Science.gov

Sample records for kba x-ray microscope

  1. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  2. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  3. Imaging Schwarzschild multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  4. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    We are developing a hard x-ray microscope for direct observation of solidification dynamics in metal alloys and metal matrix composites. The Fein-Focus Inc. x-ray source was delivered in September and found to perform better than expected. Confirmed resolution of better than 2 micrometers was obtained and magnifications up to 800X were measured. Nickel beads of 30 micrometer diameter were easily detected through 6mm of aluminum. X-ray metallography was performed on several specimens showing high resolution and clear definition of 3-dimensional structures. Prototype furnace installed and tested.

  5. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  6. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  7. SLAC All Access: X-ray Microscope

    SciTech Connect

    Nelson, Johanna; Liu, Yijin

    2012-08-14

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  8. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2016-07-12

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  9. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  10. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  11. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  12. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  13. Development of x-ray laminography under an x-ray microscopic condition

    SciTech Connect

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  14. Development of scanning electron and x-ray microscope

    SciTech Connect

    Matsumura, Tomokazu Hirano, Tomohiko Suyama, Motohiro

    2016-01-28

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and soft materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.

  15. Large-field high-resolution x-ray microscope for studying laser plasmas

    SciTech Connect

    Sauneuf, R.; Dalmasso, J.; Jalinaud, T.; Le Breton, J.

    1997-09-01

    In 1948, P. Kirkpatrick and A. V. Baez developed an x-ray microscope (energy range about 100 eV{endash}10 keV) composed of two concave spherical mirrors working at grazing incidence. That device, named KB microscope, presents a 3{endash}5 {mu}m resolution within a field having a radius about 100 {mu}m; outside that field, its resolution lowers rapidly when the object point recedes from the center. The adjunction of two similar mirrors can notably increase the useful field (typically, the resolution can be better than 10 {mu}m within a 2-mm-diam field of view), which is necessary for studying laser plasmas. Its main advantage with respect to more simple optics, as the pinhole, is that it can be located far enough from the plasma to avoid any destruction during the shot. We describe such a microscope that we call KBA microscope and present some images of fine metallic grids. Those grids were backlighted by x-ray sources, either a cw one or a series of laser plasmas from the Octal{endash}H{acute e}liotrope facility. Examining the films in detail shows that the experimental results are very close to the theoretical characteristics; hence the interest of this device for the x-ray diagnostics on the future powerful laser facilities. {copyright} {ital 1997 American Institute of Physics.}

  16. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  17. X-ray transmission microscope development

    NASA Astrophysics Data System (ADS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-08-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  18. X-ray microscope for solidification studies

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    1995-01-01

    This report covers the second 6 month period for the year March 1, 1994 to February 28, 1995. The material outlined in this semi-annual report continues from the previous semi-annual report. The Fein Focus Inc. x-ray source was delivered in September and coincides with the beginning of the second 6 month effort. As a result, and as outlined in the statement of work, this period was dedicated to the evaluation, testing and calibration of the x-ray source. In addition, in this period the modeling effort was continued and extended by the Tiger series of Monte-Carlo simulation programs for photon and electron interactions with materials obtained from the Oak Ridge RISC Library. Some further calculations were also made with the absorption model.

  19. X-ray-optical analytical microscope with two Kumakhov lenses

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.; Kondratenko, R. I.; Odinov, B. V.; Pukhov, A. V.

    2005-07-01

    On the basis of research microscope equipped with a 3D sample stage and two x-ray micro analyzers fitted with Kumakhov polycapillary optics, an x-ray optical scanning microscope (ROCAM) has been developed. The instrument is designed for investigation ofheterogeneous objects in optic and x-ray spectra of photon radiation. Examples of ROCAM application for forensic studies and in mineralogy are shown. The instrument can be used in medicine and biology, metal studies, nuclear power, ecology, micro electronics, in customs, for investigation of pieces of art and so on.

  20. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    NASA Astrophysics Data System (ADS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  1. Differential phase contrast x-ray microimaging with scanning-imaging x-ray microscope optics.

    PubMed

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2012-08-01

    A novel x-ray microimaging system that consists of a scanning microscope optics with a one-dimensional focusing (line-focusing) device and an imaging microscope optics with a one-dimensional objective is developed. These two optical systems are set normal to each other regarding the optical axis. A two-dimensional image is obtained with one-dimensional translation scan of the line probe. During scans, positional data in the normal to the scanning direction are obtained simultaneously with the imaging microscope optics. Differential phase contrast (DPC) image and absorption contrast (AC) image can be arbitrarily obtained by image processing after data acquisition. Preliminary experiment has been carried out by using a couple of one-dimensional Fresnel zone plate as the linear-focusing device and the one-dimensional objective. Two-dimensional DPC and AC images of test sample have been successfully obtained with 8 keV x-rays.

  2. High spatial resolution x-ray spectroscopy with the XM-1 X-ray microscope

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis E.; Denbeaux, Greg; Meyer-Ilse, Werner

    2000-06-01

    The XM-1 x-ray microscope was built to obtain high-resolution transmission images from a wide variety of thick (< 10 micron) samples. Modeled after a "conventional" full-field microscope, XM-1 makes use of zone plates (ZP) for the condenser and objective elements. The XM-1 x-ray microscope has been shown to have a spatial resolution of 36 nm by doing a 10%-90% edge scan across a knife edge. Moreover, the condenser ZP and pinhole combination yields good spectral resolution to λ/Δλ of 700. We have shown that with this energy resolution we can distinguish between different elements and some chemical states. We can see spectra with adequate signal to noise even for individual 36nm pixels. With these capabilities, we are beginning work on various experiments in which we will distinguish different chemical species of specific elements within a sample.

  3. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  4. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  5. Development of X-ray imaging microscopes for LMJ

    NASA Astrophysics Data System (ADS)

    Troussel, Philippe; Rosch, Rudolph; Reverdin, Charles; Soullié, Gérard; Boutin, Jean Yves; Marmoret, Rémy; Richard, André; Bridou, Francoise; Delmotte, Franck

    2010-11-01

    For the future Laser Megajoules French facility (LMJ), our laboratory develops time-resolved X-ray Imaging systems to diagnose laser produced plasma. In this presentation, we describe the design of these imagers which combine grazing X-ray microscope and camera. A first set of three imaging diagnostics will give basic measurements during all the life of the facility : two twelve-image microscopes focalize X-rays from the target on a framing camera. The third one produces an image on a streak camera. These microscopes also contain refractive lenses to extend the spectral range up to 15 keV. A second set of diagnostics will consist of advanced high resolution X-ray imaging systems. Imaging studies performed with a microscope composed of three concave toroidal mirrors are presented. This microscope, working at 0.6 degrees grazing incidence, has a focal length longer than 80 cm. About the imaging performances, we have achieved a spatial resolution of about 6 microns for the sagittal dimension and around 10 microns for the tangential dimension within a field of 1 mm. To increase the bandwidth of reflectivity of all these mirrors until 10 keV, multilayer coatings have been deposited.

  6. X-ray Microscopic Characterization of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.

  7. X-ray microscope assemblies. Final report and metrology report

    SciTech Connect

    Zehnpfennig, T.F.

    1981-04-13

    This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

  8. X-ray Microscopic Characterization of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.

  9. Extended range X-ray telescope: X-ray microscope design

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Kassim, A.; Chao, S.

    1982-01-01

    A glancing incidence X-ray microscope using a confocal hyperboloid ellipsoid mirror was designed to couple optically a Wolter 1 telescope to a CCD focal plane detector. Both the RMS spot size and the point spread function calculations were used to evaluate the resolution, defocusing, and vignetting effects of the system for microscope focal lengths of 1, 1.5, and 2 meters and for magnifications varying from 2 to 10x. For the specific application with the S-056 telescope, a 2 meter, 8x microscope with a fabrication ratio of the microscope mirror length to the inner diameter at hyperboloid ellipsoid intersection of 2.5 was designed to be used with a thinned, back illuminated CCD detector array with 320 by 512, 30 micron pixels.

  10. Extended depth of focus for transmission x-ray microscope.

    PubMed

    Liu, Yijin; Wang, Junyue; Hong, Youli; Wang, Zhili; Zhang, Kai; Williams, Phillip A; Zhu, Peiping; Andrews, Joy C; Pianetta, Piero; Wu, Ziyu

    2012-09-01

    A fast discrete curvelet transform based focus-stacking algorithm for extending the depth of focus of a transmission x-ray microscope (TXM) is presented. By analyzing an image stack of a sample taken in a Z-scan, a fully in-focus image can be generated by the proposed scheme. With the extended depth of focus, it is possible to obtain 3D structural information over a large volume at nanometer resolution. The focus-stacking method has been demonstrated using a dataset taken with a laboratory x-ray source based TXM system. The possibility and limitations of generalizing this method to a synchrotron based TXM are also discussed. We expect the proposed method to be of important impact in 3D x-ray microscopy.

  11. Design and analysis of soft X-ray imaging microscopes

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Cheng, Wang; Wu, Jiang; Hoover, Richard B.

    1992-01-01

    The spherical Schwarzschild microscope for soft X-ray applications in microscopy and projection lithography consists of two concentric spherical mirrors configured such that the third-order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for X-ray applications, it is desirable to have only two reflecting surfaces in a microscope. To reduce microscope aberrations and increase the field of view, generalized mirror surface profiles are here considered. Based on incoherent and sine wave modulation transfer function calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical Head reflecting two-mirror microscope configurations. The Head microscope with a NA of 0.4 achieves diffraction limited performance for objects with a diameter of 40 microns. Thus, it seems possible to record images with a feature size less than 100 A with a 40x microscope when using 40 A radiation.

  12. Advanced water window x-ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Lin, J.

    1992-01-01

    The project was focused on the design and analysis of an advanced water window soft-x-ray microscope. The activities were accomplished by completing three tasks contained in the statement of work of this contract. The new results confirm that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use aspherical mirror surfaces and to use graded multilayer coatings on the secondary (to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater). The results are included in a manuscript which is enclosed in the Appendix.

  13. Soft x-ray microscope using Fourier transform holography

    SciTech Connect

    McNulty, I.; Kirz, J.; Jacobsen, C.; Anderson, E.; Howells, M.R.; Rarback, H. . Dept. of Physics; Lawrence Berkeley Lab., CA; Brookhaven National Lab., Upton, NY )

    1989-01-01

    A Fourier transform holographic microscope with an anticipated resolution of better than 100 nm has been built. Extensive testing of the apparatus has begun. Preliminary results include the recording of interference fringes using 3.6 nm x-rays. The microscope employs a charge-coupled device (CCD) detector array of 576 {times} 384 elements. The system is illuminated by soft x-rays from a high brightness undulator. The reference point source is formed by a Fresnel zone plate with a finest outer zone width of 50 nm. Sufficient temporal coherence for hologram formation is obtained by a spherical grating monochromator. The x-ray hologram intensities at the recording plane are to be collected, digitized and reconstructed by computer. Data acquisition is under CAMAC control, while image display and off-line processing takes place on a VAX graphics workstation. Computational models of Fourier transform hologram synthesis, and reconstruction in the presence of noise, have demonstrated the feasibility of numerical methods in two dimensions, and that three-dimensional information is potentially recoverable. 13 refs., 3 figs.

  14. Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

    SciTech Connect

    Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Schroer, C. G.; Wellenreuther, G.; Falkenberg, G.

    2012-06-18

    We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.

  15. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  16. X-ray microscopic studies of labeled nuclear cell structures

    NASA Astrophysics Data System (ADS)

    Vogt, S.; Schneider, G.; Steuernagel, A.; Lucchesi, J.; Schulze, E.; Rudolph, D.; Schmahl, G.

    2000-05-01

    In X-ray microscopy different proteins are not readily distinguishable. However, in cell biology it is often desirable to localize single proteins, e.g., inside the cell nucleus. This can be achieved by immunogold labeling. Colloidal gold conjugated antibodies are used to mark the protein specifically. With silver solution these are enlarged so as to heighten their contrast. The strong absorption of silver allows easy visualization of the label in the nuclei. In this study male specific lethal 1 protein in male Drosophila melanogaster cells was labeled. This protein forms, together with four other proteins, a complex that is associated with the male X chromosome. It regulates dosage compensation by enhancing X-linked gene transcription in males. Room temperature and cyro transmission X-ray microscopic images (taken with the Göttingen TXM at BESSY) of these labeled cells are shown. Confocal laser scan microscopy ascertains the correct identification of the label in the X-ray micrographs, and allows comparison of the structural information available from both instruments.

  17. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1989-01-01

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  18. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  19. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  20. Observation of organelle by a laser plasma x-ray microscope

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Kishimoto, Maki; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Shinohara, Kunio

    2012-07-01

    Contact x-ray microscopy has a potential to image wet biological specimens in natural condition. It is very important to identify obtained features in the x-ray images, since x-ray microscopes have potential to image features that have not been visualized yet. We have proposed to compare the x-ray images of the biological specimens with the fluorescence images and to identify the features found in the x-ray images. We have succeeded to observe fine structures of the cellular organelles such as mitochondria by the soft x-ray microscope.

  1. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    PubMed Central

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30–40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51–54% of pure crystal density and plate-like areas had 44–53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. PMID:20374681

  2. On-axis microscopes for the inelastic x-ray scattering beamline at NSLS-II

    SciTech Connect

    Gofron, K. J. Cai, Y. Q.; Coburn, D. S.; Antonelli, S.; Suvorov, A.; Flores, J.

    2016-07-27

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  3. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  4. Design and analysis of a Schwarzschild imaging multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Hoover, Richard B.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1990-01-01

    Several Schwarzschild X-ray microscope optics were designed. Diffraction analysis indicates that better than 600 A spatial resolution in the object plane up to a 0.7 mm field of view can be achieved with 100 A radiation. Currently, a 20 x normal incidence multilayer X-ray microscope of 1.35 m overall length is being fabricated. Other microscope systems for use in conjunction with X-ray telescopes were also analyzed and designed. This paper reports on the results of these studies and the X-ray microscope fabrication effort.

  5. Soft x-ray spectromicroscopy using compact scanning transmission x-ray microscope at the photon factory

    SciTech Connect

    Takeichi, Yasuo Inami, Nobuhito; Ono, Kanta; Ueno, Tetsuro; Suga, Hiroki; Takahashi, Yoshio

    2016-07-27

    We report the stability and recent performances of a new type of scanning transmission X-ray microscopy. The optics and compact design of the microscope realized mobility and robust performance. Detailed consideration to the vibration control will be described. The insertion device upgraded to elliptical polarization undulator enabled linear dichroism and circular dichroism experiments.

  6. Interferometric and optical tests of water window imaging x ray microscopes

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  7. Compact scanning transmission x-ray microscope at the photon factory

    SciTech Connect

    Takeichi, Yasuo Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-28

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  8. Imaging properties and its improvements of scanning/imaging x-ray microscope

    SciTech Connect

    Takeuchi, Akihisa Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-28

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.

  9. Three-dimensional phase-contrast X-ray microtomography with scanning-imaging X-ray microscope optics.

    PubMed

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-09-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning-imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown.

  10. X-ray Imaging of Mucilaginous Sheath of Phytoplankton in Lake Biwa by Soft X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Takemoto, K.; Ichise, S.; Ohigashi, T.; Namba, H.; Kihara, H.

    2011-09-01

    In Lake Biwa, the chemical oxygen demand (COD) index is increasing in spite of a decrease in the values of the biochemical oxygen demand (BOD) index. Picophytoplankton with a mucilaginous sheath is considered an important source of non-biodegradable organic compounds. In order to elucidate the mechanism, x-ray images of planktons inhabiting Lake Biwa were taken. The laboratory-cultured phytoplanktons with sheaths—Synechoccoucs, Microcystis wesenbergii, and Phormidium tenue—were observed by the soft x-ray microscope (BL12) of the Ritsumeikan University SR Center. Synechoccoucs cells were successfully observed with high contrast, and the mucilaginous sheath around the cell was also observed. However, although P. tenu cells were successfully observed with high contrast, it was impossible to confirm the mucilaginous sheath around the cell.

  11. Quantitative Phase Imaging with a Scanning Transmission X-Ray Microscope

    PubMed Central

    de Jonge, M. D.; Hornberger, B.; Holzner, C.; Legnini, D.; Paterson, D.; McNulty, I.; Jacobsen, C.; Vogt, S.

    2010-01-01

    We obtain quantitative phase reconstructions from differential phase contrast images obtained with a scanning transmission x-ray microscope and 2.5 keV x rays. The theoretical basis of the technique is presented along with measurements and their interpretation. PMID:18518198

  12. X ray microscope/telescope test and alignment

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C.; Hoover, Richard B.

    1991-01-01

    The tasks performed by the Center for Applied Optics (CAO) in support of the Normal Incidence Multilayer X-Ray Optics Program are detailed. The Multi-Spectral Solar Telescope Array (MSSTA) was launched on a Terrier-boosted Black Brant sounding rocket from White Sands Missile Range on 13 May 1991. High resolution images of the sun in the soft x ray to extreme ultraviolet (EUV) regime were obtained with normal-incidence Cassegrain, Ritchey-Chretien, and Herschelian telescopes mounted in the sounding rocket. MSSTA represents the first use of multilayer optics to study a very broad range of x ray and EUV solar emissions. Energy-selective properties of multilayer-coated optics allow distinct groups of emission lines to be isolated in the solar corona and transition region. Features of the near and far coronal structures including magnetic loops of plasmas, coronal plumes, coronal holes, faint structures, and cool prominences are visible in these images. MSSTA successfully obtained unprecedented information regarding the structure and dynamics of the solar atmosphere in the temperature range of 10(exp 4)-10(exp 7) K. The performance of the MSSTA has demonstrated a unique combination of ultra-high spatial resolution and spectral differentiation by use of multilayer optics.

  13. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    ScienceCinema

    Nazaretski, Evgeny

    2016-11-23

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  14. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    SciTech Connect

    Nazaretski, Evgeny

    2016-11-08

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  15. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    SciTech Connect

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-19

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  16. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-01

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  17. Application of nuclear particle tracks: A scanning x-ray microscope

    SciTech Connect

    Ebert, P.J.

    1991-09-30

    The scanning x-ray microscope (SXM) is a short-wavelength analog of a near-field optical-scanning microscope, promising spatial resolution of {approximately}100{angstrom} up to {approximately}5 keV x-ray energy. A portion of a synchrotron x-ray beam streams through an etched nuclear particle track in an opaque membrane and impinges on an object within the narrow stream. Scattered or transmitted x-rays are detected with a photon counter. The SXM is feasible because a useful number of synchrotron x-rays, even from a bend magnet, will stream through a small diameter pore. The properties and limitations of the SXM are discussed together with other submicroscopic applications of nuclear particle tracks. 14 refs., 8 figs., 1 tab.

  18. Observation of Actin Filaments in Leydig Cells with a Contact-type Soft X-ray Microscope with Laser Plasma X-ray Source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Kishimoto, Maki; Nishikino, Masaharu; Kinjo, Yasuhito; Shinohara, Kunio

    Actin filaments in Leydig cells from mouse testes have been observed with a contact-type soft x-ray microscope with laser plasma x-ray source. The Leydig cells were fixed with paraformaldehyde, stained with Phalloidin, and observed with a confocal laser microscope prior to the observation with x-ray microscope. Obtained images by both of the confocal laser microscopy and the x-ray microscopy were directly compared and revealed that not only position of actin filaments but also the shapes can be identified each other. The actin filaments in the x-ray images were clearly recognized and their structures were obtained in more detail compared to those in the confocal laser microscope images.

  19. Hard X-ray Microscopic Images of the Human Hair

    SciTech Connect

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Lee, Won-Soo; Yon, Hwa Shik

    2007-01-19

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  20. Hard X-ray Microscopic Images of the Human Hair

    NASA Astrophysics Data System (ADS)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo

    2007-01-01

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  1. In situ x-ray microscopic observation of the electromigration in passivated Cu interconnects

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Hambach, D.; Niemann, B.; Kaulich, B.; Susini, J.; Hoffmann, N.; Hasse, W.

    2001-03-01

    X-ray imaging of electromigration in a passivated Cu interconnect was performed with 100-nm spatial resolution. A time sequence of 200 images, recorded with the European Synchrotron Radiation Facility x-ray microscope in 2.2 h at 4 keV photon energy, visualizes the mass flow of Cu at current densities up to 2×107 A/cm2. Due to the high penetration power through matter and the element specific image contrast, x-ray microscopy is a unique tool for time-resolved, quantitative mass transport measurements in interconnects. Model calculations predict that failures in operating microprocessors are detectable with 30 nm resolution by nanotomography.

  2. Design of an imaging microscope for soft X-ray applications

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  3. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    SciTech Connect

    Dicicco, D.; Rosser, R. ); Kim, D.; Suckewer, S. . Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  4. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results

    SciTech Connect

    Jackson, J A

    2006-02-27

    It is proposed to build a Wolter X-ray Microscope Computed Tomography System in order to characterize objects to sub-micrometer resolution. Wolter Optics Systems use hyperbolic, elliptical, and/or parabolic mirrors to reflect x-rays in order to focus or magnify an image. Wolter Optics have been used as telescopes and as microscopes. As microscopes they have been used for a number of purposes such as measuring emission x-rays and x-ray fluoresce of thin biological samples. Standard Computed Tomography (CT) Systems use 2D radiographic images, from a series of rotational angles, acquired by passing x-rays through an object to reconstruct a 3D image of the object. The x-ray paths in a Wolter X-ray Microscope will be considerably different than those of a standard CT system. There is little information about the 2D radiographic images that can be expected from such a system. There are questions about the quality, resolution and focusing range of an image created with such a system. It is not known whether characterization information can be obtained from these images and whether these 2D images can be reconstructed to 3D images of the object. A code has been developed to model the 2D radiographic image created by an object in a Wolter X-ray Microscope. This code simply follows the x-ray through the object and optics. There is no modeling at this point of other effects, such as scattering, reflection losses etc. Any object, of appropriate size, can be used in the model code. A series of simulations using a number of different objects was run to study the effects of the optics. The next step will be to use this model to reconstruct an object from the simulated data. Funding for the project ended before this goal could be accomplished. The following documentation includes: (1) background information on current X-ray imaging systems, (2) background on Wolter Optics, (3) description of the Wolter System being used, (4) purpose, limitations and development of the modeling

  5. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  6. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  7. Condenser for Koehler-like illumination in transmission x-ray microscopes at undulator sources.

    PubMed

    Vogt, Ulrich; Lindblom, Magnus; Charalambous, Pambos; Kaulich, Burkhard; Wilhein, Thomas

    2006-05-15

    We report on a novel condenser for full-field transmission x-ray microscopes that use synchrotron radiation from an undulator source. The condenser produces a Koehler-like homogeneous intensity distribution in the sample plane and eliminates object illumination problems connected with the high degree of spatial coherence in an undulator beam. The optic consists of a large number of small linear diffraction gratings and is therefore relatively easy to manufacture. First imaging experiments with a prototype condenser were successfully performed with the Twinmic x-ray microscope at the Elettra synchrotron facility in Italy.

  8. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  9. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    SciTech Connect

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V. Svechnikov, M. V.; Pestov, A. E.; Skorokhodov, E. V.

    2015-06-15

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lenses with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.

  10. Overview of nanoscale NEXAFS performed with soft X-ray microscopes

    PubMed Central

    Bittencourt, Carla

    2015-01-01

    Summary Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples. PMID:25821700

  11. Sub-micrometer resolution proximity X-ray microscope with digital image registration.

    PubMed

    Chkhalo, N I; Pestov, A E; Salashchenko, N N; Sherbakov, A V; Skorokhodov, E V; Svechnikov, M V

    2015-06-01

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector's design allows the use of lenses with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.

  12. X-ray imaging with grazing-incidence microscopes developed for the LIL program.

    PubMed

    Rosch, R; Boutin, J Y; le Breton, J P; Gontier, D; Jadaud, J P; Reverdin, C; Soullié, G; Lidove, G; Maroni, R

    2007-03-01

    This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV-0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MégaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with different spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of approximately 80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 microm over a 2-mm-diam region. The hard x-ray version microscope has a 10 microm resolution over an 800-microm-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 microm over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.

  13. 3D simulation of the image formation in soft x-ray microscopes.

    PubMed

    Selin, Mårten; Fogelqvist, Emelie; Holmberg, Anders; Guttmann, Peter; Vogt, Ulrich; Hertz, Hans M

    2014-12-15

    In water-window soft x-ray microscopy the studied object is typically larger than the depth of focus and the sample illumination is often partially coherent. This blurs out-of-focus features and may introduce considerable fringing. Understanding the influence of these phenomena on the image formation is therefore important when interpreting experimental data. Here we present a wave-propagation model operating in 3D for simulating the image formation of thick objects in partially coherent soft x-ray microscopes. The model is compared with present simulation methods as well as with experiments. The results show that our model predicts the image formation of transmission soft x-ray microscopes more accurately than previous models.

  14. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    USDA-ARS?s Scientific Manuscript database

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  15. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    SciTech Connect

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  16. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  17. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  18. X-ray holographic microscopy by means of photoresist recording and atomic-force microscope readout

    SciTech Connect

    Lindaas, S.; Howells, M.; Jacobsen, C.; Kalinovsky, A.

    1996-09-01

    We have reconstructed in-line (or Gabor) x-ray holograms at 40{endash}50-nm resolution from a complex biological specimen. The holograms were recorded as a relief pattern on photoresist with use of 1.89-nm, soft x rays from the X1A undulator beam line at the National Synchrotron Light Source at Brookhaven National Laboratory. We have improved the resolution and the fidelity and simplified the experiment compared with earlier work by employing a special atomic-force microscope to examine and digitize the holograms. Following digitization the holograms were reconstructed numerically, allowing both the absorptive and phase-shifting properties of the reconstructed object to be mapped. A comparison of the reconstructed images with images obtained from visible light and transmission electron microscopes has been made to confirm the validity of the x-ray holographic technique. The method offers promise as a technique for soft-x-ray microscopy and diffraction tomography of dry and frozen hydrated specimens and for microscopy with pulsed x-ray sources. {copyright} {ital 1996 Optical Society of America.}

  19. Low background, UHV compatible scintillator detector for the CLS cryo scanning soft X-ray microscope

    NASA Astrophysics Data System (ADS)

    Leontowich, A. F. G.; Taylor, D. M.; Wang, J.; Regier, C. N.; Regier, T. Z.; Berg, R.; Beauregard, D.; Dynes, J. J.; Senger, C.; Swirsky, J.; Karunakaran, C.; Hitchcock, A. P.; Urquhart, S. G.

    2017-06-01

    A new soft X-ray scanning transmission X-ray microscope (STXM) optimized for cryo spectro-tomography was designed and commissioned at the Canadian Light Source (CLS). The instrument was required to achieve ultra high vacuum and be compatible with in-situ plasma cleaning. It also required a scintillator detector, and the design of this detector had to evolve to meet these environmental requirements. The scintillator deposition technique, and the suppression of background by introduction of an edge filter are also presented.

  20. Coherence based contrast enhancement in x-ray radiography with a photoelectron microscope

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Lai, B.; Mancini, D. C.; Je, J. H.; Noh, D. Y.; Bertolo, M.; Tromba, G.; Margaritondo, G.

    1999-10-01

    We show that a photoelectron spectromicroscope of the photoelectron emission microscope type can be used as an x-ray imaging detector for radiology. Using high penetration hard-x-ray photons (wavelength <0.1 nm), samples as thick as a few millimeters can be imaged with submicron resolution. The high imaging resolution enables us to substantially decrease the object-detector distance needed to observe coherent based contrast enhancement with respect to the standard film-based detection technique. Our result implies several advantages, the most important being a marked reduction of the required source emittance for contrast enhanced radiology.

  1. Observations of a human hair shaft with an x-ray microscope

    NASA Astrophysics Data System (ADS)

    Youn, Hwa Shik; Jung, Suk-Won

    2005-11-01

    We observed the internal structures of a human hair shaft using x-ray microscopes with a spatial resolution in the range from a few microns to less than 100 nm. The energy of the x-ray used is 6.95 keV. The Zernike phase contrast together with a spatial resolution better than 100 nm enabled us to see the cuticles of scales, the cortex of macrofibrils and the medulla. All these internal features and more can easily be observed with no sample preparation including staining.

  2. Simulating and optimizing compound refractive lens-based X-ray microscopes.

    PubMed

    Simons, Hugh; Ahl, Sonja Rosenlund; Poulsen, Henning Friis; Detlefs, Carsten

    2017-03-01

    A comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical imaging parameters such as numerical aperture, spatial acceptance (vignetting), chromatic aberration and focal length are provided for both thin- and thick-lens imaging geometries. These expressions show that the numerical aperture will be maximized and chromatic aberration will be minimized at the thick-lens limit. This limit may be satisfied by a range of CRL geometries, suggesting alternative approaches to improving the resolution and efficiency of CRLs and X-ray microscopes.

  3. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    SciTech Connect

    Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.; Bekar, Kursat B.

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  4. Simulating and optimizing compound refractive lens-based X-ray microscopes

    PubMed Central

    Simons, Hugh; Ahl, Sonja Rosenlund; Poulsen, Henning Friis; Detlefs, Carsten

    2017-01-01

    A comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical imaging parameters such as numerical aperture, spatial acceptance (vignetting), chromatic aberration and focal length are provided for both thin- and thick-lens imaging geometries. These expressions show that the numerical aperture will be maximized and chromatic aberration will be minimized at the thick-lens limit. This limit may be satisfied by a range of CRL geometries, suggesting alternative approaches to improving the resolution and efficiency of CRLs and X-ray microscopes. PMID:28244432

  5. High-Performance X-ray Detection in a New Analytical Electron Microscope

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  6. High-Performance X-ray Detection in a New Analytical Electron Microscope

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  7. Development of hard X-ray dark-field microscope using full-field optics

    NASA Astrophysics Data System (ADS)

    Takano, Hidekazu; Azuma, Hiroaki; Shimomura, Sho; Tsuji, Takuya; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2016-10-01

    We develop a dark-field X-ray microscope using full-field optics based on a synchrotron beamline. Our setup consists of a condenser system and a microscope objective with an angular acceptance larger than that of the condenser. The condenser system is moved downstream from its regular position such that the focus of the condenser is behind the objective. The dark-field microscope optics are configured by excluding the converging beam from the condenser at the focal point. The image properties of the system are evaluated by observing and calculating a Siemens star test chart with 10 keV X-rays. Our setup allows easy switching to bright-field imaging.

  8. A high-energy x-ray microscope for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Bennett, G. R.

    1999-01-01

    We have developed a microscope capable of imaging x-ray emission from inertial confinement fusion targets in the range of 7-9 keV. Imaging is accomplished with a Kirkpatrick-Baez type, four-image microscope coated with a WB4C multilayer having a 2d period of 140 Å. This microscope design (a standard used on the University of Rochester's OMEGA laser system) is capable of 5 μm resolution over a region large enough to image an imploded target (˜400 μm). This design is capable of being extended to ˜40 keV if state-of-the-art, short-spacing, multilayer coatings are used (˜25 Å), and has been configured to obtain 3 μm resolution with the appropriate choice of mirror size. As such, this type of microscope could serve as a platform for multiframe, hard x-ray imaging on the National Ignition Facility. Characterization of the microscope and laboratory measurements of the energy response made with a cw x-ray source will be shown.

  9. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  10. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  11. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  12. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  13. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2016-01-01

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  14. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    SciTech Connect

    Warwick, T.; Seal, S.; Shin, H.

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorption spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.

  15. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  16. Kirkpatrick-Baez x-ray-microscope optimization for inertial-confinement-fusion applications

    SciTech Connect

    Price, R.H.; Priedhorsky, W.C.

    1983-05-01

    Analytic approximations have been used to optimize single-channel and four-channel Kirkpatrick-Baez (K-B) x-ray microscopes in three ways: (I) for best effective solid angle at best resolution, (II) for best effective solid angle at a given resolution worse than the best; and (III) for best effective solid angle at a specified breadth of field. All optimizations are also made consistent with clean channel response, to ensure that any high-energy second peak will be small compared with the primary channel response. This is achieved at a sacrifice of effective solid angle. We describe a cross-talk aberration not previously recognized in K-B x-ray microscopes. The analytic approximations presented in this paper, which desribe the optical and constructional parameter of optimized K-B x-ray microscopes, are intended to allow scaling and localization in parameter space from which detailed numerical calculations can be used to fine-tune a microscope design.

  17. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    NASA Astrophysics Data System (ADS)

    Snigireva, I.; Snigirev, A.

    2013-10-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.

  18. Reflection Imaging X-Ray Laser Microscope (RIXRALM) and its biological applications. Progress report

    SciTech Connect

    Suckewer, S.

    1998-07-01

    The main stimulus for the development of the proposed microscope (RIXRALM) is the possibility to view the surface and near surface structure of biological materials, such as cell membranes at much higher resolution than an optical (confocal) microscope. Although the prediction resolution of RIXRALM was lower than a Scanning Electron Microscope (SEM), the possibility to obtain images of cells (membranes) in a more natural, hydrated state and, in many cases, without staining, made the idea of a reflection X-ray microscope very attractive. The specimen can be in an H{sub 2}O saturated He atmosphere at atmospheric pressure. As the image can be obtained quickly (nsec exposure, occurring within seconds of insertion into such an environment), the cell surface can be seen in a state which is very close to its natural condition. Besides, the short exposure time eliminates the effect of motional blurring on the images. Their X-ray reflection microscope fit well in the very large gap in the size of biological objects studied in light microscopy (sub-micron size) and electron microscope (down to a few nanometers size).

  19. Non-invasive evaluation of hair interior morphology by X-ray microscope.

    PubMed

    Kim, Beom Joon; Kwon, Oh Sang; Park, Won Seok; Youn, Hwa Shik; Choi, Chong Won; Kim, Kyu Han; Eun, Hee Chul

    2006-11-01

    Lots of trials have been performed to obtain better microscopic images of hair structure. Although scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide detailed images of hair, artificial processing may modify the original images during sample preparation. To overcome this limitation, we applied newly-developed X-ray microscopy with an 80-100 nm spatial resolution to produce a detailed view of the morphological change of hair interior. This X-ray microscopy permits us to penetrate a hair shaft without any artificial change and also provides precise images of hair interior with fine resolution. We evaluated the interior morphological change of Japanese standard hair tress No. 8 by various treatments such as ultraviolet (UV) irradiation, heating, hair dyeing, decolorizing bleaching agents and permanent waving. Internal morphological images were relatively similar in both heated and UV-irradiated hair. They revealed coarsening of cuticles and dehydration of cortex and medulla. When compared with TEM, X-ray microscopy provides more intact images in the cuticle and may be a useful tool in observing fine cracks of hair cortex. Additionally, X-ray images were intact and not influenced by any processing procedures. In observing the external and internal structure of hair, its resolution seems to be somewhat lesser than TEM and there are also several remaining weaknesses to be improved. Hopefully, forthcoming technology will solve these problems in the near future.

  20. Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors.

    PubMed

    Trail, J A; Byer, R L

    1989-06-01

    We have constructed a scanning soft-x-ray microscope that uses a laser-produced plasma as the soft-x-ray source and normal-incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 microm, and has a soft-x-ray photon flux through the focus of 10(4)-10(5) sec(-1) when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table.

  1. Design and analysis of a fast, two-mirror soft-x-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.

    1992-01-01

    During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.

  2. Compact soft x-ray microscope using a gas-discharge light source.

    PubMed

    Benk, Markus; Bergmann, Klaus; Schäfer, David; Wilhein, Thomas

    2008-10-15

    We report on a soft x-ray microscope using a gas-discharge plasma with pseudo spark-like electrode geometry as a light source. The source produces a radiant intensity of 4 x 10(13) photons/(sr pulse) for the 2.88 nm emission line of helium-like nitrogen. At a demonstrated 1 kHz repetition rate a brilliance of 4.3 x 10(9) photons/(microm2 sr s) is obtained for the 2.88 nm line. Ray-tracing simulations show that, employing an adequate grazing incidence collector, a photon flux of 1 x 10(7) photons/(microm2 s) can be achieved with the current source. The applicability of the presented pinch plasma concept to soft x-ray microscopy is demonstrated in a proof-of-principle experiment.

  3. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    SciTech Connect

    Nam, Daewoong; Park, Jaehyun; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong; Gallagher-Jones, Marcus

    2013-11-15

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10{sup −2} Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  4. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  5. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  6. Automated markerless full field hard x-ray microscopic tomography at sub-50nm 3-dimension spatial resolution

    SciTech Connect

    Wang J.; Yu-chen Chen, K.; Yuan, W.; Tkachuk, A.; Erdonmez, C.

    2012-04-04

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.

  7. Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution

    SciTech Connect

    Wang Jun; Karen Chen Yuchen; Yuan Qingxi; Tkachuk, Andrei; Hornberger, Benjamin; Feser, Michael; Erdonmez, Can

    2012-04-02

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.

  8. Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY

    SciTech Connect

    Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas; Wilhein, Thomas; Lühl, Lars; Malzer, Wolfgang; Kanngießer, Birgit

    2016-01-28

    We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2].

  9. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  10. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  11. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  12. A framed, 16-image Kirkpatrick–Baez x-ray microscope

    DOE PAGES

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; ...

    2017-09-08

    A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less

  13. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  14. Development of Computer Tomography System for the Soft X-ray Microscope at Ritsumeikan University

    SciTech Connect

    Ohigashi, T.; Fujii, H.; Usui, K.; Namba, H.; Mizutani, H.; Takemoto, K.; Kihara, H.

    2011-09-09

    A synchrotron-based full-field imaging soft x-ray microscope was tuned appropriately to perform computer tomography. The contrast and focal depth of the optical system were evaluated by using a Fresnel zone plate as a test object of variable spatial frequency. A focal depth of 15 {mu}m was obtained at the spatial frequency of 4.3 {mu}m{sup -1} according to Rayleigh's criterion. As a first trial of three-dimensional observation using this system, the cerebral cortex of the brain of a mouse, trimmed to a columnar shape by focused ion beam milling, was studied using a wavelength of 1.87-nm.

  15. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Ghazaryan, A. G.; Matevosyan, H. H.; Mkrtchian, G. F.

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  16. Astigmatism correction in x-ray scanning photoemission microscope with use of elliptical zone plate

    SciTech Connect

    Ade, H.; Ko, C. ); Anderson, E. )

    1992-03-02

    We report the impact of an elliptical, high resolution zone plate on the performance of an initially astigmatic soft x-ray scanning photoemission microscope. A zone plate with carefully calibrated eccentricity has been used to eliminate astigmatism arising from transport optics, and an improvement of about a factor of 3 in spatial resolution was achieved. The resolution is still dominated by the source size and chromatic aberrations rather than by diffraction and coma, and a further gain of about a factor of 2 in resolution is possible. Sub 100 nm photoemission microscopy with primary photoelectrons is now within reach.

  17. X-ray holographic microscopy using the atomic-force microscope

    SciTech Connect

    Howells, M.R.; Jacobsen, C.J.; Lindaas, S.

    1993-09-01

    The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach.

  18. One-dimensional x-ray microscope for shock measurements in high-density aluminum plasmas

    SciTech Connect

    Workman, J.; Tierney, T.; Evans, S.; Kyrala, G.; Benage, J. Jr.

    1999-01-01

    Accurate experimental measurements of the equation of state for strongly coupled plasmas ({Gamma}{ge}1), relevant to astrophysical, geologic and inertial confinement fusion applications, have been extremely difficult. In this pursuit, we have designed a one-dimensional dual-crystal x-ray microscope for making high-resolution measurements of shocks launched by laser pulses in high-density aluminum plasmas. Optical ray-tracing analysis of the design is presented including effects of surface aberrations. The spherically bent mica crystals are arranged at near normal incidence to operate at energies of 1.35 and 4.75 keV using the second and seventh order reflections, respectively. With a magnification of 45{times}, the microscope{close_quote}s spatial resolution is predicted to be better than 2 {mu}m when coupled to an x-ray streak camera. The addition of a grazing-incidence optic perpendicular to the imaging direction partially compensates astigmatism. This compensation provides an increase in collection efficiency at the streak camera slit by a factor of {approximately}15. {copyright} {ital 1999 American Institute of Physics.}

  19. Performance of bent-crystal x-ray microscopes for high energy density physics research.

    PubMed

    Schollmeier, Marius S; Geissel, Matthias; Shores, Jonathon E; Smith, Ian C; Porter, John L

    2015-06-01

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. The analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. This enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  20. Performance of bent-crystal x-ray microscopes for high energy density physics research

    DOE PAGES

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; ...

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less

  1. A scanning soft x-ray microscope with an ellipsoidal focusing mirror.

    PubMed

    Voss, J; Dadras, H; Kunz, C; Moewes, A; Roy, G; Sievers, H; Storjohann, I; Wongel, H

    1992-01-01

    We have developed and brought into operation a new type of scanning soft x-ray microscope which can operate at any photon energy from 20 to 1300 eV. This microscope demagnifies a diaphragm by means of an annular section of an ellipsoidal mirror to a smallest spot size of, at present, about 0.4 μm (FWHM), certainly containing only a small fraction of the total intensity. The sample is scanned across this spot. Between mirror and focus a free space of 30 mm is available for detectors, and particles emitted from a surface at more than 30° to the normal can be extracted into a mass or energy analyzer. Transmission, photoemission, luminescence, photostimulated desorption, reflectivity, and other signals may serve for imaging. In addition, a static analysis of very small samples or spots on a sample will become feasible.

  2. Performance of bent-crystal x-ray microscopes for high energy density physics research

    SciTech Connect

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  3. Structural and microscopic relaxations in glycerol: An inelastic x-ray scattering study

    SciTech Connect

    Cunsolo, A.; Leu, B. M.; Said, A. H.; Cai, Y. Q.

    2011-05-10

    The THz dynamics of liquid glycerol has been probed by inelastic x-ray scattering at different pressure spanning the 0.66-3 Kbar range. A comparison with ultrasound absorption results available in literature leads us to identify the presence of two different relaxations, a structural (slow) relaxation and a microscopic (fast) one. Although the former has been already thoroughly studied in glycerol by lower frequency spectroscopic techniques, no hints on the latter are so far available in literature. We observe that the characteristic timescale of this fast relaxation ranges in the sub-picosecond, tends to decrease with increasing the wave-vector and seems rather insensitive to pressure changes. Finally, the timescale and strength of the fast relaxation have a direct link revealing the microscopic, single particle, nature of the involved process.

  4. Micro-Scanning Electron Microscope and X-ray Spectrometer for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Nguyen, C. V.; Dholakia, G.; Ribaya, B. P.; Niemann, D.; Ngo, V.; McKenzie, C.; Rahman, M.; Alam, A.; Joy, D.; Espinosa, B.

    2007-12-01

    Scanning Electron Microscopy combined with electron-induced X-ray Fluorescence Spectroscopy (SEM-EDX) is one of the most powerful techniques for characterizing surface morphology and composition with spatial resolution of a micrometer or better. SEM-EDX can elucidate natural processes such as low-temperature diagenesis, thermal or pressure induced metamorphism, volcanism/magmatism, atmosphere/crust interaction and the like. This information is useful for the investigation of the natural history of solar system objects. We are developing a prototype micromachined scanning electron microscope with X-ray spectrometer (MSEMS) for solar system exploration. The MSEMS is comprised of a carbon nanotube field emission (CNTFE) electron source integrated with a micro-electro-mechanical-system (MEMS) based electron gun and electron optics structure. The MSEMS system will utilize a piezoelectric sample stage, having scan ranges from a few angstroms to several hundreds of microns. Compared with conventional electron sources, the CNTFE source offers advantages of low power usage, ultra-small source size and simplicity of electrostatic focusing. The MSEMS instrument, including CNTFE source, MEMS electron optic column and piezoelectric sample stage, is envisioned to be 1-2 cm in height and will operate in the range of 500 eV to 15 KeV. The imaging resolution of MEMS is predicted to be ~10 nm at 5 KeV and the spatial resolution of the X-ray spectrometer will be ~1 μm at 15 KeV. We will present field emission data from our CNTFE source as well as the MEMS electron gun and piezostage designs.

  5. A framed, 16-image Kirkpatrick-Baez x-ray microscope

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; Glebov, V. Yu.; Peng, B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2017-09-01

    A 16-image Kirkpatrick-Baez (KB)-type x-ray microscope consisting of compact KB mirrors [F. J. Marshall, Rev. Sci. Instrum. 83, 10E518 (2012)] has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ˜30 ps. Images are arranged four to a strip with ˜60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ˜15 ps is achieved. A framed resolution of ˜6-μm is achieved with this combination in a 400-μm region of laser-plasma x-ray emission in the 2- to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester's OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The unprecedented time and spatial resolutions achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. These core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 Gbar in OMEGA cryogenic target implosions [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)].

  6. Advantages of a Synchrotron Bending Magnet as the Sample Illuminator for a Wide-field X-ray Microscope

    SciTech Connect

    Feser, M.; Howells, M. R.; Kirz, J.; Rudati, J.; Yun, W.

    2012-09-01

    In our paper the choice between bending magnets and insertion devices as sample illuminators for a hard X-ray full-field microscope is investigated. An optimized bending-magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion-device beamlines. The fact that imaging X-ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid-for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending-magnet beamlines that are dedicated to transmission X-ray microscope facilities. We expect that demand for such facilities will increase as three-dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three-dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.

  7. High-resolution time-resolved x-ray microscope for inertial confinement fusion (ICF) target dynamics experiments

    SciTech Connect

    Ellis, R.J.; Kilkenny, J.D.; Levesque, R.A.; Phillion, D.W.; Deane, D.J.

    1987-10-01

    A versatile x-ray microscope diagnostic has been built to perform target dynamics experiments on the Nova Ten Beam target irradiation facility. This system is based on Wolter's axisymmetric focusing scheme. An alignment system is described which provides for both quick and accurate alignment of the x-ray optic. Results are presented showing the system resolution and accuracy of alignment. Images from target dynamics experiments are also presented. 9 refs.

  8. Ultra-high resolution water window x ray microscope optics design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  9. Electronic structure of individual hybrid colloid particles studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the X-ray microscope.

    PubMed

    Henzler, Katja; Guttmann, Peter; Lu, Yan; Polzer, Frank; Schneider, Gerd; Ballauff, Matthias

    2013-02-13

    The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials.

  10. Development of a Scanning X-ray Fluorescence Microscope Using Size-Controllable Focused X-ray Beam from 50 to 1500nm

    SciTech Connect

    Matsuyama, Satoshi; Mimura, Hidekazu; Yumoto, Hirokatsu; Katagishi, Keiko; Handa, Soichiro; Shibatani, Akihiko; Sano, Yasuhisa; Yamauchi, Kazuto; Yamamura, Kazuya; Endo, Katsuyoshi; Mori, Yuzo; Nishino, Yoshinori; Tamasaku, Kenji

    2007-01-19

    In scanning X-ray microscopy, focused beam intensity and size are very important from the viewpoints of improvements of various performances such as sensitivity and spatial resolution. The K-B mirror optical system is considered to be the most promising method for hard X-ray focusing, allowing highly efficient and energy-tunable focusing. We developed focusing optical system using K-B mirrors where the focused beam size is controllable within the range of 50 - 1500 nm. The focused beam size and beam intensity can be adjusted by changing the source size, although beam intensity and size are in a trade-off relationship. This controllability provides convenience for microscopy application. Diffraction limited focal size is also achieved by setting the source size to 10 {mu}m. Intracellular elemental mappings at the single-cell level were performed to demonstrate the performance of the scanning X-ray fluorescence microscope equipped with the optical system at the BL29XUL of SPring-8. We will show magnified elemental images with spatial resolution of {approx}70 nm.

  11. Laboratory soft-x-ray microscope for cryotomography of biological specimens.

    PubMed

    Bertilson, Michael; von Hofsten, Olov; Vogt, Ulrich; Holmberg, Anders; Christakou, Athanasia E; Hertz, Hans M

    2011-07-15

    Soft-x-ray cryotomography allows quantitative and high-resolution three-dimensional imaging of intact unstained cells. To date, the method relies on synchrotron-radiation sources, which limits accessibility for researchers. Here we present a laboratory water-window microscope for cryotomography. It is based on a λ=2.48 nm liquid-jet laser-plasma source, a normal-incidence multilayer condenser, a 30 nm zone-plate objective, and a cryotilt sample holder. We demonstrate high-resolution imaging, as well as quantitative tomographic imaging, of frozen intact cells. The reconstructed tomogram of the intracellular local absorption coefficient shows details down to ∼100 nm. © 2011 Optical Society of America

  12. Development of the water window imaging X-ray microscope utilizing normal-incidence multilayer optics

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    A water-window imaging X-ray telescope configured with normal-incidence multilayer X-ray mirrors has been developed to obtain images with unprecedented spatial resolution and contrast of carbon-based microstructures within living cells. The narrow bandpass response inherent in multilayer X-ray optics is accurately tuned to wavelengths within the water window.

  13. Development of the water window imaging X-ray microscope utilizing normal-incidence multilayer optics

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    A water-window imaging X-ray telescope configured with normal-incidence multilayer X-ray mirrors has been developed to obtain images with unprecedented spatial resolution and contrast of carbon-based microstructures within living cells. The narrow bandpass response inherent in multilayer X-ray optics is accurately tuned to wavelengths within the water window.

  14. High resolution x-ray imaging microscope for diagnostics of inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Maury, Helene; Troussel, Philippe; Champeaux, J. P.

    2009-08-01

    X-ray imaging technology is highly developed to meet the needs of high-energy physics and diagnostics of inertial confinement fusion. In this paper, we describe the design of a non coplanar toroÃdal mirrors microscope. It consists of three off-axis revolution concave toroÃdal mirrors working at grazing incidence. Non-periodic W/SiC multilayer coatings have been deposited on each mirror, in order to increase until 10 keV the bandpass of reflectivity of the microscope. These super mirrors have been designed to work at 0.6° grazing incidence angle and display a reflectivity better than 40% in the entire energy range 2-10 keV. Concerning the imaging performances, we have almost achieved 5 μm of spatial resolution in a field of 500 μm. Regarding to these results, this prototype of microscope, the so-called "Plasma Imageur X pour les Experiences Laser Mega Joule" (PIXEL), will be used for 2D spatial and 1D time resolved imaging of dense plasmas produced during inertial confinement fusion experiments at the future Laser Mega Joule French facility (LMJ).

  15. Observation of immuno-labeled cells at high resolution using soft X-ray microscope at Ritsumeikan University SR Center

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Takemoto, K.; Fukui, T.; Yoshimura, Y.; Okuno, K.; Namba, H.; Kihara, H.

    2009-09-01

    Mouse fibroblast cell line NIH3T3 cells were labeled with the heavy metal (silver and gold) and observed intracellular structure under an X-ray microscope. Microtubules, Golgi apparatus and early endosomes of NIH3T3 cells were stained with immuno-gold nanoparticles, and immuno-staining was intensified by silver or gold enhancement procedure. Using a transmission soft X-ray microscope beamline (BL12) at Ritsumeikan University SR center, we observed immuno-stained NIH3T3 cells with several wavelengths just below and above oxygen edge (λ = 2.32 nm). Using this method, cytoskeleton (microtubules) and organelles (Golgi apparatus and early endosomes) were successfully imaged with high resolution. Thus, immuno-gold silver and gold enhancement technique is useful for specific labeling of intracellular structure under an X-ray microscope.

  16. Measurement of the unstained biological sample by a novel scanning electron generation X-ray microscope based on SEM.

    PubMed

    Ogura, Toshihiko

    2009-08-07

    We introduced a novel X-ray microscope system based on scanning electron microscopy using thin film, which enables the measurement of unstained biological samples without damage. An unstained yeast sample was adsorbed under a titanium (Ti)-coated silicon nitride (Si3N4) film 90 nm thick. The X-ray signal from the film was detected by an X-ray photodiode (PD) placed below the sample. With an electron beam at 2.6 kV acceleration and 6.75 nA current, the yeast image is obtained using the X-ray PD. The image is created by soft X-rays from the Ti layer. The Ti layer is effective in generating the characteristic 2.7-nm wavelength X-rays by the irradiation of electrons. Furthermore, we investigated the electron trajectory and the generation of the characteristic X-rays within the Ti-coated Si3N4 film by Monte Carlo simulation. Our system can be easily utilized to observe various unstained biological samples of cells, bacteria, and viruses.

  17. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  18. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  19. Imaging of fine structures of cellular organelles in hydrated biological cells by a soft x-ray microscope combined with a fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Aoyama, Masato; Shinohara, Kunio

    2013-09-01

    We have proposed and developed a new hybrid microscopy system using a soft x-ray microscope and a fluorescence microscope imaging the same biological cells at the nearly same time. Combining the powerful advantages such as high spatial resolution of the soft x-ray microscope and the accurate organelle identification of the fluorescence microscope, we can observe fine structures of the cellular organelles in live hydrated biological cells in situ. Staining the cells with several fluorescent dyes such as Mito-tracker, Phalloidin, and DAPI, the soft x-ray images of the cells have been directly compared with the fluorescent images and the cellular organelles such as mitochondria, actin filaments, and chromosomes in the soft x-ray images have been clearly identified. Since the soft x-ray microscope has higher spatial resolution than that of the fluorescence microscope, not only shape of the cellular organelles but also the fine structures of the cellular organelles of the live biological cells have been clearly observed for the first time.

  20. Constructing a multi-scan synchrotron X-ray microscope to study the function of osteocyte canaliculi in mouse bone

    NASA Astrophysics Data System (ADS)

    Nango, Nobuhito; Kubota, Shogo; Yashiro, Wataru; Momose, Atsushi; Takada, Yasunari; Matsuo, Koichi

    2012-07-01

    Formulating a multi-scan method applied to an X-ray microscope CT with synchrotron radiation, we attempted to analyze the 3D functional structure of osteocyte canaliculi inside the cortical bone of a mouse tibia. We employed a two-method combination to scan the same position of the specimen. To extract the internal bone canalicular structure, we first combined a Talbot interferometer with an X-ray microscope, and applied a differential phase imaging method to measure the absolute value of bone mineral around the canaliculi. Next, we used the X-ray microscope without the Talbot interferometer under a defocus condition, moving the specimen toward the zone plate by 6 mm. This defocus contrast method visualizes the canaliculi by emphasizing the edges of the bone. We performed CT scans by the two configurations and precisely aligned resultant 3D images so that the same position in the specimen is compared. We could extract the osteocyte canaliculi and evaluate the mineral density of their surroundings. The degree of mineralization varied for each osteocyte lacuna and canaliculus. The multi-scan microscopic X-ray CT is a powerful tool for analyzing bone mineralization.

  1. Constructing a multi-scan synchrotron X-ray microscope to study the function of osteocyte canaliculi in mouse bone

    SciTech Connect

    Nango, Nobuhito; Kubota, Shogo; Yashiro, Wataru; Momose, Atsushi; Takada, Yasunari; Matsuo, Koichi

    2012-07-31

    Formulating a multi-scan method applied to an X-ray microscope CT with synchrotron radiation, we attempted to analyze the 3D functional structure of osteocyte canaliculi inside the cortical bone of a mouse tibia. We employed a two-method combination to scan the same position of the specimen. To extract the internal bone canalicular structure, we first combined a Talbot interferometer with an X-ray microscope, and applied a differential phase imaging method to measure the absolute value of bone mineral around the canaliculi. Next, we used the X-ray microscope without the Talbot interferometer under a defocus condition, moving the specimen toward the zone plate by 6 mm. This defocus contrast method visualizes the canaliculi by emphasizing the edges of the bone. We performed CT scans by the two configurations and precisely aligned resultant 3D images so that the same position in the specimen is compared. We could extract the osteocyte canaliculi and evaluate the mineral density of their surroundings. The degree of mineralization varied for each osteocyte lacuna and canaliculus. The multi-scan microscopic X-ray CT is a powerful tool for analyzing bone mineralization.

  2. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.

    PubMed

    Hara, Toru; Tanaka, Keiichi; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y; Ohsaki, Mitsuaki; Watanabe, Katsuaki; Yu, Xiuzhen; Ito, Takuji; Yamanaka, Yoshihiro

    2010-01-01

    A new energy dispersive X-ray spectrometer (EDS) with a microcalorimeter detector equipped with a transmission electron microscope (TEM) has been developed for high- accuracy compositional analysis in the nanoscale. A superconducting transition-edge-sensor-type microcalorimeter is applied as the detector. A cryogen-free cooling system, which consists of a mechanical and a dilution refrigerator, is selected to achieve long-term temperature stability. In order to mount these detector and refrigerators on a TEM, the cooling system is specially designed such that these two refrigerators are separated. Also, the detector position and arrangement are carefully designed to avoid adverse affects between the superconductor detector and the TEM lens system. Using the developed EDS system, at present, an energy resolution of 21.92 eV full-width-at-half maximum has been achieved at the Cr K alpha line. This value is about seven times better than that of the current typical commercial Si(Li) detector, which is usually around 140 eV. The developed microcalorimeter EDS system can measure a wide energy range, 1-20 keV, at one time with this high energy resolution that can resolve peaks from most of the elements. Although several further developments will be needed to enable practical use, highly accurate compositional analysis with high energy resolution will be realized by this microcalorimeter EDS system.

  3. Micro-column Scanning Electron Microscope and X-ray Spectrometer (MSEMS) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Ribaya, B.; Niemann, D.; Makarewicz, J.; Clevenson, H.; McKenzie, C.; Nguyen, C.; Blake, D. F.

    2009-12-01

    Scanning Electron Microscopy combined with electron-induced X-ray Fluorescence Spectroscopy (SEM-EDX) is one of the most powerful techniques for characterizing sub-µm surface morphology and composition. In terrestrial laboratories, SEM-EDX is used to elucidate natural processes such as low-temperature diagenesis, thermal or pressure induced metamorphism, volcanism/magmatism, atmosphere/crust interaction and biological activity. Such information would be highly useful for investigating the natural history of the terrestrial planets, satellites and primitive bodies, providing morphological and elemental information that is 2 orders of magnitude higher in resolution than optical techniques. Below we describe the development of a Micro-column Scanning Electron Microscope and X-ray Spectrometer (MSEMS) for flight. The enabling technology of the MSEMS is a carbon nanotube field emission (CNTFE) electron source that is integrated with micro-electro-mechanical-systems (MEMS) - based electron gun and electron optical structures. A hallmark of CNTFE electron sources is their low chromatic aberration, which reduces the need for high accelerating voltages to obtain small spot size. The CNTFE also offers exceptional brightness and nanometer source size, eliminating the need for condenser lenses, making simple electrostatic focusing optics possible. Moreover, the CNT field emission gun (CFEG) at low operating voltage dissipates 103 less power than thermally-assisted Schottky emitters. A key feature of the MSEMS design is the lack of scanning coils. Rather, a piezoelectric sample stage capable of sub-nanometer resolution scans the sample past the fixed crossover of the MSEMS electron beam. We will describe a MEMS-based templating technique for fabricating mechanically and electrically stable miniature CFEGs. Using existing silicon (Si) technology, we fabricated highly controlled and precise MEMS structures for both the CNT cathode and focusing optics for the micro-column. The

  4. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    NASA Astrophysics Data System (ADS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent.

  5. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    SciTech Connect

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  6. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    DOE PAGES

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more thanmore » 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.« less

  7. Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources.

    PubMed

    Schollmeier, Marius S; Loisel, Guillaume P

    2016-12-01

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90(∘) which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 10(6) possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  8. Time-Lapse Observation of Electrolysis of Copper Sulfate with a Full-Field X-ray Fluorescence Imaging Microscope

    NASA Astrophysics Data System (ADS)

    Ohigashi, Takuji; Aota, Tatsuya; Watanabe, Norio; Takano, Hidekazu; Yokosuka, Hiroki; Aoki, Sadao

    2008-06-01

    The time-lapse observation of the electrodeposition of copper in copper sulfate solution was performed by imaging X-ray fluorescence from the copper deposition. The X-ray fluorescence was directly imaged with a full-field Wolter mirror microscope, which was constructed at the Photon Factory. Controlling the electric current in the solution from 0 to 71.7 µA, the deposition of copper on a Pt cathode was directly observed by imaging its X-ray fluorescence. One exposure time for obtaining an X-ray fluorescence image was 80 s. Then, it was 17 min later from the beginning of the electrolysis when the X-ray fluorescence image of the electrodeposition is observed for the first time. At this exposure time, the detection limit of the mass of copper was estimated to be 0.60 pg/image, which was calculated using test samples of 1.00×10-3-1.00 mol/l copper sulfate solutions.

  9. Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources

    NASA Astrophysics Data System (ADS)

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-01

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90∘ which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  10. The scanning transmission x-ray microscope at the NSLS: From XANES to cryo

    SciTech Connect

    Maser, J.; Chapman, H.; Jacobsen, C.

    1995-12-31

    The Stony Brook scanning transmission x-ray microscope (STXM) has been operated at the XIA beamline at the NSLS since 1989. A large number of users have used it to study biological and material science samples. The authors report on changes that have been performed in the past year, and present recent results. To stabilize the position of the micro probe when doing spectral scans at high spatial resolution, they have constructed a piezo-driven flexure stage which carries out the focusing motion of the zone plate needed when changing the wavelength. To overcome the detector limitation set by saturation of the gas-flow counter at count rates around 1 MHz, they are installing an avalanche photo diode with an active quenching circuit which they expect to respond linearly to count rates in excess of 10 MHz. They have improved the enclosure for STXM to improve the stability of the Helium atmosphere while taking data. This reduces fluctuations of beam absorption and, therefore, noise in the image. A fast shutter has been installed in the beam line. The authors are also developing a cryo-STXM which is designed for imaging frozen hydrated samples at temperatures below 120 K. At low temperatures, radiation sensitive samples can tolerate a considerably higher radiation dose than at room temperature. This should improve the resolution obtainable from biological samples and should make recording of multiple images of the same sample area possible while minimizing the effects of radiation damage. This should enable them to perform elemental and chemical mapping at high resolution, and to record the large number of views needed for 3D reconstruction of the object.

  11. Quantitative Electron Probe Microanalysis Using a Scanning Electron Microscope and an X-Ray Energy Spectrometer.

    DTIC Science & Technology

    1980-04-01

    necessary to solve the ZAF cor- rections in an iterative manner similar to that used by J . Colby 13in the Magic IV programme . In that programme the...Combined with an Energy Dispersive X-ray Analyzer for Quantitative Analysis", X-ray Spectrometry, 2, 1973. 10. Green, L.: Journ. of Phys. E. Scient ... Instrum ., 2, (3), 1973. 11. Wodke, Norbert F. and Schamber, Frederick, MS 885 Super ML Operation and Programme Description Version 1, Unpublished, Tracor

  12. Advantages of a synchrotron bending magnet as the sample illuminator for a wide-field X-ray microscope.

    PubMed

    Feser, M; Howells, M R; Kirz, J; Rudati, J; Yun, W

    2012-09-01

    In this paper the choice between bending magnets and insertion devices as sample illuminators for a hard X-ray full-field microscope is investigated. An optimized bending-magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion-device beamlines. The fact that imaging X-ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid-for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending-magnet beamlines that are dedicated to transmission X-ray microscope facilities. It is expected that demand for such facilities will increase as three-dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three-dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.

  13. Element-specific magnetic imaging with an x-ray microscope with 25 nm resolution: recent results and future goals

    NASA Astrophysics Data System (ADS)

    Denbeaux, Gregory; Chao, Weilun; Pearson, Angelic; Schneider, Gerd; Kusinski, Greg; Fischer, Peter

    2002-03-01

    The XM-1 soft x-ray microscope, located at the Advanced Light Source at Lawrence Berkeley National Laboratory has been used to image magnetization with 25 nm spatial resolution. The microscope illumination can be adjusted between 300 and 1800 eV allowing element-specific magnetic imaging with x-ray magnetic circular dichroism contrast for various elements including for Fe, Co, Ni, and Gd. This has been demonstrated to have a high sensitivity, which allows imaging of magnetic layers as thin as 3 nm. Since the imaging is photon-based, the presence of an applied magnetic field during imaging does not disrupt the image formation. Currently, samples can be imaged in an applied field of up to 3000 Oe. We will show recent results of high-resolution, element specific imaging of various multilayers and patterned structures.

  14. Evaluation of an X-ray-excited optical microscope for chemical imaging of metal and other surfaces.

    PubMed

    Sabbe, Pieter-Jan; Dowsett, Mark; Hand, Matthew; Grayburn, Rosie; Thompson, Paul; Bras, Wim; Adriaens, Annemie

    2014-12-02

    The application of a modular system for the nondestructive chemical imaging of metal and other surfaces is described using heritage metals as an example. The custom-built X-ray-excited optical luminescence (XEOL) microscope, XEOM 1, images the chemical state and short-range atomic order of the top 200 nm of both amorphous and crystalline surfaces. A broad X-ray beam is used to illuminate large areas (up to 4 mm(2)) of the sample, and the resulting XEOL emission is collected simultaneously for each pixel by a charge-coupled device sensor to form an image. The input X-ray energy is incremented across a range typical for the X-ray absorption near-edge structure (XANES) and an image collected for each increment. The use of large-footprint beams combined with parallel detection allows the power density to be kept low and facilitates complete nondestructive XANES mapping on a reasonable time scale. In this study the microscope was evaluated by imaging copper surfaces with well-defined patterns of different corrosion products (cuprite Cu2O and nantokite CuCl). The images obtained show chemical contrast, and filtering the XEOL light allowed different corrosion products to be imaged separately. Absorption spectra extracted from software-selected regions of interest exhibit characteristic XANES fingerprints for the compounds present. Moreover, when the X-ray absorption edge positions were extracted from each spectrum, an oxidation state map of the sample could be compiled. The results show that this method allows one to obtain nondestructive and noninvasive information at the micrometer scale while using full-field imaging.

  15. Image quality improvement in a hard X-ray projection microscope using total reflection mirror optics.

    PubMed

    Mimura, Hidekazu; Yamauchi, Kazuto; Yamamura, Kazuya; Kubota, Akihisa; Matsuyama, Satoshi; Sano, Yasuhisa; Ueno, Kazumasa; Endo, Katsuyoshi; Nishino, Yoshinori; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Mori, Yuzo

    2004-07-01

    A new figure correction method has been applied in order to fabricate an elliptical mirror to realize a one-dimensionally diverging X-ray beam having high image quality. Mutual relations between figure errors and intensity uniformities of diverging X-ray beams have also been investigated using a wave-optical simulator and indicate that figure errors in relatively short spatial wavelength ranges lead to high-contrast interference fringes. By using a microstitching interferometer and elastic emission machining, figure correction of an elliptical mirror with a lateral resolution close to 0.1 mm was carried out. A one-dimensional diverging X-ray obtained using the fabricated mirror was observed at SPring-8 and evaluated to have a sufficiently flat intensity distribution.

  16. Determination of the resolution of the x-ray microscope XM-1 at beamline 6.1

    SciTech Connect

    Heck, J.M.; Meyer-Ilse, W.; Attwood, D.T.

    1997-04-01

    Resolution determination in x-ray microscopy is a complex issue which depends on many factors. Many different criteria and experimental setups are used to characterize resolution. Some of the important factors affecting resolution include the partial coherence and spectrum of the illumination. The purpose of this research has been to measure the resolution of XM-1 at beamline 6.1 taking into account these factors, and to compare the measurements to theoretical calculations. The x-ray microscope XM-1, built by the Center for X-ray Optics (CXRO), has been operational since 1994 at the Advanced Light Source at E.O. Lawrence Berkeley National Laboratory. It is of the conventional (i.e. full-field) type, utilizing zone plate optics. ALS bending magnet radiation is focused by a condenser zone plate onto a monochromator pinhole immediately in front of the sample. X-rays transmitted through the sample are focused by a micro-zone plate onto a CCD camera. The pinhole and the condenser with a central stop constitute a linear monochromator. The spectral distribution of the light illuminating the sample has been calculated assuming geometrical optics.

  17. Nanoscale imaging applications of soft X-ray microscope based on a gas-puff target source

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Fiedorowicz, H.

    2017-06-01

    A compact microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in the water-window spectral range, at the wavelength of λ = 2.88 nm, is presented. The microscope, employing ellipsoidal grazing incidence condenser and a Fresnel zone plate objective, is capable of capturing images with a 60 nm spatial resolution and exposure time as low as a few seconds. Examples of different applications of the SXR microscopy, and its applicability for various fields of science, are presented and discussed.

  18. Microscopic x-ray imaging system for biomedical applications using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki

    2007-02-01

    An X-ray direct-conversion type detector with a spatial resolution of 10-11 μm was developed for real-time biomedical imaging. The detector incorporates the X-ray SATICON pickup tube with a photoconductive target layer of amorphous selenium. For high-resolution imaging, the X-ray image is directly converted into an electric signal in the photoconductive layer without image blur. Microangiography experiments were carried out for depicting angiogenic vessels in a rabbit model of cancer using the direct-conversion detector and a third generation synchrotron radiation source at SPring-8. In synchrotron radiation radiography, a long source-to-object distance and a small source spot can produce high-resolution images. After transplantation of cancer cells into the rabbit auricle, small tumor blood vessels with diameters of 20-30 μm in an immature vascular network produced by angiogenesis were visualized by contrast material injection into the auricular artery at a monochromatic X-ray energy of 33.2 keV just above the iodine K-edge energy. The synchrotron radiation system is a useful tool to evaluate the micro-angioarchitecture of malignant tumors in animal models of cancer for in vivo preclinical studies.

  19. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    SciTech Connect

    Ewald, J.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Wilhein, T.; Wessels, P.; Wieland, M.; Drescher, M.; Vogel, A.; Viefhaus, J.; Meier, G.

    2016-01-28

    Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  20. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ewald, J.; Wessels, P.; Wieland, M.; Nisius, T.; Vogel, A.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Viefhaus, J.; Meier, G.; Wilhein, T.; Drescher, M.

    2016-01-01

    Sub-nanosecond magnetization dynamics of small permalloy (Ni80Fe20) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  1. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  2. Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope

    SciTech Connect

    Policht, Veronica; /Loyola U., Chicago /SLAC

    2012-08-27

    There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

  3. Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Nevrkla, M.; Jancarek, A.; Torrisi, A.; Parkman, T.; Turnova, J.; Stolcova, L.; Vrbova, M.; Limpouch, J.; Pina, L.; Wachulak, P.

    2016-07-01

    The development and demonstration of a table-top transmission soft X-ray (SXR) microscope, using a laboratory incoherent capillary discharge source has been carried out. This Z-pinching capillary discharge water-window SXR source, is a first of its kind to be used for high spatial resolution microscopy at λ = 2.88 nm (430 eV) . A grazing incidence ellipsoidal condenser mirror is used for focusing of the SXR radiation at the sample plane. The Fresnel zone plate objective lens is used for imaging of the sample onto a back-illuminated (BI) CCD camera. The achieved half-pitch spatial resolution of the microscope approaches 100 nm, as demonstrated by the knife-edge test. Details about the source, and the construction of the microscope are presented and discussed. Additionally, the SXR images of various samples, proving applicability of such microscope for observation of objects in the nanoscale, are shown.

  4. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  5. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  6. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small

  7. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  8. In vivo microscopic x-ray imaging in rat and mouse using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Sakurai, Takashi; Kondoh, Takeshi

    2008-02-01

    A preclinical laboratory animal imaging modality similar to microangiography, with spatial resolution as high as 6 μm, has been developed at SPring-8 using an X-ray direct-conversion type detector incorporating an X-ray SATICON pickup tube. The imaging modality is intended to provide a basic understanding of disease mechanisms. In synchrotron radiation radiography, a long source-to-object distance and a small source spot can produce high-resolution images with spatial resolution in the micrometer range. Synchrotron radiation microangiography presents the main advantage of depicting the anatomy of small blood vessels with tens of micrometers' diameter. We performed cerebral microangiography in rats and mice and particularly undertook radiographical evaluation of changes in small arteries located deep in the brain; such vessels had not been observed and studied previously. Moreover, an X-ray direct-conversion type solid-state imager with spatial resolution in the micrometer range is being designed for large field-of-view imaging. This study is also intended to clarify requirements related to specifications of prospective solid-state image sensors.

  9. New reference and test materials for the characterization of energy dispersive X-ray spectrometers at scanning electron microscopes.

    PubMed

    Rackwitz, Vanessa; Krumrey, Michael; Laubis, Christian; Scholze, Frank; Hodoroaba, Vasile-Dan

    2015-04-01

    Checking the performance of energy dispersive X-ray spectrometers as well as validation of the results obtained with energy dispersive X-ray spectrometry (EDX) at a scanning electron microscope (SEM) involve the use of (certified) reference and dedicated test materials. This paper gives an overview on the test materials mostly employed by SEM/EDX users and accredited laboratories as well as on those recommended in international standards. The new BAM reference material EDS-CRM, which is currently in the process of certification, is specifically designed for the characterization of EDS systems at a SEM through calibration of the spectrometer efficiency in analytical laboratories in a simple manner. The certification of the spectra by means of a reference EDS is described. The focus is on the traceability of EDS efficiency which is ensured by measurements of the absolute detection efficiency of silicon drift detectors (SDD) and Si(Li) detectors at the laboratory of the PTB using the electron storage ring BESSY II as a primary X-ray source standard. A new test material in development at BAM for testing the performance of an EDS in the energy range below 1 keV is also briefly presented.

  10. Design and Performance of a TES X-ray Microcalorimeter Array for Energy Dispersive Spectroscopy on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Muramatsu, Haruka; Nagayoshi, K.; Hayashi, T.; Sakai, K.; Yamamoto, R.; Mitsuda, K.; Yamasaki, N. Y.; Maehata, K.; Hara, T.

    2016-07-01

    We discuss the design and performance of a transition edge sensor (TES) X-ray microcalorimeter array for scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has better energy resolution compared to conventional silicon drift detector and STEM-EDS utilizing a TES detector makes it possible to map the distribution of elements on a specimen in addition to analyze the composition. The requirement for a TES detector is a high counting rate (>20 kcps), wide energy band (0.5-15 keV) and good energy resolution (<10 eV) full width at half maximum. The major improvement of this development is to increase the maximum counting rate. In order to accommodate the high counting rate, we adopted an 8 × 8 format, 64-pixel array and common biasing scheme for the readout method. We did all design and fabrication of the device in house. With the device we have fabricated most recently, the pulse decay time is 40 \\upmu s which is expected to achieve 50 kcps. For a single pixel, the measured energy resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate and energy resolution, although several issues remain where the performance must be confirmed.

  11. Time Resolved Imaging at 10 GHz and Beyond Using the SSRL Scanning Transmission X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Ohldag, Hendrik; Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Frisch, Joseph; Dürr, Hermann; Stöhr, Joachim

    2015-03-01

    Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Such devices will e.g. employ the spin torque or spin Hall effect, whose manifestation at the nanoscale is not yet sufficiently understood. Hence, addressing these effects is of great fundamental significance. X-ray microscopy at the nanoscale is an excellent tool for the study of complex magnetic devices but it is crucial to push the time resolution and sensitivity well beyond the current capabilities. For this reason we developed a microscope with a single photon counting electronics that effectively allows us to use a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency). The sample excitation is fully synchronized with the detection as well. This setup allows us to achieve a signal to noise ratio of better than 10000, enabling us to detect miniscule variations of the x-ray absorption cross section with tens of ps of time resolution. In this talk I will describe our setup and present first results. We successfully achieved the first direct observation of so called traveling spin waves and the detection of a spin polarized current in Cu injected from an adjacent Co layer.

  12. A new transmission x-ray microscope for in-situ nano-tomography at the APS (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Andrade, Vincent; Deriy, Alex; Wojcik, Michael; Gürsoy, Doga; Shu, Deming; Mooney, Tim; Peterson, Kevin M.; Glowacki, Arthur; Yue, Ke; Yang, Xiaogang; Vescovi, Rafael; De Carlo, Francesco

    2016-10-01

    A new Transmission X-ray Microscope (TXM), optimized for in-situ nano-tomography experiments, has been designed and built at the Advanced Photon Source (APS). The instrument has been in operation for the last two years and is supporting users over large fields of Science, from energy storage and material science to natural sciences. The flexibility of our X-ray microscope design permits evolutionary geometries and can accommodate relatively heavy, up to 5 kg, and bulky in-situ cells while ensuring high spatial resolution, which is expected to improve steadily thanks to the support of the RD program led by the APS-Upgrade project on Fresnel zone plates (FZP). The robust sample stack, designed with minimum degrees of freedom shows a stability better than 4 nm rms at the sample location. The TXM operates with optics fabricated in-house. A spatial resolution of 30 nm per voxel has been demonstrated when the microscope operates with a 60 nm outermost zone width FZP with a measured efficiency of 18% at 8 keV. 20 nm FZP are also currently available and should be in routine use within the next few months once a new matching condenser is produced. In parallel, efficiency is being improved with opto-mechanical engineering (FZP stacking system) and software developments (more efficient reconstruction algorithms combined with different data acquisition schemes), enabling 3D dynamic studies when sample evolution occurs within a couple of tens of seconds.

  13. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sasaya, T.; Imai, Y.; Iwata, S.; Zama, K.; Aoki, S.

    2011-09-01

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  14. Synchrotron microscopic X-ray fluorescence analysis of the effects of chronic arsenic exposure in rat brain

    NASA Astrophysics Data System (ADS)

    Rubio, Marcelo; Perez, Roberto D.; Perez, Carlos A.; Eynard, Aldo H.; Bongiovanni, Guillermina A.

    2008-01-01

    Synchrotron microscopic X-ray fluorescence (μ-SRXRF) scanning and conventional XRF analysis were applied for studying elemental concentrations in lyophilised brain rat slices. The animals received drinking water—100 ppm of sodium arsenite—ad libitum for 30 and 60 days. Accumulation of arsenic was corroborated and its dependence with arsenic dosage suggests the existence of a protection mechanism which limits the transport of inorganic arsenic to the brain. Chlorine, potassium and iron were reduced changing their spatial distributions while copper and zinc were redistributed.

  15. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    SciTech Connect

    Watanabe, N.; Sasaya, T.; Imai, Y.; Iwata, S.; Zama, K.; Aoki, S.

    2011-09-09

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  16. Modelling microscopic features of streamer encounters, electric fields, electron beams and X-ray bursts

    NASA Astrophysics Data System (ADS)

    Koehn, C.; Kochkin, P.; Ebert, U.

    2015-12-01

    Thunderstorms emit terrestrial gamma-ray flashes (TGFs), beams of photons with quantum energies ofup to 40 MeV. Likewise electric discharges in the laboratory, mimicing lightning on a small spatial andenergetic scale, emit X-rays whose energies are limited by the available potential difference betweenthe two electrodes. For a maximal available difference of 1 MV and a gap distance of 1 m between the twoelectrodes, we will present the energy and spatial distribution of generated X-rays.For that we have followed the motion of preaccelerated, monoenergetic and monodirectional electronbeams with energies between 100 keV and the maximal available energy of 1 MeV for different electricfield configurations using a particle Monte Carlo code. Omitting any field, we present the subsequent energy and spatial distribution of X-raysand analyse how the photon number depends on the initial electron energy. Fig. 1 shows the position and energy of photons generated by Bremsstrahlung after 0.3 ns by beams of 500 000 electrons with initial energies of 1 MeV moving in the zdirection in STP air. The electrons have generated electron avalanches and all have cooleddown and attached to oxygen after 0.3 ns. Every cross represents one photon projected onto the xz plane; the photon energies Eγ are color coded. We see that photons with energies of approx. 1 MeV can be produced and that the high-energy tail of X-rays is beamedtowards the direction of the initial electron beam whereas low-energy photons show a more isotropicbehaviour. Analysing the cross sections of photons interacting with air we conclude that photons travelseveral meters in air and can reach detectors several meters from the position of the discharge. Byestimating the electric field ahead of the discharge corona and by simulating the motion of electronbeams in these fields, we exclude that electrons travel as far as photons and disturb the measured X-raysignal.

  17. Physical, X-ray diffraction and scanning electron microscopic studies of uroliths.

    PubMed

    Kumar, Naveen; Singh, Praveen; Kumar, Satish

    2006-08-01

    Identification of chemical constituents of calculus is important in the diagnosis and management of urolithiasis. The compositional variability of uroliths has different etiologies and requires various modes of treatment and prophylaxis. In the present study, we report the chemical compositional analyses of calculi recovered from buck and bullock by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques and ultra-structure examination by scanning electron microscopy (SEM). XRD and EDX investigations conclusively established the chemical compositions of urinary calculi under investigation. The calculus from buck (sample I) had calcium oxalate monohydrate, a dominant salt phase and magnesium compound in significant amount. The calculus from bullock (sample II) had magnesium ammonium phosphate phase, with significant amount of calcium in apatite form and K+ ions. SEM study at higher magnification (X 1000) showed bipyramidal crystals in external zones of urolith (sample I). The struvite apatite calculus showed that basic unit of structure was lamination and the laminitis appeared to be made up of fine granules and high porosity. The bio-mineralization process of calculus formation was also studied, with a view to take preventive and therapeutic measures for amelioration of urinary stone diseases in animals and humans.

  18. Application toward Confocal Full-Field Microscopic X-ray Absorption Near Edge Structure Spectroscopy.

    PubMed

    Tack, Pieter; Vekemans, Bart; Laforce, Brecht; Rudloff-Grund, Jennifer; Hernández, Willinton Y; Garrevoet, Jan; Falkenberg, Gerald; Brenker, Frank; Van Der Voort, Pascal; Vincze, Laszlo

    2017-02-07

    Using X-ray absorption near edge structure (XANES) spectroscopy, information on the local chemical structure and oxidation state of an element of interest can be acquired. Conventionally, this information can be obtained in a spatially resolved manner by scanning a sample through a focused X-ray beam. Recently, full-field methods have been developed to obtain direct 2D chemical state information by imaging a large sample area. These methods are usually in transmission mode, thus restricting the use to thin and transmitting samples. Here, a fluorescence method is displayed using an energy-dispersive pnCCD detector, the SLcam, characterized by measurement times far superior to what is generally applicable. Additionally, this method operates in confocal mode, thus providing direct 3D spatially resolved chemical state information from a selected subvolume of a sample, without the need of rotating a sample. The method is applied to two samples: a gold-supported magnesia catalyst (Au/MgO) and a natural diamond containing Fe-rich inclusions. Both samples provide XANES spectra that can be overlapped with reference XANES spectra, allowing this method to be used for fingerprinting and linear combination analysis of known XANES reference compounds.

  19. Quantitative analysis of microscopic X-ray computed tomography imaging: Japanese quail embryonic soft tissues with iodine staining.

    PubMed

    Tahara, Rui; Larsson, Hans C E

    2013-09-01

    Rapid three-dimensional imaging of embryos to better understand the complex process of morphogenesis has been challenging. Recently introduced iodine staining protocols (I2 KI and alcoholic iodine stains) combined with microscopic X-ray computed tomography allows visualization of soft tissues in diverse small organisms and tissue specimens. I2 KI protocols have been developed specifically for small animals, with a limited number of quantitative studies of soft tissue contrasts. To take full advantage of the low X-ray attenuation of ethanol and retain bound iodine while dehydrating the specimen in ethanol, we developed an ethanol I2 KI protocol. We present comparative microscopic X-ray computed tomography analyses of ethanol I2 KI and I2 KI staining protocols to assess the performance of this new protocol to visualize soft tissue anatomy in late stage Japanese quail embryos using quantitative measurements of soft tissue contrasts and sample shrinkage. Both protocols had only 5% shrinkage compared with the original harvested specimen, supporting the use of whole mounts to minimize tissue shrinkage effects. Discrimination within and among the selected organs with each staining protocol and microscopic X-ray computed tomography imaging were comparable to those of a gray scale histological section. Tissue discrimination was assessed using calibrated computed tomography values and a new discrimination index to quantify the degree of computed tomography value overlaps between selected soft tissue regions. Tissue contrasts were dependent on the depth of the tissue within the embryos before the embryos were saturated with each stain solution, and optimal stain saturations for the entire embryo were achieved at 14 and 28 days staining for I2 KI and ethanol I2 KI, respectively. Ethanol I2 KI provided superior soft tissue contrasts by reducing overstaining of fluid-filled spaces and differentially modulating staining of some tissues, such as bronchial and esophageal walls and

  20. Quantitative analysis of microscopic X-ray computed tomography imaging: Japanese quail embryonic soft tissues with iodine staining

    PubMed Central

    Tahara, Rui; Larsson, Hans C E

    2013-01-01

    Rapid three-dimensional imaging of embryos to better understand the complex process of morphogenesis has been challenging. Recently introduced iodine staining protocols (I2KI and alcoholic iodine stains) combined with microscopic X-ray computed tomography allows visualization of soft tissues in diverse small organisms and tissue specimens. I2KI protocols have been developed specifically for small animals, with a limited number of quantitative studies of soft tissue contrasts. To take full advantage of the low X-ray attenuation of ethanol and retain bound iodine while dehydrating the specimen in ethanol, we developed an ethanol I2KI protocol. We present comparative microscopic X-ray computed tomography analyses of ethanol I2KI and I2KI staining protocols to assess the performance of this new protocol to visualize soft tissue anatomy in late stage Japanese quail embryos using quantitative measurements of soft tissue contrasts and sample shrinkage. Both protocols had only 5% shrinkage compared with the original harvested specimen, supporting the use of whole mounts to minimize tissue shrinkage effects. Discrimination within and among the selected organs with each staining protocol and microscopic X-ray computed tomography imaging were comparable to those of a gray scale histological section. Tissue discrimination was assessed using calibrated computed tomography values and a new discrimination index to quantify the degree of computed tomography value overlaps between selected soft tissue regions. Tissue contrasts were dependent on the depth of the tissue within the embryos before the embryos were saturated with each stain solution, and optimal stain saturations for the entire embryo were achieved at 14 and 28 days staining for I2KI and ethanol I2KI, respectively. Ethanol I2KI provided superior soft tissue contrasts by reducing overstaining of fluid-filled spaces and differentially modulating staining of some tissues, such as bronchial and esophageal walls and spinal

  1. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    SciTech Connect

    Takeichi, Y. Mase, K.; Ono, K.; Inami, N.; Suga, H.; Miyamoto, C.; Ueno, T.; Takahashi, Y.

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  2. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  3. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  4. Characterization of transfer function, resolution and depth of field of a soft X-ray microscope applied to tomography enhancement by Wiener deconvolution

    PubMed Central

    Otón, Joaquín; Pereiro, Eva; Pérez-Berná, Ana J.; Millach, Laia; Sorzano, Carlos Oscar S.; Marabini, Roberto; Carazo, José M.

    2016-01-01

    Full field soft X-ray microscopy is becoming a powerful imaging technique to analyze whole cells preserved under cryo conditions. Images obtained in these X-ray microscopes can be combined by tomographic reconstruction to quantitatively estimate the three-dimensional (3D) distribution of absorption coefficients inside the cell. The impulse response of an imaging system is one of the factors that limits the quality of the X-ray microscope reconstructions. The main goal of this work is to experimentally measure the 3D impulse response and to assess the optical resolution and depth of field of the Mistral microscope at ALBA synchrotron (Barcelona, Spain). To this end we measure the microscope apparent transfer function (ATF) and we use it to design a deblurring Wiener filter, obtaining an increase in the image quality when applied to experimental datasets collected at ALBA. PMID:28018727

  5. Characterization of transfer function, resolution and depth of field of a soft X-ray microscope applied to tomography enhancement by Wiener deconvolution.

    PubMed

    Otón, Joaquín; Pereiro, Eva; Pérez-Berná, Ana J; Millach, Laia; Sorzano, Carlos Oscar S; Marabini, Roberto; Carazo, José M

    2016-12-01

    Full field soft X-ray microscopy is becoming a powerful imaging technique to analyze whole cells preserved under cryo conditions. Images obtained in these X-ray microscopes can be combined by tomographic reconstruction to quantitatively estimate the three-dimensional (3D) distribution of absorption coefficients inside the cell. The impulse response of an imaging system is one of the factors that limits the quality of the X-ray microscope reconstructions. The main goal of this work is to experimentally measure the 3D impulse response and to assess the optical resolution and depth of field of the Mistral microscope at ALBA synchrotron (Barcelona, Spain). To this end we measure the microscope apparent transfer function (ATF) and we use it to design a deblurring Wiener filter, obtaining an increase in the image quality when applied to experimental datasets collected at ALBA.

  6. Microscopic observations of X-ray and gamma-ray induced decomposition of ammonium perchlorate crystals

    NASA Technical Reports Server (NTRS)

    Herley, P. J.; Levy, P. W.

    1972-01-01

    The X-ray and gamma-ray induced decomposition of ammonium perchlorate was studied by optical, transmission, and scanning electron microscopy. This material is a commonly used oxidizer in solid propellents which could be employed in deep-space probes, and where they will be subjected to a variety of radiations for as long as ten years. In some respects the radiation-induced damage closely resembles the effects produced by thermal decomposition, but in other respects the results differ markedly. Similar radiation and thermal effects include the following: (1) irregular or ill-defined circular etch pits are formed in both cases; (2) approximately the same size pits are produced; (3) the pit density is similar; (4) the c face is considerably more reactive than the m face; and (5) most importantly, many of the etch pits are aligned in crystallographic directions which are the same for thermal or radiolytic decomposition. Thus, dislocations play an important role in the radiolytic decomposition process.

  7. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  8. Scanning Tranmission X-ray Microscopic Analysis of Purifed Melanosomes of the Mouse Iris

    SciTech Connect

    Anderson,M.; Haraszti, T.; Peterson, G.; Wirick, S.; Jacobsen, C.; John, S.; Grunze, M.

    2006-01-01

    Melanosomes are specialized intracellular membrane bound organelles that produce and store melanin pigment. The composition of melanin and distribution of melanosomes determine the color of many mammalian tissues, including the hair, skin, and iris. However, the presence of melanosomes within a tissue carries potentially detrimental risks related to the cytotoxic indole-quinone intermediates produced during melanin synthesis. In order to study melanosomal molecules, including melanin and melanin-related intermediates, we have refined methods allowing spectromicroscopic analysis of purified melanosomes using scanning transmission X-ray microscopy. Here, we present for the first time absorption data for melanosomes at the carbon absorption edge ranging from 284 to 290 eV. High-resolution images of melanosomes at discrete energies demonstrate that fully melanized mature melanosomes are internally non-homogeneous, suggesting the presence of an organized internal sub-structure. Spectra of purified melanosomes are complex, partially described by a predominating absorption band at 288.4 eV with additional contributions from several minor bands. Differences in these spectra were detectable between samples from two strains of inbred mice known to harbor genetically determined melanosomal differences, DBA/2J and C57BL/6J, and are likely to represent signatures arising from biologically relevant and tractable phenomena.

  9. X-ray microscope Imaginging of skyrmions in Ultrathin Films with Strong Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Woo, Seonghoon; Kruger, Benjamin; Kläui, Mathias; Fischer, Peter; Beach, Geoffrey; MIT Collaboration; University of Mainz Collaboration; Lawrence Berkeley National Laboratory Collaboration

    2015-03-01

    Spin textures stabilized by the Dzyaloshinskii-Moriya interaction (DMI) have been of considerable recent interest due to extraordinary static and dynamic behaviors derived from their topological nature. It has recently been shown that DMI can also manifest in buried ultrathin sputtered film stacks. Here we examine magnetic bubble domains in submicron patterned dots with strong DMI. We use magnetic transmission X-ray microscopy to image the evolution of the magnetization configuration as a function externally applied fields. We imaged a series of [Pt(3nm)/Co(0.9nm)/GdOx(3nm)]x15, where the DMI is strong, and [Pt(3nm)/Co(0.9nm)/Pt(3nm)] x15 stacks, where DMI is small enough due to symmetric structure, and 15 repeats were used to enhance XMCD contrast. We observed that the size of domain can be significantly narrower for the case of strong DMI and micromagnetic modelling confirmed the observation. We also imaged that magnetic bubbles can be easily nucleated and controlled using external fields in micronsize-disk patterns. The static stability of bubbles for two cases were tested using external bias field, showing skyrmionic bubble has larger bubble-collapse field by the factor of two. Other qualitative and quantitative measurements will also be presented.

  10. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.

    PubMed

    Larcheri, Silvia; Rocca, Francesco; Jandard, Frank; Pailharey, Daniel; Graziola, Roberto; Kuzmin, Alexei; Purans, Juris

    2008-01-01

    Investigations of complex nanostructured materials used in modern technologies require special experimental techniques able to provide information on the structure and electronic properties of materials with a spatial resolution down to the nanometer scale. We tried to address these needs through the combination of x-ray absorption spectroscopy (XAS) using synchrotron radiation microbeams with scanning near-field optical microscopy (SNOM) detection of the x-ray excited optical luminescence (XEOL) signal. This new instrumentation offers the possibility to carry out a selective structural analysis of the sample surface with the subwavelength spatial resolution determined by the SNOM probe aperture. In addition, the apex of the optical fiber plays the role of a topographic probe, and chemical and topographic mappings can be simultaneously recorded. Our working XAS-SNOM prototype is based on a quartz tuning-fork head mounted on a high stability nanopositioning system; a coated optical fiber tip, operating as a probe in shear-force mode; a detection system coupled with the microscope head control system; and a dedicated software/hardware setup for synchronization of the XEOL signal detection with the synchrotron beamline acquisition system. We illustrate the possibility to obtain an element-specific contrast and to perform nano-XAS experiments by detecting the Zn K and W L(3) absorption edges in luminescent ZnO and mixed ZnWO(4)-ZnO nanostructured thin films.

  11. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  12. X-ray fluorescence microscopic measurement of elemental distribution in the mouse retina with age.

    PubMed

    Grubman, Alexandra; Guennel, Philipp; Vessey, Kirstan A; Jones, Michael W M; James, Simon A; de Jonge, Martin D; White, Anthony R; Fletcher, Erica L

    2016-10-01

    The biologically important metals such as zinc, copper and iron play key roles in retinal function, yet no study has mapped the spatio-temporal distribution of retinal biometals in healthy or diseased retina. We investigated a natural mouse model of retinal degeneration, the Cln6(nclf) mouse. As dysfunctional metabolism of biometals is observed in the brains of these animals and deregulated metal homeostasis has been linked to retinal degeneration, we focused on mapping the elemental distribution in the healthy and Cln6(nclf) mouse retina with age. Retinal and RPE elemental homeostasis was mapped in Cln6(nclf) and C57BL6/J mice from 1 to 8 months of age using X-ray Fluorescence Microscopy at the Australian Synchrotron. In the healthy retina, we detected a progressive loss of phosphorus in the outer nuclear layer and significant reduction in iron in the inner segments of the photoreceptors. Further investigation revealed a unique elemental signature for each retinal layer, with high areal concentrations of iron and sulfur in the photoreceptor segments and calcium, phosphorus, zinc and potassium enrichment predominantly in the nuclear layers. The analysis of retinae from Cln6(nclf) mice did not show significant temporal changes in elemental distributions compared to age matched controls, despite significant photoreceptor cell loss. Our data therefore demonstrates that retinal layers have unique elemental composition. Elemental distribution is, with few exceptions, stably maintained over time in healthy and Cln6(nclf) mouse retina, suggesting conservation of elemental distribution is critical for basic retinal function with age and is not modulated by processes underlying retinal degeneration.

  13. X-ray Energy Dispersive Spectrometry during in-situ Liquid Cell Studies using an Analytical Electron Microscope

    SciTech Connect

    Zaluzec, Nestor J.; Burke, M. Grace; Haigh, Sarah J.; Kulzick, Matthew

    2014-04-01

    The use of analytical spectroscopies during scanning/transmission electron microscope (S/TEM) investigations of micro- and nano-scale structures has become a routine technique in the arsenal of tools available to today's materials researchers. Essential to implementation and successful application of spectroscopy to characterization is the integration of numerous technologies, which include electron optics, specimen holders, and associated detectors. While this combination has been achieved in many instrument configurations, the integration of X-ray energy-dispersive spectroscopy and in situ liquid environmental cells in the S/TEM has to date been elusive. In this work we present the successful incorporation/modifications to a system that achieves this functionality for analytical electron microscopy.

  14. Compact x-ray microscope for the water window based on a high brightness laser plasma source.

    PubMed

    Legall, H; Blobel, G; Stiel, H; Sandner, W; Seim, C; Takman, P; Martz, D H; Selin, M; Vogt, U; Hertz, H M; Esser, D; Sipma, H; Luttmann, J; Höfer, M; Hoffmann, H D; Yulin, S; Feigl, T; Rehbein, S; Guttmann, P; Schneider, G; Wiesemann, U; Wirtz, M; Diete, W

    2012-07-30

    We present a laser plasma based x-ray microscope for the water window employing a high-average power laser system for plasma generation. At 90 W laser power a brightness of 7.4 x 10(11) photons/(s x sr x μm(2)) was measured for the nitrogen Lyα line emission at 2.478 nm. Using a multilayer condenser mirror with 0.3 % reflectivity 10(6) photons/(μm(2) x s) were obtained in the object plane. Microscopy performed at a laser power of 60 W resolves 40 nm lines with an exposure time of 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W.

  15. Investigation into macroscopic and microscopic behaviors of wet granular soils using discrete element method and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Than, Vinh-Du; Tang, Anh-Minh; Roux, Jean-Noël; Pereira, Jean-Michel; Aimedieu, Patrick; Bornert, Michel

    2017-06-01

    We present an investigation into macroscopic and microscopic behaviors of wet granular soils using the discrete element method (DEM) and the X-ray Computed Tomography (XRCT) observations. The specimens are first prepared in very loose states, with frictional spherical grains in the presence of a small amount of an interstitial liquid. Experimental oedometric tests are carried out with small glass beads, while DEM simulations implement a model of spherical grains joined by menisci. Both in experiments and in simulations, loose configurations with solid fraction as low as 0.30 are prepared under low stress, and undergo a gradual collapse in compression, until the solid fraction of cohesionless bead packs (0.58 to 0.6) is obtained. In the XRCT tests, four 3D tomography images corresponding to different typical stages of the compression curve are used to characterize the microstructure.

  16. A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV

    SciTech Connect

    Kilcoyne, David; McKean, Pat; Tyliszczak, Tolek; Warwick, Tony; Ade, Harald; Attwood, David; Hitchcock, Adam; Mitchell, Gary; Monteiro, Paulo

    2010-06-23

    We report on the design and construction of a higher energy Scanning Transmission X-ray Microscope on a new bend magnet beam line at the Advanced Light Source. Previously we have operated such an instrument on a bend magnet for C, N and O 1s NEXAFS spectroscopy. The new instrument will have similar performance at higher energies up to and including the S 1s edge at 2472eV. A new microscope configuration is planned. A more open geometry will allow a fluorescence detector to count emitted photons from the front surface of the sample. There will be a capability for zone plate scanning in addition to the more conventional sample scanning mode. This will add the capability for imaging a massive sample at high resolution over a limited field of view, so that heavy reaction cells may be used to study processes in-situ, exploiting the longer photon attenuation length and the longer zone plate working distances available at higher photon energy. The energy range will extend down to include the C1s edge at 300eV, to allow high energy NEXAFS microscopic studies to correlate with the imaging of organics in the same sample region of interest.

  17. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope

  18. Installation of Multiple Application X-ray Imaging Undulator Microscope (MAXIMUM) at ALS: Final report, 8/15/95-8/15/96

    SciTech Connect

    1996-12-31

    MAXIMUM is short for Multiple Application X-ray IMaging Undulator Microscope, a project started in 1988 by our group at the Synchrotron Radiation Center of the University of Wisconsin-Madison. It is a scanning x-ray photoemission microscope that uses a multilayer-coated Schwarzschild objective as the focusing element. It was designed primarily for materials science studies of lateral variations in surface chemistry. Suitable problems include: lateral inhomogeneities in Schottky barrier formation, heterojunction formation, patterned samples and devices, insulating samples. Any system which has interesting properties that are not uniform as a function of spatial dimension can potentially be studied with MAXIMUM. 6 figs., 3 tabs.

  19. A Full-Field KB-FZP Microscope for Hard X-Ray Imaging with Sub 100 nm Resolution

    SciTech Connect

    Rau, C.; Crecea, V.; Peterson, K.M.; Jemian, P.R.; Richter, C.-P.; Neuhausler, U.; Schmeider, G.; Yu, X.; Braun, P.V.; Robinson, I.K.

    2007-06-28

    A full-field hard X-ray microscope has been built at the UNICAT/APS beamline 34ID-C. A Kirkpatrick-Baez mirror is used for the condenser and a micro-Fresnel Zone Plate (FZP) as the objective lens. The zone plates available give access to 50-85 nm spatial resolution operating the microscope between 6-12keV photon energy. The first tomography experiments have been performed with this device. A KB-FZP microscope has been built for sub-100 nm imaging and tomography. Features of 50 nm have been visualized at 9 keV photon energy. A 40 x 20 microns field of view of can be imaged in a minute. The first tomography experiments have been performed with this device. Further, it is planned to apply phase contrast techniques, such as the Zernike method. Both the efficiency and the resolution of the instrument can be further improved. A more efficient zone plate and an improved detector will reduce the exposure times and the use of the 50x100 times more intense so called 'pink-beam' is possible. To improve the resolution, the zone plates deliver in their third order a resolution of 15 nm. A KB-FZP microscope has been built for sub-100 nm imaging and tomography. Features of 50 nm have been visualized at 9 keV photon energy. A 40 x 20 microns field of view of can be imaged in seconds. Tomography experiments have been performed with this device. Phase objects have been visualized taking image series. Phase contrast techniques, such as the Zernike method will be tested in the future. Both the efficiency and the resolution of the instrument can be further improved. Together with the instrument for In-line phase contrast imaging the nano- and micrometer lenghtscale is covered.

  20. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  1. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet.

    PubMed

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material's overall properties.

  2. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-01

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.

  3. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    DOE PAGES

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less

  4. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    SciTech Connect

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.

  5. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet

    PubMed Central

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-01-01

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties. PMID:27680388

  6. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  7. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  8. Accurate dosimetry in scanning transmission X-ray microscopes via the cross-linking threshold dose of poly(methyl methacrylate).

    PubMed

    Leontowich, Adam F G; Hitchcock, Adam P; Tyliszczak, Tolek; Weigand, Markus; Wang, Jian; Karunakaran, Chithra

    2012-11-01

    The sensitivity of various polymers to radiation damage by soft X-rays has been measured previously with scanning transmission X-ray microscopes. However, the critical dose values reported by different groups for the same material differ by more than 100%. Possible sources of this variability are investigated here for poly(methyl methacrylate) (PMMA) using controlled exposure to monochromatic soft X-rays at 300 eV. Radiation sensitivity, judged by several different criteria, was evaluated as a function of dose rate, pre-exposure thermal treatments and X-ray polarization. Both the measured critical dose and the dose required to initiate negative mode (cross-linking) were observed to depend only on dose, not the other factors explored. A method of determining detector efficiency from the dose required to initiate negative mode in PMMA is outlined. This method was applied to many of the soft X-ray STXMs presently operating to derive the efficiencies of their transmitted X-ray detectors in the C 1s absorption-edge region.

  9. Special pattern of endochondral ossification in human laryngeal cartilages: X-ray and light-microscopic studies on thyroid cartilage.

    PubMed

    Claassen, Horst; Schicht, Martin; Sel, Saadettin; Paulsen, Friedrich

    2014-04-01

    Endochondral ossification is a process that also occurs in the skeleton of the larynx. Differences in the ossification mechanism in comparison to growth plates are not understood until now. To get deeper insights into this process, human thyroid cartilage was investigated by the use of X-rays and a series of light-microscopic stainings. A statistical analysis of mineralization was done by scanning areas of mineralized cartilage and of ossification. We detected a special mode of endochondral ossification which differs from the processes in growth plates. Thyroid cartilage ossifies very slowly and in a gender-specific manner. Compared with age-matched women, bone formation in thyroid cartilage of men is significantly higher in the age group 41-60 years. Endochondral ossification is prepared by internal changes of extracellular matrix leading to areas of asbestoid fibers with ingrowing cartilage canals. In contrast to growth plates, bone is deposited on large areas of mineralized cartilage, which appear at the rims of cartilage canals. Furthermore, primary parallel fibered bone was observed which was deposited on woven bone. The predominant bone type is cancellous bone with trabeculae, whereas compact bone with Haversian systems was seldom found. Trabeculae contain a great number of reversal and arresting lines meaning that the former were often reconstructed and that bone formation was arrested and resumed again with advancing age. It is hypothesized that throughout life trabeculae of ossified thyroid cartilage undergo adaptation to different loads due to the use of voice.

  10. Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone

    PubMed Central

    Nango, Nobuhito; Kubota, Shogo; Takeuchi, Akihisa; Suzuki, Yoshio; Yashiro, Wataru; Momose, Atsushi; Matsuo, Koichi

    2013-01-01

    The three-dimensional network of lacunae and canaliculi that regulates metabolism in bone contains osteocytes and their dendritic processes. We constructed a synchrotron radiation X-ray microscope for sequential tomography of mouse tibia first by using a Talbot interferometer to detect the degree of bone mineralization and then by using absorption contrast under a slightly defocused setting to enhance outline contrast thereby visualizing structures of the osteocyte lacuno-canalicular network. The resultant pair of tomograms was precisely aligned with each other, allowing evaluation of mineral density in the vicinity of each osteocyte lacuna and canaliculus over the entire thickness of the cortical bone. Thus, multiscan microscopic X-ray tomography is a powerful tool for analyzing bone mineralization in relation to the lacuno-canalicular network at the submicron resolution level. PMID:23761853

  11. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    SciTech Connect

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  12. Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope.

    PubMed

    Yamada, Jumpei; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto

    2017-02-01

    We propose the use of two pairs of concave-convex mirrors as imaging optics for the compact full-field x-ray microscope with high resolution and magnification factors. The optics consists of two pairs of hyperbolic convex and elliptical concave mirrors with the principal surface near the object, consequently enabling the focal length to be 10 times shorter than conventional advanced Kirkpatrick-Baez mirror optics. This paper describes characteristics of the optics calculated by ray-tracing and wave-optical simulators. The expected spatial resolution is approximately 40 nm with a wide field of view of more than 10 μm and a total length of about 2 m, which may lead to the possibility of laboratory-sized, achromatic, and high-resolution full-field x-ray microscopes.

  13. Calibration of remote mineralogy algorithms using modal analyses of Apollo soils by X-ray diffraction and microscopic spectral imaging

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Taylor, J.; Martel, L.; Lucey, P. G.; Blake, D. F.

    2012-12-01

    We have launched a project to determine the modal mineralogy of over 100 soils from all Apollo sites using quantitative X-ray diffraction (XRD) and microscopic hyperspectral imaging at visible, near-IR and thermal IR wavelengths. The two methods are complementary: XRD is optimal for obtaining the major mineral modes because its measurement is not limited to the surfaces of grains, whereas the hyperspectral imaging method allows us to identify minerals present even down to a single grain, well below the quantitative detection limit of XRD. Each soil is also sent to RELAB to obtain visible, near-IR, and thermal-IR reflectance spectra. The goal is to use quantitative mineralogy in comparison with spectra of the same soils and with remote sensing data of the sampling stations to improve our ability to extract quantitative mineralogy from remote sensing observations. Previous groups have demonstrated methods for using lab mineralogy to validate remote sensing. The LSCC pioneered the method of comparing mineralogy to laboratory spectra of the same soils (Pieters et al. 2002); Blewett et al. (1997) directly compared remote sensing results for sample sites with lab measurements of representative soils from those sites. We are building upon the work of both groups by expanding the number of soils measured to 128, with an emphasis on immature soils to support recent work studying fresh exposures like crater central peaks, and also by incorporating the recent high spatial and spectral resolution data sets over expanded wavelength ranges (e.g. Diviner TIR, M3 hyperspectral VNIR) not available at the time of the previous studies. We have thus far measured 32 Apollo 16 soils using quantitative XRD and are continuing with our collection of soils from the other landing sites. We have developed a microscopic spectral imaging system that includes TIR, VIS, and NIR capabilities and have completed proof-of-concept scans of mineral separates and preliminary lunar soil scans with plans

  14. Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses.

    PubMed

    Kang, Hyon Chol; Yan, Hanfei; Chu, Yong S; Lee, Su Yong; Kim, Jungdae; Nazaretski, Evgeny; Kim, Chan; Seo, Okkyun; Noh, Do Young; Macrander, Albert T; Stephenson, G Brian; Maser, Jörg

    2013-08-21

    We report a study of the oxidation process of individual PtNi nanoparticles (NPs) conducted with a novel scanning multi-layer Laue lens X-ray microscope. The elemental maps reveal that alloyed PtNi NPs were transformed into Pt/NiO core-shell NPs by thermal oxidation. The observations furthermore indicate that a coalescence of Pt/NiO core-shell NPs occurred during oxidation.

  15. Cryotomography x-ray microscopy state

    SciTech Connect

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  16. An in-vacuum x-ray diffraction microscope for use in the 0.7-2.9 keV range

    SciTech Connect

    Vine, D. J.; Williams, G. J.; Clark, J. N.; Putkunz, C. T.; Abbey, B.; Nugent, K. A.; Pfeifer, M. A.; Legnini, D.; Roehrig, C.; Wrobel, E.; McNulty, I.; Huwald, E.; Riessen, G. van; Peele, A. G.; Beetz, T.; Irwin, J.; Feser, M.; Hornberger, B.

    2012-03-15

    A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result.

  17. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    PubMed

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  18. Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: a simulation study based on synchrotron data.

    PubMed

    Martin, N; Bertheau, J; Bleuet, P; Charbonnier, J; Hugonnard, P; Laloum, D; Lorut, F; Tabary, J

    2013-02-01

    While microelectronic devices are frequently characterized with surface-sensitive techniques having nanometer resolution, interconnections used in 3D integration require 3D imaging with high penetration depth and deep sub-micrometer spatial resolution. X-ray tomography is well adapted to this situation. In this context, the purpose of this study is to assess a versatile and turn-key tomographic system allowing for 3D x-ray nanotomography of copper pillars. The tomography tool uses the thin electron beam of a scanning electron microscope (SEM) to provoke x-ray emission from specific metallic targets. Then, radiographs are recorded while the sample rotates in a conventional cone beam tomography scheme that ends up with 3D reconstructions of the pillar. Starting from copper pillars data, collected at the European Synchrotron Radiation Facility, we build a 3D numerical model of a copper pillar, paying particular attention to intermetallics. This model is then used to simulate physical radiographs of the pillar using the geometry of the SEM-hosted x-ray tomography system. Eventually, data are reconstructed and it is shown that the system makes it possible the quantification of 3D intermetallics volume in copper pillars. The paper also includes a prospective discussion about resolution issues.

  19. Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: A simulation study based on synchrotron data

    SciTech Connect

    Martin, N.; Bertheau, J.; Charbonnier, J.; Hugonnard, P.; Lorut, F.; Bleuet, P.; Tabary, J.; Laloum, D.

    2013-02-15

    While microelectronic devices are frequently characterized with surface-sensitive techniques having nanometer resolution, interconnections used in 3D integration require 3D imaging with high penetration depth and deep sub-micrometer spatial resolution. X-ray tomography is well adapted to this situation. In this context, the purpose of this study is to assess a versatile and turn-key tomographic system allowing for 3D x-ray nanotomography of copper pillars. The tomography tool uses the thin electron beam of a scanning electron microscope (SEM) to provoke x-ray emission from specific metallic targets. Then, radiographs are recorded while the sample rotates in a conventional cone beam tomography scheme that ends up with 3D reconstructions of the pillar. Starting from copper pillars data, collected at the European Synchrotron Radiation Facility, we build a 3D numerical model of a copper pillar, paying particular attention to intermetallics. This model is then used to simulate physical radiographs of the pillar using the geometry of the SEM-hosted x-ray tomography system. Eventually, data are reconstructed and it is shown that the system makes it possible the quantification of 3D intermetallics volume in copper pillars. The paper also includes a prospective discussion about resolution issues.

  20. Use of the Scanning Electron Microscope to Develop Knowledge About the Geological Source Area in Rocks by Comparing Relative Intensities of X-ray Peaks

    NASA Astrophysics Data System (ADS)

    Patterson, Casey; Quarles, C. A.

    2001-10-01

    Use of the Scanning Electron Microscope to Develop Knowledge About the Geological Source Area in Rocks by Comparing Relative Intensities of X-ray Peaks PATTERSON, C., Department of Geology, Department of Physics, Texas Christian University, QUARLES, C.A., Department of Physics, Texas Christian University, Fort Worth, Texas The generation of characteristic X-rays by use of the Scanning Electron Microscope (SEM) allows scientists of all fields to determine the elemental makeup of a sample under study. Geologically, circumstances exist where the mineralogical makeup of a rock sample is too fine-grained to determine with a hand lens or optical microscope. Knowledge of the mineralogical composition of a rock sample reflects on the rock type at the source area. This can ultimately allow geologists to determine ancient environments of deposition, including climate, as well as establish ideas on spatial events in geologic history. The rock sample used in this experiment was a piece of the Barnett Shale, taken from a petroleum source rock core at Mitchell Energy well T.P. Sims 2, drilled in Wise County, Texas. Once the sample is placed under the SEM and X-ray measurements are taken, the spectrum is then analyzed to label characteristic peak energies and match it with an element. Then, a first-order correction can be made for the absorption of lower energy photons by the Be window into the detector, the Au plating on the Si crystal, and for the Si crystal itself. Finally, a second-order correction can be made for the K-shell ionization cross section of each element seen on the X-ray spectrum. The resulting number of counts in each peak, after both corrections, represents an overall bulk chemical composition of the sample. With this information, one can analyze the data and logically deduce the amount and type of minerals in the sample, which, in turn, will allow for conclusions about the source area.

  1. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    NASA Astrophysics Data System (ADS)

    Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; Conley, R.; McKinney, W. R.; Artemiev, N. A.; Bouet, N.; Cabrini, S.; Calafiore, G.; Lacey, I.; Peroz, C.; Babin, S.

    2015-12-01

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  2. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope.

    PubMed

    Yashchuk, V V; Fischer, P J; Chan, E R; Conley, R; McKinney, W R; Artemiev, N A; Bouet, N; Cabrini, S; Calafiore, G; Lacey, I; Peroz, C; Babin, S

    2015-12-01

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  3. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be

  4. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be

  5. Determination of the sequence of intersecting lines from laser toner and seal ink by Fourier transform infrared microspectroscopy and scanning electron microscope / energy dispersive X-ray mapping.

    PubMed

    Wang, Yuanfeng; Li, Bing

    2012-06-01

    The aim of this study was to verify that the combination of Fourier transform infrared microspectroscopy and scanning electron microscope / energy dispersive X-ray mapping could be applied to line intersection problems. The spectral data of red seal ink, laser toner and their intersections, such as peak location and peak intensity, were described. Relative peak height ratios of different chemical components in intersecting lines were used to distinguish the sequences. Energy dispersive X-ray mapping characteristics of intersecting areas were also detailed. The results show that both the laser toner and the seal ink appear on the surface of intersections, regardless of the sequence. The distribution of the two inks on the surface is influenced not only by the sequence of heterogeneous lines but also by diffusion. Fourier transform infrared microspectroscopy and scanning electron microscope/energy dispersive X-ray mapping are able to explore the chemical components and the corresponding elemental distribution in the intersections. The combination of these two techniques has provided a reliable method for sequencing intersecting lines of red seal ink and laser toner, and more importantly, this method may be a basis for sequencing superimposed lines from other writing instruments.

  6. Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques.

    PubMed

    Singh, Shashi B; Wang, Yu-Fu; Shao, Yu-Cheng; Lai, Hsuan-Yu; Hsieh, Shang-Hsien; Limaye, Mukta V; Chuang, Chen-Hao; Hsueh, Hung-Chung; Wang, Hsaiotsu; Chiou, Jau-Wern; Tsai, Hung-Ming; Pao, Chih-Wen; Chen, Chia-Hao; Lin, Hong-Ji; Lee, Jyh-Fu; Wu, Chun-Te; Wu, Jih-Jen; Pong, Way-Faung; Ohigashi, Takuji; Kosugi, Nobuhiro; Wang, Jian; Zhou, Jigang; Regier, Tom; Sham, Tsun-Kong

    2014-08-07

    Efforts have been made to elucidate the origin of d(0) magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.

  7. Measurement of the modulation transfer function of an X-ray microscope based on multiple Fourier orders analysis of a Siemens star.

    PubMed

    Otón, Joaquín; Sorzano, Carlos Oscar S; Marabini, Roberto; Pereiro, Eva; Carazo, Jose M

    2015-04-20

    Soft X-ray tomography (SXT) is becoming a powerful imaging technique to analyze eukaryotic whole cells close to their native state. Central to the analysis of the quality of SXT 3D reconstruction is the estimation of the spatial resolution and Depth of Field of the X-ray microscope. In turn, the characterization of the Modulation Transfer Function (MTF) of the optical system is key to calculate both parameters. Consequently, in this work we introduce a fully automated technique to accurately estimate the transfer function of such an optical system. Our proposal is based on the preprocessing of the experimental images to obtain an estimate of the input pattern, followed by the analysis in Fourier space of multiple orders of a Siemens Star test sample, extending in this way its measured frequency range.

  8. Microscopic theory of resonant soft-x-ray scattering in materials with charge order: the example of charge stripes in high-temperature cuprate superconductors.

    PubMed

    Benjamin, David; Abanin, Dmitry; Abbamonte, Peter; Demler, Eugene

    2013-03-29

    We present a microscopic theory of resonant soft-x-ray scattering that accounts for the delocalized character of valence electrons. Unlike past approaches based on local form factors, our functional determinant method treats realistic band structures. This method builds upon earlier theoretical work in mesoscopic physics and accounts for excitonic effects as well as the orthogonality catastrophe arising from interaction between the core hole and the valence band electrons. We show that the two-peak structure observed near the O K edge of stripe-ordered La1.875Ba0.125CuO4 is due to dynamical nesting within the canonical cuprate band structure. Our results provide evidence for reasonably well-defined, high-energy quasiparticles in cuprates and establish resonant soft-x-ray scattering as a bulk-sensitive probe of the electron quasiparticles.

  9. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    SciTech Connect

    Yashchuk, V. V. Chan, E. R.; Lacey, I.; Fischer, P. J.; Conley, R.; McKinney, W. R.; Artemiev, N. A.; Bouet, N.; Cabrini, S.; Calafiore, G.; Peroz, C.; Babin, S.

    2015-12-15

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  10. Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4

    DOE PAGES

    Stand, L.; Zhuravleva, M.; Chakoumakos, Bryan C.; ...

    2015-09-25

    We report two new ternary metal halide scintillators, KBa2I5 and K2BaI4, activated with divalent europium. Single crystal X-ray diffraction measurements confirmed that KBa2I5 has a monoclinic structure (P21/c) and that K2BaI4 has a rhombohedral structure (R3c). Differential scanning calorimetry showed singular melting and crystallization points, making these compounds viable candidates for melt growth. We grew 13 mm diameter single crystals of KBa2I5:Eu2+ and K2BaI4:Eu2+ in evacuated quartz ampoules via the vertical Bridgman technique. The optimal Eu2+ concentration was 4% for KBa2I5 and 7% for K2BaI4. The X-ray excited emissions at 444 nm for KBa2I5:Eu 4% and 448 nm for K2BaI4:Eumore » 7% arise from the 5d-4f radiative transition in Eu2+. KBa2I5:Eu 4% has a light yield of 90,000 photons/MeV, with an energy resolution of 2.4% and K2BaI4:Eu 7% has a light yield of 63,000 ph/MeV, with an energy resolution of 2.9% at 662 keV. Both crystals have an excellent proportional response to a wide range of gamma-ray energies.« less

  11. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors

    PubMed Central

    Matsuyama, Satoshi; Yasuda, Shuhei; Yamada, Jumpei; Okada, Hiromi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2017-01-01

    X-ray spectromicroscopy with a full-field imaging technique is a powerful method for chemical analysis of heterogeneous complex materials with a nano-scale spatial resolution. For imaging optics, an X-ray reflective optical system has excellent capabilities with highly efficient, achromatic, and long-working-distance properties. An advanced Kirkpatrick–Baez geometry that combines four independent mirrors with elliptic and hyperbolic shapes in both horizontal and vertical directions was developed for this purpose, although the complexity of the system has a limited applicable range. Here, we present an optical system consisting of two monolithic imaging mirrors. Elliptic and hyperbolic shapes were formed on a single substrate to achieve both high resolution and sufficient stability. The mirrors were finished with a ~1-nm shape accuracy using elastic emission machining. The performance was tested at SPring-8 with a photon energy of approximately 10 keV. We could clearly resolve 50-nm features in a Siemens star without chromatic aberration and with high stability over 20 h. We applied this system to X-ray absorption fine structure spectromicroscopy and identified elements and chemical states in specimens of zinc and tungsten micron-size particles. PMID:28406227

  12. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors.

    PubMed

    Matsuyama, Satoshi; Yasuda, Shuhei; Yamada, Jumpei; Okada, Hiromi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2017-04-13

    X-ray spectromicroscopy with a full-field imaging technique is a powerful method for chemical analysis of heterogeneous complex materials with a nano-scale spatial resolution. For imaging optics, an X-ray reflective optical system has excellent capabilities with highly efficient, achromatic, and long-working-distance properties. An advanced Kirkpatrick-Baez geometry that combines four independent mirrors with elliptic and hyperbolic shapes in both horizontal and vertical directions was developed for this purpose, although the complexity of the system has a limited applicable range. Here, we present an optical system consisting of two monolithic imaging mirrors. Elliptic and hyperbolic shapes were formed on a single substrate to achieve both high resolution and sufficient stability. The mirrors were finished with a ~1-nm shape accuracy using elastic emission machining. The performance was tested at SPring-8 with a photon energy of approximately 10 keV. We could clearly resolve 50-nm features in a Siemens star without chromatic aberration and with high stability over 20 h. We applied this system to X-ray absorption fine structure spectromicroscopy and identified elements and chemical states in specimens of zinc and tungsten micron-size particles.

  13. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Yasuda, Shuhei; Yamada, Jumpei; Okada, Hiromi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2017-04-01

    X-ray spectromicroscopy with a full-field imaging technique is a powerful method for chemical analysis of heterogeneous complex materials with a nano-scale spatial resolution. For imaging optics, an X-ray reflective optical system has excellent capabilities with highly efficient, achromatic, and long-working-distance properties. An advanced Kirkpatrick-Baez geometry that combines four independent mirrors with elliptic and hyperbolic shapes in both horizontal and vertical directions was developed for this purpose, although the complexity of the system has a limited applicable range. Here, we present an optical system consisting of two monolithic imaging mirrors. Elliptic and hyperbolic shapes were formed on a single substrate to achieve both high resolution and sufficient stability. The mirrors were finished with a ~1-nm shape accuracy using elastic emission machining. The performance was tested at SPring-8 with a photon energy of approximately 10 keV. We could clearly resolve 50-nm features in a Siemens star without chromatic aberration and with high stability over 20 h. We applied this system to X-ray absorption fine structure spectromicroscopy and identified elements and chemical states in specimens of zinc and tungsten micron-size particles.

  14. X-ray imaging and x-ray source development at Lawrence Livermore National Laboratory

    SciTech Connect

    Trebes, J.; Balhorn, R.; Anderson, E.

    1993-12-01

    The Laser Program at Lawrence Livermore National Laboratory has a continuing effort to develop both x-ray sources and x-ray sources and x-ray microscopy. This effort includes the ongoing development of: (1) a wide range of x-ray lasers at the Nova Laser Facility, (2) a zone plate lens--multilayer mirror based x-ray microscope (3) three dimensional, high resolution x-ray microscopy (4) short wavelength, normal incidence multilayer x-ray mirrors, (5) compact, high average power lasers for producing x-ray lasers and laser plasma x-ray sources. We have constructed and operated an x-ray laser based transmission x-ray microscope. The advantage offered by the x-ray laser source is the extreme high brightness allows high resolution images to be made on a timescale faster than that for x-ray damage effects to appear. The microscope, consists of: the x-ray laser, a multilayer coated, near normal incidence spherical mirror used as a condenser, a silicon nitride specimen holder, an x-ray zone plate used as an objective lens, and a microchannel plate x-ray detector. The x-ray laser used is the Ni-like Ta x-ray laser operating with a wavelength of 4.48 nm, a pulselength of 200 spec, a divergence of 10 mrad, and an output energy of 10 microjoules.

  15. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    PubMed

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM.

  16. Quantitative X-ray Elemental Imaging in Plant Materials at the Subcellular Level with a Transmission Electron Microscope: Applications and Limitations

    PubMed Central

    Chen, Shaoliang; Diekmann, Heike; Janz, Dennis; Polle, Andrea

    2014-01-01

    Energy-dispersive X-ray microanalysis (EDX) is a technique for determining the distribution of elements in various materials. Here, we report a protocol for high-spatial-resolution X-ray elemental imaging and quantification in plant tissues at subcellular levels with a scanning transmission electron microscope (STEM). Calibration standards were established by producing agar blocks loaded with increasing KCl or NaCl concentrations. TEM-EDX images showed that the salts were evenly distributed in the agar matrix, but tended to aggregate at high concentrations. The mean intensities of K+, Cl−, and Na+ derived from elemental images were linearly correlated to the concentrations of these elements in the agar, over the entire concentration range tested (R > 0.916). We applied this method to plant root tissues. X-ray images were acquired at an actual resolution of 50 nm × 50 nm to 100 nm × 100 nm. We found that cell walls exhibited higher elemental concentrations than vacuoles. Plants exposed to salt stress showed dramatic accumulation of Na+ and Cl− in the transport tissues, and reached levels similar to those applied in the external solution (300 mM). The advantage of TEM-EDX mapping was the high-spatial-resolution achieved for imaging elemental distributions in a particular area with simultaneous quantitative analyses of multiple target elements. PMID:28788612

  17. Freeze-fracture electron microscopic and low temperature x-ray scattering studies of the effect of cryofixation upon serum low density lipoprotein structure.

    PubMed

    Aggerbeck, L P; Gulik-Krzywicki, T

    1982-06-01

    We report here a correlated X-ray diffraction and freeze-fracture electron microscope study of the effects of several cryofixation procedures upon human serum low density lipoprotein (LDL2) structure. Only when the LDL2 solutions contained 75%, by weight, glycerol were the room temperature and post cryofixation low temperature LDL2 X-ray scattering curves indistinguishable from one another. Other cryofixation procedures, slow or rapid, with or without glycerol, resulted in differences between the room temperature and low temperature LDL2 X-ray scattering curves, in part due to the effect of quenching upon the solvent. Freeze-etching electron microscopy of the slowly cryofixed LDL2 showed marked aggregation of the particles and an unusual morphological appearance. In contrast, after rapid cryofixation or cryofixation in the presence of glycerol, freeze-etch electron microscopy revealed well-isolated particles which had a knobby morphology. The results demonstrate that under certain conditions (in the presence of 75% glycerol) cryofixation results in minimal, if any, structural alteration of, at least, the LDL2 lipid moiety. Further, this study underlines the more general conclusion that any high resolution structural study employing a cryofixation step must be interpreted with caution and the effect of cryofixation upon the sample structure need be evaluated by independent means.

  18. Characterization and optimization of images acquired by a compact soft X-ray microscope based on a double stream gas-puff target source

    NASA Astrophysics Data System (ADS)

    Torrisi, A.; Wachulak, P.; Fahad Nawaz, M.; Bartnik, A.; Węgrzyński, L.; Jancarek, A.; Fiedorowicz, H.

    2016-04-01

    Using a table-top size soft X-ray (SXR) microscope, based on a laser plasma source with a double stream gas-puff target and a Fresnel zone plate objective, series of images of test samples were acquired. Characterization and optimization of the acquisition parameters were studied and evaluated in terms of signal to noise ratio (SNR). Conclusions for the optimization of SXR imaging were reached. Similar SNR measurements might be performed to characterize other SXR imaging systems as well. Software enabling live calculation of the SNR during the image acquisition might be introduced in future in the compact imaging systems for optimal image acquisition or for benchmarking purposes.

  19. Spatial Imaging And Speciation of Lead in the Accumulator Plant Sedum Alfredii By Microscopically Focused Synchrotron X-Ray Investigation

    SciTech Connect

    Tian, S.; Lu, L.; Yang, X.; Webb, S.M.; Du, Y.; Brown, P.H.; /SLAC

    2012-08-23

    Sedum alfredii (Crassulaceae), a species native to China, has been characterized as a Zn/Cd cohyperaccumulator and Pb accumulator though the mechanisms of metal tolerance and accumulation are largely unknown. Here, the spatial distribution and speciation of Pb in tissues of the accumulator plant was investigated using synchrotron-based X-ray microfluorescence and powder Extended X-ray absorption fine structure (EXAFS) spectroscopy. Lead was predominantly restricted to the vascular bundles of both leaf and stem of the accumulator. Micro-XRF analysis revealed that Pb distributed predominantly within the areas of vascular bundles, and a positive correlation between the distribution patterns of S and Pb was observed. The dominant chemical form of Pb (>60%) in tissues of both accumulating (AE) and nonaccumulating ecotype (NAE) S. alfredii was similar to prepared Pb-cell wall compounds. However, the percentage of the Pb-cell wall complex is lower in the stem and leaf of AE, and a small amount of Pb appeared to be associated with SH-compounds. These results suggested a very low mobility of Pb out of vascular bundles, and that the metal is largely retained in the cell walls during transportation in plants of S. alfredii.

  20. An X-ray fluorescence microscopic analysis of the tissue surrounding the multi-channel cochlear implant electrode array.

    PubMed

    Spiers, Kathryn; Cardamone, Tina; Furness, John B; Clark, Jonathan C M; Patrick, James F; Clark, Graeme M

    2016-05-01

    The aim of this study was to analyse the tissue surrounding the University of Melbourne's (UOMs) multi-channel cochlear implant electrode array and cochlear limited replacements, after long-term implantations. In particular, it aimed to identify the particulate material in the fibrous tissue capsule of the arrays implanted in 1978, 1983, and 1998, by using the Australian Synchrotron for X-ray fluorescence microscopy (XFM) to reveal the characteristic spectrum of metal, in particular platinum. This also helped to determine its format and chemical state. Tissue was retrieved following the recipient's death in 2007. Tissue was fixed and sections taken across the UOM and Cochlear Corporation (CI-22 and CI-24) electrode tracks. These were stained with Masson's trichrome. The Australian Synchrotron enabled XFM to accurately identify platinum from its characteristic fluorescence spectrum. There was a fibrous tissue capsule (about 100-µm thick) and small regions of calcification around the UOM and CI-22 arrays, but a thinner capsule (40-60-µm thick) around CI-24, and a greater degree of calcification. Dark particulate matter was observed within macrophages and especially in fibrous tissue in proximity to the UOM and CI-22 arrays. This was identified as platinum using X-ray fluorescence. There was also diffusion of platinum into the tissue surrounding the UOM and CI-22 electrodes and fine particles had penetrated the spiral ligament. The larger particulate matter in the tissue around the UOM and CI-22 arrays suggested that it had flaked off in the manufacturing of the UOM electrodes. The more diffuse spread of platinum in the tissue around the UOM and CI-22 electrodes was likely due to electrolysis, probably from charge imbalance with the bipolar pulses from the UOM implant. This did not occur with the Cochlear CI-24 device. Furthermore, the widespread fine particles of platinum could have also been due to corrosion, especially from the UOM electrodes.

  1. Microscopic Magnetic Properties of the Itinerant Metamagnet UCoAl by X-ray Magnetic Circular Dichroism

    NASA Astrophysics Data System (ADS)

    Combier, Tristan; Palacio-Morales, Alexandra; Sanchez, Jean-Pierre; Wilhelm, Fabrice; Pourret, Alexandre; Brison, Jean-Pascal; Aoki, Dai; Rogalev, Andrei

    2017-02-01

    The itinerant metamagnet UCoAl has been investigated by high field X-ray magnetic circular dichroism (XMCD) at the U M4,5 and Co K edges. The orbital and spin moments of U at 2.1 K for H || c applied below and above the first order metamagnetic transition field (HM) have been determined. The magnetism of UCoAl is dominated by the U moment. There is no evidence for any change of the orbital to spin moment ratio (˜-2.05) across HM and within the ferromagnetic phase up to 17 T. The possibility of a Fermi surface reconstruction at HM remains an open option. XMCD at the Co K-edge reveals the presence of a small Co 4p-orbital moment parallel to the macroscopic magnetization. In addition, the Co 3d-moment is estimated to be at most 0.1 μB at 17 T. The similar field dependence of the U and Co magnetizations indicates that the Co moment is induced by the U moment.

  2. Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Jancarek, Alexandr; Nevrkla, Michal; Duda, Martin Jakub; Pina, Ladislav

    2017-05-01

    The development and demonstration of a soft X-ray (SXR) microscope, based on a Z-pinching capillary discharge source has been realized. The Z-pinching plasma acts as a source of SXR radiation. A ceramic capacitor bank is pulsed charged up to 80 kV, and discharged through a pre- ionized nitrogen filled ceramic capillary. The discharge current has an amplitude of 25 kA. Working within the water-window spectral region (λ = 2.88 nm), corresponding to the 1s2-1s2p quantum transition of helium-like nitrogen (N5+), the microscope has a potential in exploiting the natural contrast existing between the K-absorption edges of carbon and oxygen as the main constituents of biological materials, and hence imaging them with high spatial resolution. The SXR microscope uses the grazing incidence ellipsoidal condenser mirror for the illumination, and the Fresnel zone plate optics for the imaging of samples onto a BI-CCD camera. The half- pitch spatial resolution of 100 nm [1] was achieved, as demonstrated by the knife-edge test. In order to enhance the photon-flux at the sample plane, a new scheme for focusing the radiation, from multiple capillary sources has been investigated. Details about the source, and the construction of the microscope are presented and discussed.

  3. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by x-ray diffraction

    DOE PAGES

    E. M. Forgan; Huecker, M.; Blackburn, E.; ...

    2015-12-09

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicularmore » to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.« less

  4. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    PubMed Central

    Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.

    2015-01-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements. PMID:26648114

  5. Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Watanabe, Norio; Asami, Hiroshi; Shimada, Akihiro

    2016-04-01

    An axisymmetric multi-mirror system for neutron and X-ray microscopes is proposed to increase their numerical aperture and collection efficiency. A Wolter type-I mirror is used as the basis of the multi-mirror system at grazing incidence. The addition of an even number of hyperboloid mirrors to the Wolter type-I mirror can satisfy both an equal optical path length and Abbe's sine condition. The numerical aperture increases in proportion to the number of mirrors. The optical parameters of the system with four tandem mirrors are calculated for neutrons and X-rays with a wavelength of 0.4 nm by assuming that the average grazing angle of incidence is 5.4 mrad and the magnification is 10. The inner diameters of the mirrors are limited to <10 mm considering the total length of the optical system. Tolerance of off-axis distance was calculated using a ray-tracing computer simulation. Ray tracing shows that a blur size <14 nm will be possible at an off-axis displacement of 10 μm.

  6. The 3D microscopic 'signature' of strain within glacial sediments revealed using X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Tarplee, Mark F. V.; van der Meer, Jaap J. M.; Davis, Graham R.

    2011-11-01

    X-ray computed microtomography (μCT), a non-destructive analytical technique, was used to create volumetric three-dimensional (3D) models representing the internal composition and structure of undisturbed pro- and subglacial soft sediment sample plugs for the purposes of identifying and analysing kinematic indicators. The technique is introduced and a methodology is presented addressing specific issues relating to the investigation of unlithified, polymineralic sediments. Six samples were selected based on their proximity to 'type' brittle and ductile deformation structures, or because of their perceived suitability for successful application of the technique. Analysis of a proglacial 'ideal' specimen permitted the 3D geometry of a suite of micro-faults and folds to be investigated and the strain history of the sample reconstructed. The poor contrast achieved in scanning a diamicton of glaciomarine origin is attributable to overconsolidation under normal loading, the sediment demonstrated to have undergone subsequent subglacial deformation. Another overconsolidated diamicton contains an extensive, small scale (<20 μm) network of fractures delineating a 'marble-bed' structure, hitherto unknown at this scale. A volcanic lithic clast contrasts well with the surrounding matrix in a 'lodgement' till sample containing μCT (void) and thin-section evidence of clast ploughing. Initial ductile deformation was followed by dewatering of the matrix, which led to brittle failure and subsequent emplacement. Compelling evidence of clast rotation is located in the top of another sample, μCT analysis revealing that the grain has a proximal décollement surface orientated parallel to the plane of shear. The lenticular morphology of the rotational structure defined suggests an unequal distribution of forces along two of the principal stress axes. The excellent contrast between erratics contained within a sample and the enclosing till highlight the considerable potential of the

  7. Oxygen-isotope, X-ray-diffraction and scanning-electron-microscope examinations of authigenic-layer-silicate minerals from Mississippian and Pennsylvanian sandstones in the Michigan Basin

    USGS Publications Warehouse

    Zacharias, K.F.; Sibley, D.F.; Westjohn, D.B.; Weaver, T. L.

    1993-01-01

    Oxygen-isotope compositions of authigenic-layer silicates (<2-micrometer fraction) extracted from Mississippian and Pennsylvanian sandstones in the Lower Peninsula of Michigan were determined. Petrographic and scanning-electron-microscope examinations, and X-ray diffractograms show that chlorite and kaolinite are the most common authigenic-layer silicates in Mississippian sandstones. The range of oxygen-isotope compositions of chlorite and kaolinite are +10.3 to +11.9 and +12.9 to +19.3 pars per thousand (per mil) (relative to Standard Mean Ocean Water), respectively. Kaolinite is the only authigenic-isotopic compositions of kaolinite range from +16.8 to +19.0 per mil.

  8. Microscopic structures of tri-n-butyl phosphate/n-octane mixtures by X-ray and neutron scattering in a wide q range.

    PubMed

    Motokawa, Ryuhei; Suzuki, Shinichi; Ogawa, Hiroki; Antonio, Mark R; Yaita, Tsuyoshi

    2012-02-02

    Tri-n-butyl phosphate (TBP) is an important extractant for separating hexavalent uranium and tetravalent plutonium from used nuclear fuel by solvent extraction. In such solvent extractions using TBP, the organic phase occasionally separates into two organic phases, namely, light and heavy organic phases. The latter one in particular is called the third phase. The purpose of this work is to elucidate the mechanism whereby the third phase forms in biphasic liquid-liquid solvent extraction of heavy metal ions. Toward this end, small- and wide-angle X-ray and neutron scattering (SWAXS and SWANS) experiments were conducted to examine the microscopic structures of TBP/octane mixtures. These investigations of solute associations in TBP-containing organic phases before extraction of heavy metal ions provide insights into system performance. After the extraction of heavy metal ions, for example, the microscopic structures formed in the organic phase are likely to be correlated with the initial microscopic structures, which are revealed here. SWAXS and SWANS, with accurate estimations of incoherent scattering intensities for all solution samples, revealed the following: (i) TBP self-associates in octane, and the average distance between two TBP molecules in the TBP assemblies is evaluated as 0.9-1.0 nm; (ii) the shape of the TBP assembly is ellipsoidal; and (iii) the attractive interaction among TBP assemblies in octane is miniscule, and thus, they tend to be dispersed homogeneously due to the excluded volume effect.

  9. Progress on PEEM3 — An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS

    NASA Astrophysics Data System (ADS)

    MacDowell, A. A.; Feng, J.; DeMello, A.; Doran, A.; Duarte, R.; Forest, E.; Kelez, N.; Marcus, M. A.; Miller, T.; Padmore, H. A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stöhr, J.; Wan, W.; Wei, D. H.; Wu, Y.

    2007-01-01

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  10. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    SciTech Connect

    MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E.; Kelez, N.; Marcus, M.A.; Miller, T.; Padmore, H.A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  11. An x-ray photoemission electron microscope using an electron mirror aberration corrector for the study of complex materials

    NASA Astrophysics Data System (ADS)

    Feng, J.; Forest, E.; MacDowell, A. A.; Marcus, M.; Padmore, H.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stöhr, J.; Wan, W.; Wei, D. H.; Wu, Y.

    2005-04-01

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed at the advanced light source (ALS). An electron mirror combined with a sophisticated magnetic beam separator is used to provide simultaneous correction of spherical and chromatic aberrations. Installed on an elliptically polarized undulator beamline, PEEM3 will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials.

  12. X-ray Photoelectron Spectroscopic and Raman microscopic investigation of the variscite group minerals: Variscite, strengite, scorodite and mansfieldite.

    PubMed

    Kloprogge, J Theo; Wood, Barry J

    2017-10-05

    Several structurally related AsO4 and PO4 minerals, were studied with Raman microscopy and X-ray Photoelectron Spectroscopy (XPS). XPS revealed only Fe, As and O for scorodite. The Fe 2p, As 3d, and O 1s indicated one position for Fe(2+), while 2 different environments for O and As were observed. The O 1s at 530.3eV and the As 3d 5/2 at 43.7eV belonged to AsO4, while minor bands for O 1s at 531.3eV and As 3d 5/2 at 44.8eV were due to AsO4 groups exposed on the surface possibly forming OH-groups. Mansfieldite showed, besides Al, As and O, a trace of Co. The PO4 equivalent of mansfieldite is variscite. The change in crystal structure replacing As with P resulted in an increase in the binding energy (BE) of the Al 2p by 2.9eV. The substitution of Fe(3+) for Al(3+) in the structure of strengite resulted in a Fe 2p at 710.8eV. An increase in the Fe 2p BE of 4.8eV was found between mansfieldite and strengite. The scorodite Raman OH-stretching region showed a sharp band at 3513cm(-1) and a broad band around 3082cm(-1). The spectrum of mansfieldite was like that of scorodite with a sharp band at 3536cm(-1) and broader maxima at 3100cm(-1) and 2888cm(-1). Substituting Al in the arsenate structure instead of Fe resulted in a shift of the metal-OH-stretching mode by 23cm(-1) towards higher wavenumbers due to a slightly longer H-bonding in mansfieldite compared to scorodite. The intense band for scorodite at 805cm(-1) was ascribed to the symmetric stretching mode of the AsO4. The medium intensity bands at 890, 869, and 830cm(-1) were ascribed to the internal modes. A significant shift towards higher wavenumbers was observed for mansfieldite. The strengite Raman spectrum in the 900-1150cm(-1) shows a strong band at 981cm(-1) accompanied by a series of less intense bands. The 981cm(-1) band was assigned to the PO4 symmetric stretching mode, while the weak band at 1116cm(-1) was the corresponding antisymmetric stretching mode. The remaining bands at 1009, 1023 and 1035cm(-1) were

  13. X-ray Photoelectron Spectroscopic and Raman microscopic investigation of the variscite group minerals: Variscite, strengite, scorodite and mansfieldite

    NASA Astrophysics Data System (ADS)

    Kloprogge, J. Theo; Wood, Barry J.

    2017-10-01

    Several structurally related AsO4 and PO4 minerals, were studied with Raman microscopy and X-ray Photoelectron Spectroscopy (XPS). XPS revealed only Fe, As and O for scorodite. The Fe 2p, As 3d, and O 1s indicated one position for Fe2 +, while 2 different environments for O and As were observed. The O 1s at 530.3 eV and the As 3d 5/2 at 43.7 eV belonged to AsO4, while minor bands for O 1s at 531.3 eV and As 3d 5/2 at 44.8 eV were due to AsO4 groups exposed on the surface possibly forming OH-groups. Mansfieldite showed, besides Al, As and O, a trace of Co. The PO4 equivalent of mansfieldite is variscite. The change in crystal structure replacing As with P resulted in an increase in the binding energy (BE) of the Al 2p by 2.9 eV. The substitution of Fe3 + for Al3 + in the structure of strengite resulted in a Fe 2p at 710.8 eV. An increase in the Fe 2p BE of 4.8 eV was found between mansfieldite and strengite. The scorodite Raman OH-stretching region showed a sharp band at 3513 cm- 1 and a broad band around 3082 cm- 1. The spectrum of mansfieldite was like that of scorodite with a sharp band at 3536 cm- 1 and broader maxima at 3100 cm- 1 and 2888 cm- 1. Substituting Al in the arsenate structure instead of Fe resulted in a shift of the metal-OH-stretching mode by 23 cm- 1 towards higher wavenumbers due to a slightly longer H-bonding in mansfieldite compared to scorodite. The intense band for scorodite at 805 cm- 1 was ascribed to the symmetric stretching mode of the AsO4. The medium intensity bands at 890, 869, and 830 cm- 1 were ascribed to the internal modes. A significant shift towards higher wavenumbers was observed for mansfieldite. The strengite Raman spectrum in the 900-1150 cm- 1 shows a strong band at 981 cm- 1 accompanied by a series of less intense bands. The 981 cm- 1 band was assigned to the PO4 symmetric stretching mode, while the weak band at 1116 cm- 1 was the corresponding antisymmetric stretching mode. The remaining bands at 1009, 1023 and 1035 cm- 1

  14. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  15. Chest X Ray?

    MedlinePlus

    ... this page from the NHLBI on Twitter. Chest X Ray A chest x ray is a fast and painless imaging test that ... tissue scarring, called fibrosis. Doctors may use chest x rays to see how well certain treatments are working ...

  16. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  17. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  18. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  19. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  20. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping

    PubMed Central

    Hatzer-Grubwieser, P.; Bauer, C.; Parson, W.; Unterberger, S. H.; Kuhn, V.; Pemberger, N.; Pallua, Anton K.; Recheis, W.; Lackner, R.; Stalder, R.; Pallua, J. D.

    2015-01-01

    In this study different state-of-the-art visualization methods such as micro-computed tomography (micro-CT), mid-infrared (MIR) microscopic imaging and energy dispersive X-ray (EDS) mapping were evaluated to study human skeletal remains for the determination of the post-mortem interval (PMI). PMI specific features were identified and visualized by overlaying molecular imaging data and morphological tissue structures generated by radiological techniques and microscopic images gained from confocal microscopy (Infinite Focus (IFM)). In this way, a more distinct picture concerning processes during the PMI as well as a more realistic approximation of the PMI were achieved. It could be demonstrated that the gained result in combination with multivariate data analysis can be used to predict the Ca/C ratio and bone volume (BV) over total volume (TV) for PMI estimation. Statistical limitation of this study is the small sample size, and future work will be based on more specimens to develop a screening tool for PMI based on the outcome of this multidimensional approach. PMID:25878731

  1. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping.

    PubMed

    Longato, S; Wöss, C; Hatzer-Grubwieser, P; Bauer, C; Parson, W; Unterberger, S H; Kuhn, V; Pemberger, N; Pallua, Anton K; Recheis, W; Lackner, R; Stalder, R; Pallua, J D

    2015-04-07

    In this study different state-of-the-art visualization methods such as micro-computed tomography (micro-CT), mid-infrared (MIR) microscopic imaging and energy dispersive X-ray (EDS) mapping were evaluated to study human skeletal remains for the determination of the post-mortem interval (PMI). PMI specific features were identified and visualized by overlaying molecular imaging data and morphological tissue structures generated by radiological techniques and microscopic images gained from confocal microscopy (Infinite Focus (IFM)). In this way, a more distinct picture concerning processes during the PMI as well as a more realistic approximation of the PMI were achieved. It could be demonstrated that the gained result in combination with multivariate data analysis can be used to predict the Ca/C ratio and bone volume (BV) over total volume (TV) for PMI estimation. Statistical limitation of this study is the small sample size, and future work will be based on more specimens to develop a screening tool for PMI based on the outcome of this multidimensional approach.

  2. Effect of fluoride and cobalt on forming enamel: scanning electron microscope and X-ray microanalysis study

    SciTech Connect

    Ashrafi, S.H.; Eisenmann, D.R.; Zaki, A.E.; Liss, R.

    1988-09-01

    The forming surfaces of enamel of rat incisors were examined by scanning electron microscope one hour after injection of either 5 mg/100 g body weight of sodium fluoride or 12 mg/100 g body weight of cobalt chloride. The cell debris from the surfaces of the separated incisors was either gently wiped off with soft facial tissues or chemically removed by treating with NaOH, NaOCl or trypsin. Best results to remove cell debris were obtained from 0.25% trypsin treatment. SEM studies revealed that the surface of the normal secretory enamel was characteristic in appearance with well-developed smooth prism outlines. In fluoride specimens the prism outlines were feathery in appearance, laced with protruding spine-shaped clusters of mineral crystals. In the case of cobalt treatment, prism outlines were less uniform and in some areas they were incomplete. The calcium concentration of surface enamel was significantly lower in the cobalt-treated specimens than those from control and fluoride-treated animals. The Ca:Mg ratio was also lower in cobalt-treated specimens as compared to control and fluoride-treated ones.

  3. Wear measurement of retrieved polyethylene ABG 1 cups by universal-type measuring microscope and X-ray methods.

    PubMed

    Gallo, Jiri; Havranek, Vitezslav; Cechova, Ivana; Zapletalova, Jana

    2006-11-01

    Polyethylene wear is considered a most important part of periprosthetic osteolysis development. Thus, its measurement is central to contemporary orthopaedics. The aim of this paper was to compare the accuracy of three radiographic techniques for wear measurement. Secondly, the influence of the abduction angle of the cup on measurement accuracy was investigated. Wear was measured manually in 80 patients by a single observer according to the Livermore, Charnley, and Dorr description. A multi-component statistical analysis was used to test the hypothesis that the Livermore technique was superior. In vitro data obtained from a Universal-type measuring microscope served as a gold standard. In vitro measurements showed an average linear wear of 0.363 mm per year (0.000-0.939, SD 0.241) with a corresponding volumetric wear rate of 161 mm3 per year (0-467, SD 118.2). The Livermore technique showed the least deviation from the optical reference standard and a superior position from the viewpoint of error analysis but the correlation coefficient was slightly less (r = 0.761) than for the Dorr and Charnley techniques (r = 0.795 and r = 0.778, respectively). In addition, the mean error of the Dorr method differed significantly from zero (p = 0.036). Overall, the Livermore technique was the most accurate method for polyethylene wear measurement regardless of the abduction angle of the cup. The Livermore technique performed manually was more accurate than the Charnley and Dorr methods. Nevertheless, we consider the Dorr technique an adequate tool for day-to-day wear measurements, mainly due to its simplicity.

  4. The qualitative f-ratio method applied to electron channelling-induced x-ray imaging with an annular silicon drift detector in a scanning electron microscope in the transmission mode.

    PubMed

    Brodusch, Nicolas; Gauvin, Raynald

    2017-09-01

    Electron channelling is known to affect the x-ray production when an accelerated electron beam is applied to a crystalline material and is highly dependent on the local crystal orientation. This effect, unless very long counting time are used, is barely noticeable on x-ray energy spectra recorded with conventional silicon drift detectors (SDD) located at a small elevation angle. However, the very high count rates provided by the new commercially available annular SDDs permit now to observe this effect routinely and may, in some circumstances, hide the true elemental x-ray variations due to the local true specimen composition. To circumvent this issue, the recently developed f-ratio method was applied to display qualitatively the true net intensity x-ray variations in a thin specimen of a Ti-6Al-4V alloy in a scanning electron microscope in transmission mode. The diffraction contrast observed in the x-ray images was successfully cancelled through the use of f-ratios and the true composition variations at the grain boundaries could be observed in relation to the dislocation alignment prior to the β-phase nucleation. The qualitative effectiveness in removing channelling effects demonstrated in this work makes the f-ratio, in its quantitative form, a possible alternative to the ZAF method in channelling conditions. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  6. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation.

    PubMed

    Hübner, W; Blume, A; Pushnjakova, R; Dekhtyar, Y; Hein, H-J

    2005-01-01

    Fourier transform infrared microscopy was used to investigate human cortical bone samples before and after treatment with increasing doses of X-ray radiation. Especially the spectral region of the v1 and v3 phosphate vibrations of hydroxyapatite, the main mineral component of bone, and the region of the amide I and amide II vibrational bands due to the collagen extracellular matrix were examined. Major spectral changes in the phosphate region between 1250-1000 cm(-1) occur after irradiation doses between 1 and 4 Gray. These findings are explained by a decrease in size of mineral crystallites and by variances of the toichiometric/non-stoichiometric apatite composition. The Ca2+ /PO4(3-) /HPO4(2-) composition in the biological apatite is altered near the bone surface. The secondary structure of the collagen matrix is not affected by cumulative irradiation up to doses of 15 Gray as indicated by the unchanged frequency maximum and contour shape of the amide I band between 1600-1700 cm(-1) . However, side chain carboxylate groups of the collagen matrix that are involved in coordination with apatite bound calcium ions are partially removed by decarboxylation upon irradiation. Concomitantly, a loss of acidic phosphate groups due to a formation of phosphate groups with bound calcium is observed. These changes on a molecular level can be correlated with alterations in the mechanical properties of the bone samples, e.g. with an increased embrittlement as deduced from experiments with a scanning acoustic microscope.

  7. KB-PJX-A streaked imager based on a versatile x-ray microscope coupled to a high-current streak tube (invited)

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Jaanimagi, P. A.; Knauer, J. P.; Marshall, F. J.; Meyerhofer, , D. D.

    2004-10-01

    A re-entrant, highly adaptable, x-ray streaked imager has been developed for OMEGA to increase the sensitivity and spatial resolution in hydrodynamic-stability experiments. It is based on a four-mirror Kirkpatrick-Baez (KB) microscope, coupled to a high-current streak tube. The unique mechanical assembly of the KB optic allows a choice between single- or multi-image modes and one- or two-dimensional imaging. Currently, the optic uses an Ir coating at a grazing angle of 2.1°. The incidence angle has been optimized to maximize throughput in the chosen energy band, centered at 1.5 keV with a full width at half maximum of about 0.4 keV. A calculated resolution of better than 5 μm over the central 200 μm of the field of view was verified in inertial confinement fusion experiments. New multilayer mirror elements for high-energy or multiband imaging, take advantage of the flexible mechanical design. Some important features of the PJX streak tube are described.

  8. KB-PJX--A streaked imager based on a versatile x-ray microscope coupled to a high-current streak tube (invited)

    SciTech Connect

    Gotchev, O.V.; Jaanimagi, P.A.; Knauer, J.P.; Marshall, F.J.; Meyerhofer, D.D.

    2004-10-01

    A re-entrant, highly adaptable, x-ray streaked imager has been developed for OMEGA to increase the sensitivity and spatial resolution in hydrodynamic-stability experiments. It is based on a four-mirror Kirkpatrick-Baez (KB) microscope, coupled to a high-current streak tube. The unique mechanical assembly of the KB optic allows a choice between single- or multi-image modes and one- or two-dimensional imaging. Currently, the optic uses an Ir coating at a grazing angle of 2.1 deg. The incidence angle has been optimized to maximize throughput in the chosen energy band, centered at 1.5 keV with a full width at half maximum of about 0.4 keV. A calculated resolution of better than 5 {mu}m over the central 200 {mu}m of the field of view was verified in inertial confinement fusion experiments. New multilayer mirror elements for high-energy or multiband imaging, take advantage of the flexible mechanical design. Some important features of the PJX streak tube are described.

  9. Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode

    NASA Astrophysics Data System (ADS)

    Osterode, W.; Falkenberg, G.; Höftberger, R.; Wrba, F.

    2007-07-01

    Iron (Fe) and copper (Cu) are essential metals in physiological cell metabolism. While Fe is easy to determine biochemically in histological slices, Cu and zinc (Zn) distribution is frequently critical in confirming the presence of an overload in disturbed Fe/Cu metabolism. To analyze Fe, Cu and Zn in a near histological resolution, energy dispersive microscopic synchrotron radiation X-ray fluorescence was applied. In normal liver tissue, after fixation and imbedding in paraffin, mean Fe, Cu and Zn concentrations were 152 ± 54, 20.1 ± 4.3 and 88.919.5 μg/g sample weight, respectively. No substantial, characteristic differences in their distribution were found in the two-dimensional scans. In slices from patients with hemochromatosis mean Fe, Cu and Zn concentrations were 1102 ± 539, 35.9 ± 14.6 and 27.2 ± 6.7 μg/g sample weight, respectively. Additionally, a significant decrease in phosphorus and sulphur concentrations existed. An increased Cu around cirrhotic regenerations nodules is mostly associated with a lymphocytic infiltration in this region. Analyzing concentrations of Fe in different regions of the samples show a clear negative dependency between Fe and Cu, Cu and Zn, but a positive one between Fe and Zn. Conclusion: With a focal beam size of 15 μm in diameter a resolution of the elemental distribution was achieved which is widely comparable with stained histological slices (20× light microscope). The analysis of simultaneous determined elements reveals metabolic differences between Fe, Cu and Zn in liver tissue from patients with hemochromatosis.

  10. X-ray microscopy using grazing-incidence reflections optics

    SciTech Connect

    Price, R.H.

    1983-06-30

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  11. X-ray microscopy using grazing-incidence reflection optics

    SciTech Connect

    Price, R.H.

    1981-08-06

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  12. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  13. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics.

    PubMed

    Laloum, D; Printemps, T; Lorut, F; Bleuet, P

    2015-01-01

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  14. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  15. X-Ray Optics for Science and Technology

    DTIC Science & Technology

    1993-12-22

    x - ray optics, x - ray lasers and synchrotron radiation. • NEW OPPORTUNITIES "AT SOFT - X - RAY WAVELENGTHS...possible to build the soft - x - ray equivalent of an early Lawrence Berkeley Laboratory and professor in residence in visible-light microscope. Materials...b: Soft - x - ray (24 A) image of a radial test pattern showing 300-A gold features. (Courtesy of Werner Meyer-Ilse, Lawrence Berkeley

  16. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  17. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  18. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  19. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  20. X-ray

    MedlinePlus

    ... image. For most x-rays, the risk of cancer or defects is very low. Most experts feel that the benefits of appropriate x-ray ... Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ...

  1. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  2. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  3. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  4. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  5. Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies

    NASA Astrophysics Data System (ADS)

    De Nolf, Wout; Jaroszewicz, Jakub; Terzano, Roberto; Lind, Ole Christian; Salbu, Brit; Vekemans, Bart; Janssens, Koen; Falkenberg, Gerald

    2009-08-01

    The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5° are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15°. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2° to distinguish between different forms of oxidized uranium.

  6. Ultrafast X-ray Sources

    SciTech Connect

    George Neil

    2010-04-19

    Since before the scattering of X-rays off of DNA led to the first understanding of the double helix structure, sources of X-rays have been an essential tool for scientists examining the structure and interactions of matter. The resolution of a microscope is proportional to the wavelength of light so x-rays can see much finer structures than visible light, down to single atoms. In addition, the energy of X-rays is resonant with the core atomic levels of atoms so with appropriate wavelengths the placement of specific atoms in a large molecule can be determined. Over 10,000 scientists use synchrotron sources, storage rings of high energy electrons, each year worldwide. As an example of such use, virtually every picture of a protein or drug molecule that one sees in the scientific press is a reconstruction based on X-ray scattering of synchrotron light from the crystallized form of that molecule. Unfortunately those pictures are static and proteins work through configuration (shape) changes in response to energy transfer. To understand how biological systems work requires following the energy flow to these molecules and tracking how shape changes drive their interaction with other molecules. We'd like to be able to freeze the action of these molecules at various steps along the way with an X-ray strobe light. How fast does it have to be? To actually get a picture of a molecule in a fixed configuration requires X-ray pulses as short as 30 femtoseconds (1/30 of a millionth of a millionth of a second). To capture the energy flow through changes in electronic levels requires a faster strobe, less than 1 femtosecond! And to acquire such information in smaller samples with higher accuracy demands brighter and brighter X-rays. Unfortunately modern synchrotrons (dubbed 3rd Generation Light Sources) cannot deliver such short bright pulses of X-rays. An entirely new approach is required, linear-accelerator (linac-)-based light sources termed 4th or Next Generation Light Sources

  7. The efficiency of X-ray microanalysis in low-vacuum scanning electron microscope: deposition of calcium on the surface of implanted hydrogel intraocular lens (IOL).

    PubMed

    Sato, S; Matsui, H; Sasaki, Y; Oharazawa, H; Nishimura, M; Adachi, A; Nakazawa, E; Takahashi, H

    2006-04-01

    To examine the calcification of implanted hydrogel IOL by X-ray microanalysis, we compared conventional transmission electron microscopy (TEM) with low-vacuum scanning electron microscopy (SEM). We also compared metal coating with non metal coating in low-vacuum SEM. Calcification of IOL showed deposits which were located in the superficial substance of lens. In conventional TEM and X-ray microanalysis, calcium, phosphate and silicon were detected in the deposits. In low-vacuum SEM, the deposits detected in metal coating were calcium, phosphorus, sodium and magnesium, but not silicon. However, in non metal coating, the deposits contained not only calcium, phosphorus, silicon, sodium and magnesium, but also fluoride, aluminum and argentums. It was concluded that in conventional TEM where a specimen is fixed and dehydrated in ethanol, various elements leak out. On the other hand, when a specimen is coated with carbon and gold palladium for SEM, light elements might not be detected in X-ray microanalysis. Low-vacuum SEM preparation does not need metal coating and low-vacuum SEM appears to provide a highly efficient method for X-ray microanalysis.

  8. A comparison of two micro-beam X-ray emission techniques for actinide elemental distribution in microscopic particles originating from the hydrogen bombs involved in the Palomares (Spain) and Thule (Greenland) accidents

    NASA Astrophysics Data System (ADS)

    Jimenez-Ramos, M. C.; Eriksson, M.; García-López, J.; Ranebo, Y.; García-Tenorio, R.; Betti, M.; Holm, E.

    2010-09-01

    In order to validate and to gain confidence in two micro-beam techniques: particle induced X-ray emission with nuclear microprobe technique (μ-PIXE) and synchrotron radiation induced X-ray fluorescence in a confocal alignment (confocal SR μ-XRF) for characterization of microscopic particles containing actinide elements (mixed plutonium and uranium) a comparative study has been performed. Inter-comparison of the two techniques is essential as the X-ray production cross-sections for U and Pu are different for protons and photons and not well defined in the open literature, especially for Pu. The particles studied consisted of nuclear weapons material, and originate either in the so called Palomares accident in Spain, 1966 or in the Thule accident in Greenland, 1968. In the determination of the average Pu/U mass ratios (not corrected by self-absorption) in the analysed microscopic particles the results from both techniques show a very good agreement. In addition, the suitability of both techniques for the analysis with good resolution (down to a few μm) of the Pu/U distribution within the particles has been proved. The set of results obtained through both techniques has allowed gaining important information concerning the characterization of the remaining fissile material in the areas affected by the aircraft accidents. This type of information is essential for long-term impact assessments of contaminated sites.

  9. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  10. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  11. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b) Definitions... electrons (negatrons and positrons) liberated by photons in a volume element of air having mass dm are... assemblage of components for the controlled generation of x-rays. (13) X-ray tube means any electron...

  12. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b) Definitions... electrons (negatrons and positrons) liberated by photons in a volume element of air having mass dm are... assemblage of components for the controlled generation of x-rays. (13) X-ray tube means any electron...

  13. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b) Definitions... electrons (negatrons and positrons) liberated by photons in a volume element of air having mass dm are... assemblage of components for the controlled generation of x-rays. (13) X-ray tube means any electron...

  14. Can SOX-10 or KBA.62 Replace S100 Protein in Immunohistochemical Evaluation of Sentinel Lymph Nodes for Metastatic Melanoma?

    PubMed

    Vrotsos, Elena; Alexis, John

    2016-01-01

    Microscopic evaluation of sentinel lymph nodes for metastatic melanoma relies, in part, on the use of immunohistochemical analysis to identify minute metastatic deposits that may be overlooked on routine microscopy. At present S100 protein is widely used in this role, in large part for its superior sensitivity; however, interpretation is hampered by the presence of benign S100 protein-positive cellular elements present in every lymph node, leading to reduced specificity and consequent difficulties in interpretation. In recent years, multiple melanocytic markers have emerged that promise superior sensitivity and specificity, including KBA.62 and SOX-10. SOX-10 shows a nuclear pattern of staining. In normal tissue it is expressed in Schwann cells, melanocytes, and myoepithelial cells of salivary, bronchial, and mammary glands. KBA.62 is also specific except for staining of endothelial cells and shows a membranous staining pattern. This study was undertaken to determine whether KBA.62 or SOX-10 could equal (or surpass) the sensitivity of S100 protein while offering superior specificity in the immunohistochemical evaluation of sentinel lymph nodes for metastatic melanoma. In this study we performed immunohistochemical stains for S100 protein, Sox-10, and KBA.62 on 50 lymph nodes with proven metastatic melanoma. SOX-10 detected all cases of metastatic melanoma (50 of 50 cases; 100%) compared with S100 protein (48 of 50 cases; 96%) and KBA.62 (37 of 50 cases; 74%). There was no "background" staining of normal cellular elements with SOX-10 or KBA.62. In contrast, S100 protein was expressed in scattered dendritic interdigitating reticulum cells in the paracortex of lymph nodes, showing cytoplasmic and nuclear positivity, sometimes posing significant difficulty in differentiating benign reticulum cells from single cell metastatic melanoma. Our findings suggest that SOX-10 may be superior to S100 protein for identifying metastatic melanoma in a lymph node. KBA.62 was less

  15. Analytical Formulae for Calculation of X-Ray Detector Solid Angles in the Scanning and Scanning/Transmission Analytical Electron Microscope

    SciTech Connect

    Zaluzec, Nestor J.

    2014-08-01

    Closed form analytical equations used to calculate the collection solid angle of six common geometries of solid-state X-ray detectors in scanning and scanning/transmission analytical electron microscopy are presented. Using these formulae one can make realistic comparisons of the merits of the different detector geometries in modern electron column instruments. This work updates earlier formulations and adds new detector configurations.

  16. Chest X-Ray

    MedlinePlus Videos and Cool Tools

    ... Site Index A-Z Spotlight Recently posted: Anal Cancer Facet Joint Block Video: Lung Cancer Screening Video: Upper GI Tract X-ray Video: ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  17. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  18. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  19. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. X-ray technology is used to examine many parts of the ...

  20. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, it is called a KUB (kidneys, ureters, bladder) x-ray.

  1. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  2. X-ray lasers

    SciTech Connect

    Elton, R.C.

    1990-01-01

    This paper provides a source that surveys the fundamentals of x-ray lasers and summarizes recent advances. The author emphasizes x-ray lasers created using high temperature plasmas as the medium. Specific topics discussed included electron-collisional excitation pumping, plasma laser pumping, and gamma-ray lasers. Numerous literature references provided.

  3. X-ray lasers

    SciTech Connect

    Elton, R.C.

    1990-01-01

    This book is both an introduction to x-ray lasers and a how-to-guide for specialists. It provides comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. The book collects the knowledge and experience gained in two decades of x-ray laser development.

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Kallman, T.

    In spite of the recent advances in X-ray instrumentation, polarimetry remains an area which has been virtually unexplored in the last 20 years. The scientific motivation to study polarization has increased during this time: emission models designed to repro- duce X-ray spectra can be tested using polarization, and polarization detected in other wavelength bands makes clear predictions as to the X-ray polarization. Polarization remains the only way to infer geometrical properties of sources which are too small to be spatially resolved. At the same time, there has been recent progress in instrumen- tation which is likely to allow searches for X-ray polarization at levels significantly below what was possible for early detectors. In this talk I will review the history of X-ray polarimetry, discuss some experimental techniques and the scientific problems which can be addressed by future experiments.

  6. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  7. X-ray imaging with compound refractive lens and microfocus x-ray tube

    NASA Astrophysics Data System (ADS)

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-08-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a source. Magnified images of gold mesh with 5 microns bars were obtained. Theoretical limits of CRL and experimental results are discussed.

  8. Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analysing the local indium distribution in rough samples of InGaN alloy layers.

    PubMed

    Wang, X; Chauvat, M-P; Ruterana, P; Walther, T

    2017-09-28

    We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  10. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  11. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  12. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  13. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  14. Focusing and photon flux measurements of the 2.88-nm radiation at the sample plane of the soft x-ray microscope, based on capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. Fahad; Jancarek, Alexandr; Nevrkla, Michal; Wachulak, Przemyslaw; Limpouch, Jiri; Pina, Ladislav

    2015-05-01

    Feasibility measurements leading to the development of a Soft X-ray (SXR) microscopy setup, based on capillary discharge XUV source is presented. Here the Z-pinching plasma is acting as a source of XUV radiation, emitting incoherent radiation in the "water-window" (λ = 2.3 - 4.4 nm) region of interest (natural contrast between the carbon and oxygen edges).This soft X-ray microscopy setup will realize imaging of the biological objects with high spatial resolution. The 2.88 nm radiation line is filtered out from the water-window band, and is focused by an axi-symmetric ellipsoidal mirror, coated with nickle. The focussed spot size is measured and reported. Flux measurements for the available number of photons (photons/pulse) at the sample plane has been carried out with AXUV PIN diode at the sample plane (slightly out of focus). For imaging, a fresnel zone plate lens will be used as an objective. The overall compact transmission SXR microscopy setup design is presented.

  15. X-ray calorimeters

    NASA Astrophysics Data System (ADS)

    Porter, F. Scott

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures can form the basis of a very high-performance, non-dispersive spectrometer. State-of-theart calorimeter instruments have resolving powers of over 3000, large simultaneous bandpasses, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated X-ray calorimeter array, allows true spectral-spatial instruments to be constructed. This chapter briefly reviews the detection scheme, the state of the art in X-ray calorimeter instruments and the future outlook for this technology.

  16. X-ray - skeleton

    MedlinePlus

    ... medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this page, ... ray views may be uncomfortable. If the whole skeleton is being imaged, the test usually takes 1 ...

  17. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  18. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  19. X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus

    1997-01-01

    Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.

  20. Laminar and blazed type holographic gratings for a versatile soft x-ray spectrograph attached to an electron microscope and their evaluation in the 50-200 eV range.

    PubMed

    Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori; Sano, Kazuo

    2012-05-01

    Laminar and blazed type holographic varied-line-spacing spherical gratings for use in a versatile soft x-ray flat-field spectrograph attached to an electron microscope are designed, fabricated, and evaluated. The absolute diffraction efficiencies of laminar (or blazed) master and replica gratings at 86.00° incidence evaluated by synchrotron radiation show over 5% (or 8%) in the 50-200 eV range with the maxima of 22% (or 26%-27%). Also the resolving power evaluated by a laser produced plasma source is in excess of 700 at the energy near the K emission spectrum of lithium (~55 eV) for all gratings. Moreover, the K emission spectrum of metallic Li with high spectral resolution is successfully observed with the spectrograph attached to a transmission electron microscope.

  1. Clocking femtosecond X rays.

    PubMed

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Rudati, J; Mills, D M; Fuoss, P H; Stephenson, G B; Kao, C C; Siddons, D P; Lowney, D P; Macphee, A G; Weinstein, D; Falcone, R W; Pahl, R; Als-Nielsen, J; Blome, C; Düsterer, S; Ischebeck, R; Schlarb, H; Schulte-Schrepping, H; Tschentscher, Th; Schneider, J; Hignette, O; Sette, F; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Caleman, C; Huldt, G; van der Spoel, D; Timneanu, N; Hajdu, J; Akre, R A; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Luening, K; Hastings, J B

    2005-03-25

    Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.

  2. Some ideas on the advantages of soft x-rays as imaging particles

    SciTech Connect

    Howells, M.

    1988-07-01

    This paper discusses uses of soft x-rays as imaging particles. Particular topics discussed are: Soft x-ray as a biological probe; overview of x-ray microscope techniques; analysis of the usefulness of x-rays in imaging and microanalysis; and physical radiation damage. 27 refs., 3 figs., 1 tab.

  3. X-ray Reflection

    NASA Astrophysics Data System (ADS)

    Fabian, A. C.; Ross, R. R.

    2010-12-01

    Material irradiated by X-rays produces backscattered radiation which is commonly known as the Reflection Spectrum. It consists of a structured continuum, due at high energies to the competition between photoelectric absorption and electron scattering enhanced at low energies by emission from the material itself, together with a complex line spectrum. We briefly review the history of X-ray reflection in astronomy and discuss various methods for computing the reflection spectrum from cold and ionized gas, illustrated with results from our own work reflionx. We discuss how the reflection spectrum can be used to obtain the geometry of the accretion flow, particularly the inner regions around black holes and neutron stars.

  4. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by x-ray diffraction

    SciTech Connect

    E. M. Forgan; Huecker, M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; von Zimmermann, M.; Hayden, S. M.

    2015-12-09

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.

  5. X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J. I.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1972-01-01

    The preliminary results from the Sco X-1 and Cyg X-1 obtained from the Apollo 15 X-ray detector data are presented along with preliminary results of the X-ray fluorescence spectrometric data of the lunar surface composition. The production of the characteristic X-rays following the interaction of solar X-rays with the lunar surface is described along with the X-ray spectrometer. Preliminary analyses of the astronomical X-ray observation and the X-ray fluorescence data are presented.

  6. Hard x-ray nanoprobe based on refractive x-ray lenses

    SciTech Connect

    Schroer, C.G.; Kurapova, O.; Patommel, J.; Boye, P.; Feldkamp, J.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2005-09-19

    Based on nanofocusing refractive x-ray lenses a hard x-ray scanning microscope is currently being developed and is being implemented at beamline ID13 of the European Synchrotron Radiation Facility (Grenoble, France). It can be operated in transmission, fluorescence, and diffraction mode. Tomographic scanning allows one to determine the inner structure of a specimen. In this device, a monochromatic (E=21 keV) hard x-ray nanobeam with a lateral extension of 47x55 nm{sup 2} was generated. Further reduction of the beam size to below 20 nm is targeted.

  7. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  8. Microscopic study of dental hard tissues in primary teeth with Dentinogenesis Imperfecta Type II: Correlation of 3D imaging using X-ray microtomography and polarising microscopy.

    PubMed

    Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G

    2015-07-01

    The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Neck x-ray

    MedlinePlus

    ... look at cervical vertebrae. These are the 7 bones of the spine in the neck. ... A neck x-ray can detect: Bone joint that is out of position (dislocation) Breathing in a foreign object Broken bone (fracture) Disk problems (disks ...

  10. Extremity x-ray

    MedlinePlus

    ... this test if you have signs of: A fracture Tumor Arthritis (inflammation of the joints) Normal Results The x-ray shows normal structures for the age of the person. What Abnormal Results Mean ... bone (fracture) Dislocated bone Osteomyelitis (infection) Arthritis Other conditions for ...

  11. Current Problems in X-Ray Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Joseph I.; Williams, David B.; Lyman, Charles E.

    1989-01-01

    Various problems that limit X-ray analysis in the analytical electron microscope are reviewed. Major emphasis is given to the trade-off between minimum mass fraction and spatial resolution. New developments such as high-brightness electron guns, new X-ray spectrometers and clean high-vacuum analysis conditions will lead to major improvements in the accuracy and detectability limits of X-ray emission spectroscopy.

  12. Current Problems in X-Ray Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Joseph I.; Williams, David B.; Lyman, Charles E.

    1989-01-01

    Various problems that limit X-ray analysis in the analytical electron microscope are reviewed. Major emphasis is given to the trade-off between minimum mass fraction and spatial resolution. New developments such as high-brightness electron guns, new X-ray spectrometers and clean high-vacuum analysis conditions will lead to major improvements in the accuracy and detectability limits of X-ray emission spectroscopy.

  13. Estimation of the electron beam-induced specimen heating and the emitted X-rays spatial resolution by Kossel microdiffraction in a scanning electron microscope.

    PubMed

    Bouscaud, Denis; Pesci, Raphaël; Berveiller, Sophie; Patoor, Etienne

    2012-04-01

    A Kossel microdiffraction experimental setup has been developed inside a Scanning Electron Microscope for crystallographic orientation, strain and stress determination at a micrometer scale. This paper reports an estimation of copper and germanium specimens heating due to the electron beam bombardment. The temperature rise is calculated from precise lattice parameters measurement considering different currents induced in the specimens. The spatial resolution of the technique is then deduced.

  14. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  15. X-ray omni microscopy.

    PubMed

    Paganin, D; Gureyev, T E; Mayo, S C; Stevenson, A W; Nesterets, Ya I; Wilkins, S W

    2004-06-01

    The science of wave-field phase retrieval and phase measurement is sufficiently mature to permit the routine reconstruction, over a given plane, of the complex wave-function associated with certain coherent forward-propagating scalar wave-fields. This reconstruction gives total knowledge of the information that has been encoded in the complex wave-field by passage through a sample of interest. Such total knowledge is powerful, because it permits the emulation in software of the subsequent action of an infinite variety of coherent imaging systems. Such 'virtual optics', in which software forms a natural extension of the 'hardware optics' in an imaging system, may be useful in contexts such as quantitative atom and X-ray imaging, in which optical elements such as beam-splitters and lenses can be realized in software rather than optical hardware. Here, we develop the requisite theory to describe such hybrid virtual-physical imaging systems, which we term 'omni optics' because of their infinite flexibility. We then give an experimental demonstration of these ideas by showing that a lensless X-ray point projection microscope can, when equipped with the appropriate software, emulate an infinite variety of optical imaging systems including those which yield interferograms, Zernike phase contrast, Schlieren imaging and diffraction-enhanced imaging.

  16. Planetary X ray experiment

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1972-01-01

    Design studies for an X-ray experiment using solid state detectors and for an experiment using a proportional counter for investigating Jovian and Saturnian magnetospheres are reported. Background counting rates through the forward aperture and leakage fluxes are discussed for each design. It is concluded that the best choice of instrument appears to have following the characteristics: (1) two separate multiwire proportional counters for redundancy; (2) passive collimation to restrict the field to about 5 deg, wiregrid modulation collimation to about 0.1 deg angular resolution; (3) no active shielding system around the counter body; and (4) light passive shielding around any portion of the counter body exposed to space to absorb most of the cosmic X-ray background.

  17. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  18. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  19. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  20. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  1. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  2. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  3. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  4. Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4

    SciTech Connect

    Stand, L.; Zhuravleva, M.; Chakoumakos, Bryan C.; Johnson, J.; Lindsey, Adam; Melcher, Charles L.

    2015-09-25

    We report two new ternary metal halide scintillators, KBa2I5 and K2BaI4, activated with divalent europium. Single crystal X-ray diffraction measurements confirmed that KBa2I5 has a monoclinic structure (P21/c) and that K2BaI4 has a rhombohedral structure (R3c). Differential scanning calorimetry showed singular melting and crystallization points, making these compounds viable candidates for melt growth. We grew 13 mm diameter single crystals of KBa2I5:Eu2+ and K2BaI4:Eu2+ in evacuated quartz ampoules via the vertical Bridgman technique. The optimal Eu2+ concentration was 4% for KBa2I5 and 7% for K2BaI4. The X-ray excited emissions at 444 nm for KBa2I5:Eu 4% and 448 nm for K2BaI4:Eu 7% arise from the 5d-4f radiative transition in Eu2+. KBa2I5:Eu 4% has a light yield of 90,000 photons/MeV, with an energy resolution of 2.4% and K2BaI4:Eu 7% has a light yield of 63,000 ph/MeV, with an energy resolution of 2.9% at 662 keV. Both crystals have an excellent proportional response to a wide range of gamma-ray energies.

  5. X-ray and optical wave mixing.

    PubMed

    Glover, T E; Fritz, D M; Cammarata, M; Allison, T K; Coh, Sinisa; Feldkamp, J M; Lemke, H; Zhu, D; Feng, Y; Coffee, R N; Fuchs, M; Ghimire, S; Chen, J; Shwartz, S; Reis, D A; Harris, S E; Hastings, J B

    2012-08-30

    Light-matter interactions are ubiquitous, and underpin a wide range of basic research fields and applied technologies. Although optical interactions have been intensively studied, their microscopic details are often poorly understood and have so far not been directly measurable. X-ray and optical wave mixing was proposed nearly half a century ago as an atomic-scale probe of optical interactions but has not yet been observed owing to a lack of sufficiently intense X-ray sources. Here we use an X-ray laser to demonstrate X-ray and optical sum-frequency generation. The underlying nonlinearity is a reciprocal-space probe of the optically induced charges and associated microscopic fields that arise in an illuminated material. To within the experimental errors, the measured efficiency is consistent with first-principles calculations of microscopic optical polarization in diamond. The ability to probe optical interactions on the atomic scale offers new opportunities in both basic and applied areas of science.

  6. X-ray microimaging by diffractive techniques

    SciTech Connect

    Kirz, Janos; Jacobsen, Chris

    2001-07-31

    The report summarizes the development of soft x-ray microscopes at the National Synchrotron Light Source X-1A beamline. We have developed a soft x-ray microscopy beamline (X-1A) at the National Synchrotron Light Source at Brookhaven National Laboratory. This beamline has been upgraded recently to provide two endstations dedicated to microscopy experiments. One endstation hosts a brand new copy of the redesigned room temperature scanning x-ray microscope (STXM), and the other end station hosts a cryo STXM and the original redesigned room temperature microscope, which has been commissioned and has started operation. Cryo STXM and the new microscope use the same new software package, running under the LINUX operating system. The new microscope is showing improved image resolution and extends spectromicroscopy to the nitrogen, oxygen and iron edges. These microscopes are used by us, and by users of the facility, to image hydrated specimens at 50 nm or better spatial resolution and with 0.1-0.5 eV energy resolution. This allows us to carry out chemical state mapping in biological, materials science, and environmental and colloidal science specimens. In the cryo microscope, we are able to do chemical state mapping and tomography of frozen hydrated specimens, and this is of special importance for radiation-sensitive biological specimens. for spectromicroscopic analysis, and methods for obtaining real-space images from the soft x-ray diffraction patterns of non-crystalline specimens. The user program provides opportunities for collaborators and other groups to exploit the techniques available and to develop them further. We have also developed new techniques such as an automated method for acquiring ''stacks'' of images.

  7. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your privacy. Information entered here ...

  8. Soft X-ray Imaging

    SciTech Connect

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  9. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  10. Encapsulating X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Bradley, James G.

    1987-01-01

    Vapor-deposited polymer shields crystals from environment while allowing X rays to pass. Polymer coating transparental to X rays applied to mercuric iodide detector in partial vacuum. Coating protects crystal from sublimation, chemical attack, and electrical degradation.

  11. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  12. Glass Monocapillary X-ray Optics And Their Applications In X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Feser, M.; Huang, E.; Lyon, A.; Yun, W.

    2010-04-01

    Elliptical, parabolic and Wolter type glass monocapillaries were fabricated for use as x-ray condensers in the energy range of 250 eV to 20 keV. On a routine basis a diameter error of +/-0.4 μm and straightness error of 0.8 μm (peak to valley) can be reached. The final test of condensers was performed at-wavelength by imaging the far field x-ray reflection intensity distribution using a laboratory microfocus x-ray source. For medium length condensers with a total length <80 mm, a total slope error of 40 μrad rms was obtained. The applications in full-field x-ray microscopes and the future effort in developing capillary Wolter mirrors based on this technology are reported.

  13. Multilayers for EUV, soft x-ray and x-ray optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Huang, Qiushi; Zhang, Zhong

    2016-02-01

    Driven by the requirements in synchrotron radiation applications, astronomical observation, and dense plasma diagnostics, the EUV, soft X-rays and X-rays multilayer optics have been tremendously developed. Based on the LAMP project for soft X-ray polarimetry, Co/C and Cr/C multilayers have been fabricated and characterized. Both Co/C and Cr/C multilayers reveal good optical performance working at 250 eV. Pd/Y multilayers have been successfully fabricated using reactive sputtering with nitrogen working at around 9.4 nm. EUV normal incidence Schwarzschild and soft X-ray grazing incidence KB microscopes were developed for ICF plasma diagnostics. This paper covers the outline of the multilayer optics and the current status in our lab.

  14. Background X-ray Spectrum of Radioactive Samples

    SciTech Connect

    Shannon Yee; Dawn E. Janney

    2008-02-01

    An energy-dispersive X-ray spectrometer (EDS) is commonly used with a scanning electron microscope (SEM) to analyze the elemental compositions and microstructures of a variety of samples. For example, the microstructures of nuclear fuels are commonly investigated with this technique. However, the radioactivity of some materials introduces additional X-rays that contribute to the EDS background spectrum. These X-rays are generally not accounted for in spectral analysis software, and can cause misleading results. X-rays from internal conversion [1], Bremsstrahlung [2] radiation associated with alpha ionizations and beta particle interactions [3], and gamma rays from radioactive decay can all elevate the background of radioactive materials.

  15. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  16. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  17. X-Ray Exam: Foot

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A What's in ... You Have Questions What It Is A foot X-ray is a safe and painless test that uses ...

  18. X-Ray Exam: Wrist

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist Print A A A What's in ... You Have Questions What It Is A wrist X-ray is a safe and painless test that uses ...

  19. X-Ray Exam: Ankle

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A What's in ... You Have Questions What It Is An ankle X-ray is a safe and painless test that uses ...

  20. X-Ray Exam: Finger

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A What's in ... You Have Questions What It Is A finger X-ray is a safe and painless test that uses ...

  1. X-Ray Exam: Pelvis

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A What's in ... You Have Questions What It Is A pelvis X-ray is a safe and painless test that uses ...

  2. X-Ray Exam: Forearm

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm Print A A A What's in ... You Have Questions What It Is A forearm X-ray is a safe and painless test that uses ...

  3. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  4. X-Ray Exam: Hip

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip A A A What's in this ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  5. X-Ray Exam: Wrist

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist A A A What's in this ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  6. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in this ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  7. X-Ray Exam: Foot

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot A A A What's in this ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  8. Measurement of cation exchange capacity (CEC) of plant cell walls by X-ray microanalysis (EDX) in the transmission electron microscope.

    PubMed

    Fritz, Eberhard

    2007-08-01

    Cation exchange capacity (CEC) characterizes the number of fixed negative charges of plant cell walls and is an important parameter in studies dealing with the uptake of ions into plant tissues, especially in roots. Conventional methods of CEC determination use bulk tissue, the results are the mean of many cells, and differences in the CEC of different tissue types are masked. Energy-dispersive microanalysis (EDX) in the transmission electron microscope allows CEC determinations on much finer scales. Shoot and fine root tissue of Picea abies was acid washed to remove exchangeable cations. Tissue blocks or semithin tissue sections were loaded with 0.2 mM CaCl2, AlCl3, or Pb(NO3)2 at pH 4.0. The amount of Ca, Al, or Pb adsorbed to the exchange sites of cell walls was determined by EDX. The CEC of cell walls of different tissue types was highly different, ranging in shoot tissues from 0 to 856 mM Ca and 5.8 to 1463 mM Al (block loading) or 4.3 to 1116 mM Ca and 0 to 2830 mM Al (section loading). In root tissue, Pb adsorption to semithin sections yielded CEC values between 29.1 and 954 mM Pb. In most P. abies shoot tissues, the binding capacity was clearly higher for Al than for Ca.

  9. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  10. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  11. Biological applications of cryo-soft X-ray tomography.

    PubMed

    Duke, E; Dent, K; Razi, M; Collinson, L M

    2014-08-01

    X-rays are used for imaging many different types of biological specimen, ranging from live organisms to the individual cells and proteins from which they are made. The level of detail achieved as a result of the imaging varies depending on both the sample and the technique used. One of the most recent technical developments in X-ray imaging is that of the soft X-ray microscope, designed to allow the internal structure of individual biological cells to be explored. With a field of view of ∼10-20 × ∼10-20 μm, a penetration depth of ∼10 μm and a resolution of ∼40 nm(3), the soft X-ray microscope neatly fits between the imaging capabilities of light and electron microscopes. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  12. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  13. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  14. Growth, Structure and Spectroscopic Characterization of Nd3+-Doped KBaGd(WO4)3 Crystal with a Disordered Structure

    PubMed Central

    Xiao, Bin; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2012-01-01

    The undoped and the Nd3+:KBaGd(WO4)3 crystals were grown by the top seeded solution growth (TSSG) method from a flux of K2W2O7. The structure of the pure crystal was determined by the single-crystal X-ray diffraction method. It crystallizes in the monoclinic symmetry with space group C2/c. In the structure, K+ and Ba2+ ions share the same 8f site with occupancy of 0.464 and 0.536, respectively. The investigation of spectral properties of Nd3+:KBaGd(WO4)3 crystal indicates that it exhibits broad absorption and emission bands, which are attributed to locally disordered environments around the Nd3+ centers. The broad absorption band is suitable for diode laser pumping. PMID:22792248

  15. Laboratory cryo soft X-ray microscopy.

    PubMed

    Hertz, H M; von Hofsten, O; Bertilson, M; Vogt, U; Holmberg, A; Reinspach, J; Martz, D; Selin, M; Christakou, A E; Jerlström-Hultqvist, J; Svärd, S

    2012-02-01

    Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  17. Comparative studies of X-ray images and fluorescence images of the same specimens

    NASA Astrophysics Data System (ADS)

    Majima, T.; Tomie, T.; Shimizu, H.

    2003-03-01

    A flash contact soft x-ray microscope using laser-induced plasma as a flash x-ray source is a practical instrument for observation of living organisms in water [1-4]. As previously reported we developed a tabletop flash contact soft x-ray microscope System [3]. In this System, x-ray images are given as whole projection of the specimens on the PMMA membrane. This causes us some complexity for understanding the x-ray images. It is necessary to attribute features in the x-ray images to sub-cellular structures of the specimen. For this purpose we have developed a new sample holder, where specimens are observable with a fluorescence microscope just before x-ray exposure. Fluorescence images of onion epidermal cells stained by DAPI and x-ray images of the same specimens are compared.

  18. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    PubMed

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

  19. Parabolic refractive X-ray lenses: a breakthrough in X-ray optics

    NASA Astrophysics Data System (ADS)

    Lengeler, Bruno; Schroer, Christian G.; Benner, Boris; Günzler, Til Florian; Kuhlmann, Marion; Tümmler, Johannes; Simionovici, Alexandre S.; Drakopoulos, Michael; Snigirev, Anatoly; Snigireva, Irina

    2001-07-01

    Refractive X-ray lenses, considered for a long time as unfeasible, have been realized with a rotational parabolic profile at our institute: The main features of the new lenses are: they focus in two directions and are free of spherical aberration. By varying the number of individual lenses in the stack the focal length can be chosen in a typical range from 0.5 to 2 m for photon energies between about 6 and 60 keV. The aperture of the lens is about 1 mm matching the angular divergence of undulator beams at 3d generation synchrotron radiation sources. They cope without problems with the heat load from the white beam of an undulator. Finally, they are easy to align and to operate. Refractive X-ray lenses can be used with hard X-rays in the same way as glass lenses can be used for visible light, if it is take into account that the numerical aperture is small (of the order 10 -4). Being high-quality optical elements, the refractive X-ray lenses can be used for generating a focal spot in the μm range with a gain of a factor 1000 and more, or for imaging purposes as in a hard X-ray microscope. Recent examples from microanalysis, microtomography, fluorescence tomography, X-ray microscopy will be shown to demonstrate the state of the art. Possible new developments will be discussed.

  20. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  1. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  2. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  3. British X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.

    1986-09-01

    The development of solar and cosmic X-ray studies in the UK, in particular the Skylark and Ariel programs, is discussed. The characteristics and capabilities of the X-ray emulsion detector developed to monitor the solar X-radiation in the Skylark program, and of the proportional counter spectrometer developed for solar X-ray measurements on the Ariel I satellite are described. The designs and functions of the pin-hole camera, the Bragg crystal spectrometer, and the X-ray spectroheliograph are exmained. The Skylark observations of cosmic X-ray sources and high-resolution solar spectra, and the Ariel 5 data on cosmic X-ray sources are presented. Consideration is given to the Ariel 6, the U.S. Einstein Observatory, Exosat, and ASTRO-C.

  4. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  5. X-Ray Polarization Imaging

    DTIC Science & Technology

    2006-07-01

    anatomic structures. Johns and Yaffe (2), building on the work of Alvarez and Macovski (3) and that of Lehmann et al (4), discuss a method for...sources of contrast related to both the wave and par- ticulate nature of x rays. References 1. Johns PC, Yaffe MJ. X-ray characterization of normal and...application to mammography. Med Phys 1985; 12:289–296. 3. Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys

  6. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  7. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  8. X-Ray Transmission Microscope Development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1997-01-01

    We have succeeded in meeting the goals set out in the proposal. A cadre of detector technologies is available to suit the requirements of the experiment. Resolutions of both real-time and absolute limits to resolution exceed the initial aspirations. Obtaining sufficient contrast is still a significant limitation but can be overcome by Judicious selection of the specimen composition. This can only take time and trial and error for a successful result. The 4th generation furnace provides the capability of real-time in-situ observations of composite alloy development. A low detection sensitivity however, has still made it difficult to observe dendritic growth, although it has been 'seen' in raw video; it was not a recordable signal. We have examined flight ampoules with XTM to observe particle and thermocouple placement, crucible flaws and cracks in collaboration with the Particle Pushing and Engulfment flight experiment (Dr. Stefanescu, UA, P.I.). The value of an in flight XTM to guard against experiment failure and safety assurance is obvious. Although not attributable to equipment limitations, a quest to observe particle pushing was not successful. We tried at length to prepare specimens that would demonstrate particle pushing. Instead, we were successful in imaging the interface deformation due to the thermal field distortion of a ceramic particle or void and to compare to calculated shapes. In theory, we should have been able to make major inroads to this field if the particles could be pushed and the velocities adjusted to make critical measurements. On the other hand, critical issues of sample preparation for the PEP flight experiment were established, particularly the clustering of particles and trapped voids. In this regard, the XTM did prove very useful so that flight specimens would work as expected and to perform post flight analysis. Although not a clear result, particle pushing of precipitates was observed in an Al-Si-Mn alloy. It may be that to be pushed, the particles need to be small and have clean surfaces like one might obtain from in-situ precipitation. The ability to image features in real time skill enable more fundamental and detailed understanding of solidification dynamics in microgravity than had previously been possible, thus, allowing the full benefits of microgravity experiments be applied towards rigorous testing of critical solidification models. The XTM is also a valuable tool for post solidification metallography. The 3-dimensional distribution of solute and solidification features within the specimen volume can be viewed without sectioning or other treatment when the solute has sufficiently higher atomic mass than the solvent. Thus the XTM could provide the first practical method for on orbit microstructural (metallographic) analysis by the astronauts or by telescience.

  9. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  10. X-ray photonics: Bending X-rays with nanochannels

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele

    2016-02-01

    X-ray counterparts of visible light optical elements are notoriously difficult to realize because the refractive index of all materials is close to unity. It has now been demonstrated that curved waveguides fabricated on a silicon chip can channel and deflect X-ray beams by consecutive grazing reflections.

  11. A mirror for lab-based quasi-monochromatic parallel x-rays.

    PubMed

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  12. A mirror for lab-based quasi-monochromatic parallel x-rays

    SciTech Connect

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb

    2014-09-15

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  13. A mirror for lab-based quasi-monochromatic parallel x-rays

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  14. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  15. Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Joy, M. K.

    2000-01-01

    Over the past two decades, grazing incidence optics have transformed observational x-ray astronomy into a major scientific discipline at the cutting edge of research in astrophysics and cosmology. This review summarizes the fundamental design principles of grazing incidence optics for astronomical applications, describes the capabilities of the current generation of x-ray telescopes, and explores several avenues of future development.

  16. Dual x-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2011-04-01

    Dual x-ray absorptiometry is widely used in analyzing body composition and imaging. We discuss the physics of the method and exhibit its limitations and show it is related to the Compton and photoelectric contributions to the x-ray absorption coefficients of materials.

  17. X-ray position detector

    NASA Technical Reports Server (NTRS)

    Garmire, G. (Inventor)

    1972-01-01

    An X-ray position detector for real time operation is described. A set of proportional counters is arranged into an array which can detect and indicate the position of an X-ray interaction within the array, in the X Y plane.

  18. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  19. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  20. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  1. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  2. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  3. X-ray diagnostics for TFTR

    SciTech Connect

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment.

  4. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  5. X-ray optics at NASA Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-05-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce highstrength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications—namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  6. Hard X-Ray Nanoprobe based on Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C. G.; Patommel, J.; Boye, P.; Feldkamp, J.; Kurapova, O.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2007-01-19

    At synchrotron radiation sources, parabolic refractive x-ray lenses allow one to built both full field and scanning microscopes in the hard x-ray range. The latter microscope can be operated in transmission, fluorescence, and diffraction mode, giving chemical, elemental, and structural contrast. For scanning microscopy, a small and intensive microbeam is required. Parabolic refractive x-ray lenses with a focal distance in the centimeter range, so-called nanofocusing lenses (NFLs), can generate hard x-ray nanobeams in the range of 100 nm and below, even at short distances, i. e., 40 to 70 m from the source. Recently, a 47 x 55 nm2 beam with 1.7 {center_dot} 108 ph/s at 21 keV (monochromatic, Si 111) was generated using silicon NFLs in crossed geometry at a distance of 47m from the undulator source at beamline ID13 of ESRF. This beam is not diffraction limited, and smaller beams may become available in the future. Lenses made of more transparent materials, such as boron or diamond, could yield an increase in flux of one order of magnitude and have a larger numerical aperture. For these NFLs, diffraction limits below 20 nm are conceivable. Using adiabatically focusing lenses, the diffraction limit can in principle be pushed below 5 nm.

  7. Frontiers in imaging magnetism with polarized x-rays

    SciTech Connect

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  8. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  9. The crystal structure and luminescence of Ce3+, Tb3+ and Eu3+ in KBaLn3+(BO3)2 [Ln3+ = Sc, Y, Lu, Gd

    NASA Astrophysics Data System (ADS)

    Camardello, S. J.; Her, J. H.; Toscano, P. J.; Srivastava, A. M.

    2015-11-01

    The structure of KBaLn3+(BO3)2 [Ln3+ = Sc, Lu, Gd] was solved by Rietveld refinement of the powder X-ray diffraction data. The materials crystallize with the mineral Buetschliite [K2Ca(CO3)2] structure. The lattice parameters of KBaLn3+(BO3)2 [Ln3+ = Sc, Lu, Gd] increased with increasing ionic radius of the Ln3+ cation. In this structure, the Ln3+ cations are octahedrally coordinated. The phase formation region is dependent on the ionic radii of the Ln3+ cation. The optical properties of Ce3+, Tb3+ and Eu3+ and their dependence on the host lattice composition are investigated and discussed. It is noteworthy that the optical properties of these ions are independent of the Ln3+ cation in KBaLn3+(BO3)2. It is concluded that in this family of materials, the crystalline field strength and the covalence at the rare earth site is independent of the host lattice composition.

  10. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  11. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  12. Dissociative X-ray Lasing

    NASA Astrophysics Data System (ADS)

    Miao, Q.; Liu, J.-C.; Ågren, H.; Rubensson, J.-E.; Gel'mukhanov, F.

    2012-12-01

    X-ray lasing is predicted to ensue when molecules are pumped into dissociative core-excited states by a free-electron-laser pulse. The lasing is due to the population inversion created in the neutral dissociation product, and the process features self-trapping of the x-ray pulse at the gain ridge. Simulations performed for the HCl molecule pumped at the 2p1/2→6σ resonance demonstrate that the scheme can be used to create ultrashort coherent x-ray pulses.

  13. X-RAY MONITORING OF ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Kaaret, Philip; Feng Hua

    2009-09-10

    X-ray monitoring observations were performed with the Swift observatory of the ultraluminous X-ray sources Holmberg IX X-1, NGC 5408 X-1, and NGC 4395 X-2 and also of the nuclear X-ray source in NGC 4395. Holmberg IX X-1 remains in the hard X-ray spectral state as its flux varies by a factor of 7 up to a (isotropic) luminosity of 2.8 x 10{sup 40} erg s{sup -1}. This behavior may suggest an unusually massive compact object. We find excess power at periods near 60 days and 28 days in the X-ray emission from Holmberg IX X-1. Additional monitoring is required to test the significance of these signals. NGC 5408 X-1 and NGC 4395 X-2 appear to remain in the soft spectral state found by Chandra and XMM with little variation in spectral hardness even as the luminosity changes by a factor of 9. We found an outburst from the nuclear source in NGC 4395 reaching an X-ray luminosity of 9 x 10{sup 40} erg s{sup -1}, several times higher than any previously reported.

  14. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  15. Lumbosacral spine x-ray

    MedlinePlus

    ... should be taken before children receive x-rays. Considerations There are some back problems that an x- ... imaging for low back pain: advice for high-value health care from the American College of Physicians. ...

  16. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  17. CELESTIAL X-RAY SOURCES.

    DTIC Science & Technology

    sources, (4) the physical conditions in the pulsating x-ray source in the Crab Nebula , and (5) miscellaneous related topics. A bibliography of all work performed under the contract is given. (Author)

  18. Nanoscale X-ray imaging

    NASA Astrophysics Data System (ADS)

    Sakdinawat, Anne; Attwood, David

    2010-12-01

    Recent years have seen significant progress in the field of soft- and hard-X-ray microscopy, both technically, through developments in source, optics and imaging methodologies, and also scientifically, through a wide range of applications. While an ever-growing community is pursuing the extensive applications of today's available X-ray tools, other groups are investigating improvements in techniques, including new optics, higher spatial resolutions, brighter compact sources and shorter-duration X-ray pulses. This Review covers recent work in the development of direct image-forming X-ray microscopy techniques and the relevant applications, including three-dimensional biological tomography, dynamical processes in magnetic nanostructures, chemical speciation studies, industrial applications related to solar cells and batteries, and studies of archaeological materials and historical works of art.

  19. Future x-ray missions

    NASA Astrophysics Data System (ADS)

    Mushotzky, Richard F.

    2002-11-01

    Recent results from XMM-Newton and Chandra show that sufficiently sensitive x_ray imaging and spectroscopic capabilities allow one to observe the evolution of active galaxies out to z ~ 6, the x-ray signature of luminous star forming galaxies at z~3, as well as the origin and evolution of cosmic structure. With the advent of new optical/UV/IR and radio capabilities in the next decade, it is appropriate to evaluate the future capabilities of planned x-ray missions (e.g., Constellation_X and Astro-E2) as well as other missions being developed (e.g., Gen-X, XEUS, and Astro-G) or under advance planning (MAXIM and EXIST). I will present a summary of the present status of the field and the capabilities of these missions for extragalactic x-ray astronomy.

  20. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... radiologist (a doctor who is specially trained in reading and interpreting X-ray images). The radiologist will ...

  1. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... a radiologist (a doctor who's specially trained in reading and interpreting X-ray images). The radiologist will ...

  2. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  3. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  4. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  5. Bone X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  6. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  7. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  8. X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The primary advantage of the X-ray computed tomography (XRCT) NDE method is that features are not superposed in the image, thereby rendering them easier to interpret than radiographic projection images. Industrial XRCT systems, unlike medical diagnostic systems, have no size and dosage constraints; they are accordingly used for systems from the scale of gas turbine blades, with hundreds-of-kV energies, to those of the scale of ICBMs, requiring MV-level X-ray energies.

  9. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  10. X-ray Sensitive Material

    DTIC Science & Technology

    2015-12-01

    The research resulted in a composite material that holds a quasi-permanent electric charge and rapidly discharges the electric charge upon X-ray...temperature extremes encountered during processing and potential application. (U) The result of these efforts was a composite material that would hold a...quasi-permanent electric charge and rapidly discharge the electric charge upon X-ray exposure. The composite material combined the properties of an

  11. Tokamak x ray diagnostic instrumentation

    SciTech Connect

    Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

    1987-01-01

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

  12. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  13. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  14. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    SciTech Connect

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han; Morgan, Nicole Y.

    2013-04-15

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  15. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    PubMed Central

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics. PMID:23837131

  16. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D.; Meixler, L.; Skinner, C.H.; Suckewer, S.; Hirschberg, J.; Kohen, E.

    1987-12-31

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  17. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D. ); Meixler, L.; Skinner, C.H.; Suckewer, S. . Plasma Physics Lab.); Hirschberg, J.; Kohen, E. . Dept. of Physics)

    1987-01-01

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  18. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  19. X-ray microanalysis of frozen-hydrated specimens.

    PubMed

    Zierold, K

    1983-01-01

    The preparation of frozen-hydrated bulk specimens and sections for X-ray microanalysis starts with cryofixation, which is done either by rapid immersion into liquid propane, propane jet fixation or metal mirror fixation. Bulk specimens appropriate for the analysis in a scanning electron microscope (SEM) are obtained by cryofracturing the samples, coating, usually by a thin carbon layer, and cold transfer into the cold stage of the microscope. The X-ray microanalysis of bulk specimens is affected by an internal space charge which makes quantification difficult. Frozen-hydrated dry cut sections, varying in thickness between 60 and 2000 nm, are prepared by means of cryoultramicrotomy. After cold transfer into the cold stage of a scanning electron microscope or a scanning transmission electron microscope (STEM) the sections are analyzed in the frozen-hydrated and freeze-dried state. The reliability of the results with regard to structural recognizability and X-ray spectra depends considerably on the state of hydration. Particularly ultrathin sections in STEM show very low contrast and a great mass loss in the frozen-hydrated state in comparison with the freeze-dried state. In spite of the available concepts for quantification of X-ray data to obtain physiologically important wet weight concentrations of diffusible elements, the radiation damage at present turns out to be the most serious problem for X-ray microanalysis of frozen-hydrated sections.

  20. Optical holography in the hard X-ray domain

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Yokosuka, H.; Ohigashi, T.; Takano, H.; Takeuchi, A.; Suzuki, Y.; Aoki, S.

    2003-03-01

    Present status of our developments of x-ray holographie microscopes at SPring-8 BL20XU is described. A combination of the x-ray undulator and a zone plate enabled us to make a coherent x-ray source of around 0.1 μm size. Using this secondary source, two types of x-ray holographie microscopes were investigated. First, a Gabor microscope in point-projection geometry was tested. A tantalum 0. 2 llm line-and-space pattern could be resolved. Second, using a zone plate as a beam splitter, a Fourier transform holographie microscope was tested. A tantalum 0.2 μm line-and-space pattern could be observed. Polystyrene beads of 2.8 μm and 0.8 μm in diameter could be observed. In Fourier transform holography, a reconstructed image of a specimen that is located out of the plane of the reference source is blurred. Numerical focusing of such an x-ray hologram could be successfully demonstrated.

  1. K2U at TREC 2014 KBA Track

    DTIC Science & Technology

    2014-11-01

    Graduate School of System Informatics,Kobe, Hy??go, Japan , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...Kitaguchi at Kobe University for processing the KBA corpus. This work is partially supported by JSPS KAKENHI Grant Numbers 25330363 and MEXT, Japan

  2. Progress in high-resolution x-ray holographic microscopy

    SciTech Connect

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  3. Laboratory Astrophysics and Microanalysis with NTD-Germanium-Based X-Ray Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Silver, E.; Schnopper, H.; Bandler, S.; Murray, S.; Madden, N.; Landis, D.; Beeman, J.; Haller, E.; Barbera, M.; Tucker, G.

    2000-01-01

    With the ability to create cosmic plasma conditions in the laboratory it is possible to investigate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources with X-ray optics and a high resolution x-ray microcalorimeter. The same instrumentation can be coupled to scanning electron microscopes or x-ray fluorescence probes to analyze the elemental and chemical composition of electronic, biological, geological and particulate materials. We describe how our microcalorimeter and x-ray optics provide significantly improved capabilities for laboratory astrophysics and microanalysis.

  4. Streaked x-ray microscopy of laser-fusion targets

    SciTech Connect

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 ..mu..m and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10/sup 7/ cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils.

  5. Compact X-Ray And Extreme-Ultraviolet Monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1991-01-01

    Monochromator for x-ray and extreme-ultraviolet radiation provides higher spectral resolution than achieved with thin-metal-foil broad-band-pass filters. Uses Bragg reflection to band-pass-filter radiation from high-intensity, broad-spectrum source. Operates over much broader x-ray and extreme-ultraviolet spectrum than devices based upon natural crystals. Intended to filter continuum radiation from sources like synchrotrons, laser plasma sources, free-electron lasers, and wigglers to produce monochromatic beams for testing and analysis of x-ray and extreme-ultraviolet telescopes and microscopes, for calibration of photographic films and detectors, for biological and biomedical research, for x-ray lithography, for processing of materials, and for research in properties of materials.

  6. Development of Cell Staining Technique for X-Ray Microscopy

    SciTech Connect

    Tseng, P. Y.; Shih, Y. T.; Liu, C. J.; Hsu, T.; Chien, C. C.; Leng, W. H.; Liang, K. S.; Yin, G. C.; Chen, F. R.; Je, J. H.; Margaritondo, G.; Hwu, Y.

    2007-01-19

    We report a technique for detection of sub-cellular organelles and proteins with hard x-ray microscopy. Several metals were used for enhancing contrast for x-ray microscopy. Osmium tetroxide provides an excellent stain for lipid and can delineate cell membrane. Uranyl acetate has high affinity for nucleotide and can stain nucleus. Immunolocalization of specific proteins and sub-cellular organelles was achieved by 3'3 diaminobenzidine (DAB) with nickel enhancement and nanogold-conjugated secondary antibody with silver enhancement. The x-rays emitted from synchrotron source was monochromatized by double crystal monochromator, the photon energy was fixed at 8 keV to optimize the focusing efficiency of the zone plates. The estimated resolution is about 60 nm. When compared with visible light and conventional confocal microscopy, the X-ray microscopy provides a superior resolution to both conventional optical microscopes.

  7. Combining scanning probe microscopy and x-ray spectroscopy

    PubMed Central

    2011-01-01

    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented. PMID:21711848

  8. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  9. Ultraluminous X-ray Sources.

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Sholukhova, O.; Abolmasov, P.

    2008-12-01

    We discuss a new type of X-ray sources discovered in galaxies -- ultraluminous X-ray sources (ULXs). They are of two order of magnitude brighter in X-rays than the brightest Galactic black holes. Two mod- els of ULXs are discussed: "intermediate mass" black holes, 100 - 10000 solar masses, with standard accretion disks, and "stellar mass" black holes with su- percritical accretion disks like that in the Galactic object SS 433. A study of gas nebulae surrounding these objects gives us a new important information on the central sources. The observed X-ray radiation of ULXs is not enough to power their nebulae. To understand both spectra and power of the nebulae one needs a powerful UV source. The ULXs must be such bright in UV range as they are in X-rays. Spectroscopy of gas filaments surrounding SS 433 proves that the intrinsic face-on luminosity of the supercritical accretion disk in the far UV region to be "sim; 10^40 erg/s. We expect that observations of ULXs with the WSO-UV Observatory, measurements their UV fluxes and spectral slopes solve the problem of ULXs between the two known models of these sources.

  10. X-rays surgical revolution.

    PubMed

    Toledo-Pereyra, Luis H

    2009-01-01

    Wilhelm Roentgen (1845-1923) created a surgical revolution with the discovery of the X-rays in late 1895 and the subsequent introduction of this technique for the management of surgical patients. No other physician or scientist had ever imagined such a powerful and worthwhile discovery. Other scientists paved the way for Roentgen to approach the use of these new X-rays for medical purposes. In this way, initially, and prior to Roentgen, Thompson, Hertz, and Lenard applied themselves to the early developments of this technology. They made good advances but never reached the clearly defined understanding brought about by Roentgen. The use of a Crookes tube, a barium platinocyanide screen, with fluorescent light and the generation of energy to propagate the cathode rays were the necessary elements for the conception of an X-ray picture. On November 8, 1895, Roentgen began his experiments on X-ray technology when he found that some kind of rays were being produced by the glass of the tube opposite to the cathode. The development of a photograph successfully completed this early imaging process. After six intense weeks of research, on December 22, he obtained a photograph of the hand of his wife, the first X-ray ever made. This would be a major contribution to the world of medicine and surgery.

  11. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  12. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  13. AN X-RAY STUDY OF THE ETHYLENE GLYCOLMONTMORILLONITE COMPLEX.

    DTIC Science & Technology

    SOILS, * MONTMORILLONITE , *GLYCOLS, *X RAY SPECTROSCOPY, X RAY SPECTRA, X RAY SPECTRA, X RAY SPECTRA, CLAY MINERALS, COMPLEX COMPOUNDS, FOURIER ANALYSIS, CRYSTAL STRUCTURE, THERMAL PROPERTIES, MATHEMATICAL MODELS.

  14. Advanced mercuric iodide detectors for X-ray microanalysis

    SciTech Connect

    Warburton, W.K.; Iwanczyk, J.S.

    1987-01-01

    We first present a brief tutorial on Mercuric Iodide (HgI/sub 2/) detectors and the intimately related topic of near-room temperature ultralow noise preamplifiers. This provides both a physical basis and technological perspective for the topics to follow. We next describe recent advances in HgI/sub 2/ applications to x-ray microanalysis, including a space probe Scanning Electron Microscope (SEM), Synchrotron x-ray detectors, and energy dispersive detector arrays. As a result of this work, individual detectors can now operate stably for long periods in vacuum, detect soft x-rays to the oxygen K edge at 523 eV, or count at rates exceeding 2x10(5)/sec. The detector packages are small, lightweight, and use low power. Preliminary HgI/sub 2/ detector arrays of 10 elements with 500eV resolution have also been constructed and operate stably. Finally, we discuss expected advances in HgI/sub 2/ array technology, including improved resolution, vacuum operation, and the development of soft x-ray transparent encapsulants. Array capabilities include: large active areas, high (parallel) count rate capability and spatial sensitivity. We then consider areas of x-ray microanalysis where the application of such arrays would be advantageous, particularly including elemental microanalysis, via x-ray fluorescence spectroscopy, in both SEMs and in scanning x-ray microscopes. The necessity of high count rate capability as spatial resolution increases is given particular attention in this connection. Finally, we consider the possibility of Extended X-ray Absorption Fine Structure (EXAFS) studies on square micron sized areas, using detector arrays.

  15. X-ray fluorescence holography.

    PubMed

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  16. Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip; Feng, Hua; Roberts, Timothy P.

    2017-08-01

    We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations indicates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.

  17. X-ray Timing Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2008-01-01

    We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\

  18. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  19. Measurement of the x-ray tube anodes' surface profile and its effects on the x-ray spectra.

    PubMed

    Erdélyi, M; Lajkó, M; Kákonyi, R; Szabó, G

    2009-02-01

    An experimental study--involving measurements with an optical microscope, a profilometer, and a scanning electron microscope--for determination of the surface profile of x-ray tube anodes is presented. The islands on the "mud-flatting" surface are separated by approximately 8 microm deep cracks. The surface roughness on the island is typically below 1 microm, and the area ratio of cracks to the total surface is higher on the more extensively used regions (anode aging). A simple model was proposed to calculate the spectrum modification introduced by the rough surface. Loss of x-ray intensity of 4% was predicted using the roughest surface at a small emission angle.

  20. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  1. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been

  2. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  3. X-ray emission spectroscopy.

    PubMed

    Bergmann, Uwe; Glatzel, Pieter

    2009-01-01

    We describe the chemical information that can be obtained by means of hard X-ray emission spectroscopy (XES). XES is presented as a technique that is complementary to X-ray absorption spectroscopy (XAS) and that provides valuable information with respect to the electronic structure (local charge- and spin-density) as well as the ligand environment of a 3d transition metal. We address non-resonant and resonant XES and present results that were recorded on Mn model systems and the Mn(4)Ca-cluster in the oxygen evolving complex of photosystem II. A brief description of the instrumentation is given with an outlook toward future developments.

  4. X-rays from stars.

    PubMed

    Güdel, Manuel

    2002-09-15

    More than two years of observation with Chandra and XMM-Newton has provided a rich harvest of new results on the physics of stellar coronae and winds. High-resolution X-ray spectroscopy in particular has opened new windows to the structure, the dynamics and the composition of stellar atmospheres. The present paper presents selected results from the areas of hot and cool stars and star formation, summarizing new views of the thermal structure and energy release in stellar coronae, observations of magnetically active brown dwarfs, the structure of winds in hot stars, the physics in colliding-wind binary systems, and X-rays from protostars and stellar jets.

  5. Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction.

    PubMed

    Rehbein, S; Heim, S; Guttmann, P; Werner, S; Schneider, G

    2009-09-11

    We present an x-ray optical approach to overcome the current limitations in spatial resolution of x-ray microscopes. Our new BESSY full-field x-ray microscope operates with an energy resolution up to E/DeltaE=10(4). We demonstrate that under these conditions it is possible to employ high orders of diffraction for imaging. Using the third order of diffraction of a zone plate objective with 25 nm outermost zone width, 14 nm lines and spaces of a multilayer test structure were clearly resolved. We believe that high-order imaging paves the way towards sub-10-nm real space x-ray imaging.

  6. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very ... limitations of Chest Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the ...

  7. Compact Flash X-Ray Units

    DTIC Science & Technology

    1995-07-01

    Flash x-ray units are used to diagnose pulsed power driven experiments on the Pegasus machine at Los Alamos. Several unique designs of Marx powered...employing an x-ray tube configuration which allows closely spaced x-ray emitting anodes. These units all emit a 10 ns FWHM x-ray pulse. Their Marx banks

  8. X-ray exposure sensor and controller

    NASA Technical Reports Server (NTRS)

    Berdahl, C. Martin (Inventor)

    1977-01-01

    An exposure controller for x-ray equipment is provided, which comprises a portable and accurate sensor which can be placed adjacent to and directly beneath the area of interest of an x-ray plate, and which measures the amount of exposure received by that area, and turns off the x-ray equipment when the exposure for the particular area of interest on the x-ray plate reaches the value which provides an optimal x-ray plate.

  9. Refractive microlens array for wave-front analysis in the medium to hard x-ray range.

    PubMed

    Mayo, Sheridan C; Sexton, Brett

    2004-04-15

    We report an alternative approach to x-ray wave-front analysis that uses a refractive microlens array as a Shack-Hartmann sensor. The sensor was manufactured by self-assembly and electroplating techniques and is suitable for high-resolution wave-front analysis of medium to hard x rays. We demonstrate its effectiveness at an x-ray energy of 3 keV for analysis of x-ray wave-front perturbations caused by microscopic objects. The sensor has potential advantages over other methods for x-ray phase imaging and will also be useful for the characterization of x-ray beams and optics.

  10. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  11. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  12. X-ray backscatter imaging

    NASA Astrophysics Data System (ADS)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  13. Rontgen's Discovery of X Rays

    ERIC Educational Resources Information Center

    Thumm, Walter

    1975-01-01

    Relates the story of Wilhelm Conrad Rontgen and presents one view of the extent to which the discovery of the x-ray was an accident. Reconstructs the sequence of events that led to the discovery and includes photographs of the lab where he worked and replicas of apparatus used. (GS)

  14. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  15. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  16. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  17. Stellar x-ray flares

    NASA Astrophysics Data System (ADS)

    Haisch, B.; Uchida, Y.; Kosugi, T.; Hudson, H. S.

    1995-01-01

    What is the importance of stellar X-ray flares to astrophysics, or even more, to the world at large? In the case of the Sun, changes in solar activity at the two temporal extremes can have quite significant consequences. Longterm changes in solar activity, such as the Maunder Minimum, can apparently lead to non-negligible alterations of the earth's climate. The extreme short term changes are solar flares, the most energetic of which can cause communications disruptions, power outages and ionizing radiation levels amounting to medical X-ray dosages on long commercial flights and even potentially lethal exposures for unshielded astronauts. Why does the Sun exhibit such behaviour? Even if we had a detailed knowledge of the relevant physical processes on the Sun - which we may be on the way to having in hand as evidenced by these Proceedings- our understanding would remain incomplete in regard to fundamental causation so long as we could not say whether the Sun is, in this respect, unique among the stars. This current paper discusses the stellar x-ray flare detections and astronomical models (quasi-static cooling model and two-ribbon model) that are used to observe the x-ray emission.

  18. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  19. X-Rays from Pluto

    NASA Image and Video Library

    2016-09-14

    The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first

  20. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  1. Compact x-ray source and panel

    SciTech Connect

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  2. Femtosecond time-delay X-ray holography

    NASA Astrophysics Data System (ADS)

    Chapman, Henry N.; Hau-Riege, Stefan P.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Boutet, Sébastien; Marchesini, Stefano; Frank, Matthias; Woods, Bruce W.; Benner, W. Henry; London, Richard A.; Rohner, Urs; Szöke, Abraham; Spiller, Eberhard; Möller, Thomas; Bostedt, Christoph; Shapiro, David A.; Kuhlmann, Marion; Treusch, Rolf; Plönjes, Elke; Burmeister, Florian; Bergh, Magnus; Caleman, Carl; Huldt, Gösta; Seibert, M. Marvin; Hajdu, Janos

    2007-08-01

    Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's `dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.

  3. X-Ray Streak Camera.

    NASA Astrophysics Data System (ADS)

    Jaanimagi, Paul Ants

    Streak cameras are acknowledged as the only instruments capable of unambiguously diagnosing optical phenomena with a time resolution of the order of a picosecond on a single shot basis. As streak cameras become more extensively used for diagnostics in such fields as picosecond laser pulse generation, photo-chemistry, laser produced plasma studies, the instrument's capabilities are also being examined and limitations are becoming noticeable. One of the aims of this dissertation is to investigate the question of streak camera fidelity, especially with regard to linearity and dynamic range as a function of the time resolution. It is shown that the dynamic range is proportional to the product of the instrumental time resolution and the pulse width. The implications for femtosecond diagnostic capability are self-evident but a study of the sources of the limitations suggest distinct avenues for improving the systems. Since a streak camera employs an electron analog of the optical signal, clearly space charge will cause significant distortion at large current densities and consequently limit the dynamic range. Problems also result from nonlinear photocathode response, electron lens distortions, time of flight dispersion, phosphor reciprocity failure and nonlinear intensifier gain. The solution for some of these problems requires modifications to the basic tube designs. The National Research Council of Canada x-ray streak camera (based on a RCA C73435 image tube) was used as the starting point for testing electron optic designs and implementing the desired modifications. The objective of this work was to improve our x-ray diagnostic in sensitivity and in time resolution capability to < 10 ps. Ultimately this streak camera was to be used to time resolve the x -ray emission from plasmas produced by the COCO II and high pressure CO(,2) laser facilities at NRC. Features of the redesigned x-ray streak camera include: a large photocathode area (1.3 x 25 mm), a photoelectron

  4. Performance of hard X-ray zone plates at the Advanced Photon Source

    SciTech Connect

    Maser, J.; Lai, B.; Cai, Z.; Rodrigues, W.; Legnini, D.; Ilinski, P.; Yun, W.; Chen, Z.; Krasnoperova, A.A.; Vladimirsky, Y.; Cerrina, F.; Di, E.; Fabrizio, E.; Gentili, M.

    1999-12-20

    Fresnel zone plates have been highly successful as focusing and imaging optics for soft x-ray microscopes and microprobe. More recently, with the advent of third-generation high-energy storage rings, zone plates for the hard x-ray regime have been put to use as well. The performance of zone plates manufactured using a combination of electron-beam lithography and x-ray lithography is described.

  5. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  6. Synchrotron X-Ray Induced Gold Nanoparticle Formation

    SciTech Connect

    Yang, Y. C.; Wang, C. H.; Yang, T. Y.; Hwu, Y.; Chen, C. H.; Je, J. H.; Margaritondo, G.

    2007-01-19

    We reported a simple approach to generate gold nanoparticles from HAuCl4 containing aqueous solution by synchrotron x-ray irradiation at room temperature. The gold colloidal were investigated by a variety of characterization methods including Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Fourier transformation infrared (FTIR), Ultraviolet and Visible (UV-VIS) spectrometer and the effects of variables including pH value, radiation time were examined.

  7. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  8. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    NASA Astrophysics Data System (ADS)

    Gherase, Mihai R.; Vargas, Andres Felipe

    2017-03-01

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  9. Non-periodic multilayer coatings in EUV, soft x-ray and x-ray range

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan

    2008-09-01

    Non-periodic multilayer coatings offer engineer great flexibility to achieve tailored spectral performance in EUV, soft X-ray and X-ray region. We have developed a variety of non-periodic multilayer mirrors for use as optical key components for polarization-sensitive studies, Kirkpatrick-Baez microscope, Earth's magnetosphere observation and reflection of sub-femtosecond pulses. To find optimal distribution of layer thicknesses for a given spectral response, several numerical algorithms, such as simplex, simulated annealing, genetic and Levenberg Marquardt, have been explored to solve the reverse optimization problems. The designed non-periodic multilayers were prepared by use of a direct current magnetron sputtering system and characterized by grazing incidence x-ray reflectometry analysis. The synchrotron measurements of these samples were performed at the National Synchrotron Radiation Laboratory, China and at the beamline UE56/1-PGM-1 at BESSY II Berlin, Germany. This paper covers our recent results of design and fabrication of non-periodic multilayer coatings. And the mirror performance and limitations were also briefly reviewed.

  10. Ultraluminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Fabrika, S.

    2017-06-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times is mysterious. Here we report that all nearby persistent ULXs ever spectroscopically observed have the same optical spectra similar to that of SS 433, the only known supercritical accretor in our Galaxy. The spectra are apparently of WNL type (late nitrogen Wolf-Rayet stars) or LBV (luminous blue variables) in their hot state, which are very scarce stellar objects. We find that the spectra do not originate from WNL/LBV type donors and not in heated accretion disks, but from very hot winds from the accretion disks, which have similar physical conditions as the stellar winds from these stars. Our results suggest that bona-fide ULXs must constitute a homogeneous class of objects, which most likely have supercritical accretion disks.

  11. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  12. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  13. Tunable Coherent X-rays.

    PubMed

    Attwood, D; Halbach, K; Kim, K J

    1985-06-14

    A modern 1- to 2-billion-electron-volt synchrotron radiation facility (based on high-brightness electron beams and magnetic undulators) would generate coherent (laser-like) soft x-rays of wavelengths as short as 10 angstroms. The radiation would also be broadly tunable and subject to full polarization control. Radiation with these properties could be used for phase- and element-sensitive microprobing of biological assemblies and material interfaces as well as reserch on the production of electronic microstructures with features smaller than 1000 angstroms. These short wavelength capabilities, which extend to the K-absorption edges of carbon, nitrogen, and oxygen, are neither available nor projected for laboratory XUV lasers. Higher energy storage rings (5 to 6 billion electron volts) would generate significantly less coherent radiation and would be further compromised by additional x-ray thermal loading of optical components.

  14. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  15. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  16. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  17. Recent Printing And Registration Results With X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Fay, B.; Tai, L.; Alexander, D.

    1985-06-01

    X-ray lithography has matured from a research and development phase to an implementation phase. Accordingly, the concerns have shifted from imaging issues to those of registration, critical dimension control, step height coverage, and system repeatability. In this paper, results will be discussed relating to x-ray printing and registration for full field alignment systems with 100mm field diameter using optical verniers, SEM (scanning electron microscope) and electrical wafer probe techniques. These results will encompass micrometer and submicrometer imaging using single 'level and tri-level processing techniques.

  18. Hard X-Ray Fourier Transform Holography with Zone Plates

    SciTech Connect

    Watanabe, Norio; Yokosuka, Hiroki; Ohigashi, Takuji; Aoki, Sadao; Takano, Hidekazu; Takeuchi, Akihisa; Suzuki, Yoshio

    2004-05-12

    Using two zone plates, a hard x-ray lens-less Fourier transform holographic microscope with cone-beam illumination was investigated at SPring-8 BL20XU. One zone plate was placed on the optical axis, and another zone plate was placed 16 mm downstream and 9 {mu}m off the optical axis. The diverging x-rays from the focus of the upstream zone plate illuminated a specimen where the focus of the downstream zone plate was placed. A hologram of a copper mesh of 12.7 {mu}m pitch could be obtained. The intensity and the phase could be successfully reconstructed with sub-micron resolution.

  19. Phase contrast hard x-ray microscopy with submicron resolution

    SciTech Connect

    Lagomarsino, S.; Cedola, A.; Cloetens, P.; Di Fonzo, S.; Jark, W.; Soullie, G.; Riekel, C.

    1997-11-01

    In this letter we present a hard x-ray phase contrast microscope based on the divergent and coherent beam exiting an x-ray waveguide. It uses lensless geometrical projection to magnify spatial variations in optical path length more than 700 times. Images of a nylon fiber and a gold test pattern were obtained with a resolution of 0.14 {mu}m in one direction. Exposure times as short as 0.1 s gave already visible contrast, opening the way to high resolution, real time studies. {copyright} {ital 1997 American Institute of Physics.}

  20. Compact water-window transmission X-ray microscopy.

    PubMed

    Berglund, M; Rymell, L; Peuker, M; Wilhein, T; Hertz, H M

    2000-03-01

    We demonstrate sub-100 nm resolution water-window soft X-ray full-field transmission microscopy with a compact system. The microscope operates at lambda = 3.37 nm and is based on a 100 Hz table-top regenerative debris-free droplet-target laser-plasma X-ray source in combination with normal-incidence multilayer condenser optics for sample illumination. High-spatial-resolution imaging is performed with a 7.3% efficiency nickel zone plate and a 1024 x 1024 pixel CCD detector. Images of dry test samples are recorded with exposure times of a few minutes and show features smaller than 60 nm.