportional hazard models, and semiparametric probit models. Effects through mediators can be characterized by path-specific effects, for which definitions and identifiability assumptions are provided. We derive closed-form expressions for path-specific effects for the three models, which are intuitively interpreted using a causal diagram. Mediation analyses using Cox models under the rare-outcome assumption and Aalen additive hazard models consider effects on log hazard ratio and hazard difference, respectively; analyses using semiparametric probit models consider effects on difference in transformed survival time and survival probability. The three models were applied to a hepatitis study where we investigated effects of hepatitis C on liver cancer incidence mediated through baseline and/or follow-up hepatitis B viral load. The three methods show consistent results on respective effect scales, which suggest an adverse estimated effect of hepatitis C on liver cancer not mediated through hepatitis B, and a protective estimated effect mediated through the baseline (and possibly follow-up) of hepatitis B viral load. Causal mediation analyses of survival outcome with multiple mediators are developed for additive hazard and proportional hazard and probit models with utility demonstrated in a hepatitis study.

  15. Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts

    PubMed Central

    Nallathambi, Rameshprabu; Mazuz, Moran; Ion, Aurel; Selvaraj, Gopinath; Weininger, Smadar; Fridlender, Marcelo; Nasser, Ahmad; Sagee, Oded; Kumari, Puja; Nemichenizer, Diana; Mendelovitz, Maayan; Firstein, Nave; Hanin, Orly; Konikoff, Fred; Kapulnik, Yoram; Naftali, Timna; Koltai, Hinanit

    2017-01-01

    Abstract Introduction: Inflammatory bowel diseases (IBDs) include Crohn's disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models. Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR. Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue. Conclusions: It is suggested that the anti-inflammatory activity of Cannabis

  16. Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts.

    PubMed

    Nallathambi, Rameshprabu; Mazuz, Moran; Ion, Aurel; Selvaraj, Gopinath; Weininger, Smadar; Fridlender, Marcelo; Nasser, Ahmad; Sagee, Oded; Kumari, Puja; Nemichenizer, Diana; Mendelovitz, Maayan; Firstein, Nave; Hanin, Orly; Konikoff, Fred; Kapulnik, Yoram; Naftali, Timna; Koltai, Hinanit

    2017-01-01

    Introduction: Inflammatory bowel diseases (IBDs) include Crohn's disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models. Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR. Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 ( COX2 ) and metalloproteinase-9 ( MMP9 ) gene expression in both cell culture and colon tissue. Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts

  17. Natural product-derived small molecule activators of hypoxia-inducible factor-1 (HIF-1).

    PubMed

    Nagle, Dale G; Zhou, Yu-Dong

    2006-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a key mediator of oxygen homeostasis that was first identified as a transcription factor that is induced and activated by decreased oxygen tension. Upon activation, HIF-1 upregulates the transcription of genes that promote adaptation and survival under hypoxic conditions. HIF-1 is a heterodimer composed of an oxygen-regulated subunit known as HIF-1alpha and a constitutively expressed HIF-1beta subunit. In general, the availability and activity of the HIF-1alpha subunit determines the activity of HIF-1. Subsequent studies have revealed that HIF-1 is also activated by environmental and physiological stimuli that range from iron chelators to hormones. Preclinical studies suggest that HIF-1 activation may be a valuable therapeutic approach to treat tissue ischemia and other ischemia/hypoxia-related disorders. The focus of this review is natural product-derived small molecule HIF-1 activators. Natural products, relatively low molecular weight organic compounds produced by plants, animals, and microbes, have been and continue to be a major source of new drugs and molecular probes. The majority of known natural product-derived HIF-1 activators were discovered through the pharmacological evaluation of specifically selected individual compounds. On the other hand, the combination of natural products chemistry with appropriate high-throughput screening bioassays may yield novel natural product-derived HIF-1 activators. Potent natural product-derived HIF-1 activators that exhibit a low level of toxicity and side effects hold promise as new treatment options for diseases such as myocardial and peripheral ischemia, and as chemopreventative agents that could be used to reduce the level of ischemia/reperfusion injury following heart attack and stroke.

  18. Patent Survey of Resveratrol, Taxol, Podophyllotoxin, Withanolides and Their Derivatives Used in Anticancer Therapy.

    PubMed

    Routh, Shreya; Nandagopal, Krishnadas

    2017-01-01

    Resveratrol, taxol, podophyllotoxin, withanolides and their derivatives find applications in anti-cancer therapy. They are plant-derived compounds whose chemical structures and synthesis limit their natural availability and restrict a large-scale industrial production. Hence, their production by various biotechnological approaches may hold promise for a continuous and reliable mode of supply. We review process and product patents in this regard. Accordingly, we provide a general outline to search the freely accessible WIPO, EPO, USPTO and Cambia databases with several keywords and patent codes. We have tabulated both granted and filed patents from the said databases. We retrieved ~40 patents from these databases. Novel biotechnological processes for production of these anticancer compounds include Agrobacterium rhizogenes-mediated hairy root culture, suspension culture, cell culture with elicitors, use of recombinant microorganisms, and bioreactors among others. The results are indicative of being both database-specific as well as queryspecific. A ten-year search window yielded 33 patents. The utility of the search strategy is discussed in the light of biotechnological developments in the field. Those who examine patent literature using similar search strategies may complement their knowledge obtained from perusal of mainstream journal resources. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives.

    PubMed

    Tian, Yuxin; Liu, Weirui; Lu, Yi; Wang, Yan; Chen, Xiaoyi; Bai, Shaojuan; Zhao, Yicheng; He, Ting; Lao, Fengxue; Shang, Yinghui; Guo, Yu; She, Gaimei

    2016-10-24

    Cinnamic acid sugar ester derivatives (CASEDs) are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3',6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM), presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae . This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  20. Pyridine Group-Assisted Addition of Diazo-Compounds to Imines in the 3-CC Reaction of 2-Aminopyridines, Aldehydes, and Diazo-Compounds

    PubMed Central

    Gulevich, Anton V.; Helan, Victoria; Wink, Donald J.

    2013-01-01

    A novel three-component (3-CC) coupling reaction of 2-aminoazines, aromatic aldehydes and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles, as well as to β-amino acid derivatives. PMID:23373731

  1. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2006-09-01

    SH - SY5Y human neuroblastoma cell line . Derivatives determined to have therapeutic potential are tested in vitro for their...to be cytoprotective in in vitro models using the dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium (MPP+) and the SH - SY5Y cell line . Derivatives...action of these two compounds remains unknown. The ability of GM1 (no preincubation) to protect RA- differentiated SH - SY5Y cells from MPP+

  2. Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives.

    PubMed

    Pérez-Cruz, Fernanda; Serra, Silvia; Delogu, Giovanna; Lapier, Michel; Maya, Juan Diego; Olea-Azar, Claudio; Santana, Lourdes; Uriarte, Eugenio

    2012-09-01

    In the present communication we prepared a series of six 4-hydroxycoumarin derivatives, isosters of quercetin, recognized as an antioxidant natural compound, with the aim of evaluating the antitrypanosomal activity against Trypanosoma cruzi, the parasite responsible for Chagas disease, and the antioxidant properties. We have used the 4-hydroxycoumarin moiety (compound 1) as the molecular template for the synthesis of compounds 2-7. These derivates have shown moderate trypanocidal activity. However they have been proved to be good antioxidants. In particular compound 7 is the most active antioxidant and it is, therefore, a potential candidate for a successful employment in conditions characterized by free radicals overproduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoproteinmore » (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of

  4. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.

    PubMed

    Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng

    2018-04-15

    This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Natural product and natural product derived drugs in clinical trials.

    PubMed

    Butler, Mark S; Robertson, Avril A B; Cooper, Matthew A

    2014-11-01

    There are a significant number of natural product (NP) drugs in development. We review the 100 NP and NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) with a NP-derived cytotoxic component being evaluated in clinical trials or in registration at the end of 2013. 38 of these compounds and 33 ADCs are being investigated as potential oncology treatments, 26 as anti-infectives, 19 for the treatment of cardiovascular and metabolic diseases, 11 for inflammatory and related diseases and 6 for neurology. There was a spread of the NP and NP-derived compounds through the different development phases (17 in phase I, 52 in phase II, 23 in phase III and 8 NDA and/or MAA filed), while there were 23 ADCs in phase I and 10 in phase II. 50 of these 100 compounds were either NPs or semi-synthetic (SS) NPs, which indicated the original NP still plays an important role. NP and NP-derived compounds for which clinical trials have been halted or discontinued since 2008 are listed in the Supplementary Information. The 25 NP and NP-derived drugs launched since 2008 are also reviewed, and late stage development candidates and new NP drug pharmacophores analysed. The short term prospect for new NP and NP-derived drug approvals is bright, with 31 compounds in phase III or in registration, which should ensure a steady stream of approvals for at least the next five years. However, there could be future issues for new drug types as only five new drug pharmacophores discovered in the last 15 years are currently being evaluated in clinical trials. The next few years will be critical for NP-driven lead discovery, and a concerted effort is required to identify new biologically active pharmacophores and to progress these and existing compounds through pre-clinical drug development into clinical trials.

  6. Acaricidal activity of Asarum heterotropoides root-derived compounds and hydrodistillate constitutes toward Dermanyssus gallinae (Mesostigmata: Dermanyssidae).

    PubMed

    Kim, Jun-Ran; Perumalsamy, Haribalan; Lee, Ju-Hee; Ahn, Young-Joon; Lee, Young Su; Lee, Sang-Guie

    2016-04-01

    The acaricidal activity of Asarum heterotropoides root-derived principles, methyleugenol, safrole, 3-carene, α-asarone, pentadecane and A. heterotropoides root steam distillate constituents was tested against poultry red mites Dermanyssus gallinae (De Geer). All active principles were identified by spectroscopic analysis. Results were compared with those of two conventional acaricides, benzyl benzoate and N,N-diethyl-3-methylbenzamide (DEET). Methyleugenol (24 h LC50 = 0.57 µg/cm(2)) and safrole (24 h LC50 = 8.54 µg/cm(2)) were the most toxic compounds toward D. gallinae, followed by 3,4,5-trimethoxytoluene, 3,5-dimethoxytoluene, estragole, α-terpineol, verbenone, eucarvone, linalool, and terpinen-4-ol (LC50 = 15.65-27.88 µg/cm(2)). Methyleugenol was 16.7× and 11.0× more toxic than benzyl benzoate (LC50 = 9.52 μg/cm(2)) and DEET (LC50 = 6.28 μg/cm(2)), respectively; safrole was 1.1× and 0.73× more toxic. Asarum heterotropoides root-derived materials, particularly methyleugenol and safrole, merit further study as potential acaricides. Global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments justify further studies on A. heterotropoides root extract and steam distillate preparations containing the active constituents described as potential contact-action fumigants for the control of mites.

  7. THE FIRST VERY LONG BASELINE INTERFEROMETRY IMAGE OF A 44 GHz METHANOL MASER WITH THE KVN AND VERA ARRAY (KaVA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Naoko; Hirota, Tomoya; Honma, Mareki

    2014-07-01

    We have carried out the first very long baseline interferometry (VLBI) imaging of a 44 GHz class I methanol maser (7{sub 0}-6{sub 1} A {sup +}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151–1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds × 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than ≈ 650 km corresponding to 100 Mλ in the uv-coverage.more » The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ∼5 mas × 2 mas, which corresponds to the linear size of ∼15 AU × 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ∼3.5 × 10{sup 8} to 1.0 × 10{sup 10} K, which are higher than the estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ∼50 mas. The 44 GHz class I methanol maser in IRAS 18151–1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.« less

  8. Crystallisation and crystal forms of carbohydrate derivatives

    NASA Astrophysics Data System (ADS)

    Lennon, Lorna

    This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains

  9. The molecular mechanism of anticancer action of novel octahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives in human gastric cancer cells.

    PubMed

    Pawłowska, Natalia; Gornowicz, Agnieszka; Bielawska, Anna; Surażyński, Arkadiusz; Szymanowska, Anna; Czarnomysy, Robert; Bielawski, Krzysztof

    2018-03-17

    Objective The aim of the current study was to examine the anticancer activity and the detailed mechanism of novel diisoquinoline derivatives in human gastric cancer cells (AGS). Methods The viability of AGS cells was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cell cycle analysis and apoptosis assay were performed by standard flow cytometric method. Confocal microscopy bioimaging was used to demonstrate the expression of pivotal proteins engaged in apoptosis (caspase-8, caspase-3, p53) and cell signaling (AKT, ERK1/2). Results All compounds decreased the number of viable cells in a dose-dependent manner after 24 and 48 h of incubation, although compound 2 was a more cytotoxic agent, with IC 50 values of 21 ± 2 and 6 ± 2 μM, compared to 80 ± 2 and 45 ± 2 μM for etoposide. The cytotoxic and antiproliferative effects of novel compounds were associated with the induction of apoptosis. The highest percentage of early and late apoptotic cells was observed after 48 h of incubation with compound 2 (89.9%). The value was higher compared to compound 1 (20.4%) and etoposide (24.1%). The novel diisoquinoline derivatives decreased the expression of AKT and ERK1/2. Their mechanism was associated with p53-mediated apoptosis, accumulation of cells in the G2/M phase of cell cycle and inhibition of topoisomerase II. Conclusion These data strongly support compound 2 as a promising molecule for treatment of gastric cancer.

  10. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  11. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    PubMed

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  13. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4.

    PubMed

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-02-19

    HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. In the present study, we investigated the effect of HemoHIM on the functional and phenotypic maturation of murine bone marrow-derived dendritic cells (BMDCs) both in vitro and in vivo. The expression of co-stimulatory molecules (CD40, CD80, CD86, MHC I, and MHC II) and the production of cytokines (IL-1β, IL-6, IL-12p70, and TNF-α) were increased by HemoHIM in BMDCs. Furthermore, the antigen-uptake ability of BMDCs was decreased by HemoHIM, and the antigen-presenting ability of HemoHIM-treated mature BMDCs increased TLR4-dependent CD4(+) and CD8(+) T cell responses. Our findings demonstrated that HemoHIM induces TLR4-mediated BMDCs functional and phenotypic maturation through in vivo and in vitro. And our study showed the antigen-presenting ability that HemoHIM-treated mature BMDCs increase CD4(+) and CD8(+) T cell responses by in vitro. These results suggest that HemoHIM has the potential to mediate DC immune responses.

  14. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production.

    PubMed

    Perez-Ternero, Cristina; Macià, Alba; de Sotomayor, Maria Alvarez; Parrado, Juan; Motilva, Maria-Jose; Herrera, Maria-Dolores

    2017-06-21

    Rice bran is an exceptional source of such antioxidant molecules as γ-oryzanol and ferulic acid, but their bioavailability and metabolism within this matrix remain unknown. The aims of this work were to describe the oral bioavailability and metabolic pathways of the ferulic acid-derived phenolic compounds contained in a rice bran enzymatic extract (RBEE), and to determine its effect on NADPH oxidase activity. Wistar rats were administered with RBEE and sacrificed at different times over a period of 24 h to obtain plasma. An additional group was used for collection of urine and faeces over a period of 48 h. The phenolic metabolites were determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), and plasma pharmacokinetic parameters were calculated. In parallel, aortic rings were incubated in the plasma of rats sacrificed 30 min after RBEE gavage, or in the presence of RBEE, ferulic acid or γ-oryzanol. Endothelin-1-induced superoxide production was recorded by lucigenin-enhanced luminescence. Twenty-five ferulic acid metabolites showing biphasic behaviour were found in the plasma, most of which were found in the urine as well, while in the faeces, colonic metabolism led to simpler phenolic compounds. Superoxide production was abrogated by phenolic compound-enriched plasma and by RBEE and ferulic acid, thus showing the biological potential of RBEE as a nutraceutical ingredient.

  15. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    PubMed

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  16. Bioactive terpenes from marine-derived fungi.

    PubMed

    Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter

    2015-04-03

    Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  17. Synthesis and antimalarial evaluation of novel isocryptolepine derivatives.

    PubMed

    Whittell, Louise R; Batty, Kevin T; Wong, Rina P M; Bolitho, Erin M; Fox, Simon A; Davis, Timothy M E; Murray, Paul E

    2011-12-15

    A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Rapid determination of the aromatic compounds methyl-anthranilate, 2'-aminoacetophenone and furaneol by GC-MS: Method validation and characterization of grape derivatives.

    PubMed

    Prudêncio Dutra, Maria da Conceição; de Souza, Joyce Fagundes; Viana, Arão Cardoso; de Oliveira, Débora; Pereira, Giuliano Elias; Dos Santos Lima, Marcos

    2018-05-01

    A methodology for the rapid determination of the aromatic compounds methyl anthranilate (MA), 2'-aminoacetophenone (2-AAP) and furaneol by GC-MS was validated and used to characterize grape juice and wine elaborated with the new Brazilian grape varieties cultivated in northeastern Brazil, and Brazilian grape nectars. The method presented linearity (R 2  ˃ 0.9952), good accuracy (CV < 12.9%), recovery (76.6% to 106.3%), limit of detection (23 μg L -1 to 94 μg L -1 ) and limit of quantification (96 μg L -1 to 277 μg L -1 ) acceptable in only 20 min of running. The methodology was considered satisfactory for the purpose, being a simple and rapid method for the determination of these compounds in grape derivatives drinks. In the characterization of the nectars the compound that stood out was the MA, being its presence attributed to the addition of flavorings in these products. It was evidenced a significant contribution of furaneol in the aroma of grape juice and wines elaborated with the new Brazilian grape varieties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  20. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides

    PubMed Central

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845

  1. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.

    PubMed

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L M; de Zoete, Marcel R; Bikker, Floris J; Haagsman, Henk P

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.

  2. Novel cajaninstilbene acid derivatives as antibacterial agents.

    PubMed

    Geng, Zhi-Zhong; Zhang, Jian-Jun; Lin, Jing; Huang, Mei-Yan; An, Lin-Kun; Zhang, Hong-Bin; Sun, Ping-Hua; Ye, Wen-Cai; Chen, Wei-Min

    2015-07-15

    Discovery of novel antibacterial agents with new structural scaffolds that combat drug-resistant pathogens is an urgent task. Cajaninstilbene acid, which is isolated from pigeonpea leaves, has shown antibacterial activity. In this study, a series of cajaninstilbene acid derivatives were designed and synthesized. The antibacterial activities of these compounds against gram-negative and gram-positive bacteria, as well as nine strains of methicillin-resistant staphylococcus aureus (MRSA) bacteria are evaluated,and the related structure-activity relationships are discussed. Assays suggest that some of the synthetic cajaninstilbene acid derivatives exhibit potent antibacterial activity against gram-positive bacterial strains and MRSA. Among these compounds, 5b, 5c, 5j and 5k show better antibacterial activity than the positive control compounds. The results of MTT assays illustrate the low cytotoxicity of the active compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6Chigh CCR2+ inflammatory monocyte/macrophage-derived CCL11

    PubMed Central

    Waddell, Amanda; Ahrens, Richard; Steinbrecher, Kris; Donovan, Burke; Rothenberg, Marc E.; Munitz, Ariel; Hogan, Simon P.

    2011-01-01

    Recent genome-wide association studies of pediatric IBD have implicated the 17q12 loci, which contains the eosinophil specific chemokine gene CCL11, with early-onset IBD susceptibility. In the present study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that DSS treatment promotes the recruitment of F4/80+CD11b+CCR2+Ly6Chigh inflammatory monocytes into the colon. F4/80+CD11b+CCR2+Ly6Chigh monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6Chigh intestinal inflammatory MΦs revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4 and Cxcl2, and Arg1, Chi3l3, Ccl11 and IL-10, respectively. Attenuation of DSS-induced F4/80+CD11b+CCR2+Ly6Chigh monocyte recruitment to the colon in CCR2−/− mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6ChighCCR2+ inflammatory monocyte/MΦ-derived CCL11. PMID:21498668

  4. Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Platelet-Derived Growth Factor-BB Autocrine Loop Contributes to Cocaine-Mediated Alveolar Epithelial Barrier Damage

    PubMed Central

    Yang, Lu; Chen, Xufeng; Simet, Samantha M.; Hu, Guoku; Cai, Yu; Niu, Fang; Kook, Yeonhee

    2016-01-01

    Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell–substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2–related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the

  5. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    PubMed

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Modulation of human dermal microvascular endothelial cells by Sarcoptes scabiei in combination with proinflammatory cytokines, histamine, and lipid-derived biologic mediators

    PubMed Central

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2009-01-01

    The ectoparasitic mite, Sarcoptes scabiei, produces molecules that depress initiation of host inflammatory and immune responses. Some of these down-regulate expression of adhesion molecules or secretion of chemokines or cytokines on and by cultured dermal endothelial cells (HMVEC-D). This study was undertaken to determine if the response of HMVEC-D to scabies is altered in the presence of various proinflammatory cytokines (tumor necrosis factor α and interleukins 1α, 1β and 6), histamine, and lipid-derived mediators (prostaglandins D2 and E2, leukotriene B4, platelet activation factor) that likely occur in scabietic lesions in vivo. Scabies extract down-regulated the TNFα-induced expression of VCAM-1 by HMVEC-D and this down-regulation still occurred in the presence of the other proinflammatory cytokines, histamine or the lipid-derived mediators. Scabies inhibited the IL-1α and IL-1β-induced secretion of IL-6, while a combination of scabies and histamine or LTB4 reduced the TNFα-induced secretion of IL-6. Scabies extract inhibited secretion of IL-8. Histamine, PGD2, PGE2, LTB4, PAF, and IL-6 alone had no effect on this inhibition, but the scabies-induced inhibition of IL-8 secretion was reduced in a dose-dependent fashion in the presence of IL-1α and IL-1β. PMID:19523846

  7. Chemopreventive effect of chalcone derivative, L2H17, in colon cancer development.

    PubMed

    Xu, Shanmei; Chen, Minxiao; Chen, Wenbo; Hui, Junguo; Ji, Jiansong; Hu, Shuping; Zhou, Jianmin; Wang, Yi; Liang, Guang

    2015-11-09

    Colon cancer is the third most commonly diagnosed cancer and the second leading cause of cancer mortality worldwide. Chalcone and its derivatives are reported to exhibit anti-cancer effects in several cancer cell lines, including colon cancer cells. In addition, chalcones have advantages such as poor interaction with DNA and low risk of mutagenesity. In our previous study, a group of chalcone derivatives were synthesized and exhibited strong anti-inflammatory activities. In this study, we evaluated the anti-cancer effects of the chalcone derivative, L2H17, in colon cancer cells. The cytotoxicities of L2H17 on various colon cancer cell lines were investigated by MTT and clonogenic assay. Cell cycle and apoptosis analysis were performed to evaluate the molecular mechanism of L2H17-mediated inhibition of tumor growth. Also, scratch wound and matrigel invasion experiments were performed to estimate the cell migration and invasion after L2H17 treatment. Finally, we observed the anti-colon cancer effects of L2H17 in vivo. Our data show that compound L2H17 exhibited selective cytotoxic effect on colon cancer cells, via inducing G0/G1 cell cycle arrest and apoptosis in CT26.WT cells. Furthermore, L2H17 treatment decreased cell migration and invasion of CT26.WT cells. In addition, L2H17 possessed marked anti-tumor activity in vivo. The molecular mechanism of L2H17-mediated inhibition of tumor promotion and progression were function through inactivated NF-κB and Akt signaling pathways. All these findings show that L2H17 might be a potential growth inhibitory chalcones derivative for colon cancer cells.

  8. Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis.

    PubMed

    Park, Jiaa; Park, Joon Heum; Suh, Hwa-Jin; Lee, In Chul; Koh, Jaesook; Boo, Yong Chool

    2014-07-01

    Resveratrol and oxyresveratrol are naturally occurring phenolic compounds with various bioactivities, but their uses in cosmetics have been partly limited by their chemical instabilities. This study was performed to examine the anti-melanogenic effects of the acetylated derivatives from resveratrol and oxyresveratrol. Resveratrol and oxyresveratrol were chemically modified to triacetyl resveratrol and tetraacetyl oxyresveratrol, respectively. The acetylated compounds were less susceptible than the parent compounds to oxidative discoloration. The acetylated compounds inhibited the activities of tyrosinases less than parent compounds in vitro, but they were as effective at cellular melanogenesis inhibition, indicating bioconversion to parent compounds inside cells. Supporting this notion, the parent compounds were regenerated when the acetylated compounds were digested with cell lysates. Although resveratrol and triacetyl resveratrol inhibited tyrosinase activity less effectively than oxyresveratrol and tetraacetyl oxyresveratrol in vitro, they inhibited cellular melanogenesis more effectively. This discrepancy was explained by strong inhibition of tyrosinase expression by resveratrol and triacetyl resveratrol. Experiments using a reconstituted skin model indicated that resveratrol derivatives can affect melanin synthesis and cell viability to different extents. Collectively, this study suggests that acetylated derivatives of resveratrol have great potential as anti-melanogenic agents for cosmetic use in terms of efficacy, safety, and stability.

  9. Kyllinga brevifolia mediated greener silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-12-01

    Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.

  10. The expanding field of cannabimimetic and related lipid mediators

    PubMed Central

    Bradshaw, Heather B; Walker, J Michael

    2005-01-01

    The discovery of the endogenous cannabimimetic lipid mediators, anandamide and 2-arachidonoyl glycerol, opened the door to the discovery of other endogenous lipid mediators similar in structure and function. The majority of these compounds do not bind appreciably to known cannabinoid receptors; yet some of them produce cannabimimetic effects while others exert actions through novel mechanisms that remain to be elucidated. This review explores the growing diversity of recently discovered putative lipid mediators and their relationship to the endogenous cannabinoid system. The possibility that there remain many unidentified signalling lipids coupled with the evidence that many of these yield bioactive metabolites due to actions of known enzymes (e.g. cyclooxygenases, lipoxygenases, cytochrome P450s) suggests the existence of a large and complex family of lipid mediators about which only little is known at this time. The elucidation of the biochemistry and pharmacology of these compounds may provide therapeutic targets for a variety of conditions including sleep dysfunction, eating disorders, cardiovascular disease, as well as inflammation and pain. PMID:15655504

  11. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  12. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    PubMed Central

    Lee, Dong-Sung; Jang, Jae-Hyuk; Ko, Wonmin; Kim, Kyoung-Su; Sohn, Jae Hak; Kang, Myeong-Suk; Ahn, Jong Seog; Kim, Youn-Chul; Oh, Hyuncheol

    2013-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1. PMID:23612372

  13. Synthesis and Cytotoxicities of Royleanone Derivatives.

    PubMed

    Li, Cheng-Ji; Xia, Fan; Wu, Rong; Tan, Hong-Sheng; Xu, Hong-Xi; Xu, Gang; Qin, Hong-Bo

    2018-06-16

    Carnosic acid was used as starting material to synthesize royleanone derivatives featured C11-C14 para quinone. The importance of C-20 group of royleanone derivatives was verified by the cytotoxicity assay of royleanonic acid, miltionone I and deoxyneocrptotanshinone. Following our synthetic route, 15 amide derivatives were synthesized and 8 compounds exhibited moderate cytotoxic activities against three human cancer lines in vitro.

  14. Impact of furan derivatives and phenolic compounds on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli.

    PubMed

    Sharma, Preeti; Melkania, Uma

    2017-09-01

    In the present study, the effect of furan derivatives (furfural and 5-hydroxymethylfurfural) and phenolic compounds (vanillin and syringaldehyde) on hydrogen production from organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. The inhibitors were applied in the concentration ranges of 0.25, 0.5, 1, 2 and 5g/L each. Inhibition coefficients of phenolic compounds were higher than those of furan derivatives and vanillin exhibited maximum inhibition coefficients correspondingly lowest hydrogen yield among all inhibitors. Furfural and 5-hydroxymethylfurfural addition resulted in an average decrease of 26.99% and 37.16% in hydrogen yield respectively, while vanillin and syringaldehyde resulted in 49.40% and 42.26% average decrease in hydrogen yield respectively. Further analysis revealed that Furfural and 5-hydroxymethylfurfural were completely degraded up to concentrations of 1g/L, while vanillin and syringaldehyde were degraded completely up to the concentration of 0.5g/L. Volatile fatty acid generation decreased with inhibitors addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  16. Determination of urine-derived odorous compounds in a source separation sanitation system.

    PubMed

    Liu, Bianxia; Giannis, Apostolos; Chen, Ailu; Zhang, Jiefeng; Chang, Victor W C; Wang, Jing-Yuan

    2017-02-01

    Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective. Copyright © 2016. Published by Elsevier B.V.

  17. Phytochemical Assays of Commercial Botanical Dietary Supplements

    PubMed Central

    2004-01-01

    The growing popularity of botanical dietary supplements (BDS) has been accompanied by concerns regarding the quality of commercial products. Health care providers, in particular, have an interest in knowing about product quality, in view of the issues related to herb-drug interactions and potential side effects. This study assessed whether commercial formulations of saw palmetto, kava kava, echinacea, ginseng and St. John's wort had consistent labeling and whether quantities of marker compounds agreed with the amounts stated on the label. We purchased six bottles each of two lots of supplements from nine manufacturers and analyzed the contents using established commercial methodologies at an independent laboratory. Product labels were found to vary in the information provided, such as serving recommendations and information about the herb itself (species, part of the plant, marker compound, etc.) With regard to marker compound content, little variability was observed between different lots of the same brand, while the content did vary widely between brands (e.g. total phenolic compounds in Echinacea ranged from 3.9–15.3 mg per serving; total ginsenosides in ginseng ranged from 5.3–18.2 mg per serving). Further, the amounts recommended for daily use also differed between brands, increasing the potential range of a consumer's daily dose. Echinacea and ginseng were the most variable, while St. John's wort and saw palmetto were the least variable. This study highlights some of the key issues in the botanical supplement market, including the importance of standardized manufacturing practices and reliable labeling information. In addition, health care providers should keep themselves informed regarding product quality in order to be able to appropriately advise patients utilizing both conventional and herbal medicines. PMID:15841264

  18. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives.

    PubMed

    Ku, Sae-Kwang; Lee, Jee-Hyun; O, Yuseok; Lee, Wonhwa; Song, Gyu-Yong; Bae, Jong-Sup

    2015-10-01

    In this Letter, we investigated the barrier protective effects of 3-N-(MeO)n-cinnamoyl carbazoles (BS 1; n=1, BS 2; n=2, BS 3; n=3) and 3-O-(MeO)3-cinnamoyl carbazole (BS 4) against high-mobility group box 1 (HMGB1)-mediated vascular disruptive responses in human umbilical vein endothelial cells (HUVECs) and in mice for the first time. Data showed that BS 2, BS 3, and BS 4, but not BS 1, inhibited HMGB1-mediated vascular disruptive responses and transendothelial migration of human neutrophils to HUVECs. BS 2, BS3, and BS 4 also suppressed HMGB1-induced hyperpermeability and leukocyte migration in mice. Interestingly, the barrier protective effects of BS 3 and BS 4 were better than those of BS 2. These results suggest that the number of methoxy groups substituted on the cinnamamide or cinnamate moiety of the 9H-3-carbazole derivative is an important pharmacophore for the barrier protective effects of these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Neutral Porphyrin Derivative Exerts Anticancer Activity by Targeting Cellular Topoisomerase I (Top1) and Promotes Apoptotic Cell Death without Stabilizing Top1-DNA Cleavage Complexes

    PubMed Central

    2017-01-01

    Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109

  1. Two new compounds from Xanthium strumarium.

    PubMed

    Yin, Rong-Hua; Bai, Xue; Feng, Tao; Dong, Ze-Jun; Li, Zheng-Hui; Liu, Ji-Kai

    2016-01-01

    One new lignan, fructusol A (1), and one new thiazine derivative, 2-hydroxy-xanthiazone (2), along with eight known ones, were isolated from the seeds of Xanthium strumarium. The structures of new compounds were elucidated on the basis of extensive spectroscopic methods. Meanwhile, compounds 1-3 were tested for their antifungal activities against Candida albicans (ATCC 10231) in vitro. No one showed obvious inhibitions (MIC90 > 128 μg/ml).

  2. Novel epigallocatechin-3-gallate (EGCG) derivative as a new therapeutic strategy for reducing neuropathic pain after chronic constriction nerve injury in mice.

    PubMed

    Xifró, Xavier; Vidal-Sancho, Laura; Boadas-Vaello, Pere; Turrado, Carlos; Alberch, Jordi; Puig, Teresa; Verdú, Enrique

    2015-01-01

    Neuropathic pain is common in peripheral nerve injury and often fails to respond to ordinary medication. Here, we investigated whether the two novel epigallocatechin-3-gallate (EGCG) polyphenolic derivatives, compound 23 and 30, reduce the neuropathic pain in mice chronic constriction nerve injury (CCI). First, we performed a dose-response study to evaluate nociceptive sensation after administration of EGCG and its derivatives 23 and 30, using the Hargreaves test at 7 and 21 days after injury (dpi). We daily administered EGCG, 23 and 30 (10 to 100 mg/Kg; i.p.) during the first week post-CCI. None of the doses of compound 23 caused significant pain diminution, whereas 50mg/kg was optimal for both EGCG and 30 to delay the latency of paw withdrawal. With 50 mg/Kg, we showed that EGCC prevented the thermal hyperalgesia from 7 to 21 dpi and compound 30 from 14 to 56 dpi. To evaluate the molecular mechanisms underpinning why EGCG and compound 30 differentially prevented the thermal hyperalgesia, we studied several biochemical parameters in the dorsal horn of the spinal cord at 14 and 56 dpi. We showed that the effect observed with EGCG and compound 30 was related to the inhibition of fatty acid synthase (FASN), a known target of these polyphenolic compounds. Additionally, we observed that EGCG and compound 30 reduced the expression of CCI-mediated inflammatory proteins and the nuclear localization of nuclear factor-kappa B at 14 dpi, but not at 56 dpi. We also strongly detected a decrease of synaptic plasma membrane levels of N-methyl-D-asparte receptor 2B in CCI-mice treated with compound 30 at 56 dpi. Altogether, compound 30 reduced the chronic thermal hyperalgesia induced by CCI better than the natural compound EGCG. Thus, our findings provide a rationale for the preclinical development of compound 30 as an agent to treat neuropathic pain.

  3. A novel synthetic derivative of melatonin, 5-hydroxy-2’-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Do-Wan; Shin, Hee Jae; Han, Ji-Won

    Melatonin is substantially reported to possess anti-inflammatory properties. In the present study, we synthesized a novel melatonin derivative, 5-hydroxy-2′-isobutyl-streptochlorin (HIS), which displayed superior anti-inflammatory properties to its parent compound. Further, we explored its underlying mechanisms in cellular and experimental animal models. Lipopolysaccharide was used to induce in vitro inflammatory responses in RAW 264.7 macrophages. LPS-primed macrophages were pulsed with biologically unrelated toxic molecules to evaluate the role of HIS on inflammasome activation. In vivo verifications were carried out using acute lung injury (ALI) and Escherichia coli-induced septic shock mouse models. HIS inhibited the production of proinflammatory mediators and cytokines suchmore » as nitric oxide, cyclooxygenase 2, IL-1β, IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophages. HIS suppressed the infiltration of immune cells into the lung and the production of pro-inflammatory cytokines such as IL-6 and TNF-α in broncho-alveolar lavage fluid in the ALI mouse model. Mechanistic studies revealed that the inhibitory effects of HIS were mediated through the regulation of the TIR domain-containing, adaptor-inducing, interferon-β (TRIF)-dependent signaling pathway from toll-like receptors. Further, HIS attenuated IL-1β secretion via the inhibition of NLRP3 inflammasome activation independent of mitochondrial ROS production. Furthermore, HIS suppressed IL-1β, IL-6 and interferon-β production in peritoneal lavage in the Escherichia coli-induced sepsis mouse model. In conclusion, HIS exerted potent anti-inflammatory effects via the regulation of TRIF-dependent signaling and inflammasome activation. Notably, the superior anti-inflammatory properties of this derivative compared with its parent compound could be a promising lead for treating various inflammatory-mediated diseases. - Highlights: • Νovel compound, 5-hydroxy-2′-isobutyl-streptochlorin (HIS) was

  4. Biogenic volatile organic compounds in the Earth system.

    PubMed

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  5. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  6. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  7. Boron containing amino acid compounds and methods for their use

    DOEpatents

    Glass, John D.; Coderre, Jeffrey A.

    2000-01-01

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  8. Multifunctional Cinnamic Acid Derivatives.

    PubMed

    Peperidou, Aikaterini; Pontiki, Eleni; Hadjipavlou-Litina, Dimitra; Voulgari, Efstathia; Avgoustakis, Konstantinos

    2017-07-25

    Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino) ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX) inhibition (IC 50 = 6 μΜ) and antiproteolytic activity (IC 50 = 0.425 μΜ). The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC 50 = 0.315 μΜ) and good LOX inhibitory activity (IC 50 = 66 μΜ). Compounds 3a and 3b , derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro . Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  9. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.

    PubMed

    Kim, Gi Dae; Oh, Jedo; Park, Hyen-Joo; Bae, Kihwan; Lee, Sang Kook

    2013-08-01

    Magnolol, a neolignan from the traditional medicinal plant Magnolia obovata, has been shown to possess neuroprotective, anti-inflammatory, anticancer and anti-angiogenic activities. However, the precise mechanism of the anti-angiogenic activity of magnolol remains to be elucidated. In the present study, the anti-angiogenic effect of magnolol was evaluated in mouse embryonic stem (mES)/embryoid body (EB)-derived endothelial-like cells. The endothelial-like cells were obtained by differentiation from mES/EB cells. Magnolol (20 µM) significantly suppressed the transcriptional and translational expression of platelet endothelial cell adhesion molecule (PECAM), an endothelial biomarker, in mES/EB-derived endothelial-like cells. To further understand the molecular mechanism of the suppression of PECAM expression, signaling pathways were analyzed in the mES/EB-derived endothelial-like cells. Magnolol induced the generation of reactive oxygen species (ROS) by mitochondria, a process that was associated with the induction of apoptosis as determined by positive Annexin V staining and the activation of cleaved caspase-3. The involvement of ROS generation by magnolol was confirmed by treatment with an antioxidant, N-acetyl-cysteine (NAC). NAC inhibited the magnolol-mediated induction of ROS generation and suppression of PECAM expression. In addition, magnolol suppressed the activation of MAPKs (ERK, JNK and p38) and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Taken together, these findings demonstrate for the first time that the anti-angiogenic activity of magnolol may be associated with ROS-mediated apoptosis and the suppression of the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.

  10. Anti-Inflammatory Activity of Tanzawaic Acid Derivatives from a Marine-Derived Fungus Penicillium steckii 108YD142

    PubMed Central

    Shin, Hee Jae; Pil, Gam Bang; Heo, Soo-Jin; Lee, Hyi-Seung; Lee, Jong Seok; Lee, Yeon-Ju; Lee, Jihoon; Won, Ho Shik

    2016-01-01

    Chemical investigation of a marine-derived fungus, Penicillium steckii 108YD142, resulted in the discovery of a new tanzawaic acid derivative, tanzawaic acid Q (1), together with four known analogues, tanzawaic acids A (2), C (3), D (4), and K (5). The structures of tanzawaic acid derivatives 1–5 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis. These compounds significantly inhibited nitric oxide (NO) production and the new tanzawaic acid Q (1) inhibited the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA expressions in RAW 264.7 macrophages. Additionally, compound 1 reduced the mRNA levels of inflammatory cytokines. Taken together, the results of this study demonstrated that the new tanzawaic acid derivative inhibits LPS-induced inflammation. This is the first report on the anti-inflammatory activity of tanzawaic acid Q (1). PMID:26761016

  11. Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species.

    PubMed

    Mennella, Giuseppe; Rotino, Giuseppe L; Fibiani, Marta; D'Alessandro, Antonietta; Francese, Gianluca; Toppino, Laura; Cavallanti, Federica; Acciarri, Nazzareno; Lo Scalzo, Roberto

    2010-07-14

    The purpose of the present study was to investigate the levels of either the nutraceutical and health-promoting compounds or the antioxidant properties of innovative eggplant (Solanum melongena L.) genotypes tolerant and/or resistant to fungi, derived from conventional and non-conventional breeding methodologies (i.e., sexual interspecific hybridization, interspecific protoplast electrofusion, androgenesis, and backcross cycles) in comparison with their allied and cultivated parents. Chemical measures of soluble refractometric residue (SRR), glycoalkaloids (solamargine and solasonine), chlorogenic acid (CA), delphinidin 3-rutinoside (D3R), total phenols (TP), polyphenoloxidase (PPO) activity, antiradical activity on superoxide anion and hydroxyl radical were carried out in raw fruit and peel of 57 eggplant advanced introgression lines (ILs), of three eggplant recurrent genotypes and of three allied species during 2005 and 2006. The majority of the ILs, obtained after several backcross cycles, showed positive characteristics with respect to the allied parents such as good levels of SRR, CA, D3R, TP, PPO activity, the scavenging activity against superoxide anion and hydroxyl radical and, in particular, significantly (p derived from the allied parents (i.e., resistance/tolerance to plant pathogen fungi) together with nutraceutical and antioxidant properties typical of the cultivated species.

  12. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata.

    PubMed

    Wang, Song; Li, Xiao-Ming; Teuscher, Franka; Li, Dong-Li; Diesel, Arnulf; Ebel, Rainer; Proksch, Peter; Wang, Bin-Gui

    2006-11-01

    Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2',3-epoxy-1',3'-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin (6, also known as cladosporin), 5'-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4'-hydroxyasperentin (9), and 5'-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (1H, 13C, 1H-1H COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.

  13. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke

    PubMed Central

    Chen, Han-Sen; Qi, Su-Hua; Shen, Jian-Gang

    2017-01-01

    Abstract: Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multi-target strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and blood-brain-barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy. PMID:27334020

  14. 5-Aminosalicylic acid prevents oxidant mediated damage of glyceraldehyde-3-phosphate dehydrogenase in colon epithelial cells

    PubMed Central

    McKenzie, S; Doe, W; Buffinton, G

    1999-01-01

    Background—Reactive oxygen and nitrogen derived species produced by activated neutrophils have been implicated in the damage of mucosal proteins including the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the active inflammatory lesion in patients with inflammatory bowel disease (IBD). This study investigated the efficacy of currently used IBD therapeutics to prevent injury mediated by reactive oxygen and nitrogen derived species. 
Methods—GAPDH activity of human colon epithelial cells was used as a sensitive indicator of injury produced by reactive oxygen and nitrogen derived species. HCT116 cells (106/ml phosphate buffered saline; 37°C) were incubated in the presence of 5-aminosalicylic acid (5-ASA), 6-mercaptopurine, methylprednisolone, or metronidazole before exposure to H2O2, HOCl, or NO in vitro. HCT116 cell GAPDH enzyme activity was determined by standard procedures. Cell free reactions between 5-ASA and HOCl were analysed by spectrophotometry and fluorimetry to characterise the mechanism of oxidant scavenging. 
Results—GAPDH activity of HCT116 cells was inhibited by the oxidants tested: the concentration that produced 50% inhibition (IC50) was 44.5 (2.1) µM for HOCl, 379.8 (21.3) µM for H2O2, and 685.8 (103.8) µM for NO (means (SEM)). 5-ASA was the only therapeutic compound tested to show efficacy (p<0.05) against HOCl mediated inhibition of enzyme activity; however, it was ineffective against H2O2 and NO mediated inhibition of GAPDH. Methylprednisolone, metronidazole, and the thiol-containing 6-mercaptopurine were ineffective against all oxidants. Studies at ratios of HOCl:5-ASA achievable in the mucosa showed direct scavenging to be the mechanism of protection of GAPDH activity. Mixing 5-ASA and HOCl before addition to the cells resulted in significantly greater protection of GAPDH activity than when HOCl was added to cells preincubated with 5-ASA. The addition of 5-ASA after HOCl exposure did not restore GAPDH activity

  15. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  16. Anti-Adhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures.

    PubMed

    de Llano, Dolores González; Esteban-Fernández, Adelaida; Sánchez-Patán, Fernando; Martínlvarez, Pedro J; Moreno-Arribas, Maria Victoria; Bartolomé, Begoña

    2015-05-27

    Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for their capacity to inhibit the adherence of uropathogenic Escherichia coli (UPEC) ATCC®53503™ to T24 epithelial bladder cells. Catechol, benzoic acid, vanillic acid, phenylacetic acid and 3,4-dihydroxyphenylacetic acid showed anti-adhesive activity against UPEC in a concentration-dependent manner from 100-500 µM, whereas procyanidin A2, widely reported as an inhibitor of UPEC adherence on uroepithelium, was only statistically significant (p < 0.05) at 500 µM (51.3% inhibition). The results proved for the first time the anti-adhesive activity of some cranberry-derived phenolic metabolites against UPEC in vitro, suggesting that their presence in the urine could reduce bacterial colonization and progression of UTI.

  17. Magnesium Bisamide-Mediated Halogen Dance of Bromothiophenes.

    PubMed

    Yamane, Yoshiki; Sunahara, Kazuhiro; Okano, Kentaro; Mori, Atsunori

    2018-03-16

    A magnesium bisamide-mediated halogen dance of bromothiophenes is described. The thienylmagnesium species generated in situ is more stable than the corresponding thienyllithium species, which was applied to trap the transient anion species with several electrophiles, such as allyl iodide, phenyl isocyanate, and tributylstannyl chloride. The utility of the magnesium bisamide-mediated halogen dance is useful in the concise synthesis of a medicinally advantageous compound via a one-pot, ester-directed halogen dance/Negishi cross coupling.

  18. Regiochemistry in cobalt-mediated intermolecular Pauson-Khand reactions of unsymmetrical internal heteroaromatic alkynes with norbornene.

    PubMed

    Moulton, Benjamin E; Whitwood, Adrian C; Duhme-Klair, Anne K; Lynam, Jason M; Fairlamb, Ian J S

    2011-07-01

    The intermolecular Pauson-Khand (PK) reactions of sterically comparable (2-phenylethynyl)heteroaromatic compounds with norbornene, mediated by Co(2)(CO)(8) to give cyclopentenone products, were examined in this study. A synthetic protocol utilizing focused-microwave dielectric heating proved indispensable in the efficient synthesis of the PK cyclopentenone products. "π-Deficient" heteroaromatic substrates, e.g., 2-pyrones, and some "π-excessive" heteroaromatics such as 2- and 3-thiophene and 2-furan favor the β-position in the newly formed cyclopentenone ring. Other π-excessive heteroaromatics such as 2-pyrrole or 2-indole favor the α-position. A π-excessive 3-indole derivative gave a nearly equal mixture of regioisomers. The position of the nitrogen in pyridyl-containing alkyne substrates also affects the regiochemical outcome of the PK reaction. A 2-pyridyl alkyne, possessing a proximal nitrogen, influences the regioselectivity relative to a 4-pyridyl variant quite dramatically, favoring the β-position in the newly formed cyclopentenone ring. A 2-pyrimidylalkyne exhibits similar behavior to the 2-pyridylalkyne. Compounds that do not participate in PK reactions with norbornene include (2-phenylethynyl)imidazoles and the related benzimidazoles, which promote rapid decomposition of the in situ generated (μ(2)-alkyne)Co(2)(CO)(6) complexes. This stands in contrast with other nitrogen-containing heteroaromatics, e.g., pyrrole-, indole-, and pyrimidine-derived compounds, which effectively undergo PK reactions. Overall, the type of heteroaromatic group dramatically influences PK regioselectivity, which can in part be explained by rationalization of the current reaction mechanism, but not fully.

  19. Hydronopylformamides: Modification of the Naturally Occurring Compound (-)-β-Pinene to Produce Insect Repellent Candidates against Blattella germanica.

    PubMed

    Liao, Shengliang; Liu, Yan; Si, Hongyan; Xiao, Zhuanquan; Fan, Guorong; Chen, Shangxing; Wang, Peng; Wang, Zongde

    2017-06-16

    The development of a novel repellent plays an important role in the integrated control of Blattella germanica . A series of novel hydronopylformamides derivatives were synthesized from a naturally occurring compound (-)-β-pinene. The structures of these hydronopylformamides derivatives were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (¹H-NMR and 13 C-NMR), and electron impact mass spectrometry (EI-MS). Repellency of these hydronopylformamides derivatives against Blattella germanica was evaluated by the using petri dish arena method. The results showed that four derivatives (compounds 8a , 8b , 8c and 8e ) exhibited repellency against Blattella germanica at a concentration of 20 mg/mL. Compound 8a was the most active compound among these derivatives, where the repelling ratios of compound 8a against Blattella germanica were 66.10%, 50.46%, 48.26%, at concentrations of 20 mg/mL, 10 mg/mL, and 5 mg/mL, respectively. In addition, compound 8a showed better repellency than the traditional insect repellent N , N -diethyl-3-methylbenzamide (DEET), which indicated that compound 8a had a good application prospect in the prevention of Blattella germanica . This research hopes to promote the value-added utilization of (-)-β-pinene and the development of novel German cockroach repellents.

  20. Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone.

    PubMed

    Jin, Xin; Zheng, Chang-Ji; Song, Ming-Xia; Wu, Yan; Sun, Liang-Peng; Li, Yin-Jing; Yu, Li-Jun; Piao, Hu-Ri

    2012-10-01

    Four novel series of compounds, including the l-phenylalanine-derived C5-substituted rhodanine (6a-q, 7a-j) and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone (9a-e, 11a-e) have been designed, synthesized, characterized, and evaluated for their antibacterial activity. Some of these compounds showed significant antibacterial activity against Gram-positive bacterias, especially against the strains of multidrug-resistant clinical isolates, among which compounds 6c-e, 6g, 6i, 6j and 6q exhibiting high levels of antimicrobial activity against Staphylococcus aureus RN4220 with minimum inhibitory concentration (MIC) values of 2 μg/mL. Compound 6q showed the most potent activity of all of the compounds against all of the test multidrug-resistant clinical isolates tested. Unfortunately, however, none of the compounds were active against Gram-negative bacteria at 64 μg/mL. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and in vivo safety assessment of the compound NVX-207 in two horses.

    PubMed

    Liebscher, G; Vanchangiri, K; Mueller, Th; Feige, K; Cavalleri, J-M V; Paschke, R

    2016-02-25

    Betulinic acid, a pentacyclic triterpene, and its derivatives are promising compounds for cancer treatment in humans. Melanoma is not only a problem for humans but also for grey horses as they have a high potential of developing melanoma lesions coupled to the mutation causing their phenotype. Current chemotherapeutic treatment carries the risk of adverse health effects for the horse owner or the treating veterinarian by exposure to antineoplastic compounds. Most treatments have low prospects for systemic tumor regression. Thus, a new therapy is needed. In this in vitro study, Betulinic acid and its two derivatives B10 and NVX-207, both with an improved water solubility compared to Betulinic acid, were tested on two equine melanoma cell lines (MelDuWi and MellJess/HoMelZh) and human melanoma (A375) cell line. We could demonstrate that all three compounds especially NVX-207 show high cytotoxicity on both equine melanoma cell lines. The treatment with these compounds lead to externalization of phosphatidylserines on the cell membrane (AnnexinV-staining), DNA-fragmentation (cell cycle analysis) and activation of initiator and effector caspases (Caspase assays). Our results indicate that the apoptosis is induced in the equine melanoma cells by all three compounds. Furthermore, we succeed in encapsulating the most active compound NVX-207 in 2-Hydroxyprolyl-β-cyclodextrine without a loss of its activity. This formulation can be used as a promising antitumor agent for treating grey horse melanoma. In a first tolerability evaluation in vivo the formulation was administered every one week for 19 consecutive weeks and well tolerated in two adult melanoma affected horses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Quinazoline derivatives: synthesis and bioactivities

    PubMed Central

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reaction, Ultrasound-promoted reaction and Phase-transfer catalysis reaction. The biological activities of the synthesized quinazoline derivatives also are discussed. PMID:23731671

  3. Potential Role of Natural Compounds as Anti-Angiogenic Agents in Cancer.

    PubMed

    Shanmugam, Muthu K; Warrier, Sudha; Kumar, Alan P; Sethi, Gautam; Arfuso, Frank

    2017-01-01

    Neovascularization, also known as angiogenesis, is the process of capillary sprouting from pre-existing blood vessels. This physiological process is a hallmark event in normal embryonic development as blood vessels generally supply both oxygen and nutrients to the cells of the body. Any disruption in this process can lead to the development of various chronic diseases, including cancer. In cancer, aberrant angiogenesis plays a prominent role in maintaining sustained tumor growth to malignant phenotypes and promoting metastasis. The leakiness in the tumor microvasculature is attributed to the tumor cells migrating to distal site organs and forming colonies. In this article, we briefly review the various mediators involved in the angiogenic process and the anti-angiogenic potential of selected natural compounds against various malignancies. Several growth factors and their receptors such as vascular endothelial growth factor and receptor (VEGF/VEGFR), basic fibroblast growth factor and receptor (bFGF/FGFR), angiopoietins, and hypoxia inducible factors facilitate the development of angiogenesis and are attractive anti-cancer targets. Natural products represent a rich diversity of compounds for drug discovery and are currently being actively exploited to target tumor angiogenesis. Agents such as curcumin, artemisinin, EGCG, resveratrol, emodin, celastrol, thymoquinone and tocotrienols all have shown prominent anti-angiogenic effects in the preclinical models of tumor angiogenesis. Several semi-synthetic derivatives and novel nano-formulations of these natural compounds have also exhibited excellent anti-angiogenic activity by increasing bioavailability and delivering the drugs to the sites of tumor angiogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Weakly-bridged dimeric diorganotin(IV) compounds derived from pyruvic acid hydrazone Schiff base ligands: Synthesis, characterization and crystal structures

    NASA Astrophysics Data System (ADS)

    Hong, Min; Yin, Han-Dong; Cui, Ji-Chun

    2011-03-01

    We report the synthesis of four diorganotin(IV) compounds of Schiff base pyruvic acid hydrazone derivatives formulated as [R 2SnLY] 2, where L 1 is 2-SC 4H 3CON 2C(CH 3)CO 2 with Y = CH 3CH 2CH 2CH 2OH, R = n-Bu ( 1); L 2 is C 6H 5CON 2C(CH 3)CO 2 with Y = CH 3CH 2OH, R = p-F-Bz ( 2); L 3 is 2-HOC 6H 4CON 2C(CH 3)CO 2 with Y dbnd H 2O, R = p-CN -Bz ( 3); and L 4 is 4-NO 2-C 6H 4CON 2C(CH 3)CO 2 with Y dbnd CH 3CH 2OH, R = Bz ( 4). The structures of all compounds have been established by a combination of single-crystal X-ray diffraction analysis, 1H and 119Sn NMR spectroscopy, IR spectroscopy, and elemental analysis. Studies reveal that four ligands present the same coordination mode with tin center, which all present tridentate ONO donor Schiff bases and coordinate to the tin center in an enolic form. In compounds 1- 4, each tin atom is seven-coordinated and exhibits a distorted pentagonal bipyramid with a planar SnO 4N unit and two apical alkyl carbon atoms, thus forming a weakly-bridged dimeric molecule. Additionally, the distance of Sn⋯O bridge in each compound is obviously affected by the choice of different alkyl groups and coordination solvent molecules, which fluctuates in the range of 2.571(5)-2.839(4) Å. Furthermore, the supramolecular structure analysis show that there are two types of supramolecular infrastructures, 1D chain or 2D network, which are formed by intermolecular O-H···N or C-H⋯X (X = O, N or F) hydrogen bonds.

  5. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  6. Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy.

    PubMed

    El-Naggar, Mai H; Mira, Amira; Abdel Bar, Fatma M; Shimizu, Kuniyoshi; Amer, Mohamed M; Badria, Farid A

    2017-02-01

    Leukotriene A4 hydrolase (LTA 4 H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene which may play an important role in chronic inflammation associated carcinogenesis. [6]-gingerol, the major bioactive compound of Zingiber officinale, is a potential inhibitor of LTA 4 H, a highly expressed enzyme in colorectal carcinoma. Eighteen compounds; seven of natural origin (including [4]-, [6]-, [8]-, and [10]-gingerol), five new and six known semi-synthesized [6]-gingerol derivatives were examined using docking, in vitro cytotoxicity against human colon cancer cells (HCT-116) and LTA 4 H aminopeptidase and epoxide hydrolase inhibitory studies. Methyl shogoal (D8) showed to be the most potent compound against HCT-116 cells (IC 50 ; 1.54μM). Remarkably, D8 proved to be non-cytotoxic to normal cells; (TIG-1) and (HF-19) with high selective index (SI; 52.3). Furthermore [6]-gingerol derivatives showed potent LTA 4 H inhibitory activities in comparison to the universal positive controls (bestatin and 4BSA). Among the natural gingerols, [10]-gingerol (N3) exhibited the highest LTA 4 H aminopeptidase and epoxide hydrolase inhibitory activities with IC 50 ; 21.59 and 15.24μM, respectively. Meanwhile, methyl shogoal (D8) and 4'-O-prenyl-[6]-gingerol (D10) retained the highest inhibition with IC 50 ; 4.92 and 3.01μM, for aminopeptidase, and 11.27 and 7.25μM for epoxide hydrolase activities, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inhibitory effect of PRO 2000, a candidate microbicide, on dendritic cell-mediated human immunodeficiency virus transfer.

    PubMed

    Teleshova, Natalia; Chang, Theresa; Profy, Albert; Klotman, Mary E

    2008-05-01

    Without an effective vaccine against human immunodeficiency virus (HIV) infection, topical microbicide development has become a priority. The sulfonated polyanion PRO 2000, a candidate topical microbicide now in phase II/III clinical trials, blocks HIV infection of cervical tissue in vitro. Dendritic cells (DC) are among the first cell types to contact HIV in the genital tract and facilitate the spread of the virus. Thus, interfering with virus-DC interactions is a desirable characteristic of topical microbicides as long as that does not interfere with the normal function of DC. PRO 2000 present during capture of the replication-defective HIV(JRFL) reporter virus or replication-competent HIV(BaL) by monocyte-derived DC (MDDC) inhibited subsequent HIV transfer to target cells. Continuous exposure to PRO 2000 during MDDC-target cell coculture effectively inhibited HIV infection of target cells. PRO 2000 inhibited HIV capture by MDDC. In addition, the compound blocked R5 and X4 HIV envelope-mediated cell-cell fusion. Interestingly, simultaneous exposure to PRO 2000 and lipopolysaccharide attenuated the cytokine production in response to stimulation, suggesting that the compound altered DC function. While efficient blocking of MDDC-mediated virus transfer and infection in the highly permissive MDDC-T-cell environment reinforces the potential value of PRO 2000 as a topical microbicide against HIV, the impact of PRO 2000 on immune cell functions warrants careful evaluation.

  8. A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica.

    PubMed

    Takanashi, Kojiro; Yamada, Yasuyuki; Sasaki, Takayuki; Yamamoto, Yoko; Sato, Fumihiko; Yazaki, Kazufumi

    2017-06-01

    Plants produce a large variety of alkaloids, which have diverse chemical structures and biological activities. Many of these alkaloids accumulate in vacuoles. Although some membrane proteins on tonoplasts have been identified as alkaloid uptake transporters, few have been characterized to date, and relatively little is known about the mechanisms underlying alkaloid transport and accumulation in plant cells. Berberine is a model alkaloid. Although all genes involved in berberine biosynthesis, as well as the master regulator, have been identified, the gene responsible for the final accumulation of berberine at tonoplasts has not been determined. This study showed that a multidrug and toxic compound extrusion protein 1 (CjMATE1) may act as a berberine transporter in cultured Coptis japonica cells. CjMATE1 was found to localize at tonoplasts in C. japonica cells and, in intact plants, to be expressed preferentially in rhizomes, the site of abundant berberine accumulation. Cellular transport analysis using a yeast expression system showed that CjMATE1 could transport berberine. Expression analysis showed that RNAi suppression of CjbHLH1, a master transcription factor of the berberine biosynthetic pathway, markedly reduced the expression of CjMATE1 in a manner similar to the suppression of berberine biosynthetic genes. These results strongly suggest that CjMATE1 is the transporter that mediates berberine accumulation in vacuoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds.

    PubMed

    Freire, Rosemayre S; Morais, Selene M; Catunda-Junior, Francisco Eduardo A; Pinheiro, Diana C S N

    2005-07-01

    Some derivatives of trans-anethole [1-methoxy-4-(1-propenyl)-benzene] (1) were synthesized, by introducing hydroxyl groups in the double bond of the propenyl moiety. Two types of reactions were performed: (i) oxymercuration/demercuration that formed two products, the mono-hydroxyl derivative, 1-hydroxy-1-(4-methoxyphenyl)-propane (2) and in lesser extent the dihydroxyl derivative, 1,2-dihydroxy-1-(4-methoxyphenyl)-propane (3) and (ii) epoxidation with m-chloroperbenzoic acid that also led to the formation of two products, the dihydroxyl derivative (3) and the correspondent m-chloro-benzoic acid mono-ester, 1-hydroxy-1(4-methoxyphenyl)-2-m-chlorobenzoyl-propane (4). The structures of these compounds were confirmed mainly by mass, IR, 1H and 13C NMR spectral data. The activity of anethole and hydroxylated derivatives was evaluated using antioxidant, anti-inflammatory and gastroprotector tests. Compounds (2) and (3) were more active antioxidant agents than (1) and (4). In the anti-inflammatory assay, anethole showed lower activity than hydroxylated derivatives. Anethole and in lesser extent its derivatives 2 and 4 showed significant gastroprotector activity. All tested compounds do not alter significantly the total number of white blood cells.

  10. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  11. The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives.

    PubMed

    Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena

    2013-04-09

    (13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.

  12. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  13. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents.

    PubMed

    Helal, M H M; Salem, M A; El-Gaby, M S A; Aljahdali, M

    2013-07-01

    In the present investigation, furo[2,3-d]thiazol-5(2H)-one 5 was obtained from reaction of thiosemicarbazone derivative 2 with diethyl acetylene dicarboxylate. A series of newly synthesized 2-(hydrazinyl)thiazol-4(5H)-one 6, 7 &8 and 2-(4-(substituted)-thiazol-2-yl)hydrazono derivatives 9a, b &10 were synthesized from treatment of thiosemicarbazone derivative 2 with appropriate α-halogenated compounds. Also, a one pot synthesis of thiazole derivatives 13 &15 was achieved from three components reaction of hydrazone derivative 11 with phenyl isothiocyanate and α-halogenated compounds catalyzed by DMF/KOH. 4-(4-Morpholino phenyl) thiazol-2-amino 17 was obtained via the reaction of acetophenone derivative 1 with thiourea in presence of iodine. The reactivity of 2-aminothiazole 17 toward some electrophilic reagents was investigated. The structure of the newly compounds was confirmed on the basis of elemental analysis and spectral data. The antibacterial activity towards two Gram negative (Proteus mirabilis &Serratia marcesens) and two Gram positive (Staphylococcus aureus &Bacillus cereus) bacteria was investigated. The anti-inflammatory activity was also investigated and the inhibition of the carrageenin-induced oedema by these compounds was established. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: their evaluation as potential anti-cancer agents.

    PubMed

    Mulakayala, Naveen; Rambabu, D; Raja, Mohan Rao; M, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rama Krishna, G; Malla Reddy, C; Basaveswara Rao, M V; Pal, Manojit

    2012-01-15

    A facile and catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones has been accomplished via the reaction of 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with various aromatic amines in the presence of ultrasound. Some of these compounds were converted to the corresponding 2-(3-(hydroxymethyl)quinolin-2-yl)phenols and further structure elaboration of a representative quinoline derivative is presented. Molecular structure of two representative compounds was confirmed by single crystal X-ray diffraction study. Many of these compounds were evaluated for their anti-proliferative properties in vitro against four cancer cell lines and several compounds were found to be active. Further in vitro studies indicated that inhibition of sirtuins could be the possible mechanism of action of these molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  16. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  17. Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives.

    PubMed

    Tian, Ye; Du, Deping; Rai, Diwakar; Wang, Liu; Liu, Huiqing; Zhan, Peng; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong

    2014-04-01

    In our continuous efforts to identify novel potent HIV-1 NNRTIs, a novel class of 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives were rationally designed, synthesized and evaluated for their anti-HIV activities in MT4 cell cultures. Biological results showed that most of the tested compounds displayed excellent activity against wild-type HIV-1 with a wide range of EC50 values from 5.98 to 0.07μM. Among the active compounds, 5a was found to be the most promising analogue with an EC50 of 0.07μM against wild-type HIV-1 and very high selectivity index (SI, 3999). Compound 5a was more effective than the reference drugs nevirapine (by 2-fold) and delavirdine (by 2-fold). In order to further confirm their binding target, an HIV-1 RT inhibitory assay was also performed. Furthermore, SAR analysis among the newly synthesized compounds was discussed and the binding mode of the active compound 5a was rationalized by molecular modeling studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. THE SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF SOME 4-HYDROXYCOUMARIN DERIVATIVES

    PubMed Central

    Završnik, Davorka; Muratović, Samija; Špirtović, Selma; Softić, Dženita; Medić-Šarić, Marica

    2008-01-01

    Due to exceptional reactivity of 4-hydroxycoumarin, the synthesis of new coumarin derivatives of dimer and tetramer type has been carried out. The synthesis was carried out from 4-hydroxycoumarin and various aromatic aldehydes. In this way, compounds of the dimer 3,3’-(benzilidene)bis (4-hydroxycoumarin) type, as well as of the tetramer 3,3,’3’,’3’’’-(1,4-dim- ethylenphenyl)tetra (4-hydroxycoumarin) type were prepared. The newly synthesized derivatives contain different functional groups, and as such they could exhibit microbiological activity. Therefore, we tested the microbiological activity of these derivatives on various species of bacteria and fungi. The tested compounds have shown different activity in terms of growth inhibition of microorganisms. Newly synthesized derivatives exhibit antibacterial activities, manifested as growth inhibition on Grampositive bacteria types (Bacillus, Staphylococcus), while the activity against Candida was much weaker. The same compound did not show any antimicrobial activity against two Gram-negative bacteria types (Escherichia coli, Pseudomonas aeruginosa). The compound 1 showed the best microbiological activity. The obtained results confirmed its good antibacterial and antimycotic activities against different microorganisms. PMID:18816263

  19. The Onium Compounds

    NASA Astrophysics Data System (ADS)

    Tsarevsky, Nicolay V.; Slaveykova, Vera; Manev, Stefan; Lazarov, Dobri

    1997-06-01

    The onium salts are of a big interest for theoretical and structural chemistry, and for organic synthesis. Some representatives of the group (e.g. ammonium salts) were known from the oldest times. Many onium salts are met the nature: ammonium salts (either as inorganic salts, and organic derivatives, e.g. aminoacids, salts of biogenic amines and alkaloids, etc.); oxonium salts (plant pigments as anthocyans are organic oxonium compounds), etc. In 1894 C. Hartmann and V. Meyer prepared the first iodonium salts - 4-iododiphenyliodonium hydrogensulfate and diphenyliodonium salts, and suggested the ending -onium for all compounds with properties similar to those of ammonium salts. Nowadays onium compounds of almost all nonmetals are synthesised and studied. A great variety of physical methods: diffraction (e.g. XRD) and spectral methods (IR-, NMR-, and UV-spectra), as well as the chemical properties and methods of preparation of onium salts have been used in determination of the structure of these compounds. The application of different onium salts is immense. Ammonium, phosphonium and sulfonium salts are used as phase-transfer catalysts; diazonium salts - for the preparation of dyes, metalochromic and pH-indicators. All the onium salts and especially diazonium and iodonium salts are very useful reagents in organic synthesis.

  20. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the