Sample records for kbe2bo3f2 kbbf crystal

  1. NH4 Be2 BO3 F2 and γ-Be2 BO3 F: Overcoming the Layering Habit in KBe2 BO3 F2 for the Next-Generation Deep-Ultraviolet Nonlinear Optical Materials.

    PubMed

    Peng, Guang; Ye, Ning; Lin, Zheshuai; Kang, Lei; Pan, Shilie; Zhang, Min; Lin, Chensheng; Long, Xifa; Luo, Min; Chen, Yu; Tang, Yu-Huan; Xu, Feng; Yan, Tao

    2018-05-12

    KBe 2 BO 3 F 2 (KBBF) is still the only practically usable crystal that can generate deep-ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH 4 Be 2 BO 3 F 2 (ABBF) and γ-Be 2 BO 3 F (γ-BBF), which not only overcome the layering but also can be used as next-generation DUV NLO materials with the shortest type I phase-matching second-harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ-BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm

    NASA Astrophysics Data System (ADS)

    Nakazato, Tomoharu; Wang, Xiaoyang; Chen, Chuangtian; Watanabe, Shuntaro

    2017-12-01

    We measured the two-photon absorption coefficients of KBe2BO3F2 (KBBF) and CsLiB6O10 (CLBO) at 193.5 nm using CaF2 as a reference. This is the first report about KBBF measurement at any wavelength. The two-photon absorption coefficients of KBBF, CLBO, and CaF2 were 1.3 × 10-9, 1.0 × 10-9, and 0.8 × 10-9 cm/W, respectively. We also measured the fluorescence spectra of KBBF, CLBO, and CaF2 excited by 193.5 nm light. The observed spectrum of KBBF had a broad peak at 322 nm, similar to that of CaF2. The luminescence intensity showed a quadratic dependence on incident laser intensity for KBBF and CaF2, indicating a two-photon process, but showed a linear dependence for CLBO. Taken together, we conclude that the two-photon fluorescence of KBBF originates, as in the case of CaF2, from the transition of a self-trapped exciton formed by a F2 - ion (self-trapped hole), which captures an electron.

  3. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2

    PubMed Central

    Kang, Lei; Lin, Zheshuai; Qin, Jingui; Chen, Chuangtian

    2013-01-01

    With the rapid developments of the all-solid-state deep-ultraviolet (deep-UV) lasers, the good nonlinear optical (NLO) crystal applied in this spectral region is currently lacking. Here, we design two novel NLO carbonates KBeCO3F and RbAlCO3F2 from the first-principles theory implemented in the molecular engineering expert system especially for NLO crystals. Both structurally stable crystals possess very large energy band gaps and optical anisotropy, so they would become the very promising deep-UV NLO crystals alternative to KBBF. Recent experimental results on MNCO3F (M = K, Rb, Cs; N = Ca, Sr, Ba) not only confirm our calculations, but also suggest that the synthesis of the KBeCO3F and RbAlCO3F2 crystals is feasible. PMID:23455618

  4. Hydrothermal crystal growth of ABe 2BO 3F 2 (A=K, Rb, Cs, Tl) NLO crystals

    NASA Astrophysics Data System (ADS)

    McMillen, Colin D.; Kolis, Joseph W.

    2008-04-01

    Crystals of a family of compounds, ABe 2BO 3F 2 (ABBF, A=K, Rb, Cs, Tl), have been grown hydrothermally. Each of these materials was studied using the powder SHG technique and exhibited promising NLO behavior. Seeded crystal growth was demonstrated and the growth conditions were optimized by modifying the temperature, thermal gradient and mineralizer concentration. RbBe 2BO 3F 2 crystals possessed a particularly good combination of SHG intensity, favorable crystal habit and fast growth rates. High quality crystals suitable for advanced deep-UV NLO studies were grown at rates of 0.11 mm/day on (0 0 1) and 0.12 mm/day perpendicular to (0 0 1).

  5. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal

    PubMed Central

    Shan, Pai; Sun, Tongqing; Chen, Hong; Liu, Hongde; Chen, Shaolin; Liu, Xuanwen; Kong, Yongfa; Xu, Jingjun

    2016-01-01

    Deep-ultraviolet nonlinear optical crystals are of great importance as key materials in generating coherent light with wavelength below 200 nm through cascaded frequency conversion of solid-state lasers. However, the solely usable crystal in practice, KBe2BO3F2 (KBBF), is still commercially unavailable because of the high toxicity of beryllium-containing and the extreme difficulty of crystal growth. Here, we report the crystal growth and characteristics of an beryllium-free polyphosphate, KLa(PO3)4. Centimeter-sized single crystals have been easily obtained by the flux method and slow-cooling technique. The second-harmonic generation efficiency of KLa(PO3)4 powder is 0.7 times that of KH2PO4; moreover, the KLa(PO3)4 crystal is phase-matchable. Remarkably, the KLa(PO3)4 crystal exhibits an absorption edge of 162 nm, which is the shortest among phase-matchable phosphates so far. These attributes make KLa(PO3)4 a possible deep-ultraviolet nonlinear optical crystal. An analysis of the dipole moments of the polyhedra and theoretical calculations by density functional theory were made to elucidate the structure-properties relationships of KLa(PO3)4. PMID:27126353

  6. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Shan, Pai; Sun, Tongqing; Chen, Hong; Liu, Hongde; Chen, Shaolin; Liu, Xuanwen; Kong, Yongfa; Xu, Jingjun

    2016-04-01

    Deep-ultraviolet nonlinear optical crystals are of great importance as key materials in generating coherent light with wavelength below 200 nm through cascaded frequency conversion of solid-state lasers. However, the solely usable crystal in practice, KBe2BO3F2 (KBBF), is still commercially unavailable because of the high toxicity of beryllium-containing and the extreme difficulty of crystal growth. Here, we report the crystal growth and characteristics of an beryllium-free polyphosphate, KLa(PO3)4. Centimeter-sized single crystals have been easily obtained by the flux method and slow-cooling technique. The second-harmonic generation efficiency of KLa(PO3)4 powder is 0.7 times that of KH2PO4; moreover, the KLa(PO3)4 crystal is phase-matchable. Remarkably, the KLa(PO3)4 crystal exhibits an absorption edge of 162 nm, which is the shortest among phase-matchable phosphates so far. These attributes make KLa(PO3)4 a possible deep-ultraviolet nonlinear optical crystal. An analysis of the dipole moments of the polyhedra and theoretical calculations by density functional theory were made to elucidate the structure-properties relationships of KLa(PO3)4.

  7. Polarized spectral properties and potential application of large-size Nd3+:Ba3Gd2(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Gao, S. F.; Lv, S. Z.; Zhu, Z. J.; Wang, Y.; You, Z. Y.; Li, J. F.; Xu, J. L.; Wang, H. Y.; Tu, C. Y.

    2014-06-01

    The Nd3+-doped Ba3Gd2(BO3)4 crystal with high optical quality and large size is reported in this paper. The growing processes and characteristics of Nd3+:Ba3Gd2(BO3)4 crystal are discussed. The absorption and luminescence spectra of Nd3+ in Ba3Gd2(BO3)4 crystal were measured at room temperature. The luminescence decay curve in correspondence with the 4F3/2 →4I11/2 transition centered at 1062 nm was also measured. The JO intensity parameters Ωt (t = 2,4,6) were calculated to be Ω2 = 1.263, Ω4 = 2.496, Ω6 = 3.606. The radiative lifetime τr and fluorescence lifetime τf are 317.771 and 115 μs respectively, and the fluorescence quantum efficiency is 37.1%.

  8. Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.

    2012-11-01

    In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.

  9. Crystal structure and magnetic properties of Mn substituted ludwigite Co 3O 2BO 3

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Ivanova, N. B.; Kazak, N. V.; Platunov, M. S.; Bezmaternykh, L. N.; Velikanov, D. А.; Vasiliev, А. D.; Ovchinnikov, S. G.; Yurkin, G. Yu.

    2012-03-01

    The needle shape single crystals Co3-x MnxO2BO3 with ludwigite structure have been prepared. According to the X-ray diffraction data the preferable character of distinct crystallographic positions occupation by Mn ions is established. Magnetization field and temperature dependencies are measured. Paramagnetic Curie temperature value Θ=-100 K points out the predominance of antiferromagnetic interactions. Spin-glass magnetic ordering takes the onset at TN=41 K. The crystallographic and magnetic properties of Co3O2BO3:Mn are compared with the same for the isostructural analogs Co3O2BO3 and CoO2BO3:Fe.

  10. Crystal structure of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O with isolated boron triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topnikova, A. P.; Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.

    2016-11-15

    Crystals of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O were prepared by hydrothermal synthesis. The crystals are orthorhombic, a = 7.2295(7) Å, b = 11.2523(8) Å, c = 5.1285(6) Å, Z = 2, sp. gr. C2mm (Amm2), R = 0.0253. The formula of the compound was derived from the structure determination. The Ce and Na atoms are coordinated by nine and six O atoms, respectively. The Ce position is split, and a small amount of Ce is incorporated into the Na1 site with the isomorphous substitution for Na. The anionic moieties exist as isolatedmore » BO{sub 3} and BO{sub 2}(OH) triangles. The planes of the BO{sub 2}(OH) triangles with mm2 symmetry are parallel to the ab plane. The planes of the BO{sub 3} triangles with m symmetry are perpendicular to the ab plane and are rotated in a diagonal way. The splitting of the Ce positions and the polar arrangement of the BO{sub 2}(OH) triangles, water molecules, and Na atoms are observed along the polar a axis. The new structure is most similar to the new borate NaCa{sub 4}[BO{sub 3}]{sub 3} (sp. gr. Ama2), in which triangles of one type are arranged in a polar fashion along the c axis. Weak nonlinear-optical properties of both polar borates are attributed to the quenching of the second-harmonic generation due to the mutually opposite orientation of two-thirds of B triangles in the unit cell.« less

  11. Potassium rich rare earth (RE) borates K 3RE(BO 3) 2

    NASA Astrophysics Data System (ADS)

    Gao, J. H.; Li, R. K.

    2008-01-01

    A series of new compounds in the K 3RE(BO 3) 2 (RE = Y, Nd, Sm, Gd, Tb, Er and Lu) system were synthesized. Powder X-ray diffraction indicates that structures of the K 3RE(BO 3) 2 series can be separated into two different types with boundary between Gd and Tb. Single crystals of two representative compounds K 3Sm(BO 3) 2 and K 3Y(BO 3) 2 were obtained from a K 2O-B 2O 3 melt. The structure of K 3Y(BO 3) 2, determined from single crystal X-ray diffraction data, belongs to Pnnm space group, with lattice constants of a = 9.3377(9) Å, b = 6.7701(6) Å and c = 5.5058(4) Å. With a larger rare earth element, e.g. Sm 3+, K 3Sm(BO 3) 2 crystallizes in space group Pnma, with cell parameters of a = 9.046(3) Å, b = 7.100(2) Å and c = 11.186(3) Å. The structure of K 3Y(BO 3) 2 can be described as a three-dimensional framework formed by isolated YO 6 octahedra jointed by BO 3 triangles by sharing their apical oxygen atoms. The structure of K 3Sm(BO 3) 2 contains infinite [SmO 4BO 3] ∞ chains formed by corner sharing SmO 7 pentagonal dipyramid and BO 3 group, and those chains are interconnected by the other BO 3 groups.

  12. Ca3La2(BO3)4 crystal: a new candidate host material for the ytterbium ion

    NASA Astrophysics Data System (ADS)

    Wang, Yeqing; You, Zhenyu; Zhu, Zhaojie; Xu, Jinlong; Li, Jianfu; Wang, Yan; Wang, Hongyan; Tu, Chaoyang

    2013-10-01

    A disordered laser crystal Yb3+-doped Ca3La2(BO3)4 crystal was grown by the Czochralski technique. The characterized room temperature polarized spectra, re-absorption possibility and laser performance showed that this crystal should be a promising gain material, not only suitable for diode pumping, but also a good candidate for the generation of tunable and short pulse lasers. End pumped by a diode laser at 976 nm in plano-concave and plano-plano cavity, a 3.65 W output power with a slope efficiency of 65% was achieved by using a c-cut Yb3+:Ca3La2(BO3)4 crystal. The output laser wavelength shifted from 1042 to 1062 nm.

  13. Growth, improved thermal stability and spectral properties of Yb3+-ions doped high temperature phase α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions

    NASA Astrophysics Data System (ADS)

    Pan, Shangke; Zhang, Jianyu; Pan, Jianguo

    2018-02-01

    To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.

  14. Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang

    2018-02-01

    Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.

  15. Polarized spectral properties and 1.5-1.6 μm laser operation of Er:Sr3Yb2(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Lin, F. L.; Huang, J. H.; Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Luo, Z. D.; Huang, Y. D.

    2013-10-01

    Undoped and Er3+-doped Sr3Yb2(BO3)4 crystals were grown by the Czochralski method. Room temperature polarized spectral properties of the Er:Sr3Yb2(BO3)4 crystal were investigated. The efficiency of the energy transfer from Yb3+ to Er3+ ions in this crystal was calculated to be about 95%. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 0.75 W quasi-CW laser at 1.5-1.6 μm with a slope efficiency of 7% and an absorbed pump threshold of 3.8 W was achieved in a 0.5-mm-thick Z-cut crystal glued on a 5-mm-thick pure YAG crystal with UV-curable adhesive.

  16. Assessment of growth and spectral properties of Cr3+-doped La0.83Y0.29Sc2.88(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Huang, Yisheng; Sun, Shijia; Lin, Zhoubin; Zhang, Lizhen; Wang, Guofu

    2017-10-01

    This paper reports the spectral characteristic of Cr3+-doped La0.83Y0.29 Sc2.88 (BO3)4 crystal. Cr3+-doped La0.83Y0.29Sc2.88 (BO3)4 crystal was grown from a flux of Li6B4O9 by the top seeded Solution growth method. Cr3+:La0.83Y0.29 Sc2.88 (BO3)4 crystal exhibits broad absorption and emission bands of Cr3+ ions. The absorption cross-section σa is 3.38 × 10-20 cm2 at 467 nm and 4.40 × 10-20 cm2 at 656 nm for E//c, respectively. The emission band with a peak at 906 nm has a full width at half maximum (FWHM) of 188 nm for E//c. The emission cross-section σe at 906 nm is 2.35 × 10-20 cm2 for E//c axis and 2.03 × 10-20 cm2 for E⊥c axis. The fluorescence lifetime of 4T2 → 4A2 transition is 37.7 μs. The investigated result indicates that it may be considered as a potential CW tunable laser crystal material.

  17. Weak ferromagnetism along the third-order axis of the FeBO3 crystals caused by Fe2+ impurity ions

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Rudenko, V. V.; Vorotynov, A. M.

    2018-05-01

    Using the single-ion approximation, the weak ferromagnetic moment σZ(Fe2+) along the third-order axis of FeBO3 crystals, which is caused by the contribution of Fe2+ ions, has been investigated in the framework of the model Fe2+ impurity ion -BO3 vacancy. The extreme low-temperature behavior of the total magnetic moment due to the strong dependence of the Fe2+ion contribution is predicted.

  18. A buetschliite-type rare-earth borate, KBaY(BO 3) 2

    NASA Astrophysics Data System (ADS)

    Gao, Jianhua; Song, Limei; Hu, Xiaoyun; Zhang, Dekai

    2011-01-01

    The title compound was firstly synthesized by solid state reaction and its single crystals were successfully obtained using a selected flux. It is isotypic with the mineral buetschliite, K 2Ca(CO 3) 2, and crystallizes in the trigonal space group R-3m with a = 5.4526(12) Å, c = 17.781(8) Å, Z = 3. In the structure, Ba and K atoms are disordered on a same site in the proportion of 0.492(4):0.508(4). The fundamental building units are YO 6 octahedra and BO 3 triangles. The structure consists of [YB 2O 6] ∞ double layers constructed by corner-sharing YO 6 and BO 3 groups. Ba/K atoms occupy the spaces between these two layers and play the role of bridges. In addition, the luminescence properties of Eu 3+ doped KBaY(BO 3) 2 were also studied.

  19. Investigation the influences of B2O3 and R2O on the structure and crystallization behaviors of CaO-Al2O3 based F-free mold flux

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Kong, Bowen; Gao, Xiangyu; Liu, Qingcai; Shu, Qifeng; Chou, Kuochih

    2018-04-01

    The influences of B2O3 and R2O on the structure and crystallization of CaO-Al2O3 based F-free mold flux were investigated by Raman Spectroscopy and Differential Scanning Calorimetry Technique, respectively, for developing a new type of F-free mold flux. The results of structural investigations showed that B3+ is mainly in the form of [BO3]. And [BO3] appears to form BIII-O-Al linkage which will produce a positive effect on forming [AlO4] network. The number of bridging oxygen and the degree of polymerization of [AlO4] network structure for CaO-Al2O3 system were also increased with the increasing of B2O3. On the contrary, with the addition of R2O into CaO-Al2O3-B2O3 system, the number of bridging oxygen and the degree of polymerization of [AlO4] network were decreased. DSC results showed that the crystallization process became more sluggish with the increase of B2O3, which indicated that the crystallization ability was weakened. While the quenched mold fluxes crystallized more rapidly when introducing R2O. In other word, the crystallization rates of CaO-Al2O3 based slags were accelerated by the introduction of R2O. The liquidus temperature and crystallization temperature were decreased with the increasing amount of B2O3 or by addition of R2O into CaO-Al2O3 system. Only one kind of crystal was precipitated in 8% B2O3 and %R2O-containing samples, which was CaAl2O4 identified by SEM-EDS. When the content of B2O3 increased from 8% to 16%, Ca3B2O6 is clearly observed, demonstrating that the crystallization ability of Ca3B2O6 is enhanced by the increasing concentration of B2O3 in mold flux. The Ca/Al ratio of the generated calcium aluminate has been altered from 1:2 to 1:4 with the increasing of B2O3. The size of CaAl2O4 crystal is gradually increased with the addition of R2O. The crystallization ability of CaAl2O4 is promoted by R2O.

  20. Pair luminescence in Cr3+ -doped Ba2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Bondzior, Bartosz; Miniajluk, Natalia; Dereń, Przemysław J.

    2018-05-01

    Cr3+ ions were introduced to the Ba2Mg(BO3)2 host to provide information about the site occupation, crystal field strength, and the site symmetry. The samples were synthesized by solid-state reaction. Emission observed under 440 nm excitation was characteristic for Cr3+ ions in strong octahedral ligand field with Dq/B parameter ratio 2.74 and sharp R line at 698 nm. The charge mismatch between Cr3+ dopant and Mg2+ host ion is compensated by the creation of Cr3+ pair in the vicinity of Ba or Mg vacancy. The emission decay curve is bi-exponential with decay times 1.2 and 13.3 ms.

  1. Growth, spectroscopic properties and laser output of Er : Ca 4YO(BO 3) 3 and Er : Yb : Ca 4YO(BO 3) 3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Huaijin; Meng, Xianlin; Wang, Changqing; Wang, Pu; Zhu, Li; Liu, Xuesong; Dong, Chunming; Yang, Yuyong; Cheng, Ruiping; Dawes, Judith; Piper, Jim; Zhang, Shaojun; Sun, Lianke

    2000-09-01

    In this paper, Er : Ca 4YO(BO 3) 3 (Er : YCOB) and Er : Yb : Ca 4YO(BO 3) 3 (Er : Yb : YCOB) crystals with large size and excellent quality have been grown by the Czochralski method. The absorption and emission spectra of Er : YCOB and Er : Yb : YCOB crystals have been measured; the emission spectrum of Er : Yb : YCOB crystal shows that the strongest emission peak is located at 1537 nm. An output power of about 2 mW at the wavelength of 1553 nm has been obtained under the pumping power of a fiber-coupled laser diode (LD) of 1600 mW at 976 nm, using a Y direction cut 2.5 mm thick Er : Yb : YCOB crystal sample.

  2. Crystal structures and magnetic properties of lanthanide containing borates LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Yoshihiro, E-mail: doi@sci.hokudai.ac.jp; Satou, Tatsuya; Hinatsu, Yukio

    2013-10-15

    The synthesis, crystal structures and magnetic properties of LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr) were investigated. The LnCr(BO{sub 3}){sub 2} compounds crystallize in the dolomite-type structure with space group R3{sup ¯}, in which the Ln and Cr ions occupy two octahedral sites. From the result of structural analysis, it was found that there is an anti-site disorder between these two sites and its chemical formula is more exactly Ln{sub 1−r}Cr{sub r}[Cr{sub 1−r}Ln{sub r}](BO{sub 3}){sub 2}. On the other hand, the LnSc(BO{sub 3}){sub 2} adopt the calcite-type structure with space group R3{sup ¯}c. The Ln and Sc ions randomly occupymore » an octahedral site and the chemical formula is represented as (Ln{sub 0.5}Sc{sub 0.5})BO{sub 3}. From the magnetic susceptibility and specific heat measurements, we found that all the LnCr(BO{sub 3}){sub 2} show an antiferromagnetic transition at 6.1–8.1 K. This transition is mainly due to the ordering of Cr{sup 3+} magnetic moments. Among the compounds with magnetic Ln{sup 3+} ions, only YbCr(BO{sub 3}){sub 2} shows an antiferromagnetic ordering of Ln{sup 3+} ion at 2.1 K. - Graphical abstract: The lanthanide containing borates LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr) have the dolomite-type (Ln=Cr) and calcite-type (Ln=Sc) structures. Both structures are similar to each other except for the difference in the partially or fully disordered arrangements of octahedral sites. At low temperatures, the LnCr(BO{sub 3}){sub 2} compounds show an antiferromagnetic transition due to a long-range ordering of Cr{sup 3+} moments. Among them only YbCr(BO{sub 3}){sub 2} shows an antiferromagnetic ordering of Ln{sup 3+} ion at 2.1 K. Display Omitted - Highlights: • Lanthanide containing borates LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr) have been synthesized. • LnCr(BO{sub 3}){sub 2} has the dolomite-type structure with an anti-site disorder between Ln and Cr sites. • LnSc(BO{sub 3}){sub 2} has the calcite

  3. Luminescence and Site Occupancy of Eu2+ in Ba2 Ca(BO3)2

    NASA Astrophysics Data System (ADS)

    Li, Pan-Lai; Wang, Zhi-Jun; Yang, Zhi-Ping; Guo, Qing-Lin

    2011-01-01

    A green phosphor Ba2Ca(BO3)2:Eu2+ was synthesized by a high temperature solid-state reaction method under a reductive atmosphere. The luminescence and site occupancy of Eu2+ in Ba2Ca(BO3)2 are investigated. Ba2Ca(BO3)2:Eu2+ shows one green band (537 nm) under 400 nm near ultraviolet excitation which is suitable for UV LED. Ca2+ and Ba2+ ions in Ba2Ca(BO3)2 are replaced by Eu2+ ions, the Ba2Ca(BO3)2:Eu2+ shows a dissymmetrical emission band. The influence of Eu2+ doping concentrations on the emission intensity of Ba2Ca(BO3)2:Eu2+ is studied. It is found that the emission intensity is influenced by the Eu2+ concentration and reaches the maximum value at 2% Eu2+. According to the Dexter theory, the concentration quenching mechanisms of Eu2+ in Ba2Ca(BO3)2 are the d-dinteraction.

  4. Optical properties of Mn 2+ in KCaF 3 single crystal

    NASA Astrophysics Data System (ADS)

    Mazurak, Z.; Ratuszna, A.; Daniel, Ph.

    1999-02-01

    It is known that the spectroscopic properties of 3d impurities in crystals are very sensitive to the environment of the ion and can be changed considerably by using different matrices. The crystal structure of KCaF 3 has been previously determined by the Rietveld profile method. At room temperature, KCa 1- xMn xF 3 ( x<0.1) crystallizes in monoclinic C2 h ( B2 1/ m) symmetry. The local geometries around Mn 2+ in this crystals, in their ground and excited states, are the primary properties that govern the spectroscopic behavior of these systems, which enjoy of fundamental and technological interest. The present work reports the absorption and luminescence spectra of the Mn 2+-doped KCaF 3 (fluoroperovskite). The luminescence spectra recorded over a range of temperatures are dominated by wide bands, corresponding to the 4T 1(G)→ 6A 1(G), Mn 2+ transition. The lifetime ( τ= f( T)) of the first excited state 4T 1(G) was measured as a function of temperature. The lifetime of the Mn 2+ emission, in this crystal have been found to be temperature independent ( τ<7 μs). The absorption and emission spectra of Mn 2+ (3d 5) in KCaF 3 are analyzed using a C4 crystal-field hamiltonian. The calculated energy levels are in good agreement with those obtained experimentally. The resulting crystal-field parameters Bnm are a good representation of the crystal-field interactions of Mn 2+ in KCaF 3.

  5. Synthesis and X-ray crystal structure of (OsO(3)F(2))(2)2XeOF(4) and the Raman spectra of (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4).

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2009-05-18

    The adduct, (OsO(3)F(2))(2)2XeOF(4), was synthesized by dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in XeOF(4) solvent at room temperature followed by removal of excess XeOF(4) under dynamic vacuum at 0 degrees C. Continued pumping at 0 degrees C resulted in removal of associated XeOF(4), yielding (OsO(3)F(2))(2), a new low-temperature phase of OsO(3)F(2). Upon standing at 25 degrees C for 1(1)/(2) h, (OsO(3)F(2))(2) underwent a phase transition to the known monoclinic phase, (OsO(3)F(2))(infinity). The title compounds, (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4) have been characterized by low-temperature (-150 degrees C) Raman spectroscopy. Crystallization of (OsO(3)F(2))(2)2XeOF(4) from XeOF(4) solution at 0 degrees C yielded crystals suitable for X-ray structure determination. The structural unit contains the (OsO(3)F(2))(2) dimer in which the OsO(3)F(3) units are joined by two Os---F---Os bridges having fluorine bridge atoms that are equidistant from the osmium centers (2.117(5) and 2.107(4) A). The dimer coordinates to two XeOF(4) molecules through Os-F...Xe bridges in which the Xe...F distances (2.757(5) A) are significantly less than the sum of the Xe and F van der Waals radii (3.63 A). The (OsO(3)F(2))(2) dimer has C(i) symmetry in which each pseudo-octahedral OsO(3)F(3) unit has a facial arrangement of oxygen ligands with XeOF(4) molecules that are only slightly distorted from their gas-phase C(4v) symmetry. Quantum-chemical calculations using SVWN and B3LYP methods were employed to calculate the gas-phase geometries, natural bond orbital analyses, and vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), XeOF(4), OsO(2)F(4), and (mu-FOsO(3)F(2))(2)OsO(3)F(-) to aid in the assignment of the experimental vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), and (OsO(3)F(2))(infinity). The vibrational modes of the low-temperature polymeric phase, (OsO(3)F(2))(infinity), have been

  6. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  7. The Osmium(VIII) Oxofluoro Cations OsO(2)F(3)(+) and F(cis-OsO(2)F(3))(2)(+): Syntheses, Characterization by (19)F NMR Spectroscopy and Raman Spectroscopy, X-ray Crystal Structure of F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-), and Density Functional Theory Calculations of OsO(2)F(3)(+), ReO(2)F(3), and F(cis-OsO(2)F(3))(2)(+).

    PubMed

    Casteel, William J.; Dixon, David A.; Mercier, Hélène P. A.; Schrobilgen, Gary J.

    1996-07-17

    Osmium dioxide tetrafluoride, cis-OsO(2)F(4), reacts with the strong fluoride ion acceptors AsF(5) and SbF(5) in anhydrous HF and SbF(5) solutions to form orange salts. Raman spectra are consistent with the formation of the fluorine-bridged diosmium cation F(cis-OsO(2)F(3))(2)(+), as the AsF(6)(-) and Sb(2)F(11)(-) salts, respectively. The (19)F NMR spectra of the salts in HF solution are exchange-averaged singlets occurring at higher frequency than those of the fluorine environments of cis-OsO(2)F(4). The F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-) salt crystallizes in the orthorhombic space group Imma. At -107 degrees C, a = 12.838(3) Å, b = 10.667(2) Å, c = 11.323(2) Å, V = 1550.7(8) Å(3), and Z = 4. Refinement converged with R = 0.0469 [R(w) = 0.0500]. The crystal structure consists of discrete fluorine-bridged F(cis-OsO(2)F(3))(2)(+) and Sb(2)F(11)(-) ions in which the fluorine bridge of the F(cis-OsO(2)F(3))(2)(+) cation is trans to an oxygen atom (Os-O 1.676 Å) of each OsO(2)F(3) group. The angle at the bridge is 155.2(8) degrees with a bridging Os---F(b) distance of 2.086(3) Å. Two terminal fluorine atoms (Os-F 1.821 Å) are cis to the two oxygen atoms (Os-O 1.750 Å), and two terminal fluorine atoms of the OsO(2)F(3) group are trans to one another (1.813 Å). The OsO(2)F(3)(+) cation was characterized by (19)F NMR and by Raman spectroscopy in neat SbF(5) solution but was not isolable in the solid state. The NMR and Raman spectroscopic findings are consistent with a trigonal bipyramidal cation in which the oxygen atoms and a fluorine atom occupy the equatorial plane and two fluorine atoms are in axial positions. Density functional theory calculations show that the crystallographic structure of F(cis-OsO(2)F(3))(2)(+) is the energy-minimized structure and the energy-minimized structures of the OsO(2)F(3)(+) cation and ReO(2)F(3) are trigonal bipyramidal having C(2)(v)() point symmetry. Attempts to prepare the OsOF(5)(+) cation by oxidative fluorination of cis

  8. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2015-01-01

    The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.

  9. Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3

    NASA Astrophysics Data System (ADS)

    Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.

  10. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu 2(BO 3) 2

    DOE PAGES

    Haravifard, S.; Graf, D.; Feiguin, A. E.; ...

    2016-06-20

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu 2(BO 3) 2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices.more » In conclusion, the magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.« less

  11. A photoelectron spectroscopy and quantum chemical study on ternary Al-B-O clusters: AlnBO2- and AlnBO2 (n = 2, 3).

    PubMed

    Ou, Ting; Feng, Yuan; Tian, Wen-Juan; Zhao, Li-Juan; Kong, Xiang-Yu; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin

    2018-02-14

    Both B and Al have high oxygen affinity and their oxidation processes are highly exothermic, hinting at intriguing physical chemistry in ternary Al-B-O clusters. We report a combined photoelectron spectroscopy and density-functional study on the structural, electronic, and bonding properties of Al n BO 2 - and Al n BO 2 (n = 2, 3) clusters. Ground-state vertical detachment energies (VDEs) are measured to be 2.83 and 2.24 eV for Al 2 BO 2 - and Al 3 BO 2 - , respectively. A weak isomer is also observed for Al 3 BO 2 - with a VDE of 1.31 eV. Coalescence-kick global searches allow the identification of candidate structures, confirmed via comparisons with experiment. The Al 2 BO 2 - anion is V-shaped in geometry, C s ( 1 A'), with an Al center connecting to OB and OAl terminals. It can be viewed alternatively as the fusion of BOAl and AlOAl by sharing an Al atom. Al 3 BO 2 - has a C s ( 2 A'') global minimum in which an Al 2 dimer interacts with bridging boronyl (BO) and an OAl unit, as well as a low-lying C 2v ( 2 B 2 ) isomer consisting of boronyl and OAl that are doubly bridged by two Al atoms. The BO 2 block (linear O[double bond, length as m-dash]B[double bond, length as m-dash]O chain) is nonexistent in any of the anion and neutral species. Chemical bonding in these Al-B-O clusters is elucidated via canonical molecular orbitals and adaptive natural density partitioning. The cluster structures are also rationalized using the concept of sequential and competitive oxidation of B versus Al centers in Al n B. The first O atom prefers to oxidize B and form BO, whereas the second O atom has options to interact with a fresh Al/Al n /Al n B unit or a BO group. The former route wins thermodynamically, leading to the observed geometries.

  12. Properties and Crystallization Phenomena in Li2Si2O5-Ca5(PO4)3F and Li2Si2O5-Sr5(PO4)3F Glass-Ceramics Via Twofold Internal Crystallization.

    PubMed

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass-ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass-ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F(-) were prepared within the glasses of the SiO2-Li2O-K2O-CaO/SrO-Al2O3-P2O5-F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass-ceramics was established. The microstructures of the glass-ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass-ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass-ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass-ceramics. The authors conclude that the twofold crystallization of Li2Si2O5-Ca5(PO4)3F or Li2Si2O5-Sr5(PO4)3F glass-ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass-ceramics and, hence, displays new potential for dental applications.

  13. Magnetic properties of Co 2 2+ Co 1 - x 3+ Fe x 3+ BO5 ( x = 0.10) single crystals with a ludwigite structure

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Kazak, N. V.; Bayukov, O. A.; Platunov, M. S.; Velikanov, D. A.; Bezmaternykh, L. N.; Ivanova, N. B.; Ovchinnikov, S. G.

    2017-04-01

    The investigation of mixed Co-Fe ludwigite single crystals shows that their magnetic properties are close to the magnetic properties of Fe3BO5 despite the predominance of cobalt ions. The magnetic properties of Co3 - x Fe x BO5 single crystals with x = 0.10 are studied in detail. Magnetometric measurements demonstrate a strong magnetic anisotropy with easy magnetization axis b, and the orbital magnetic moment of cobalt is in a frozen state. The detected temperature dependence of the absorption of Mössbauer spectra allowed us to determine the magnetic ordering temperature, which agrees with the results of magnetization measurements ( T C = 84 K).

  14. Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4): New lead(II) borate-sulfate mixed-anion compounds with two types of 3D network structures

    NASA Astrophysics Data System (ADS)

    Ruan, Ting-Ting; Wang, Wen-Wen; Hu, Chun-Li; Xu, Xiang; Mao, Jiang-Gao

    2018-04-01

    Two new lead(II) borate-sulfate mixed-anion compounds, namely, Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4), have been prepared by using high-temperature melt method or hydrothermal reaction. These compounds exhibit two different types of 3D structures composed of the same anionic units of BO3 triangles and SO4 tetrahedra which are interconnected by lead(II) cations. In Pb4(BO3)2(SO4), the lead(II) ions are bridged by borate anions into 3D [Pb4(BO3)2]2+ architectures with 1D tunnels of 8-member rings along the a-axis, which are filled by the sulfate anions. In Pb2[(BO2)(OH)](SO4), the lead(II) ions are interconnected by borate and sulfate anions into 2D Pb-B-O and Pb-S-O layers parallel to the ab plane, respectively, and these layers are further condensed into the 3D lead(II) borate-sulfate framework. TGA and DSC studies indicate that Pb4(BO3)2(SO4) is congruently melting with a melting point of 689 °C whereas Pb2[(BO2)(OH)](SO4) decomposes at approximately 335 °C. UV/Vis/NIR optical diffuse reflectance spectrum measurements reveal the optical band gaps of 4.03 and 4.08 eV for Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4), respectively. Furthermore, the electronic structures of Pb4(BO3)2(SO4) have also been calculated.

  15. Electrical properties of crystallized 30B2O3-70V2O5 glass

    NASA Astrophysics Data System (ADS)

    Gwoo, Donggun; Kim, Taehee; Han, Kyungseok; Choi, Wongyu; Kim, Jonghwan; Ryu, Bongki

    2013-05-01

    30B2O3-70V2O5 binary-system glass was prepared, and variations in structural and electrical property were examined using crystallization. While different related research studies exist, few have evaluated the variations in the structure and properties with changes in the crystallization rate. 30B2O3-70V2O5 glass was annealed in the graphite mold above the glass transition temperature for 2 h and heat-treated at each crystallization temperature for 3 h. 30B2O3-70V2O5 glass showed predominantly electronic conductive characteristic. FTIR was preferentially used for analyzing the structural changes of B-O bond after crystallization, while XRD was utilized to verify the inferred changes in the structure array (BO3 + V2O5 ↔ BO4 + 2VO2). Structural changes induced by heat treatment were confirmed by analyzing the molecular volume determined from the sample density, and conductance was measured to correlate structural and property changes. Conductivity is discussed based on the migration of vanadate ions with different valence states because of the increase in VO2 crystallinity at 130°C, which, however, was not observed at 170°C. After VO2 structures were reinforced, a 1.8-fold increase in conductance was observed (as compared to the annealed sample) after crystallization at 130°C for 3 h.

  16. Syntheses, Raman spectra, and X-ray crystal structures of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [M][OsO(3)F(3)] (M = XeF(5)(+), Xe(2)F(11)(+)).

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-04-05

    Stoichiometric amounts of XeF(6) and (OsO(3)F(2))(infinity) react at 25-50 degrees C to form salts of the known XeF(5)(+) and Xe(2)F(11)(+) cations, namely, [XeF(5)][mu-F(OsO(3)F(2))(2)], [XeF(5)][OsO(3)F(3)], and [Xe(2)F(11)][OsO(3)F(3)]. Although XeF(6) is oxophilic toward a number of transition metal and main-group oxides and oxide fluorides, fluoride/oxide metathesis was not observed. The series provides the first examples of noble-gas cations that are stabilized by metal oxide fluoride anions and the first example of a mu-F(OsO(3)F(2))(2)(-) salt. Both [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are orange solids at room temperature. The [XeF(5)][OsO(3)F(3)] salt is an orange liquid at room temperature that solidifies at 5-0 degrees C. When the salts are heated at 50 degrees C under 1 atm of N(2) for more than 2 h, significant XeF(6) loss occurs. The X-ray crystal structures (-173 degrees C) show that the salts exist as discrete ion pairs and that the osmium coordination spheres in OsO(3)F(3)(-) and mu-F(OsO(3)F(2))(2)(-) are pseudo-octahedral OsO(3)F(3)-units having facial arrangements of oxygen and fluorine atoms. The mu-F(OsO(3)F(2))(2)(-) anion is comprised of two symmetry-related OsO(3)F(2)-groups that are fluorine-bridged to one another. Ion pairing results from secondary bonding interactions between the fluorine/oxygen atoms of the anions and the xenon atom of the cation, with the Xe...F/O contacts occurring opposite the axial fluorine and from beneath the equatorial XeF(4)-planes of the XeF(5)(+) and Xe(2)F(11)(+) cations so as to avoid the free valence electron lone pairs of the xenon atoms. The xenon atoms of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are nine-coordinate and the xenon atom of [XeF(5)][OsO(3)F(3)] is eight-coordinate. Quantum-chemical calculations at SVWN and B3LYP levels of theory were used to obtain the gas-phase geometries, vibrational frequencies, and NBO bond orders, valencies, and NPA charges of

  17. Syntheses and crystal structures of two new hydrated borates, Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xuean; Zhao Yinghua; Chang Xinan

    Two new hydrated borates, Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O, have been prepared by hydrothermal reactions at 170 {sup o}C. Single-crystal X-ray structural analyses showed that Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) A, c=17.751(2) A, Z=3 and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O in a triclinic space group P1-bar with a=6.656(2) A, b=6.714(2) A, c=10.701(2) A, {alpha}=99.07(2){sup o}, {beta}=93.67(2){sup o}, {gamma}=118.87(1){sup o}, Z=2. Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons {submore » {infinity}} {sup 1}[Zn{sub 8}O{sub 15}(OH){sub 3}]{sup 17-} that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional {sub {infinity}} {sup 3}[Zn{sub 8}O{sub 11}(OH){sub 3}]{sup 9-} framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O is a layered compound containing double ring [B{sub 5}O{sub 8}(OH)]{sup 2-} building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb{sup 2+} ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO{sub 3} and OH groups in Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}], and BO{sub 3}, BO{sub 4}, OH groups as well as guest water molecules in Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O. -- Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices to form a three-dimensional framework. The boron atoms are incorporated into the channels in the framework to

  18. Luminescence properties of Eu3+ doped CdF2 single crystals

    NASA Astrophysics Data System (ADS)

    Boubekri, H.; Diaf, M.; Guerbous, L.; Jouart, J. P.

    2018-04-01

    This paper reports the photoluminescence properties of Eu3+ doped CdF2 single crystals. The pulled crystals were prepared by use of the Bridgman technique from a vacuum furnace in fluoride atmosphere. Absorption, excitation and emission spectra of the crystal doped with three Eu3+ concentrations (0.02%, 0.1% and 0.6% mol.) were recorded at room temperature. The emission spectra exhibit a strong yellow and red emissions in the spectral range 550-720 nm which are assigned to 5D0 → 7FJ (J = 1, 2, 4) transitions and a weak infrared emission around 816 nm corresponding to 5D0 → 7F6 transition. The magnetic dipole emission (5D0 → 7F1) is the most intense for each Eu3+ concentration. The Judd-Ofelt intensity parameters Ω2, Ω4, Ω6 for 4f-4f transitions of Eu3+ ions were computed from the emission spectra using the 5D0 → 7FJ (J = 1, 2, 4, 6) transitions. Via these phenomenological intensity parameters, the spontaneous emission probabilities, branching ratios, radiative lifetimes, quantum efficiencies and emission cross-sections for the main Eu3+ emitting levels are evaluated.

  19. Multichannel Luminescence Properties of Mixed-Valent Eu2+/Eu3+ Coactivated SrAl3BO7 Nanocrystalline Phosphors for Near-UV LEDs.

    PubMed

    Liu, Xiaoming; Xie, Weijie; Lü, Ying; Feng, Jingchun; Tang, Xinghua; Lin, Jun; Dai, Yuhua; Xie, Yu; Yan, Liushui

    2017-11-20

    Up to now, orchestrating the coexistence of Eu 2+ and Eu 3+ activators in a single host lattice has been an extremely difficult task, especially for the appearance of the characteristic emission of Eu 2+ and Eu 3+ in order to generate white light. Nevertheless, here we demonstrate a new Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphor with abundant and excellent multichannel luminescence properties. A series of Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphors were prepared through a Pechini-type sol-gel method followed by a reduction process. With excitation of UV/NUV light, the prepared SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphors show not only the characteristic f-f transitions of Eu 3+ ion ( 5 D J → 7 F J,J' , J, J' = 0-3), but also the 5d → 4f transitions of Eu 2+ ion with comparable intensity from 400 to 700 nm in the whole visible spectral region. The luminescence color of the SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor can be tuned from blue, blue-green, white, and orange to orange-red by changing the excitation wavelength, the overall doping concentration of europium ions (Eu 2+ , Eu 3+ ), and the relative ratio of Eu 2+ to Eu 3+ ions to some extent. A single-phase white-light emission has been realized in SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor. The obtained SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor has potential application in the area of NUV white-light-emitting diodes.

  20. Magneto-optical spectra and electron structure of Nd0.5Gd0.5Fe3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Sukhachev, A. L.; Temerov, V. L.

    2016-03-01

    Polarized absorption spectra and magnetic circular dichroism (MCD) spectra of Nd0.5Gd0.5Fe3(BO3)4 single crystal were measured in the range of 10000-21000 cm-1 and at temperatures 2-300 K. On the basis of these data, in the paramagnetic state of the crystal, the 4f states of the Nd3+ ion were identified in terms of the irreducible representations and in terms of | J , ±MJ 〉 wave functions of the free atom. The changes of the Landé factor during f-f transitions were found theoretically in the | J , ±MJ 〉 wave functions approximation and were determined experimentally with the help of the measured MCD spectra. In the majority of cases the experimentally found values are close to the theoretically predicted ones.

  1. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5.

    PubMed

    Raphael, Brian H; Bradshaw, Marite; Kalb, Suzanne R; Joseph, Lavin A; Lúquez, Carolina; Barr, John R; Johnson, Eric A; Maslanka, Susan E

    2014-05-01

    Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.

  2. Properties and Crystallization Phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F Glass–Ceramics Via Twofold Internal Crystallization

    PubMed Central

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass–ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass–ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F− were prepared within the glasses of the SiO2–Li2O–K2O–CaO/SrO–Al2O3–P2O5–F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass–ceramics was established. The microstructures of the glass–ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass–ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass–ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass–ceramics. The authors conclude that the twofold crystallization of Li2Si2O5–Ca5(PO4)3F or Li2Si2O5–Sr5(PO4)3F glass–ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass–ceramics and, hence, displays new potential for dental applications. PMID:26389112

  3. Absorption of Dy3+ and Nd3+ ions in Ba R 2F8 single crystals

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pushkar', A. A.; Uvarova, T. V.; Chernov, S. P.

    2008-09-01

    The Dy3+ absorption and excitation spectra of BaY2F8 and BaYb2F8 single crystals are investigated in the ultraviolet, vacuum ultraviolet, and visible ranges at a temperature of 300 K. These crystals exhibit intense broad absorption bands due to the spin-allowed 4 f-5 d transitions in the range (56-78) × 10-3 cm-1 and less intense absorption bands that correspond to the spin-forbidden transitions in the range (50-56) × 10-3 cm-1. The Nd3+ absorption spectra of BaY2F8 single crystals are studied in the range (34-82) × 10-3 cm-1 at 300 K for different crystal orientations.

  4. Effects of scandium substitution on the crystal structure and luminescence properties of LuBO{sub 3}: Ce{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yuntao, E-mail: caswyt@hotmail.com; Ren, Guohao, E-mail: rgh@mail.sic.ac.cn; Ding, Dongzhou

    2012-10-15

    The calcite phase of LuBO{sub 3} and ScBO{sub 3} polycrystalline powders were synthesized by solid state reaction method, and the Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce (x=0.2, 0.5, 0.7) single crystals were grown by the Czochralski method. A large composition deviation between the initial polycrystalline powders and final single crystal was confirmed by electron probe micro-analysis. Raman spectroscopy revealed that moderate lattice disorder was induced by scandium substitution. However, based on the single crystal X-ray study, we finally concluded that the crystal structure of lutetium scandium orthoborate still crystallized in the rhombohedral system belonging to R3{sup -}c. Furthermore, the relationship between themore » energies of the five 5d levels of Ce{sup 3+} and the crystalline environment was revealed. The total redshift, total crystal field splitting, and centroid shift of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce{sup 3+} were calculated based on their VUV excitation spectra. The variations trend of these observed spectroscopic parameters was in accordance with the predicted ones. - Graphical abstract: The crystal structure of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce is rhombohedral system with R3{sup -}c space group. The relationship between the energies of the five Ce{sup 3+} 5d levels and the crystalline environment is established. Highlights: Black-Right-Pointing-Pointer Moderate lattice disorder is induced by scandium doping. Black-Right-Pointing-Pointer The crystal structure of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce is rhombohedral system with R3{sup -}c space group. Black-Right-Pointing-Pointer Relationship between energies of Ce{sup 3+} 5d levels and crystalline environment is established. Black-Right-Pointing-Pointer The spectroscopic parameters are experimentally and theoretically calculated.« less

  5. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN P...

  6. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN P...

  7. Description and crystal structure of albrechtschraufite, MgCa4F2[UO2(CO3)3]2ṡ17-18H2O

    NASA Astrophysics Data System (ADS)

    Mereiter, Kurt

    2013-04-01

    Albrechtschraufite, MgCa4F2[UO2(CO3)3]2ṡ17-18H2O, triclinic, space group Pī, a = 13.569(2), b = 13.419(2), c = 11.622(2) Å, α = 115.82(1), β = 107.61(1), γ = 92.84(1)° (structural unit cell, not reduced), V = 1774.6(5) Å3, Z = 2, D c = 2.69 g/cm3 (for 17.5 H2O), is a mineral that was found in small amounts with schröckingerite, NaCa3F[UO2(CO3)3](SO4)ṡ10H2O, on a museum specimen of uranium ore from Joachimsthal (Jáchymov), Czech Republic. The mineral forms small grain-like subhedral crystals (≤ 0.2 mm) that resemble in appearance liebigite, Ca2[UO2(CO3)3]ṡ ~ 11H2O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2 V = 65(1)° ( λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO2 and H2O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO2(CO3)3]4- anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF2(Ocarbonate)3(H2O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO6, CaF2O2(H2O)4, CaFO3(H2O)4 and CaO2(H2O)6 coordination polyhedra. The crystal structure is built up from MgCa3F2[UO2(CO3)3]ṡ8H2O layers parallel to (001) which are linked by Ca[UO2(CO3)3]ṡ5H2O moieties into a framework of the composition MgCa4F2[UO2(CO3)3]ṡ13H2O. Five additional water molecules are located in voids of the framework and show large displacement parameters. One of the water positions is partly vacant, leading to a

  8. Comparative Study of the Magnetoelectric Effect in HoAl3(BO3)4 and HoGa3(BO3)4 Single Crystals

    NASA Astrophysics Data System (ADS)

    Freidman, A. L.; Dubrovskii, A. A.; Temerov, V. L.; Gudim, I. A.

    2018-03-01

    The comparative study of the magnetoelectric properties and magnetostriction of HoGa3(BO3)4 and HoAl3(BO3)4 single crystals has been carried out. The investigated compounds exhibit qualitatively similar magnetodielectric and inverse magnetoelectric ME E effects with the close absolute values, which is indicative of the weak effect of a nonmagnetic metal ion. On the contrary, the magnetostriction of the galloborate has been found to be threefold higher than that of the alumoborate. In addition, the difference between the qualitative behaviors of magnetostriction has been established: the magnetic-field dependence of magnetostriction for the alumoborate has the maximum near 70 kOe at T = 4.2 K, while the galloborate magnetostriction has no maximum and does not saturate in a field of 140 kOe.

  9. Growth of Ca 4YO(BO 3) 3 crystals by vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Fan, Shiji; Wang, Jinchang; Zhong, Zhenwu; Qian, Guoxing; Sun, Renying

    2001-07-01

    Growth of single crystals of Ca 4YO(BO 3) 3 (YCOB) by the vertical Bridgman method is reported in this paper. By using near-sealed Pt crucibles to prevent volatilization of B 2O 3, the high-optical-quality YCOB crystals of 25 mm diameter and more than 40 mm in length have been grown at the furnace temperature of 50-80°C above the melting point of YCOB and the crucible lowering rates of 0.2-0.6 mm/h. Owing to the low vertical and radial temperature gradient, crack-free YCOB crystals have been obtained in the <0 1 0> and <0 0 1> directions. At the top of a YCOB boule, the dislocation density was found to decrease from the center to the outer area, and the average dislocation density is about 600/cm 2.

  10. Correlation of EMR and optical spectroscopy data for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4 crystal - Extracting low symmetry aspects

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czesław; Gnutek, Paweł; Açıkgöz, Muhammed

    2015-08-01

    In this study, the crystal field analysis for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4, for short YAB, crystal has been carried out to complement earlier study of the zero-field splitting (ZFS) parameters (ZFSPs). This analysis utilizes data on the distortion models obtained from analysis of the ZFSPs obtained experimentally by EMR for Cr3+ and Mn2+ ions at the Y3+ and Al3+ sites in YAB. This approach enables to verify and enhance reliability of the ZFSP modeling based on superposition model (SPM) analysis and the distortion models predicted previously. Subsequently, modeling of the crystal field parameters (CFPs) based on SPM analysis is carried out for Cr3+ and Mn2+ ions located at possible cation sites in YAB. The SPM predicted CFP values serve as input for the Crystal Field Analysis (CFA) package to calculate the CF energy levels. The predicted physical ZFS of the ground spin state, i.e. the 4A2 state for Cr3+ ion and the 6S state Mn2+ ions, enable calculation of the theoretical ZFSP values, D and D & (a-F), respectively, using the microscopic spin Hamiltonian (MSH) module in the CFA package. In this way, data on the distortions around the Cr3+ centers in YAB (and to a certain extent also for Mn2+ centers) obtained using the ZFSP data from EMR measurements may be correlated with data on the CF energy levels measured by optical spectroscopy. This modeling approach uncovers certain incompatibilities in the existing data for Cr3+:YAB, which call for reanalysis of the previous assignments of the energy levels observed in optical spectra and more accurate experimental data.

  11. Synthesis and photoluminescence properties of Pb{sup 2+} doped inorganic borate phosphor NaSr{sub 4}(BO{sub 3}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+}more » doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.« less

  12. Temperature dependence of local structural changes around transition metal centers Cr3+ and Mn2+ in RAl3(BO3)4 crystals studied by EMR

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed; Rudowicz, Czesław; Gnutek, Paweł

    2017-11-01

    Theoretical investigations are carried out to determine the temperature dependence of the local structural parameters of Cr3+ and Mn2+ ions doped into RAl3(BO3)4 (RAB, R = Y, Eu, Tm) crystals. The zero-field splitting (ZFS) parameters (ZFSPs) obtained from the spin Hamiltonian (SH) analysis of EMR (EPR) spectra serve for fine-tuning the theoretically predicted ZFSPs obtained using the semi-empirical superposition model (SPM). The SPM analysis enables to determine the local structure changes around Cr3+ and Mn2+ centers in RAB crystals and explain the observed temperature dependence of the ZFSPs. The local monoclinic C2 site symmetry of all Al sites in YAB necessitates consideration of one non-zero monoclinic ZFSP (in the Stevens notation, b21) for Cr3+ ions. However, the experimental second-rank ZFSPs (D =b20 , E = 1 / 3b22) were expressed in a nominal principal axis system. To provide additional insight into low symmetry aspects, the distortions (ligand's distances ΔRi and angular distortions Δθi) have been varied while preserving monoclinic site symmetry, in such way as to obtain the calculated values (D, E) close to the experimental ones, while keeping b21 close to zero. This procedure yields good matching of the calculated ZFSPs and the experimental ones, and enables determination of the corresponding local distortions. The present results may be useful in future studies aimed at technological applications of the Huntite-type borates with the formula RM3(BO3)4. The model parameters determined here may be utilized for ZFSP calculations for Cr3+ and Mn2+ ions at octahedral sites in single-molecule magnets and single-chain magnets.

  13. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.

    2014-03-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.

  14. Hydrothermal crystal growth of oxides for optical applications

    NASA Astrophysics Data System (ADS)

    McMillen, Colin David

    2007-12-01

    The manipulation of light has proven to be an integral part of today's technology-based society. In particular, there is great interest in obtaining coherent radiation in all regions of the optical spectrum to advance technology in military, medical, industrial, scientific and consumer fields. Exploring new crystal growth techniques as well as the growth of new optical materials is critical in the advancement of solid state optics. Surprisingly, the academic world devotes little attention to the growth of large crystals. This shortcoming has left gaps in the optical spectrum inaccessible by solid state devices. This dissertation explores the hydrothermal crystal growth of materials that could fill two such gaps. The first gap exists in the deep-UV region, particularly below 200 nm. Some materials such as LiB3O5 and beta-BaB2O4 can generate coherent light at wavelengths as low as 205 nm. The growth of these materials was explored to investigate the feasibility of the hydrothermal method as a new technique for growing these crystals. Particular attention was paid to the descriptive chemistry surrounding these systems, and several novel structures were elucidated. The study was also extended to the growth of materials that could be used for the generation of coherent light as low as 155 nm. Novel synthetic schemes for Sr2Be2B2O7 and KBe2BO 3F2 were developed and the growth of large crystals was explored. An extensive study of the structures, properties and crystal growth of related compounds, RbBe2BO3F2 and CsBe2BO 3F2, was also undertaken. Optimization of a number of parameters within this family of compounds led to the hydrothermal growth of large, high quality single crystal at rates suitable for large-scale growth. The second gap in technology is in the area of high average power solid state lasers emitting in the 1 mum and eye-safe (>1.5 mum) regions. A hydrothermal technique was developed to grow high quality crystals of Sc 2O3 and Sc2O3 doped with suitable

  15. Solid-liquid phase equilibria in the ternary system (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Guo, Ya-fei; Yang, Jian-sen; Deng, Tian-long

    2015-12-01

    Experimental studies on the solubilities and physicochemical properties including density, refractive index and pH value in the ternary systems (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K were determined with the method of isothermal dissolution equilibrium. Based on the experimental results, the phase diagrams and their corresponding physicochemical properties versus composition diagram in the system were plotted. In the phase diagrams of the ternary system at 288.15 and 298.15 K, there are one eutectic point and two crystallization regions corresponding to lithium metaborate octahydrate (LiBO2 · 8H2O) and lithium carbonate (Li2CO3), respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagrams for this ternary system at 288.15 and 298.15 K shows that the solid phase numbers and exist minerals are the same, and the area of crystallization region of Li2CO3 is increased obviously with the increasing temperature while that of LiBO2 · 8H2O is decreased. The physicochemical properties (density, pH value and refractive index) of the solutions of the ternary system at two temperatures changes regularly with the increasing lithium carbonate concentration. The calculated values of density and refractive index using empirical equations of the ternary system are in good agreement with the experimental values.

  16. Spectroscopic properties of HoAl3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Ikonnikov, D. A.; Malakhovskii, A. V.; Sukhachev, A. L.; Temerov, V. L.; Krylov, A. S.; Bovina, A. F.; Aleksandrovsky, A. S.

    2014-11-01

    The Judd-Ofelt theory has been applied to analyze absorption spectra of Ho3+ ion in HoAl3(BO3)4 measured in spectral range 300-700 nm at room temperature. The Judd-Ofelt spectroscopic parameters have been determined as: Ω2 = 18.87 × 10-20 cm2, Ω4 = 17.04 × 10-20 cm2, Ω6 = 9.21 × 10-20 cm2. These parameters have been used to calculate radiative lifetimes and branching ratios of the luminescence manifolds. Three luminescent bands were found in the spectral range 450-700 nm ascribed to transitions from the 5F5, (5F4, 5S2) and 3K8 states to the ground state 5I8. Experimental intensities of these luminescence transitions were compared with those calculated by using Judd-Ofelt theory and the system of kinetic equations for populations of starting luminescing states. Probabilities of radiativeless transitions were evaluated from this comparison.

  17. Synthesis and structural characterization of Li3K3Y7(BO3)9

    NASA Astrophysics Data System (ADS)

    Bräuchle, Sebastian; Huppertz, Hubert

    2017-09-01

    Li3K3Y7(BO3)9 was prepared by high-temperature solid state synthesis at 900 °C in a platinum crucible from lithium carbonate, potassium carbonate, boric acid, and yttrium(III) oxide. The compound crystallizes in the orthorhombic space group Pca21 (no. 29) (Z = 4). The structure was refined from single-crystal X-ray diffraction data: a = 20.743(8), b = 6.387(4), c = 17.474(4) Å, V = 2315.2(2) Å3, R1 = 0.0473, and wR2 = 0.0637 for all data. The crystal structure of Li3K3Y7(BO3)9 consists of isolated BO3 groups forming [Li3B4O21] units in combination with LiO6 octahedra in the ac plane, which are interconnected to each other by additional planar BO3 groups. The Y3+ and K+ cations are arranged in layers along the a-axis.

  18. A strategy for optical properties investigation in ABe2BO3F2 (A=K, Rb, Cs) using finite field methods

    NASA Astrophysics Data System (ADS)

    Mushahali, Hahaer; Mu, Baoxia; Wang, Qian; Mamat, Mamatrishat; Cao, Haibin; Yang, Guang; Jing, Qun

    2018-07-01

    The finite-field methods can be used to intuitively learn about the optical response and find out the atomic contributions to the birefringence and SHG tensors. In this paper, the linear and second-order nonlinear optical properties of ABe2BO3F2 family (A = K, Rb, Cs) compounds are investigated using the finite-field methods within different exchange-correlation functionals. The results show that the obtained birefringence and SHG tensors are in good agreement with the experimental values. The atomic contribution to the total birefringence was further investigated using the variation of the atomic charges, and the Born effective charges. The results show that the boron-oxygen groups give main contribution to the anisotropic birefringence.

  19. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN P-97-553...

  20. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN P-97-553...

  1. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  2. Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.

    2017-10-01

    Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.

  3. Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions

    PubMed Central

    Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long

    2016-01-01

    Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er3+ into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the 4I11/2 → 4I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er3+ around 2.7 μm is more than 1.2 × 10−20 cm2, which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers. PMID:27430595

  4. Er(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions.

    PubMed

    Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long

    2016-07-19

    Er(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er(3+) into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the (4)I11/2 → (4)I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er(3+) around 2.7 μm is more than 1.2 × 10(-20) cm(2), which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers.

  5. Charge ordering and multiferroicity in Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} oxyborates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maignan, A., E-mail: antoine.maignan@ensicaen.fr; Lainé, F.; Guesdon, A.

    2017-02-15

    The comparison of Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} reveals that the 2Fe{sup 2+}: Fe{sup 3+} charge ordering of the former is suppressed in the latter. Spin dynamics probed by ac susceptibility are strongly affected by the substitution, inducing superparamagnetism at low temperature in Fe{sub 2}MnBO{sub 5}. Interestingly, for both oxyborates, glassiness is observed in the dielectric properties at low temperature, but only Fe{sub 3}BO{sub 5} shows a magnetodielectric effect close to its lower magnetic transition. A change in the electrical polarization, measured by pyroelectric current integration, is observed in Fe{sub 3}BO{sub 5} and is even more pronounced inmore » Fe{sub 2}MnBO{sub 5}. Such results suggest that these oxyborates behave like antiferromagnetic relaxor ferroelectrics. These features are proposed to be related to the distribution of the species (Fe{sup 3+}, Fe{sup 2+} and Mn{sup 2+}) over the four transition metal sites forming the ludwigite structure. - Graphical abstract: 90 K [010] electron diffraction patterns of Fe{sub 3}BO{sub 5}. The yellow arrows in the pattern indicate the extra-spots corresponding to the superstructure induced by the charge ordering. - Highlights: • The TEM (ED) study of the Fe{sub 3}BO{sub 5} oxyborate at 90 K reveals a superstructure related to a Fe{sup 2+}/Fe{sup 3+} ordering. • The Fe{sub 2}MnBO{sub 5}, Mn-substituted counterpart, does not show such ordering. • Our magnetic and electric measurements demonstrate that these magnetic ferrites exhibit glassiness in their charges (relaxor-type) with additional superparamagnetism at low T for Fe{sub 2}MnBO{sub 5} and magnetodielectric coupling near T{sub N2}=72 K in Fe{sub 3}BO{sub 5}. • The pyroelectric measurements confirm the existence of a ferroelectric behavior in these antiferromagnets. Accordingly, our results open the route to the study of other large class of the M{sub 2}{sup 2+}M’{sup 3+}BO{sub 5} ludwigites and to their complex magnetism and

  6. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing

    2018-06-01

    BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.

  7. Fluoride ion donor properties of cis-OsO(2)F(4): synthesis, raman spectroscopic study, and X-ray crystal structure of [OsO(2)F(3)][Sb(2)F(11)].

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-01-04

    The salt, [OsO(2)F(3)][Sb(2)F(11)], has been synthesized by dissolution of cis-OsO(2)F(4) in liquid SbF(5), followed by removal of excess SbF(5) at 0 degrees C to yield orange, crystalline [OsO(2)F(3)][Sb(2)F(11)]. The X-ray crystal structure (-173 degrees C) consists of an OsO(2)F(3)(+) cation fluorine bridged to an Sb(2)F(11)(-) anion. The light atoms of OsO(2)F(3)(+) and the bridging fluorine atom form a distorted octahedron around osmium in which the osmium atom is displaced from its center toward an oxygen atom and away from the trans-fluorine bridge atom. As in other transition metal dioxofluorides, the oxygen ligands are cis to one another and the fluorine bridge atom is trans to an oxygen ligand and cis to the remaining oxygen ligand. The Raman spectrum (-150 degrees C) of solid [OsO(2)F(3)][Sb(2)F(11)] was assigned on the basis of the ion pair observed in the low-temperature crystal structure. Under dynamic vacuum, [OsO(2)F(3)][Sb(2)F(11)] loses SbF(5), yielding the known [mu-F(OsO(2)F(3))(2)][Sb(2)F(11)] salt with no evidence for [OsO(2)F(3)][SbF(6)] formation. Attempts to synthesize [OsO(2)F(3)][SbF(6)] by the reaction of [OsO(2)F(3)][Sb(2)F(11)] with an equimolar amount of cis-OsO(2)F(4) or by a 1:1 stoichiometric reaction of cis-OsO(2)F(4) with SbF(5) in anhydrous HF yielded only [mu-F(OsO(2)F(3))(2)][Sb(2)F(11)]. Quantum-chemical calculations at the SVWN and B3LYP levels of theory and natural bond orbital analyses were used to calculate the gas-phase geometries, vibrational frequencies, natural population analysis charges, bond orders, and valencies of OsO(2)F(3)(+), [OsO(2)F(3)][Sb(2)F(11)], [OsO(2)F(3)][SbF(6)], and Sb(2)F(11)(-). The relative thermochemical stabilities of [OsO(2)F(3)][SbF(6)], [OsO(2)F(3)][Sb(2)F(11)], [OsO(2)F(3)][AsF(6)], [mu-F(OsO(2)F(3))(2)][SbF(6)], [mu-F(OsO(2)F(3))(2)][Sb(2)F(11)], and [mu-F(OsO(2)F(3))(2)][AsF(6)] were assessed using the appropriate Born-Haber cycles to account for the preference for [mu-F(OsO(2)F(3))(2

  8. Single crystals of the fluorite nonstoichiometric phase Eu{0.916/2+}Eu{0.084/3+}F2.084 (conductivity, transmission, and hardness)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Turkina, T. M.; Sorokin, N. I.; Karimov, D. N.; Komar'kova, O. N.; Sulyanova, E. A.

    2010-07-01

    The nonstoichiometric phase EuF2+ x has been obtained via the partial reduction of EuF3 by elementary Si at 900-1100°C. Eu{0.916/2+}Eu{0.084/3+}F2.084 (EuF2.084) single crystals have been grown from melt by the Bridgman method in a fluorinating atmosphere. These crystals belong to the CaF2 structure type (sp. gr. Fm bar 3 m) with the cubic lattice parameter a = 5.8287(2) Å, are transparent in the spectral range of 0.5-11.3 μm, and have microhardness H μ = 3.12 ± 0.13 GPa and ionic conductivity σ = 1.4 × 10-5 S/cm at 400°C with the ion transport activation energy E a = 1.10 ± 0.05 eV. The physicochemical characteristics of the fluorite phases in the EuF2 - EuF3 systems are similar to those of the phases in the SrF2 - EuF3 and SrF2 - GdF3 systems due to the similar lattice parameters of the EuF2 and SrF2 components. Europium difluoride supplements the list of fluorite components MF2 ( M = Ca, Sr, Ba, Cd, Pb), which are crystal matrices for nonstoichiometric (nanostructured) fluoride materials M 1 - x R x F2 + x ( R are rare earth elements).

  9. “Ni{sub 5}TiO{sub 7}” is Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalbandyan, V.B.

    2017-05-15

    It is shown that the compound known as Ni{sub 5}TiO{sub 7} and considered as a promising catalyst and oxidation product of alloys does not exist and its XRD pattern actually corresponds to Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} - Graphical abstract: XRD pattern of “Ni{sub 5}TiO{sub 7}” (top) is identical to that for Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} (bottom) based on single-crystal structural data. - Highlights: • Popular catalyst known as Ni{sub 5}TiO{sub 7} is actually Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}. • B{sub 2}O{sub 3} came from the flux used for crystal growth. • Some authors reporting this phase did notmore » use any boron compounds.« less

  10. TL and PL studies on cubic fluoroperovskite single crystal (KMgF3: Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2014-04-01

    The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF3 and CeF3) Co-doped KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu2+ at 360 nm attributed to the ff transition (6P7/2→8S7/2) could only be observed due to the energy transfer from Ce3+ to Eu2+.

  11. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 μm.

    PubMed

    Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-01-08

    A composite crystal consisting of a 1.5-mm-thick Er:Yb:YAl 3 (BO 3 ) 4 crystal between two 1.2-mm-thick sapphire crystals was fabricated by the thermal diffusion bonding technique. Compared with a lone Er:Yb:YAl 3 (BO 3 ) 4 crystal measured under the identical experimental conditions, higher laser performances were demonstrated in the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal due to the reduction of the thermal effects. End-pumped by a 976 nm laser diode in a hemispherical cavity, a 1.55 μm continuous-wave laser with a maximum output power of 1.75 W and a slope efficiency of 36% was obtained in the composite crystal when the incident pump power was 6.54 W. Passively Q-switched by a Co 2+ :MgAl 2 O 4 crystal, a 1.52 μm pulse laser with energy of 10 μJ and repetition frequency of 105 kHz was also realized in the composite crystal. Pulse width was 315 ns. The results show that the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal is an excellent active element for 1.55 μm laser.

  12. Optical spectroscopy of low-phonon Ho3+ doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Li, Chun; Zeng, Fanming; Lin, Hai; Zheng, Dongyang; Yang, Xiaodong; Liu, Wang; Liu, Jinghe

    2014-12-01

    The Ho:BaY2F8 crystal was grown by Czochralski method. The crystal phase structure and absorption spectra were tested, the absorption peak exists near 899 nm, the absorption cross section was 1.27 × 10-21 cm2. The emission spectra of crystals in the vicinity of 2 and 3.9 μm were measured, the 2 μm near infrared light induced by 5I7 → 5I8 transition of Ho3+ ions was observed, as well as the fluorescence output at 3.9 μm (5I5 → 5I6), emission cross section at 3.9 μm was calculated to be 0.86 × 10-21 cm2. We suppose that the Ho:BaY2F8 crystal has a large application prospect for the 2-4 μm wavelength near infrared laser.

  13. Manganese Vanadate Chemistry in Hydrothermal BaF 2 Brines: Ba 3 Mn 2 (V 2 O 7 ) 2 F 2 and Ba 7 Mn 8 O 2 (VO 4 ) 2 F 23

    DOE PAGES

    Sanjeewa, Liurukara D.; McMillen, Colin D.; McGuire, Michael A.; ...

    2016-12-05

    We synthesized manganese vanadate fluorides using high-temperature hydrothermal techniques with BaF 2 as a mineralizer. Ba 3Mn 2(V 2O 7) 2F 2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO 4F 2 trigonal prisms with linking V 2O 7 groups. Ba 7Mn 8O 2(VO 4) 2F 23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn 2+/3+(O,F) 6 octahedra. The resulting octahedra form alternating Mn 2+ and Mn 2+/3+ layers separated by VO 4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

  14. Highly efficient continuous-wave laser operation of LD-pumped Nd,Gd:CaF2 and Nd,Y:CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Pang, Siyuan; Ma, Fengkai; Yu, Hao; Qian, Xiaobo; Jiang, Dapeng; Wu, Yongjing; Zhang, Feng; Liu, Jie; Xu, Jiayue; Su, Liangbi

    2018-05-01

    Spectroscopic properties of Nd:CaF2 crystals are investigated. The photoluminescence intensity in the near infrared region is drastically enhanced by co-doping Gd3+ ions and Y3+ in Nd:CaF2 crystals. Preliminary laser experiments are carried out with 0.3%Nd,5%Gd:CaF2 and 0.3%Nd,5%Y:CaF2 crystals under laser diode pumping; true continuous wave laser operation is achieved with slope efficiencies of 42% and 39%, respectively, and the maximum output power reaches 1.188 W.

  15. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that ofmore » HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for

  16. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO3), zinc salt (2=3). 721.3031 Section 721.3031 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3031 Boric acid (H3BO...

  17. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO3), zinc salt (2=3). 721.3031 Section 721.3031 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3031 Boric acid (H3BO...

  18. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO3), zinc salt (2=3). 721.3031 Section 721.3031 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3031 Boric acid (H3BO...

  19. Synthesis of Organotitanium(IV) Fluoride Phosphates and the Crystal Structure of [(C5Me4Et)TiF(µ-F){µ-O2P(OSiMe3)2}]2.

    PubMed

    Pevec, Andrej; Demšar, Alojz; Pinkas, Jiri; Necas, Marek

    2012-03-01

    The complexes [(C5Me4R)TiF(µ-F)µ-O2P(OSiMe3)2]2 [R = Me (1), Et (2)] were prepared from [(C5Me4R)TiF3]2, (R = Me, Et) and OP(OSiMe3)3. The molecular structure of 2 has been determined by single-crystal X-ray diffraction analysis. An eight-membered Ti2O4P2 metallacycle bridged by two fluorine ligands between two titanium centers is observed.

  20. Combustion synthesis and luminescence properties of yellow-emitting phosphors Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Zhiguo, E-mail: xiazg426@yahoo.com.cn; Liao, Libing, E-mail: lbliao@cugb.edu.cn; Zhang, Zepeng

    2012-02-15

    Graphical abstract: A yellow-emitting phosphor Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} was firstly synthesized by the solution-combustion method. The photoluminescence excitation and emission spectra, temperature dependence of luminescence intensity, and luminescence lifetime of the phosphor were investigated. Highlights: Black-Right-Pointing-Pointer Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} phosphor was synthesized by a solution-combustion method. Black-Right-Pointing-Pointer Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} showed an intense yellow emission band centered at 569 nm with the CIE coordinate of (0.453, 0.526). Black-Right-Pointing-Pointer The temperature dependent luminescence property and mechanism of Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} were studied. -- Abstract: Yellow-emitting phosphor Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} was synthesized by a solution-combustion method. Themore » phase structure and microstructure were determined by the X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, respectively. The as-prepared Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} phosphor absorbed near ultraviolet and blue light of 320-500 nm, and showed an intense yellow emission band centered at 569 nm with the CIE coordinate of (0.453, 0.526). The lifetime of Eu{sup 2+} ions in Ca{sub 2}BO{sub 3}Cl:Eu{sup 2+} phosphor was measured, furthermore the temperature dependent luminescence property and mechanism were studied, which also testified that the present phosphor had a promising potential for white light-emitting diodes.« less

  1. Thermoluminescence dosimetric characteristics on cubic fluoroperovskite single crystal (KMgF3:Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Joseph Daniel, D.; Madhusoodanan, U.; Annalakshmi, O.; Jose, M. T.; Ramasamy, P.

    2015-07-01

    This paper describes investigation of thermoluminescence radiation dosimetry characteristics of Eu2+ doped Potassium Magnesium Fluoride (KMgF3) single crystal co-doped with Ce3+ ions. The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation at room temperature. Order of kinetics (b), activation energy (E), and frequency factor (s) were determined by Chen's method and variable heating rate method. Results show that the TL glow peak of the KMgF3 samples obeys second-order kinetics. Analysis of the main dosimetric peak by using the methods mentioned above revealed that activation energy (E) is about 1.2 eV and the frequency factor (s) is in the range 1010-1011 s-1. The TL glow curve structure of the sample remained stable for higher doses of 90Sr/90Y beta source and it shows linearity up to 180 Gy. The time dependent fading behavior of the TL characteristics has also been investigated and is found to be quite stable over long time duration. The characteristic Eu2+ emissions are observed in the TL emission spectra.

  2. Thermal, spectroscopic properties and laser performance at 1.06 and 1.33 μm of Nd : Ca 4YO(BO 3) 3 and Nd : Ca 4GdO(BO 3) 3 crystals

    NASA Astrophysics Data System (ADS)

    Wang, Changqing; Zhang, Huaijin; Meng, Xianlin; Zhu, Li; Chow, Y. T.; Liu, Xuesong; Cheng, Ruiping; Yang, Zhaohe; Zhang, Shaojun; Sun, Lianke

    2000-11-01

    Nd : Ca 4YO(BO 3) 3 (Nd : YCOB) and Nd : Ca 4GdO(BO 3) 3 (Nd : GdCOB) crystals were grown by Czochralski method. Thermal expansion and specific heat of these two crystals were experimentally determined. Their fluorescence spectra were measured within the range from 1000 to 1500 nm. Laser output experiments at 1.06 and 1.33 μm of Nd : YCOB and Nd : GdCOB crystals were performed with a cw Ti : sapphire laser as the pump source.

  3. Formation of metal nanoparticles in MgF2, CaF2 and BaF2 crystals under the electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Bochkareva, Elizaveta S.; Sidorov, Alexander I.; Yurina, Uliana V.; Podsvirov, Oleg A.

    2017-07-01

    It is shown experimentally that electron beam action with electrons energies of 50 and 70 keV on MgF2, CaF2 and BaF2 crystals results in local formation in the crystal near-surface layer of Mg, Ca or Ba nanoparticles which possess plasmon resonance. In the case of MgF2 spheroidal nanoparticles are formed, in the cases of CaF2 and BaF2 - spherical. The formation of metal nanoparticles is confirmed by computer simulation in dipole quasistatic approximation. The dependence of absorption via electron irradiation dose is non-linear. It is caused by the increase of nanoparticles concentration and by the increase of nanoparticles sizes during irradiation. In the irradiated zones of MgF2 crystals, for irradiation doses less than 80 mC/cm2, the intense luminescence in a visible range appears. The practical application of fabricated composite materials for multilevel optical information recording is discussed.

  4. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-07

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.

  5. PbF2-based single crystals and phase diagrams of PbF2-MF2 systems (M = Mg, Ca, Sr, Ba, Cd)

    NASA Astrophysics Data System (ADS)

    Buchinskaya, I. I.; Fedorov, Pavel P.; Sobolev, B. P.

    1997-07-01

    Optical grade single crystals of Pb0.67Cd0.33F2 and Pb1-xCaxF2 (x less than 0.05) were grown by the Bridgman technique in graphite crucibles under fluorinating atmosphere of teflon pyrolysis products. For determinations of concentration areas of solid solutions, suitable for crystal growth, the phase interactions in the systems PbF2 with fluorides of alkaline-earth elements and Cd were studied by DTA and x-ray powder diffraction techniques. Phase diagrams were described by corresponding thermodynamic models. Transition from pure PbF2 to two- component Pb0.67Cd0.33F2 crystal is accompanied by some increase in radiation hardness of the latter and positive changes of mechanical characteristics (the Pb0.67Cd0.33F2 composition microhardness is 147 plus or minus 5 kg/mm2 that is 5 times that of a pure lead fluoride, 28 plus or minus 4 kg/mm2). These solid solutions have a cubic Fm3m fluorite-type lattice as a high-temperature modification of PbF2.

  6. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO2), zinc salt. 721.3032 Section 721.3032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3032 Boric acid (H3BO2),...

  7. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO2), zinc salt. 721.3032 Section 721.3032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3032 Boric acid (H3BO2),...

  8. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO2), zinc salt. 721.3032 Section 721.3032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3032 Boric acid (H3BO2),...

  9. Concentration quenching of Eu{sup 2+} doped Ca{sub 2}BO{sub 3}Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seed Ahmed, H.A.A.; Department of Physics, University of Khartoum, Khartoum; Swart, H.C.

    2016-03-15

    Highlights: • Ca{sub 2}BO{sub 3}Cl doped with Eu{sup 2+} prepared by solid state reaction. • Concentration quenching studied by intensity and lifetime measurements. • Accurate determination of the critical transfer distance. • Interaction mechanism verified to be dipole–dipole interactions. - Abstract: With the aim of determining the concentration quenching mechanism of Eu{sup 2+} doped Ca{sub 2}BO{sub 3}Cl, a series of phosphors with a varied Eu{sup 2+} concentration (Ca{sub 2−x}BO{sub 3}Cl:xEu{sup 2+}) was synthesized by the solid state reaction method. The phase structure was determined by X-ray diffraction. Photoluminescence (PL) measurements showed broad excitation and emission signatures of the allowed f–dmore » transition of Eu{sup 2+} ions. The PL emission intensity was found to be increased by increasing the concentration of Eu{sup 2+} ions up to x = 0.03 and then decreased as a result of the concentration quenching effect. The lifetime of the emission from the Eu{sup 2+} ions was measured and the decrease in the lifetime with increasing Eu{sup 2+} concentration confirmed that non-radiative energy transfer occurred between Eu{sup 2+} ions. From the luminescence data, the value of the critical transfer distance was calculated as 1.5 nm and the corresponding concentration quenching mechanism was verified to be a dipole–dipole interaction.« less

  10. Evolution of the mössbauer spectra of ludwigite Co3 - x Fe x O2BO3 with substitution of iron for cobalt

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Kazak, N. V.; Bezmaternykh, L. N.; Vasiliev, A. D.

    2013-06-01

    A concentration series of single crystals of iron-cobalt ludwigites Co3 - x Fe x O2BO3 ( x = 0.0125, 0.025, 0.050, 0.10, 1.0) has been synthesized. The structure has been studied using X-ray diffraction and Mössbauer effect. A preferred occupation of nonequivalent crystallographic positions by iron in the ludwigite structure has been revealed. It has been found that the valence of substituting iron ions is three. It has been revealed that the structure of the γ-resonance spectrum of Co2FeO2BO3 is complicated due to a composition disorder in the system.

  11. Understanding Complex Tribofilms by Means of H3BO3-B2O3 Model Glasses.

    PubMed

    Spadaro, F; Rossi, A; Ramakrishna, Shivaprakash N; Lainé, E; Woodward, P; Spencer, N D

    2018-02-13

    The discovery of the spontaneous reaction of boric oxides with moisture in the air to form lubricious H 3 BO 3 films has led to great interest in the tribology of boron compounds in general. Despite this, a study of the growth kinetics of H 3 BO 3 on a B 2 O 3 substrate under controlled relative humidity (RH) has not yet been reported in the literature. Here, we describe the tribological properties of H 3 BO 3 -B 2 O 3 glass systems after aging under controlled RH over different lengths of time. A series of tribological tests has been performed applying a normal load of 15 N, at both room temperature and 100 °C in YUBASE 4 oil. In addition, the cause of H 3 BO 3 film failure under high-pressure and high-temperature conditions has been studied to find out whether the temperature, the tribostress, or both influence the removal of the lubricious film from the contact points. The following techniques were exploited: confocal Raman spectroscopy to characterize the structure and chemical nature of the glass systems, environmental scanning electron microscopy to examine the morphology of the H 3 BO 3 films developed, atomic force microscopy to monitor changes in roughness as a consequence of the air exposure, focused-ion-beam scanning electron microscopy to measure the average thickness of the H 3 BO 3 films grown over various times on B 2 O 3 glass substrates and to reveal the morphology of the sample in the vertical section, tribological tests to shed light on the system's lubricating properties, and finally small-area X-ray photoelectron spectroscopy to investigate the composition of the transfer film formed on the steel ball while tribotesting.

  12. Syntheses and multi-NMR study of fac- and mer-OsO(3)F(2)(NCCH(3)) and the X-ray crystal structure (n = 2) and Raman spectrum (n = 0) of fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN.

    PubMed

    Hughes, Michael J; Gerken, Michael; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-06-07

    Dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in CH(3)CN solvent at -40 degrees C followed by solvent removal under vacuum at -40 degrees C yielded fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN (n >/= 2). Continued pumping at -40 degrees C with removal of uncoordinated CH(3)CN yielded fac-OsO(3)F(2)(NCCH(3)). Both fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN and fac-OsO(3)F(2)(NCCH(3)) are yellow-brown solids and were characterized by low-temperature (-150 degrees C) Raman spectroscopy. The crystal structure (-173 degrees C) of fac-OsO(3)F(2)(NCCH(3)).2CH(3)CN consists of two co-crystallized CH(3)CN molecules and a pseudo-octahedral OsO(3)F(2).NCCH(3) molecule in which three oxygen atoms are in a facial arrangement and CH(3)CN is coordinated trans to an oxygen atom in an end-on fashion. The Os---N bond length (2.205(3) A) is among the shortest M---N adduct bonds observed for a d(0) transition metal oxide fluoride. The (19)F NMR spectrum of (OsO(3)F(2))(infinity) in CH(3)CN solvent (-40 degrees C) is a singlet (-99.6 ppm) corresponding to fac-OsO(3)F(2)(NCCH(3)). The (1)H, (15)N, (13)C, and (19)F NMR spectra of (15)N-enriched OsO(3)F(2)(NCCH(3)) were recorded in SO(2)ClF solvent (-84 degrees C). Nitrogen-15 enrichment resulted in splitting of the (19)F resonance of fac-OsO(3)F(2)((15)NCCH(3)) into a doublet ((2)J((15)N-(19)F), 21 Hz). In addition, a doublet of doublets ((2)J((19)F(ax)-(19)F(eq)), 134 Hz; (2)J((15)N-(19)F(eq)), 18 Hz) and a doublet ((2)J((19)F(ax)-(19)F(eq)), 134 Hz) were observed in the (19)F NMR spectrum that have been assigned to mer-OsO(3)F(2)((15)NCCH(3)); however, coupling of (15)N to the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH(3)CN is coordinated trans to a fluorine ligand in the mer-isomer. Quantum-chemical calculations at the SVWN and B3LYP levels of theory were used to calculate the energy-minimized gas-phase geometries, vibrational frequencies of fac- and mer-OsO(3)F(2)(NCCH(3)) and of CH(3)CN. The

  13. Growth and laser properties of Yb : Ca 4YO(BO 3) 3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Huaijin; Meng, Xianlin; Zhu, Li; Wang, Pu; Liu, Xuesong; Cheng, Ruiping; Dawes, Judith; Dekker, Peter; Zhang, Shaojun; Sun, Lianke

    1999-04-01

    Yb : Ca 4YO(BO 3) 3 (Yb : YCOB) crystal has been grown by the Czochralski method. The absorption and fluorescence spectra have been measured. The green luminescence is also observed. The output laser at 1032 nm has been demonstrated pumped by laser diode (LD) at 976.4 nm.

  14. Investigation on growth and macro-defects of Er3+-doped BaY2F8 laser crystal

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Zhang, Shouchao; Wang, Youfa; Tong, Hongshuang

    2013-08-01

    Large BaY2F8 and Er3+-doped BaY2F8 single crystals were grown by the temperature gradient method. Three kinds of macro-defects were found in BaY2F8 single crystals. These macro-defects include cracks, growth striations and straight pipes. The morphologies and distribution regularities of these macro-defects were observed and studied using a solid polarization microscope. The formation mechanisms and the methods of eliminating these defects were discussed.

  15. Nd3+, Y3+-codoped SrF2 laser ceramics

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-09-01

    0.15 at.% Nd3+, 5 at.% Y3+-codoped SrF2 laser ceramic based on single crystal was prepared by extensive plastic deformation. Microstructure, optical and laser properties of the Nd3+, Y3+:SrF2 ceramic were investigated. The lasing of Nd3+, Y3+-codoped SrF2 ceramics with diode pumping have been observed and true CW laser operation around 1057 nm and 1050 nm was obtained with a slope efficiency of 31.9%. In particular, the fracture toughness of the ceramic is 0.98 MPa m1/2, which is approximately two times higher than that of single crystal.

  16. Phase transitions in (NH4)2MoO2F4 crystal

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander; Laptash, Natalia; Vtyurin, Alexander; Krylova, Svetlana

    2016-11-01

    The mechanisms of temperature and high pressure phase transitions have been studied by Raman spectroscopy. Room temperature (295 K) experiments under high hydrostatic pressure up to 3.6 GPa for (NH4)2 MoO2 F4 have been carried out. Experimental data indicates a phase transition into a new high-pressure phase for (NH4)2 MoO2 F4 at 1.2 GPa. This phase transition is related to the ordering anion octahedron groups [MoO2 F4]2- and is not associated with ammonium group. Raman spectra of small non-oriented crystals ranging from 10 to 350 K have been observed. The experiment shows anion groups [MoO2 F4]2- and ammonium in high temperature phase are disordered. The phase transition at T1 = 269.8 K is of the first-order, close to the tricritical point. The first temperature phase transition is related to the ordering anion octahedron groups [MoO2 F4]2-. Second phase transitions T2 = 180 K are associated with the ordering of ammonium. The data presented within this study demonstrate that 2D correlation analysis combined with traditional Raman spectroscopy are powerful tool to study phase transitions in the crystals.

  17. The OsO(3)F(+) and mu-F(OsO(3)F)(2)(+) cations: their syntheses and study by Raman and (19)F NMR spectroscopy and electron structure calculations and X-ray crystal structures of [OsO(3)F][PnF(6)] (Pn = As, Sb), [OsO(3)F][HF](2)[AsF(6)], [OsO(3)F][HF][SbF(6)], and [OsO(3)F][Sb(3)F(16)].

    PubMed

    Gerken, Michael; Dixon, David A; Schrobilgen, Gary J

    2002-01-28

    The fluoride ion donor properties of OsO(3)F(2) have been investigated. The salts [OsO(3)F][AsF(6)], [OsO(3)F][HF](2)[AsF(6)], mu-F(OsO(3)F)(2)[AsF(6)], [OsO(3)F][HF](2)[SbF(6)], and [OsO(3)F][HF][SbF(6)] have been prepared by reaction of OsO(3)F(2) with AsF(5) and SbF(5) in HF solvent and have been characterized in the solid state by Raman spectroscopy. The single-crystal X-ray diffraction studies of [OsO(3)F][AsF(6)] (P2(1)/n, a = 7.0001(11) A, c = 8.8629(13) A, beta = 92.270(7) degrees, Z = 4, and R(1) = 0.0401 at -126 degrees C), [OsO(3)F][SbF(6)] (P2(1)/c, a = 5.4772(14) A, b = 10.115(3) A, c = 12.234(3) A, beta = 99.321(5) degrees, Z = 4, and R(1) = 0.0325 at -173 degrees C), [OsO(3)F][HF](2)[AsF(6)] (P2(1)/n, a = 5.1491(9) A, b = 8.129(2) A, c = 19.636(7) A, beta = 95.099(7) degrees, Z = 4, and R(1) = 0.0348 at -117 degrees C), and [OsO(3)F][HF][SbF(6)] (Pc, a = 5.244(4) A, b = 9.646(6) A, c = 15.269(10) A, beta = 97.154(13) degrees, Z = 4, and R(1) = 0.0558 at -133 degrees C) have shown that the OsO(3)F(+) cations exhibit strong contacts to the anions and HF solvent molecules giving rise to cyclic, dimeric structures in which the osmium atoms have coordination numbers of 6. The reaction of OsO(3)F(2) with neat SbF(5) yielded [OsO(3)F][Sb(3)F(16)], which has been characterized by (19)F NMR spectroscopy in SbF(5) and SO(2)ClF solvents and by Raman spectroscopy and single-crystal X-ray diffraction in the solid state (P4(1)m, a = 10.076(6) A, c = 7.585(8) A, Z = 2, and R(1) = 0.0858 at -113 degrees C). The weak fluoride ion basicity of the Sb(3)F(16)(-) anion resulted in an OsO(3)F(+) cation (C(3)(v) point symmetry) that is well isolated from the anion and in which the osmium is four-coordinate. The geometrical parameters and vibrational frequencies of OsO(3)F(+), ReO(3)F, mu-F(OsO(3)F)(2)(+), (FO(3)Os--FPnF(5))(2), and (FO(3)Os--(HF)(2)--FPnF(5))(2) (Pn = As, Sb) have been calculated using density functional theory methods.

  18. Structure and crystallization of SiO2 and B2O3 doped lithium disilicate glasses from theory and experiment.

    PubMed

    Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian

    2017-09-27

    Solid solutions of SiO 2 and B 2 O 3 in Li 22SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 22SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.

  19. Synthesis and Physical Properties of the Oxofluoride Cu2(SeO3)F2.

    PubMed

    Mitoudi-Vagourdi, Eleni; Papawassiliou, Wassilios; Müllner, Silvia; Jaworski, Aleksander; Pell, Andrew J; Lemmens, Peter; Kremer, Reinhard K; Johnsson, Mats

    2018-04-16

    Single crystals of the new compound Cu 2 (SeO 3 )F 2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu 2 (SeO 3 )F 2 is isostructural with the previously described compounds Co 2 TeO 3 F 2 and CoSeO 3 F 2 . The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO 3 F 3 ] octahedra, within which [SeO 3 ] trigonal pyramids are present in voids and are connected to [CuO 3 F 3 ] octahedra by corner sharing. The presence of a single local environment in both the 19 F and 77 Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of μ eff ∼ 2.2 μ B . Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

  20. TL and PL studies on cubic fluoroperovskite single crystal (KMgF{sub 3}: Eu{sup 2+}, Ce{sup 3+})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, D. Joseph, E-mail: josephd@ssn.edu.in; Ramasamy, P.; Madhusoodanan, U.

    2014-04-24

    The perovskite-like KMgF{sub 3} polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF{sub 3} and CeF{sub 3}) Co-doped KMgF{sub 3} have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF{sub 3} samples doped with Eu{sub 2+} and Ce{sub 3+} have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu{sub 2+} at 360 nm attributed to the ff transition ({sup 6}P{sub 7/2}→{sup 8}S{submore » 7/2}) could only be observed due to the energy transfer from Ce{sub 3+} to Eu{sub 2+}.« less

  1. Disordered Nd:LuYSiO5 crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofeng; Zhou, Zhiyong; Huang, Xiaoxu; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Xu, Jun

    2017-11-01

    We report on diode-pumped disordered Nd:LuYSiO5 (Nd:LYSO) crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I 13/2 transitions. Simultaneous laser operation at 1074 and 1078 nm is achieved with maximum output power of 4.46 W and slope efficiency of 39.6%. Single wavelength laser at 1358 nm with maximum output power of 1.15 W and slope efficiency of 11.8% is also obtained. Moreover, four single-wavelength lasers at 1058, 1107, 1330 and 1386 nm with relatively low gains are achieved with maximum output powers of 2.72, 1.22, 0.52 and 0.42 W, respectively, for the first time to our knowledge. Lasing at non-traditional emission lines was obtained by using output couplers with dielectric coatings for specific wavelength ranges.

  2. Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Bigotta, Stefano; Parisi, Daniela; Bonelli, Lucia; Toncelli, Alessandra; Tonelli, Mauro; Di Lieto, Alberto

    2006-07-01

    Anti-Stokes cooling has been observed in an Yb3+-doped BaY2F8 single crystal. Single crystals have been grown by the Czochralski technique. The absorption spectra and the emission properties have been measured at room temperature and at 10K. The energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and separated from the vibronic substructure. The intrinsic decay time of the F5/22 level has been measured taking care of avoiding the effect of multiple reabsorption processes. The theoretical and experimental cooling efficiencies of Yb:BaY2F8 are evaluated and compared with respect to those of the most frequently investigated materials for laser cooling. A temperature drop of almost 4K was measured by pumping the crystal with 3W of laser radiation at ˜1025nm in single pass configuration with a cooling efficiency of ˜3%.

  3. Crystal structure and phase transition in (NH4)3WO2F5: from dynamic to static orientational disorder.

    PubMed

    Udovenko, Anatoly; Laptash, Natalia

    2015-08-01

    Single crystals of tungsten double salt (NH4)3WO2F5 = (NH4)3[WO2F4]F have been synthesized by solid-state reaction or from fluoride solution and its crystal structures at 296 and 193 K were determined by X-ray diffraction. At room temperature, the crystal structure of the compound is dynamically disordered with the ligand atoms statistically distributed on two positions (6e and 24m) of the Pm3m unit cell [a = 6.0298 (1) Å], and the tungsten atom dynamically disordered on 12 orientations forming a spatial cuboctahedron [W12] that enables the real geometry of cis-WO2F4 octahedron to be determined with two short W-O distances. On cooling, the compound undergoes a first-order phase transition with the symmetry change Pm3m → Pa3 and a doubling of the unit-cell parameter [a = 11.9635 (7) Å]. The ligand F(O) atoms statistically occupy two general 24d sites and form W1X6 and W2X6 octahedra, in which the O and F atoms are not crystallographically different that means a static orientational disorder of (NH4)3WO2F5.

  4. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    PubMed

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Radiation accumulation of F{sub 2} color centers in LiF crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsyna, L. A.

    2016-01-15

    The paper presents the results of the research of the F{sub 2} centers accumulation dose dependences in the LiF crystals, the kinetics of absorption relaxation initiated by exposure to a single electron pulse in the band maxima of different electron centers obtained by time-resolved spectrometry with nanosecond resolution. An analytical description of the F{sub 2} center accumulation in an absorbed dose range ≤10{sup 3} Gy is provided.

  6. Effect of temperature on magnetic and impedance properties of Fe3BO6 of nanotubular structure with a bonded B2O3 surface layer

    NASA Astrophysics Data System (ADS)

    Kumari, Kalpana; Ram, S.; Kotnala, R. K.

    2018-03-01

    In this investigation, we explore a facile synthesis of Fe3BO6 in the form of small crystallites in the specific shape of nanotubes crystallized from a supercooled liquid Fe2O3-B2O3 precursor. This study includes high resolution transmission electron microscopy (HRTEM) images, magnetic, optical, and impedance properties of the sample. HRTEM images reveal small tubes of Fe3BO6 of 20 nm diameter. A well resolved hysteresis loop appears at 5 K in which the magnetization does not saturate even up to as high field as 50 kOe. It means that the Fe3BO6 nanotubes behave as highly antiferromagnetic in nature in which the surface spins do not align along the field so easily. The temperature dependent impedance describes an ionic Fe3BO6 conductor with a reasonably small activation energy Ea ˜ 0.33 eV. Impedance formalism in terms of a Cole-Cole plot shows a deviation from an ideal Debye-like behavior. We have also reported that electronic absorption spectra are over a spectral range 200-800 nm of wavelengths in order to find out how a bonded surface layer present on the Fe3BO6 crystallites tunes the 3d → 3d electronic transitions in Fe3+ ions.

  7. Structural, morphological and optical investigations on electron-beam irradiated PbF2-TeO2-B2O3-Eu2O3 glasses

    NASA Astrophysics Data System (ADS)

    Wagh, Akshatha; Petwal, Vikash; Dwivedi, Jishnu; Upadhyaya, V.; Raviprakash, Y.; Kamath, Sudha D.

    2016-09-01

    Combined structural, optical and morphological studies were carried out on Eu2O3 doped PbF2-TeO2-B2O3 glass samples, before and after being subjected to electron beam of energy 7.5 MeV. XRD confirmed the amorphous nature of the glasses even after 150 kGy electron beam irradiation. Densities of the irradiated samples showed slightly greater values when compared to their respective values before irradiation, which proved the increase in the compaction of the network. The intensities of the three prominent bands; B-O-B linkages, BO4 units and BO3 units of FT-IR spectra, of the titled glasses, showed slight decrease after electron beam irradiation. The decrement in the values of energy band gap and shift in cut-off wavelength towards red edge, proved the formation of color centers in the glass network after irradiation. The change in Hunter L values, through color measurement was a proof for the Farbe/color/absorption centers created in the glass sites after irradiation.

  8. High-pressure synthesis and characterization of the first cerium fluoride borate CeB{sub 2}O{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinteregger, Ernst; Wurst, Klaus; Tribus, Martina

    2013-08-15

    CeB{sub 2}O{sub 4}F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å{sup 3}, R{sub 1}=0.0698, and wR{sub 2}=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−}more » groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed. - Graphical abstract: A new rare-earth fluoride borate CeB{sub 2}O{sub 4}F could be synthesized under high-pressure/high-temperature conditions of 0.9 °GPa and 1450 °Cin a Walker-type multianvil apparatus. The crystal structure represents a new structure type in the class of rare-earth fluoride borates. The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−} groups. A closer view on the ac-plane shows an interesting wave-like modulation of the borate chains. Highlights: • CeB{sub 2}O{sub 4}F is the first fluoride borate exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. • CeB{sub 2}O{sub 4}F is the first cerium fluoride borate. • High-pressure conditions were necessary to synthesize CeB{sub 2}O{sub 4}F.« less

  9. Energy transfer from Tb{sup 3+} to Eu{sup 2+} in Ga{sub 2}S{sub 3}:(Eu{sup 2+}, Tb{sup 3+}) crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagiev, O. B., E-mail: Oktay58@mail.ru; Ganbarova, Kh. B.

    2015-04-15

    The photoluminescence of Ga{sub 2}S{sub 3} crystals activated with Eu{sup 2+} and Tb{sup 3+} ions separately and with ions of both types is studied in the temperature range 77–300 K. It is established that, in the range 77–300 K, the observed broadband photoluminescence in (Ga{sub 2}S{sub 3}){sub 0.95}:(Eu{sub 2}O{sub 3}){sub 0.05} crystals with a peak at 545 nm is defined by 4f{sup 6}5d-4f{sup 7}({sup 8}S{sub 7/2}) intracenter transitions in Eu{sup 2+} ions and the photoluminescence with peaks at 492, 544, 584, 625, and 680 nm in (Ga{sub 2}S{sub 3}){sub 0.99}(Tb{sub 2}O{sub 3}){sub 0.01} crystals is due to the 5d →more » {sup 2}F{sub j} (j = 6−2) intracenter transitions in Tb{sup 3+} ions. It is shown that the photoluminescence bands of Tb{sup 3+} ions in the (Ga{sub 2}S{sub 3}){sub 0.94}(Eu{sub 2}O{sub 3}){sub 0.05}(Tb{sub 2}O{sub 3}){sub 0.01} crystals disappears because of excitation energy transfer from Tb{sup 3+} ions to Eu{sup 2+} ions; i.e., the Tb{sup 3+} ion is a sensitizer of the photoluminescence of the Eu{sup 2+} ion.« less

  10. Role of Er3+ concentration in high-resolution spectra of BaY2 F8 single crystals

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Mazzera, M.; Ponzoni, A.; Amoretti, G.; Magnani, N.; Toncelli, A.; Tonelli, M.

    2005-08-01

    Fourier transform absorption spectroscopy with a resolution as fine as 0.02cm-1 was applied to Er3+ -doped monoclinic BaY2F8 laser crystals in a wide wave number range (500-24000cm-1) and in the temperature range 9-300 K. The careful analysis of the complex narrow line spectra induced by Er3+ allowed us to determine with high accuracy the crystal field splitting of the fundamental I15/24 and of the excited I13/24 , I11/24 , I9/24 , F9/24 , S3/24 , H11/22 , F7/24 , F5/24 , and F3/24 manifolds. On the basis of the experimental data, the crystal-field parameters were determined and Newman’s superposition model was applied: in this way a slight displacement of Er3+ with respect to the Y3+ position was foreseen. The Judd-Ofelt parameters were evaluated: the lifetime values deduced from them were compared to the experimental ones and discussed. The effects caused by increasing Er3+ concentrations (0.5%, 2%, 12%, and 20% atomic fraction) were studied in detail. The new lines, the line broadening, and the line-shape changes were explained in terms of Er3+-Er3+ interaction.

  11. Bulk Crystallization in a SiO2/Al2O3/Y2O3/AlF3/B2O3/Na2O Glass: Fivefold Pseudo Symmetry due to Monoclinic Growth in a Glassy Matrix Containing Growth Barriers

    PubMed Central

    Wisniewski, Wolfgang; Seyring, Martin; Patzig, Christian; Höche, Thomas; Keshavarzi, Ashkan; Rüssel, Christian

    2016-01-01

    A glass with the mol% composition 17 Y2O3·33 Al2O3·40 SiO2·2 AlF3·3 Na22 CeF3·3 B2O3 is heat treated at 1000 °C for 6–24 h. This results in the surface nucleation and growth of YAG. Nucleation and growth of star-shaped alumina and later of monoclinic β-Y2Si2O7 and orthorhombic δ-Y2Si2O7 are additionally observed in the bulk. Phase identification and localization are performed by electron backscatter diffraction (EBSD) as well as TEM analysis. The monoclinic β-Y2Si2O7 observed in the bulk occurs in the form of large, crystal agglomerates which range from 50 to 120 μm in size. The individual crystals are aligned along the c-axis which is the fastest growing axis. Ten probability maxima are observed in the pole-figures illustrating the rotation of orientations around the c-axes indicating a fivefold symmetry. This symmetry is caused by multiple twinning which results in a high probability of specific orientation relationships with rotation angles of ~36°, ~108° (also referred to as the pentagon angle) and ~144° around the c-axis. All these rotation angles are close to the multiples of 36° which are required for an ideal fivefold symmetry. This is the first report of a fivefold symmetry triggered by the presence of barriers hindering crystal growth. PMID:26813152

  12. Optical spectroscopy of Ce3+ ions in BaY2F8 single crystals

    NASA Astrophysics Data System (ADS)

    Francini, R.; Pinelli, S.; Baraldi, A.; Capelletti, R.; Sani, E.; Toncelli, A.; Tonelli, M.

    In the present work we report on the spectroscopic properties of the Ce3+ ion in BaY2F8 single crystals. The absorption and excitation spectra of the emission centered at 340 nm have been measured in the temperature range 15-300 K. The 340 nm emission consists of two broad partially overlapping bands, peaking at 324 and 347 nm (at 15 K), respectively. The full width at half maximum is about 0.5 eV at room temperature. The absorption spectrum of the lowest in energy component of the f --> d transition of Ce3+ reveals at low temperature a marked vibronic structure. High resolution (0.02 cm(-1)) Fourier transform infrared spectroscopy in the wave number range 500-5000 cm(-1) and in the temperature range 9-300 K has been exploited to monitor the f level splitting. The absorption transitions from the three Stark components of the F-2(5/2) manifold to the four of the F-2(7/2) one, have been monitored in the wave number range 2000-3400 cm(-1) . The wave number separation at 9 K between the lowest level of the ground F-2(5/2) manifold and lowest one of the F-2 (7/2) manifold is found to be 2197.47 cm(-1) in good agreement with the splitting detected between the two components of the d --> f emission.

  13. Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Brik, M. G.; Avram, N. M.; Yeung, Y. Y.; Gnutek, P.

    2006-06-01

    An analysis of the energy level structure of Cr3+ ions in Cs2NaAlF6 crystal is performed using the exchange charge model (ECM) together with the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package. Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for Cr3+ ions at the two crystallographically inequivalent sites in Cs2NaAlF6. Using the ECM initial adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr3+ ion at each site. Additionally the CFPs are also calculated using the superposition model (SPM). The ECM and SPM predicted CFP values match very well. Consideration of the symmetry aspects for the so-obtained CFP datasets reveals that the latter axis system matches the symmetry-adapted axis system related directly to the six Cr-F bonds well. Using the ECM predicted CFPs as an input for the CFA/MSH package, the complete energy level schemes are calculated for Cr3+ ions at the two sites. Comparison of the theoretical results with the experimental spectroscopic data yields satisfactory agreement. Our results confirm that the actual symmetry at both impurity sites I and II in the Cs2NaAlF6:Cr3+ system is trigonal D3d. The ECM predicted CFPs may be used as the initial (starting) parameters for simulations and fittings of the energy levels for Cr3+ ions in structurally similar hosts.

  14. In search of the X{sub 2}BO and X{sub 2}BS (X = H, F) free radicals: Ab initio studies of their spectroscopic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouthier, Dennis J., E-mail: dclaser@uky.edu

    2014-12-28

    The F{sub 2}BO free radical is a known, although little studied, species but similar X{sub 2}BY (X = H, D, F; Y = O, S) molecules are largely unknown. High level ab initio methods have been used to predict the molecular structures, vibrational frequencies (in cm{sup −1}), and relative energies of the ground and first two excited electronic states of these free radicals, as an aid to their eventual spectroscopic identification. The chosen theoretical methods and basis sets were tested on F{sub 2}BO and found to give good agreement with the known experimental quantities. In particular, complete basis set extrapolationsmore » of coupled-cluster single and doubles with perturbative triple excitations/aug-cc-pVXZ (X = 3, 4, 5) energies gave excellent electronic term values, due to small changes in geometry between states and the lack of significant multireference character in the wavefunctions. The radicals are found to have planar C{sub 2v} geometries in the X{sup ~2}B{sub 2} ground state, the low-lying A{sup ~2}B{sub 1} first excited state, and the higher B{sup ~2}A{sub 1} state. Some of these radicals have very small ground state dipole moments hindering microwave measurements. Infrared studies in matrices or in the gas phase may be possible although the fundamentals of H{sub 2}BO and H{sub 2}BS are quite weak. The most promising method of identifying these species in the gas phase appears to be absorption or laser-induced fluorescence spectroscopy through the allowed B{sup ~}-X{sup ~} transitions which occur in the visible-near UV region of the electromagnetic spectrum. The ab initio results have been used to calculate the Franck-Condon profiles of the absorption and emission spectra, and the rotational structure of the B{sup ~}-X{sup ~}0{sub 0}{sup 0} bands has been simulated. The calculated single vibronic level emission spectra provide a unique, readily recognizable fingerprint of each particular radical, facilitating the experimental identification of new X

  15. Phase relations in the pseudo ternary system In2O3-TiO2-BO (B: Zn, Co and Ni) at 1200 °C in air

    NASA Astrophysics Data System (ADS)

    Brown, Francisco; Jacobo-Herrera, Ivan Edmundo; Alvarez-Montaño, Victor Emmanuel; Kimizuka, Noboru; Hirano, Tomonosuke; Sekine, Ryotaro; Denholme, Saleem J.; Miyakawa, Nobuaki; Kudo, Akihiko; Iwase, Akihide; Michiue, Yuichi

    2018-02-01

    Phase relations in the pseudo ternary systems In2O3-TiO2-ZnO, In2O3-TiO2-CoO and In2O3-TiO2-NiO at 1200 °C in air were determined by means of a classic quenching method. In6Ti6BO22 (B: Zn, Co and Ni) which has the monoclinic In(Fe1/4Ti3/4)O27/8-type of structure with a 4-dimensional super space group exists in a stable form. There exist homologous phases In1+x(Ti1/2Zn1/2)1-xO3(ZnO)m (m: natural number, 03(ZnO)m-type of the layered crystal structures such as In1+x(Ti1/2Zn1/2)1-xO3(ZnO) (0.12 ≤ x ≤ 0.29), In1+x(Ti1/2Zn1/2)1-x(ZnO)2 (0.12 ≤ x ≤ 0.50), In1+x(Ti1/2Zn1/2)1-xO3(ZnO)3 (0.15 ≤ x ≤ 0.84), In1+x(Ti1/2Zn1/2)1-x(ZnO)4 (0.15 ≤ x ≤ 1), In1+x(Ti1/2Zn1/2)1-xO3(ZnO)5 (0.15 ≤ x ≤ 1), In1+x(Ti1/2Zn1/2)1-x(ZnO)6 (0.15 ≤ x ≤ 1), In1+x(Ti1/2Zn1/2)1-xO3(ZnO)7 (0.15 ≤ x ≤ 1), In1+x(Ti1/2Zn1/2)1-x(ZnO)8 (?2Zn1/2)1-xO3(ZnO)9 (0.15 ≤ x ≤ 1), In1+x(Ti1/2Zn1/2)1-x(ZnO)10 (?2Zn1/2)1-xO3(ZnO)11 (0.15 ≤ x ≤ 1)… without an upper limit of m in the pseudo ternary system In2O3-TiO2-ZnO. All the ions are on the trigonal lattice points, the In(III) is in the octahedral coordination with the oxygen and the {Inx(Ti1/2Zn1/2)1-xZnm} is in the trigonalbipyramidal coordination with oxygen in the crystal structures of each homologous compound. They have R 3 bar m (No. 166) for m = odd or P63/mmc (No. 194) for m = even in space group. Lattice constants for each of the homologous compounds as a hexagonal setting and In6Ti6BO22 as the monoclinic system were determined by means of the powder X-ray diffraction method at room temperature. The temperature dependence of resistivity for In1+x(Ti1/2Zn1/2)1-x(ZnO)4 (0.15 ≤ x ≤ 1) showed semiconducting-like behavior for all samples examined at T(K) = 2-300. The resistivity increased systematically with decreasing x (0.7 ≤ x ≤ 1), and it was found that samples where x ≤ 0.7 became insulators. The optical band gap Eg (eV) of In1+x(Ti1/2Zn

  16. Temperature dependence of luminescence behavior in Er3+-doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Tong, Hongshuang; Wang, Youfa; Zhang, Shouchao

    2013-12-01

    BaY2F8 single crystals doped with Er3+ ions have been grown by the temperature gradient method. The absorption, excitation and emission spectra for Er3+-doped BaY2F8 crystals were measured at room temperature (297 K) and 12 K. The effect of temperature on the luminescence intensity and effective bandwidth was investigated in the range of 12-297 K. The temperature dependence of the fluorescence intensity ratio (FIR) for the 522 nm emission (2H11/2→4I15/2 transition) and the 552 nm emission (4S3/2→4I15/2 transition) was also studied in the range of 12-297 K. Based on the fitting FIR curve, the value of the constant term B (2.25) was obtained. The fitting FIR curve and FIR equation may have a potential application in the temperature measurement. In addition, the up-conversion spectrum at room temperature was recorded under excitation of 980 nm and the up-conversion mechanism was analyzed in detail.

  17. Face-capping μ3-BO in B6(BO)7-: boron oxide analogue of B6H7- with rhombic 4c-2e bonds.

    PubMed

    Guo, Jin-Chang; Lu, Hai-Gang; Zhai, Hua-Jin; Li, Si-Dian

    2013-11-14

    Using the first-principle approaches, we predict a B6(BO)7(-) cluster with a face-capping μ(3)-BO, which is the boron oxide analogue of closo-B6H7(-) with a face-capping μ(3)-H. Detailed topological analysis of electron density clearly reveals the existence of three rhombic 4c-2e bonds around the B/H apex in both C3v B6(BO)7(-) and C3v B6H7(-), which possesses similar electron densities at their bond and ring critical points. The adaptive natural density partitioning (AdNDP) analysis provides a direct and visual picture of the B-B-B-B/H 4c-2e bonds for the first time. Adiabatic and vertical electron detachment energies of the concerned monoanions are calculated to facilitate their future photoelectron spectroscopy measurements and characterizations. The presence of the B6(BO)7(-) and B6H7(-) clusters extends the BO/H isolobal analogy to the whole μ(n)-BO/H series (n = 1, 2, and 3) and enriches the chemistry of boronyl.

  18. Alignment of CH3F in para-H2 crystal studied by IR quantum cascade laser polarization spectroscopy.

    PubMed

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2016-05-14

    In order to investigate the alignment of CH3F in para-H2 crystals, high resolution polarization spectroscopy of the ν3 vibrational band is studied using a quantum cascade laser at 1040 cm(-1). It is found that the main and satellite series of peaks in the ν3 vibrational band of CH3F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H2 in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH3F is not aligned along the c-axis of the crystal but tilted to 64.9(3)° from it.

  19. Centrosymmetric [N(CH3)4]2TiF6 vs. noncentrosymmetric polar [C(NH2)3]2TiF6: A hydrogen-bonding effect on the out-of-center distortion of TiF6 octahedra

    NASA Astrophysics Data System (ADS)

    Kim, Eun-ah; Lee, Dong Woo; Ok, Kang Min

    2012-11-01

    The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A2TiF6 (A[N(CH3)4] or [C(NH2)3]), are reported. Phase pure samples of A2TiF6 were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH3)4]2TiF6 crystallizes in a centrosymmetric space group, R-3, [C(NH2)3]2TiF6 crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF6 octahedra in polar [C(NH2)3]2TiF6 are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF6 octahedra and the nitrogen atoms in the [C(NH2)3]+ cation. Powder second-harmonic generation (SHG) measurements on the [C(NH2)3]2TiF6, using 1064 nm radiation, indicate the material has SHG efficiency of 25× that of α-SiO2, which indicates an average nonlinear optical susceptibility, exp of 2.8 pm/V. Additional SHG measurements reveal that the material is not phase-matchable (Type 1). The magnitudes of out-of-center distortions and dipole moment calculations for TiF6 octahedra will be also reported.

  20. Crystal chemistry and the role of ionic radius in rare earth tetrasilicates: Ba2RE2Si4O12F2 (RE = Er3+-Lu3+) and Ba2RE2Si4O13 (RE = La3+-Ho3+).

    PubMed

    Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W

    2017-10-01

    Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE 2 Si 4 O 12 F 2 (RE = Er 3+ -Lu 3+ ) and new compounds in the Ba 2 RE 2 Si 4 O 13 (RE = La 3+ -Ho 3+ ) family, covering the whole range of ionic radii for the rare earth ions. The Ba 2 RE 2 Si 4 O 13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La 3+ -Nd 3+ , and space group C2/c for Sm 3+ -Ho 3+ ). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.

  1. Semiconductor CdF2:Ga and CdF2:In Crystals as Media for Real-Time Holography

    PubMed Central

    Ryskin, Alexander I.; Shcheulin, Alexander S.; Angervaks, Alexander E.

    2012-01-01

    Monocrystalline cadmium fluoride is a dielectric solid that can be converted into a semiconductor by doping with donor impurities and subsequent heating in the reduction atmosphere. For two donor elements, Ga and In, the donor (“shallow”) state is a metastable one separated from the ground (“deep”) state by a barrier. Photoinduced deep-to-shallow state transition underlies the photochromism of CdF2:Ga and CdF2:In. Real-time phase holograms are recorded in these crystals capable of following up optical processes in a wide frequency range. The features of photochromic transformations in CdF2:Ga and CdF2:In crystals as well as holographic characteristics of these media are discussed. Exemplary applications of CdF2-based holographic elements are given. PMID:28817009

  2. Highly efficient red-emitting BaMgBO3F:Eu3+,R+ (R: Li, Na, K, Rb) phosphor for near-UV excitation synthesized via glass precursor solid-state reaction

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kenji; Akai, Tomoko

    2017-09-01

    Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.

  3. Ba2F2Fe2+ 0.5Fe3+ S3: a two-dimensional inhomogeneous mixed valence iron compound.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2008-03-03

    The structure of the new mixed valence compound Ba2F2Fe1.5S3 was solved by means of single crystal X-ray analysis. It crystallizes in an orthorhombic cell, in the Pnma space group with the cell parameters a = 12.528(3) A, b = 18.852(4) A, and c = 6.0896(12) A. The structure is formed by the alternated stacking of fluorite type [Ba2F2]2+ blocks and the newly discovered [Fe1.5S3]2- blocks. This [Fe1.5S3]2- block exhibits a mixed valence of iron with Fe(+II) located in octahedrons and Fe(+III) in tetrahedrons. Preliminary susceptibility measurements suggest a low dimensional antiferromagnetic behavior.

  4. Theoretical and experimental studies of the Nd3+ 4f3<-->4f25d transitions in monoclinic Nd:BaY2F8 crystal

    NASA Astrophysics Data System (ADS)

    Collombet, Annabelle; Guyot, Yannick; Joubert, Marie-France; Margerie, Jean; Moncorgé, Richard; Tkachuk, Alexandra

    2004-11-01

    Experimental spectroscopic results related to Nd3+-doped BaY2F8, are presented that include vacuum-ultraviolet ground-state absorption and excitation spectra as well as polarized emission and excited-state absorption spectra recorded in the near-ultraviolet spectral range at room and low temperatures. Calculations were performed to determine the positions of the 4f25d sublevels and the intensities and polarizations of the 4f3<-->4f25d optical transitions of the Nd3+ ions in the C2 symmetry sites of the biaxial host crystal. The simulated spectra agree well with the experimental spectra; in particular, the model that was used successfully reproduced the differences between the polarized spectra on one hand and between the spectra recorded at low and room temperatures on the other hand.

  5. Thermophysical characteristics of EuF2.136 crystal

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Moiseev, N. V.; Karimov, D. N.; Sorokin, N. I.; Sulyanova, E. A.; Sobolev, B. P.

    2015-09-01

    Single crystals of EuF2.136 solid solution with a f luorite-type structure (sp. gr. , a = 5.82171(5) Å) have been grown by the Bridgeman method from a melt. Their thermal conductivity k( T) in the temperature range of 50-300 K and heat capacity С Р ( T) at 63-300 K have been studied experimentally for the first time. At T = 300 K the thermophysical characteristics are as follows: thermal conductivity k = 2.13 W/(m K), heat capacity С Р = 73 J/(mol K), and phonon mean free path l ≈ 11 Å. The temperature dependences of entropy S( T), enthalpy H( T), and phonon mean free path l( T) in EuF2.136 crystal are determined.

  6. Hardness properties and microscopic investigation of crack- crystal interaction in SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramic system.

    PubMed

    Roy, Shibayan; Basu, Bikramjit

    2010-01-01

    In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass-ceramics having different crystal morphologies with SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass-ceramics containing plate like mica crystals. Scratch tests at a high load of 50 Nin artificial saliva were carried out in order to simulate the crack-microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel "spherulitic-dendritic shaped "crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the 'spherulitic-dendritic' crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent.While modest damage tolerant behavior is observed in case of 'spherulitic-dendritic' crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.

  7. Enhanced NIR downconversion luminescence by precipitating nano Ca5(PO4)3F crystals in Eu2+-Yb3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Li, Chen; Song, Zhiguo; Li, Yongjin; Lou, Kai; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Wang, Xue; Wang, Qi; Wan, Ronghua

    2013-10-01

    Eu2+-Yb3+ co-doped transparent glass-ceramic containing nano-Ca5(PO4)3F (FAP) was prepared in reducing atmosphere. XRD and TEM analysis indicated that nano-FAP about 40 nm precipitated homogeneously in glass matrix after heat treatment. Confirmed by spectroscopy measurements, the crystal-like absorption and emission of Eu2+ indicated the partition of Eu2+ into FAP nanocrystals in glass ceramic. NIR emission due to the transition 2F→2F of Yb3+ ions (about 980-1100 nm) was observed from glasses under ultraviolet excitation, ascribed to downconversion from Eu2+ to Yb3+, which can be enhanced by precipitating nano-FAP crystals. The results indicated that Eu2+-Yb3+ co-doped glass-ceramic embedding with nano-FAP is a promising candidate as downconversion materials for enhancing conversion efficiency of solar cells.

  8. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm

    NASA Astrophysics Data System (ADS)

    Braud, A.; Girard, S.; Doualan, J. L.; Thuau, M.; Moncorgé, R.; Tkachuk, A. M.

    2000-02-01

    Energy-transfer processes have been quantitatively studied in various Tm:Yb-doped fluoride crystals. A comparison between the three host crystals which have been examined (KY3F10, LiYF4, and BaY2F8) shows clearly that the efficiency of the Yb-->Tm energy transfers is larger in KY3F10 than in LiYF4 or BaY2F8. The dependence of the energy-transfer parameters upon the codopant concentrations has been experimentally measured and compared with the results calculated on the basis of migration-assisted energy-transfer models. Using these energy-transfer parameters and a rate equation model, we have performed a theoretical calculation of the laser thresholds for the 3H4-->3F4 and 3H4-->3H5 laser transitions of the Tm ion around 1.5 and 2.3 μm, respectively. Laser experiments performed at 1.5 μm in Yb:Tm:LiYF4 then led to laser threshold values in good agreement with those derived theoretically. Based on these results, optimized values for the Yb and Tm dopant concentrations for typical values of laser cavity and pump modes were finally derived to minimize the threshold pump powers for the laser transitions around 1.5 and 2.3 μm.

  9. Luminescence Spectroscopy and Crystal Field Simulations of Europium Propylenediphosphonate EuH[O 3P(CH 2) 3PO 3] and Europium Glutarate [Eu(H 2O)] 2[O 2C(CH 2) 3CO 2] 3·4H 2O

    NASA Astrophysics Data System (ADS)

    Serpaggi, F.; Férey, G.; Antic-Fidancev, E.

    1999-12-01

    The results of investigations on the photoluminescence of two europium hybrid compounds, EuH[O3P(CH2)3PO3] (Eu[diph]) and [Eu(H2O)]2[O2C(CH2)3CO2]3·4H2O (Eu[glut]), are presented. In both compounds one local environment is found for the rare earth (Re) ion and the symmetry of the Re polyhedron is low (Cs) as evidenced by the Eu3+ luminescence studies. The electrostatic crystal field (cf) parameters of the 7F multiplet are obtained by the application of the phenomenological cf theory. The simulations using C2v symmetry for the rare earth ion give good agreement between the calculated and the experimental 7F0-4 energy level schemes. The observed optical data are discussed in relation to the crystal structure of the compounds.

  10. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal.

    PubMed

    Su, Liangbi; Guo, Xinsheng; Jiang, Dapeng; Wu, Qinghui; Qin, Zhipeng; Xie, Guoqiang

    2018-03-05

    3 at.% Er:SrF 2 laser crystals with high optical quality were successfully grown using the temperature gradient technique (TGT). The intense mid-infrared emission was observed around 2.7 μm with excitation by a 970 nm LD. Based on the Judd-Ofelt theory, the emission cross-sections of the 4 I 13/2 - 4 I 11/2 transition were calculated by using the Fuchtbauer-Ladenburg (FL) method. Efficient continuous-wave laser operation at 2.8 µm was achieved with the lightly-doped 3 at.% Er:SrF 2 crystal pumped by a 970 nm laser diode. The laser output power reached up to 1.06 W with a maximum slope efficiency of 26%.

  11. μ+SR Investigation of the Shastry-Sutherland Compound SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Sassa, Y.; Wang, S.; Sugiyama, J.; Amato, A.; Rønnow, H. M.; Rüegg, C.; Månsson, M.

    In this study we have investigated the low-dimensional correlated spin system SrCu2(BO3)2 using ambient-pressure muon spin rotation/relaxation (μ+SR). The zero-field data are similar to previously published data, but in addition, they give an even clearer sign of the two low-temperature transitions (T1 ≈ 3 and T2 ≈ 7 K), which is fully consistent with inelastic neutron scattering (INS) measurements. Longitudinal field (LF) data clearly show that the copper spins are highly dynamic and a saturation of the low-temperature relaxation rate indicate that these are indeed two-dimensional (2D) quantum spin fluctuations.

  12. 4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Zayed, M. E.; Rüegg, Ch.; Larrea J., J.; Läuchli, A. M.; Panagopoulos, C.; Saxena, S. S.; Ellerby, M.; McMorrow, D. F.; Strässle, Th.; Klotz, S.; Hamel, G.; Sadykov, R. A.; Pomjakushin, V.; Boehm, M.; Jiménez-Ruiz, M.; Schneidewind, A.; Pomjakushina, E.; Stingaciu, M.; Conder, K.; Rønnow, H. M.

    2017-10-01

    The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated two-dimensional Shastry-Sutherland lattice realized by SrCu2(BO3)2 (refs ,) is an important test case for our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning to 21.5 kbar. This gapped singlet state leads to a transition to long-range antiferromagnetic order above 40 kbar, consistent with the existence of a deconfined quantum critical point.

  13. Ultra-precision process of CaF2 single crystal

    NASA Astrophysics Data System (ADS)

    Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin

    2014-08-01

    This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.

  14. CsFe3(SeO3)2F6 with S = 5/2 Cube Tile Lattice.

    PubMed

    Lu, Hongcheng; Kageyama, Hiroshi

    2018-05-21

    A layered iron selenite fluoride CsFe 3 (SeO 3 ) 2 F 6 1 was hydrothermally synthesized. Single-crystal X-ray diffraction studies show that 1 has a trigonal ( P3̅ m1) lattice, where [Fe 3 (SeO 3 ) 2 F 6 ] - blocks of three iron sublayers are separated by Cs cations. Within the block, only Fe(2)F 6 and Fe(1)O 3 F 3 octahedra are magnetically connected via superexchange Fe(1) -F -Fe(2) pathways, giving an S = 5/2 cube tile (dice) lattice. At low magnetic field, 1 exhibits an antiferromagnetic transition at ∼130 K, where ferrimagnetic cube tile layers are arranged in a staggered manner. At low temperatures, we observed a field-induced transition to a ferrimagnetic state with a one-third magnetization plateau.

  15. Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?

    PubMed

    Chen, Hui; Kong, Xiang-Yu; Zheng, Weijun; Yao, Jiannian; Kandalam, Anil K; Jena, Puru

    2013-10-07

    Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monoclinic β-BaY2F8—a novel crystal simultaneously active for SRS and Ln3+-ion lasing

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Hanuza, J.; Rhee, H.; Eichler, H. J.; Zhang, J.; Tang, D.; Shen, D.; Yu, H.; Wang, J.; Yoneda, H.; Shirakawa, A.

    2015-01-01

    This paper presents the first investigation of stimulated Raman scattering (SRS) in the monoclinic fluoride crystal β-BaY2F8, which is known as a promising host-material for trivalent lanthanide (Ln3+) lasant ions. Picosecond laser excitation in the visible and near-IR spectral range at room temperature revealed the manifestation of nine SRS-promoting phonon modes, which are related to Ag and Bg vibrations of the crystal. Besides multi-phonon Stokes and anti-Stokes generation, we observed cross-cascaded χ(3) ↔ χ(3) processes involving different pairs of SRS-active phonons. A comparative estimation of the first Stokes steady-state Raman gain coefficients, both in the visible and near-IR region related to the most active SRS-phonon mode ωSRS1 ≈ 208 cm-1 of β-BaY2F8, was also performed. Furthermore, a brief review of the pioneering papers on laser action of Ln3+-ions doped in β-BaY2F8 single crystals and other known SRS-active fluoride crystals is given in tabular form.

  17. Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals.

    PubMed

    Grzyb, Tomasz; Runowski, Marcin; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2013-01-01

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF 3 @CeF 3 and TbF 3 @CeF 3 @SiO 2 nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO 2 shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF 3 @CeF 3 nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, 'the products', with an average diameter around 10 nm, showed an increase in the concentration of Tb 3+ ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO 2 shell. .

  18. Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Grzyb, Tomasz; Runowski, Marcin; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2013-10-01

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO2 shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF3@CeF3 nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, `the products', with an average diameter around 10 nm, showed an increase in the concentration of Tb3+ ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO2 shell.

  19. Modulated visible spectra properties of Pr:Ca1-xRxF2+x(R=Y, La, Gd) crystals

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Wu, Qinghui; Ma, Fengkai; Wang, Jingya; Xu, Jun; Su, Liangbi

    2017-10-01

    The spectroscopic properties of the 1.0 at.%Pr:Ca0.97R0.02F2.03(R=Y, La, Gd) crystals are investigated. X-diffraction and room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. The photoluminescence intensity in the visible region is significantly enhanced by co-doping R3+ ions in Pr:CaF2 crystal. The different effects among the R3+ (Y3+, La3+ and Gd3+) regulating ions on the crystals were observed and compared. Pr:Ca0.97La0.02F2.03 and Pr:Ca0.97Y0.02F2.03 crystals have substantially strong emission at blue and orange region, while the Pr:Ca0.97Gd0.02F2.03 crystal is more suitable for the red emission emitting.

  20. Upconversion excitations in Pr3+-doped BaY2F8 crystal

    NASA Astrophysics Data System (ADS)

    Piramidowicz, R.; Mahiou, R.; Boutinaud, P.; Malinowski, M.

    2011-09-01

    We report the orange-to-blue and infrared-(IR)-to-blue wavelengths upconversion luminescence in Pr3+:BaY2F8 crystals. Mechanism of the orange light upconversion into blue 3P0 state emission was confirmed to be energy transfer between two Pr3+ ions in the 1D2 state. IR-to-blue upconversion has only been observed under two different color IR pumping. The first resonant step was the 3H4→1G4 ground state absorption transition, and the second resonant transition was the excited state absorption from the 1G4 to 1I6 and 3PJ levels. A comparison of the efficiency of the IR-to-blue upconversion in several praseodymium activated host is presented and discussed. A model of the IR pumped upconversion praseodymium blue laser is presented and the population inversion conditions are calculated.

  1. F-aggregate centers formation in BaLiF3 crystals

    NASA Astrophysics Data System (ADS)

    Prado, L.; Gomes, L.; Baldochi, S. L.; Morato, S. P.; Vieira, N. D.

    The kinetics of F-aggregate centers formation is investigated in the inverted fluoroperovskite of BaLiF3 submitted to electron-irradiation. By studies of the changes in the absorption spectra during storage of samples in the dark, at room temperature, it was possible to verify a surprising and interesting dependence on defect formation with the crystal growth direction. In spite of its cubic structure, crystals grown in the <100> and <111> directions and submitted to the same conditions of irradiation, showed in particular, to enhance the production of a defect absorbing at 630 nm in <100> crystals which we believe to correspond to F+2-centers in BaLiF3

  2. Growth and spectral properties of Tm:BaY2F8 crystals with different Tm3+ concentration

    NASA Astrophysics Data System (ADS)

    Liu, Wang; Li, Chun; Xu, Jialin; Zhou, Yao; Xie, Huishuang; Gao, Meiling; Yin, Ru; Zheng, Dongyang; Lin, Hai; Liu, Jinghe; Zeng, Fanming

    2016-01-01

    Tm3+:BaY2F8 (Tm:BYF) laser crystals with different doping concentrations were successfully grown by Czochralski method. The optimal growth parameters obtained are as follows: the pulling rate is 0.5 mm/h; the rotation speed is 5 rpm; the cooling rate is 10°C/h. Phase composition, absorption spectra, and fluorescence properties of crystals were studied by XRD and spectral methods. XRD analysis indicates that the crystal belongs to monoclinic system with the C2/ m space group. The lattice parameters were calculated and the anisotropy of the crystals was studied, confirming that the a axis is the best growth direction. The absorption peaks around 790 nm became larger with increase of Tm3+ concentration. The cross section of 15% Tm:BYF crystal around 791 nm is 9.47 × 10-21 cm2. The 10% Tm:BYF crystal has the strongest emission peak around 1879.6 nm with the FWHM of 79 nm and the emission cross-section of 2.13 × 10-21 cm2, which is favorable for the 1.88 μm laser output.

  3. Vibronic transitions of trivalent Er and Ce in BaY2F8 single crystals

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Mazzera, M.; Ponzoni, A.; Sani, E.; Tonelli, M.

    2003-01-01

    High resolution (0.02 cm(-1)) Fourier transform spectroscopy was applied in the 9-300 K and 100-24,000 cm(-1) ranges, respectively, to detect in Er3+ and Ce3+ doped Bay(2)F(8) single crystals (1) the narrow line spectra due to the intraconfigurational 4f-->4f transitions of the rare earths (RE) and (2) the possible vibronic tails accompanying the zero-phonon lines. The F-2(5/2) --> F-2(7/2) transition was monitored for the Ce3+-doping and the crystal field splitting of the initial and final manifold was determined. Weak vibronic spectra accompanying six among the nine investigated 4f-->4f transitions of Er3+ and the F-2(5/2) --> F-2(7/2) transition of Ce3+ were detected. The vibronic spectra amplitude was found to scale with the RE contents. On the basis of the IR- and Raman-active vibrational modes, either measured or quoted in the literature, most of the vibronic lines could be successfully assigned to the lattice modes. Violations of the selection rules were envisaged and discussed.

  4. High resolution FTIR spectroscopy of BaY2F8 single crystals doped with trivalent Er

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Cornelli, M.; Ponzoni, A.; Ruffini, A.; Sperzagni, A.; Tonelli, M.

    High resolution (0.04 cm-1) FTIR spectroscopy is applied to monoclinic Er3+-doped BaY2F8 single crystals in the wavenumber range 500-24000 cm-1 and temperature range 9-300 K to study the crystal field splitting of the fundamental 4I15/2 and of the excited 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2, 4F5/2, and 4F3/2 states and the effects caused by increasing Er3+-concentrations (2-20% m.f.), such as inhomogeneous line-broadening and new lines due to Er3+-Er3+ interaction. In the framework of the electron-phonon interaction, the thermally induced line-broadening and -shift are detected and accounted for by the two-phonon Raman model and the vibronic replicas of a few lines are investigated.

  5. Influence of Li3BO3 additives on the Li+ conductivity and stability of Ca/Ta-substituted Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, L. C.; Yang, J. F.; Gao, Y. X.; Wang, X. P.; Fang, Q. F.; Chen, C. H.

    2017-07-01

    The cubic Ca/Ta-substituted Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 (LLCZTO) electrolytes were synthesized at 800 °C with Li3BO3 as additives. The optimal amount of Li3BO3 and its influences on the microstructure, crystal structures, Li+ conductivity and the stability of the Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 were studied by SEM, XRD and EIS. Among all the samples, when the molar ratio of Li3BO3 to the Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 is 4:5, the highest Li+ conductivity of 1.33 × 10-4 S cm-1 at 30 °C is obtained. When the LLCZTO samples are exposed in air, the Li+ conductivity is deteriorated possibly owing to the side reactions between the LLCZTO and the H2O or CO2 in the air. The Li3BO3 addition can alleviate such deterioration of the Li+ conductivity.

  6. On the development of two characteristically different crystal morphology in SiO(2)-MgO-Al (2)O (3)-K (2)O-B (2)O (3)-F glass-ceramic system.

    PubMed

    Roy, Shibayan; Basu, Bikramjit

    2009-01-01

    The present work demonstrates how crystals with two different characteristic morphologies can be formed in SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass-ceramic system by adopting two sets of heat treatment experiments. In our study, single stage heat treatment experiments were performed at 1,000 degrees C for varying holding time of 8-24 h with 4 h time interval and as a function of temperature in the range of 1,000-1,120 degrees C with 40 degrees C temperature interval. The constant heating rate of 10 degrees C/min was employed for both sets of experiments. The microstructural changes were investigated using Fourier transformed infrared spectroscopy (FT-IR), SEM-EDS and XRD. For temperature variation batches, the microstructure is characterized by interlocked, randomly oriented mica plates ('house-of-cards' morphology). An important and new observation of complex crystal morphology is made in the samples heat treated at 1,000 degrees C for varying holding times. Such morphology appears to be the results of composite spherulitic-dendritic like growth of mica rods radiating from a central nucleus. The possible mechanism for such characteristic crystal growth morphology is discussed with reference to a nucleation-growth kinetics based model. The activation energy for crystal nucleation and Avrami index are computed to be 388 kJ/mol and 1.3 respectively, assuming Johnson-Mehl-Avrami model of crystallization. Another important result is that a maximum of around 70% of spherulitic-dendritic like crystal morphology can be obtained after heat treatment at 1,000 degrees C for 24 h, while a lower amount (approximately 58%) of interlocked plate like mica crystals is formed after heat treatment at 1,040 degrees C for 4 h.

  7. Transformation from an easy-plane to an easy-axis antiferromagnetic structure in the mixed rare-earth ferroborates Pr x Y1-x Fe3(BO3)4: magnetic properties and crystal field calculations.

    PubMed

    Pankrats, A I; Demidov, A A; Ritter, C; Velikanov, D A; Semenov, S V; Tugarinov, V I; Temerov, V L; Gudim, I A

    2016-10-05

    The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x  =  0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x  =  0.67 ÷ 0.45. In the compounds with x  =  0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).

  8. Alignment of CH{sub 3}F in para-H{sub 2} crystal studied by IR quantum cascade laser polarization spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    In order to investigate the alignment of CH{sub 3}F in para-H{sub 2} crystals, high resolution polarization spectroscopy of the ν{sub 3} vibrational band is studied using a quantum cascade laser at 1040 cm{sup −1}. It is found that the main and satellite series of peaks in the ν{sub 3} vibrational band of CH{sub 3}F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H{sub 2} in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH{sub 3}F is not aligned along themore » c-axis of the crystal but tilted to 64.9(3)° from it.« less

  9. Host composition dependent tunable multicolor emission in the single-phase Ba2(Ln(1-z)Tb(z))(BO3)2Cl:Eu phosphors.

    PubMed

    Xia, Zhiguo; Zhuang, Jiaqing; Meijerink, Andries; Jing, Xiping

    2013-05-14

    A new strategy based on the host composition design has been adopted to obtain efficient color-tunable emission from Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu (Ln = Y, Gd and Lu, z = 0-0.97) phosphors. This study reveals that the single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl compounds can be applied to use allowed Eu(2+) absorption transitions to sensitize Eu(3+) emission via the energy transfer Eu(2+) → (Tb(3+))n → Eu(3+). The powder X-ray diffraction (XRD) and Rietveld refinement analysis shows single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl. As-prepared Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu phosphors show intense green, yellow, orange and red emission under 377 nm near ultraviolet (n-UV) excitation due to a variation in the relative intensities of the Eu(2+), Tb(3+) and Eu(3+) emission depending on the Tb content (z) in the host composition, allowing color tuning. The variation in emission color is explained by energy transfer and has been investigated by photoluminescence and lifetime measurements and is further characterized by the Commission Internationale de l'éclairage (CIE) chromaticity indexes. The quantum efficiencies of the phosphors are high, up to 74%, and show good thermal stabilities up to 150 °C. This investigation demonstrates the possibility to sensitize Eu(3+) line emission by Eu(2+)via energy migration over Tb(3+) resulting in efficient color tunable phosphors which are promising for use in solid-state white light-emitting diodes (w-LEDs).

  10. Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF2-CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Nakladov, Andrei N.; Osiko, Vjatcheslav V.

    2016-03-01

    The laser and spectroscopic properties of crystal Er,La:SrF2-CaF2 at temperature range 80 - 300 K, which is appropriate for generation of radiation around 2.7 um is presented. The sample of Er,La:SrF2-CaF2 (concentration Er(0.04), La(0.12):Ca(0.77)Sr(0.07)) had plan-parallel face-polished faces without anti-reflection coatings (thickness 8.2 mm). During spectroscopy and laser experiments the Er,La:SrF2-CaF2 was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra of Er,La:SrF2-CaF2 together with the fluorescence decay time were measured in dependence on temperature. The excitation of Er,La:SrF2-CaF2 was carried out by a laser diode radiation (pulse duration 5 ms, repetition rate 20 Hz, pump wavelength 973 nm). Laser resonator was hemispherical, 140 mm in length with at pumping mirror (HR @ 2.7 µm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 µm). Tunability of laser at 80 K in range 2690 - 2765 nm was obtained using MgF2 birefringent filter. With decreasing temperature of sample the fluorescence lifetime of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing. The highest slope efficiency with respect to absorbed power was 2.3 % at 80 K. The maximum output of peak amplitude power was 0.3 W at 80 K, i.e. 1.5 times higher than measured this value at 300 K. The wavelength generated by Er,La:SrF2-CaF2 laser (2.7 µm) is relatively close to absorption peak of water (3 µm) and so, one of the possible usage should be in medicine and spectroscopy.

  11. Synthesis, structure, and electronic structure calculation of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Feng; Wang, Li, E-mail: wangliresearch@163.com; Stoumpos, Constantinos C.

    2016-08-15

    The synthesis, structure, and characterization of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra are reported. Pb{sub 2}O[BO{sub 2}(OH)] crystallizes in monoclinic space group C2/m with a=12.725(7) Å, b=5.698(3) Å, c=7.344(4) Å, β=116.277(6)°. The electronic band structure and density of states of Pb{sub 2}O[BO{sub 2}(OH)] have been calculated via the density functional theory (DFT). Electron density difference calculation indicates that lone-pair electrons of Pb{sup 2+} cation should be stereoactive. - Graphical abstract: An indirect gap compound of Pb{sub 2}O[BO{sub 2}(OH)] with 2D inorganic layers motif based on OPb{sub 4} tetrahedra has been synthesized and fullmore » characterized by crystallographic, IR, TG, UV–vis-NIR Diffuse Reflectance, and theoretical calculations. Display Omitted - Highlights: • A centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] was synthesized and characterized. • The crystalstructure, electronic band and density states was analyzed. • The lone-pair electrons of Pb{sup 2+} were proved to be stereoactive.« less

  12. New silicate-germanate Cs2Pb2[(Si0.6Ge0.4)2O7] from the series A2Pb2[B2O7], A = K, Cs, B = Si, Ge with the umbrella-like [PbO3]4- group

    NASA Astrophysics Data System (ADS)

    Belokoneva, Elena L.; Morozov, Ivan A.; Volkov, Anatoly S.; Dimitrova, Olga V.; Stefanovich, Sergey Yu.

    2018-04-01

    New silicate-germanate Cs2Pb2[(Si0.6Ge0.4)2O7] was synthesized in multi-components hydrothermal solution with 20 w.% concentration of Cs2CO3 mineralizer, pH = 10. Novel mixed compound belongs to the structure type A2Pb2[B2O7] previously indicated for powders with A = K, B=Si or Ge. Singe crystal structure determination of Cs2Pb2[(Si0.6Ge0.4)2O7] revealed the need for the correction of the space group of the earlier suggested structural model from P-3 to P-3m1, as well as for the splitting of the Pb-atom position. Umbrella-like groups [PbO3]4- are located between [(Si,Ge)O4]4- tetrahedra in mica-like honeycomb layers and play the role of tetrahedra with the Pb-lone-pair as the forth apex. Crystal chemical comparison revealed similarities and differences with the classical structure type of α-celsian Ba[Al2Si2O8] with the tetrahedral double layer. Recently investigated nonlinear optical acentric borates Pb2(BO3)(NO3) and Pb2(BO3)Cl are both related to this structural type, possessing umbrella-like groups [PbO3]4- and honeycomb layers [Pb2(BO3)]+ with the BO3-triangles on the tetrahedral positions.

  13. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  14. Growth and laser properties of Nd:Ca 4YO(BO 3) 3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Meng, X. L.; Zhu, L.; Wang, C. Q.; Cheng, R. P.; Yu, W. T.; Zhang, S. J.; Sun, L. K.; Chow, Y. T.; Zhang, W. L.; Wang, H.; Wong, K. S.

    1999-02-01

    Nd:Ca 4YO(BO 3) 3 (Nd:YCOB) crystal was grown by the Czochralski method, and its structure was measured by using a four circle X-ray diffractometer. The transparent spectrum from 200 to 2600 nm was measured at room temperature. The fluorescence spectrum near 1.06 μm showed that the main emission wavelength of Nd:YCOB crystal was centered at 1060.8 nm. Laser output at 1.06 μm has been demonstrated when it was pumped by a Ti:sapphire laser at the wavelength of 794 nm, the highest output power was 68 mW under pumping power of 311 mW, the pumping threshold was 163 mW and slope efficiency was 46.9%. The self-frequency doubled green light has been observed when it was pumped by a Ti:sapphire or a laser diode (LD). A 14.5 mm Nd:YCOB crystal sample cut at ( θ, φ)=(90°, 33°) was used for type I second-frequency generation (SHG) of the 1.06 μm laser pulse. The SHG conversion efficiency was 22%.

  15. Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.

    2017-10-01

    Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.

  16. Silver(I) complexes of the weakly coordinating solvents SO(2) and CH(2)Cl(2): crystal structures, bonding, and energetics of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)].

    PubMed

    Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2009-06-22

    Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand

  17. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P 2O 5 and TiO 2 nucleants

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-06-01

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.

  18. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 - x R xF2 + x and R 1 - y M yF3 - y crystals ( M = Ca, Sr, Ba; R are rare earth elements)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Sorokin, N. I.

    2014-11-01

    The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2- RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 - x R xF2 + x (CaF2 fluorite type) and R 1 - y M yF3 - y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative ( M, R) and quantitative ( x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 - x R xF2 + x phases (at 500 K) and by a factor of 106 in the R 1 - y M yF3 - y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MFm- RFn systems ( m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 - x R xF2 + x and R 1 - y M yF3 - y nonstoichiometric phases.

  19. BiSr3(YO)3(BO3)4: a new gaudefroyite-type rare-earth borate with moderate SHG response.

    PubMed

    Gao, Jianhua; Li, Shuai

    2012-01-02

    The synthesis, crystal structure, crystal growth, and characterization of a new noncentrosymmetric rare-earth borate BiSr(3)(YO)(3)(BO(3))(4) are reported. BiSr(3)(YO)(3)(BO(3))(4) belongs to gaudefroyite type of structure and crystallizes in the polar hexagonal space group P6(3) (no. 173) with a = 10.6975(16) Å and c = 6.7222(12) Å. In the structure, the YO(7) polyhedra share edges to form an one-dimensional chain along the [001] direction. These chains are interconnected by the BO(3) group to construct a three-dimensional framework, leaving two kinds of channels for Bi atoms and Sr atoms together with BO(3) groups, respectively. On the basis of the powder second-harmonic generation (SHG) measurement, BiSr(3)(YO)(3)(BO(3))(4) belongs to the phase-matchable class with a SHG response of about 3 × KDP.

  20. Synthesis and luminescence of Ca 4YO(BO 3) 3:Eu 3+ for fluorescent lamp application

    NASA Astrophysics Data System (ADS)

    Kuo, Te-Wen; Chen, Teng-Ming

    2010-07-01

    The red-emitting Ca 4YO(BO 3) 3:Eu 3+ phosphor has been prepared at 1200 °C by the simple solid-state reaction. This preparation temperature is much lower than Y 2O 3:Eu 3+ (1400-1500 °C) for conventional solid-state reaction method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. For this material, the XRD, PL, PL excitation (PLE) and SEM features have also been investigated. The X-ray diffraction data indicate that pure phase of Ca 4YO(BO 3) 3:Eu 3+ can be successfully obtained. Among the different emission transitions 5D 0 → 7F J=0, 1, 2, 3, 4 of this phosphor, one particular transition ( 5D 0 → 7F 2) at 610 nm has been found. Besides carrying out these essential measurements, we have also made an attempt to observe a strong red emission performance displayed by this phosphor for use as coating material on compact fluorescent lamps (CFLs). The results clearly indicate that the life time based on Ca 4YO(BO 3) 3:Eu 3+ was found to be much longer than that using Y 2O 3:Eu 3+. The good performances of the CFLs demonstrate that this phosphor may be suitable for application on short ultraviolet fluorescent lamp.

  1. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development

    PubMed Central

    Ridge, Stephen; Brown, Philip H.; Hecht, Valérie; Driessen, Ronald G.; Weller, James L.

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under ‘natural’ vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. PMID:25355864

  2. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    PubMed Central

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-01-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994

  3. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.

    PubMed

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-04

    The spectral properties and laser performance of Er:SrF 2 single crystals were investigated and compared with Er:CaF 2 . Er:SrF 2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er 3+ : 4 I 11/2 level) than those of Er:CaF 2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF 2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF 2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  4. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  5. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  6. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  7. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  8. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  9. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  10. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  11. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  12. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  13. Radiation coloring of nonstoichiometric M(1-x)R(x)F(2+x) single crystals with a fluorite defect structure

    NASA Astrophysics Data System (ADS)

    Rustamov, Ia.; Tavshunskii, G. A.; Khabibullaev, P. K.; Bessonova, T. S.; Sobolev, B. P.

    1985-06-01

    Experimental results are reported concerning the radiation coloring of nonstoichiometric crystals of the M(1-x)R(x)F(2+x) type in the presence of fluorite defects. Samples of the crystals are cut using the Stockbarger technique in a chemically active fluoridating atmosphere generated by pyrolysis of tetrafluoroethylene. The samples were irradiated at 77 and 300 K using a Co-60 gamma-ray source and the total doses were in the range 10 to the 6th to 10 to the 7th roentgen. Absorption spectra of the crystals were analogous spectra for MF2-RF3 single crystals with RF 3 contents of less than 1 mole percent. It is shown that the properties of radiation coloring of the two types of crystal are very different: F-centers formed at 300 K in Ca(1-x)R(x) F(2+x), but not at 77 K. Complex color centers were observed at 77 K in Ca(1-x)R(x)F(2+x) single crystals and the intensity of the centers was determined by the competition among the electron trapping processes involving the r3(+) ions. It is concluded that the coloring characteristics of the M(1-x)R(x)F(2+x) crystals are related to their structural characteristics as compared with the MF2-RF3 crystals.

  14. Generation of (F+2)_AH Centres in Sodium Ion Doped KCl:CO^{2-3}

    NASA Astrophysics Data System (ADS)

    Diaf, M.; Chihi, I.; Hamaïdia, A.; Akrmi, El.

    1996-01-01

    We demonstrate that (F+2)AH centres of KCl may be obtained from crystals doped with K{2}CO{3} and NaCl, grown by the Czochralski method in open atmosphere. The optical properties of (F+2)AH centres thus produced are exactly the same as those of (F+2)AH centres prepared by the usual technique, which involves superoxide doping and a controlled atmosphere. Nous montrons que les centres (F+2)AH de KCl peuvent être obtenus à partir de cristaux dopés par K{2}CO{3} et NaCl, fabriqués par la méthode de Czochralski à l'air libre. Les propriétés optiques des centres (F+2)AH ainsi produits sont exactement les mêmes que celles des centres (F+2)AH préparés par la technique habituelle, qui comporte le dopage par un superoxyde et l'emploi d'une atmosphère contrôlée.

  15. Impurity optical absorption spectra of ZnGa 2Se 4:Ni 2+ single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Wha-Tek; Jin, Moon-Seog; Cheon, Seung-Ho; Kim, Yong-Geun; Park, Byong-Seo

    1990-04-01

    The optical absorption of single crystals of ZnGa 2Se 4:Ni 2+ grown by the chemical transport reaction method was investigated in the temperature region 20-300 K. In the single crystals the impurity optical absorption peaks due to the transitions 3T1( 3F) → 3T2( 3F), 3T1( 3F) → 3A2( 3F) and 3T1( 3F) → 3T1( 3P) of the Ni 2+ ions sited in the host lattice of the ZnGa 2Se 4 single crystal with Td symmetry appeared at 4444, 7874 and 11 600 cm -1, respectively. The crystal-field parameter and the Racah parameter were given by Dq = 340 cm -1 and B = 615 cm -1, respectively. The peak due to the transition 3T1( 3F) → 3T1( 3P) split into four levels by first order spin-orbit-coupling effects of Ni 2+ ions in the lower temperature below 150 K. The spin-orbit-coupling parameter was found to be λ = -400 cm -1.

  16. Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties

    NASA Astrophysics Data System (ADS)

    Karimov, D. N.; Komar'kova, O. N.; Sorokin, N. I.; Bezhanov, V. A.; Chernov, S. P.; Popov, P. A.; Sobolev, B. P.

    2010-05-01

    Homogeneous crystals of Ca0.59Sr0.41F2 alloy (sp. gr., Fm bar 3 m, a = 0.56057 nm), corresponding to the point of minimum in the melting curve in the CaF2-SrF2 phase diagram, have been grown by the vertical Bridgman method. The optical, mechanical, electrical, and thermophysical properties of Ca0.59Sr0.41F2 and MF2 crystals ( M = Ca, Sr) have been studied and comparatively analyzed. Ca0.59Sr0.41F2 crystals are transparent in the range of 0.133-11.5 μm, have refractive index n D = 1.436, microhardness H μ = 2.63 ± 0.10 GPa, ion conductivity σ = 5 × 10-5 S/cm at 825 K, and thermal conductivity k = 4.0 W m-1 K-1 at 300 K. It is shown that the optical properties of Ca0.59Sr0.41F2 crystals are intermediate between those of CaF2 and SrF2, whereas their mechanical and electrical characteristics are better than the latter compounds.

  17. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shanshan; Li, Han; Gao, Feng

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryomore » development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.« less

  18. Synthesis and characterization of new fluoride-containing manganese vanadates A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F

    NASA Astrophysics Data System (ADS)

    Sanjeewa, Liurukara D.; McGuire, Michael A.; Smith Pellizzeri, Tiffany M.; McMillen, Colin D.; Ovidiu Garlea, V.; Willett, Daniel; Chumanov, George; Kolis, Joseph W.

    2016-09-01

    Large single crystals of A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO4F2 building blocks. The A2Mn2V2O7F2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb2Mn2V2O7F2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs2Mn2V2O7F2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains of edge-sharing MnO4F2 units running along the a-axis, and interconnected through V2O7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn2+ indicated that Cs2Mn2V2O7F2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V-O vibrational modes in Cs2Mn2V2O7F2. Mn2(VO4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn2+. These interpenetrating chains are additionally connected through isolated VO4 tetrahedra to form the condensed structure.

  19. Synthesis and characterization of new fluoride-containing manganese vanadates A 2Mn 2V 2O 7F 2 (A=Rb, Cs) and Mn 2VO 4F

    DOE PAGES

    Sanjeewa, Liurukara D.; McGuire, Michael A.; Smith Pellizzeri, Tiffany M.; ...

    2016-05-10

    In large single crystals of A 2Mn 2V 2O 7F 2 (A=Rb, Cs) and Mn 2VO 4F were grown using a high-temperature (~600 °C) hydrothermal technique. We utilized single crystal X-ray diffraction and powder X-ray diffraction in order to characterize the structures, which both possess MnO 4F 2 building blocks. The A 2Mn 2V 2O 7F 2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb 2Mn 2V 2O 7F 2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs 2Mn 2V 2O 7F 2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed ofmore » zigzag chains of edge-sharing MnO 4F 2 units running along the a-axis, and interconnected through V 2O 7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn 2+ indicated that Cs 2Mn 2V 2O 7F 2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs 2Mn 2V 2O 7F 2. Mn 2(VO 4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn 2+. Our interpenetrating chains are additionally connected through isolated VO 4 tetrahedra to form the condensed structure.« less

  20. Photoelectron spectroscopy and density functional calculations of CunBO2(OH)- (n = 1,2) clusters

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Hou, Gao-Lei; Xu, Hong-Guang; Zhang, Zeng-Guang; Zheng, Wei-Jun

    2012-08-01

    CunBO2(OH)- (n = 1, 2) clusters were studied by anion photoelectron spectroscopy and density functional calculations. From the experimental photoelectron spectra, the adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of CuBO2(OH)- are determined to be 4.00 ± 0.08 and 4.26 ± 0.08 eV, and those of Cu2BO2(OH)- to be 2.30 ± 0.08 and 2.58 ± 0.08 eV. The structures of CunBO2(OH)- and their corresponding neutrals are assigned by comparison between theoretical calculations and experimental measurements. Both experiment and theory show that CuBO2(OH) can be viewed as a superhalogen, thus, confirmed that OH can behave like a halogen atom to participate in superhalogen formation.

  1. Roymillerite, Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, a new mineral: mineralogical characterization and crystal chemistry

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Jonsson, Erik; Aksenov, Sergey M.; Britvin, Sergey N.; Rastsvetaeva, Ramiza K.; Belakovskiy, Dmitriy I.; Van, Konstantin V.

    2017-11-01

    The new mineral roymillerite Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, related to britvinite and molybdophyllite, was discovered in a Pb-rich assemblage from the Kombat Mine, Grootfontein district, Otjozondjupa region, Namibia, which includes also jacobsite, cerussite, hausmannite, sahlinite, rhodochrosite, barite, grootfonteinite, Mn-Fe oxides, and melanotekite. Roymillerite forms platy single-crystal grains up to 1.5 mm across and up to 0.3 mm thick. The new mineral is transparent, colorless to light pink, with a strong vitreous lustre. Cleavage is perfect on (001). Density calculated using the empirical formula is equal to 5.973 g/cm3. Roymillerite is optically biaxial, negative, α = 1.86(1), β ≈ γ = 1.94(1), 2 V (meas.) = 5(5)°. The IR spectrum shows the presence of britvinite-type tetrahedral sheets, {CO}3^{2 - }, {BO}3^{3 - }, and OH- groups. The chemical composition is (wt%; electron microprobe, H2O and CO2 determined by gas chromatography, the content of B2O3 derived from structural data): MgO 4.93, MnO 1.24, FeO 0.95, PbO 75.38, B2O3 0.50, Al2O3 0.74, CO2 5.83, SiO2 7.90, H2O 1.8, total 99.27. The empirical formula based on 83 O atoms pfu (i.e. Z = 1) is Pb24.12Mg8.74Mn1.25Fe0.94B1.03Al1.04C9.46Si9.39H14.27O83. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is triclinic, space group P \\bar{1}, with a = 9.315(1), b = 9.316(1), c = 26.463(4) Å, α = 83.295(3)°, β = 83.308(3)°, γ = 60.023(2)°, V = 1971.2(6) Å3. The crystal structure of roymillerite is based built by alternating pyrophyllite-type TOT-modules Mg9(OH)8[(Si,Al)10O28] and I-blocks Pb24(OH)6O4(CO3)10(BO3,SiO4). The strongest lines of the powder X-ray diffraction pattern [ d, Å (I, %) ( hkl)] are: 25.9 (100) (001), 13.1 (11) (002), 3.480 (12) (017, 107, -115, 1-15), 3.378 (14) (126, 216), 3.282 (16) (-2-15, -1-25), 3.185 (12) (-116, 1-16), 2.684 (16) (031, 301, 030, 300, 332, -109, 0-19, 1-18), 2.382 (11) (0.0.-11). Roymillerite is

  2. Hindered rotations probed by rare earths in crystals: Er3+ and Tm3+ in BaY2F8

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Buffagni, E.; Capelletti, R.; Mazzera, M.; Magnani, N.; Carini, G., Jr.; D'Angelo, G.

    2009-10-01

    The sharpness of absorption lines induced by crystal-field (CF) transitions of rare earths (RE) can be exploited to disclose the rotational structure usually hidden under the more common broad electronic absorptions. In the present work the effectiveness of such an approach is proved by the analysis of the fine structure (FS) accompanying the Er3+ and Tm3+ CF lines in BaY2F8 single crystals. Sequences of weak, very narrow (0.03-0.1cm-1) , closely spaced (˜0.2-0.8cm-1) lines were monitored in high-resolution (as fine as 0.01cm-1 ), low-temperature (9 K) absorption spectra in the 2000-24000cm-1 range. The FS covers a few cm-1 on both sides of the narrowest among the RE-CF lines and is tightly associated with them, as proved by the amplitude dependence on the RE concentration (in the 0.5-20at.% range) and by linear dichroism measurements. The FS lines vanishing at temperatures as low as 40-60 K and the close spacing suggest that they may be ascribed to the simultaneous excitation of both RE-CF electronic transition and hindered rotation (or libration) mode of RE3+-F- group. The attribution is supported both by the specific structure of the host matrix which allows some F- mobility and by the very small line spacing which is in excellent agreement with the RE3+-F- rotational constant (2B=0.39cm-1) . Complementary specific-heat measurements in the temperature range 1.5-25 K show that Er3+ -doped samples display contributions, in addition to the vibrational one of a pure sample, which scale with the Er3+ concentration. The extra specific heat is interpreted in terms of Schottky anomalies; that peaking at ˜17K accounts for electronic transitions between the lowest sublevels of the I415/2 ground manifold, in agreement with the CF spectroscopy results while those occurring below 3.5 K are consistent with level pairs separated by 0.55 and 0.36cm-1 , in agreement with the FS line spacing.

  3. Properties of blue emitting CaAl2O4:Eu2+, Nd3+ phosphor by optimizing the amount of flux and fuel

    NASA Astrophysics Data System (ADS)

    Wako, A. H.; Dejene, B. F.; Swart, H. C.

    2014-04-01

    Long afterglow CaAl2O4:0.03Eu2+, 0.03Nd3+ phosphor was prepared by solution-combustion synthesis. The active role of boric acid (H3BO3) as a flux in enhancing the Eu2+ photoluminescence and the effect of a varied amount of urea (CO (NH2)2) as a fuel on the morphological, structural and photoluminescent (PL) properties of the CaAl2O4:0.03Eu2+, 0.03Nd3+ systems were investigated. The results of X-ray diffraction, scanning electron microscopy, and PL spectra revealed the influence of the dosage of urea and hence the heated process on the crystallinity, morphology, and luminescence of the phosphor. The addition of H3BO3 favoured the formation of a monoclinic CaAl2O4 phase while the variation of the amount of CO (NH2)2 showed mixed phases although still predominantly monoclinic. Both H3BO3 and CO(NH2)2 to some extent influence the luminescence intensity of the obtained phosphor but unlike the case of CO(NH2)2, the presence of H3BO3 did not evidently shift the emission peak due to no obvious change in the energy level difference of the 4f-5d levels. The broad blue emissions consisting mainly of symmetrical bands having maxima between 440 and 445 nm originate from the energy transitions between the ground state (4f7) and the excited state (4f65d1) of the Eu2+ ions while the narrow emissions in the red region (600-630 nm) arise from the 5D0→7F2 transitions of the remnant unreduced Eu3+ions. Higher concentrations of H3BO3 (0.228 mol and 0.285 mol) reduce both intensity and lifetime of the phosphor. The optimized content of H3BO3 was 0.171 mol for the obtained phosphor with the best optical properties.

  4. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  5. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  6. Theoretical study on the charge transport in single crystals of TCNQ, F2-TCNQ and F4-TCNQ.

    PubMed

    Ji, Li-Fei; Fan, Jian-Xun; Zhang, Shou-Feng; Ren, Ai-Min

    2018-01-31

    2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F 2 -TCNQ) was recently reported to display excellent electron transport properties in single crystal field-effect transistors (FETs). Its carrier mobility can reach 25 cm 2 V -1 s -1 in devices. However, its counterparts TCNQ and F 4 -TCNQ (tetrafluoro-7,7,8,8-tetracyanoquinodimethane) do not exhibit the same highly efficient behavior. To better understand this significant difference in charge carrier mobility, a multiscale approach combining semiclassical Marcus hopping theory, a quantum nuclear enabled hopping model and molecular dynamics simulations was performed to assess the electron mobilities of the F n -TCNQ (n = 0, 2, 4) systems in this work. The results indicated that the outstanding electron transport behavior of F 2 -TCNQ arises from its effective 3D charge carrier percolation network due to its special packing motif and the nuclear tunneling effect. Moreover, the poor transport properties of TCNQ and F 4 -TCNQ stem from their invalid packing and strong thermal disorder. It was found that Marcus theory underestimated the mobilities for all the systems, while the quantum model with the nuclear tunneling effect provided reasonable results compared to experiments. Moreover, the band-like transport behavior of F 2 -TCNQ was well described by the quantum nuclear enabled hopping model. In addition, quantum theory of atoms in molecules (QTAIM) analysis and symmetry-adapted perturbation theory (SAPT) were used to characterize the intermolecular interactions in TCNQ, F 2 -TCNQ and F 4 -TCNQ crystals. A primary understanding of various noncovalent interaction responses for crystal formation is crucial to understand the structure-property relationships in organic molecular materials.

  7. Pr:Ca1-xRxF2+x (R=Y or Gd) crystals: Modulated blue, orange and red emission spectra with the proportion of R3+ ions

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Guo, Linyang; Jiang, Dapeng; Wu, Qinghui; Tang, Fei; Su, Liangbi; Ju, Qiangwen; Wang, Jingya; Xu, Jun

    2018-04-01

    The spectroscopic properties of 0.6at.%:Pr:Ca1-xRxF2+x (R = Y, Gd; x = 0,0.006, 0.012, 0.03, 0.06) crystals were investigated and compared. The XRD tests were conducted and the cell dimensions of the crystals were calculated. Room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. Increasing the proportion of the lattice regulators of Y3+ or Gd3+ ions could significantly enhance the luminescence intensity of all visible emission bands with different ratios. Particularly, the emission intensity ratio of orange to red increased from 0.15 to 1.9 in Pr:Ca1-xYxF2+x crystals and to 1.02 in Pr:Ca1-xGdxF2+x crystals, respectively. Furthermore, Pr:Ca1-xGdxF2+x crystals have substantially strong emission at orange and red region of 580-660 nm, comparable with blue light at 482 nm. The quantum efficiency of the crystals increased rapidly with the increment of R3+ concentration, and finally tend to be 100%.

  8. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  9. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by μ-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  10. Knowledge Base Editor (SharpKBE)

    NASA Technical Reports Server (NTRS)

    Tikidjian, Raffi; James, Mark; Mackey, Ryan

    2007-01-01

    The SharpKBE software provides a graphical user interface environment for domain experts to build and manage knowledge base systems. Knowledge bases can be exported/translated to various target languages automatically, including customizable target languages.

  11. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Optimization of single crystals of solid electrolytes with tysonite-type structure (LaF3) for conductivity at 293 K: 2. Nonstoichiometric phases R 1- y M y F3- y ( R = La-Lu, Y; M = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.

    2015-01-01

    Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.

  13. Twinned or not twinned, that is the question: crystallization and preliminary crystallographic analysis of the 2F1(3)F1 module pair of human fibronectin.

    PubMed

    Rudiño-Piñera, Enrique; Schwarz-Linek, Ulrich; Potts, Jennifer R; Garman, Elspeth F

    2004-07-01

    Human fibronectin (Fn) is a large multidomain protein found in the extracellular matrix and plasma. It is involved in many cellular processes, including cell adhesion and migration during embryogenesis and wound healing. The ability to bind Fn is a characteristic that has been demonstrated for a number of pathogens. For Staphylococcus aureus and Streptococcus pyogenes in particular, Fn-binding bacterial proteins (FnBPs) have been shown to mediate not only bacterial adhesion to host cells but also the uptake of bacteria by the cells. FnBPs interact with the amino-terminal region of Fn, where five type I ((1-5)F1) Fn modules are located. Although the structures of two F1 module pairs have been determined by NMR, no X-ray structures have been reported. To explore the conformational interactions between modules and the binding properties of FnBPs, the (2)F1(3)F1 module pair was crystallized using the vapour-diffusion method at 298 K. 12 X-ray diffraction data sets have been collected: six on an in-house rotating anode (three native, one Pt derivative and two peptide-bound) and six at synchrotron-radiation sources (two native and four derivative). Following analysis of these data, some of which have very high multiplicity (up to 50), probable space-group assignments were made (P42(1)2, P4(1)2(1)2 or P4(3)2(1)2) and the possibly twinned nature of the crystals was investigated using six different tests. The results presented here suggest that the crystals are not twinned.

  14. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF{sub 2} and SrF{sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Ymore » b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.« less

  15. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2018-03-01

    The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.

  16. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  17. Spectroscopic and crystal-field analysis of new Yb-doped laser materials

    NASA Astrophysics Data System (ADS)

    Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel

    2001-06-01

    Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.

  18. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    PubMed

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  19. Synthesis and Crystal and Electronic Structures of the Dinuclear Platinum Compounds [PEtPh(3)](2)[Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)] and [Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)]: A Computational Study by Density Functional Theory.

    PubMed

    Alonso, Ester; Casas, José M.; Cotton, F. Albert; Feng, Xuejung; Forniés, Juan; Fortuño, Consuelo; Tomas, Milagros

    1999-11-01

    The electrolytic behavior of the dinuclear complexes [NBu(4)](2)[MM'(&mgr;-PPh(2))(2)(C(6)F(5))(4)] (M = M' = Pt (1), Pd (1a); M = Pt, M' = Pd (1b)) has been studied, showing electrochemically irreversible oxidation and related reduction processes. The chemical oxidation of the binuclear compound for M = M' = Pt, results in the formation of the binuclear Pt(III) compound [Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)]. The crystal structure analysis of both complexes has been carried out, showing very similar structures with similar Pt-C and Pt-P distances and analogous skeletons. However the Pt-Pt distances are very different, 3.621(1) Å for the Pt(II) compound and 2.7245(7) Å for the Pt(III) derivative (as are the parameters geometrically related to this Pt-Pt distance), suggesting that, in the Pt(III) compound, there is a strong Pt-Pt bond. Results of DFT calculations on [Pt(2)(&mgr;-PH(2))(2)(C(6)F(5))(4)](n)()(-) (n = 2, 0) agree very well with the crystallographic data and indicate that, in the Pt(III) compound, there is approximately a single sigma bond between the metal atoms.

  20. Point defect disorder in high-temperature solution grown Sr6Tb0.94Fe1.06(BO3)6 single crystals

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Péchev, S.; Duttine, M.; Wattiaux, A.; Labrugère, C.; Veber, Ph.; Buffière, S.; Denux, D.

    2018-08-01

    New Sr6Tb0.94Fe1.06(BO3)6 single crystals were obtained from lithium borate high-temperature solution growth under controlled atmosphere. Their average crystal structure was found to adopt the trigonal R-3 space group with lattice parameters a = 12.2164 Å and c = 9.1934 Å. A combined multiscale characterization approach, involving diffuse reflectance, X-ray photoelectron (XPS) and Mössbauer spectroscopies, was undertaken to establish the exact nature of the point defect disorder in this crystal structure. The FeTb× antisite disorder in the Sr6Tb0.94Fe1.06(BO3)6 single crystals is different from the kind of point defect disorder known to exist in the powder phase material counterpart. The absence of Tb4+ cations in the crystal lattice was established by XPS, and that of any phase transition down to 4 K was checked by specific heat measurements. The magnetic susceptibility curve was found to follow a Curie-Weiss behaviour in the 4-354 K temperature range.

  1. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  2. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    PubMed

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  3. Role of Acentric Displacements on the Crystal Structure and Second-Harmonic Generating Properties of RbPbCO3F and CsPbCO3F

    PubMed Central

    2015-01-01

    Two lead fluorocarbonates, RbPbCO3F and CsPbCO3F, were synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. RbPbCO3F and CsPbCO3F were structurally characterized by single-crystal X-ray diffraction and exhibit three-dimensional (3D) crystal structures consisting of corner-shared PbO6F2 polyhedra. For RbPbCO3F, infrared and ultraviolet–visible spectroscopy and thermogravimetric and differential thermal analysis measurements were performed. RbPbCO3F is a new noncentrosymmetric material and crystallizes in the achiral and nonpolar space group P6̅m2 (crystal class 6̅m2). Powder second-harmonic generation (SHG) measurements on RbPbCO3F and CsPbCO3F using 1064 nm radiation revealed an SHG efficiency of approximately 250 and 300 × α-SiO2, respectively. Charge constants d33 of approximately 72 and 94 pm/V were obtained for RbPbCO3F and CsPbCO3F, respectively, through converse piezoelectric measurements. Electronic structure calculations indicate that the nonlinear optical response originates from the distorted PbO6F2 polyhedra, because of the even–odd parity mixing of the O 2p states with the nearly spherically symmetric 6s electrons of Pb2+. The degree of inversion symmetry breaking is quantified using a mode-polarization vector analysis and is correlated with cation size mismatch, from which it is possible to deduce the acentric properties of 3D alkali-metal fluorocarbonates. PMID:24867361

  4. Crystal Structure and Antiferromagnetic Ordering of Quasi-2D [Cu(HF2)(pyz)2]TaF6 (pyz=pyrazine)

    NASA Astrophysics Data System (ADS)

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF2- ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains TaF6- anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  5. Growth and electrical properties of (Mn,F) co-doped 0.92Pb(Zn 1/3Nb 2/3)O 3-0.08PbTiO 3 single crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R.

    2004-06-01

    The growth and characterization of (Mn,F) doped Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZNT) single crystals are reported in this paper. The typical single crystal obtained is up to 30 mm size with dark brown color. The crystal lattice parameters of doped PZNT crystal are slightly decreased compared to the pure one. The room temperature dielectric permittivity along <0 0 1> direction is about 6000, which is lower than that of the pure PZNT8 because of the dopants. The Curie temperature of the doped crystal is about 180°C while the ferroelectric phase transition temperature is around 100°C, which are higher than those of the pure PZNT8 single crystal. The remnant polarization and coercive field of <0 0 1> oriented doped crystal measured at 1 Hz and 10 kV/cm field are about 27 μC/cm 2 and 4.2 kV/cm, respectively. The room temperature mechanical quality factor is ˜300. Piezoelectric coefficient of <0 0 1> oriented doped crystal is higher than 3500 pC/N and the longitudinal electromechanical coupling factor is larger than 93%. The piezoelectric properties of doped PZNT single crystal with temperature and orientations are also reported in this paper. The valence state of the manganese dopant was determined by electron spin resonance, indicating no Mn 4+ in the crystals, suggesting the valence of manganese ions in PZNT crystals may be 2+, which acts as a hardener, stabilizes the domain wall and pins the domain wall motion, on the other hand, the dopant will enter Ti 4+ position, shifting the crystal composition to higher PT content.

  6. Charge Transfer Salts of BO with Paramagnetic Isothiocyanato Complex Anions: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III or Fe III, isoq=isoquinoline and BO=Bis(ethylenedioxo)tetrathiafulvalene

    NASA Astrophysics Data System (ADS)

    Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi

    2002-11-01

    The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.

  7. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  8. A novel single-phase white phosphor NaBaBO{sub 3}:Dy{sup 3+},K{sup +} for near-UV white light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianghui; Cheng, Qijin; Wu, Jieyang

    Highlights: • A white phosphor NaBaBO{sub 3}:Dy{sup 3+},K{sup +} with CIE coordinate (0.301, 0.308) was synthesized. • The optimum doping concentration of Dy{sup 3+} ions was found. • The effect and mechanism of K{sup +} ion as a charge compensator were discussed. • Temperature-dependent PL property of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} was studied. • PL decay and quantum efficiency behaviors of the samples were investigated. - Abstract: A novel Dy{sup 3+}-doped NaBaBO{sub 3} white-emitting phosphor has been prepared by high temperature solid-state reaction method. The phase structure and luminescence properties of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} samples were investigated. Photoluminescence resultsmore » show that the as-prepared samples could be effectively excited by near-ultraviolet (NUV) light and generate white light emission due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} (blue) transition and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} (yellow) transition of Dy{sup 3+} ions, respectively. The optimum doping concentration of Dy{sup 3+} ions in the NaBaBO{sub 3} host was determined to be 5.0 mol% and the CIE chromaticity of the sample was determined to be (0.301, 0.308). Moreover, the mechanism of K{sup +} ion as a charge compensator on the improvement of photoluminescence property and the effect of temperature on the photoluminescence property of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} were investigated. Furthermore, photoluminescence decay and quantum efficiency behaviors of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} were also studied. The present work demonstrates that the NaBaBO{sub 3}:Dy{sup 3+},K{sup +} phosphor is a potential candidate for NUV white light emitting diodes.« less

  9. Magnetic nanopantograph in the SrCu2(BO3)2 Shastry–Sutherland lattice

    PubMed Central

    Radtke, Guillaume; Saúl, Andrés; Dabkowska, Hanna A.; Salamon, Myron B.; Jaime, Marcelo

    2015-01-01

    Magnetic materials having competing, i.e., frustrated, interactions can display magnetism prolific in intricate structures, discrete jumps, plateaus, and exotic spin states with increasing applied magnetic fields. When the associated elastic energy cost is not too expensive, this high potential can be enhanced by the existence of an omnipresent magnetoelastic coupling. Here we report experimental and theoretical evidence of a nonnegligible magnetoelastic coupling in one of these fascinating materials, SrCu2(BO3)2 (SCBO). First, using pulsed-field transversal and longitudinal magnetostriction measurements we show that its physical dimensions, indeed, mimic closely its unusually rich field-induced magnetism. Second, using density functional-based calculations we find that the driving force behind the magnetoelastic coupling is the CuOCu^ superexchange angle that, due to the orthogonal Cu2+ dimers acting as pantographs, can shrink significantly (0.44%) with minute (0.01%) variations in the lattice parameters. With this original approach we also find a reduction of ∼10% in the intradimer exchange integral J, enough to make predictions for the highly magnetized states and the effects of applied pressure on SCBO. PMID:25646467

  10. Thermodynamic study of gaseous CsBO2 by Knudsen effusion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Takai, T.; Furukawa, T.; Osaka, M.

    2017-08-01

    One of the main chemical forms of cesium in the gas phase during severe light-water reactor accidents is expected to be cesium metaborate, CsBO2, according to thermodynamic equilibrium calculations considering its reaction with boron. However, the accuracy of the thermodynamic data of the gaseous metaborate, CsBO2(g), has been judged as poor. Thus, Knudsen effusion mass spectrometric measurements of CsBO2 were carried out to obtain reliable thermodynamic data. The evaluated values of the standard enthalpy of formation of CsBO2(g), obtained by the 2nd and 3rd-law treatments, are -700.7 ± 10.7 kJ/mol and -697.0 ± 10.6 kJ/mol, respectively, and agree with each other within the experimental errors, which indicates that our data are reliable. Furthermore, it was found that the existing data of the Gibbs energy function and the standard enthalpy of formation agreed well with the values evaluated in this study, which indicates that the existing thermodynamic data are also reliable.

  11. Optical properties of Ni2+ and radiation defects in MgF sub 2 and MnF sub 2

    NASA Astrophysics Data System (ADS)

    Feuerhelm, L. N.

    1980-03-01

    The radiation defects in pure MgF2 were made by observating the polarized absorption, luminescence, and excitation spectra in electron-irradiated MgF2. Additionally, studies of the absorption, emission, excitation, and temperature dependence of the lifetimes of transitions in nickel-doped MgF2 and MnF2 were accomplished, as well as the observation of radiation effects on these crystals. The absorption band at about 320 nm in irradiated MgF2 is identified to be due to the F2(D2b) center, and to have an emission at about 450 nm. Analysis of the temperature dependence of this band indicates a dominant phonon mode of 255 cm(-1) for the excited state. The F2(C1) center is identified with an absorption of about 360 nm and an emission of 410 nm. An absorption peak at 300 nm, for which no corresponding emission was found, is tentatively identified to be the F3-center, and to have a dominant phonon mode of 255 cm(-1). The temperature dependence of the lifetimes of transitions in nickel-doped MgF2 is analyzed by the quantum mechanical single configuration coordinate model of Struck and Fonger, and a complete configuration coordinate model is made for this crystal. Similar studies are made in MnF2:Ni.

  12. Er3+-doped BaY2F8 crystal waveguides for broadband optical amplification at 1.5 μm

    NASA Astrophysics Data System (ADS)

    Toccafondo, V.; Cerqueira S., A.; Faralli, S.; Sani, E.; Toncelli, A.; Tonelli, M.; Di Pasquale, F.

    2007-01-01

    Integrated waveguide amplifiers based on high concentration Er3+ doped BaY2F8 crystals are numerically studied by combining a full-vectorial finite element based modal analysis and propagation-rate equations. Using realistic input data, such as the absorption/emission cross sections and Er level lifetimes measured on grown crystal samples, we investigate the amplifier performance by optimizing the total Er concentration. We predict optimum gain coefficient up to 5dB/cm and broad amplification bandwidth exceeding 80nm with 1480nm pumping.

  13. Scintillation properties of a 2-inch diameter KCa0.8Sr0.2I3:Eu2+ single crystal

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Lindsey, Adam C.; Loyd, Matthew; Stand, Luis; Zhuravleva, Mariya; Koschan, Merry; Melcher, Charles L.

    2017-09-01

    Inch-sized scintillating crystals are required for practical radiation detectors such as hand-held radio-isotope identification devices. In this work, a transparent and colorless 2-inch diameter KCa0.8Sr0.2I3: 0 . 5 mo% Eu2+ single crystal was grown by the vertical Bridgman method, and the scintillation properties of a ∅ 50 mm × 45 mm long sample were evaluated. The Eu2+ 5d1- 4 f emission under X-ray excitation is centered at 472 nm. Its scintillation decay time under 137 Cs source irradiation is 2 . 37 μs, and the absolute light output is 51,000 ± 3000 photons/MeV. The energy resolution at 662 keV was evaluated for different orientations of the crystals with respect to the PMT, and the effect of 40 K background subtraction on energy resolution was evaluated. The performance of the packaged crystal was also investigated.

  14. Optical spectroscopy of BaY2F8:Dy3+

    NASA Astrophysics Data System (ADS)

    Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro; Cavalli, Enrico; Bovero, Enrico; Belletti, Alessandro

    2005-05-01

    The optical spectra of the BaY2F8:Dy3+ laser crystal have been investigated in the 5000-30 000 cm-1 range. The Judd-Ofelt parametrization scheme has been applied to the analysis of the room temperature absorption spectra. The calculated radiative lifetime of the 4F9/2 state is 1.48 ms. Decay curves of the visible emission have been measured as a function of the temperature for two different Dy3+ concentrations (0.5 and 4.4%). In the case of the diluted crystal the emission profiles are single exponential with decay times consistent with the radiative lifetime. The decay curves of the concentrated crystal are not exponential and they obey the Inokuti-Hirayama model for energy transfer for an electric dipole-dipole interaction in the absence of diffusion among the donors. The emission cross section at 575 nm has been estimated using the integral β-τ method in order to assess the potentialities of this compound as a solid state laser material in the yellow region.

  15. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  16. Growth and spectroscopic properties of Sm3+:KY(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Demesh, M. P.; Dernovich, O. P.; Gusakova, N. V.; Yasukevich, A. S.; Kornienko, A. A.; Dunina, E. B.; Fomicheva, L. A.; Pavlyuk, A. A.; Kuleshov, N. V.

    2018-01-01

    A Sm3+:KY(WO4)2 crystal was grown by the modified Czochralski technique. Polarized absorption and fluorescence spectra, as well as a fluorescence decay curve, were recorded at room temperature. Radiative properties such as emission probabilities, branching ratios and radiative lifetimes were investigated within the framework of the Judd-Ofelt theory as well as the theory of f-f transition intensities which takes into account the influence of the excited configurations. Emission cross section spectra were determined. 4G5/2 fluorescence decay was analyzed within the framework of the Inokuti-Hirayama model. The spectroscopic properties of Sm:KYW crystal were compared with those of other Sm3+-doped materials.

  17. Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng

    2016-12-01

    Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.

  18. M2-F3 on lakebed

    NASA Image and Video Library

    1970-06-19

    The M2-F3 Lifting Body is seen here on the lakebed next to the NASA Flight Research Center (later the Dryden Flight Research Center), Edwards, California. Redesigned and rebuilt from the M2-F2, the M2-F3 featured as its most visible change a center fin for greater stability. While the M2-F3 was still demanding to fly, the center fin eliminated the high risk of pilot induced oscillation (PIO) that was characteristic of the M2-F2.

  19. Depth-resolved photo- and ionoluminescence of LiF and Al2O3

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Kirilkin, N. S.; Kovalev, Yu. S.; Strukova, T. S.; Havanscak, K.

    2012-09-01

    Microluminescence and laser confocal scanning microscopy techniques have been used to study spatial distribution of F-type color centers in LiF and mechanical stress profiles in Al2O3:Cr single crystals irradiated with 1.2 MeV/amu Ar, Kr, Xe and 3 MeV/amu Kr and Bi ions. It was found that F2 and F3+-center profiles at low ion fluences correlate with ionizing energy loss profiles. With increasing ion fluence, after ion track halo overlapping, the luminescence yield is defined by radiation defects formed in elastic collisions in the end-of-range area. Stress profiles and stress tensor components in ruby crystals across swift heavy ion irradiated layers have been deduced from depth-resolved photo-stimulated spectra using piezospectroscopic effect. Experimental data show that that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  20. Unraveling Pr3+ 5d-4f emission in LiLa9(SiO4)6O2 crystals doped with Pr3+ ions

    NASA Astrophysics Data System (ADS)

    Ivanovskikh, Konstantin V.; Shi, Qiufeng; Bettinelli, Marco; Pustovarov, Vladimir A.

    2018-05-01

    LiLa9(SiO4)6O2 (LLSO) crystals doped with Pr3+ ions were grown using the slow cooling flux method. The crystals were characterized by means of luminescence and optical spectroscopy and luminescence decay measurements upon excitation in UV, VUV and X-ray range including using synchrotron radiation sources. The spectroscopic data revealed the presence Pr3+ 5d↔4f emission and excitation bands related to Pr3+ ions replacing La3+ in two nonequivalent positions, and features related Pr3+ 4f→4f emission. The photon cascade emission is not observed in LLSO:Pr3+, since Pr3+1S0 state is above the bottom of 4fn-15d mixed-states band. Apart from the emission features related to Pr3+, a defect-related emission was observed upon UV, VUV, and ionizing radiation excitation. Presence of the defects was shown with thermoluminescence measurements and suggested to be the main reason for suppression the 5d→4f emission. Peculiarities of host-to-impurity energy transfer are analyzed and discussed.

  1. Luminescence and scintillation characteristics of (GdxY3-x)Al2Ga3O12:Ce (x = 1,2,3) single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Pattanaboonmee, Nakarin; Sakthong, Ongsa; Chewpraditkul, Weerapong; Szczesniak, Tomasz; Moszynski, Marek; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2018-02-01

    The luminescence and scintillation characteristics of Czochralski-grown (GdxY3-x)Al2Ga3O12:Ce (x = 1,2,3) single crystals are presented. With increasing Gd content in this garnet host, the 5d2 absorption band was blue-shifted while the 5d1 absorption and 5d1 → 4f emission bands were red-shifted due to an increase in the crystal field splitting of the 5d levels. In addition, the luminescence quenching temperature of the Ce3+emission and activation energy for thermal quenching decreased with increasing Gd content. The Gd3+ → Ce3+ energy transfer was evidenced by photoluminescence excitation spectra of Ce3+ emission. At 662 keV γ - rays, the light yield (LY) of 48,600 ph/MeV and energy resolution of 6.5% was measured for a Gd3Al2Ga3O12:Ce crystal. Scintillation decay measurements were performed using the time-correlated single photon counting technique. Superior time resolution of Gd3Al2Ga3O12:Ce is due to its high LY and fast scintillation response. The total mass attenuation coefficients at 60 and 662 keV γ - rays were also determined.

  2. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB{sub 3}O{sub 5}(OH): Comparative crystal chemistry of calcium triborates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamnova, N. A., E-mail: aks.crys@gmail.com; Aksenov, S. M.; Stefanovich, S. Yu.

    Calcium triborate CaB{sub 3}O5(OH) obtained by hydrothermal synthesis in the Ca(OH){sub 2}–H{sub 3}BO{sub 3}–Na{sub 2}CO{sub 3}–KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å{sup 3} and space group Pna2{sub 1}. The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB{sub 3}O{sub 5}(OH) is identical to that described earlier. Themore » hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B{sub 2}O{sub 3} · nH{sub 2}O (n = 0–13) with the constant CaO: B{sub 2}O{sub 3}= 2: 3 ratio and variable content of water is performed.« less

  3. Noble-Gas Difluoride Complexes of Mercury(II): The Syntheses and Structures of Hg(OTeF 5) 2·1.5NgF 2 (Ng = Xe, Kr) and Hg(OTeF 5) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBackere, John R.; Mercier, Helene P. A; Schrobilgen, Gary J.

    2014-02-03

    The synthesis of high-purity Hg(OTeF 5) 2 has resulted in its structural characterization in the solid state by Raman spectroscopy and single-crystal X-ray diffraction (XRD) and in solution by 19F NMR spectroscopy. The crystal structure of Hg(OTeF 5) 2 (-173 °C) consists of discrete Hg(OTeF 5) 2 units having gauche-conformations that interact through long Hg---O and Hg---F intramolecular contacts to give a chain structure. Furthermore, the Lewis acidity of Hg(OTeF 5) 2 toward NgF 2 (Ng = Xe, Kr) was investigated in SO 2ClF solvent and shown to form stable coordination complexes with NgF 2 at -78 °C. Both complexesmore » were characterized by low-temperature Raman spectroscopy (-155 °C) and single-crystal XRD. The complexes are isostructural and are formulated as Hg(OTeF 5) 2·1.5NgF 2. The Hg(OTeF 5) 2 units of Hg(OTeF 5) 2·1.5NgF 2 also have gauche-conformations and are linked through bridging NgF 2 molecules, also resulting in chain structures. The complexes represent the only examples of coordination compounds where NgF 2 coordinates to mercury in a neutral covalent compound and the only example of mercury coordinated to KrF 2. Moreover, the Hg(OTeF 5) 2·1.5KrF 2 complex is the only KrF 2 complex known to contain a bridging KrF 2 ligand. Energy-minimized gas-phase geometries and vibrational frequencies for the model compounds, [Hg(OTeF5) 2] 3 and [Hg(OTeF 5) 2] 3·2NgF 2, were obtained and provide good approximations of the local environments of Hg(OTeF 5) 2 and NgF 2 in the crystal structures of Hg(OTeF5)2 and Hg(OTeF 5) 2·1.5NgF 2. Assignments of the Raman spectra of Hg(OTeF 5) 2 and Hg(OTeF 5) 2·1.5NgF 2 are based on the calculated vibrational frequencies of the model compounds. Natural bond orbital analyses provided the associated bond orders, valencies, and natural population analysis charges.« less

  4. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  5. The electric field gradient in natural iron-doped chrysoberyl Al2BeO4 and sinhalite MgAlBO4 single crystals

    NASA Astrophysics Data System (ADS)

    Lottermoser, Werner; Redhammer, Günther J.; Weber, Sven-Ulf; Litterst, Fred Jochen; Tippelt, Gerold; Dlugosz, Stephen; Bank, Hermann; Amthauer, Georg; Grodzicki, Michael

    2011-12-01

    This work reports on the evaluation of the electric field gradient (EFG) in natural chrysoberyl Al2BeO4 and sinhalite MgAlBO4 using two different procedures: (1) experimental, with single crystal Mössbauer spectroscopy (SCMBS) on the three principal sections of each sample and (2) a "fully quantitative" method with cluster molecular orbital calculations based on the density functional theory. Whereas the experimental and theoretical results for the EFG tensor are in quantitative agreement, the calculated isomer shifts and optical d-d-transitions exhibit systematic deviations from the measured values. These deviations indicate that the substitution of Al and Mg with iron should be accompanied by considerable local expansion of the coordination octahedra.

  6. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  7. Pressure-induced photoluminescence in Mn2+-doped BaF2 and SrF2 fluorites

    NASA Astrophysics Data System (ADS)

    Hernández, Ignacio; Rodríguez, Fernando

    2003-01-01

    This work reports an effective way for inducing room temperature photoluminescence (PL) in Mn2+-doped BaF2 and SrF2 using high-pressure techniques. The aim is to understand the surprising PL behavior exhibited by Mn2+ at the cubal site of the fluorite structure. While Mn2+-doped CaF2 shows a green PL with quantum yield close to 1 at room temperature, Mn2+-doped MF2 (M=Ba,Sr) is not PL either at room temperature (SrF2) or at any temperature (BaF2) at ambient pressure. We associate the loss of Mn2+ PL on passing from CaF2 to SrF2 or BaF2 with nonradiative multiphonon relaxation whose thermal activation energy decreases along the series CaF2→SrF2→BaF2. A salient feature of this work deals with the increase of activation energy induced by pressure. It leads to a quantum yield enhancement, which favors PL recovery. Furthermore, the activation energy mainly depends on the crystal volume per molecule irrespective of the crystal structure or the local symmetry around the impurity. In this way, the relevance of the fluorite-to-cotunnite phase transition is analyzed in connection with the PL properties of the investigated compounds. The PL spectrum and the corresponding lifetime are reported for both structural phases as a function of pressure.

  8. Effect of Cerium codoping on Er:BaY2F8 crystals

    NASA Astrophysics Data System (ADS)

    Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro

    2005-10-01

    We present the Erbium 4I11/2 and 4I13/2 complete polarized spectroscopic investigation on a series of Er3+,Ce3+:BaY2F8 single crystals as a function of Cerium concentration. The main results of room temperature lifetime investigation show that the 4I13/2 lifetime reduces from 15.6 ms to 10 ms, the 4I11/2 lifetime reduces from 8.3 ms to 0.2 ms and 4S3/2 lifetime reduces from 420 to 110 μs when adding 4% Ce-codoping. Moreover, in the same experimental conditions, the fluorescence intensity from 4I13/2 increases by four times when adding 4%Ce, and the intensity of the 3 μm 4I11/2 →4I13/2 transition becomes undetectable. The experimental data are interpreted with a rate equation model. The obtained results could be interesting in perspective of obtaining a low-threshold 1.5 μm Er laser.

  9. Effects of nano-YAG (Y 3Al 5O 12) crystallization on the structure and photoluminescence properties of Nd 3+-doped K 2O-SiO 2-Y 2O 3-Al 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Tarafder, Anal; Molla, Atiar Rahaman; Karmakar, Basudeb

    2010-10-01

    Nd 3+-doped precursor glass in the K 2O-SiO 2-Y 2O 3-Al 2O 3 (KSYA) system was prepared by the melt-quench technique. The transparent Y 3Al 5O 12 (YAG) glass-ceramics were derived from this glass by a controlled crystallization process at 750 °C for 5-100 h. The formation of YAG crystal phase, size and morphology with progress of heat-treatment was examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transformed infrared reflectance spectroscopy (FT-IRRS). The crystallite sizes obtained from XRD are found to increase with heat-treatment time and vary in the range 25-40 nm. The measured photoluminescence spectra have exhibited emission transitions of 4F 3/2 → 4I J ( J = 9/2, 11/2 and 13/2) from Nd 3+ ions upon excitation at 829 nm. It is observed that the photoluminescence intensity and excited state lifetime of Nd 3+ ions decrease with increase in heat-treatment time. The present study indicates that the incorporation of Nd 3+ ions into YAG crystal lattice enhance the fluorescence performance of the glass-ceramic nanocomposites.

  10. Dependences of the density of M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} single crystals (M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: sorokin@ns.crys.ras.ru; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-15

    The density of single crystals of nonstoichiometric phases Ba{sub 1-x}La{sub x}F{sub 2+x} (0 {<=} x {<=} 0.5) and Sr{sub 0.8}La{sub 0.2-x}Lu{sub x}F{sub 2.2} (0 {<=} x {<=} 0.2) with the fluorite (CaF{sub 2}) structure type and R{sub 1-y}Sr{sub y}F{sub 3-y} (R = Pr, Nd; 0 {<=} y {<=} 0.15) with the tysonite (LaF{sub 3}) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement themore » composition control of single crystals of superionic conductors M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} in practice, calibration graphs of X-ray density in the MF{sub 2}-RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.« less

  11. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  12. Excitation-dependent local symmetry reversal in single host lattice Ba2A(BO3)2:Eu3+ [A = Mg and Ca] phosphors with tunable emission colours.

    PubMed

    Jayakiruba, S; Chandrasekaran, S Selva; Murugan, P; Lakshminarasimhan, N

    2017-07-05

    Eu 3+ activated phosphors are widely used as red emitters in various display devices and light emitting diodes (LEDs). The emission characteristics of Eu 3+ depend on the local site symmetry. The present study demonstrates the role of excitation-dependent local symmetry changes due to the structural reorganization on the emission colour tuning of Eu 3+ from orange-red to orange in single host lattices, Ba 2 Mg(BO 3 ) 2 and Ba 2 Ca(BO 3 ) 2 . The choice of these lattices was based on the difference in the extent of strain experienced by the oxygen atoms. The samples with Eu 3+ at Ba or Mg (Ca) sites were synthesized using the conventional high-temperature solid-state reaction method. The samples were characterized using powder XRD, 11 B MAS-NMR, FT-IR, and diffuse reflectance UV-Vis spectroscopic techniques. The room temperature photoluminescence (PL) recorded using different excitation wavelengths revealed a clear difference in the PL emission features due to symmetry reversal from non-inversion to inversion symmetry around Eu 3+ . The reorganization of highly strained oxygen atoms leads to such symmetry reversal. First-principles calculations were used to deduce the optimized structures of the two borate host lattices, and local geometries and their distortions upon Eu 3+ substitution. The outcomes of these calculations support the experimental findings.

  13. Crystallization and Preliminary X-ray Analysis of Der f 2, a Potent Allergen Derived from the House Dust Mite

    NASA Technical Reports Server (NTRS)

    Roeber, Dana; Achari, Aniruddha; Takai, Toshiro; Okumura, Yasushi; Scott, David L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Although a number of allergens have been identified and isolated, the underlying molecular basis for the potent immune response is poorly understood. House dust mites (Dermatophugoides sp.) are particularly ubiquitous contributors to atopy in developed countries. The rhinitis, dermatitis, and asthma associated with allergic reactions to these arthropods are often caused by relatively small (125-129 amino acids) mite proteins of unclear biological function. Der f 2, a major allergen from the mite Dermatophagoides farinae, has been recombinantly expressed and characterized. The Der f 2 protein has been crystallized in our laboratory and a native data set collected at a synchrotron source. The crystals belong to the orthorhombic space group I422 with unit cell parameters of a = 95.2 Angstroms, b = 95.2 Angstroms, and c = 103.3 Angstroms. An essentially complete (97.2%) data set has been collected to 2.4 Angstroms. Attempts to solve the crystal structure of Der f 2 by molecular replacement using the available NMR coordinates for either Der f 2 or Der p 2 (the homologous protein from D. pterovssinus) failed to reveal a creditable solution.

  14. Orientational disorder in sodium cadmium trifluoride trihydrate, NaCdF{sub 3}.3H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Robert W.; Mar, Arthur; Liu Jianjun

    2006-03-09

    Attempts to synthesize the hypothetical anhydrous fluoroperovskite NaCdF{sub 3}, which has been predicted to be stable, resulted instead in a hydrated fluoride of nominal composition NaCdF{sub 3}.3H{sub 2}O. It decomposes to sodium fluoride, cadmium fluoride, and water at 60deg. C. Its structure has been determined by single-crystal X-ray diffraction. Na{sub 0.92(2)}Cd{sub 1.08}F{sub 3.08}.2.92H{sub 2}O crystallizes in the cubic space group Fm3-bar m with a=8.2369(4)A and Z=4. The structure is based on the NaSbF{sub 6}-type (an ordered variant of the ReO{sub 3}-type) and features tilted sodium- and cadmium-centred octahedra that are linked by shared vertices to form a three-dimensional network. Substitutionalmore » disorder occurs on the nonmetal site, which is occupied by both F and O atoms, and on one of the metal sites, which is occupied by 92% Na and 8% Cd. A four-fold orientational disorder of the tilted octahedra is manifested as partial occupancy (25%) of the nonmetal site. A scheme to synthesize the anhydrous fluoride is presented.« less

  15. Optical properties of BaY2F8:Ce3+

    NASA Astrophysics Data System (ADS)

    Fabeni, P.; di Martino, D.; Nikl, M.; Pazzi, G. P.; Sani, E.; Toncelli, A.; Tonelli, M.; Vedda, A.

    2005-01-01

    The optical properties of Ce3+-doped BaY2F8 crystals were investigated under selective laser excitation and X-ray irradiation. In both cases, the emission spectrum is dominated by the characteristic doublet transition from the lowest energy level of the 5d configuration to the spin-orbit split 2F ground state of Ce3+. Excitation bands at 4.1, 5.0, 5.9 and 6.2 eV, due to transitions between 4f and split 5d levels were observed. The emission time decay was satisfactorily analyzed by a single exponential component, characterized by a decay time of approximately 28 ns at 10 K and slightly increasing with temperature. A monotonic temperature quenching of the photo-luminescence intensity was observed; on the other hand, the temperature dependence of radio-luminescence intensity is modulated by the presence of shallow traps competing with Ce3+ ions in carrier trapping during irradiation.

  16. Localized excitons in fluoroperovskite LiBaF3 crystals

    NASA Astrophysics Data System (ADS)

    Springis, Maris; Trukhin, Anatoly N.; Tale, Ivar

    2003-08-01

    Two radiating processes in LiBaF3 crystals, fast valence-core transitions (5.4 - 6.5 eV) and slow, so called self-trapped exciton luminescence (about 4.3 eV), are important for practical application. Here we present a study of 4.3 eV luminescence under X-ray excitation and photoexcitation as well as under photostimulation after X-irradiation of undoped and Ag-doped LiBaF3 crystals at various temperatures. It is shown that 4.3 eV luminescence appears under X-ray excitation at least from 85 K to 400 K in both undoped and doped crystals. In all samples studied the excitation spectra of 4.3 eV luminescence contain both the main exciton like band at the edge of fundamental absorption at about 10 eV and weaker band in 7.8 - 8.6 eV region. Luminescence spectrum in the 3.8 - 4.8 eV region under 7.8 - 8.6 eV excitation differs slightly from that under 10 eV excitation. Several luminescence bands in 3.8 - 4.8 eV region arises in the temperature range 85 - 230 K under photostimulation in absorption band of F-type center at 2.9 eV created previously under X-irradiation. We propose the luminescence of LiBaF3 crystals in the 3.8 - 4.8 eV region may be caused by localized excitons formed not only under excitation near the fundamental absorption but also in result of electron recombination with localized holes thermally destroyed above 230 K.

  17. Crystal growth and electrical properties of CuFeO 2 single crystals

    NASA Astrophysics Data System (ADS)

    Dordor, P.; Chaminade, J. P.; Wichainchai, A.; Marquestaut, E.; Doumerc, J. P.; Pouchard, M.; Hagenmuller, P.; Ammar, A.

    1988-07-01

    Delafossite-type CuFeO 2 single crystals have been prepared by a flux method: crystals obtained in a Cu crucible with LiBO 2 as flux are n-type whereas those prepared in a Pt crucible with a Cu 2O flux are p-type. Electrical measurements have revealed that n-type crystals exhibit weak anisotropic conductivities with large activation energies and small mobilities (r.t. values perpendicular and parallel to the c-axis: μ⊥ = 5 × 10 -5 and μ‖ = 10 -7 cm -2 V -1 sec -1). p-type crystals, less anisotropic, are characterized by low activation energies and higher mobilities ( μ⊥ = 34 and μ‖ = 8.9 cm 2 V -1 sec -1). A two -conduction-band model is proposed to account for the difference observed between the energy gap value deduced from photoelectrochemical measurements and the activation energy of the electrical conductivity in the intrinsic domain.

  18. Spectroscopic and theoretical investigation of the electronic states of layered perovskite oxyfluoride S r2Ru O3F2 thin films

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2018-06-01

    We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.

  19. The structure, stability, and infrared spectrum of B 2N, B 2N +, B 2N -, BO, B 2O and B 2N 2.

    NASA Astrophysics Data System (ADS)

    Martin, J. M. L.; François, J. P.; Gijbels, R.

    1992-05-01

    The structure, infrared spectrum, and heat of formation of B 2N, B 2N -, BO, and B 2O have been studied ab initio. B 2N is very stable; B 2O even more so. B 2N, B 2N -, B 2O, and probably B 2N + have symmetric linear ground-state structures; for B 2O, an asymmetric linear structure lies about 12 kcal/mol above the ground state. B 2N +, B 2N - and B 2O have intense asymmetric stretching frequencies, predicted near 870, 1590 and 1400 cm -1, respectively. Our predicted harmonic frequencies and isotopic shifts for B 2O confirm the recent experimental identification by Andrews and Burkholder. Absorptions at 1889.5 and 1998.5 cm -1 in noble-gas trapped boron nitride vapor belong the BNB and BNBN ( 3Π), respectively; a tentative assignment of 882.5 cm -1 to BNB + is proposed. Total atomization energies Σ De (Σ D0) are computed (accuracy ±2 kcal/mol) as: BO 193.1 (190.4), B 2O 292.5 (288.7), B 2N 225.0 (250.3) kcal/mol. The ionization potential and electron affinity of B 2N are predicted to be 8.62±0.1 and 3.34±0.1 eV. The MP4-level additivity approximations involved in G1 theory results in errors on the order of 1 kcal/mol in the Σ De values.

  20. Synthesis and characterization of new fluoride-containing manganese vanadates A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; McGuire, Michael A.; Smith Pellizzeri, Tiffany M.

    2016-09-15

    Large single crystals of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO{sub 4}F{sub 2} building blocks. The A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains ofmore » edge-sharing MnO{sub 4}F{sub 2} units running along the a-axis, and interconnected through V{sub 2}O{sub 7} pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn{sup 2+} indicated that Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} is antiferromagnetic with a Neél temperature, T{sub N}=~3 K and a Weiss constant, θ, of −11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}. Mn{sub 2}(VO{sub 4})F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn{sup 2+}. These interpenetrating chains are additionally connected through isolated VO{sub 4} tetrahedra to form the condensed structure. - Graphical abstract: New vanadate fluorides A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}(VO{sub 4})F have been synthesized hydrothermally. Upon cooling, the one-dimensional Mn(II) substructure results in

  1. 926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing

    2018-05-01

    926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.

  2. Phase equilibria in the NaF-CdO-NaPO{sub 3} system at 873 K and crystal structure and physico-chemical characterizations of the new Na{sub 2}CdPO{sub 4}F fluorophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboussatar, Mohamed; Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax; Mbarek, Aïcha

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO{sub 3} system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO{sub 4} side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na{sub 2}CdPO{sub 4}F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1),more » c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na{sub 2}CaPO{sub 4}F and the fluorosilicate Ca{sub 2}NaSiO{sub 4}F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na{sub 2}M{sup II}PO{sub 4}F (M{sup II}=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and {sup 19}F, {sup 23}Na, {sup 31}P MAS NMR characterizations of Na{sub 2}CdPO{sub 4}F have been investigated. - Graphical abstract: The structure of the compound Na{sub 2}CdPO{sub 4}F, discovered during the study of the phase relationships in the NaF-CdO-NaPO{sub 3} system, has been determined and compared with other Na{sub 2}M{sup II}PO{sub 4}F fluorophosphates. - Highlights: • XRD analysis of the isothermal section of the NaF-CdO-NaPO{sub 3} system at 923 K. • Rietveld refinement of the high temperature polymorph β-NaCdPO{sub 4}. • Crystal structure of the new Na{sub 2}CdPO{sub 4}F fluorophosphate determined from powder XRD. • Crystal structure - composition relationships of Na{sub 2}M{sup II}PO{sub 4}F

  3. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  4. Ae2Sb2X4F2 (Ae = Sr, Ba): new members of the homologous series Ae2M(1+n)X(3+n)F2 designed from rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2006-03-20

    We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.

  5. Zn3Sb4O6F6: Hydrothermal synthesis, crystal structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Ali, Sk Imran; Zhang, Weiguo; Halasyamani, P. Shiv; Johnsson, Mats

    2017-12-01

    Zn3Sb4O6F6 has been synthesized hydrothermally at 230 °C. The crystal structure was determined from single crystal X-ray diffraction data. It crystallizes in the cubic non-centrosymmetric space group I-43m with the unit cell parameter a = 8.1291(4) Å and is isostructural with M3Sb4O6F6 (M = Co, Ni). The new compound is the first oxofluoride containing Zn2+ and a p-element cation with a stereochemically active lone pair. The crystal structure is made up by [ZnO2F4] octahedra forming a network via corner sharing at F-atoms and [SbO3] trigonal pyramids that form [Sb4O6] cages that connect via the O-atoms to the Zn-atoms. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation on Zn3Sb4O6F6 indicate an SHG intensity of approximately 40 × α-SiO2.

  6. Spectroscopic determination of crystal-field levels in CeRh2Si2 and CeRu2Si2 and of the 4f0 contributions in CeM2Si2 (M=Cu, Ru, Rh, Pd, and Au)

    NASA Astrophysics Data System (ADS)

    Willers, T.; Adroja, D. T.; Rainford, B. D.; Hu, Z.; Hollmann, N.; Körner, P. O.; Chin, Y.-Y.; Schmitz, D.; Hsieh, H. H.; Lin, H.-J.; Chen, C. T.; Bauer, E. D.; Sarrao, J. L.; McClellan, K. J.; Byler, D.; Geibel, C.; Steglich, F.; Aoki, H.; Lejay, P.; Tanaka, A.; Tjeng, L. H.; Severing, A.

    2012-01-01

    We have determined the ground-state wave functions and crystal-field-level schemes of CeRh2Si2 and CeRu2Si2 using linear polarized soft x-ray-absorption spectroscopy (XAS) and inelastic neutron scattering. We find large crystal-field splittings and ground-state wave functions which are made of mainly Jz = |±5/2> with some amount of |∓3/2> in both the compounds. The 4f0 contribution to the ground state of several members of the CeM2Si2 family with M=(Cu, Ru, Rh, Pd, and Au) has been determined with XAS, and the comparison reveals a trend concerning the delocalization of the f electrons. Absolute numbers are extracted from scaling to results from hard x-ray photoelectron spectroscopy on CeRu2Si2 by Yano [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.77.035118 77, 035118 (2008)].

  7. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-06

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  8. Luminescence and Excitation Spectra of U 3+ doped RbY 2 Cl 7 Single Crystals

    DOE PAGES

    Karbowiak, M.; Murdoch, K.; Drożdżyński, J.; ...

    1996-08-01

    Uranium(3+) doped single crystals of RbY 2 Cl 7 with a uranium concentration of 0.05% and 0.2% were grown by the Bridgman-Stockbarger method using RbU 2 Cl 7 as the doping substance. Polished plates of ca. 5 mm in diameter were used for measurements of luminescence and excitation spectra. And since the U 3+ ions occupy two somewhat different site symmetries, a splitting of all observed f-f bands was observed. Furthermore, the analysis of the spectra enabled definitively an assignment of 22 crystal field bands for both site symmetries as well as the total crystal field splitting of the groundmore » level, equal to 473 cm -1 and 567 cm -1 for the first and second site symmetry, respectively.« less

  9. Antioxidant capacity of BO-653, 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, and uric acid as evaluated by ORAC method and inhibition of lipid peroxidation.

    PubMed

    Niki, Etsuo; Fukuhara, Akiko; Omata, Yo; Saito, Yoshiro; Yoshida, Yasukazu

    2008-04-01

    The role of radical-scavenging antioxidant against oxidative stress has received much attention. The antioxidant capacity has been assessed by various methods. Above all, oxygen radical absorbance capacity (ORAC) has been frequently employed [Prior et.al., J. Agric. Food Chem.2005, 53, 4290]. In the present study, the antioxidant capacity of 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653) and uric acid was assessed by ORAC method using pyranine as a reference probe and compared with that against lipid peroxidation of human plasma. It was found that BO-653 was assessed to be much less potent than uric acid by ORAC method, whereas BO-653 exerted much higher antioxidant activity than uric acid against plasma lipid peroxidation. The reason for such discrepancy is discussed. The results suggest that ORAC method is suitable for the assessment of free radical scavenging capacity, but not for the assessment of antioxidant capacity against lipid peroxidation in plasma.

  10. M2-F3 on lakebed

    NASA Image and Video Library

    1970-06-19

    The M2-F3 Lifting Body is seen here on the lakebed at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California. After a three-year-long redesign and rebuilding effort, the M2-F3 was ready to fly. The May 1967 crash of the M2-F2 had damaged both the external skin and the internal structure of the lifting body. At first, it seemed that the vehicle had been irreparably damaged, but the original manufacturer, Northrop, did the repair work and returned the redesigned M2-F3 with a center fin for stability to the FRC.

  11. Single crystal growth and physical properties of BiS2-layered compound Eu3Bi2S4F4

    NASA Astrophysics Data System (ADS)

    Higashinaka, Ryuji; Endo, Hideaki; Kajitani, Joe; Matsuda, Tatsuma D.; Aoki, Yuji

    2018-05-01

    We have for the first time succeeded in growing single crystals of Eu3Bi2S4F4 by CsCl-flux method and performed magnetic property measurements. Magnetization measurements ascertained that the antiferromagnetic transition appears at TN = 2.2 K. The effective moment estimated from a Curie-Weiss (CW) fitting above 150 K is smaller than the free ion value for Eu2+, indicating that the average valence of Eu ions deviates from divalent. Weak magnetic anisotropy develops below 20 K. From CW fitting at low temperatures, we found the difference in Curie Weiss temperature between H∥ [001] and H ⊥ [ 100 ] , indicating the anisotropy of magnetic interaction between Eu ions. In the magnetization curve at 2 K (below TN), a metamagnetic anomaly appears only for the [001] direction around 0.7 T. Since this anomaly disappears above TN, this transition originates from the spin flip of Eu magnetic moments by applying magnetic field. This finding indicates that the ordered moments in the antiferromagnetic state are parallel to the [001] direction, being consistent with the anisotropic Weiss temperature, which is 20% larger for this direction.

  12. Inter- and intraconfigurational luminescence of Er3+ ions in BaY2F8 under VUV excitation

    NASA Astrophysics Data System (ADS)

    Kirm, M.; Lichtenberg, H.; Makhov, V. N.; Negodin, E.; Ouvarova, T. V.; Suljoti, E.; True, M.; Zimmerer, G.

    Using energy- and time-resolved spectroscopy the luminescence properties of Er3+ doped BaY2F8 crystals were investigated at 10 K under VUV synchrotron radiation excitation. Radiative intraconfigurational f - f and interconfigurational d - f transitions in Er3+ ions were observed under f - d excitation. Whereas the onset of S-4(3/2) population via f - d excitation starts at 59 900 cm(-1) , efficient excitation of emissions arising from the P-2(3/2) state begins only above 67 000 cm(-1) in VUV region. Such behaviour can be explained by a cross-relaxation process of the type (F-2(2)(5/2) , I-4(15/2))-->(P-2(3/2) , P-2(3/2)) taking place within f -states of Er3+ ions finally populating the emitting P-2(3/2) state.

  13. Phase equilibria in the NaF-CdO-NaPO3 system at 873 K and crystal structure and physico-chemical characterizations of the new Na2CdPO4F fluorophosphate

    NASA Astrophysics Data System (ADS)

    Aboussatar, Mohamed; Mbarek, Aïcha; Naili, Houcine; El-Ghozzi, Malika; Chadeyron, Geneviève; Avignant, Daniel; Zambon, Daniel

    2017-04-01

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO3 system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO4 side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na2CdPO4F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na2CaPO4F and the fluorosilicate Ca2NaSiO4F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na2MIIPO4F (MII=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and 19F, 23Na, 31P MAS NMR characterizations of Na2CdPO4F have been investigated.

  14. Effect of concentration variation on 2.0 µm emission of Ho3+-doped SiO2-Al2O3-Na2CO3-SrF2-CaF2 oxyfluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Gelija, Devarajulu; Borelli, Deva Prasad Raju

    2018-02-01

    The concentration variation of Ho3+ ion-doped SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses has been prepared by conventional melt quenching method. The thermal stability of 1 mol % of Ho3+-doped oxyfluorosilicate glass has been calculated using the differential thermal analysis (DTA) spectra. The phenomenological Judd-Ofelt intensity parameters Ωλ ( λ = 2, 4 and 6) were calculated for all concentrations of Ho3+ ions. The luminescence spectra in visible region of Ho3+ ion-doped glasses were recorded under the excitation wavelength of 452 nm. The spectra consists of several intense emission bands (5F4, 5S2) → 5I8 (547 nm), 5F3 → 5I8 (647 nm), 5F5 → 5I7 (660 nm) and (5F4, 5S2) → 5I7 (750 nm) in the range 500-780 nm. The fluorescence emission at ˜2.0 µm (5I7 → 5I8) was observed under the excitation of 488 nm Ar-ion laser. The stimulated emission cross section for 5I7 → 5I8 transition (˜2.0 µm) varies from 8.46 to 9.52 × 10-21 cm2, as calculated by the Fuchtbauer-Ladenburg (FL) theory. However, Mc-Cumber theory was used to calculate emission cross section values about 4.24-5.75 × 10-21 cm2 for the 5I7 → 5I8 transition in all concentrations of Ho3+-doped oxyfluorosilicate glasses. Therefore, these results reveal that the 0.5 mol % of Ho3+-doped oxyfluorosilicate glasses, exhibiting higher emission cross section, has potentially been used for laser applications at ˜ 2.0 µm.

  15. Stabilization of primary mobile radiation defects in MgF2 crystals

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.

  16. Comparison of the optical parameters of a CaF{sub 2} single crystal and optical ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palashov, O V; Khazanov, E A; Mukhin, I B

    Single crystal and optical ceramic CaF{sub 2} samples are studied by the method of thermally induced depolarisation of laser radiation at 1076 nm. The absorption coefficients of the single crystal and ceramics are estimated as {alpha} < 4.5x10{sup -4} cm{sup -1} and {alpha} < 1.33x10{sup -3} cm{sup -1}, respectively. (letters)

  17. The new high-pressure borate Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O-Formation of edge-sharing BO{sub 4} tetrahedra in a hydrated borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumair, Stephanie C.; Kaindl, Reinhard; Huppertz, Hubert, E-mail: hubert.huppertz@uibk.ac.at

    2012-01-15

    The new borate hydrate Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O was synthesized under high-pressure/high-temperature conditions of 6 GPa and 880 Degree-Sign C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbam (Z=2) with the lattice parameters a=819.0(2), b=2016.9(4), c=769.9(2) pm, V=1.2717(4) nm{sup 3}, R{sub 1}=0.0758, wR{sub 2}=0.0836 (all data). The new structure type of Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O is built up from corner-sharing BO{sub 4} tetrahedra forming corrugated layers, that are interconnected among each other by two edge-sharing BO{sub 4} tetrahedra (B{sub 2}O{sub 6} units) forming Z-shaped channels. Interestingly, the heremore » presented structure of Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O is closely related to the structures of M{sub 6}B{sub 22}O{sub 39}{center_dot}H{sub 2}O (M=Fe, Co), which exhibit BO{sub 4} tetrahedra in an intermediate state on the way to edge-sharing BO{sub 4} tetrahedra. - Graphical Abstract: The new high-pressure borate hydrate Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O is built up from corner-sharing BO{sub 4} tetrahedra forming corrugated layers, that are interconnected among each other by two edge-sharing BO{sub 4} tetrahedra (B{sub 2}O{sub 6} units). In this paper we report on synthesis, structural details, and properties of the new compound Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O. Highlights: Black-Right-Pointing-Pointer High-pressure/high-temperature synthesis of the new borate hydrate Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O. Black-Right-Pointing-Pointer In the structure of Co{sub 7}B{sub 24}O{sub 42}(OH){sub 2}{center_dot}2 H{sub 2}O, two B{sub 2}O{sub 6} units are connected to 'vierer' rings. Black-Right-Pointing-Pointer Pressure favours the formation of edge-sharing BO{sub 4} tetrahedra in the chemistry of borates.« less

  18. Crystal growth and upconversion luminescent properties of KLu2F7:Yb,Er nanocrystals

    NASA Astrophysics Data System (ADS)

    Xu, Dekang; Yao, Lu; Lin, Hao; Yang, Shenghong; Zhang, Yueli

    2018-05-01

    Crystal growth of KLu2F7 nanocrystals is investigated by dosage- and time-dependent analysis. XRD patterns reveal the phase transition along with the dosage of fluorine source and reaction times, where the cubic-phase KLu3F10 turns into orthorhombic KLu2F7. TEM images show that the dimensions of as-prepared samples are below a hundred nanometers, with different shapes from hexagonal plate to hexagonal rod. The upconversion properties of the as-prepared samples are investigated. It is found that the upconversion emission is lowered as the shape of the samples varies. Moreover, the orthorhombic KLu2F7:Yb,Er nanocrystals present more enormous upconversion luminescence than the cubic counterparts. In a word, the orthorhombic nanocrystals are found to be good candidate for upconversion luminescence and of great importance for potential applications in solar cells, multicolor display and bioimaging.

  19. Preparation, structure and analysis of the bonding in the molecular entity (OSO)2Li{[AlF(ORF)3]Li[Al(ORF)4]} (RF = C(CF3)3).

    PubMed

    Cameron, T Stanley; Nikiforov, Grigory B; Passmore, Jack; Rautiainen, J Mikko

    2010-03-14

    The (SO(2))(2)Li[AlF(OR(F))(3)]Li[Al(OR(F))(4)] (1) (R(F) = C(CF(3))(3)) molecular entity was obtained by thermal decomposition of Li[Al(OR(F))(4)] followed by crystallization from liquid SO(2). 1, containing two SO(2) molecules eta(1)-O coordinated to Li(+), was structurally characterized by single crystal X-ray diffraction and NMR spectroscopy in SO(2)(l). Bonding analyses of 1 (bond valency units, AIM analysis, atomic charges, bond orders) show that 1 can be either considered as a Li(OSO)(2)(+) complex stabilized by the large WCA [AlF(OR(F))(3)](-)Li(+)[Al(OR(F))(4)](-) or as consisting of 2 SO(2), 2 Li(+), [AlF(OR(F))(3)](-), and [Al(OR(F))(4)](-) joined by electrostatic interactions into the discrete molecular entity 1. The bonding between Li(+) and SO(2) molecules is shown to be almost completely attributable to monopole-induced dipole electrostatic interactions. Theoretical gas phase lithium ion affinity of SO(2) is determined to be stronger than its silver(I) ion affinity owing largely to the shorter lithium SO(2) contacts in the calculated structures that increase the electrostatic interaction.

  20. Syntheses, crystal structures and Raman spectra of Ba(BF{sub 4})(PF{sub 6}), Ba(BF{sub 4})(AsF{sub 6}) and Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}); the first examples of metal salts containing simultaneously tetrahedral BF{sub 4}{sup -} and octahedral AF{sub 6}{sup -} anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozinsek, Matic; Bunic, Tina; Goreshnik, Evgeny, E-mail: evgeny.goreshnik@ijs.s

    2009-10-15

    In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) a compound Ba(BF{sub 4})(PF{sub 6}) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF{sub 4})(PF{sub 6}) crystallizes in a hexagonal P6-bar2m space group with a=10.2251(4) A, c=6.1535(4) A, V=557.17(5) A{sup 3} at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF{sub 4}{sup -} and PF{sub 6}{sup -} anions. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was isolated and characterized.more » It crystallizes in an orthorhombic Pnma space group with a=10.415(2) A, b=6.325(3) A, c=11.8297(17) A, V=779.3(4) A{sup 3} at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF{sub 6}{sup -} and four F atoms from BF{sub 4}{sup -} anions. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was obtained. It crystallizes in a hexagonal P6{sub 3}/mmc space group with a=6.8709(9) A, c=17.327(8) A, V=708.4(4) A{sup 3} at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF{sub 4}{sup -}, three AsF{sub 6}{sup -} and three H{sub 3}F{sub 4}{sup -} anions. All F atoms, except the central atom in H{sub 3}F{sub 4} moiety, act as mu{sub 2}-bridges yielding a complex 3-D structural network. - Graphical abstract: The first three compounds, containing simultaneously tetrahedral BF{sub 4}{sup -} and octahedral AF{sub 6}{sup -} (A=P, As) anions have been synthesized and characterized by Raman spectroscopy and X-ray single crystal diffraction. In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen

  1. Rare earth crystal field spectra as a probe of librational motions in BaY2F8 solid state laser crystals

    NASA Astrophysics Data System (ADS)

    Capelletti, R.; Baraldi, A.; Buffagni, E.; Magnani, N.; Mazzera, M.

    2010-11-01

    The fine structure (FS) accompanying a few lines, originated by crystal field (CF) transitions of rare earths (RE), as Er3+ and Tm3+, in BaY2F8 single crystals, is analyzed as a function of the RE3+ concentration (0.5÷20 at%) and temperature (9-300 K), by using high resolution (as fine as 0.02 cm-1) Fourier transform spectroscopy and linear dichroism measurements. The 9 K absorption spectra show that FS includes weak, narrow, and closely spaced (0.4÷0.8 cm-1) lines, covering a few cm-1 range on both sides of the narrowest among the CF lines. The FS increases by increasing the RE3+ concentration and vanishes at rather low temperature (40 and 60 K for Er3+ and Tm3+, respectively). The polarized light spectra confirm the association of a given set of FS lines to a specific CF line. The FS is ascribed to the simultaneous excitation of an electronic CF transition and of a local librational (or hindered rotation) mode of the RE3+-F- group. The attribution is supported 1) by specific features of the host matrix and guest rare earths, which allow some mobility of F- ions, and 2) by the spacing of the FS lines, which is in excellent agreement with the calculated RE3+-F- group rotational constant.

  2. Inhibiting Low-Frequency Vibrations Explains Exceptionally High Electron Mobility in 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) Single Crystals.

    PubMed

    Chernyshov, Ivan Yu; Vener, Mikhail V; Feldman, Elizaveta V; Paraschuk, Dmitry Yu; Sosorev, Andrey Yu

    2017-07-06

    Organic electronics requires materials with high charge mobility. Despite decades of intensive research, charge transport in high-mobility organic semiconductors has not been well understood. In this Letter, we address the physical mechanism underlying the exceptionally high band-like electron mobility in F 2 -TCNQ (2,5-difluoro-7,7,8,8-tetracyanoquinodimethane) single crystals among a crystal family of similar compounds F n -TCNQ (n = 0, 2, 4) using a combined experimental and theoretical approach. While electron transfer integrals and reorganization energies did not show outstanding features for F 2 -TCNQ, Raman spectroscopy and solid-state DFT indicated that the frequency of the lowest vibrational mode is nearly twice higher in the F 2 -TCNQ crystal than in TCNQ and F 4 -TCNQ. This phenomenon is explained by the specific packing motif of F 2 -TCNQ with only one molecule per primitive cell so that electron-phonon interaction decreases and the electron mobility increases. We anticipate that our findings will encourage investigators for the search and design of organic semiconductors with one molecule per primitive cell and/or the poor low-frequency vibrational spectrum.

  3. HABIT CHANGES OF Y3Al5O12 AND Y3Ga5O12 GROWN FROM A PbO-PbF2 FLUX,

    DTIC Science & Technology

    Al2O3 or - Ga2O3 ratio in the melt. Y3Ga5O12 crystals have a pure (211) habit when grown from either a Y2O3- or PbO-rich melt. The crystals develop...small (110) faces when grown from a Ga2O3 - or PbF2-rich melt. Y3Al5O12 crystals have a pure (110) when grown from either a PbF2- or Al2O3-rich melt... Ga2O3 -rich melts. It is believed that the habit variations are caused by changes in either the surface diffusion or step propagation, due to Pb

  4. Experimental and theoretical study of pure and doped crystals: Gd2O2S, Gd2O2S:Eu3+ and Gd2O2S:Tb3+

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Chen, Xiumin; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2012-08-01

    Quantum chemistry and experimental method were used to study on pure and doped Gd2O2S crystals in this paper. The band structure and DOS diagrams of pure and doped Gd2O2S crystals which calculated by using DFT (Density Functional Theory) method were illustrated to explain the luminescent properties of impurities in crystals. The calculations of the crystal structure were finished by using the program of CASTEP (Cambridge Sequential Total Energy Package). The samples showed the characteristic emissions of Tb3+ ions with 5D4-7FJ transitions and Eu3+ ions with 5D0-7FJ transitions which emit pure green luminescence and red luminescence respectively. The experimental excitation spectra of Tb3+ and Eu3+ doped Gd2O2S are in agreement of the DOS diagrams over the explored energy range, which has allowed a better understanding of different luminescence mechanisms of Tb3+ and Eu3+ in Gd2O2S crystals.

  5. The effect of Fe2O3 crystal phases on CO2 hydrogenation

    PubMed Central

    Wang, Tianqi; Chen, Hongxian; Yang, Xiazhen; Jin, Yangfu

    2017-01-01

    The effect of Fe2O3 crystal phases on their performance in CO2 hydrogenation was studied. α-Fe2O3 crystal was prepared by precipitation method from Fe(NO3)3·9H2O and (NH4)2CO3, and γ-Fe2O3 was prepared by grinding Fe(NO3)3·9H2O and L(+)-Tartaric acid in agate mortar completely. The crystal phases of Fe2O3 influence the distribution of promoter Zn, K and Cu on catalysts. The dispersity of K on γ-Fe2O3 surface is higher than α-Fe2O3. On the contrary, Cu and Zn are more dispersive on α-Fe2O3 surface than γ-Fe2O3. The catalyst in γ-Fe2O3 phase is easily reduced relative to the catalyst in α-Fe2O3 phase. The former presents higher CO2 conversion and C2+ hydrocarbon selectivity than the latter in CO2 hydrogenation. PMID:28806421

  6. The effect of Fe2O3 crystal phases on CO2 hydrogenation.

    PubMed

    Ning, Wensheng; Wang, Tianqi; Chen, Hongxian; Yang, Xiazhen; Jin, Yangfu

    2017-01-01

    The effect of Fe2O3 crystal phases on their performance in CO2 hydrogenation was studied. α-Fe2O3 crystal was prepared by precipitation method from Fe(NO3)3·9H2O and (NH4)2CO3, and γ-Fe2O3 was prepared by grinding Fe(NO3)3·9H2O and L(+)-Tartaric acid in agate mortar completely. The crystal phases of Fe2O3 influence the distribution of promoter Zn, K and Cu on catalysts. The dispersity of K on γ-Fe2O3 surface is higher than α-Fe2O3. On the contrary, Cu and Zn are more dispersive on α-Fe2O3 surface than γ-Fe2O3. The catalyst in γ-Fe2O3 phase is easily reduced relative to the catalyst in α-Fe2O3 phase. The former presents higher CO2 conversion and C2+ hydrocarbon selectivity than the latter in CO2 hydrogenation.

  7. NMR in Pulsed Magnetic Fields on the Orthogonal Shastry-Sutherland spin system SrCu2 (BO3)2

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Kohlrautz, Jonas; Kühne, Hannes; Greene, Liz; Wosnitza, Jochen; Haase, Jügen

    2015-03-01

    SrCu2(BO3)2 is a quasi-two-dimensional spin system consisting of Cu2+ ions which form orthogonal spin singlet dimers, also known as the Shastry-Sutherland lattice, in the ground state. Though this system has been studied extensively using a variety of techniques to probe the spin triplet excitations, including recent magnetization measurements over 100 T, microscopic techniques, such as nuclear magnetic resonance (NMR), could provide further insight into the spin excitations and spin-coupling mechanisms. We demonstrate the feasibility of performing NMR on real physics system in pulsed magnets. We present 11B NMR spectra measured in pulsed magnetic fields up to 53 T, and compare those with prior results obtained in static magnetic fields. Herewith we prove the efficacy of this technique and then extend to higher fields to fully explore the spin structure of the 1/3 plateau. Support by EMFL, DFG, ETAg (EML+ & PUT210).

  8. Electronic sputtering of LiF, CaF2, LaF3 and UF4 with 197 MeV Au ions. Is the stoichiometry of atom emission preserved?

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C.

    2017-09-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. Four different fluoride targets, LiF, CaF2, LaF3 and UF4 were irradiated in the electronic energy loss regime using 197 MeV Au ions. The angular distribution of particles sputtered from the surface of freshly cleaved LiF and CaF2 single crystals is composed of a broad cosine distribution superimposed by a jet-like peak that appears perpendicular to the surface independent of the angle of beam incidence. For LiF, the particle emission in the entire angular distribution (jet plus broad cosine component) is stoichiometric, whereas for CaF2 the ratio of the sputtered F to Ca particles is at large angles by a factor of two smaller than the stoichiometry of the crystal. For single crystalline LaF3 no jet component is observed and the angular distribution is non-stoichiometric with the number of sputtered F particles being slightly larger than the number of sputtered La particles. In the case of UF4, the target was polycrystalline and had a much rougher surface compared to cleaved crystals. This destroys the appearance of a possible jet component leading to a broad angular distribution. The ratio of sputtered U atoms compared to F atoms is in the order of 1-2, i.e. the number of collected particles on the catcher is also non-stoichiometric. Such unlike behavior of particles sputtered from different fluoride crystals creates new questions.

  9. High-temperature heat capacity of YFe3(BO3)4

    NASA Astrophysics Data System (ADS)

    Denisov, V. M.; Denisova, L. T.; Gudim, I. A.; Temerov, V. L.; Volkov, N. V.; Patrin, G. S.; Chumilina, L. G.

    2014-02-01

    The molar heat capacity of YFe3(BO3)4 has been measured using differential scanning calorimetry in the temperature range 339-1086 K. It has been found that the dependence C p = f( T) exhibits an extremum at a temperature of 401 K due to the structural transition.

  10. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  11. The laser-diode-excited 5 d-4 f luminescence of Ce3+ and Pr3+ ions embedded into a BaR2F8 matrix

    NASA Astrophysics Data System (ADS)

    Pushkar', A. A.; Uvarova, T. V.; Kozlova, N. S.; Kuznetsov, S. Yu.; Uvarova, A. G.

    2013-06-01

    We show the possibility of obtaining UV luminescence from 5 d-4 f transitions of rare-earth ions in the BaY2F8: (Yb3+, Pr3+, Ce3+) crystal under upconversion excitation by standard laser diodes with lasing wavelengths of 960, 808, and 840 nm. Various upconversion mechanisms of pumping for populating the higher-lying energy levels of the active ions, as well as methods of adaptation of the active medium BaY2F8: (Yb3+, Pr3+, Ce3+) to these mechanisms, are considered.

  12. Hydrothermal Synthesis, Crystal Structure, and Photoluminescent Properties of Li[UO2(CH3COO)3]3[Co(H2O)6

    NASA Astrophysics Data System (ADS)

    AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.

    2017-12-01

    Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.

  13. High-pressure x-ray diffraction study of YBO{sub 3}/Eu{sup 3+}, GdBO{sub 3}, and EuBO{sub 3}: Pressure-induced amorphization in GdBO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; Xu, Chao; Ren, Xiangting

    2014-01-28

    Angle-dispersive synchrotron X-ray diffraction measurements were performed on vaterite-type YBO{sub 3}/Eu{sup 3+}, GdBO{sub 3}, and EuBO{sub 3}, respectively, up to 41 GPa at room temperature using a diamond-anvil cell. Pressure-induced amorphization was observed in hexagonal GdBO{sub 3} with a significant compression along the c-axis. Compared to the ions of the distorted GdBO{sub 3} phase, its anions may lose their long-range order prior to the cations at high pressures. Based on the experimental pressure-volume data, the obtained bulk moduli of YBO{sub 3}/Eu{sup 3+} and GdBO{sub 3} are 329 and 321 GPa, respectively, which are more than 90% larger than that of EuBO{sub 3}more » (167 GPa) and are presumably attributed to Gd{sup 3+} and Y{sup 3+} with a high density of d valence electrons.« less

  14. Structure determination and characterization of two rare-earth molybdenum borate compounds: LnMoBO(6) (Ln = La, Ce).

    PubMed

    Zhao, Dan; Cheng, Wen-Dan; Zhang, Hao; Hang, Shu-Ping; Fang, Ming

    2008-07-28

    The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.

  15. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    PubMed

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  16. YAG:Er3+, CaF2:Er3+, and Er2O3 Emission Spectra Under Laser and Laser Thermal Excitation

    NASA Astrophysics Data System (ADS)

    Marchenko, V. M.

    2018-05-01

    Experimental luminescence and selective-emission (SE) spectra of YAG:Er3+ (10 at.%) and CaF2:Er3+ (1 at.%) single crystals and Er2O3 polycrystal under laser and laser thermal excitation of the Er3+-ion multiplets are compared. Luminescence spectra under resonant excitation are determined by multiplet population relaxation with the corresponding radiative and nonradiative probabilities. The form of the SE spectra is determined by the thermal population of the multiplets and the probabilities of only radiative transitions. The SE band at 800 nm (4I9/2 → 4I15/2) is an indicator of high-temperature thermal emission of Er3+ ions. The absence of this band in luminescence spectra is explained by the short lifetime of the τ(4I9/2) level of 53 ns at T = 300 K.

  17. Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals

    NASA Astrophysics Data System (ADS)

    Bokotey, O. V.

    2016-05-01

    This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.

  18. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  19. Nd3+-doped TeO2-PbF2-AlF3 glasses for laser applications

    NASA Astrophysics Data System (ADS)

    Lalla, E. A.; Rodríguez-Mendoza, U. R.; Lozano-Gorrín, A. D.; Sanz-Arranz, A.; Rull, F.; Lavín, V.

    2016-01-01

    A study of the optical properties of Nd3+ ion in TeO2-PbF2-AlF3 glasses has been carried out for different Nd3+ concentrations. Based on the Judd-Ofelt theory, intensity parameters and radiative properties were determined from the absorption spectra. Focusing on the suitability of this host for laser applications, the spectroscopic quality factor χ was obtained with a value of 1.07, a value of the order of other compositions proposed as laser hosts. For the most intense emission corresponding with the 4F3/2 → 4I11/2 transition (1.06 μm), the absorption and emission and have been calculated with values of 1.20 × 10-20 cm2, 2.08 × 10-20 cm2. A positive value for the gain cross-sections has been found for a population inversion factor γ of 0.4 in the spectral range from 1060 to 1110 nm. All these results suggest the potentially use of this system as a laser host.

  20. BoF - Python in Astronomy

    NASA Astrophysics Data System (ADS)

    Barrett, P. E.

    This BoF will be chaired by Paul Barrett and will begin with an introduction to Python in astronomy, be followed by reports of current Python projects, and conclude with a discussion about the current state of Python in astronomy. The introduction will give a brief overview of the language, highlighting modules, resources, and aspects of the language that are important to scientific programming and astronomical data analysis. The closing discussion will provide an opportunity for questions and comments.

  1. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O32V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  2. Crystal structure, phase transition and structural deformations in iron borate (Y0.95Bi0.05)Fe3(BO3)4 in the temperature range 90-500 K.

    PubMed

    Smirnova, Ekaterina S; Alekseeva, Olga A; Dudka, Alexander P; Artemov, Vladimir V; Zubavichus, Yan V; Gudim, Irina A; Bezmaterhykh, Leonard N; Frolov, Kirill V; Lyubutin, Igor S

    2018-04-01

    An accurate X-ray diffraction study of (Y 0.95 Bi 0.05 )Fe 3 (BO 3 ) 4 single crystals in the temperature range 90-500 K was performed on a laboratory diffractometer and used synchrotron radiation. It was established that the crystal undergoes a diffuse structural phase transition in the temperature range 350-380 K. The complexity of localization of such a transition over temperature was overcome by means of special analysis of systematic extinction reflections by symmetry. The transition temperature can be considered to be T str ≃ 370 K. The crystal has a trigonal structure in the space group P3 1 21 at temperatures of 90-370 K, and it has a trigonal structure in the space group R32 at 375-500 K. There is one type of chain formed by the FeO 6 octahedra along the c axis in the R32 phase. When going into the P3 1 21 phase, two types of nonequivalent chains arise, in which Fe atoms are separated from the Y atoms by a different distance. Upon lowering the temperature from 500 to 90 K, a distortion of the Y(Bi)O 6 , FeO 6 , B(2,3)O 3 coordination polyhedra is observed. The distances between atoms in helical Fe chains and Fe-O-Fe angles change non-uniformly. A sharp jump in the equivalent isotropic displacement parameters of O1 and O2 atoms within the Fe-Fe chains and fluctuations of the equivalent isotropic displacement parameters of B2 and B3 atoms were observed in the region of structural transition as well as noticeable elongation of O1, O2, B2, B3, Fe1, Fe2 atomic displacement ellipsoids. It was established that the helices of electron density formed by Fe, O1 and O2 atoms may be structural elements determining chirality, optical activity and multiferroicity of rare-earth iron borates. Compression and stretching of these helices account for the symmetry change and for the manifestation of a number of properties, whose geometry is controlled by an indirect exchange interaction between iron cations that compete with the thermal motion of atoms in the

  3. A Crystal-Physical Model of Electrotransfer in the Superionic Conductor Pb1 - x Sc x F2 + x ( x = 0.1)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-04-01

    The frequency (ν = 10-1-107 Hz) dependences of electrical conductivity σ(ν) of single crystals of superionic conductor Pb0.9Sc0.1F2.1 (10 mol % ScF3) with fluorite type structure (CaF2) in the temperature range 153-410 K have been investigated. The static bulk conductivity σ dc =1.5 × 10-4 S/cm and average hopping frequency ν h = 1.5 × 107 Hz of charge carriers (mobile ions F-) at room temperature (293 K) have been defined from the σ dc (ν) experimental curves. Enthalpies of thermoactivated processes of ionic conductivity σ dc ( T) (Δ H σ = 0.393 ± 0.005 eV) and dielectric relaxation ν h ( T) (Δ H h = 0.37 ± 0.03 eV) coincide within their errors. A crystal-physical model of fluorine-ion transport in a Pb0.9Sc0.1F2.1 crystal lattice has been proposed. The characteristic parameters of charge carriers have been calculated: concentration n mob = 2.0 × 1021 cm-3, the distance of the hopping d ≈ 0.5 nm and mobility μmob = 4.5 × 10-7 cm2/s V (293 K).

  4. K3 Li3 Gd7 (BO3 )9 : A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cooling.

    PubMed

    Xia, Mingjun; Shen, Shipeng; Lu, Jun; Sun, Young; Li, Rukang

    2018-03-02

    Magnetic cooling technology based on magnetocaloric effect (MCE) has attracted great interest in obtaining extremely low temperatures, for example, for space exploration. Here, we grew a new gadolinium-rich orthoborate K 3 Li 3 Gd 7 (BO 3 ) 9 (1) as a promising cryogenic magnetic coolant. It exhibits a complicated three dimensional framework constructed from BO 3 groups and gadolinium-oxygen chains. The Gd-O chain consists of two types of clusters of Gd 3 O 20 and Gd 3 O 19 interconnection by Gd(4)O 8 polyhydron. Due to its high gadolinium concentration, a large -ΔS m of 56.6 J kg -1  K -1 for 1 was obtained at 2 K and ΔH=7 T, much larger than that of the commercial benchmark Gd 3 Ga 5 O 12 (GGG) crystal (38.4 J kg -1  K -1 ), suggesting it to be an excellent MCE material. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin, E-mail: stra-ceo@163.com; Wang, Yongya; Luo, Wenqin

    Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass ceramics containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, f(α) = 2.3(1–α)[–ln(1–α)]{supmore » 0.57}, was also obtained. The addition of nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.« less

  6. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  7. Growth and spectroscopic properties of Tm3+:NaBi(MoO4)2 single crystal

    NASA Astrophysics Data System (ADS)

    Gusakova, N. V.; Mudryi, A. V.; Demesh, M. P.; Yasukevich, A. S.; Pavlyuk, A. A.; Kornienko, A. A.; Dunina, E. B.; Khodasevich, I. A.; Orlovich, V. A.; Kuleshov, N. V.

    2018-06-01

    In this work we report the spectroscopic properties of Tm3+:NaBi(MoO4)2 crystals with the dopant concentrations of 0.7 at.% and 3 at.%. The energy levels of the Tm3+ in the NaBi(MoO4)2 host were determined from polarized optical absorption and photoluminescence spectra measured at 77.4 K. Radiative properties of the crystals were calculated in context of Judd-Ofelt theory. Raman spectra of the crystal were studied. The concentration dependences of emission decay times of 3H4 and 3F4 levels were analyzed. The potential of the crystal for building tunable and ultrafast pulse lasers is shown on the base of cross sections and gain coefficient in the range of 1.9 μm.

  8. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  9. Stereoselective synthesis of ( E)-4-(imidazo[1,2- a]pyrid-2-yl)-3-(4-methylphenylsulfonyl)but-3-en-2-one. X-ray crystal structure and conformational analysis

    NASA Astrophysics Data System (ADS)

    Roche, D.; Force, L.; Carpy, A.; Gardette, D.; Madesclaire, M.

    1998-06-01

    The title compound, gem-ketovinylsulfone 3, was obtained stereoselectively (de > 98%) by the action of the α-anion from p-tolylsulfonylacetone 1 on imidazol[1,2- a]pyridine-2-carbaldehyde 2 in chelation-controlled conditions in the presence of a Lewis acid (ZnCl 2). The X-ray crystal structure of 3 [C 18H 16N 2O 3S: Mt = 340.4, orthorhombic, Pbca, a = 12.208(3) Å, b = 18.848(4) Å, c = 14.566(11) Å, V = 3.351(3) Å3, Z = 8, Dcalc = 1.349 g cm -3, λ( CuKα) = 1.54178 Å, μ = 1.83 mm -1, F(000) = 1424, T = 293 K, R = 0.061 for 2.046 observed reflections] was determined, and confirmed the ( E) configuration. Despite the conjugate position of the vinyl double bond, quasi-coplanar with the imidazopyridine heterocycle, there is no evidence of p-electron delocalization. The crystal cohesion is ensured by a dense network of van der Waals contacts. The conformational analysis of the ( E) and ( Z) stereoisomers was performed by molecular dynamics simulation, and showed the ( E) isomer to be 9.1 kJ mol -1 more stable than the ( Z) isomer.

  10. The crystal structure of the new ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2)

    NASA Astrophysics Data System (ADS)

    Fedyna, L. O.; Bodak, O. I.; Fedorchuk, A. O.; Tokaychuk, Ya. O.

    2005-06-01

    New ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, Cu Kα-radiation, R=6.99%,R=12.27%,R=11.55%). The compound crystallizes with the own cubic structure type: space group F3m, Pearson code cF272, a=16.6150(2) Å,Z=8. The structure of the Dy 3Cu 20Sb 11-x ( x≈2) can be obtained from the structure type BaHg 11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.

  11. The Crystal Structure of the Escherichia coli Autoinducer-2 Processing Protein LsrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Z.; Xavier, K; Miller, S

    2009-01-01

    Many bacteria produce and respond to the quorum sensing signal autoinducer-2 (AI-2). Escherichia coli and Salmonella typhimurium are among the species with the lsr operon, an operon containing AI-2 transport and processing genes that are up regulated in response to AI-2. One of the Lsr proteins, LsrF, has been implicated in processing the phosphorylated form of AI-2. Here, we present the structure of LsrF, unliganded and in complex with two phospho-AI-2 analogues, ribose-5-phosphate and ribulose-5-phosphate. The crystal structure shows that LsrF is a decamer of (??)8-barrels that exhibit a previously unseen N-terminal domain swap and have high structural homology withmore » aldolases that process phosphorylated sugars. Ligand binding sites and key catalytic residues are structurally conserved, strongly implicating LsrF as a class I aldolase.« less

  12. Luminescence study of Eu(3+) doped Li6 Y(BO3 )3 phosphor for solid-state lighting.

    PubMed

    Yawalkar, Mrunal M; Zade, G D; Dabre, K V; Dhoble, S J

    2016-06-01

    In this study, Li6 Y1-x Eux (BO3 )3 phosphor was successfully synthesized using a modified solid-state diffusion method. The Eu(3+) ion concentration was varied at 0.05, 0.1, 0.2, 0.5 and 1 mol%. The phosphor was characterized for phase purity, morphology, luminescent properties and molecular transmission at room temperature. The XRD pattern suggests a result closely matching the standard JCPDS file (#80-0843). The emission and excitation spectra were followed to discover the luminescence traits. The excitation spectra indicate that the current phosphor can be efficiently excited at 395 nm and at 466 nm (blue light) to give emission at 595 and 614 nm due to the (5) D0  → (7) Fj transition of Eu(3+) ions. Concentration quenching was observed at 0.5 mol% Eu(3+) in the Li6 Y1-x Eux (BO3 )3 host lattice. Strong red emission with CIE chromaticity coordinates of phosphor is x = 0.63 and y = 0.36 achieved with dominant red emission at 614 nm the (5) D0  → (7)  F2 electric dipole transition of Eu(3+) ions. The novel Li6 Y1-x Eux (BO3 )3 phosphor may be a suitable red-emitting component for solid-state lighting using double-excited wavelengths, i.e. near-UV at 395 nm and blue light at 466 nm. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Thermally stimulated luminescence properties of BaY2F8 : Ce crystals

    NASA Astrophysics Data System (ADS)

    Vedda, A.; Martini, M.; di Martino, D.; Sani, E.; Toncelli, A.; Tonelli, M.

    Wavelength resolved thermally stimulated luminescence (TSL) measurements were performed on BaY2 F-8 :1.8 mol% Ce crystals after X-ray irradiation at 10 K and at 300 K, in order to obtain preliminary information about both trap levels and recombination centres. After irradiation at 10 K, the TSL glow curve shows the presence of a strong peak at 50 K, together with additional structures at approximately 20 and 170 K. The TSL spectrum is dominated by the characteristic doublet emission due to transitions from the lowest energy level of the 5d configuration to the spin-orbit split F-2 ground state of Ce3+ . Above RT, the glow curve exhibits a peak at 60 degreesC, whose spectrum is again dominated by Ce3+ emission. The TSL emission is in accordance with radio-luminescence (RL) spectra performed in the 10-300 K region. Moreover, RL spectra at temperatures lower than 200 K display an additional weak high energy band at around 4.5 eV assigned to host lattice transitions.

  14. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  15. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  16. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  17. Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2

    NASA Astrophysics Data System (ADS)

    Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.

    1999-06-01

    The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.

  18. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li 2O/Al 2O 3 ratio

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-01-01

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.

  19. AmeriFlux US-Bo2 Bondville (companion site)

    DOE Data Explorer

    Bernacchi, Carl [University of Illinois, Urbana-Champaign

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bo2 Bondville (companion site). Site Description - Located 400m north of Tilden Meyer's site and planted with opposite crop in corn/soybean rotation

  20. Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+-OI2- defect center in KTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Gnutek, P.; Y Yang, Z.; Rudowicz, C.

    2009-11-01

    The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g_{\\parallel } and g_{\\perp } , are theoretically investigated for the FeK3+-OI2- center in KTaO3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the FeK3+-OI2- defect center in KTaO3. This modeling reveals that the off-center displacement of the Fe3+ ions, Δ1(Fe3+), combined with an inward relaxation of the nearest oxygen ligands, Δ2(O2-), and the existence of the interstitial oxygen OI2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the FeK3+-OI2- center in KTaO3. Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ1(Fe3+) and Δ2(O2-) as well as the possible location of OI2- ligands around Fe3+ ions in KTaO3. The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g_{\\parallel } and g_{\\perp } and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing in the literature indicates

  1. Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2015-12-01

    Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F22+ centers kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).

  2. Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements.

    PubMed

    Xu, Hongsong; Wang, Guanyu; Ma, Jun; Jin, Long; Oh, Kyunghwan; Guan, Bai-Ou

    2018-04-30

    A new type of tunable broadband fiber-optic acousto-optic sensor was experimentally demonstrated by utilizing a bubble-on-fiber (BoF) interferometer. A single micro-bubble was generated by injecting a heating laser at λ = 980 nm on the metalized facet of an optical fiber. The BoF formed a spherical micro-cavity in water whose acoustic deformation was precisely detected by using a narrowband DFB laser at 1550 nm. The heating light and the interrogating light were fed into a single fiber probe by wavelength division multiplexing (WDM) realizing a small footprint all-fiber configuration. The diameter of the BoF was stabilized with a variation less than 0.5 nm by fast servo-control of the heating laser power. The stabilized BoF served as a Fabry-Pérot cavity that can be deformed by acoustic perturbation, and a minimum detectable pressure level of as low as ~1 mPa/Hz 1/2 was achieved in a frequency range of over 60 kHz in water at room temperature. Our proposed BoF technology can provide a tunable, flexible and all-fiber solution to detect minute acoustically driven perturbations combining high-precision interferometry. Due to the very small form-factor, the technique can find applications of liquid-immersible in situ measurements in bio-molecular/cell detection and biochemical phenomena study.

  3. Crystallization and preliminary X-ray analysis of Der f 2, a potent allergen derived from the house dust mite (Dermatophagoides farinae)

    NASA Technical Reports Server (NTRS)

    Roeber, Dana; Achari, Aniruddha; Takai, Toshiro; Okumura, Yasushi; Scott, David L.

    2003-01-01

    Although a number of allergens have been identified and isolated, the underlying molecular basis for the potent immune response is poorly understood. House dust mites (Dermatophagoides sp.) are ubiquitous contributors to atopy in developed countries. The rhinitis, dermatitis and asthma associated with allergic reactions to these arthropods are frequently caused by relatively small (125-129 amino acids) mite proteins of unknown biological function. Der f 2, a major allergen from the mite D. farinae, has been recombinantly expressed, characterized and crystallized. The crystals belong to the tetragonal space group I4(1)22, with unit-cell parameters a = b = 95.2, c = 103.3 A. An essentially complete (97.2%) data set has been collected to 2.4 A at a synchrotron source. Attempts to solve the crystal structure of Der f 2 by molecular replacement using the NMR coordinates for either Der f 2 or Der p 2 (the homologous protein from D. pteronyssinus) failed, but preliminary searches using the crystalline Der p 2 atomic coordinates appear to be promising.

  4. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    PubMed

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P222₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  5. Type-I non-critically phase-matched second-harmonic generation in Gd1-xYxCa4O(BO3)3

    NASA Astrophysics Data System (ADS)

    Burmester, P. B. W.; Kellner, T.; Petermann, K.; Huber, G.; Uecker, R.; Reiche, P.

    Second-harmonic generation was z-cut observed Gd1-xYxCa4O(BO3)3 (Gd1-xYxCOB) and the dependence of the phase-matching wavelength on the mixing ratio x has been investigated. The dependence on both temperature and angle tuning was examined as well. We found the suitable composition for noncritical frequency doubling at 930 nm, which is the lasing wavelength of Nd:YAlO3 on the 4F3/2?4I9/2 transition.

  6. Influence of carbon on the thermoluminescence and optically stimulated luminescence of α-Al2O3:C crystals

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Bo; Li, Hong-Jun; Bi, Qun-Yu; Cheng, Yan; Tang, Qiang; Xu, Jun

    2008-12-01

    α-Al2O3:C crystal shows excellent thermoluminescence (TL) and optically stimulated luminescence (OSL) properties but the real role carbon plays in this crystal is still not clearly understood so far. In this work, α-Al2O3:C crystal doping with different amounts of carbon were grown by the temperature gradient technique, and TL and OSL properties of as-grown crystals were investigated. Additionally, a mechanism was proposed to explain the role of carbon in forming the TL and OSL properties of α-Al2O3:C. TL and OSL intensities of as-grown crystals increase with the increasing amount of carbon doping in the crystal, but no shift is found in the glow peak location at 465 K. As the amount of carbon doping in the crystals decreases, OSL decay rate becomes faster. With the increase in heating rate, the integral TL response of as-grown crystals decreases and glow peak shifts to higher temperatures. TL response decrease rate increases with the increasing amount of carbon doping in the crystals. All the TL and OSL response curves of as-grown crystals show linear-sublinear-saturation characteristic, and OSL dose response exhibits higher sensitivity and wider linear dose range than that of TL. The crystal doping with 5000 ppm carbon shows the best dosimetric properties. Carbon plays the role of a dopant in α-Al2O3:C crystal and four-valent carbon anions replace the two-valent anions of oxygen during the crystal growth process, and large amounts of oxygen vacancies were formed, which corresponds to the high absorption coefficient of F and F+ centers in the crystals.

  7. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development.

    PubMed

    Ridge, Stephen; Brown, Philip H; Hecht, Valérie; Driessen, Ronald G; Weller, James L

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Nanostructured crystals of fluorite phases Sr1 - x R x F2 + x ( R are rare-earth elements) and their ordering: IV. Study of the optical transmission spectra in the 2-17-μm wavelength range

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Karimov, D. N.; Komar'kova, O. N.; Krivandina, E. A.; Zhmurova, Z. I.; Sobolev, B. P.

    2010-01-01

    Transmission spectra of two-component crystals of Sr1- x R x F2+ x ( R = Y, La-Lu; 0 ≤ x ≤ 0.5) in the 1-17-μm wavelength range were studied. The spectral characteristics of these crystals and of single-component crystals of MF2 ( M = Ca, Sr, or Ba) and RF3 ( R = La-Nd) were compared. The transmission cutoff of Sr1- x R x F2+ x crystals is shifted to shorter wavelengths with increasing x. The same tendency is observed with the increasing atomic number R of rare-earth elements for two isoconcentration series of Sr1- x R x F2+ x ( x ˜ 0.10 and 0.28). This tendency is pronounced at large x. The transmission cutoff of Sr1- x R x F2+ x crystals can be varied in the range of from 10.7 to 12.2 μm by changing their qualitative ( R) and quantitative ( x) composition. Hence, these crystals can be assigned to multicomponent fluoride optical materials with controlled optical characteristics. The Sr1- x R x F2+ x crystals, where R = Ce-Sm, were shown to be promising materials for the design of selective optical filters in the 2-10-μm spectral range.

  9. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  10. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1988-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  11. Up-conversion multiwave (White) luminescence in the visible spectral range under excitation by IR laser diodes in the active BaY2F8:Yb3+,Pr3+ medium

    NASA Astrophysics Data System (ADS)

    Pushkar', A. A.; Uvarova, T. V.; Kiiko, V. V.

    2011-08-01

    The possibilities of occupying high-lying 4 f states of Pr3+ ions in the active BaY2F8:Yb3+,Pr3+ medium according to the photon avalanche and step-by-step sensitization mechanisms are compared. It is shown that the photon avalanche is unlikely to occur in the BaY2F8:Yb3+,Pr3+ crystal. The multiband luminescence spectra in the visible spectral range (white emission) under single- and multiwave pumping of BaY2F8:Yb3+,Pr3+ crystal by IR laser diodes are reported.

  12. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  13. UTa 2O(S 2) 3Cl 6: A ribbon structure containing a heterobimetallic 5 d-5 f M 3 cluster

    NASA Astrophysics Data System (ADS)

    Wells, Daniel M.; Chan, George H.; Ellis, Donald E.; Ibers, James A.

    2010-02-01

    A new solid-state compound containing a heterobimetallic cluster of U and Ta, UTa 2O(S 2) 3Cl 6, has been synthesized and its structure has been characterized by single-crystal X-ray diffraction methods. UTa 2O(S 2) 3Cl 6 was synthesized from UCl 4 and Ta 1.2S 2 at 883 K. The O is believed to have originated in the Ta 1.2S 2 reactant. The compound crystallizes in the space group P1¯ of the triclinic system. The structure comprises a UTa 2 unit bridged by μ 2-S 2 and μ 3-O groups. Each Ta atom bonds to two μ 2-S 2, the μ 3-O, and two terminal Cl atoms. Each U atom bonds to two μ 2-S 2, the μ 3-O, and four Cl atoms. The Cl atoms bridge in pairs to neighboring U atoms to form a ribbon structure. The bond distances are normal and are consistent with formal oxidation states of +IV/+V/-II/-I/-I for U/Ta/O/S/Cl, respectively. The optical absorbance spectrum displays characteristic transition peaks near the absorption edge. Density functional theory was used to assign these peaks to transitions between S 1- valence-band states and empty U 5 f-6 d hybrid bands. Density-of-states analysis shows overlap between Ta 5 d and U bands, consistent with metal-metal interactions.

  14. The Mineralogy, Geochemistry, and Redox State of Multivalent Cations During the Crystallization of Primitive Shergottitic Liquids at Various (f)O2. Insights into the (f)O2 Fugacity of the Martian Mantle and Crustal Influences on Redox Conditions of Martian Magmas.

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Bell, A. S.; Burger, P. V.; Papike, J. J.; Jones, J.; Le, L.; Muttik, N.

    2016-01-01

    The (f)O2 [oxygen fugacity] of crystallization for martian basalts has been estimated in various studies to range from IW-1 to QFM+4 [1-3]. A striking geochemical feature of the shergottites is the large range in initial Sr isotopic ratios and initial epsilon(sup Nd) values. Studies by observed that within the shergottite group the (f)O2 [oxygen fugacity] of crystallization is highly correlated with these chemical and isotopic characteristics with depleted shergottites generally crystallizing at reduced conditions and enriched shergottites crystallizing under more oxidizing conditions. More recent work has shown that (f)O2 [oxygen fugacity] changed during the crystallization of these magmas from one order of magnitude in Y980459 (Y98) to several orders of magnitude in Larkman Nunatak 06319. These real or apparent variations within single shergottitic magmas have been attributed to mixing of a xenocrystic olivine component, volatile loss-water disassociation, auto-oxidation during crystallization of mafic phases, and assimilation of an oxidizing crustal component (e.g. sulfate). In contrast to the shergottites, augite basalts such as NWA 8159 are highly depleted yet appear to be highly oxidized (e.g. QFM+4). As a first step in attempting to unravel petrologic complexities that influence (f)O2 [oxygen fugacity] in martian magmas, this study explores the effect of (f)O2 [oxygen fugacity] on the liquid line of descent (LLD) for a primitive shergottite liquid composition (Y98). The results of this study will provide a fundamental basis for reconstructing the record of (f)O2 [oxygen fugacity] in shergottites and other martian basalts, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization (and other more complex processes) on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites.

  15. Solvothermal indium fluoride chemistry: Syntheses and crystal structures of K{sub 5}In{sub 3}F{sub 14}, beta-(NH{sub 4}){sub 3}InF{sub 6} and [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasundera, Anil C.A.; Goff, Richard J.; Li Yang

    2010-02-15

    The solvothermal syntheses and crystal structures of three indium fluorides are presented. K{sub 5}In{sub 3}F{sub 14} (1) and beta-(NH{sub 4}){sub 3}InF{sub 6} (2) are variants on known inorganic structure types chiolite and cryolite, respectively, with the latter exhibiting a complex and apparently novel structural distortion. [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}] (3) represents a new hybrid composition displaying a unique trimeric metal fluoride building unit. - Graphical abstract: Solvothermal synthesis has been used to prepare three indium fluorides, including a novel hybrid material containing a unique [In{sub 3}F{sub 15}] trimer templated by tren.

  16. Mapping Boron Dioxide (BO2) Light Emission During Ballistic Initiation of Boron

    DTIC Science & Technology

    2016-03-03

    Dreizin; unreferenced). Essentially, 2 light sensors (cameras), each filtered over a narrow wavelength region, observe an event over the same line of...background incandescence (subtraction gave a qualitatively similar result). For imaging BO2 emission, the light sensors were 2 Phantom V7.3 monochrome...A check of the temperature measurement technique using emission from an acetylene/air diffusion flame gave reasonable results (1,800 K outer soot

  17. Persistent magnetism in silver-doped BaF e 2 A s 2 crystals

    DOE PAGES

    Li, Li; Cao, Huibo; Parker, David S.; ...

    2016-10-12

    Here, we investigate the thermodynamic and transport properties of silver-substituted BaF e 2 A s 2 (122) crystals up to ~ 4.5 % . Similar to other transition-metal substitutions in 122, Ag diminishes the antiferromagnetic ( T N ) and structural ( T S ) transition temperatures, but unlike other electron-doped 122s, T N and T S coincide without splitting. Though magnetism drops precipitously to T N = 84 K at doping x = 0.029 , it only weakly changes above this x , settling at T N = 80 K at x = 0.045 . Compared to this persistentmore » magnetism in Ag-122, doping other group 11 elements of either Cu or Au in 122 diminished T N and induced superconductivity near T c = 2 K at x = 0.044 or 0.031, respectively. Ag-122 crystals show reflective surfaces with surprising thicker cross sections for x ≥ 0.019 , the appearance that is in contrast to the typical thin stacked layered feature seen in all other flux-grown x-122 and lower Ag-122. We found that this physical trait may be a manifest of intrinsic weak changes in c lattice and T N . Our theoretical calculations suggest that Ag doping produces strong electronic scattering and yet a relatively small disruption of the magnetic state, both of which preclude superconductivity in this system.« less

  18. Influence of Annealing Temperature and Gd and Eu Concentrations on Structure and Luminescence Properties of (Y,Gd)BO3:Eu3+ Phosphors Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Lien, N. T. K.; Thang, N. V.; Hung, N. D.; Cuong, N. D.; Kien, N. D. T.; Thang, C. X.; Vuong, P. H.; Viet, D. X.; Khoi, N. T.; Huy, P. T.

    2017-06-01

    Red-emitting Eu3+-doped (Y,Gd)BO3 phosphors have been synthesized by a sol-gel process using metal oxides and boric acid as starting materials and citric acid as chelating agent. The main factors affecting the structure and luminescence properties of the product, such as sintering temperature, chemical composition, and Eu3+ doping concentration, were investigated. X-ray diffraction (XRD) analysis indicated that the phosphors begin to crystallize at sintering temperature of 700°C and become phase pure at 900°C. The average size of the phosphor particles after sintering at 1000°C was determined to be about 30 nm to 50 nm. The (Y,Gd)BO3:Eu3+ phosphors were found to exhibit strong red emission at 611 nm and 625 nm corresponding to the 5D0-7F2 transitions of Eu3+ in the host lattice. The photoluminescence intensity was enhanced by posttreatment at 900°C and remained unchanged at 1000°C. It was also found that the optimal concentration of Gd3+ ions for Eu3+ emission was 35%, and no concentration quenching of the photoluminescence was observed even at Eu3+ doping concentration up to 30%.

  19. A study of low threshold and high gain Nd3+ ions doped SiO2-B2O3-Na2CO3-NaF-CaF2 glasses for NIR laser applications

    NASA Astrophysics Data System (ADS)

    Megala, Rajesh; Gowthami, T.; John Sushma, N.; Kamala, S.; Deva Prasad Raju, B.

    2018-05-01

    Fluoroborosilicate glasses of composition 35SiO2-25B2O3-10Na2CO3-15NaF-15CaF2-xNd2O3 (where x = 0.1, 0.5. 1.0, 2.0 mol%) were prepared by melt quenching technique and various physical properties have been calculated. From the absorption spectra J-O Intensity parameters Ωλ (λ = 2, 4, 6) and radiative properties are evaluated by using J-O theory. The high values of Ω2 = 4.213 × 10-20 cm2, Ω4 = 5.345 × 10-20 cm2, Ω6 = 5.526 × 10-20 cm2 suggest that among the prepared glasses 0.5 mol% Nd glass is more asymmetric, more covalent and rigid in nature. The emission spectra were recorded with 808 nm laser as excitation source. The strong NIR emissions were observed at 876 nm, 1056 nm, 1328 nm corresponding to the transitions 4F3/2 → 4I9/2, 4F3/2 → 4I11/2, 4F3/2 → 4I13/2 respectively. Stimulated emission cross -section (σemi) and Gain bandwidth (σemi × Δλeff) were calculated. For 0.5 mol% Nd these values are found to be 3.30 × 10-20 cm2, 11 × 10-26 cm2. From the decay curve analysis the lifetime values for 4F3/2 level have been determined and these values are decreased with increase in Nd3+ ions concentration. These results may suggest that the prepared SBNCNd05 (Nd = 0.5 mol%) glass could be useful for 1056 nm laser applications.

  20. Radioluminescence and photoluminescence of Th:CaF2 crystals

    PubMed Central

    Stellmer, Simon; Schreitl, Matthias; Schumm, Thorsten

    2015-01-01

    We study thorium-doped CaF2 crystals as a possible platform for optical spectroscopy of the 229Th nuclear isomer transition. We anticipate two major sources of background signal that might cover the nuclear spectroscopy signal: VUV-photoluminescence, caused by the probe light, and radioluminescence, caused by the radioactive decay of 229Th and its daughters. We find a rich photoluminescence spectrum at wavelengths above 260 nm, and radioluminescence emission above 220 nm. This is very promising, as fluorescence originating from the isomer transition, predicted at a wavelength shorter than 200 nm, could be filtered spectrally from the crystal luminescence. Furthermore, we investigate the temperature-dependent decay time of the luminescence, as well as thermoluminescence properties. Our findings allow for an immediate optimization of spectroscopy protocols for both the initial search for the nuclear transition using synchrotron radiation, as well as future optical clock operation with narrow-linewidth lasers. PMID:26502749

  1. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6

    PubMed Central

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-01-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P212121, with unit-cell parameters a = 88.35, b = 128.73, c = 131.03 Å. PMID:24100567

  2. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  3. Optimization of photoluminescence of GdAl3(BO3)4:Sm3+ phosphors for solid state lighting devices

    NASA Astrophysics Data System (ADS)

    Jamalaiah, Bungala Chinna

    2017-10-01

    The GdAl3(BO3)4:Sm3+ phosphors prepared by solid-state reaction method were characterized through thermal, structural and photoluminescence studies at room temperature only. The observed X-ray diffraction peaks were well consistent with JCPDS No. 83-1907. When excited with 406 nm wavelength, the studied phosphors exhibit orange-red luminescence through 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The concentration of Sm3+ ions was optimized to be 0.01 mol% for intense luminescence in GdAl3(BO3)4:Sm3+ phosphors. Beyond 0.01 mol% of Sm3+ ions concentration, luminescence quenching was observed due to energy transfer among the excited Sm3+ ions through cross-relaxation and dipole-dipole interaction mechanisms. The GdAl3(BO3)4:0.01 mol% Sm3+ phosphor was identified as a notable host material to emit intense orange-red luminescence for various solid state lighting devices under 406 nm excitation.

  4. Czochralski growth of 2 in. Ca3Ta(Ga,Al)3Si2O14 single crystals for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Shoji, Yasuhiro; Ohashi, Yuji; Yokota, Yuui; Chani, Valery I.; Kitahara, Masanori; Kudo, Tetsuo; Kamada, Kei; Kurosawa, Shunsuke; Medvedev, Andrey; Kochurikhin, Vladimir

    2016-10-01

    Growth of 2-in. diameter Al-substituted Ca3TaGa3Si2O14 crystals by Czochralski method is reported. The crystals were grown from the melt of Ca3TaGa1.5Al1.5Si2O14 composition and had langasite structure. No inclusions of secondary phases were detected in these crystals. The Ca3Ta(Ga,Al)3Si2O14 mixed crystals produced using non-substituted Ca3TaGa3Si2O14 seeds were defective. They had cracks and/or poly-crystalline structure. However, those grown on the seed of approximately Ca3TaGa1.5Al1.5Si2O14 composition were defect-free. Phase diagram of the Ca3TaGa3Si2O14-Ca3TaAl3Si2O14 pseudo-binary system and segregation phenomenon are discussed in some details. Homogeneity of the crystals was evaluated by measuring 2D-mapping of leaky surface acoustic wave (LSAW) velocities for Y-cut Ca3TaGa1.5Al1.5Si2O14 substrate. Although some inhomogeneities were observed due to slight variations in chemical composition, the crystal had acceptable homogeneity for applications in acoustic wave devices exhibiting the LSAW velocity variation within ±0.048%.

  5. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    PubMed

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  6. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    PubMed Central

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  7. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ-ray and C5+ ion beam irradiation.

    PubMed

    Oza, Abha H; Dhoble, N S; Lochab, S P; Dhoble, S J

    2015-11-01

    The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy(3+) activated LiCaBO3 shows emission at 486 and 577 nm due to (4) F9/2 →(6) H15/2 and (4) F9/2 → (6) H13/2 transition, respectively, whereas the PL emission spectra of Ce(3+) activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce(3+) ion. The thermoluminescence study was also carried out for both these phosphors for γ-ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4-3.1 Rad dose γ-rays. Linear behaviour over this dose range was observed. Gamma ray-irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C(5+) ion beam exposure in the range of 3.75 × 10(12) - 7.5 × 10(13) ion cm(-2) fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  9. Purification, crystallization and preliminary X-ray analysis of the inverse F-BAR domain of the human srGAP2 protein.

    PubMed

    Wang, Hongpeng; Zhang, Yan; Zhang, Zhenyi; Jin, Wei Lin; Wu, Geng

    2014-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins play essential roles in diverse cellular processes by inducing membrane invaginations or membrane protrusions. Among the BAR superfamily, the `classical' BAR and Fes/CIP4 homology BAR (F-BAR) subfamilies of proteins usually promote membrane invaginations, whereas the inverse BAR (I-BAR) subfamily generally incur membrane protrusions. Despite possessing an N-terminal F-BAR domain, the srGAP2 protein regulates neurite outgrowth and neuronal migration by causing membrane protrusions reminiscent of the activity of I-BAR domain proteins. In this study, the inverse F-BAR (IF-BAR) domain of human srGAP2 was overexpressed, purified and crystallized. The crystals of the srGAP2 IF-BAR domain protein diffracted to 3.50 Å resolution and belonged to space group P2(1). These results will facilitate further structural determination of the srGAP2 IF-BAR domain and the ultimate elucidation of its peculiar behaviour of inducing membrane protrusions rather than membrane invaginations.

  10. [BO's abdominal acupuncture for obese type-2 diabetes mellitus].

    PubMed

    Yang, Yuan; Liu, Yunxia

    2015-04-01

    To observe the clinical efficacy of BO's abdominal acupuncture for obese type-2 diabetes mellitus (T2DM). Sixty patients of obese T2DM were randomly divided into an acupuncture group and a medication group, 30 cases in each one. Patients in the medication group were treated with basic treatment combined with oral administration of regular antidiabetics, three weeks as one session. Patients in the acupuncture group, based on the medication group, were treated with abdominal acupuncture at Yinqiguiyuan [Zhongwan (CV 12), Xiawan (CV 10), Qihai (CV 6), Guanguan (CV 4)], Fusiguan [Huaroumen (ST 24), Wailing (TE 5)], Tianshu (ST 25), Daheng (SP 15), Qixue (KI 13), etc.; the treatment was given three times per week, 3 weeks as one session. The systolic blood pressure (SBP), diastolic blood pressure (DBP), body weight, waist circumference (WC), hip circumference, body mass index (BI) were observed before and after treatment in the two groups, and fasting plasma glucose (FPG), fasting insulin (FINS), 2-hours postprandial blood glucose by oral glucose tolerance test (OGTT) and insulin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), HOMA-IR of insulin resistance index were calculated and adverge events were recorded. Compared before the treatment, SBP, WC, body weight, BMI, FPG, OG-TT2hBG, FINS, GTT2h insulin, HOMA-IR, TC and LDL-C in the acupuncture group were all significantly reduced (all P <0. 05), while FPG, OGTT2H insulin and TG were increased in the medication group (all P<0. 05)'. The differences of reducing SBP, WC, FPG, OGTT2H insulin, HOMA-IR, TC, TG and LDL-C were statistically significant between the two groups (all P<0. 05). The total effective rate was 93. 3% (28/30) in the acupuncture group, which was significantly superior to 23. 3% (7/30) in the medication group (P<0. 01). BO's abdominal acupuncture has obvious clinical efficacy for obese type-2 diabetes mellitus

  11. Superelectrophilic tetrakis(carbonyl)palladium(II)- and -platinum(II) undecafluorodiantimonate(V), [Pd(CO)4][Sb(2)F(11)]2 and [Pt(CO)4][Sb(2)F(11)]2: syntheses, physical and spectroscopic properties, their crystal, molecular, and extended structures, and density functional calculations: an experimental, computational, and comparative study .

    PubMed

    Willner, H; Bodenbinder, M; Bröchler, R; Hwang, G; Rettig, S J; Trotter, J; von Ahsen, B; Westphal, U; Jonas, V; Thiel, W; Aubke, F

    2001-01-31

    The salts [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, are prepared by reductive carbonylation of Pd[Pd(SO(3)F)(6)], Pt(SO(3)F)(4) or PtF(6) in liquid SbF(5), or HF-SbF(5). The resulting moisture-sensitive, colorless solids are thermally stable up to 140 degrees C (M = Pd) or 200 degrees C (M = Pt). Their thermal decompositions are studied by differential scanning calorimetry (DSC). Single crystals of both salts are suitable for an X-ray diffraction study at 180 K. Both isostructural salts crystallize in the monoclinic space group P2(1)/c (No. 14). The unit cell volume of [Pt(CO)(4)][Sb(2)F(11)](2) is smaller than that of [Pd(CO)(4)][Sb(2)F(11)](2) by about 0.4%. The cations [M(CO)(4)](2+), M = Pd, Pt, are square planar with only very slight angular and out-of-plane deviations from D(4)(h)() symmetry. The interatomic distances and bond angles for both cations are essentially identical. The [Sb(2)F(11)](-) anions in [M(CO)(4)][Sb(2)F(11)](2,) M = Pd, Pt, are not symmetry-related, and both pairs differ in their Sb-F-Sb bridge angles and their dihedral angles. There are in each salt four to five secondary interionic C- -F contacts per CO group. Of these, two contacts per CO group are significantly shorter than the sum of the van der Waals radii by 0.58 - 0.37 A. In addition, structural, and spectroscopic details of recently synthesized [Rh(CO)(4)][Al(2)Cl(7)] are reported. The cations [Rh(CO)(4)](+) and [M(CO)(4)](2+), M = Pd, Pt, are characterized by IR and Raman spectroscopy. Of the 16 vibrational modes (13 observable, 3 inactive) 10 (Pd, Pt) or 9 (Rh), respectively, are found experimentally. The vibrational assignments are supported by DFT calculations, which provide in addition to band positions also intensities of IR bands and Raman signals as well as internal force constants for the cations. (13)C NMR measurements complete the characterization of the square planar metal carbonyl cations. The extensive characterization of [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, reported

  12. In-situ study on growth units of Ba2Mg(B3O6)2 crystal

    NASA Astrophysics Data System (ADS)

    Lv, X. S.; Sun, Y. L.; Tang, X. L.; Wan, S. M.; Zhang, Q. L.; You, J. L.; Yin, S. T.

    2013-05-01

    BMBO (Ba2Mg(B3O6)2 crystal) is an excellent birefringent crystal and a potential stimulated Raman scattering (SRS) crystal. In this paper, high temperature Raman spectroscopy was used to in-situ study the melt structure near a BMBO crystal-melt interface. [B3O6]3- groups were found in this region. The result reveals that both of BaO bonds and MgO bonds are the weak bonds in the BMBO crystal structure. During the melting process, the crystal structure broke into Ba2+ ions, Mg2+ ions and [B3O6]3- groups. Our experimental results confirmed that the well-developed faces of BMBO crystals are the (001), (101) and (012) faces. Based on attachment energy theory, the crystal growth habit was discussed. The (001) (101) and (012) crystal faces linked by the weak BaO bonds and MgO bonds have smaller attachment energies and slower growth rates, and thus present in the final morphology. The (012) crystal face has a multi-terrace structure, which suggests that BMBO crystal grows with a layer-by-layer mode.

  13. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6

    NASA Astrophysics Data System (ADS)

    Chen, Daimei; Jiang, Zhongyi; Geng, Jiaqing; Zhu, Juhong; Yang, Dong

    2009-02-01

    The nitrogen and fluorine co-doped TiO2 (N-F-TiO2) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH4)2TiF6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH4)2TiF6 decomposed into TiOF2 and NH4TiOF3 at first, and then formed anatase-type TiO2 with thin sheet morphology. H3BO3 as oxygen source can promote the formation of anatase TiO2, but decrease the F content in the N-F-TiO2 materials due to the formation of volatile BF3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO2 are discussed.

  14. Ultraviolet and near-infrared luminescence of LaBO3:Ce3+,Yb3+

    NASA Astrophysics Data System (ADS)

    Wei, Heng-Wei; Shao, Li-Ming; Jiao, Huan; Jing, Xi-Ping

    2018-01-01

    Ce3+ or Yb3+ singly doped LaBO3 and Ce3+-Yb3+ co-doped LaBO3 were prepared by conventional solid state reactions at 1100 °C and their photoluminescence (PL) properties were investigated. The emission spectrum of LaBO3:Ce3+,Yb3+ contains both the Ce3+ ultraviolet (UV) emissions (355 nm and 380 nm) and the Yb3+ near infrared (NIR) emission (975 nm) when excited by the UV light at 270 nm. By using the data of the Ce3+ decay curves and the PL intensities of both Ce3+ and Yb3+, the energy transfer efficiency (η) from Ce3+ to Yb3+, the actual energy transfer efficiency (AE) and the quantum efficiency (Q) of the Yb3+ emission were calculated. In the Ce3+-Yb3+ co-doped LaBO3, Ce3+ can transfer its absorbed energy to Yb3+ efficiently (η can be over 60%), and Yb3+ shows the Q value over 50% when it accepts the energy from Ce3+, which results in the low AE value ∼30%. The energy transfer process from Ce3+ to Yb3+ may be understood by the charge transfer mechanism: Ce3+ + Yb3+ ↔ Ce4+ + Yb2+. Particularly the Ce3+-Yb3+ co-doped LaBO3 phosphor gives the emissions mainly in the UV range and the NIR range with a portion of visible emissions in eye-insensitive range. This unique property may be suitable for applications in anti-counterfeiting techniques and public security affairs.

  15. New ternary phosphides and arsenides. Syntheses, crystal structures, physical properties of Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Xia, Sheng-Qing, E-mail: shqxia@sdu.edu.cn; Tao, Xu-Tang

    2013-09-15

    Three new europium pnictides Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3} have been synthesized and their structures were determined by single-crystal X-ray diffraction. Eu{sub 2}ZnP{sub 2} is isotypic with Yb{sub 2}CdSb{sub 2} (Cmc2{sub 1} (No. 36); cell parameters a=4.1777(7) Å, b=15.925(3) Å, c=7.3008(12) Å), while the latter two compounds crystallize with the Ba{sub 2}Cd{sub 2}Sb{sub 3} structure type (C2/m (No. 12); cell parameters a=15.653(5)/16.402(1) Å, b=4.127(1)/4.445(4) Å, c=11.552(4)/12.311(1) Å and β=126.647(4)/126.515(7)° for Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}, respectively). Magnetic susceptibility measurements in the interval 5–300 K confirm paramagnetic behavior and effectivemore » magnetic moments characteristic of Eu{sup 2+} ([Xe] 4f{sup 7}) ground states. Temperature-dependent electrical conductivity measurements also prove that Eu{sub 2}Cd{sub 2}As{sub 3} is a semiconducting compound with a narrow band gap of 0.059 eV below 100 K. According to TG/DSC analyses, Eu{sub 2}Cd{sub 2}As{sub 3} starts to decompose at about 950 K. - Graphical abstract: A polyhedral view of the crystal structure of new pnictides Eu{sub 2}T{sub 2}Pn{sub 3} (T=Zn or Cd; Pn=P or As). Display Omitted - Highlights: • Three new ternary pnictide Zintl compounds, Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}, have been synthesized and characterized. • The europium cations are divalent and ferromagnetically coupled in both Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}. • Eu{sub 2}Cd{sub 2}As{sub 3} has a very small band gap of 0.06 eV and starts to decompose over 950 K.« less

  16. Crystal structure of 1-methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, A., E-mail: habibi@khu.ac.ir; Ghorbani, H. S.; Bruno, G.

    2013-12-15

    The crystal structure of 1-Methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea (C{sub 9}H{sub 12}N{sub 2}O{sub 5}) has been determined by single crystal X-ray diffraction analysis. The crystals are monoclinic, a = 5.3179(2), b = 18.6394(6), c =10.8124(3) Å, β = 100.015(2)°, Z = 4, sp. gr. P2{sub 1}/c, R = 0.0381 for 2537 reflections with I > 2σ(I). Except for C(CH{sub 3}){sub 2} group, the molecule is planar. The structure is stabilized by inter- and intramolecular N-H...O hydrogen bonds and weak C-H...O interactions.

  17. Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors for near-UV white LEDs.

    PubMed

    Feng, Yaomiao; Huang, Jinping; Liu, Lili; Liu, Jie; Yu, Xibin

    2015-09-07

    A series of single-phase broadband white-light-emitting Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors were prepared by a solid state reaction. The luminescence property, and the crystal and electronic structures of the fluorophosphates were studied by photoluminescence analysis, XRD Rietveld refinement and density functional theory calculation (DFT), respectively. Under near ultraviolet excitation in the 250 to 430 nm wavelength range, the phosphors exhibit two emission bands centered at 440 and 556 nm, caused by the Eu(2+) and Mn(2+) ions. By altering the relative ratios of Eu(2+) and Mn(2+) in the compounds, the emission color could be modulated from blue to white. The efficient energy transfer from the Eu(2+) to Mn(2+) ions could be ascribed to the well crystallized host lattice and the facile substitution of Eu(2+) and Mn(2+) for Sr(2+) sites due to similar ionic radii. A series of fluxes were investigated to improve the photoluminescence intensity. When KCl was used as flux in the synthesis, the photoluminescence intensity of Sr5(PO4)3F:Eu(2+),Mn(2+) was enhanced by 85% compared with no fluxes added. These results demonstrate that the single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) with enhanced luminescence efficiency could be promising as a near UV-convertible direct white-light-emitting phosphor for WLED applications.

  18. Nevadaite, (Cu2+, Al, V3+)6 [Al8 (PO4)8 F8] (OH 2 (H2O)22, a new phosphate mineral species from the Gold Quarry mine, Carlin, Eureka County, Nevada: description and crystal structure

    USGS Publications Warehouse

    Cooper, M.A.; Hawthorne, F.C.; Roberts, Andrew C.; Foord, E.E.; Erd, Richard C.; Evans, H.T.; Jensen, M.C.

    2004-01-01

    Nevadaite, (Cu2+, ???, Al, V3+)6 (PO4)8 F8 (OH)2 (H2O)22, is a new supergene mineral species from the Gold Quarry mine, near Carlin, Eureka County, Nevada, U.S.A. Nevadaite forms radiating clusters to 1 mm of prismatic crystals, locally covering surfaces more that 2 cm across; individual crystals are elongate on [001] with a length:width ratio of > 10:1 and a maximum diameter of ???30 ??m. It also occurs as spherules and druses associated with colorless to purple-black fluellite, colorless wavellite, strengitevariscite, acicular maroon-to-red hewettite, and rare anatase, kazakhstanite, tinticite, leucophosphite, torbernite and tyuyamunite. Nevadaite is pale green to turquoise blue with a pale powder-blue streak and a vitreous luster; it does not fluoresce under ultra-violet light. It has no cleavage, a Mohs hardness of ???3, is brittle with a conchoidal fracture, and has measured and calculated densities of 2.54 and 2.55 g/cm3, respectively. Nevadaite is biaxial negative, with ?? 1.540, ?? 1.548, ?? 1.553, 2V(obs.) = 76??, 2V(calc.) = 76??, pleochroic with X pale greenish blue, Y very pale greenish blue, Z blue, and with absorption Z ??? X > Y and orientation X = c, Y = a, Z = b. Nevadaite is orthorhombic, space group P21mn, a 12.123(2), b 18.999(2), c 4.961(1) A?? , V 1142.8(2) A??3, Z = 1, a:b:c = 0.6391:1:0.2611. The strongest seven lines in the X-ray powder-diffraction pattern [d in A??(I)(hkl)] are: 6.077(10)(200), 5.618(9)(130), 9.535(8)(020), 2.983(6)(241), 3.430(4)(041), 2.661(4)(061 , and 1.844(4)(352). A chemical analysis with an electron microprobe gave P2O5 32.54, Al2O3 27.07, V2O3 4.24, Fe2O3 0.07, CuO 9.24, ZnO 0.11, F 9.22, H2O (calc.) 23.48, OH ??? F -3.88, sum 102.09 wt.%; the valence states of V and Fe, and the amount of H2O, were determined by crystal-structure analysis. The resulting empirical formula on the basis of 63.65 anions (including 21.65 H2O pfu) is (CU2+2.00 Zn0.02 V3+0.98 Fe3+0.01 Al1.15)??4.16 Al8 P7.90 O32 [F8.37 (OH 1.63]??10 (H2O

  19. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    PubMed

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  20. Untangling the Energetics and Dynamics of Boron Monoxide Radical Reactions (11BO; X2Sigma+)

    DTIC Science & Technology

    2015-04-15

    Reaction products of isoelectronic boron monoxide (BO), cyano (CN), ethynyl (CCH), and silicon nitride (SiN) radicals with acetylene and ethylene. 3.10...Isoelectronicity in the Reactions of the Cyano (CN), Boron Monoxide (BO), Silicon Nitride (SiN), and Ethynyl (C2H) Radicals with Unsaturated Hydrocarbons...AFRL-OSR-VA-TR-2015-0111 Untangling the Energetics and Dynamics of Boron Monoxide Radical Reactions Ralf Kaiser UNIVERSITY OF HAWAII SYSTEMS HONOLULU

  1. Piperidinium bis­(2-oxidobenzoato-κ2 O 1,O 2)borate

    PubMed Central

    Tang, Zhi-Hua; Huang, Chaojun

    2009-01-01

    The asymmetric unit of the title compound, C5H12N+·C14H8BO6 − or [C5H12N][BO4(C7H4O)2], contains two piperidinium cations and two bis­(salicylato)borate anions. The coordination geometries around the B atoms are distorted tetra­hedral. In the two mol­ecules, the aromatic rings are oriented at dihedral angles of 76.27 (3) and 83.86 (3)°. The rings containing B atoms have twist-boat conformations, while the two cations adopt chair conformations. In the crystal, the component species are linked by N—H⋯O hydrogen bonds. In the crystal structure, intra- and inter­molecular N—H⋯O hydrogen bonds link the mol­ecules. PMID:21581628

  2. Sol-gel synthesis of K{sub 3}InF{sub 6} and structural characterization of K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9}, K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labeguerie, Jessica; Gredin, Patrick; Marrot, Jerome

    2005-10-15

    K{sub 3}InF{sub 6} is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9}, K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18}. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. Themore » two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K{sub 3}InF{sub 6} by decomposition at high temperature. The crystal structure of K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} is characterized by complex anions [In(CF{sub 3}COO){sub 4}(OH{sub x}){sub 2}]{sup (5-2x)-} and isolated [CF{sub 3}COOH{sub 2-x}]{sup (x-1)-} molecules with x=2 or 1, surrounded by K{sup +} cations. The crystal structure of K{sub 3}InC{sub 12}O{sub 12}F{sub 18} is only constituted by complex anions [In(CF{sub 3}COO){sub 6}]{sup 3-} and K{sup +} cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18} were also performed at room temperature on pulverized crystals.« less

  3. Radioluminescence as a function of temperature and low temperature thermoluminescence of BaY2F8:Ce and BaY2F8:Nd crystals

    NASA Astrophysics Data System (ADS)

    Kowalski, Z.; Kaczmarek, S. M.; Brylew, K.; Drozdowski, W.

    2016-09-01

    Radioluminescence spectra at temperatures ranging from 10 to 320 K and low temperature thermoluminescence glow curves of BaY2F8:Ce and BaY2F8:Nd scintillator crystals have been investigated. In both materials the intensities of the excitonic and the activator ion's emission at X-ray excitation vary with temperature, anticorrelating with each other, which provides valuable information on the host-to-ion energy transfer. Detailed thermoluminescence studies, in turn, prove the existence of charge traps, which introduce quasi-continuous distributions of energy levels into the bandgap.

  4. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    PubMed

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  5. Crystal-Site-Selective Spectrum of Fe3BO6 by Synchrotron Mössbauer Diffraction with Pure Nuclear Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu

    2017-08-01

    We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.

  6. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Qi; Guo, Shao-Bo; Guo, Xiao-Hua; Ge, Hong-Guang

    2015-07-01

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol-gel TiO2, core-shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core-shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol-gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F- ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6-8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  7. Single crystal growth and characterization of kagomé-lattice shandites Co3Sn2-xInxS2

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2015-09-01

    Single crystals of the shandite-type half metallic ferromagnet Co3Sn2S2, and its In-substituted compounds, Co3Sn2-xInxS2 (02) were grown by a flux method. We report optimum conditions to synthesize large crystals. Single crystals of the two end members, Co3Sn2S2 and Co3In2S2, and solid solutions with low In concentrations (x≤0.35) were grown out of Sn and In self flux. Solid solution single crystals with higher In concentrations were grown out of Sn, In and Pb mixture flux. Grown crystals were characterized using the powder x-ray diffraction, wavelength-dispersive x-ray spectroscopy and magnetization measurements. The shandite structure with R3¯m symmetry was confirmed and crystal structure parameters of the obtained plate-shaped hexagonal crystals were refined using the Rietveld analysis. Magnetization measurements show suppression of the ferromagnetic ordering, observed in Co3Sn2S2, by In-substitution as reported for polycrystalline samples. The obtained crystals are useful to study anisotropy in magnetic and transport properties and further interesting magnetotransport properties of the layered compounds.

  8. Acoustic Properties of Crystals with Jahn-Teller Impurities: Elastic Moduli and Relaxation Time. Application to SrF2:Cr2+

    NASA Astrophysics Data System (ADS)

    Averkiev, Nikita S.; Bersuker, Isaac B.; Gudkov, Vladimir V.; Zhevstovskikh, Irina V.; Sarychev, Maksim N.; Zherlitsyn, Sergei; Yasin, Shadi; Shakurov, Gilman S.; Ulanov, Vladimir A.; Surikov, Vladimir T.

    2017-11-01

    A new approach to evaluate the relaxation contribution to the total elastic moduli for crystals with Jahn-Teller (JT) impurities is worked out and applied to the analysis of the experimentally measured ultrasound velocity and attenuation in SrF2:Cr2+. Distinguished from previous work, the background adiabatic contribution to the moduli, important for revealing the impurity relaxation contribution, is taken into account. The temperature dependence of the relaxation time for transitions between the equivalent configurations of the JT centers has been obtained, and the activation energy for the latter in SrF2:Cr2+, as well as the linear vibronic coupling constant have been evaluated.

  9. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  10. Crystal structures of 3-fluoro-N-[2-(tri-fluoro-meth-yl)phen-yl]benzamide, 3-bromo-N-[2-(tri-fluoro-meth-yl)phen-yl]benzamide and 3-iodo-N-[2-(tri-fluoro-meth-yl)phen-yl]benzamide.

    PubMed

    Suchetan, P A; Suresha, E; Naveen, S; Lokanath, N K

    2016-06-01

    In the title compounds, C14H9F4NO, (I), C14H9BrF3NO, (II), and C14H9F3INO, (III), the two benzene rings are inclined to one another by 43.94 (8)° in mol-ecule A and 55.66 (7)° in mol-ecule B of compound (I), which crystallizes with two independent mol-ecules in the asymmetric unit, but by only 10.40 (12)° in compound (II) and 12.5 (2)° in compound (III). In the crystals of all three compounds, N-H⋯O hydrogen bonds link the mol-ecules to form chains propagating along the a-axis direction for (I), and along the b-axis direction for (II) and (III). In the crystal of (I), -A-B-A-B- chains are linked by C-H⋯O hydrogen bonds, forming layers parallel to (010). Within the layers there are weak offset π-π inter-actions present [inter-centroid distances = 3.868 (1) and 3.855 (1) Å]. In the crystals of (II) and (III), the chains are linked via short halogen-halogen contacts [Br⋯Br = 3.6141 (4) Å in (II) and I⋯I = 3.7797 (5) Å in (III)], resulting in the formation of ribbons propagating along the b-axis direction.

  11. Crystal structure and Hirshfeld surface analysis of (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(2,4-di-fluoro-phen-yl)prop-2-en-1-one].

    PubMed

    Kwong, Huey Chong; Sim, Aijia; Chidan Kumar, C S; Then, Li Yee; Win, Yip-Foo; Quah, Ching Kheng; Naveen, S; Warad, Ismail

    2017-12-01

    The asymmetric unit of the title compound, C 24 H 14 F 4 O 2 , comprises of one and a half mol-ecules; the half-mol-ecule is completed by crystallographic inversion symmetry. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯F and C-H⋯O hydrogen bonds. Some of the C-H⋯F links are unusually short (< 2.20 Å). Hirshfeld surface analyses ( d norm surfaces and two-dimensional fingerprint plots) for the title compound are presented and discussed.

  12. Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.

    PubMed

    Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P

    2006-07-15

    Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.

  13. Growth and characterization of β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  14. Spectroscopy and laser test emission in Tm3+ : BaYLuF8 single crystal

    NASA Astrophysics Data System (ADS)

    Parisi, D.; Veronesi, S.; Volpi, A.; Gemmi, M.; Tonelli, M.; Cassanho, A.; Jenssen, H. P.

    2014-01-01

    A novel laser material BaYLuF8 (BYLF), doped with 12 at% of Tm3+, has been grown and optically investigated, in order to evaluate its potential performances as a 2 µm laser. The BYLF crystal is interesting mainly because indications are that the mixed crystal would be sturdier than BaY2F8 (BYF). The addition of lutetium would improve the thermo-mechanical properties of the host. Absorption, fluorescence and lifetime measurements have been performed in the temperature range 10-300 K focusing on the 3H4 and 3F4 manifolds, those involved in the laser scheme at 2 µm. The Stark sublevels structure of Tm3+ up to the 1D2 manifold has been figured out. Diode-pumped CW laser emission at 2 µm has been achieved obtaining a slope efficiency of about 28% with respect to the absorbed power, by pumping along the Z-axis. A maximum output power of 240 mW was achieved by pumping along the favourable Y-axis, with an incident power of about 800 mW.

  15. Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method

    NASA Astrophysics Data System (ADS)

    Kumari, Kalpana

    In the present investigation, a facile synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide Fe2O3 and boric acid (H3BO3) using camphor (C10H16O) as fuel in ambient air in order to form a single phase Fe3BO6 crystallites. X-ray diffraction (XRD), Field emission electron microscopy (FESEM), magnetic, and dielectric properties of as prepared sample are studied. From XRD pattern, a single phase compound is observed with an orthorhombic crystal structure (Pnma space group), with average crystallite size of 42nm. A reasonably uniform size distribution of the plates and self-assemblies is retained in the sample. A magnetic transition is observed in dielectric permittivity (at ˜445K) and power loss (at ˜435K) when plotted against temperature. A weak peak occurs near 330K due to the charge reordering in the sample. For temperatures above the transition temperature, a sharp increase of the dielectric loss is observed which occurs due to the presence of thermally activated charge carriers. A canted antiferromagnetic Fe3+ ordering in a Fe3BO6 lattice with a localized charge surface layer is an apparent source of exhibiting a ferroelectric feature in this unique example of a centrosymmetric compound. An induced spin current over the Fe sites thus could give rise to a polarization hysteresis loop. Due to the presence of both ferromagnetic as well as polarization ordering, Fe3BO6 behaves like a single phase multiferroic ceramics.

  16. Energetic band structure of Zn3P2 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-01-01

    Optical functions n, k, ε1, ε2 and d2ε2/dE2 have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction ΔSO is lower than the splitting caused by the crystal field ΔCR in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn3P2 crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn3P2 are presented.

  17. Genetic diversity and population genetic analysis of bovine MHC class II DRB3.2 locus in three Bos indicus cattle breeds of Southern India.

    PubMed

    Das, D N; Sri Hari, V G; Hatkar, D N; Rengarajan, K; Saravanan, R; Suryanarayana, V V S; Murthy, L K

    2012-12-01

    The present study was performed to evaluate the genetic polymorphism of BoLA-DRB3.2 locus in Malnad Gidda, Hallikar and Ongole South Indian Bos indicus cattle breeds, employing the PCR-RFLP technique. In Malnad Gidda population, 37 BoLA-DRB3.2 alleles were detected, including one novel allele DRB3*2503 (GenBank: HM031389) that was observed in the frequency of 1.87%. In Hallikar and Ongole populations, 29 and 21 BoLA-DRB3.2 alleles were identified, respectively. The frequencies of the most common BoLA-DRB3.2 alleles (with allele frequency > 5%), in Malnad Gidda population, were DRB3.2*15 (10.30%), DRB3*5702 (9.35%), DRB3.2*16 (8.41%), DRB3.2*23 (7.01%) and DRB3.2*09 (5.61%). In Hallikar population, the most common alleles were DRB3.2*11 (13.00%), DRB3.2*44 (11.60%), DRB3.2*31 (10.30%), DRB3.2*28 (5.48%) and DRB3.2*51 (5.48%). The most common alleles in Ongole population were DRB3.2*15 (22.50%), DRB3.2*06 (20.00%), DRB3.2*13 (13.30%), DRB3.2*12 (9.17%) and DRB3.2*23 (7.50%). A high degree of heterozygosity observed in Malnad Gidda (H(O) = 0.934, H(E) = 0.955), Hallikar (H(O) = 0.931, H(E) = 0.943) and Ongole (H(O) = 0.800, H(E) = 0.878) populations, along with F(IS) values close to F(IS) zero (Malnad Gidda: F(IS) = 0.0221, Hallikar: F(IS) = 0.0127 and Ongole: F(IS) = 0.0903), yielded nonsignificant P-values with respect to Hardy-Weinberg equilibrium probabilities revealing, no perceptible inbreeding, greater genetic diversity and characteristic population structure being preserved in the three studied cattle populations. The phylogenetic tree constructed based on the frequencies of BoLA-DRB3.2 alleles observed in 10 Bos indicus and Bos taurus cattle breeds revealed distinct clustering of specific Bos indicus cattle breeds, along with unique genetic differentiation observed among them. The results of this study demonstrated that the BoLA-DRB3.2 is a highly polymorphic locus, with significant breed-specific genetic diversities being present amongst the three studied

  18. Radial integrals 4f and nephelauxetic effect of Nd3+ in crystals.

    PubMed

    Petrov, D; Angelov, B

    2014-01-24

    The radial expectation values 4f,k=2, 4, 6, for oxygen- or halogen- coordinated Nd(3+) ions in 25 crystals have been obtained from experimental Slater parameter shifts ΔFk=Fk (free ion) - Fk (crystal) by means of the dielectric screening model. The 4f values found by this new approach are compatible with those computed by relativistic 4f wave functions. The nephelauxetic ratios βk in respect to the free ion Nd IV have been also determined and related to covalency and bonding parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nanostructured Crystals of Fluorite Phases Sr1 - x R x F2 + x and Their Ordering: 12. Influence of Structural Ordering on the Fluorine-Ion Conductivity of Sr0.667 R 0.333F2.333 Alloys ( R = Tb or Tm) at Their Annealing

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Sul'yanova, E. A.; Sobolev, B. P.

    2018-01-01

    The ionic conductivity of Sr0.667 R 0.333F2.333 alloys (rational Sr2 RF7 compositions) in SrF2- RF3 systems ( R = Tb or Tm), prepared by spontaneous crystallization, has been investigated for the "as-grown" state and after annealing in CF4 at 900 ± 20°C for 96 h. As-grown samples of both compositions, prepared by fast (200°C/min) melt crystallization, exhibit partial (nonequilibrium) ordering, which increases from Tb to Tm. Annealing of Sr0.667 R 0.333F2.333 alloys yields strong ordering (equilibrium for the annealing temperatures) of the fluorite structure (CaF2 type, sp. gr. Fm3̅ m, Z = 4) at the formation of t-Sr2 RF7 tetragonal compound (sp. gr. I4/ m, Z = 30). It is established that ordering of the alloy fluorite structure reduces the fluorine-ion conductivity. After the annealing, the conductivity of Sr0.667R0.333F2.333 alloys with the initial (nonequilibrium) ordering stage of t-Sr2 RF7 phases with almost complete (equilibrium) ordering decreases by a factor of 3-4.5.

  20. Superhyperfine Structure of the EPR Spectra of Nd3+ Impurity Ions in Fluorite CaF2

    NASA Astrophysics Data System (ADS)

    Aminov, L. K.; Gafurov, M. R.; Kurkin, I. N.; Malkin, B. Z.; Rodionov, A. A.

    2018-05-01

    EPR spectra of a CaF2 single crystal that was grown from melt containing a small addition of NdF3 were studied. Signals corresponding to tetragonal centers of Nd3+ ions and cubic centers of Er3+ and Yb3+ ions were found. Superhyperfine structure (SHFS) in the spectra of the Nd3+ ions was observed for the first time in this crystal; parameters of the superhyperfine interaction of the Nd3+ ions with the nearest nine fluorine ions were determined. The dependence of the resolution of the Nd3+ EPR spectrum SHFS on the incident microwave power at the temperature of T ≈ 6 K was studied. Obtained results are discussed and compared with the literature data.

  1. Spectral-luminescent and laser properties of the (Y1-x,Ybx)2O3-Al2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Malashkevich, G. E.; Kouhar, V. V.; Pestryakov, E. V.; Sigaev, V. N.; Golubev, N. V.; Ziyatdinova, M. Z.; Sukhodola, A. A.

    2018-02-01

    Yttrium-alumina-borate glasses activated by the Yb3+ ions with compositions close to the huntite-like (Y1-xLnx)Al3(BO3)4 crystals have been synthesized by conventional melt-quenching technique in a platinum crucible, and their spectral-luminescent and laser properties have been investigated. It is established that this activator forms in the given glass one type of optical centers having the radiation decay time of 870 ± 40 μs. The limiting quantum yield of its luminescence in the case of complete dehydration of the glass will amount to ≈94%. The main laser parameters have been calculated and the nonlinearity of the refractive index and the threshold of laser-induced destruction of the glass surface have been determined. The lasing has been obtained on the glass plate of 2.1 mm thickness with a threshold of ≈60 W/mm2 estimated by specific absorbed power.

  2. Electric field effect on chemical and phase equilibria in nano-TiB 2–TiO 2–TiBO 3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe

    DOE PAGES

    Özdemir, Tevfik E.; Akdoğan, Enver Koray; Şavklıyıldız, İlyas; ...

    2016-12-19

    Nano-TiB 2 powder of 58 nm size with TiO 2 and TiBO 3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB 2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB 2 and TiO 2, yielding TiBO 3 that is absent with nomore » field. Increase from 16 to 40 V/cm shifts the TiB 2 → TiBO 3 reaction forward, decreases T onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. In conclusion, the observed low temperature oxidation of TiB 2 to TiBO 3 that is electrochemically driven and is mediated by the TiO 2 solid electrolyte.« less

  3. Theoretical evaluation of a continues-wave Ho3+:BaY2F8 laser with mid-infrared emission

    NASA Astrophysics Data System (ADS)

    Rong, Kepeng; Cai, He; An, Guofei; Han, Juhong; Yu, Hang; Wang, Shunyan; Yu, Qiang; Wu, Peng; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-01-01

    In this paper, we build a theoretical model to study a continues-wave (CW) Ho3+:BaY2F8 laser by considering both energy transfer up-conversion (ETU) and cross relaxation (CR) processes. The influences of the pump power, reflectance of an output coupler (OC), and crystal length on the output features are systematically analyzed for an end-pumped configuration, respectively. We also investigate how the processes of ETU and CR in the energy-level system affect the output of a Ho3+:BaY2F8 laser by use of the kinetic evaluation. The simulation results show that the optical-to-optical efficiency can be promoted by adjusting the parameters such as the reflectance of an output coupler, crystal length, and pump power. It has been theoretically demonstrated that the threshold of a Ho3+:BaY2F8 laser is very high for the lasing operation in a CW mode.

  4. Crystal and molecular structure of 2,2’-(quinoxaline-2,3-diyl)dipyridinium dinitrate (H{sub 2}L)(NO{sub 3}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, O. A.; Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Sergienko, V. S.

    2016-07-15

    The crystal structure of 2,2’-(quinoxaline-2,3-diyl)dipyridinium dinitrate (H{sub 2}L)(NO{sub 3}){sub 2} is studied by X-ray diffraction (T = 150 K, R1 = 0.0467). The H{sub 2}L{sup 2+} cation is located on the twofold rotation axis and connected with two NO{sub 3}{sup −} anions by strong N–H···O hydrogen bonds. Planar quinoxaline fragments of cations form stacks with the interplanar spacing of 3.308 Å. The structure of the diprotonated H{sub 2}L{sup 2+} cation is compared with those of the monoprotonated H{sub 2}L{sup 2+} cation and neutral L molecule.

  5. Diastereoselective synthesis of ethyl ( Z)-3-(8-methylimidazo-[1,2- a]pyrid-2-yl)-2-phenylthioacrylate. X-ray crystal structure and conformational analysis

    NASA Astrophysics Data System (ADS)

    Gautier, A.; Roche, D.; Métin, J.; Carpy, A.; Madesclaire, M.

    1995-09-01

    The title compound 2, a gem vinyl sulfide ester, has been obtained diastereoselectively (de > 98%) by action of the ethyl thiophenoxyacetate carbanion on the imidazo[1,2- a]pyridinecarbaldehyde 1 in a basic medium, at low temperature. The X-ray crystal structure of 2 (C 19H 19N 2O 2S: Mr = 338.43, triclinic, P 1¯, a = 8.193(3) Å, b = 10.090(2) Å, c = 10.981(4) Å, α = 88.12(2)°, β = 78.66(4)°, γ = 78.53(2)°, V = 872.3(6) Å3, Z = 2, Dcalc = 1.29 g cm -3, λ( Mo Kα) = 0.71069 Å, μ = 0.189 mm -1, F(000) = 356, T = 293 K, R = 0.043 for 3610 observed reflections) has been determined and confirmed the Z configuration. The molecule is almost planar except for the phenyl ring situated in an approximate perpendicular plane. Despite the presence of the conjugate double bonds of the vinyl ester group (acrylate), coplanar with the imidazopyridine heterocycle, there is no evidence of π-electron delocalization over the whole structure. The crystal cohesion is ensured by a dense network of van der Waals contacts. A conformational analysis of the Z and E isomers by means of a Monte Carlo search and a stochastic dynamics simulation in CHCl 3 has shown that according to the method the Z isomer is more stable than the E isomer by about 7 to 10 kJ mol -1.

  6. Nonlinear absorption in single LaF3 and MgF2 layers at 193 nm measured by surface sensitive laser induced deflection technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehlig, Christian; Bublitz, Simon; Kufert, Siegfried

    2009-12-10

    We report nonlinear absorption data of LaF3 and MgF2 single layers at 193 nm. A highly surface sensitive measurement strategy of the laser induced deflection technique is introduced and applied to measure the absorption of highly transparent thin films independently of the substrate absorption. Linear absorptions k=({alpha}x{lambda})/4{pi} of 2x10{sup -4} and 8.5x10{sup -4} (LaF3) and 1.8x10{sup -4} and 6.9x10{sup -4} (MgF2) are found. Measured two photon absorption (TPA) coefficients are {beta}=1x10{sup -4} cm/W (LaF3), 1.8x10{sup -5}, and 5.8x10{sup -5} cm/W (MgF2). The TPA coefficients are several orders of magnitude higher than typical values for fluoride single crystals, which is likelymore » to result from sequential two step absorption processes.« less

  7. Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3 - A new optically transparent magnetic material

    NASA Astrophysics Data System (ADS)

    Ziolo, Ronald F.; Giannelis, Emmanuel P.; Weinstein, Bernard A.; O'Horo, Michael P.; Ganguly, Bishwanath N.; Mehrotra, Vivek; Russell, Michael W.; Huffman, Donald R.

    1992-07-01

    A magnetic material with appreciable optical transmission in the visible region at room temperature is isolated as a gamma-Fe2O3/polymer nanocomposite. The synthesis is carried out in an ion-exchange resin at 60 C. Magnetization and susceptibility data demonstrate loading-dependent saturation moments as high as 46 electromagnetic units per gram and superparamagnetism for lower loadings where particle sizes are less than 100 angstroms. Optical absorption studies show that the small-particle form of gamma-Fe2O3 is considerably more transparent to visible light than the single-crystal form. The difference in absorption ranges from nearly an order of magnitude in the 'red' spectral region to a factor of 3 at 5400 angstroms. The magnetization of the nanocomposite is greater by more than an order of magnitude than those of the strongest room-temperature transparent magnets, FeBO3 and FeF3.

  8. X-ray Excitation Triggers Ytterbium Anomalous Emission in CaF2:Yb but Not in SrF2:Yb.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A; Seijo, Luis; Barandiarán, Zoila

    2017-03-16

    Materials that luminesce after excitation with ionizing radiation are extensively applied in physics, medicine, security, and industry. Lanthanide dopants are known to trigger crystal scintillation through their fast d-f emissions; the same is true for other important applications as lasers or phosphors for lighting. However, this ability can be seriously compromised by unwanted anomalous emissions often found with the most common lanthanide activators. We report high-resolution X-ray-excited optical (IR to UV) luminescence spectra of CaF 2 :Yb and SrF 2 :Yb samples excited at 8949 eV and 80 K. Ionizing radiation excites the known anomalous emission of ytterbium in the CaF 2 host but not in the SrF 2 host. Wave function-based ab initio calculations of host-to-dopant electron transfer and Yb 2+ /Yb 3+ intervalence charge transfer explain the difference. The model also explains the lack of anomalous emission in Yb-doped SrF 2 excited by VUV radiation.

  9. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreasedmore » sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.« less

  10. Growth of crystals for synchrotron radiation Mössbauer investigation

    NASA Astrophysics Data System (ADS)

    Kotrbova, M.; Hejduk, J.; Malnev, V. V.; Seleznev, V. N.; Yagupov, S. V.; Andronova, N. V.; Chechin, A. I.; Mikhailov, A. Yu.

    1991-10-01

    Iron borate crystals (FeBO 3) were flux grown at the Physical Institute (Prague) and at Simferopol State University. During the crystal growth procedure the temperature regime was held constant to 0.1°C accuracy. Crystals were investigated with the help of a double crystal X-ray diffractometer DRON-2 (SiO 2(30 overline33)FeBO 3(444), MoK α 1 radiation). The rocking curve measurements were carried out in a constant magnetic field of 1kG. Most of the crystal surface has a rocking curve 10″-15″ wide. Some parts of some crystals with the area 1 × 1 mm 2 have rocking curves of 3″-4″ width and can be considered ideal.

  11. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site.more » Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures.

  12. Jahn-Teller effect on the [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) clusters embedded into SrF 2 crystals

    NASA Astrophysics Data System (ADS)

    Ulanov, V. A.; Zhiteitcev, E. R.; Varlamov, A. G.

    2007-07-01

    By means of EPR method the associative [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) centers were revealed in the fluorite type SrF 2:Ti and SrF 2:Ni crystals grown by Bridgman method in helium atmosphere containing some amount of a fluorine gas. It was found that at low temperatures the local structures of these associative centers were exposed to a static rhombic distortion. The reasons of such distortions were accounted for by the assumption that the E ⊗ ( b1 + b2) vibronic interaction became effective due to that the ground orbital states of the [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) centers occurred to be doubly degenerated.

  13. M2-F3 on lakebed

    NASA Image and Video Library

    1970-06-20

    The M2-F3 Lifting Body is seen here on the lakebed next to the NASA Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California. The May 1967 crash of the M2-F2 had torn off the left fin and landing gear. It had also damaged the external skin and internal structure. Flight Research Center engineers worked with Ames Research Center and the Air Force in redesigning the vehicle with a center fin to provide greater stability. Then Northrop Corporation cooperated with the FRC in rebuilding the vehicle. The entire process took three years.

  14. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  15. Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Han, Yashuai; Wang, Junmin

    2016-04-01

    A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.

  16. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  17. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    NASA Astrophysics Data System (ADS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-03-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.

  18. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  19. Realization of single terminated surface of perovskite oxide single crystals and their band profile: (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and KTaO3 case study

    NASA Astrophysics Data System (ADS)

    Tomar, Ruchi; Wadehra, Neha; Budhiraja, Vaishali; Prakash, Bhanu; Chakraverty, S.

    2018-01-01

    To characterize the physical properties of thin films without ambiguity and design interface with new functionalities, it is essential to have detailed knowledge of physical properties and appropriate estimation of the band profile of perovskite oxide substrates. We have developed and demonstrated a chemical free unified framework to realize single terminated surface of KTaO3, (LaAlO3)0.3 (Sr2AlTaO6)0.7 and SrTiO3 (001) oriented single crystals. The electronic band line-up of these single crystal substrates, using a combination of optical spectroscopy and Kelvin Probe Force Microscopy, has been constructed. A polar-polar interface of KTaO3 and LaBO3 (B-Transition metal ion) before and after the possible surface/electronic reconstruction has also been schematically presented.

  20. Spectral analysis of Cu 2+: B 2O 3-ZnO-PbO glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Buddhudu, S.

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95 - x)B 2O 3-5ZnO- xPbO ( x = 10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps ( Eopt) have been evaluated for these glasses. For a reference glass of 45B 2O 3-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A = 1.766029949, B = 159531.024 nm 2 and C = -1.078 × 10 10 nm 4. Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO 3 and BO 4 units. From DSC thermogram, glass transition temperature ( Tg), crystallization temperature ( Tc) and melting temperature ( Tm) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B 2O 3-5ZnO-(50 - x)PbO- xCuO ( x = 0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ( 2B 1g → 2E g) and 780 nm ( 2B 1g → 2B 2g) of Cu 2+ ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol% CuO doped glass with excitations at 306 and 332 nm.

  1. Crystal growth, crystal structure of new polymorphic modification, β-Bi 2B 8O 15 and thermal expansion of α-Bi 2B 8O 15

    NASA Astrophysics Data System (ADS)

    Bubnova, R. S.; Alexandrova, J. V.; Krivovichev, S. V.; Filatov, S. K.; Egorysheva, A. V.

    2010-02-01

    Single crystals of α- and β-polymorphs of Bi 2B 8O 15 were grown by Czochralski method from a charge of the stoichiometric composition. The crystal structure of β-Bi 2B 8O 15 was solved by direct methods from a twinned crystal and refined to R1=0.081 (w R=0.198) on the basis of 1584 unique observed reflections ( I>2 σ( I)). The compound is triclinic, space group P1¯, a=4.3159(8), b=6. 4604(12), c=22.485(4) Å, α=87.094(15)°, β=86.538(15)°, γ=74.420(14)°, V=602.40(19) Å 3, Z=2. The B-O layered anion of β-Bi 2B 8O 15 is topologically identical to the anion of α-Bi 2B 8O 15 but the orientation of neighboring layers is different. Thermal expansion of α-Bi 2B 8O 15 has been investigated by X-ray powder diffraction in air in temperature range from 20 to 700 °C. It is strongly anisotropic, which can be explained by the hinge mechanism applied to chains of Bi-O polyhedra. While the anisotropy of thermal expansion is rather high, the volume thermal expansion coefficient α V=40×10 6 °C -1 for α-Bi 2B 8O 15 is close to those of other bismuth borates.

  2. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors

    PubMed Central

    Zheng, Wenshan; Xie, Tian; Zhou, Yu; Chen, Y.L.; Jiang, Wei; Zhao, Shuli; Wu, Jinxiong; Jing, Yumei; Wu, Yue; Chen, Guanchu; Guo, Yunfan; Yin, Jianbo; Huang, Shaoyun; Xu, H.Q.; Liu, Zhongfan; Peng, Hailin

    2015-01-01

    Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm2 V−1 s−1 at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W−1 at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits. PMID:25898022

  3. Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration-Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-02-01

    We performed first-principles configuration-interaction calculations of multiplet energies for Mn4+ in K2SiF6, K2GeF6, and K2TiF6 crystals. The results indicate that corrections based on a single-electron calculation are effective for the prediction of 4A2 → 4T2 and 4A2 → 4T1a transition energies, while such corrections are not necessary for the prediction of the 4A22E transition energy. The cluster size dependence of the multiplet energies is small. However, the 4A22E transition energy is slightly improved by using larger clusters including K ions. The theoretical multiplet energies are improved further by considering the lattice relaxation effect. As a result, the characteristic multiplet energy shifts depending on the host crystal are well reproduced without using any empirical parameters. Although K2GeF6 and K2TiF6 have lower symmetry than K2SiF6, the results indicate that the variation of the multiplet energy is mainly determined by the Mn-F bond length.

  4. [Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

    NASA Astrophysics Data System (ADS)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Zadoya, Anastasiya I.; Kazakov, Sergey M.; Zaloga, Alexander N.; Kozin, Michael S.; Depmeier, Wulf; Siidra, Oleg I.

    2018-01-01

    Co-precipitation of PbF2 and PbSeO4 in weakly acidic media results in the formation of [Pb2F2](SeO4), the selenate analogue of the naturally occurring mineral grandreefite, [Pb2F2](SO4). The new compound is monoclinic, C2/ c, a = 14.0784(2) Å, b = 4.6267(1) Å, c = 8.8628(1) Å, β = 108.98(1)°, V = 545.93(1) Å3. Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 °C, after which it gradually converts into a single phase with composition [Pb2O](SeO4), space group C2/ m, and lattice parameters a = 14.0332(1) Å, b = 5.7532(1) Å, c = 7.2113(1) Å, β = 115.07(1)°, V = 527.37(1) Å3. It is the selenate analogue of lanarkite, [Pb2O](SO4), and phoenicochroite, [Pb2O](CrO4), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb2F2SeO4 + H2O (vapor) → Pb2OSeO4 + 2HF↑. This relatively low-temperature process involves complete rearrangement of the crystal structure—from a 2D architecture featuring slabs [Pb2F2]2+ formed by fluorine-centered tetrahedra into a structure characterized by 1D motifs based on [OPb2]2+ chains of oxocentered tetrahedra. The comparative crystal chemistry of the obtained anion-centered structural architectures is discussed.

  5. ns2np4 (n = 4, 5) lone pair triplets whirling in M*F2E3 (M* = Kr, Xe): Stereochemistry and ab initio analyses

    NASA Astrophysics Data System (ADS)

    Galy, Jean; Matar, Samir F.

    2017-02-01

    The stereochemistry of ns2np4 (n = 4, 5) lone pair LP characterizing noble gas Kr and Xe (labeled M*) in M*F2 difluorides is examined within coherent crystal chemistry and ab initio visualizations. M*2+ in such oxidation state brings three lone pairs (E) and difluorides are formulated M*F2E3. The analyses use electron localization function (ELF) obtained within density functional theory calculations showing the development of the LP triplets whirling {E3} quantified in the relevant chemical systems. Detailed ELF data analyses allowed showing that in α KrF2E3 and isostructural XeF2E3 difluorides the three E electronic clouds merge or hybridize into a torus and adopt a perfect gyration circle with an elliptical section, while in β KrF2 the network architecture deforms the whole torus into an ellipsoid shape. Original precise metrics are provided for the torus in the different compounds under study. In KrF2 the geometric changes upon β → α phase transition is schematized and mechanisms for the transformation with temperature or pressure are proposed. The results are further highlighted by electronic band structure calculations which show similar features of equal band gaps of 3 eV in both α and β KrF2 and a reorganization of frontier orbitals due to the different orientations of the F-Kr-F linear molecule in the two tetragonal structures.

  6. Die Interhalogenkationen [Br2F5]+ und [Br3F8].

    PubMed

    Ivlev, Sergei; Karttunen, Antti; Buchner, Magnus; Conrad, Matthias; Kraus, Florian

    2018-05-02

    Wir berichten über die Synthese und Charakterisierung der bislang einzigen Polyhalogenkationen, in denen verbrückende Fluoratome vorliegen. Das [Br2F5]+-Kation enthält eine symmetrische [F2Br-µ-F-BrF2]-Brücke, das [Br3F8]+-Kation enthält unsymmetrische µ-F-Brücken. Die Fluoronium-Ionen wurden in Form ihrer [SbF6]--Salze erhalten und Raman-, und 19F-NMR-spektroskopisch, sowie durch Röntgenbeugung am Einkristall untersucht. Quantenchemische Rechnungen, sowohl für die isolierten Kationen in der Gasphase, als auch für die Festkörper selbst, wurden durchgeführt. Populationsanalysen zeigen, dass die µ-F-Atome die am stärksten negativ partialgeladenen Atome der Kationen sind. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanostructured crystals of fluorite phases Sr1 - x R x F2 + x ( R = Y, La-Lu) and their ordering: Part III. A study of the refractive indices

    NASA Astrophysics Data System (ADS)

    Glushkova, T. M.; Karimov, D. N.; Krivandina, E. A.; Zhmurova, Z. I.; Sobolev, B. P.

    2009-07-01

    The refractive indices n of Sr1 - x R x F2 + x crystals ( R = Y, La-Lu; 0 ≤ x ≤ 0.5) have been measured at wavelengths of 0.436, 0.546, and 0.589 μm. It is established that n increases when there is an increase in the RF3 content x according to a weakly quadratic law for each R. For the isoconcentration series of Sr0.9 R 0.1F2.1 crystals, the change in n in the series of rare earth elements has a pronounced nonlinear character, which reflects the nonmonotonous change in the properties of compounds in the R series. It is shown that the method of molecular refraction additivity can be used to calculate n for Sr1 - x R x F2 + x crystals. By varying the RF3 content in them, one can obtain optical media with a gradually varied refractive index n in the range 1.44-1.55, thus filling the gap in the n values between high ones for RF3 crystals and low ones for crystals of alkaline earth fluorides MF2.

  8. Bulk crystal growth of Ga2O3

    NASA Astrophysics Data System (ADS)

    Kuramata, Akito; Koshi, Kimiyoshi; Watanabe, Shinya; Yamaoka, Yu; Masui, Takekazu; Yamakoshi, Shigenobu

    2018-02-01

    This paper describes the bulk crystal growth of β-Ga2O3 using edge-defined film-fed growth (EFG) process. We first describe the method of the crystal growth and show that large-size crystal with width of up to 6 inch can be grown. Then, we discuss the way to control electrical properties. In the discussion, we give some experimental results of residual impurity measurement, intentional doping using Si and Sn for n-type doping and Fe for insulating doping.

  9. Effect of Pr 3+ concentration on thermoluminescence from K 2Y 1- xPr xF 5 crystals

    NASA Astrophysics Data System (ADS)

    Marcazzo, J.; Santiago, M.; Caselli, E.; Nariyama, N.; Khaidukov, N. M.

    2004-06-01

    Thermoluminescence dosimetric characteristics of K 2YF 5 crystals doped with Pr 3+ are reported for the first time. The efficiency of the 0.5 at.% Pr 3+ doped K 2YF 5 crystal has been found to be maximum for this concentration series and three times higher than that of the commercial dosimeter TLD-700. The thermoluminescence glow curve of this novel phosphor has no appreciable fading. Furthermore, it bears linear dose response and good stability after reutilization. According to these results, K 2YF 5:Pr 3+ appears to be a promising base for developing effective phosphors for TL solid state dosimetry. In this context, the spectral composition of the TL emission is also mentioned along with the values obtained by glow curve deconvolution for the trap parameters characterising electron trap centres involved in thermoluminescence.

  10. Infrared absorption spectra of N(CxF2x+1)3, x = 2-5 perfluoroamines

    NASA Astrophysics Data System (ADS)

    Bernard, François; Papanastasiou, Dimitrios K.; Papadimitriou, Vassileios C.; Burkholder, James B.

    2018-05-01

    Infrared absorption spectra of the perfluoroamines (N(C2F5)3, N(C3F7)3, N(C4F9)3, and N(C5F11)3) were measured over the 500-4000 cm-1 spectral region at 294 K using Fourier transform infrared (FTIR) spectroscopy at 1 cm-1 resolution. Spectral measurements were performed using static measurements of dilute perfluoroamines mixtures and by infusion of the pure compound into a calibrated gas flow. The perfluoroamines absorb strongly in the "atmospheric window" with integrated band strengths (10-17 cm2 molecule-1 cm-1) between 570 and 1500 cm-1 of 59.9, 74.9, 88.9, and 98.7 for N(C2F5)3, N(C3F7)3, N(C4F9)3, and N(C5F11)3, respectively. Radiative efficiencies (RE) for the perfluoroamines were estimated to be 0.61, 0.75, 0.87, and 0.95 W m-2 ppb-1 for atmospherically well-mixed conditions and including a +10% stratospheric temperature correction for N(C2F5)3, N(C3F7)3, N(C4F9)3, and N(C5F11)3, respectively. Theoretical calculations of the perfluoroamines were performed at the B97-1/6-311++G(2df,2p) level of theory and optimized perfluoroamine geometries, vibrational band positions, and band strengths are reported. The theoretically calculated infrared spectra are in good agreement with the experimental spectra, while comparison of individual bands was not attempted due to the significant overlap of vibrational bands in the experimental spectra.

  11. Low-temperature sintered Li2(MnxTi1-x)O3 microwave dielectric ceramics with adjustable τf

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Huaiwu; Su, Hua; Li, Jie; Liao, Yulong; Jia, Lijun; Li, Yuanxun

    2017-12-01

    B2O3-Bi2O3-SiO2-ZnO (BBSZ) glass-modified Li2(MnxTi1-x)O3 ceramics were fabricated via a solid-state reaction route. Pure phase and dense crystal morphology were obtained at 900∘C. Suitable amount of Mn4+-ion substitution could adjust the τf value of the Li2(MnxTi1-x)O3 system to near zero. Among all of the Li2(MnxTi1-x)O3 samples, the sample with x = 0.9 (marked as BL9 in this paper) possessed good microwave dielectric properties: 𝜀r = 18, Q × f = 14,056 GHz (9.58 GHz) and τf = (+)2.43 ppm/∘C. It is suggested that the Li2(MnxTi1-x)O3 ceramic with BBSZ glass is a suitable low-temperature co-fired ceramic (LTCC) candidate for microwave applications.

  12. Refractive indices of CaF2 single crystals under elastic shock loading

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Liu, C. L.; Luo, S. N.

    2017-07-01

    Refractive indices and Hugoniots of CaF2 single crystals are investigated by laser displacement interferometry under shock loading below 5 GPa. Birefringence is observed for the [110] loading. We obtain the Hugoniot equation of states for [100], [110] and [111], and refractive indices for these orientations with consideration of their polarization. The measured refractive indices are in reasonable agreement with predictions based on the piezo-optic theory, and are used to refine the elasto-optic coefficients.

  13. Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented β-Y2Si2O7 Layer and Epitaxial ZrO2

    PubMed Central

    Wisniewski, Wolfgang; Seidel, Sabrina; Patzig, Christian; Rüssel, Christian

    2017-01-01

    The crystallization behavior of a glass with the composition 54.7 SiO2·10.9 Al2O3·15.0 MgO·3.4 ZrO2·16.0 Y2O3 is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallization of four different yttrium silicates of the composition Y2Si2O7 (YS). The almost simultaneous but independent nucleation of α-, β-, δ-, and ε-YS at the surface is followed by growth into the bulk, where ε-YS quickly dominates a first crystallized layer. An accumulation of Mg at the growth front probably triggers a secondary nucleation of β-YS, which forms a thin compact layer before fragmenting into a highly oriented layer of fine grained crystals occupying the remaining bulk. The residual glass between the YS growth structures allows the crystallization of indialite, yttrium stabilized ZrO2 (Y-ZrO2) and very probably μ-cordierite during cooling. Hence, this glass basically shows the inverted order of crystallization observed in other magnesium yttrium alumosilicate glasses containing less Y2O3. An epitaxial relationship between Y-ZrO2 and ε-YS is proven and multiple twinning relationships occur in the YS phases. PMID:28281661

  14. 2.4 μm diode-pumped Dy2+:CaF2 laser

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Papashvili, Alexander G.; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Batygov, Sergei H.; Osiko, Vyacheslav V.

    2018-01-01

    In this work, a cryogenic cooled, longitudinal diode-pumped Dy2+ :CaF2 laser was investigated for the first time. The temperature dependence of the spectroscopy and the laser properties of Dy2+ :CaF2 are presented. The tested Dy2+ :CaF2 crystal was a longitudinal pump in a near-IR region (926 nm) by laser diode radiation. The maximal mean output power and slope efficiency at 78 K during the pulse regime of the laser were 57.5 mW and 7%, respectively. Furthermore, the CW regime was successfully tested and a maximum output power of 0.37 W was obtained for the absorbed pumping power 5.7 W. The emission laser wavelength was 2367 nm.

  15. Carbon agent chemical vapor transport growth of Ga2O3 crystal

    NASA Astrophysics Data System (ADS)

    Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao

    2016-10-01

    Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

  16. New type of borophosphate anionic radical in the crystal structure of CsAl2BP6O20

    NASA Astrophysics Data System (ADS)

    Shvanskaya, L. V.; Yakubovich, O. V.; Belik, V. I.

    2016-09-01

    The crystal structure of a new borophosphate CsAl2BP6O20 obtained by spontaneous crystallization in a multicomponent Cs-Cu-B-P-O system is determined by X-ray diffraction ( a = 11.815(2), b = 10.042(2), and c = 26.630(4) Å; space group Pbca, Z = 8, V = 3159.5(10) Å3; R 1 = 0.043). A new type of borophosphate anionic 2D radical characterized by the lowest B: P = 1: 6 ratio and containing P3O10 phosphate groups is found in the compound. A mixed-type anionic framework consisting of vertex-sharing BO4 and PO4 tetrahedra and AlO6 octahedra is distinguished in the structure. Large cesium atoms are located in the channels of the framework. Topological relationships are revealed between the structures of the CsAl3(P3O10)2 and CsAl2BP6O20 phases having different cationic compositions. These compounds can be considered quasi-polytypic phases.

  17. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    PubMed Central

    Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.

    2000-01-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID

  18. Rhombohedral crystals of 2-dehydro-3-deoxygalactarate aldolase from Escherichia coli.

    PubMed

    Blackwell, N C; Cullis, P M; Cooper, R A; Izard, T

    1999-07-01

    2-Dehydro-3-deoxygalactarate (DDG) aldolase (E.C. 4.1.2.20) catalyzes the reversible aldol cleavage of DDG and 2-dehydro-3-deoxyglucarate to pyruvate and tartronic semialdehyde. Rhombohedral crystals of recombinant DDG aldolase from Escherichia coli K-12 were obtained. The crystals belong to space group R32 with unit-cell parameters a = 93 A, alpha = 85 degrees. The crystals diffract to beyond 1.8 A resolution on a Cu Kalpha rotating-anode generator. The asymmetric unit is likely to contain two molecules, corresponding to a packing density of 1.34 A3 Da-1.

  19. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  20. Anisotropy of the Mechanical Properties of TbF3 Crystals

    NASA Astrophysics Data System (ADS)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  1. Poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] Oligomer Single-Crystal Nanowires from Supercritical Solution and Their Anisotropic Exciton Dynamics.

    PubMed

    Colella, Nicholas S; Labastide, Joelle A; Cherniawski, Benjamin P; Thompson, Hilary B; Marques, Sarah R; Zhang, Lei; Usluer, Özlem; Watkins, James J; Briseno, Alejandro L; Barnes, Michael D

    2017-07-06

    Supercritical fluids, exhibiting a combination of liquid-like solvation power and gas-like diffusivity, are a relatively unexplored medium for processing and crystallization of oligomer and polymeric semiconductors whose optoelectronic properties critically depend on the microstructure. Here we report oligomer crystallization from the polymer organic semiconductor, poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) in supercritical hexane, yielding needle-like single crystals up to several microns in length. We characterize the crystals' photophysical properties by time- and polarization-resolved photoluminescence (TPRPL) spectroscopy. These techniques reveal two-dimensional interchromophore coupling facilitated by the high degree of π-stacking order within the crystal. Furthermore, the crystals obtained from supercritical fluid were found to be similar photophysically as the crystallites found in solution-cast thin films and distinct from solution-grown crystals that exhibited spectroscopic signatures indicative of different packing geometries.

  2. Crystal Growth and Luminescence Properties of Yb-doped Gd3Al2Ga3O12 Infra-red Scintillator

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Nagata, Shinji; Yamamura, Tomoo; Pejchal, Jan; Yamaji, Akihiro; Yokota, Yuui; Shirasaki, Kenji; Homma, Yoshiya; Aoki, Dai; Shikama, Tatsuo; Yoshikawa, Akira

    2014-07-01

    1-mol%-Yb-doped Gd3Al2Ga3O12 infra-red scintillator crystal has been studied as a novel implantable radiation monitor in radiation therapy. Powder X-ray diffraction measurement and chemical analysis with a field emission scanning microscope and wavelength dispersive spectrometer determined its garnet structure and average chemical composition of Yb0.03±0.01Gd2.99±0.07Al2.21±0.08Ga2.64±0.09O12.10±0.09. Transmittance measurements reached high values of approximately 70% in the human body transparency region between 650 to 1200 nm. Photoluminescence peaks were detected around 970 and 1030 nm under the 940 nm excitation with a Xe lamp. Infra-red scintillation emissions were clearly observed around 970 and 1030 nm due to Yb3+ 4f-4f transitions under X-ray excitation. Therefore, these results suggest that Yb-doped Gd3Al2Ga3O12 might be used as an infra-red scintillator material.

  3. The phase transition of Pb8F14I2.

    PubMed

    Weil, Matthias

    2017-01-01

    The reversible phase transition of Pb 8 F 14 I 2 is of continuous type and takes place at about 107 °C as monitored by temperature-dependent single crystal and powder X-ray diffraction measurements, optical microscopy, and differential scanning calorimetry. The low-temperature ferroelastic phase crystallizes in the orthorhombic crystal system (23 °C, Bmmb , Z  = 2, a  = 6.0699(6) Å, b  = 6.0165(6) Å, c  = 25.077(2) Å, 1487 structure factors, 41 parameter, R ( F 2 ) = 0.0346, wR ( F 2 ) = 0.0771) and changes its symmetry to the tetragonal crystal system into the high-temperature paraelastic phase (130 °C, I 4/ mmm , Z  = 1, a  = 4.2667(12) Å, c  = 25.388(7) Å, 430 structure factors, 303 parameter, R ( F 2 ) = 0.0575, wR ( F 2 ) = 0.1564). Group-subgroup relationships between the two structures and a hypothetical intermediate structure are presented.

  4. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)(n)F, n = 1.0-2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes.

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2012-08-23

    The effects of the HF composition, n, in 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C(12)MIm(FH)(n)F, n = 1.0-2.3) on their physicochemical and structural properties have been investigated using infrared spectroscopy, thermal analysis, polarized optical microscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. The phase diagram of C(12)MIm(FH)(n)F (n vs transition temperature) suggests that C(12)MIm(FH)(n)F is a mixed crystal system that has a boundary around n = 1.9. For all compositions, a liquid crystalline mesophase with a smectic A interdigitated bilayer structure is observed. The temperature range of the mesophase decreases with increasing n value (from 61.8 °C for C(12)MIm(FH)(1.0)F to 37.0 °C for C(12)MIm(FH)(2.3)F). The layer spacing of the smectic structure decreases with increasing n value or increasing temperature. Two structural types with different layer spacings are observed in the crystalline phase (type I, 1.0 ≤ n ≤ 1.9, and type II, 1.9 ≤ n ≤ 2.3). Ionic conductivities parallel and perpendicular to the smectic layers (σ(||) and σ([perpendicular])) increase with increasing n value, whereas the anisotropy of the ionic conductivities (σ(||)/σ([perpendicular])) is independent of the n value, since the thickness of the insulating sheet formed by the dodecyl group remains nearly unchanged.

  5. Optical emission spectroscopic studies and comparisons of CH{sub 3}F/CO{sub 2} and CH{sub 3}F/O{sub 2} inductively coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, Qiaowei; Kaler, Sanbir; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu

    2015-03-15

    A CH{sub 3}F/CO{sub 2} inductively coupled plasma (ICP), sustained in a compact plasma reactor, was investigated as a function of power (5–400 W) and feed gas composition, at a pressure of 10 mTorr, using optical emission spectroscopy and rare gas actinometry. Number densities of H, F, and O increased rapidly between 74% and 80% CO{sub 2}, ascribed to the transition from polymer-covered to polymer-free reactor walls, similar to that found previously in CH{sub 3}F/O{sub 2} ICPs at 48% O{sub 2}. Below 40% O{sub 2} or CO{sub 2}, relative emission intensity ratios were almost identical for most key species in CH{sub 3}F/O{submore » 2} and CH{sub 3}F/CO{sub 2} ICPs except for higher OH/Xe (a qualitative measure of OH and H{sub 2}O densities) over the full range of CH{sub 3}F/O{sub 2} composition. The number density of H, F, and O increased with power in CH{sub 3}F/CO{sub 2} (20%/80%) plasmas (polymer-free walls), reaching 4.0, 0.34, and 1.6 × 10{sup 13}/cm{sup 3}, respectively, at 300 W. The CO number density increased with power and was estimated, based on self-actinometry, to be 8.8 × 10{sup 13}/cm{sup 3} at 300 W. The CO{sub 2} number density was independent of power below 40 W (where very little decomposition occurred), and then decreased rapidly with increasing power, reaching 2.8 × 10{sup 13}/cm{sup 3} at 300 W, corresponding to 83% dissociation. Films deposited on p-Si, 10 cm from the open, downstream end of the plasma reactor, were analyzed by x-ray photoelectron spectroscopy. Between 10% and 40% CO{sub 2} or O{sub 2} addition to CH{sub 3}F, film deposition rates fell and O content in the films increased. Faster deposition rates in CH{sub 3}F/CO{sub 2} plasmas were ascribed mainly to a larger thermodynamic driving force to form solid carbon, compared with CH{sub 3}F/O{sub 2} plasmas. Oxygen content in the films increased with increasing CO{sub 2} or O{sub 2} addition, but for the same deposition rate, no substantial differences

  6. Reaction of (carbonylimido)sulfur(IV) derivatives with TAS-fluoride, (Me2N)3S+Me3SiF2-.

    PubMed

    Lork, E; Viets, D; Mews, R; Oberhammer, H

    2000-10-16

    In the reaction of TAS-fluoride, (Me2N)3S+Me3SiF2-, with carbonyl sulfur difluoride imides RC(O)NSF2 (R = F, CF3), C-N bond, cleavage is observed, and TAS+RC(O)F2- and NSF are the final products. From TASF and RC(O)NS(CF3)F, the salts TAS+RC(O)NS(CF3)F2- (R = F (14), CF3 (15)), with psi-pentacoordinate sulfur centers in the anions, are formed. An X-ray structure investigation of 14 shows that the fluorine atoms occupy axial positions and CF3, NC(O)F, and the sulfur lone pair occupy equatorial positions of the trigonal bipyramid. The -C(O)F group lies in the equatorial plane with the CO bond synperiplanar to the SN bond. According to B3LYP calculations, this structure corresponds to a global minimum and the expected axial orientation of the -C(O)F group represents a transition state. Calculations for the unstable FC(O)NSF3- anion show a different geometry. The -C(O)F group deviates 40 degrees from axial orientation, and the equatorially bonded fluorine is, in contrast to the -CF3 group in 14, syn positioned.

  7. The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO2(N3)2, MO2(N3)22 CH3CN, (bipy)MO2(N3)2, and [MO2(N3)4](2-) (M=Mo, W).

    PubMed

    Haiges, Ralf; Skotnitzki, Juri; Fang, Zongtang; Dixon, David A; Christe, Karl O

    2015-08-10

    Molybdenum(VI) and tungsten(VI) dioxodiazide, MO2(N3)2 (M=Mo, W), were prepared through fluoride-azide exchange reactions between MO2F2 and Me3SiN3 in SO2 solution. In acetonitrile solution, the fluoride-azide exchange resulted in the isolation of the adducts MO2(N3)22 CH3CN. The subsequent reaction of MO2(N3)2 with 2,2'-bipyridine (bipy) gave the bipyridine adducts (bipy)MO2(N3)2. The hydrolysis of (bipy)MoO2(N3)2 resulted in the formation and isolation of [(bipy)MoO2N3]2O. The tetraazido anions [MO2(N3)4](2-) were obtained by the reaction of MO2(N3)2 with two equivalents of ionic azide. Most molybdenum(VI) and tungsten(VI) dioxoazides were fully characterized by their vibrational spectra, impact, friction, and thermal sensitivity data and, in the case of (bipy)MoO2(N3)2, (bipy)WO2(N3)2, [PPh4]2[MoO2(N3)4], [PPh4]2[WO2(N3)4], and [(bipy)MoO2N3]2O by their X-ray crystal structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  9. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na3.13Mg1.43U6F30 and Na2.50Mn1.75U6F30: Structures, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad

    2016-04-01

    Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.

  10. Crystal growth and characterization of Ce:Gd3(Ga,Al)5O12 single crystal using floating zone method in different O2 partial pressure

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Fujimoto, Yutaka; Yamaji, Akihiro; Kurosawa, Shunsuke; Pejchal, Jan; Sugiyama, Makoto; Wakahara, Shingo; Futami, Yoshisuke; Yokota, Yuui; Kamada, Kei; Yubuta, Kunio; Shishido, Toetsu; Nikl, Martin

    2013-09-01

    Multicomponent garnet Ce:Gd3(Ga,Al)5O12 (Ce:GAGG) single crystals show very high light yield with reasonably fast scintillation response. Therefore, they can be promising scintillators for gamma-ray detection. However, in the decay curve a very slow component does exist. Therefore, it is necessary to optimize further the crystal growth technology of Ce:GAGG. In this study, Ce:GAGG single crystals were grown by the floating zone (FZ) method under atmospheres of various compositions such as Ar 100%, Ar 80% + O2 20%, Ar 60% + O2 40% and O2 100%. Radioluminescence spectra are dominated by the band at about 540 nm due to Ce3+ 5d1-4f transition. The Ce:GAGG single crystal grown under Ar atmosphere shows an intense slower decay component. It can be related to the processes of the delayed radiative recombination and thermally induced ionization of 5d1 level of Ce3+ center possibly further affected by oxygen vacancies. This slower decay process is significantly suppressed in the samples grown under the O2 containing atmosphere.

  11. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazoles

    NASA Astrophysics Data System (ADS)

    Hranjec, Marijana; Pavlović, Gordana; Karminski-Zamola, Grace

    2012-01-01

    This manuscript describes the synthesis of novel 2-amino-4-aryl-4,10-dihydro-[1,3,5]triazino[1,2- a]benzimidazoles as hydrochloride salts 4a-n and 5b which were prepared in the reaction of cyclocondensation between 2-guanidinobenzimidazole and versatile heteroaromatic aldehydes. Structures of all prepared compounds have been studied by using 1H and 13C NMR, IR and UV/Vis spectroscopy. The crystal and molecular structure of 4f was determined by X-ray diffraction on single crystals. The molecule of 2-amino-4-(4'-methylphenyl)-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole hydrochloride 4f (C 16H 16N 5+·Cl -) exists in the solid state in one of the possible tautomeric forms, being protonated at the one of the nitrogen atoms of the 1,4-dihydrotriazine ring. The molecule is highly delocalized within the 4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole moiety with the highest deviation from the plane for the methine carbon atom and the protonated nitrogen atom of the 1,4-dihydrotriazine ring. The cations are joined via N-H⋯N hydrogen bonds into R22(8) centrosymmetric dimers. Cation dimers are further connected with Cl - ions via N-H⋯Cl and C-H⋯Cl hydrogen bonds into 2D chains spreading along the b axis. The obtained single-crystal X-ray structure determination unequivocally confirms tautomeric form of the compound present in the solid-state and can represent tantative pattern for other prepared compounds. All prepared compounds were tested on their antiproliferative activity in vitro on several human cancer cell lines. Compound 4m was the most active one (IC 50 ≈ 20 μM), while compounds 4d, 4f, 4k, 4l4m showed moderate, but non-selective, antiproliferative activity with IC 50 25-60 μM.

  12. Structural, thermal, optical and dielectric studies of Dy3+: B2O3-ZnO-PbO-Na2O-CaO glasses for white LEDs application

    NASA Astrophysics Data System (ADS)

    Mohammed, Al-B. F. A.; Lakshminarayana, G.; Baki, S. O.; Halimah, M. K.; Kityk, I. V.; Mahdi, M. A.

    2017-11-01

    Dy3+-doped borate glasses with nominal composition (60-x) B2O3-10 ZnO-10 PbO-10 Na2O-10 CaO-(x) Dy2O3 (x = 0, 0.1, 0.2, 0.5, 0.75, 1.0, 1.5 and 2.0 mol%) were prepared by the melt quenching technique. The XRD and SEM confirm the amorphous nature of the glasses and through EDAX, all the related elements were found in the synthesized glasses. The vibrations of metal cations such as Pb2+ and Zn2+, B-O-B bond bending vibrations from pentaborate groups, bending vibrations of BO3 triangles, and stretching vibrations of tetrahedral BO4- units etc. are identified from the respective FTIR and Raman spectra including the non-hygroscopic nature of the synthesized glasses. The TGA and DSC measurements were performed to study thermal properties, where ΔT >100 °C (ΔT = Tx - Tg) for all the glasses. Among all the Dy3+-doped glasses, the 0.75 mol% Dy3+-doped glass shows the highest PL intensity with four emissions, where the two transitions corresponding to 4F9/2 → 6H15/2 (blue) and 4F9/2 → 6H13/2 (yellow) are observed more intense than the others. The CIE chromaticity (x,y) coordinates for BZPNCDy 0.1 mol% glass are (0.398, 0.430), close to the white light region in the CIE 1931 chromaticity diagram. The dielectric properties of the 0.75 mol% Dy3+-doped glass such as dielectric constant, dielectric loss and AC conductivity were studied in the various frequencies and temperature.

  13. Silencing of E2F3 suppresses tumor growth of Her2+ breast cancer cells by restricting mitosis.

    PubMed

    Lee, Miyoung; Oprea-Ilies, Gabriela; Saavedra, Harold I

    2015-11-10

    The E2F transcriptional activators E2F1, E2F2 and E2F3a regulate many important cellular processes, including DNA replication, apoptosis and centrosome duplication. Previously, we demonstrated that silencing E2F1 or E2F3 suppresses centrosome amplification (CA) and chromosome instability (CIN) in Her2+ breast cancer cells without markedly altering proliferation. However, it is unknown whether and how silencing a single E2F activator, E2F3, affects malignancy of human breast cancer cells. Thus, we injected HCC1954 Her2+ breast cancer cells silenced for E2F3 into mammary fat pads of immunodeficient mice and demonstrated that loss of E2F3 retards tumor growth. Surprisingly, silencing of E2F3 led to significant reductions in mitotic indices relative to vector controls, while the percentage of cells undergoing S phase were not affected. Nek2 is a mitotic kinase commonly upregulated in breast cancers and a critical regulator of Cdk4- or E2F-mediated CA. In this report, we found that Nek2 overexpression rescued back the CA caused by silencing of shE2F3. However, the effects of Nek2 overexpression in affecting tumor growth rates of shE2F3 and shE2F3; GFP cells were inconclusive. Taken together, our results indicate that E2F3 silencing decreases mammary tumor growth by reducing percentage of cells undergoing mitosis.

  14. Luminescence and Scintillation Properties of Czochralski Grown LYGBO Crystals

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Kim, Hong Joo; Park, H.; Kim, Sunghwan; Khan, Sajid

    2016-06-01

    Mixed crystals Li6YxGd1-x(BO3)3:Ce3+ (LYGBO) (where, x = 0.0, 0.2, 0.5, 0.8, 1.0) are grown by using Czochralski method with different proportions of Li6Y(BO3)3 and Li6Gd(BO3)3. All crystals are doped with 3 mole% optimized concentrations of Ce3+ ions. The grown crystals are 20-70 mm in length and 5-10 mm in diameter. Detailed sintering and crystal growth procedure is presented in this study. The required phase of the grown crystals is confirmed by powder X-ray diffraction (XRD) analysis. Ultraviolet (UV) photoluminescence and X-ray induced luminescence of the grown crystals at room temperature are measured. Various scintillation properties such as energy resolution, light yield, α/β ratio and fluorescence decay time under the excitation by 137Cs γ-ray and 241Am particles are also presented.

  15. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    NASA Astrophysics Data System (ADS)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  16. E2f1–3 Are Critical for Myeloid Development*

    PubMed Central

    Trikha, Prashant; Sharma, Nidhi; Opavsky, Rene; Reyes, Andres; Pena, Clarissa; Ostrowski, Michael C.; Roussel, Martine F.; Leone, Gustavo

    2011-01-01

    Hematopoietic development involves the coordinated activity of differentiation and cell cycle regulators. In current models of mammalian cell cycle control, E2f activators (E2f1, E2f2, and E2f3) are portrayed as the ultimate transcriptional effectors that commit cells to enter and progress through S phase. Using conditional gene knock-out strategies, we show that E2f1–3 are not required for the proliferation of early myeloid progenitors. Rather, these E2fs are critical for cell survival and proliferation at two distinct steps of myeloid development. First, E2f1–3 are required as transcriptional repressors for the survival of CD11b+ myeloid progenitors, and then they are required as activators for the proliferation of CD11b+ macrophages. In bone marrow macrophages, we show that E2f1–3 respond to CSF1-Myc mitogenic signals and serve to activate E2f target genes and promote their proliferation. Together, these findings expose dual functions for E2f1–3 at distinct stages of myeloid development in vivo, first as repressors in cell survival and then as activators in cell proliferation. In summary, this work places E2f1–3 in a specific signaling cascade that is critical for myeloid development in vivo. PMID:21115501

  17. Hydrothermal synthesis of (C6N2H14)2(UVI2UIVO4F12), a mixed-valent one-dimensional uranium oxyfluoride.

    PubMed

    Allen, S; Barlow, S; Halasyamani, P S; Mosselmans, J F; O'Hare, D; Walker, S M; Walton, R I

    2000-08-21

    A new hybrid organic-inorganic mixed-valent uranium oxyfluoride, (C6N2H14)2(U3O4F12), UFO-17, has been synthesized under hydrothermal conditions using uranium dioxide as the uranium source, hydrofluoric acid as mineralizer, and 1,4-diazabicyclo[2.2.2]octane as template. The single-crystal X-ray structure was determined. Crystals of UFO-17 belonged to the orthorhombic space group Cmcm (no. 63), with a = 14.2660(15) A, b = 24.5130(10) A, c = 7.201(2) A, and Z = 4. The structure reveals parallel uranium-containing chains of two types: one type is composed of edge-sharing UO2F5 units; the other has a backbone of edge-sharing UF8 units, each sharing an edge with a pendant UO2F5 unit. Bond-valence calculations suggest the UF8 groups contain UIV, while the UO2F5 groups contain UVI. EXAFS data give results consistent with the single-crystal X-ray structure determination, while comparison of the uranium LIII-edge XANES of UFO-17 with that of related UIV and UVI compounds supports the oxidation-state assignment. Variable-temperature magnetic susceptibility measurements on UFO-17 and a range of related hybrid organic-inorganic uranium(IV) and uranium(VI) fluorides and oxyfluorides further support the formulation of UFO-17 as a mixed-valent UIV/UVI compound.

  18. Anionic ordering and thermal properties of FeF3·3H2O.

    PubMed

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; Wattiaux, Alain; Demourgues, Alain; Salanne, Mathieu; Groult, Henri; Dambournet, Damien

    2015-10-05

    Iron fluoride trihydrate can be used to prepare iron hydroxyfluoride with the hexagonal-tungsten-bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F(-) and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.

  19. Emission analysis of RE3+ (RE = Sm, Dy):B2O3-TeO2-Li2O-AlF3 glasses.

    PubMed

    Raju, C Nageswara; Sailaja, S; Kumari, S Pavan; Dhoble, S J; Kumar, V Ramesh; Ramanaiah, M V; Reddy, B Sudhakar

    2013-01-01

    This article reports on the optical properties of 0.5% mol of Sm(3+), Dy(3+) ion-doped B2O3-TeO2-Li2O-AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd-Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm(3+) and Dy(3+):LiAlFBT glasses showed a bright reddish-orange emission at 598 nm ((4)G5/2 → (6)H7/2) and an intense yellow emission at 574 nm ((4)F9/2 → (6)H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm(3+) and Dy(3+):LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Preparation of optically active (2RS,3SR)-2-amino-3-hydroxy-3-phenylpropanoic acid (threo-beta-phenylserine) via optical resolutions by replacing and preferential crystallization.

    PubMed

    Shiraiwa, Tadashi; Kawashima, Yuka; Ikaritani, Atsushi; Suganuma, Yumiko; Saijoh, Reiichi

    2006-08-01

    To obtain optically active threo-2-amino-3-hydroxy-3-phenylpropanoic acid (1) via optical resolutions by replacing and preferential crystallization, the racemic structure of (2RS,3SR)-1 hydrochloride [(2RS,3SR)-1.HCl] was examined based on the melting point, solubility, and infrared spectrum. (2RS,3SR)-1.HCl was indicated to exist as a conglomerate at room temperature, although it forms a racemic compound at the melting point. When, in optical resolution by replacing crystallization, L-phenylalanine methyl ester hydrochloride (L-2) was used as the optically active co-solute, (2R,3S)-1.HCl was preferentially crystallized from the supersaturated racemic solution; the use of D-2 as the co-solute afforded (2S,3R)-1.HCl with an optical purity of 95%. In addition, optical resolution by preferential crystallization was successfully achieved to give successively (2R,3S)- and (2S,3R)-1.HCl with optical purities of 90-92%. The (2R,3S)- and (2S,3R)-1.HCl purified by recrystallization from 1-propanol were treated with triethylamine in methanol to give optically pure (2R,3S)- and (2S,3R)-1.

  1. Mechanism of substrate recognition by the novel Botulinum Neurotoxin subtype F5.

    PubMed

    Guo, Jiubiao; Chan, Edward Wai Chi; Chen, Sheng

    2016-01-22

    Botulinum Neurotoxins (BoNTs) are the causative agents of botulism, which act by potently inhibiting the neurotransmitter release in motor neurons. Seven serotypes of BoNTs designated as BoNT/A-G have been identified. Recently, two novel types of Botulinum neurotoxins, which cleave a novel scissile bond, L(54)-E(55), of VAMP-2 have been reported including BoNT/F subtype F5 and serotype H. However, little has been known on how these BoNTs recognize their substrates. The present study addressed for the first time the unique substrate recognition mechanism of LC/F5. Our data indicated that the optimal peptide required for efficient LC/F5 substrate cleavage is VAMP-2 (20-65). Interestingly, the overall mode of substrate recognition adopted by LC/F5 was similar to LC/F1, except that its recognition sites were shifted one helix toward the N-terminus of VAMP-2 when compared to that of LC/F1. The composition of LC/F5 pockets were found to have changed accordingly to facilitate specific recognition of these new sites of VAMP-2, including the P2', P1', P2, P3, B3, B2 and B1 sites. The study provides direct evidence of the evolutionary adaption of BoNT to recognize its substrate which is useful for effective antitoxin and inhibitor development.

  2. Crystallization and preliminary crystallographic analysis of maganese(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from Bacillus sp. JF8

    PubMed Central

    Senda, Miki; Hatta, Takashi; Kimbara, Kazuhide; Senda, Toshiya

    2010-01-01

    A thermostable manganese(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase derived from Bacillus sp. JF8 was crystallized. The initial screening for crystallization was performed by the sitting-drop vapour-diffusion method using a crystallization robot, resulting in the growth of two crystal forms. The first crystal belonged to space group P1, with unit-cell parameters a = 62.7, b = 71.4, c = 93.6 Å, α = 71.2, β = 81.0, γ = 64.0°, and diffracted to 1.3 Å resolution. The second crystal belonged to space group I222, with unit-cell parameters a = 74.2, b = 90.8, c = 104.3 Å, and diffracted to 1.3 Å resolution. Molecular-replacement trials using homoprotocatechuate 2,3-dioxygenase from Arthrobacter globiformis (28% amino-acid sequence identity) as a search model provided a satisfactory solution for both crystal forms. PMID:20208161

  3. ACTIVE MEDIA: BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    NASA Astrophysics Data System (ADS)

    Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.

    2008-04-01

    BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.

  4. Optical properties in the visible luminescence of SiO2:B2O3:CaO:GdF3 glass scintillators containing CeF3

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Kim, H. J.; Karki, Sujita; Kaewkhao, J.; Damdee, B.; Kothan, S.; Kaewjaeng, S.

    2017-12-01

    CeF3-doped silicaborate-calcium-gadolinium glass scintillators, with the formula 10SiO2:(55-x)B2O3:10CaO:25GdF3:xCeF3, were fabricated by the melt-quenching technique. The doping concentration of the CeF3 was from 0.00 mol% to 0.20 mol%. The optical properties of the CeF3 doped glass scintillators were studied by using various radiation sources. The transition state of the CeF3-doped glass scintillators studied by using the absorption and photo-luminescence spectrum results. The X-ray, photo, proton and laser-induced luminescence spectra were also studied to understand the luminescence mechanism under various conditions. To understand the temperature dependence, the laser-induced luminescence and the decay component of the CeF3-doped glass scintillator were studied while the temperature was varied from 300 K to 10 K. The emission wavelength spectrum showed from 350 nm to 55 nm under various radiation sources. Also the CeF3-doped glass scintillator have one decay component as 34 ns at room temperature.

  5. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library.

    PubMed

    González-Bacerio, Jorge; Maluf, Sarah El Chamy; Méndez, Yanira; Pascual, Isel; Florent, Isabelle; Melo, Pollyana M S; Budu, Alexandre; Ferreira, Juliana C; Moreno, Ernesto; Carmona, Adriana K; Rivera, Daniel G; Alonso Del Rivero, Maday; Gazarini, Marcos L

    2017-09-01

    Malaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (K i =0.4μM) and an in vitro antimalarial compound as potent as bestatin (IC 50 =18μM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn 2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC 50 =82μM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    NASA Astrophysics Data System (ADS)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  7. Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F.

    PubMed

    Chen, Sheng; Wan, Hoi Ying

    2011-01-15

    BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions.

  8. Solubility of uranium oxide in molten salt electrolysis bath of LiF-BaF2 with LaF3 additive

    NASA Astrophysics Data System (ADS)

    Alangi, Nagaraj; Mukherjee, Jaya; Gantayet, L. M.

    2016-03-01

    The solubility of UO2 in the molten mixtures of equimolar LiF-BaF2(1:1) with LaF3 as additive was studied in the range of 1423 K-1523 K. The molten fluoride salt mixture LiF-BaF2 LaF3 was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%-50% by weight additions of LaF3 in the equimolar LiF-BaF2(1:1) base fluoride salt bath. Solubility of UO2 increased with rise in LaF3 concentration in the molten fluoride in the temperature range of 1423 K-1523 K. At a given concentration of LaF3, the UO2 solubility increased monotonously with temperature. With mixed solvent, when UF4 was added as a replacement of part of LaF3 in LiF-BaF2(1:1)-10 wt% LaF3 and LiF-BaF2(1:1)-30 wt% LaF3, there was an enhancement of solubility of UO2.

  9. Anionic ordering and thermal properties of FeF 3·3H 2O

    DOE PAGES

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; ...

    2015-09-17

    In this study, iron fluoride tri-hydrate can be used to prepare iron hydroxyfluoride with the Hexagonal-Tungsten-Bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF 3·3H 2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF 6]n and [FeF 2(H2O) 4] n. The decomposition of FeF 3·3H 2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF 3-x(OH) x with the HTB structure. The releasemore » of H 2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF 3·3H 2O. An average distribution of FeF 4(OH) 2 distorted octahedra in HTB-FeF 3-x(OH) x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F- and H 2O. This study provides a clear understanding of the structure and thermal properties of FeF 3·3H 2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.« less

  10. Slow neutron total cross-section, transmission and reflection calculation for poly- and mono-NaCl and PbF2 crystals

    NASA Astrophysics Data System (ADS)

    Mansy, Muhammad S.; Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.

    2016-10-01

    A detailed study about the calculation of total neutron cross-section, transmission and reflection from crystalline materials was performed. The developed computer code is approved to be sufficient for the required calculations, also an excellent agreement has been shown when comparing the code results with the other calculated and measured values. The optimal monochromator and filter parameters were discussed in terms of crystal orientation, mosaic spread, and thickness. Calculations show that 30 cm thick of PbF2 poly-crystal is an excellent cold neutron filter producing neutron wavelengths longer than 0.66 nm needed for the investigation of magnetic structure experiments. While mono-crystal filter PbF2 cut along its (1 1 1), having mosaic spread (η = 0.5°) and thickness 10 cm can only transmit thermal neutrons of the desired wavelengths and suppress epithermal and γ-rays forming unwanted background, when it is cooled to liquid nitrogen temperature. NaCl (2 0 0) and PbF2 (1 1 1) monochromator crystals having mosaic spread (η = 0.5°) and thickness 10 mm shows high neutron reflectivity for neutron wavelengths (λ = 0.114 nm and λ = 0.43 nm) when they used as a thermal and cold neutron monochromators respectively with very low contamination from higher order reflections.

  11. Ca(5)Zr(3)F(22).

    PubMed

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Avignant, Daniel

    2012-04-01

    Single crystals of Ca(5)Zr(3)F(22), penta-calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF(2) and ZrF(4) in the presence of AgF. The structure of the title compound is isotypic with that of Sr(5)Zr(3)F(22) and can be described as being composed of layers with composition [Zr(3)F(20)](8-) made up from two different [ZrF(8)](4-) square anti-prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca(2+) cations, forming a three-dimensional network. Amongst the four crystallographically different Ca(2+) ions, three are located on twofold rotation axes. The Ca(2+) ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca(2+) ions occupy inter-stices between the layers whereas the other two are located in void spaces of the [Zr(3)F(20)](8-) layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.

  12. Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3.

    PubMed

    Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Pang, Ran; Huang, Shaoming; Liu, Guokui

    2016-11-07

    In most Eu 3+ activated phosphors, only red luminescence from the 5 D 0 is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca 4 LaO(BO 3 ) 3 :Eu 3+ (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the 5 D 1,2 states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu 3+ doping concentration. More importantly, concentration quenching of Eu 3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca 4 EuO(BO 3 ) 3 emits stronger luminescence than the Eu 3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y 2 O 3 :Eu 3+ . Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (∼330 nm). The CT transitions significantly enhance Eu 3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu 3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.

  13. Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.

    PubMed

    Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D

    2010-05-03

    The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.

  14. Crystal and molecular structure of 2,6-dibromo-3-chloro-4-fluoroaniline

    NASA Astrophysics Data System (ADS)

    Betz, R.

    2015-12-01

    The crystal and molecular structure of 2,6-dibromo-3-chloro-4-fluoroaniline is determined. The crystals are monoclinic, a = 3.8380(3), b = 13.1010(12), c = 8.0980(8) Å, β = 96.010(4)°, V = 404.94(6) Å3, Z = 2, sp. gr. P21. Classical intra- and intermolecular hydrogen bonds of the N-H··· Hal type are observed next to a series of dispersive halogen···halogen interactions in the crystal structure.

  15. Laser action of Pr3+ in LiYF4 and spectroscopy of Eu2+-sensitized Pr in BaY2F8

    NASA Astrophysics Data System (ADS)

    Knowles, David S.; Gabbe, David; Jenssen, H. P.; Zhang, Z.

    1988-06-01

    Laser action in flashlamp-pumped Pr:LiYF4 at room temperature is observed at 640 nm with a 15-J threshold, but only about 0.01 percent slope efficiency. Increased efficiency from sensitizing the Pr with Eu2+ is explored in the system Eu,Pr:BaY2F8. Codoped samples have been grown by the Czochralski growth method, and energy transfer between 2+ and Pr3+ is observed to be very weak. This is probably due to the poor overlap of the Eu2+ emission with the Pr3+ absorption lines, leading to the conclusion that hosts with a stronger crystal field at the Eu2+ site need to be identified.

  16. Structural investigations of vanadyl doped Nb2O5·K2O·B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Anshu; Sanghi, S.; Agarwal, A.; Lather, M.; Bhatnagar, V.; Khasa, S.

    2009-07-01

    Pottasium nioborate glasses of composition xNb2O5·(30-x)K2O·69B2O3 containing 1 mol % of V2O5 were prepared by melt quench technique (1473K, 1h). The electron paramagnetic resonance spectra of VO2+ in these glasses have been recorded in X- band (v approx 9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameters, P and Fermi contact interaction parameter, K have been calculated. It is found that V4+ ions in these glasses exist as VO2+ in octahedral coordination with a tetragonal distortion. The tetragonality of V4+O6 complex decreases with increasing Nb2O5: K2O ratio and also there is an expansion of 3dXY orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400- 4000 cm-1 depicts the presence of both BO3 and BO4 structural units and Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups.

  17. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  18. M2-F2 on ramp

    NASA Image and Video Library

    1966-02-24

    The M2-F2 Lifting Body is seen here on the ramp at the NASA Dryden Flight Research Center. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers -- the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the "F1" -- was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft was modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969.

  19. Crystal structure of 2-(1,3-dioxoindan-2-yl)iso-quinoline-1,3,4-trione.

    PubMed

    Ghalib, Raza Murad; Chidan Kumar, C S; Hashim, Rokiah; Sulaiman, Othman; Fun, Hoong-Kun

    2015-01-01

    In the title iso-quinoline-1,3,4-trione derivative, C18H9NO5, the five-membered ring of the indane fragment adopts an envelope conformation with the nitro-gen-substituted C atom being the flap. The planes of the indane benzene ring and the iso-quinoline-1,3,4-trione ring make a dihedral angle of 82.06 (6)°. In the crystal, mol-ecules are linked into chains extending along the bc plane via C-H⋯O hydrogen-bonding inter-actions, enclosing R 2 (2)(8) and R 2 (2)(10) loops. The chains are further connected by π-π stacking inter-ations, with centroid-to-centroid distances of 3.9050 (7) Å, forming layers parallel to the b axis.

  20. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  1. F-theory and AdS3/CFT2 (2, 0)

    NASA Astrophysics Data System (ADS)

    Couzens, Christopher; Martelli, Dario; Schäfer-Nameki, Sakura

    2018-06-01

    We continue to develop the program initiated in [1] of studying supersymmetric AdS3 backgrounds of F-theory and their holographic dual 2d superconformal field theories, which are dimensional reductions of theories with varying coupling. Imposing 2d N=(0,2) supersymmetry,wederivethegeneralconditionsonthegeometryforTypeIIB AdS3 solutions with varying axio-dilaton and five-form flux. Locally the compact part of spacetime takes the form of a circle fibration over an eight-fold Y_8^{τ } , which is elliptically fibered over a base \\tilde{M}_6 . We construct two classes of solutions given in terms of a product ansatz \\tilde{M}_6}=Σ × {M}_4 , where Σ is a complex curve and \\tilde{M}_4 is locally a Kähler surface. In the first class \\tilde{M}_4 is globally a Kähler surface and we take the elliptic fibration to vary non-trivially over either of these two factors, where in both cases the metrics on the total space of the elliptic fibrations are not Ricci-flat. In the second class the metric on the total space of the elliptic fibration over either curve or surface are Ricci-flat. This results in solutions of the type AdS3 × K3 × ℳ 5 τ , dual to 2d (0, 2) SCFTs, and AdS3 × S 3/Γ × CY 3, dual to 2d (0, 4) SCFTs, respectively. In all cases we compute the charges for the dual field theories with varying coupling and find agreement with the holographic results. We also show that solutions with enhanced 2d N=(2,2) supersymmetry must have constant axio-dilaton. Allowing the internal geometry to be non-compact leads to the most general class of Type IIB AdS5 solutions with varying axio-dilaton, i.e. F-theoretic solutions, that are dual to 4d N=1 SCFTs.

  2. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    NASA Astrophysics Data System (ADS)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  3. Competing E2 and SN2 Mechanisms for the F- + CH3CH2I Reaction.

    PubMed

    Yang, Li; Zhang, Jiaxu; Xie, Jing; Ma, Xinyou; Zhang, Linyao; Zhao, Chenyang; Hase, William L

    2017-02-09

    Anti-E2, syn-E2, inv-, and ret-S N 2 reaction channels for the gas-phase reaction of F - + CH 3 CH 2 I were characterized with a variety of electronic structure calculations. Geometrical analysis confirmed synchronous E2-type transition states for the elimination of the current reaction, instead of nonconcerted processes through E1cb-like and E1-like mechanisms. Importantly, the controversy concerning the reactant complex for anti-E2 and inv-S N 2 paths has been clarified in the present work. A positive barrier of +19.2 kcal/mol for ret-S N 2 shows the least feasibility to occur at room temperature. Negative activation energies (-16.9, -16.0, and -4.9 kcal/mol, respectively) for inv-S N 2, anti-E2, and syn-E2 indicate that inv-S N 2 and anti-E2 mechanisms significantly prevail over the eclipsed elimination. Varying the leaving group for a series of reactions F - + CH 3 CH 2 Y (Y = F, Cl, Br, and I) leads to monotonically decreasing barriers, which relates to the gradually looser TS structures following the order F > Cl > Br > I. The reactivity of each channel nearly holds unchanged except for the perturbation between anti-E2 and inv-S N 2. RRKM calculation reveals that the reaction of the fluorine ion with ethyl iodide occurs predominately via anti-E2 elimination, and the inv-S N 2 pathway is suppressed, although it is energetically favored. This phenomenon indicates that, in evaluating the competition between E2 and S N 2 processes, the kinetic or dynamical factors may play a significant role. By comparison with benchmark CCSD(T) energies, MP2, CAM-B3LYP, and M06 methods are recommended to perform dynamics simulations of the title reaction.

  4. Vibrational spectroscopy of the borate mineral tunellite SrB6O9(OH)2·3(H2O) - Implications for the molecular structure

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei

    2014-02-01

    Tunellite is a strontium borate mineral with formula: SrB6O9(OH)2·3(H2O) and occurs as colorless crystals in the monoclinic pyramidal crystal system. An intense Raman band at 994 cm-1 was assigned to the BO stretching vibration of the B2O3 units. Raman bands at 1043, 1063, 1082 and 1113 cm-1 are attributed to the in-plane bending vibrations of trigonal boron. Sharp Raman bands observed at 464, 480, 523, 568 and 639 cm-1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3567 and 3614 cm-1, attributed to OH units. The molecular structure of a natural tunellite has been assessed by using vibrational spectroscopy.

  5. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  6. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  7. Crystal growth and characterization of bulk Sb2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.

    2018-04-01

    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.

  8. Synthesis and NLO studies of novel (2E)-1-(2-bromo-4,5-dimethoxyphenyL)-3-(3-Bromo-4-Fluorophenyl)Prop-2-en-1-one single crystal

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Prasad, D. Jagadeesh; Guruswamy, B.; Hegde, Shreedatta

    2017-05-01

    A novel organic nonlinear optical (NLO) material (2E)-1-(2-Bromo-4,5-Dimethoxyphenyl)-3-(3-Bromo-4-Fluorophenyl)Prop-2-en-1-one has been synthesized using Claisen-Schmidth condensation method. The chemical structure of the compound was confirmed by recording its FT-IR spectrum and the functional groups were identified. Single crystals were grown by slow evaporation method and the single crystal XRD study reveals that the compound crystallizes in the monoclinic crystal system with a space group -P 2yn. The observed cell parameters are a = 9.346(5) A°, b = 12.953(7) A°, c = 14.355(8) A°, α = 90°, β = 108.379°(9), γ = 90°. UV-Visible study shows that the compound is transparent in the entire visible region and the absorption takes place in the UV range. The Non linear optical efficiency of the crystal was estimated and it is found to be 0.5 times that of standard KDP crystal.

  9. F-22 Increment 3.2B Modernization (F-22 Inc 3.2B Mod)

    DTIC Science & Technology

    2013-12-01

    MAR 2016 SEP 2016 SEP 2016 (Ch-1) Full Rate Production JAN 2018 JAN 2018 JUL 2018 JUL 2018 (Ch-1) Required Assets Available ( RAA ) MAR 2019 MAR 2019 SEP...2019 SEP 2019 (Ch-1) Change Explanations (Ch-1) The Milestone C, Full Rate Production, and Required Assets Available ( RAA ) current estimates changed...successful. Memo RAA is defined as six aircraft and associated support equipment. F-22 Inc 3.2B Mod December 2013 SAR April 16, 2014 17:04:43

  10. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  11. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  12. Self-trapped holes in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  13. Hygroscopic La[B{sub 5}O{sub 8}(OH)]NO{sub 32H{sub 2}O: Insight into the evolution of borate fundamental building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Biao-Chun, E-mail: zhaobiaochun@sohu.com; Sun, Wei, E-mail: 421221789@qq.com; Ren, Wei-Jian, E-mail: 935428502@qq.com

    2013-10-15

    Borates have exceptionally diverse fundamental building blocks (FBBs), but factors controlling the formation of borate FBBs are poorly understood. The title compound La[B{sub 5}O{sub 8}(OH)]NO{sub 32H{sub 2}O crystallizes in the space group P2{sub 1}/n with a=6.5396(12) Å, b=15.550(3) Å, c=10.6719(19) Å, β=90.44(1)° and Z=4 at 173(2) K. Its structure has been refined from single-crystal X-ray diffraction data to R{sub 1}=0.049 (for 2465) and wR{sub 2}=0.173 (for 2459 I>2σ(I)). This structure analysis and first-principles calculations show that the change of the FBB from 3Δ2□ in the title compound to 2Δ3□ in La[B{sub 5}O{sub 8}(OH)(H{sub 2}O)]NO{sub 32H{sub 2}O is accompanied by amore » rotation of the NO{sub 3} group. FTIR, Rietveld and thermal analysis results show that the hygroscopic title compound is partially changed to La[B{sub 5}O{sub 8}(OH)(H{sub 2}O)]NO{sub 32H{sub 2}O, with the conversion of [BO{sub 3}] to [BO{sub 3}(H{sub 2}O)] by water absorption. - Graphical abstract: The change of fundamental building blocks from La[B{sub 5}O{sub 8}(OH)]NO{sub 32H{sub 2}O to La[B{sub 5}O{sub 8}(OH)(H{sub 2}O)]NO{sub 32H{sub 2}O is accompanied by a rotation of the NO{sub 3} group . Display Omitted - Highlights: • Synthesis of a new hydrous lanthanum polyborate nitrate. • Single-crystal XRD structure with the 3Δ2⎕ FBB and an oriented NO{sub 3} group. • DFT calculations locate the H positions in three lanthanide polyborate nitrates. • Rietveld, FTIR and DFT results show hygroscopicity changes the FBBs.« less

  14. Chemical Trend of Superconducting Critical Temperatures in Hole-Doped CuBO2, CuAlO2, CuGaO2, and CuInO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi; Ishikawa, Takahiro; Shimizu, Katsuya

    2016-09-01

    We calculated the superconducting critical temperature (Tc) for hole-doped CuXO2 (X = B, Al, Ga, and In) compounds using first-principles calculations based on rigid band model. The compounds with X = Al, Ga, and In have delafosite-type structures and take maximum Tc values at 0.2-0.3 with respect to the number of holes (Nh) in the unit-cell: 50 K for CuAlO2, 10 K for CuGaO2, and 1 K for CuInO2. The decrease of Tc for this change in X is involved by covalency reduction and lattice softening associated with the increase of ionic mass and radius. For CuBO2 which is a lighter compound than CuAlO2, the delafosite structure is unstable and a body-centered tetragonal structure emerges as the most stable structure. As the results, the electron-phonon interaction is decreased and Tc is lower by approximately 43 K than that of CuAlO2 at the hole-doping conditions of Nh = 0.2-0.3.

  15. Characterization of bubble core and cloudiness in Yb3+:Sr5(PO4)3F crystals using Micro-Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Roy, U N; Bai, L

    Ytterbium doped strontium fluoroapatite Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb: S-FAP) crystals have been used in High Average Power Laser systems as gain medium. Growth induced defects associated with the crystal often affect their performance. In order to improve the crystal quality and its optical applications, it is imperative to understand the nature of these defects. In this study, we utilize Micro-Raman spectroscopy to characterize two common growth-induced defects: bubble core and cloudiness. We find the bubble core consist of voids and microcrystals of Yb: S-FAP. These microcrystals have very different orientation from that of the pure crystal outside themore » bubble core. In contrast to a previous report, neither Sr{sub 3}(PO{sub 4}){sub 2} nor Yb{sub 2}O{sub 3} are observed in the bubble core regions. On the other hand, the cloudy regions are made up of the host materials blended with a structural deformation along with impurities which include CaCO{sub 3}, YbPO{sub 4}, SrHPO{sub 4} and Sr{sub 2}P{sub 2}O{sub 7}. The impurities are randomly distributed in the cloudy regions. This analysis is necessary for understanding and eliminating these growth defects in Yb:S-FAP crystals.« less

  16. Ca 3d unoccupied states in Bi2Sr2CaCu2O8 investigated by Ca L2,3 x-ray-absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Borg, A.; King, P. L.; Pianetta, P.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.; Soldatov, A. V.; della Longa, S.; Bianconi, A.

    1992-10-01

    The high-resolution Ca L2,3 x-ray-absorption near-edge-structure (XANES) spectrum of a Bi2Sr2CaCu2O8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200×200 μm2. The Ca L2,3 XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF2. Good agreement between the calculated and experimental crystal-field splitting Δf of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O(in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, we have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO2 planes separated by the Ca ions.

  17. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  18. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    NASA Astrophysics Data System (ADS)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  19. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Sanders, W. A.; Kiser, J. D.

    1988-01-01

    Glasses in the yttria-silica system with 20-40 mol pct Y2O3 have been subjected to recrystallization studies after melting at 1900-2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma-prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat-treatment in air at 1100-1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristobalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  20. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Lee, William E.; Sanders, W. A.; Kiser, J. D.

    1991-01-01

    Glasses in the yttria-silica system with 20 to 40 mol pct Y2O3 were subjected to recrystallization studies after melting at 1900 to 2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat treatment in air at 1100 to 1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristabalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  1. Optical spectra and emission characteristics of terbium-doped potassium-lead double chloride crystals (KPb2Cl5:Tb3+)

    NASA Astrophysics Data System (ADS)

    Tkachuk, A. M.; Ivanova, S. E.; Mirzaeva, A. A.; Isaenko, L. I.

    2017-05-01

    Optical transitions in KPb2Cl5:Tb3+ crystals are studied experimentally and theoretically. The absorption cross-section spectra are plotted and the oscillator strengths of transitions from the ground terbium state to excited multiplets are determined. Intensity parameters Ωt for KPC:Tb3+ are determined by the Judd-Ofelt method to be Ω2 = 2.70 × 10-20 cm2, Ω4 = 7.0 × 10-20 cm2, and Ω6 = 0.72 × 10-20 cm2. These values were used to calculate such characteristics of spontaneous radiative transitions as oscillator strengths, probabilities of radiative transitions, and radiative lifetimes. The emission spectra of KPb2Cl5:Tb3+ crystals upon UV excitation and the decay kinetics of luminescence from the excited 5 D 3 and 5 D 4 levels are studied experimentally, the lifetimes of these levels are determined, and the dependences of the rates of nonradiative relaxation from the excited 7 F j ( j = 0-5), 5 D 4, and 5 D 3 levels to lower-lying terbium levels are calculated. It is shown that the population of the 5 D 4 level in KPC:Tb3+ crystals occurs according to a cascade scheme, which leads to quenching of the 5 D 3 level. The calculated data agree well with the known experimental rates of multiphonon nonradiative transitions for Dy:KPC, Nd:KPC, Er:KPC, Tb:KPB, and Nd:KPB crystals. It is shown that transitions in the near-IR (3-6 μm) region in double halide crystals (MPb2Hal5) are almost unquenched and the rates of nonradiative relaxation of excited levels spaced by energy gaps Δ E ji > 1000 cm-1 are W ji NR < 103s-1. This circumstance suggests that it is possible to obtain stimulated emission in KPb2Cl5:RE3+ crystals in the IR spectral region up to 6 μm.

  2. TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer.

    PubMed

    Ma, Yueyun; Xin, Yijuan; Li, Rui; Wang, Zhe; Yue, Qiaohong; Xiao, Fengjing; Hao, Xiaoke

    2014-03-10

    TFDP3 has been previously identified as an inhibitor of E2F molecules. It has been shown to suppress E2F1-induced apoptosis dependent P53 and to play a potential role in carcinogenesis. However, whether it indeed helps cancer cells tolerate apoptosis stress in cancer tissues remains unknown. TFDP3 expression was assessed by RT-PCR, in situ hybridization and immunohistochemistry in normal human tissues, cancer tissues and prostate cancer tissues. The association between TFDP3 and E2F1 in prostate cancer development was analyzed in various stages. Apoptosis was evaluated with annexin-V and propidium iodide staining and flow-cytometry. The results show that, in 96 samples of normal human tissues, TFDP3 could be detected in the cerebrum, esophagus, stomach, small intestine, bronchus, breast, ovary, uterus, and skin, but seldom in the lung, muscles, prostate, and liver. In addition, TFDP3 was highly expressed in numerous cancer tissues, such as brain-keratinous, lung squamous cell carcinoma, testicular seminoma, cervical carcinoma, skin squamous cell carcinoma, gastric adenocarcinoma, liver cancer, and prostate cancer. Moreover, TFDP3 was positive in 23 (62.2%) of 37 prostate cancer samples regardless of stage. Furthermore, immunohistochemistry results show that TFDP3 was always expressed in coordination with E2F1 at equivalent expression levels in prostate cancer tissues, and was highly expressed particularly in samples of high stage. When E2F1 was extrogenously expressed in LNCap cells, TFDP3 could be induced, and the apoptosis induced by E2F1 was significantly decreased. It was demonstrated that TFDP3 was a broadly expressed protein corresponding to E2F1 in human tissues, and suggested that TFDP3 is involved in prostate cancer cell survival by suppressing apoptosis induced by E2F1. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Trigonal LaF3: a novel SRS-active crystal

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Hanuza, J.; Rhee, H.; Eichler, H. J.; Zhang, J.; Tang, D.; Shen, D.; Yoneda, H.; Shirakawa, A.

    2014-12-01

    Trigonal fluoride LaF3, widely known as a host crystal for Ln3+-lasants, was found to be an attractive many-phonon Raman material and a subject for the investigation of different χ(3)-nonlinear optical effects. We present the manifestation of photon-phonon interactions related to stimulated Raman scattering (SRS) and Raman-induced four-wave mixing (RFWM) processes, initiated by picosecond exсitation at room temperature. Sesqui-octave-spanning Stokes and anti-Stokes frequency comb generation as well as many-step cascaded and cross-cascaded up-conversion χ(3)-nonlinear processes have been observed. The recorded spectral lines originated by SRS and RFWM are identified and attributed to the three observed SRS-promoting phonon modes. The lower limit of the steady-state Raman gain coefficient for near-IR first Stokes generation was estimated. Moreover, a brief review of known Ln3+ : LaF3 laser crystals and SRS-active fluorides is given.

  4. Crystal structure of the ternary silicide Gd2Re3Si5.

    PubMed

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å.

  5. Chemiluminescence of BO{sub 2} to map the creation of thermal NO in flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maligne, D.; Cessou, A.; Stepowski, D.

    The aim of this study is to detect and map the local conditions that generate thermal NO in flames. According to the Zeldovich mechanism, the formation of NO comes from the local conjunction of a high concentration of atomic oxygen and a temperature above a critical high level imposed by the high activation energy of the rate-limiting reaction. The green light emitted when a flame is seeded with boron salts is a chemiluminescence from the BO{sup *}{sub 2} that is chemically formed in its excited state when BO reacts with atomic oxygen. As the rate of this oxidation is alsomore » strongly increasing with temperature, the chemiluminescence of BO{sub 2} depends on the concentration of atomic oxygen and on the temperature in a way similar to the formation rate of thermal NO. This double analogy suggests the possibility of an experimental in situ simulation of the formation rate of thermal NO or at least the use of the chemiluminescence of BO{sub 2} to map the sites where thermal NO is being created. Spectroscopic experiments and comparisons with numerical simulations have been performed to test the feasibility of this technique in laminar premixed and diffusion methane/air flames. The agreement is good except in the burnt gases of fuel-rich flames. Imaging strategies with different spectral filters have been developed in the same flames to overcome the problem of interference from soot radiation in diffusion flames. (author)« less

  6. 2-Methylpyridinium/pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olates as potent anticonvulsant agents—synthesis and crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangaiyarkarasi, G.; Kalaivani, D., E-mail: kalaivbalaj@yahoo.co.in

    2013-12-15

    The molecular salt, 2-methylpyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropy-rimidin-4-olate) (I), is prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, pyrimidine-2,4,6-(1H,3H,5H)-trione (barbituric acid) and 2-methylpyridine at room temperature, and the molecular salt, pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (II), is prepared from the same reactants, by dissolving them in hot DMSO and ethanol mixture at 70°C. The structures of I and II are characterized by visible, IR, {sup 1}H-NMR, {sup 13}C-NMR and elemental analysis and confirmed by single crystal X-ray analysis. Both the salts crystallize in triclinic crystal system with sp. gr. P-bar1. They possess noticeable anticonvulsant activity even at low concentration (25 mg/kg). Acute toxicity studies of these complexesmore » indicate that LD{sub 50} values are greater than 1500 mg/kg and the tested animals do not show any behavioural changes.« less

  7. Defect Structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) Nonstoichiometric Tysonite Phases

    NASA Astrophysics Data System (ADS)

    Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Bolotina, N. B.

    2018-01-01

    Characteristic features of defect structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) nonstoichiometric phases of different compositions are determined from X-ray diffraction data. Interest in subtle details of their structure is determined by the possibility of ion transport over fluorine vacancies and by a strong compositional dependence of the ionic conductivity. The La0.95Sr0.05F2.95, La0.95Ba0.05F2.95, and Nd0.95Ca0.05F2.95 phases, as well as the La0.9Ba0.1F2.9 phase, crystallize as β-LaF3 (sp. gr. P3̅c1, Z = 6). The La0.9Sr0.1F2.9 and Nd0.9Ca0.1F2.9 phases lose their superstructure and are described by a cell whose volume is three times smaller (sp. gr. P63/ mmc, Z = 2). Defects of crystal structure R1 - y M y F3 - y are not exhausted by vacancies in fluorine positions. All crystals with a "large" cell are twinned according to the merohedral twin law. The majority of atomic positions in models with a "small" cell are split by group symmetry elements and are occupied statistically.

  8. Experimental observation of charge-shift bond in fluorite CaF2.

    PubMed

    Stachowicz, Marcin; Malinska, Maura; Parafiniuk, Jan; Woźniak, Krzysztof

    2017-08-01

    On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å -1 , a quantitative experimental charge density distribution has been obtained for fluorite (CaF 2 ). The atoms-in-molecules integrated experimental charges for Ca 2+ and F - ions are +1.40 e and -0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca 2+ ...F - and F - ...F - contacts revealed the character of these interactions. The Ca 2+ ...F - interaction is clearly a closed shell and ionic in character. However, the F - ...F - interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca 2+ ...F - bonded radii - measured as distances from the centre of the ion to the critical point - are 1.21 Å for the Ca 2+ cation and 1.15 Å for the F - anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F - ...F - bond path and bond critical point is also found in the CaF 2 crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.

  9. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  10. Crystal structure of 3-[(4-benzyl-piperazin-1-yl)meth-yl]-5-(thio-phen-2-yl)-2,3-di-hydro-1,3,4-oxa-diazole-2-thione.

    PubMed

    Al-Omary, Fatmah A M; El-Emam, Ali A; Ghabbour, Hazem A; Chidan Kumar, C S; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-03-01

    The title 1,3,4-oxa-diazole-2-thione derivative, C18H20N4OS2, crystallized with two independent mol-ecules (A and B) in the asymmetric unit. The 2-thienyl rings in both mol-ecules are rotationally disordered over two orientations by approximately 180° about the single C-C bond that connects it to the oxa-diazole thione ring; the ratios of site occupancies for the major and minor components were fixed in the structure refinement at 0.8:0.2 and 0.9:0.1 in mol-ecules A and B, respectively. The 1,3,4-oxa-diazole-2-thione ring forms dihedral angles of 7.71 (16), 10.0 (11) and 77.50 (12)° (mol-ecule A), and 6.5 (3), 6.0 (9) and 55.30 (12)° (mol-ecule B) with the major and minor parts of the disordered thio-phene ring and the mean plane of the adjacent piperazine ring, respectively, resulting in approximately V-shaped conformations for the mol-ecules. The piperazine ring in both mol-ecules adopts a chair conformation. The terminal benzene ring is inclined towards the mean plane of the piperazine ring with N-C-C-C torsion angles of -58.2 (3) and -66.2 (3)° in mol-ecules A and B, respectively. In the crystal, no inter-molecular hydrogen bonds are observed. The crystal packing features short S⋯S contacts [3.4792 (9) Å] and π-π inter-actions [3.661 (3), 3.664 (11) and 3.5727 (10) Å], producing a three-dimensional network.

  11. An alkaline tin(II) halide compound Na{sub 3}Sn{sub 2}F{sub 6}Cl: Synthesis, structure, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Pifu; University of the Chinese Academy of Sciences, Beijing 100049; Luo, Siyang

    A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{submore » 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.« less

  12. Crystal structures of (2E)-1-(3-bromo-thio-phen-2-yl)-3-(2-meth-oxy-phen-yl)prop-2-en-1-one and (2E)-1-(3-bromo-thio-phen-2-yl)-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one.

    PubMed

    Naik, Vasant S; Shettigar, Venkataraya; Berglin, Tyler S; Coburn, Jillian S; Jasinski, Jerry P; Yathirajan, Hemmige S

    2015-08-01

    In the mol-ecules of the title compounds, (2E)-1-(3-bromo-thio-phen-2-yl)-3-(2-meth-oxy-phen-yl)prop-2-en-1-one, C14H11BrO2S, (I), which crystallizes in the space group P-1 with four independent mol-ecules in the asymmetric unit (Z' = 8), and (2E)-1-(3-bromo-thio-phen-2-yl)-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one, C15H13BrO3S, (II), which crystallizes with Z' = 8 in the space group I2/a, the non-H atoms are nearly coplanar. The mol-ecules of (I) pack with inversion symmetry stacked diagonally along the a-axis direction. Weak C-H⋯Br intra-molecular inter-actions in each of the four mol-ecules in the asymmetric unit are observed. In (II), weak C-H⋯O, bifurcated three-center inter-molecular inter-actions forming dimers along with weak C-H⋯π and π-π stacking inter-actions are observed, linking the mol-ecules into sheets along [001]. A weak C-H⋯Br intra-molecular inter-action is also present. There are no classical hydrogen bonds present in either structure.

  13. Crystal structure of (2R*,3aR*)-2-phenyl-sulfonyl-2,3,3a,4,5,6-hexa-hydro-pyrrolo-[1,2-b]isoxazole.

    PubMed

    Hernández, Yaiza; Marcos, Isidro; Garrido, Narciso M; Sanz, Francisca; Diez, David

    2017-01-01

    The title compound, C 12 H 15 NO 3 S, was prepared by 1,3-dipolar cyclo-addition of 3,4-di-hydro-2 H -pyrrole 1-oxide and phenyl vinyl sulfone. In the mol-ecule, both fused five-membered rings display a twisted conformation. In the crystal, C-H⋯O hydrogen bonds link neighbouring mol-ecules, forming chains running parallel to the b axis.

  14. Time-dependent quantum wave packet calculation for nonadiabatic F(2P3/2,2P1/2)+H2 reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xie, Ting-Xian; Han, Ke-Li; Zhang, John Z. H.

    2003-12-01

    In this paper we present a time-dependent quantum wave packet calculation for the reaction of F(2P3/2,2P1/2)+H2 on the Alexander-Stark-Werner potential energy surface. The reaction probabilities and the integral cross sections for the reaction of F(2P3/2,2P1/2)+H2 (v=j=0) are computed using time-dependent quantum methods with the centrifugal sudden approximate. The results are compared with recent time-independent quantum calculations. The two-surface reaction probability for the initial ground spin-orbit state of J=0.5 is similar to the time-independent result obtained by Alexander et al. [J. Chem. Phys. 113, 11084 (2000)]. Our calculation also shows that electronic coupling has a relatively minor effect on the reactivity from the 2P3/2 state but a non-negligible one from the 2P1/2 state. By comparison with exact time-independent calculations, it is found that the Coriolis coupling plays a relatively minor role. In addition, most of the reactivity of the excited state of fluorine atom results from the spin-orbit coupling.

  15. UTa{sub 2}O(S{sub 2}){sub 3}Cl{sub 6}: A ribbon structure containing a heterobimetallic 5d-5f M{sub 3} cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Daniel M.; Chan, George H.; Ellis, Donald E.

    2010-02-15

    A new solid-state compound containing a heterobimetallic cluster of U and Ta, UTa{sub 2}O(S{sub 2}){sub 3}Cl{sub 6}, has been synthesized and its structure has been characterized by single-crystal X-ray diffraction methods. UTa{sub 2}O(S{sub 2}){sub 3}Cl{sub 6} was synthesized from UCl{sub 4} and Ta{sub 1.2}S{sub 2} at 883 K. The O is believed to have originated in the Ta{sub 1.2}S{sub 2} reactant. The compound crystallizes in the space group P1-bar of the triclinic system. The structure comprises a UTa{sub 2} unit bridged by mu{sub 2}-S{sub 2} and mu{sub 3}-O groups. Each Ta atom bonds to two mu{sub 2}-S{sub 2}, the mu{submore » 3}-O, and two terminal Cl atoms. Each U atom bonds to two mu{sub 2}-S{sub 2}, the mu{sub 3}-O, and four Cl atoms. The Cl atoms bridge in pairs to neighboring U atoms to form a ribbon structure. The bond distances are normal and are consistent with formal oxidation states of +IV/+V/-II/-I/-I for U/Ta/O/S/Cl, respectively. The optical absorbance spectrum displays characteristic transition peaks near the absorption edge. Density functional theory was used to assign these peaks to transitions between S{sup 1-} valence-band states and empty U 5f-6d hybrid bands. Density-of-states analysis shows overlap between Ta 5d and U bands, consistent with metal-metal interactions. - The UTa2O(S2)3Cl6 cluster with completed coordination sphere around uranium« less

  16. Optical properties of Mg2+, Yb3+, and Ho3+ tri-doped LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Dai, Li; Liu, Chun-Rui; Tan, Chao; Yan, Zhe-Hua; Xu, Yu-Heng

    2017-04-01

    A series of LiNbO3 crystals tri-doped with Mg{}2+, Yb{}3+, and Ho{}3+ are grown by the conventional Czochraski technique. The concentrations of Mg{}2+, Yb{}3+, and Ho{}3+ ions in Mg:Yb:Ho:LiNbO3 crystals are measured by using an inductively coupled plasma atomic emission spectrometry. The x-ray diffraction is proposed to determine the lattice constant and analyze the internal structure of the crystal. The light-induced scattering of Mg:Yb:Ho:LiNbO3 crystal is quantitatively described via the threshold effect of incident exposure energy flux. The exposure energy ({E}{{r}}) is calculated to discuss the optical damage resistance ability. The exposure energy of Mg(7 mol):Yb:Ho:LiNbO3 crystal is 709.17 J/cm2, approximately 425 times higher than that of the Mg(1 mol):Yb:Ho:LiNbO3 crystal in magnitude. The blue, red, and very intense green bands of Mg:Yb:Ho:LiNbO3 crystal are observed under the 980-nm laser excitation to evaluate the up-conversion emission properties. The dependence of the emission intensity on pumping power indicates that the up-conversion emission is a two-photon process. The up-conversion emission mechanism is discussed in detail. This study indicates that Mg:Yb:Ho:LiNbO3 crystal can be applied to the fabrication of new multifunctional photoluminescence devices. Project supported by the National Natural Science Foundation of China (Grant No. 51301055), the Youth Science Fund of Heilongjiang Province, China (Grant No. QC2015061), the Special Funds of Harbin Innovation Talents in Science and Technology Research, China (Grant No. 2015RQQXJ045 ), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201501).

  17. UV-vis spectroscopic studies of CaF2 photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Stoica, Martina; Herrmann, Andreas; Hein, Joachim; Rüssel, Christian

    2016-12-01

    A photo-thermo-refractive glass based on the system Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 doped with Ag2O, CeO2, SnO2, Sb2O3 and KBr was investigated. This glass undergoes a permanent refractive index change after UV irradiation and subsequent two step heat treatment at temperatures above Tg. This is due to the formation of Ag metal clusters which act as nucleation centers for CaF2 crystallization. Oxidation of Ce3+ by UV light is the initial reaction and acts as photosensitizer in the glass. The UV-vis absorption spectra during this photo-induced crystallization process were measured. The spectral components that form the absorption spectra of cerium were studied in detail by a band separation with Gaussian functions. Deconvolution of the cerium absorption bands shows an envelope of five spectral components for the trivalent cerium due to the 4f-5d transitions and two spectral components for the tetravalent cerium caused by charge transfer transitions. The effect of different dopants and melting conditions on the photo-thermal process were studied to investigate the influence of glass technology on the photoprocess.

  18. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP)✩

    PubMed Central

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2018-01-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions. PMID:29628525

  19. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs 2LiMn 3F 12

    DOE PAGES

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs 2Mn 3F 12 kagome lattice and on the (001) surface of a Cs 2LiMn 3F 12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding modelmore » based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.« less

  20. Optical resolution by preferential crystallization of (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid and its use in synthesizing optically active 2-amino-2-methyl-3-phenylpropanoic acid.

    PubMed

    Shiraiwa, Tadashi; Suzuki, Masahiro; Sakai, Yoshio; Nagasawa, Hisashi; Takatani, Kazuhiro; Noshi, Daisuke; Yamanashi, Kenji

    2002-10-01

    To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.

  1. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lin, Z. S.; Molokeev, M. S.; Yelisseyev, A. P.; Zhurkov, S. A.

    2012-03-01

    Room-temperature modification of potassium oxyfluorotungstate, G2-K3WO3F3, has been prepared by low-temperature chemical route and single crystal growth. Wide optical transparency range of 0.3-9.4 μm and forbidden band gap Eg=4.32 eV have been obtained for G2-K3WO3F3 crystal. Meanwhile, its electronic structure has been calculated with the first-principles calculations. The good agreement between the theorectical and experimental results have been achieved. Furthermore, G2-K3WO3F3 is predicted to possess the relatively large nonlinear optical coefficients.

  2. Crystal structure of the ternary silicide Gd2Re3Si5

    PubMed Central

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-01-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta­silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo­octa­hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å. PMID:25552967

  3. M2-F2 cockpit instrument panels

    NASA Image and Video Library

    1966-03-27

    This photo shows the right side cockpit instrumentation panel of the M2-F2 Lifting Body. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers -- the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the "F1" -- was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft was modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969.

  4. M2-F2 cockpit instrument panels

    NASA Image and Video Library

    1966-03-27

    This photo shows the left side cockpit instrumentation panel of the M2-F2 Lifting Body. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers -- the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the "F1" -- was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft was modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969.

  5. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    DTIC Science & Technology

    2016-03-30

    have recently implemented Josephson junction superconducting devices into qubits [1-6]. Before a multi -qubit quantum computer is realized, however...Low-Leakage Superconducting Tunnel Junctions with a Single-Crystal Al2O3 Barrier* S Oh1,2, K Cicak1, R McDermott3, K B Cooper3, K D Osborn1, R W...growth scheme for single-crystal Al2O3 tunnel barriers. The barriers are epitaxially grown on single-crystal rhenium (Re) base electrodes that are

  6. Note: High-power piezoelectric transformer fabricated with ternary relaxor ferroelectric Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3 single crystal.

    PubMed

    Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou

    2016-03-01

    A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm(3). This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density.

  7. Single crystal growth of beta-Al2O3 for iso-index filters

    NASA Astrophysics Data System (ADS)

    Belt, R. F.; Randles, M. H.; Creamer, J. E.

    1992-03-01

    Single crystals of Beta-Al2O3 with a nominal composition of Na2O.11 Al2O3 were grown from stoichiometric melts contained in an iridium crucible. Seeding was achieved from an Al2O3 single crystal. The growth axis was along a, and x-ray data confirmed the unit cell parameters of a = 5.595 A and c = 22.531 A. The top and bottom lattice constants of the boules were equal to + 0.002 A and indicated a fairly uniform composition. The measured density was 3.25 g/cc. The boules remained physically intact with no major cracks. However, some cleavage progressed on the basal planes as determined by the appearance of interference fringes. Water vapor and CO2 did not enhance the cracking. Crystals were stored in a desiccator but continued to cleave. Ionic diffusions of Na(+), Ag(+), Pb(2+), Rb(+), Ca(2+), Cd(2+), and Tl(+) were performed by immersion of beta-Al2O3 into nitrate or chloride melts at temperatures of 360-7400 C.

  8. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  9. F-22 Increment 3.2B Modernization (F-22 Inc 3.2B Mod)

    DTIC Science & Technology

    2015-12-01

    Production Jan 2018 Jan 2018 Jul 2018 Jul 2018 Required Assets Available ( RAA ) Mar 2019 Mar 2019 Sep 2019 Sep 2019 Change Explanations None Notes... RAA is defined as six aircraft and associated support equipment. F-22 Inc 3.2B Mod December 2015 SAR March 23, 2016 16:11:54 UNCLASSIFIED 9...Mar 2016 N/A Jun 2016 RAA N/A Mar 2019 N/A Sep 2019 Total Cost (TY $M) N/A 1584.1 N/A 1542.6 Total Quantity N/A 152 N/A 152 PAUC N/A 10.422 N/A 10.149

  10. Structural, optical and electronic properties of K2Ba(NO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Isaenko, L. I.; Korzhneva, K. E.; Goryainov, S. V.; Goloshumova, A. A.; Sheludyakova, L. A.; Bekenev, V. L.; Khyzhun, O. Y.

    2018-02-01

    Nitrate crystals reveal nonlinear optical properties and could be considered as converters of laser radiation in the short-wave region. The conditions for obtaining and basic properties of K2Ba(NO3)4 double nitrate crystals were investigated. Crystal growth was implemented by slow cooling in the temperature range of 72-49 °C and low rate evaporation. The structural analysis of K2Ba(NO3)4 formation on the basis of two mixed simple nitrate structures is discussed. The main groups of oscillations in K2Ba(NO3)4 crystal were revealed using Raman and IR spectroscopy, and the table of vibrations for this compound was compiled. The electronic structure of K2Ba(NO3)4 was elucidated in the present work from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectroscopy (XPS) was employed in the present work to measure binding energies of the atoms constituting the titled compound and its XPS valence-band spectrum for both pristine and Ar+ ion-bombarded surfaces. Further, total and partial densities of states of constituent atoms of K2Ba(NO3)4 have been calculated. The calculations reveal that the O 2p states dominate in the total valence-band region of K2Ba(NO3)4 except of its bottom, where K 3p and Ba 5p states are the principal contributors, while the bottom of the conduction band is composed mainly of the unoccupied O 2p states, with somewhat smaller contributions of the N 2p∗ states as well. With respect to the occupation of the valence band by the O 2p states, the present band-structure calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the X-ray emission O Kα band for the K2Ba(NO3)4 crystal under study. Furthermore, the present calculations indicate that the K2Ba(NO3)4 compound is a direct-gap material.

  11. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    NASA Astrophysics Data System (ADS)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  12. Weak hydrogen bonding and fluorous interactions in the chloride and bromide salts of 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium.

    PubMed

    Lu, Norman; Wei, Rong Jyun; Lin, Kwan Yu; Alagesan, Mani; Wen, Yuh Sheng; Liu, Ling Kang

    2017-04-01

    Neutralization of 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridine with hydrohalo acids HX (X = Cl and Br) yielded the pyridinium salts 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium chloride, C 9 H 10 F 4 NO + ·Cl - , (1), and 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium bromide, C 9 H 10 F 4 NO + ·Br - , (2), both carrying a fluorous side chain at the para position of the pyridinium ring. Single-crystal X-ray diffraction techniques revealed that (1) and (2) are isomorphous. The halide anions accept four hydrogen bonds from N-H, ortho-C-H and CF 2 -H groups. Two cations and two anions form a centrosymmetric dimeric building block, utilizing complimentary N-H...X...H-Csp 3 connections. These dimers are further crosslinked, utilizing another complimentary Csp 2 -H...X...H-Csp 2 connection. The pyridinium rings are π-stacked, forming columns running parallel to the a axis that make angles of ca 44-45° with the normal to the pyridinium plane. There are also supramolecular C-H...F-C interactions, namely bifurcated C-H...F and bifurcated C-F...H interactions; additionally, one type II C-F...F-C halogen bond has been observed.

  13. Improved process for generating ClF/sub 3/ from ClF and F/sub 2/

    DOEpatents

    Reiner, R.H.; Pashley, J.H.; Barber, E.J.

    The invention is an improvement in the process for producing gaseous ClF/sub 3/ by reacting ClF and F/sub 2/ at elevated temperature. The improved process comprises conducting the reaction in the presence of NiF/sub 2/, which preferably is in the form of particles or in the form of a film or layer on a particulate substrate. The nickel fluoride acts as a reaction catalyst, significantly increasing the reaction rate and thus permitting valuable reductions in process temperature, pressure, and/or reactor volume.

  14. Shock Compression Response of Calcium Fluoride (CaF2)

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2017-06-01

    The fluorite crystal structure is a textbook lattice that is observed for many systems, such as CaF2, Mg2 Si, and CeO2. Specifically, CaF2 is a useful material for studying the fluorite system because it is readily available as a single crystal. Under static compression, CaF2 is known to have at least three solid phases: fluorite, cotunnite, and a Ni2 In phase. Along the Hugoniot CaF2 undergoes a fluorite to cotunnite phase transition, however, at higher shock pressures it is unknown whether CaF2 undergoes another solid phase transition or melts directly from the cotunnite phase. In this work, we conducted planar shock compression experiments on CaF2 using Sandia's Z-machine and a two-stage light gun up to 900 GPa. In addition, we use density functional theory (DFT) based quantum molecular dynamics (QMD) simulations to provide insight into the CaF2 state along the Hugoniot. In collaboration with: Michael Desjarlais, Ray Lemke, Patricia Kalita, Scott Alexander, Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.

  15. Rates and mechanism of fluoride and water exchange in UO(2)F(5)(3-) and [UO(2)F(4)(H(2)O)](2-) studied by NMR spectroscopy and wave function based methods.

    PubMed

    Vallet, Valérie; Wahlgren, Ulf; Szabó, Zoltán; Grenthe, Ingmar

    2002-10-21

    The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.

  16. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    NASA Astrophysics Data System (ADS)

    Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.

    1989-06-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].

  17. Quench hardening of Sb0.2 Bi1.8Te3, Bi2Te2.8Se0.2 and Sn0.2 Bi1.8Te3 single crystals

    NASA Astrophysics Data System (ADS)

    Soni, P. H.

    2018-02-01

    The V2-VI3 intermetallics are narrow band gap semiconductors and well known for their thermoelectric properties. They therefore offer a convenient route to tune band gap for manipulating thermoelectric parameters. The V group element Sb can be fruitfully used to substitute Bi in various proportions thus forming a psuedobinary solid solution. The electronic in general and the thermoelectric properties in particular of this psuedobinary have been amply reported. However there are no reports found on mechanical properties. I have used Sb0.2 Bi1.8Te3, Bi2Te2.8Se0.2 and Sn0.2 Bi1.8Te3single crystals grown using Bridgman technique for the quenching treatment followed by hardness testing. Vickers hardness tests were conducted on the cleavage planes of the crystals quenched from various high temperatures and the quench hardenening coefficient values have been determined. The hardness tests were carried out at various applied loads also to explore load dependence of the measured hardness. The results are reported in the paper.

  18. Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.

    PubMed

    Huang, Ming-Ju; Watts, John D

    2010-09-23

    Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).

  19. Detergent-Induced Stabilization and Improved 3D Map of the Human Heteromeric Amino Acid Transporter 4F2hc-LAT2

    PubMed Central

    Harder, Daniel; Stauffer, Mirko; Jeckelmann, Jean-Marc; Brühlmann, Béla; Rosell, Albert; Ilgü, Hüseyin; Kovar, Karin; Palacín, Manuel; Fotiadis, Dimitrios

    2014-01-01

    Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level. PMID:25299125

  20. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    PubMed

    Meury, Marcel; Costa, Meritxell; Harder, Daniel; Stauffer, Mirko; Jeckelmann, Jean-Marc; Brühlmann, Béla; Rosell, Albert; Ilgü, Hüseyin; Kovar, Karin; Palacín, Manuel; Fotiadis, Dimitrios

    2014-01-01

    Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.