Sample records for kc method numerical

  1. KC-46A Tanker Modernization (KC-46A)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-387 KC-46A Tanker Modernization (KC-46A) As of FY 2017 President’s Budget Defense Acquisition...Management Information Retrieval (DAMIR) March 22, 2016 16:45:38 UNCLASSIFIED KC-46A December 2015 SAR March 22, 2016 16:45:38 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost KC-46A December 2015 SAR March 22

  2. KC-130J Transport Aircraft (KC-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-433 KC-130J Transport Aircraft (KC-130J) As of FY 2017 President’s Budget Defense Acquisition...Management Information Retrieval (DAMIR) March 23, 2016 15:23:28 UNCLASSIFIED KC-130J December 2015 SAR March 23, 2016 15:23:28 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost KC-130J December 2015 SAR March 23

  3. KC-135 on ramp

    NASA Technical Reports Server (NTRS)

    1958-01-01

    The Boeing KC-135 Stratotanker, besides being used extensively in its primary role as an inflight aircraft refueler, has assisted in several projects at the NASA Dryden Flight Research Center, Edwards, California. In 1957 and 1958, Dryden was asked by what was then the Civil Aeronautics Administration (later absorbed into the Federal Aviation Administration (FAA) in 1958) to help establish new approach procedure guidelines on cloud-ceiling and visibility minimums for Boeing's first jet airliner, the B-707. Dryden used a KC-135 (the military variant of the 707), seen here on the runway at Edwards Air Force Base, to aid the CAA in these tests. In 1979 and 1980, Dryden was again involved with general aviation research with the KC-135. This time, a special wingtip 'winglet', developed by Richard Whitcomb of Langley Research Center, was tested on the jet aircraft. Winglets are small, nearly vertical fins installed on an airplane's wing tips to help produce a forward thrust in the vortices that typically swirl off the end of the wing, thereby reducing drag. This winglet idea was tested at the Dryden Flight Research Center on a KC-135A tanker loaned to NASA by the Air Force. The research showed that the winglets could increase an aircraft's range by as much as 7 percent at cruise speeds. The first application of NASA's winglet technology in industry was in general aviation business jets, but winglets are now being incorporated into most new commercial and military transport jets, including the Gulfstream III and IV business jets, the Boeing 747-400 and MD-11 airliners, and the C-17 military transport. In the 1980's, a KC-135 was used in support of the Space Shuttle program. Since the Shuttle was to be launched from Florida, researchers wanted to test the effect of rain on the sensitive thermal tiles. Tiles were mounted on special fixtures on an F-104 aircraft and a P-3 Orion. The F-104 was flown in actual rain conditions, and also behind the KC-135 spray tanker as it

  4. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 23, 2004 to June 27, 2005. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describe tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  5. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Skinner, Noel C.

    1999-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 20, 1998 to June 20, 1999. Included is a general overview of KC-135 activities manifested and coordinated by the Life Sciences Research Laboratories. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  6. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Skinner, Noel C.; Schlegel, Todd T. (Technical Monitor)

    2001-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from January to June 15, 2001. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  7. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  8. KC-135A in flight - winglet study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The KC-135 with the winglets in flight over the San Gabriel mountains, south of Edwards AFB. While wind tunnel tests suggested that winglets - developed by NASA Langley's Richard Whitcomb - would significantly reduce drag, flight research proved their usefulness. Winglets were installed on an Air Force KC-135 and research flights were made in 1979 and 1980. These showed drag in flight was reduced by as much as 7 percent. Winglets soon appeared on production aircraft, although these were smaller than those mounted on the KC-135.

  9. KC-135A in flight - winglet study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This Boeing KC-135 Stratotanker, besides being used extensively in its primary role as an inflight aircraft refueler, has assisted in several projects at the NASA Dryden Flight Research Center, Edwards, California. In 1979 and 1980, Dryden was involved with general aviation research with the KC-135. A special wingtip 'winglet', developed by Richard Whitcomb of Langley Research Center, was tested on the jet aircraft. Winglets are small, nearly vertical fins installed on an airplane's wing tips to help produce a forward thrust in the vortices that typically swirl off the end of the wing, thereby reducing drag. This winglet idea was tested at the Dryden Flight Research Center on a KC-135A tanker loaned to NASA by the Air Force. The research showed that the winglets could increase an aircraft's range by as much as 7 percent at cruise speeds. The first application of NASA's winglet technology in industry was in general aviation business jets, but winglets are now being incorporated into most new commercial and military transport jets, including the Gulfstream III and IV business jets, the Boeing 747-400 and MD-11 airliners, and the C-17 military transport. In 1957 and 1958, Dryden was asked by what was then the Civil Aeronautics Administration (later absorbed into the Federal Aviation Administration (FAA) in 1958) to help establish new approach procedure guidelines on cloud-ceiling and visibility minimums for Boeing's first jet airliner, the B-707. Dryden used a KC-135, the military variant of the 707, to aid the CAA in these tests. In the 1980's, a KC-135 was used in support of the Space Shuttle program. Since the Shuttle was to be launched from Florida, researchers wanted to test the effect of rain on the sensitive thermal tiles. Tiles were mounted on special fixtures on an F-104 aircraft and a P-3 Orion. The F-104 was flown in actual rain conditions, and also behind the KC-135 spray tanker as it released water. The KC-135, however, proved incapable of simulating

  10. Senator Jake Garn on the KC-135

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Senator Jake Garn appears to be springing from a trampoline in this scene, taken during a brief period of weightlessness provided by a parabola flown by the KC-135. Jeff Bingham, an aide to the senator, floats freely nearby (25616); Sen. Garn and Jeff Bingham prepare to ease from a partially anchored position to a totally free flying mode during a brief weightless session (25617); Sen. Garn gets an initial 'feel' of weightlessness as his feet float freely while he anchors himself with his hands. Seated nearby is his aide Bingham (25618); Sen. Garn (background) shares some of the ceiling space of the KC-135 with Bingham (25619); Sen. Garn (foreground) takes a seat behind the KC-135's crew in the forward cabin. Roger Zweig and Joseph S. Algranti, pilot and co-pilot, are partially visible in the background (25620).

  11. Grasping objects autonomously in simulated KC-135 zero-g

    NASA Technical Reports Server (NTRS)

    Norsworthy, Robert S.

    1994-01-01

    The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.

  12. STS 61-B crewmembers training on the KC-135 in zero-G

    NASA Image and Video Library

    1985-08-21

    STS 61-B crewmembers training on the KC-135 in zero-G. Views include Payload specialist Charles D. Walker attempting to down the lower torso of his extravehicular mobility unit (EMU) in zero-G in the KC-135. He is being assisted by other participants in the training (39135); Payload specialist Rodolfo Neri floating in midair during training in the KC-135 (39136,39138); Mission specialist Mary L. Cleave floating in midair during her training aboard the KC-135 (39137); Astronaut Bryan D. O'Connor assists Astronaut Sherwood C. Spring in completing his donning of the EMU in the KC-135 (39139); Technicians aid Spring with his EMU in the KC-135 (39140); O'Connor appears to be leaping up in zero-G aboard the KC-135 (39141); Astronaut Brewster Shaw is assisted by a technician to don his EMU (39142); Shaw is attempting to don the EMU gloves while O'Connor watches (39143); Shaw does jumping jacks while Neri attempts to travel down a rope guideline (39144).

  13. Optical signatures of bulk and solutions of KC{sub 8} and KC{sub 24}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tristant, Damien; LPCNO, UMR-5215 CNRS, INSA, Université Fédérale de Toulouse-Midi-Pyrénées, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse; Wang, Yu

    2015-07-28

    We first performed an analysis of the shape of the Raman features of potassium-intercalated graphite at stage 1 (KC{sub 8} GIC) and 2 (KC{sub 24} GIC), respectively. By varying the excitation energy from ultraviolet to infrared, we observed a sign change of the Fano coupling factor below and above the optical transition related to the shift of the Fermi level which was determined from first principle calculations. This behavior is explained by a sign change in the Raman scattering amplitude of the electronic continuum. The GICs were then dissolved in two different solvents (N-Methyl-2-pyrrolidone and tetrahydrofuran), and the absorbance ofmore » the graphenide solutions obtained was measured in the UV range. Two peaks were observed which correspond to the maximum of the computed imaginary part of the optical index.« less

  14. 2010 MoDOT kcICON survey : final report, February 2010.

    DOT National Transportation Integrated Search

    2010-02-01

    The survey measures the Kansas City area residents satisfaction with the kcICON project, their perceptions of MoDOT as a result : of the project and what, if anything, would impress them regarding the kcICON project. A professional calling center ...

  15. KC-135A in flight - winglet study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    During the 1970s, the focus at Dryden shifted from high-speed and high-altitude flight to incremental improvements in technology and aircraft efficiency. One manifestation of this trend occurred in the winglet flight research carried out on a KC-135 during 1979 and 1980. Richard Whitcomb at the Langley Research Center had originated the idea of adding small vertical fins to an aircraft's wing tips. His wind tunnel tests indicated that winglets produced a forward thrust, which reduced the strength of the vortices generated by an aircraft's wing tips and resulted in a reduction of drag and an increase in aircraft range. Whitcomb, who had previously developed the area rule concept and the supercritical wing, selected the best winglet shape for flight tests on a KC-135 tanker. When the tests were completed, the data showed that the winglets provided a 7 percent improvement in range over the standard KC-135. The obvious economic advantage at a time of high fuel costs caused winglets to be adopted on business jets, airliners, and heavy military transports.

  16. RA Construction KC, LLC Information Sheet

    EPA Pesticide Factsheets

    RA Construction KC, LLC (the Company) is located in Gladstone, Missouri. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Kansas City, Missouri.

  17. Stainless Steel NaK-Cooled Circuit (SNaKC) Fabrication and Assembly

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas J.

    2007-01-01

    An actively pumped Stainless Steel NaK Circuit (SNaKC) has been designed and fabricated by the Early Flight Fission Test Facility (EFF-TF) team at NASA's Marshall Space Flight Center. This circuit uses the eutectic mixture of sodium and potassium (NaK) as the working fluid building upon the experience and accomplishments of the SNAP reactor program from the late 1960's The SNaKC enables valuable experience and liquid metal test capability to be gained toward the goal of designing and building an affordable surface power reactor. The basic circuit components include a simulated reactor core a NaK to gas heat exchanger, an electromagnetic (EM) liquid metal pump, a liquid metal flow meter, an expansion reservoir and a drain/fill reservoir To maintain an oxygen free environment in the presence of NaK, an argon system is utilized. A helium and nitrogen system are utilized for core, pump, and heat exchanger operation. An additional rest section is available to enable special component testing m an elevated temperature actively pumped liquid metal environment. This paper summarizes the physical build of the SNaKC the gas and pressurization systems, vacuum systems, as well as instrumentation and control methods.

  18. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration

    PubMed Central

    Williams, Julie C.; Lee, Rebecca D.; Doerschuk, Claire M.; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages. PMID:22175012

  19. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration.

    PubMed

    Williams, Julie C; Lee, Rebecca D; Doerschuk, Claire M; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.

  20. KC-135 Survivability in a War in Europe

    DTIC Science & Technology

    1989-05-01

    IIESEARCHlRPR KC-135 SURVIVA~BILITY IN4 A WA~R IN EUROPE 6T COL joHN EKWALL 3.989c ei-.T ..... , t =T’ p \\47 MR JIVERSI~r UAIRE s’rAT AIR FORCE ...MAWEIJL AIR FORCE BASbAB AIR WAR COLLEGE AIR UNIVERSITY KC-135 SURVIVABILITY IN A WAR IN EUROPE by John Ekwall Lieutenant Colonel, USAF A DEFENSE...ANALYTICAL STUDY SUBMITTED TO THE FACULTY IN FULLFILLMENT OF THE CURRICULUM REQUIREMENT Advisor: Colonel Frank W. Anderson, Jr. MAXWELL AIR FORCE BASE

  1. 78 FR 77118 - KC Small Hydro, LLC; Notice of Amended Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ..., Motions To Intervene, and Competing Applications On May 28, 2013, KC Scoby Hydro, LLC, filed an... 28, 2013, application and sent an acceptance letter to KC Scoby Hydro, LLC. Subsequently, On October 28, 2013, KC Scoby Hydro, LLC, amended its preliminary permit application to change its name to KC...

  2. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  3. 75 FR 11527 - KC Hydro LLC; Notice of Competing Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13617-000] KC Hydro LLC..., 2010. On November 6, 2009, KC Hydro LLC filed an application for a preliminary permit, pursuant to... Sackheim, KC Hydro LLC, 5096 Cocoa Palm Way, Fair Oaks, CA 95628, phone: (916) 962-2271, e-mail: oregon...

  4. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-12-22

    24, 2009, the Department of Defense (DOD) announced its proposed strategy for conducting a new competition between Boeing and a team consisting of...acquire a new tanker over the past several years have ultimately failed. DOD’s proposed new KC-X acquisition competition strategy poses several...5 DOD’s Proposed New KC-X Competition Strategy ...............................................................5

  5. Investigation of surface tension phenomena using the KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Alter, W. S.

    1982-01-01

    The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.

  6. Kc167, a widely used Drosophila cell line, contains an active primary piRNA pathway.

    PubMed

    Vrettos, Nicholas; Maragkakis, Manolis; Alexiou, Panagiotis; Mourelatos, Zissimos

    2017-01-01

    PIWI family proteins bind to small RNAs known as PIWI-interacting RNAs (piRNAs) and play essential roles in the germline by silencing transposons and by promoting germ cell specification and function. Here we report that the widely used Kc167 cell line, derived from Drosophila melanogaster embryos, expresses piRNAs that are loaded to Aub and Piwi. Kc167 piRNAs are produced by a canonical, primary piRNA biogenesis pathway, from phased processing of precursor transcripts by the Zuc endonuclease, Armi helicase, and dGasz mitochondrial scaffold protein. Kc167 piRNAs derive from cytoplasmic transcripts, notably tRNAs and mRNAs, and their abundance correlates with that of parent transcripts. The expression of Aub is robust in Kc167, that of Piwi is modest, while Ago3 is undetectable, explaining the lack of transposon-related piRNA amplification by the Aub-Ago3, ping-pong mechanism. We propose that the default state of the primary piRNA biogenesis machinery is random transcript sampling to allow generation of piRNAs from any transcript, including newly acquired retrotransposons. This state is unmasked in Kc167, likely because they do not express piRNA cluster transcripts in sufficient amounts and do not amplify transposon piRNAs. We use Kc167 to characterize an inactive isoform of Aub protein. Since most Kc167 piRNAs are genic, they can be mapped uniquely to the genome, facilitating computational analyses. Furthermore, because Kc167 is a widely used and well-characterized cell line that is easily amenable to experimental manipulations, we expect that it will serve as an excellent system to study piRNA biogenesis and piRNA-related factors. © 2016 Vrettos et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. KC-135 Winglet Program Review

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a joint NASA/USAF program to develop flight test winglets on a KC-135 aircraft are reviewed. The winglet development from concept through wind tunnel and flight tests is discussed. Predicted, wind tunnel, and flight test results are compared for the performance, loads and flutter characteristics of the winglets. The flight test winglets had a variable winglet cant and incidence angle capability which enabled a limited evaluation of the effects of these geometry changes.

  8. CXC chemokine KC fails to induce neutrophil infiltration and neoangiogenesis in a mouse model of myocardial infarction.

    PubMed

    Oral, Hasan; Kanzler, Isabella; Tuchscheerer, Nancy; Curaj, Adelina; Simsekyilmaz, Sakine; Sönmez, Tolga Taha; Radu, Eugen; Postea, Otilia; Weber, Christian; Schuh, Alexander; Liehn, Elisa A

    2013-07-01

    Chemokines and neutrophils, known as important players in the inflammatory cascade, also contribute to heart tissue recovery and scar formation after myocardial infarction (MI). The objective of this study was to determine the importance of ELR-containing CXC chemokine KC in neutrophil infiltration and neoangiogenesis, in a mouse model of chronic MI. MI was induced in mice divided in four groups: control (untreated), anti-KC "later" (anti-KC antibody injections started 4 days after MI and then delivered every 72 hours for 3 weeks, to inhibit angiogenesis), anti-KC "earlier" (anti-KC antibody injections 1 day before and 1 day after MI, to block neutrophil infiltration), anti-KC (anti-KC antibody injections 1 day before and 1 day after MI, and then every 72 hours for 3 weeks). The efficiency of the anti-KC treatment was determined by the measurement of KC serum concentration and immunofluorescence staining, in each of the four groups. Surprisingly, we did not find any difference in neutrophil infiltration in the infarcted area between untreated and treated animals. Moreover, the heart function, infarct size, and neoangiogenesis were not different between the four groups. As expected, a comparable anti-CXCR2 treatment of mice before and after MI was able to significantly reduce neutrophil infiltration into the infarcted area and angiogenesis, but also to reduce the infarction size after long or "later" treatment. The major finding of our study is that KC, a potent neutrophil chemoattractant and an established angiogenic factor, failed to interfere in the post-infarction inflammatory response, in wound healing and scar formation after MI. Therefore, these aspects need to be carefully taken into account when devising therapeutic strategies for myocardial infarction and ischemic cardiomyopathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-12-07

    24, 2009, the Department of Defense (DOD) announced its proposed strategy for conducting a new competition between Boeing and a team consisting of...acquire a new tanker over the last several years have ultimately failed. DOD’s proposed new KC-X acquisition competition strategy poses several...5 DOD’s Proposed New KC-X Competition Strategy ...............................................................5 Response to the Draft RFP

  10. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed atmore » Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.« less

  11. Isolation and analysis of a multifunctional triterpene synthase KcMS promoter region from mangrove plant kandelia candel

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of Kandelia candel KcMS gene has previously been cloned and encoded a multifunctional triterpene synthase. In this study, the KcMS gene promoter was cloned through Genome walking, sequenced, and analyzed. A 1,358 bp genomic DNA fragment of KcMS promoter was obtained. PLACE and PlantCARE analysis of the KcMS promoter revealed that there was some regulatory elements in response to environmental signals and involved in the regulation of gene expression. Results showed that four kinds of elements are regulated by hormone binding, namely 2 MeJA-responsiveness elements (CGTCA-motif and TGACG-motif), the ABRE (TACGTG) involved in abscisic acid responsiveness, gibberellin-related GARE-motif (AAACAGA), and the TGA-element (AACGAC) as an auxin-responsive element. Several elements in the KcMS have been shown in other plants to be responsive to abiotic stress. These motifs were MBS (CAACTG), TC-rich repeats, and eight light responsive elements. The KcMS promoter was also involved in the activation of defense genes in plants such as HSE (AAAAAATTC) and four circadian control elements (CAANNNNATC). The presence of multipotential regulatory motifs suggested that KcMS may be involved in regulation of plant tolerance to several types of stresses.

  12. Central Nervous System Pathology Progresses Independently of KC and CXCR2 in Globoid-Cell Leukodystrophy

    PubMed Central

    Reddy, Adarsh S.; Patel, Jigisha R.; Vogler, Carole; Klein, Robyn S.; Sands, Mark S.

    2013-01-01

    Globoid-cell Leukodystrophy (GLD; Krabbe’s disease) is a rapidly progressing inherited demyelinating disease caused by a deficiency of the lysosomal enzyme Galactosylceramidase (GALC). Deficiency of GALC leads to altered catabolism of galactosylceramide and the cytotoxic lipid, galactosylsphingosine (psychosine). This leads to a rapidly progressive fatal disease with spasticity, cognitive disability and seizures. The murine model of GLD (Twitcher; GALC−/−) lacks the same enzyme and has similar clinical features. The deficiency of GALC leads to oligodendrocyte death, profound neuroinflammation, and the influx of activated macrophages into the CNS. We showed previously that keratinocyte chemoattractant factor (KC) is highly elevated in the CNS of untreated Twitcher mice and significantly decreases after receiving a relatively effective therapy (bone marrow transplantation combined with gene therapy). The action of KC is mediated through the CXCR2 receptor and is a potent chemoattractant for macrophages and microglia. KC is also involved in oligodendrocyte migration and proliferation. Based on the commonalities between the disease presentation and the functions of KC, we hypothesized that KC and/or CXCR2 contribute to the pathogenesis of GLD. Interestingly, the course of the disease is not significantly altered in KC- or CXCR2-deficient Twitcher mice. There is also no alteration in inflammation or demyelination patterns in these mice. Furthermore, transplantation of CXCR2-deficient bone marrow does not alter the progression of the disease as it does in other models of demyelination. This study highlights the role of multiple redundant cytokines and growth factors in the pathogenesis of GLD. PMID:23755134

  13. Astronaut Catherine G. Coleman aboard KC-135 aircraft

    NASA Image and Video Library

    1994-05-28

    S94-35542 (June 1994) --- Astronaut Catherine G. Coleman, mission specialist, gets a preview of next year?s United States Microgravity Laboratory (USML-2) mission aboard the Space Shuttle Columbia. The weightless experience was afforded by a special parabolic pattern flown by NASA?s KC-135 ?zero gravity? aircraft.

  14. KC-135 winglet program overview

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Selegan, D.

    1982-01-01

    A joint NASA/USAF program was conducted to accomplish the following objectives: (1) evaluate the benefits that could be achieved from the application of winglets to KC-135 aircraft; and (2) determine the ability of wind tunnel tests and analytical analysis to predict winglet characteristics. The program included wind-tunnel development of a test winglet configuration; analytical predictions of the changes to the aircraft resulting from the application of the test winglet; and finally, flight tests of the developed configuration. Pressure distribution, loads, stability and control, buffet, fuel mileage, and flutter data were obtained to fulfill the objectives of the program.

  15. Real-time tracking of objects for a KC-135 microgravity experiment

    NASA Technical Reports Server (NTRS)

    Littlefield, Mark L.

    1994-01-01

    The design of a visual tracking system for use on the Extra-Vehicular Activity Helper/Retriever (EVAHR) is discussed. EVAHR is an autonomous robot designed to perform numerous tasks in an orbital microgravity environment. Since the ability to grasp a freely translating and rotating object is vital to the robot's mission, the EVAHR must analyze range image generated by the primary sensor. This allows EVAHR to locate and focus its sensors so that an accurate set of object poses can be determined and a grasp strategy planned. To test the visual tracking system being developed, a mathematical simulation was used to model the space station environment and maintain dynamics on the EVAHR and any other free floating objects. A second phase of the investigation consists of a series of experiments carried out aboard a KC-135 aircraft flying a parabolic trajectory to simulate microgravity.

  16. Astronaut Gregory Jarvis during KC-135 zero gravity training

    NASA Image and Video Library

    1985-01-25

    S85-26106 (25 Jan. 1985) --- Astronaut Gregory Jarvis gets a familiarization session in weightlessness aboard a KC-135 "zero gravity" aircraft. Jarvis was originally assigned as payload specialist to STS-51D but was reassigned to STS-51L. Photo credit: NASA

  17. Cryo-EM structure and biochemical analysis reveal the basis of the functional difference between human PI3KC3-C1 and -C2.

    PubMed

    Ma, Meisheng; Liu, Jun-Jie; Li, Yan; Huang, Yuwei; Ta, Na; Chen, Yang; Fu, Hua; Ye, Ming-Da; Ding, Yuehe; Huang, Weijiao; Wang, Jia; Dong, Meng-Qiu; Yu, Li; Wang, Hong-Wei

    2017-08-01

    Phosphatidylinositol 3-phosphate (PI3P) plays essential roles in vesicular trafficking, organelle biogenesis and autophagy. Two class III phosphatidylinositol 3-kinase (PI3KC3) complexes have been identified in mammals, the ATG14L complex (PI3KC3-C1) and the UVRAG complex (PI3KC3-C2). PI3KC3-C1 is crucial for autophagosome biogenesis, and PI3KC3-C2 is involved in various membrane trafficking events. Here we report the cryo-EM structures of human PI3KC3-C1 and PI3KC3-C2 at sub-nanometer resolution. The two structures share a common L-shaped overall architecture with distinct features. EM examination revealed that PI3KC3-C1 "stands up" on lipid monolayers, with the ATG14L BATs domain and the VPS34 C-terminal domain (CTD) directly contacting the membrane. Biochemical dissection indicated that the ATG14L BATs domain is responsible for membrane anchoring, whereas the CTD of VPS34 determines the orientation. Furthermore, PI3KC3-C2 binds much more weakly than PI3KC3-C1 to both PI-containing liposomes and purified endoplasmic reticulum (ER) vesicles, a property that is specifically determined by the ATG14L BATs domain. The in vivo ER localization analysis indicated that the BATs domain was required for ER localization of PI3KC3. We propose that the different lipid binding capacity is the key factor that differentiates the functions of PI3KC3-C1 and PI3KC3-C2 in autophagy.

  18. KC-46 Workforce Requirements for Depot Maintenance Activation

    DTIC Science & Technology

    2014-03-27

    commercial derivative aircraft . These are aircraft originally designed for commercial aviation but with modifications that change the aircraft to fit the... designing the process to capture the data needed to infer answers to the research questions. More needs to be understood about how aircraft maintenance...Air Force projects receiving new KC-46 aircraft in 2016 and headquarters is directing organic maintenance. Oklahoma City ALC is the depot projected

  19. Assessment of spatially distributed values of Kc using vegetation indices derived from medium resolution satellite data

    NASA Astrophysics Data System (ADS)

    Greco, M.; Simoniello, T.; Lanfredi, M.; Russo, A. L.

    2010-09-01

    In the last years, the theme of suitable assessment of irrigation water supply has been raised relevant interest for both general principles of sustainable development and optimization of water resources techniques and management. About 99% of the water used in agriculture is lost by crops as evapotranspiration (ET). Thus, it becomes crucial to drive direct or indirect measurement in order to perform a suitable evaluation of water loss by evapotranspiration (i.e. actual evapotranspiration) as well as crop water status and its effect on the production. The main methods used to measure evapotranspiration are available only at field scale (Bowen ratio, eddy correlation system, soil water balance) confined to a small pilot area, generally due to expense and logistical constraints. This led over the last 50 years to the development of a large number of empirical methods to estimate evapotranspiration through different climatic and meteorological variables as well as combining models, based on aerodynamic theory and energy balance, taking into account both canopy properties and meteorological conditions. Among these, the Penman-Monteith equation seems to give the best results providing a robust and consistent method world wide accepted. Such conventional methods only provide accurate evapotranspiration assessment for a homogeneous region nearby the meteorological gauge station and cannot be extrapolated to other different sites; whereas remote sensing techniques allow for filling up such a gap. Some of these satellite techniques are based on the use of thermal band signals as inputs for energy balance equations. Another common approach is mainly based on the FAO method for estimating crop evapotranspiration, in which evapotranspiration data are multiplied by crop coefficients, Kc, derived from satellite multispectral vegetation indices obtained. The rationale behind such a link considers that Kc and vegetation indices are sensitive to both leaf area index and fractional

  20. General purpose free floating platform for KC-135 flight experimentation

    NASA Technical Reports Server (NTRS)

    Borchers, Bruce A.; Yendler, Boris S.; Kliss, Mark H.; Gonzales, Andrew A.; Edwards, Mark T.

    1994-01-01

    The Controlled Ecological Life Support Systems (CELSS) program is evaluating higher plants as a means of providing life support functions aboard space craft. These plant systems will be capable of regenerating air and water while meeting some of the food requirements of the crew. In order to grow plants in space, a series of systems are required to provide the necessary plant support functions. Some of the systems required for CELSS experiments are such that is is likely that existing technologies will require refinement, or novel technologies will need to be developed. To evaluate and test these technologies, a series of KC-135 precursor flights are being proposed. A general purpose free floating experiment platform is being developed to allow the KC-135 flights to be used to their fullest. This paper will outline the basic design for the CELSS Free Floating Test Bed (FFTB), and the requirements for the individual subsystems. Several preliminary experiments suitable for the free floater will also be discussed.

  1. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  2. 76 FR 71960 - KC Hydro LLC of New Hampshire; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14247-000] KC Hydro LLC of..., Motions To Intervene, and Competing Applications On August 8, 2011, KC Hydro LLC of New Hampshire filed an... spillway elevation of 130 feet mean sea level (msl); (3) connecting new electrical [[Page 71961...

  3. Numerical methods in heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, R.W.

    1985-01-01

    This third volume in the series in Numerical Methods in Engineering presents expanded versions of selected papers given at the Conference on Numerical Methods in Thermal Problems held in Venice in July 1981. In this reference work, contributors offer the current state of knowledge on the numerical solution of convective heat transfer problems and conduction heat transfer problems.

  4. Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface

    NASA Astrophysics Data System (ADS)

    Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.

    2000-02-01

    We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.

  5. Air Force Air Refueling: The KC-X Aircraft Acquisition Program

    DTIC Science & Technology

    2008-04-04

    13 National Military Strategy (NMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Mobility Capability Study...condition and sustainment costs of the KC-135” ... and that “an early replacement program would be a hedging strategy against that uncertainty.”40...the President’s overall national security strategy . Based on the President’s strategy , DOD periodically studies the global threat environment and

  6. STS-42 Payload Specialist Merbold inside KC-135 during zero gravity flight

    NASA Image and Video Library

    1988-05-24

    S88-37966 (2 Oct 1988) --- European Space Agency payload specialists Ulf Merbold (STS-42, right) and Reinhold Furrer (STS 61-A) get the "feel" of zero-gravity aboard NASA's KC-135 aircraft over the Gulf of Mexico.

  7. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  8. Astronaut Edwin Aldrin undergoes zero-gravity training aboard KC-135

    NASA Image and Video Library

    1969-07-15

    S69-39269 (10 July 1969) --- Astronaut Edwin E. Aldrin Jr., lunar module pilot of the Apollo 11 lunar landing mission, undergoes zero-gravity training aboard a U.S. Air Force KC-135 jet aircraft from nearby Patrick Air Force Base, Florida. Aldrin is wearing an Extravehicular Mobility Unit (EMU), the type of equipment which he will wear on the lunar surface.

  9. KC-135A Winglet Flight Flutter Program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1982-01-01

    The evaluation techniques, results and conclusions for the flight flutter testing conducted on a KC-135A airplane configured with and without winglets are discussed. Test results are presented for the critical symmetric and antisymmetric modes for a fuel distribution that consisted of 10,000 pounds in each wing main tank and empty reserve tanks. The results indicated that a lightly damped oscillation was experienced for a winglet configuration of a 0 deg cant and -4 deg incidence. The effects of cant and incidence angle variation on the critical modes are also discussed. Lightly damped oscillations were not encountered for any other winglet cant and incidence angles tested.

  10. Dual-band infrared (DBIR) imaging inspections of Boeing 737 and KC-135 aircraft panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.

    1993-08-27

    We apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft, and several Boeing KC-135 aircraft panels. Our analyses are discussed in this report. After flash-heating the aircraft skin, we record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. We analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness lossesmore » from corrosion. We established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum reference panels. Based on this correlation, lap splice temperatures rise 1{degrees}C per 24 {plus_minus} 5 % material loss at 0.4 s after the heat flash. We show tables, charts and temperature maps of typical lap splice material losses for the riveted (and bonded) Boeing 737, and the riveted (but unbonded) Boeing KC-135. We map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterize shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur. Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less

  11. Excel spreadsheet in teaching numerical methods

    NASA Astrophysics Data System (ADS)

    Djamila, Harimi

    2017-09-01

    One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.

  12. Astronaut Catherine G. Coleman aboard KC-135 aircraft

    NASA Image and Video Library

    1994-01-10

    S94-26350 (10 Jan. 1994) --- Astronaut Catherine G. Coleman seems to enjoy the brief period of weightlessness she is sharing with fellow members of the 1992 class of astronauts. The weightless experience was afforded by a special parabolic pattern flown by NASA?s KC-135 ?zero gravity? aircraft. Left to right behind her are astronauts Michael E. Lopez-Alegria, Kevin R. Kregel and Winston E. Scott. EDITOR?S NOTE: Since this photograph was taken the four have been named to flights as follows: Kregel, STS-70; Scott, STS-72.

  13. KC-135 winglet flight results

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.

    1981-01-01

    Three KC-135 winglet configurations were flight tested for cant/incidence angles of 15 deg/-4 deg, 15 deg/-2 deg, and 0 deg/-4 deg, as well as the basic wing. The flight results for the 15 deg/-4 deg and basic wing configurations confirm the wind tunnel predicted 7% incremental decrease in total drag at cruise conditions. The 15 deg/-4 configuration flight measured wing and winglet pressure distributions, loads, stability and control, flutter, and buffet also correlate well with predicted values. The only unexpected flight results as compared with analytical predictions is a flutter speed decrease for the 0 deg/-4 deg configuration. The 15 deg/-2 deg configuration results show essentially the same incremental drag reduction as the 15 deg/-4 deg configuration; however, the flight loads are approximately 30% higher for the 15 deg/-2 deg configuration. The drag data for the 0 deg/-4 deg configuration show only a flight drag reduction.

  14. Pulmonary function in microgravity: KC-135 experience

    NASA Technical Reports Server (NTRS)

    Guy, Harold J.; Prisk, G. K.

    1991-01-01

    We have commenced a KC-135 program that parallels and proceeds our Spacelab (SLS-1) pulmonary function experiment. Our first task was to elucidate the affect of normal gravitation on the shape of the maximum expiratory flow volume (MEFV) curve. Nine normal subjects performed multiple MEFV maneuvers at 0-G, 1-G, and approximately 1.7-G. The MEFV curves for each subject were filtered, aligned at RV, and ensemble-averaged to produce an average MEFV curve for each state, allowing differences to be studied. Most subjects showed a decrease in the FVC at 0-G, which we attribute to an increased intrathoracic blood volume. In most of these subjects, the mean lung volume associated with a given flow was lower at 0-G, over about the upper half of the vital capacity. This is similar to the change previously reported during heat out immersion and is consistent with the known affect of engorgement of the lung with blood, on elastic recoil. There were also consistent but highly individual changes in the position and magnitude of detailed features of the curve, the individual patterns being similar to those previously reported on transition from the erect to the supine position. This supports the idea that the location and motion of choke points which determine the detailed individual configuration of MEFV curves, can be significantly influenced by gravitational forces, presumably via the effects of change in longitudinal tension on local airway pressure-diameter behavior and wave speed. We have developed a flight mass spectrometer and have commenced a study of single breath gradients in gas exchange, inert gas washouts, and rebreathing cardiac outputs and lung volumes at 0-G, 1-G, and 1.7-G. Comparison of our results with those from SLS-1 should identify the opportunities and limitations of the KC-135 as an accessible microgravity resource.

  15. Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) Fact Sheet

    EPA Pesticide Factsheets

    In fall 2017, the U.S. Environmental Protection Agency (EPA) launched the Kansas City Transportation Local-Scale Air Quality Study (KC-TRAQS) to learn more about local community air quality in three neighborhoods in Kansas City, KS.

  16. Numerical study on the Welander oscillatory natural circulation problem using high-order numerical methods

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Kim, Seung Jun

    2016-11-16

    In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to themore » low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.« less

  17. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations

    NASA Technical Reports Server (NTRS)

    Reddi, Lakshmi N.; Xiao, Ming; Steinberg, Susan L.

    2005-01-01

    Designing a reliable plant growth system for crop production in space requires the understanding of pore fluid distribution in porous media under microgravity. The objective of this experimental investigation, which was conducted aboard NASA KC-135 reduced gravity flight, is to study possible particle separation and the distribution of discontinuous wetting fluid in porous media under microgravity. KC-135 aircraft provided gravity conditions of 1, 1.8, and 10(-2) g. Glass beads of a known size distribution were used as porous media; and Hexadecane, a petroleum compound immiscible with and lighter than water, was used as wetting fluid at residual saturation. Nitrogen freezer was used to solidify the discontinuous Hexadecane ganglia in glass beads to preserve the ganglia size changes during different gravity conditions, so that the blob-size distributions (BSDs) could be measured after flight. It was concluded from this study that microgravity has little effect on the size distribution of pore fluid blobs corresponding to residual saturation of wetting fluids in porous media. The blobs showed no noticeable breakup or coalescence during microgravity. However, based on the increase in bulk volume of samples due to particle separation under microgravity, groups of particles, within which pore fluid blobs were encapsulated, appeared to have rearranged themselves under microgravity.

  18. Numerical methods for stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kloeden, Peter; Platen, Eckhard

    1991-06-01

    The numerical analysis of stochastic differential equations differs significantly from that of ordinary differential equations due to the peculiarities of stochastic calculus. This book provides an introduction to stochastic calculus and stochastic differential equations, both theory and applications. The main emphasise is placed on the numerical methods needed to solve such equations. It assumes an undergraduate background in mathematical methods typical of engineers and physicists, through many chapters begin with a descriptive summary which may be accessible to others who only require numerical recipes. To help the reader develop an intuitive understanding of the underlying mathematicals and hand-on numerical skills exercises and over 100 PC Exercises (PC-personal computer) are included. The stochastic Taylor expansion provides the key tool for the systematic derivation and investigation of discrete time numerical methods for stochastic differential equations. The book presents many new results on higher order methods for strong sample path approximations and for weak functional approximations, including implicit, predictor-corrector, extrapolation and variance-reduction methods. Besides serving as a basic text on such methods. the book offers the reader ready access to a large number of potential research problems in a field that is just beginning to expand rapidly and is widely applicable.

  19. Pyridine-2,6-Bis(Thiocarboxylic Acid) Produced by Pseudomonas stutzeri KC Reduces and Precipitates Selenium and Tellurium Oxyanions

    PubMed Central

    Zawadzka, Anna M.; Crawford, Ronald L.; Paszczynski, Andrzej J.

    2006-01-01

    The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H2S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids. PMID:16672449

  20. Numerical study on the thermal behavior of graphene nanoplatelets/epoxy composites

    NASA Astrophysics Data System (ADS)

    Xiao, Wenkai; Zhai, Xian; Ma, Pengfei; Fan, Taotao; Li, Xiaotuo

    2018-06-01

    A three-dimensional computational model was developed using the finite element method (FEM) to evaluate the thermal behavior of graphene nanoplatelets (GNPs)/epoxy composites based on continuum mechanics. The model was validated with experimental data. The effects of the ratio of radius to thickness (Rrt) of GNPs, the interfacial thermal conductivity between GNPs and the matrix (Cgm), the contact thermal conductivity between GNPs (Cgg) and the agglomeration degree of GNPs on the thermal conductivity of composites (Kc) were quantified using this model. The results show that a larger Rrt is beneficial to Kc. GNPs could increase Kc only when the Cgm is greater than a critical value. A percolation phenomenon will occur when Cgg is larger than 1.0E8 W/(m2k) in randomly distributed GNPs/epoxy composites. The percolation effects become more obvious with the increase of Cgg and the volume fraction of GNPs. The agglomeration of GNPs has negative effects on the Kc. The higher the agglomeration degree of GNPs is, the lower Kc is. This is attributed to less beneficial interfacial areas, more inefficient contact areas, smaller Rrt and less effective connection/contact between GNPs.

  1. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC.

    PubMed Central

    Tatara, G M; Dybas, M J; Criddle, C S

    1993-01-01

    Under denitrifying conditions, Pseudomonas sp. strain KC transforms carbon tetrachloride (CT) to carbon dioxide via a complex but as yet undetermined mechanism. Transformation rates were first order with respect to CT concentration over the CT concentration range examined (0 to 100 micrograms/liter) and proportional to protein concentration, giving pseudo-second-order kinetics overall. Addition of ferric iron (1 to 20 microM) to an actively transforming culture inhibited CT transformation, and the degree of inhibition increased with increasing iron concentration. By removing iron from the trace metals solution or by removing iron-containing precipitate from the growth medium, higher second-order rate coefficients were obtained. Copper also plays a role in CT transformation. Copper was toxic at neutral pH. By adjusting the medium pH to 8.2, soluble iron and copper levels decreased as a precipitate formed, and CT transformation rates increased. However, cultures grown at high pH without any added trace copper (1 microM) exhibited slower growth rates and greatly reduced rates of CT transformation, indicating that copper is required for CT transformation. The use of pH adjustment to decrease iron solubility, to avoid copper toxicity, and to provide a selective advantage for strain KC was evaluated by using soil slurries and groundwater containing high levels of iron. In samples adjusted to pH 8.2 and inoculated with strain KC, CT disappeared rapidly in the absence or presence of acetate or nitrate supplements. CT did not disappear in pH-adjusted controls that were not inoculated with strain KC. PMID:8357248

  2. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-10-05

    General ..................................................................................................................... 12 Best Value vs . Lowest...Druyan was a single “bad apple ” and that her actions did not negate the merits of leasing Boeing 767s for use as tankers. In February 2005, however...Force KC-X Tanker Aircraft Program: Background and Issues for Congress Congressional Research Service 17 Best Value vs . Lowest Cost The question of

  3. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  4. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations

    NASA Astrophysics Data System (ADS)

    Paço, Teresa A.; Pôças, Isabel; Cunha, Mário; Silvestre, José C.; Santos, Francisco L.; Paredes, Paula; Pereira, Luís S.

    2014-11-01

    The estimation of crop evapotranspiration (ETc) from the reference evapotranspiration (ETo) and a standard crop coefficient (Kc) in olive orchards requires that the latter be adjusted to planting density and height. The use of the dual Kc approach may be the best solution because the basal crop coefficient Kcb represents plant transpiration and the evaporation coefficient reproduces the soil coverage conditions and the frequency of wettings. To support related computations for a super intensive olive orchard, the model SIMDualKc was adopted because it uses the dual Kc approach. Alternatively, to consider the physical characteristics of the vegetation, the satellite-based surface energy balance model METRIC™ - Mapping EvapoTranspiration at high Resolution using Internalized Calibration - was used to estimate ETc and to derive crop coefficients. Both approaches were compared in this study. SIMDualKc model was calibrated and validated using sap-flow measurements of the transpiration for 2011 and 2012. In addition, eddy covariance estimation of ETc was also used. In the current study, METRIC™ was applied to Landsat images from 2011 to 2012. Adaptations for incomplete cover woody crops were required to parameterize METRIC. It was observed that ETc obtained from both approaches was similar and that crop coefficients derived from both models showed similar patterns throughout the year. Although the two models use distinct approaches, their results are comparable and they are complementary in spatial and temporal scales.

  5. Introduction to Numerical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  6. Modifications to the rapid melt/rapid quench and transparent polymer video furnaces for the KC-135

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.

    1990-01-01

    Given here is a summary of tasks performed on two furnace systems, the Transparent Polymer (TPF) and the Rapid Melt/Rapid Quench (RMRQ) furnaces, to be used aboard NASA's KC-135. It was determined that major changes were needed for both furnaces to operate according to the scientific investigators' experiment parameters. Discussed here are what the problems were, what was required to solve the problems, and possible future enhancements. It was determined that the enhancements would be required for the furnaces to perform at their optimal levels. Services provided include hardware and software modifications, Safety DataPackage documentation, ground based testing, transportation to and from Ellington Air Field, operation of hardware during KC-135 flights, and post-flight data processing.

  7. Comparing the Effectiveness of Two KC-10 Concepts of Operation - An Examination of Tanker/Airlift Support in a Fighter Deployment to Europe

    DTIC Science & Technology

    1986-06-01

    PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (Ii’ ppticable) Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS...total of 60 KC-10s were available to support the fighter deployment. This number represented the projected KC-10 procurement for the year 1990 as...search for relevant government studies was accomplished through the Defense Technical Information Center (DTIC). All their 3-9 research related to

  8. Molecular beam electric resonance study of KCN, K 13CN and KC 15N

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Leo Meerts, W.; Dymanus, A.

    1984-08-01

    The microwave spectra of the isotopic species K 13CN and KC 15N have been investigated by molecular beam electric resonance spectroscopy, using the seeded beam technique. For both isotopic species about 20 rotational transitions originating in the ground vibrational state were observed in the frequency range 9-38 GHz. The observed transitions were fitted to an asymmetric rotor model to determine the three rotational, as well as the five quartic and three sextic centrifugal distortion constants. The hyperfine spectrum of KCN has been unravelled with the help of microwave-microwave double-resonance techniques. One hundred and forty hyperfine transitions in 11 rotational transitions have been assigned. The hyperfine structures of K 13CN and KC 15N were also studied. For all three isotopic species the quadrupole coupling constants and some spin-rotation coupling constants could be deduced. The rotational constants of the 13C and 15N isotopically substituted species of potassium cyanide, combined with those of the normal isotopic species (determined more accurately in this work), allowed an accurate and unambiguous evaluation of the structure, which was confirmed to be T shaped. Both the effective structure of the ground vibrational state and the substitution structure were evaluated. The results for the effective structural parameters are r CN = 1.169(3) Å, r KC = 2.716(9) Å, and r KN = 2.549(9) Å. The values obtained for the principal hyperfine coupling constant eQqz(N), the angle between the CN axis and zN, and the bond length rCN indicate that in gaseous potassium cyanide the CN group can be considered as an almost unperturbed CN - ion.

  9. Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1983-01-01

    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it.

  10. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Image and Video Library

    1991-08-21

    S91-44453 (21 Aug 1991) --- The crew of STS-45 is already training for its March 1992 mission, including stints on the KC-135 zero-gravity-simulating aircraft. Shown with an inflatable globe are, clockwise from the top, C. Michael Foale, mission specialist; Dirk Frimout, payload specialist; Brian Duffy, pilot; Charles R. (Rick) Chappell, backup payload specialist; Charles F. Bolden, mission commander; Byron K. Lichtenberg, payload specialist; and Kathryn D. Sullivan, payload commander.

  11. A Numerical Method for Integrating Orbits

    NASA Astrophysics Data System (ADS)

    Sahakyan, Karen P.; Melkonyan, Anahit A.; Hayrapetyan, S. R.

    2007-08-01

    A numerical method based of trigonometric polynomials for integrating of ordinary differential equations of first and second order is suggested. This method is a trigonometric analogue of Everhart's method and can be especially useful for periodical trajectories.

  12. The triterpenoid CDDO-imidazolide reduces immune cell infiltration and cytokine secretion in the KrasG12D;Pdx1-Cre (KC) mouse model of pancreatic cancer

    PubMed Central

    Leal, Ana S.; Sporn, Michael B.; Pioli, Patricia A.; Liby, Karen T.

    2016-01-01

    Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-KrasG12D/+;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4–8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. PMID:27659181

  13. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  14. The triterpenoid CDDO-imidazolide reduces immune cell infiltration and cytokine secretion in the KrasG12D;Pdx1-Cre (KC) mouse model of pancreatic cancer.

    PubMed

    Leal, Ana S; Sporn, Michael B; Pioli, Patricia A; Liby, Karen T

    2016-12-01

    Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-Kras G12D/+ ;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Lagrangian numerical methods for ocean biogeochemical simulations

    NASA Astrophysics Data System (ADS)

    Paparella, Francesco; Popolizio, Marina

    2018-05-01

    We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.

  16. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).

    PubMed

    Kihara, A; Akiyama, Y; Ito, K

    1997-05-27

    The cII gene product of bacteriophage lambda is unstable and required for the establishment of lysogenization. Its intracellular amount is important for the decision between lytic growth and lysogenization. Two genetic loci of Escherichia coli are crucial for these commitments of infecting lambda genome. One of them, hflA encodes the HflKC membrane protein complex, which has been believed to be a protease degrading the cII protein. However, both its absence and overproduction stabilized cII in vivo and the proposed serine protease-like sequence motif in HflC was dispensable for the lysogenization control. Moreover, the HflKC protein was found to reside on the periplasmic side of the plasma membrane. In contrast, the other host gene, ftsH (hflB) encoding an integral membrane ATPase/protease, is positively required for degradation of cII, since loss of its function stabilized cII and its overexpression accelerated the cII degradation. In vitro, purified FtsH catalyzed ATP-dependent proteolysis of cII and HflKC antagonized the FtsH action. These results, together with our previous finding that FtsH and HflKC form a complex, suggest that FtsH is the cII degrading protease and HflKC is a modulator of the FtsH function. We propose that this transmembrane modulation differentiates the FtsH actions to different substrate proteins such as the membrane-bound SecY protein and the cytosolic cII protein. This study necessitates a revision of the prevailing view about the host control over lambda lysogenic decision.

  17. Impact cratering in reduced-gravity environments: Early experiments on the NASA KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Hoerz, F.; See, T. H.

    1987-01-01

    Impact experimentation on the NASA KC-135 Reduced-Gravity Aircraft was shown to be possible, practical, and of considerable potential use in examining the role of gravity on various impact phenomena. With a minimal facility, crater dimensional and growth-times were measured, and have demonstrated both agreement and disagreement with predictions. A larger facility with vacuum capability and a high-velocity gun would permit a much wider range of experimentation.

  18. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  19. 78 FR 54643 - KC Scoby Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ..., LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions to Intervene, and Competing Applications On May 28, 2013, KC Scoby Hydro, LLC, filed an application for a... file a license application during the permit term. A preliminary permit does not authorize the permit...

  20. Measurements of the Fuel Mileage of a KC-135 Aircraft with and Without Winglets

    NASA Technical Reports Server (NTRS)

    Temanson, G. E.

    1982-01-01

    The KC-135A Winglet Flight Research and Demonstration Program was a joint effort of the Air Force, NASA and the Boeing Military Airplane Company to flight test winglets on the KC-135A. The primary objective of the program was to verify the cruise performance improvements predicted by analysis and wind tunnel tests. Flight test data were obtained for winglets positioned at 15 deg cant/-2 deg incidence, 0 deg cant/-4 deg incidence, 15 deg cant/-4 deg incidence and for winglets off (baseline). Both fuel mileage and drag measurements were obtained. The 15 deg cant/-4 deg incidence winglet configuration provided the greatest performance improvement. The flight test measured fuel mileage improvement for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The agreement between the fuel mileage and drag data was excellent.

  1. Medical evaluations on the KC-135 1990 flight report summary

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Guess, Terrell M.; Whiting, Charles W.; Doarn, Charles R.

    1991-01-01

    The medical investigations completed on the KC-135 during FY 1990 in support of the development of the Health Maintenance Facility and Medical Operations are discussed. The experiments are comprised of engineering evaluations of medical hardware and medical procedures. The investigating teams are made up of both medical and engineering personnel responsible for the development of medical hardware and medical operations. The hardware evaluated includes dental equipment, a coagulation analyzer, selected pharmaceutical aerosol devices, a prototype air/fluid separator, a prototype packaging and stowage system for medical supplies, a microliter metering system, and a workstation for minor surgical procedures. The results of these engineering evaluations will be used in the design of fleet hardware as well as to identify hardware specific training requirements.

  2. The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982

    NASA Technical Reports Server (NTRS)

    Shurney, R. E. (Editor)

    1983-01-01

    During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.

  3. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25191 (for release January 1986) --- The two representatives of the Teacher-in-Space Project continue their training program at the Johnson Space Center with an additional flight aboard NASA?s KC-135 ?zero gravity? aircraft. Sharon Christa McAuliffe, left, is prime crew payload specialist, and Barbara R. Morgan is in training as backup payload specialist. The photo was taken by Keith Meyers of New York Times. Photo credit: NASA

  4. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  5. Responses of heart rate and blood pressure to KC-135 hyper-gravity

    NASA Technical Reports Server (NTRS)

    Satake, Hirotaka; Matsunami, Ken'ichi; Reschke, Millard F.

    1992-01-01

    Many investigators have clarified the effects of hyper gravitational-inertial forces (G) upon the cardiovascular system, using the centrifugal apparatus with short rotating radius. We investigated the cardiovascular responses to KC-135 hyper-G flight with negligibly small angular velocity. Six normal, healthy subjects 29 to 40 years old (5 males and 1 female) took part in this experiment. Hyper gravitational-inertial force was generated by the KC-135 hyper-G flight, flown in a spiral path with a very long radius of 1.5 miles. Hyper-G was sustained for 3 minutes with 1.8 +Gz in each session and was repeatedly exposed to very subject sitting on a chair 5 times. The preliminary results of blood pressure and R-R interval are discussed. An exposure of 1.8 +Gz stress resulted in a remarkable increase of systolic and diastolic blood pressure, while the pulse pressure did not change and remained equal to the control level regardless of an exposure of hyper-G. These results in blood pressure indicate an increase of resistance in the peripheral vessels, when an exposure of hyper-G was applied. The R-R interval was calculated from ECG. R-R interval in all subjects was changed but not systematically, and R-R interval became obviously shorter during the hyper-G period than during the 1 +Gz control period although R-R interval varied widely in some cases. The coefficient of variation of R-R interval was estimated to determine the autonomic nerve activity, but no significant change was detectable.

  6. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  7. 76 FR 71960 - KC Hydo LLC of New Hampshire; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14244-000] KC Hydo LLC of... electrical generating equipment with total hydraulic capacity of 160 cubic feet per second (cfs) and total... D. Bose, Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC...

  8. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  9. Environmental Assessment KC-46A Depot Maintenance Activation, Tinker Air Force Base, Oklahoma. Volume 1

    DTIC Science & Technology

    2014-03-01

    difficulty in obtaining replacement parts, the Ai r Force has challenges in maintaining tbe KC-135 fleet (USAF 2005). Additionally this fleet has been...aircraft fleet wi ll remain within the Ai r Force inventory. Therefore, only the BNSF Rail Yard and DLA Infill were carried forward for further...surface water from C&D activities. In addition, existing Tinker AFB National Pollutant Discharge Elimination System permit, general permits (multi- sector

  10. Hybrid RANS-LES using high order numerical methods

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  11. 76 FR 71961 - KC Hydro LLC of New Hampshire; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14246-000] KC Hydro LLC of... equipment with total hydraulic capacity of 246 cubic feet per second (cfs) and total installed generating...-file, mail an original and seven copies to: Kimberly D. Bose, Secretary, Federal Energy Regulatory...

  12. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr

    NASA Astrophysics Data System (ADS)

    Lourens, Lucas J.

    2004-09-01

    High-resolution color reflectance records of KC01 and KC01B (Calabrian Ridge, Ionian Sea) are presented and compared with a modified spliced high-resolution color reflectance record of Ocean Drilling Program (ODP) Site 964. This comparison revealed that KC01B is characterized by intensive deformation between ~27 and 28.5 m piston depth and that some sapropels are tectonically reduced in thickness. Moreover, the piston coring has caused considerable stretching in the top of KC01 and KC01B. Using a new splice of ODP Site 964 as guide, previous astronomical tuned timescales of KC01B and ODP Site 964 were evaluated. This evaluation resulted in a new sapropel-based astronomical timescale for the last 1.1 Myr. The new timescale implies a much more uniform change in sedimentation rate for the Ionian Sea cores. Two prominent excursions to lighter values in the δ18O record of the planktonic foraminiferal species Globigerinoides ruber occur during marine isotopic stages 12 and 16 applying the new timescale. These shifts correspond with maxima in obliquity and are punctuated by minima in the precession cycle. They are absent in global ice volume records and are interpreted as reflecting a (summer) low-salinity surface water lens that floats on top of extremely saline intermediate and deep waters at times of the very low sea levels during these glacial periods. All biostratigraphic and magnetostratigraphic events found in KC01B and ODP Site 964 were re-dated according to the new timescale, and the ages of 33 tephra layers were reviewed. The new ages for the Calabrian Ridge 2 and 3 magnetic events in the Brunhes are concordant with minima in the global Sint800 composite record, derived from worldwide deep-sea records of relative paleointensity and have been attributed to the Big Lost and La Palma excursions, respectively.

  13. Numeric Modified Adomian Decomposition Method for Power System Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrovski, Aleksandar D; Simunovic, Srdjan; Pannala, Sreekanth

    This paper investigates the applicability of numeric Wazwaz El Sayed modified Adomian Decomposition Method (WES-ADM) for time domain simulation of power systems. WESADM is a numerical method based on a modified Adomian decomposition (ADM) technique. WES-ADM is a numerical approximation method for the solution of nonlinear ordinary differential equations. The non-linear terms in the differential equations are approximated using Adomian polynomials. In this paper WES-ADM is applied to time domain simulations of multimachine power systems. WECC 3-generator, 9-bus system and IEEE 10-generator, 39-bus system have been used to test the applicability of the approach. Several fault scenarios have been tested.more » It has been found that the proposed approach is faster than the trapezoidal method with comparable accuracy.« less

  14. Random element method for numerical modeling of diffusional processes

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Oppenheim, A. K.

    1982-01-01

    The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.

  15. A Novel Numerical Method for Fuzzy Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Can, E.; Bayrak, M. A.; Hicdurmaz

    2016-05-01

    In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.

  16. 77 FR 50682 - KC Scoby Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14423-000] KC Scoby Hydro... concrete gravity dam with a 183-foot-long spillway; (2) an existing impoundment having a surface area of 22 acres and a storage capacity of 52 acre-feet at an elevation of 1,080 feet mean sea level (msl); (3) a...

  17. Design and test of a prototype thermal bus evaporator reservoir aboard the KC-135 0-g aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Long, W. Russ

    1987-01-01

    The Thermal Bus Zero-G Reservoir Demonstration Experiment (RDE) has currently undergone two flights on the NASA-JSC KC-135 Reduced Gravity Aircraft. The objective of the experiment, which uses a smaller version of the evaporator reservoirs being designed for the Prototype Thermal Bus for Space Station, is to demonstrate proper 0-g operation of the reservoir in terms of fluid positioning, draining, and filling. The KC-135 was chosen to provide a cost-effective and timely evaluation of 0-g design issues that would be difficult to predict analytically. A total of fifty 0-g parabolas have been flown, each providing approximately 25-30 seconds of 0-g time. While problems have been encountered, the experiment has provided valuable design data on the 0-g operation of the reservoir. This paper documents the design of the experiment; the results of both flights, based on the high-speed movies taken during the flight and the visual observations of the experimenters; and the design modifications made as a result of the first flight and planned as a result of the second flight.

  18. Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.

    2002-11-01

    Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for

  19. Amplification of Chromosome 1q Genes Encoding the Phosphoinositide Signalling Enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in Breast Cancer

    PubMed Central

    Waugh, Mark G.

    2014-01-01

    Little is known about the possible oncogenic roles of genes encoding for the phosphatidylinositol 4-kinases, a family of enzymes that regulate an early step in phosphoinositide signalling. To address this issue, the mutational status of all four human phosphatidylinositol 4-kinases genes was analyzed across 852 breast cancer samples using the COSMIC data resource. Point mutations in the phosphatidylinositol 4-kinase genes were uncommon and appeared in less than 1% of the patient samples however, 62% of the tumours had increases in gene copy number for PI4KB which encodes the phosphatidylinositol 4-kinase IIIbeta isozyme. Extending this analysis to subsequent enzymes in the phosphoinositide signalling cascades revealed that the only PIP5K1A, PI3KC2B and AKT3 genes exhibited similar patterns of gene copy number variation. By comparison, gene copy number increases for established oncogenes such as EGFR and HER2/Neu were only evident in 20% of the samples. The PI4KB, PIP5K1A, PI3KC2B and AKT3 genes are related in that they all localize to chromosome 1q which is often structurally and numerically abnormal in breast cancer. These results demonstrate that a gene quartet encoding a potential phosphoinositide signalling pathway is amplified in a subset of breast cancers. PMID:25368680

  20. Draft Environmental Impact Statement: Second KC-135R Air Refueling Squadron, Malmstrom Air Force Base, Montana

    DTIC Science & Technology

    1989-05-01

    The environmental consequences of the proposed deployment of Second KC-135R I AREFS were evaluated in terms of the magnitude and significance of...A for more details). The LOI and significance of short and long-duration impacts were evaluated separately. Short duration impacts are transitory...factors evaluated . n Public Finance. The public finance element describes the fiscal condition of the affected counties, cities, and school districts

  1. Effective numerical method of spectral analysis of quantum graphs

    NASA Astrophysics Data System (ADS)

    Barrera-Figueroa, Víctor; Rabinovich, Vladimir S.

    2017-05-01

    We present in the paper an effective numerical method for the determination of the spectra of periodic metric graphs equipped by Schrödinger operators with real-valued periodic electric potentials as Hamiltonians and with Kirchhoff and Neumann conditions at the vertices. Our method is based on the spectral parameter power series method, which leads to a series representation of the dispersion equation, which is suitable for both analytical and numerical calculations. Several important examples demonstrate the effectiveness of our method for some periodic graphs of interest that possess potentials usually found in quantum mechanics.

  2. Finite-mode spectral model of homogeneous and isotropic Navier-stokes turbulence: a rapidly depleted energy cascade.

    PubMed

    Lévêque, E; Koudella, C R

    2001-04-30

    An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the inflection point kc of the energy flux F(log(k)). The eddy viscosity is fixed so that the energy spectrum satisfies E(k) = E(kc) (k/kc)(-3) for k>kc. This resulting forcing induces a rapid depletion of the energy cascade at k>kc. It is observed numerically that the model reproduces turbulence energetics at k< or =kc and statistics of two-point velocity correlations at scales r>lambda (Taylor microscale). Compared to a direct numerical simulation of R(lambda) = 130 an equivalent run with the present model results in a gain of a factor 20 in CPU time.

  3. Comparison of Numerical Modeling Methods for Soil Vibration Cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Jiandong; Zhang, Enguang

    2018-01-01

    In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.

  4. 25 Years of Self-organized Criticality: Numerical Detection Methods

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James; Aschwanden, Markus J.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Pruessner, Gunnar; Morales, Laura; Ireland, Jack; Abramenko, Valentyna

    2016-01-01

    The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines—the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.

  5. Some results on numerical methods for hyperbolic conservation laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Huanan.

    1989-01-01

    This dissertation contains some results on the numerical solutions of hyperbolic conservation laws. (1) The author introduced an artificial compression method as a correction to the basic ENO schemes. The method successfully prevents contact discontinuities from being smeared. This is achieved by increasing the slopes of the ENO reconstructions in such a way that the essentially non-oscillatory property of the schemes is kept. He analyzes the non-oscillatory property of the new artificial compression method by applying it to the UNO scheme which is a second order accurate ENO scheme, and proves that the resulting scheme is indeed non-oscillatory. Extensive 1-Dmore » numerical results and some preliminary 2-D ones are provided to show the strong performance of the method. (2) He combines the ENO schemes and the centered difference schemes into self-adjusting hybrid schemes which will be called the localized ENO schemes. At or near the jumps, he uses the ENO schemes with the field by field decompositions, otherwise he simply uses the centered difference schemes without the field by field decompositions. The method involves a new interpolation analysis. In the numerical experiments on several standard test problems, the quality of the numerical results of this method is close to that of the pure ENO results. The localized ENO schemes can be equipped with the above artificial compression method. In this way, he dramatically improves the resolutions of the contact discontinuities at very little additional costs. (3) He introduces a space-time mesh refinement method for time dependent problems.« less

  6. Numerical optimization methods for controlled systems with parameters

    NASA Astrophysics Data System (ADS)

    Tyatyushkin, A. I.

    2017-10-01

    First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.

  7. Asymptotic-induced numerical methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  8. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25180 (October 1985) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, representing the Teacher-in-Space Project, floats forward and upward during a few moments of weightlessness aboard a KC-135 aircraft. The flight is part of her training for the scheduled five-day flight aboard the Challenger in January of next year. Barbara R. Morgan, backup payload specialist for STS-51L, is partially visible in the background. The photo was taken by Keith Meyers of the New York Times. Photo credit: NASA

  9. Efficient numerical method for analyzing optical bistability in photonic crystal microcavities.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2013-05-20

    Nonlinear optical effects can be enhanced by photonic crystal microcavities and be used to develop practical ultra-compact optical devices with low power requirements. The finite-difference time-domain method is the standard numerical method for simulating nonlinear optical devices, but it has limitations in terms of accuracy and efficiency. In this paper, a rigorous and efficient frequency-domain numerical method is developed for analyzing nonlinear optical devices where the nonlinear effect is concentrated in the microcavities. The method replaces the linear problem outside the microcavities by a rigorous and numerically computed boundary condition, then solves the nonlinear problem iteratively in a small region around the microcavities. Convergence of the iterative method is much easier to achieve since the size of the problem is significantly reduced. The method is presented for a specific two-dimensional photonic crystal waveguide-cavity system with a Kerr nonlinearity, using numerical methods that can take advantage of the geometric features of the structure. The method is able to calculate multiple solutions exhibiting the optical bistability phenomenon in the strongly nonlinear regime.

  10. Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei

    Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less

  11. Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  12. A numerical method of detecting singularity

    NASA Technical Reports Server (NTRS)

    Laporte, M.; Vignes, J.

    1978-01-01

    A numerical method is reported which determines a value C for the degree of conditioning of a matrix. This value is C = 0 for a singular matrix and has progressively larger values for matrices which are increasingly well-conditioned. This value is C sub = C max sub max (C defined by the precision of the computer) when the matrix is perfectly well conditioned.

  13. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25196 (January 1986) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, gets a preview of microgravity during a special flight aboard NASA?s KC-135 ?zero gravity? aircraft. McAuliffe will represent the Teacher-in-Space Project aboard the space shuttle Challenger when it launches later this month. This photograph was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  14. Amnesia as an impairment of detail generation and binding: evidence from personal, fictional, and semantic narratives in K.C.

    PubMed

    Rosenbaum, R Shayna; Gilboa, Asaf; Levine, Brian; Winocur, Gordon; Moscovitch, Morris

    2009-09-01

    Autobiographical episodic recall involves active simultaneous generation and binding of various elements that were present during the initial experience. Deficits in this reconstructive process may account for some aspects of retrograde amnesia (RA) for personally experienced events. Constructive and reconstructive processes may involve similar mechanisms. If so, patients with extensive anterograde amnesia (AA) and RA should show deficits in non-recollective cognitive domains, such as imagining events that had never been experienced and recounting non-personal narratives, that presumably rely on constructive and re-constructive processes, respectively. To test these possibilities, patient K.C., who has severe AA and RA for personal episodes, was asked to generate fictional events and to recall and recognize details of well-known fairy tales and bible stories. K.C.'s performance on both tasks was better than expected given his severely impaired autobiographical episodic memory (AM), but significantly worse than that of control participants. K.C. was able to create a skeletal outline for both types of narratives, providing sufficient information to convey their gist, but the narratives were fragmented and lacking in detail. This deficit cannot be explained as resulting entirely from deficient stored semantic knowledge, because K.C. was able to discriminate between true and false details of non-personal semantic narratives on a recognition test, which he cannot do for personal events [Gilboa, A., Winocur, G., Rosenbaum, R.S., Poreh, A., Gao, F., Black, S.E., Westmacott, R., & Moscovitch, M. (2006a). Hippocampal contributions to recollection in retrograde and anterograde amnesia. Hippocampus, 16, 966-980]. Thus, retrograde AM impairment may be viewed as both a loss of information as well as a deficit in reconstructive processes that hamper or prevent the binding of information to generate a cohesive, detail-rich memory.

  15. Developing Teaching Material Software Assisted for Numerical Methods

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  16. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  17. Hyperbolic conservation laws and numerical methods

    NASA Technical Reports Server (NTRS)

    Leveque, Randall J.

    1990-01-01

    The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.

  18. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.; Jacobsen, S. E.

    1986-01-01

    An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.

  19. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  20. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    NASA Astrophysics Data System (ADS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-06-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.

  1. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  2. Test results of smart aircraft fastener for KC-135 structural integrity

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  3. KC-135A in flight - closeup of winglet with attached tufts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A chase plane view of the tufts on the KC-135 winglet. The use of tufts in flight research dates back to the early days of the NACA, and remains an effective means of observing airflow even today. In this procedure, rows of strings are attached to an airplane's surface, with one end of each string taped to the airplane and the other end free to swing about in the airflow. The movements of the tufts are photographed by on-board cameras or a chase plane. If the tufts are arrayed in neat rows, as seen here, then the airflow is smooth over the airplane's surface. If, however, they are moving about violently, it suggests turbulent airflow. Such motions may indicate high drag, flow separation (such as in a stall), or buffeting. In some cases, tufts will actually point forward, indicating the airflow has reversed direction.

  4. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    NASA Astrophysics Data System (ADS)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  5. A numerical method for simulations of rigid fiber suspensions

    NASA Astrophysics Data System (ADS)

    Tornberg, Anna-Karin; Gustavsson, Katarina

    2006-06-01

    In this paper, we present a numerical method designed to simulate the challenging problem of the dynamics of slender fibers immersed in an incompressible fluid. Specifically, we consider microscopic, rigid fibers, that sediment due to gravity. Such fibers make up the micro-structure of many suspensions for which the macroscopic dynamics are not well understood. Our numerical algorithm is based on a non-local slender body approximation that yields a system of coupled integral equations, relating the forces exerted on the fibers to their velocities, which takes into account the hydrodynamic interactions of the fluid and the fibers. The system is closed by imposing the constraints of rigid body motions. The fact that the fibers are straight have been further exploited in the design of the numerical method, expanding the force on Legendre polynomials to take advantage of the specific mathematical structure of a finite-part integral operator, as well as introducing analytical quadrature in a manner possible only for straight fibers. We have carefully treated issues of accuracy, and present convergence results for all numerical parameters before we finally discuss the results from simulations including a larger number of fibers.

  6. Advanced Numerical and Theoretical Methods for Photonic Crystals and Metamaterials

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier

    2016-11-01

    This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB® is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.

  7. Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide.

    PubMed

    Melo, Maria Luisa P; Brito, Gerly A C; Soares, Rudy C; Carvalho, Sarah B L M; Silva, Johan V; Soares, Pedro M G; Vale, Mariana L; Souza, Marcellus H L P; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2008-04-01

    Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and KC ELISA. CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. These results suggest an important role of TNF-alpha, IL-1beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11.

  8. Medical evaluations on the KC-135 1991 flight report summary

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    1993-01-01

    The medical investigations completed on the KC-135 during FY 1991 in support of the development of the Health Maintenance Facility and Medical Operations are presented. The experiments consisted of medical and engineering evaluations of medical hardware and procedures and were conducted by medical and engineering personnel. The hardware evaluated included prototypes of a crew medical restraint system and advanced life support pack, a shuttle orbiter medical system, an airway medical accessory kit, a supplementary extended duration orbiter medical kit, and a surgical overhead canopy. The evaluations will be used to design flight hardware and identify hardware-specific training requirements. The following procedures were evaluated: transport of an ill or injured crewmember at man-tended capability, surgical technique in microgravity, transfer of liquids in microgravity, advanced cardiac life support using man-tended capability Health Maintenance Facility hardware, medical transport using a model of the assured crew return vehicle, and evaluation of delivery mechanisms for aerosolized medications in microgravity. The results of these evaluation flights allow for a better understanding of the types of procedures that can be performed in a microgravity environment.

  9. ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135

    NASA Image and Video Library

    1978-12-15

    S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA

  10. Two-phase flow research using the DC-9/KC-135 apparatus

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael

    1996-01-01

    Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.

  11. Numerical Polynomial Homotopy Continuation Method and String Vacua

    DOE PAGES

    Mehta, Dhagash

    2011-01-01

    Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less

  12. Conservation properties of numerical integration methods for systems of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  13. A numerical method for interface problems in elastodynamics

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    The numerical implementation of a formulation for a class of interface problems in elastodynamics is discussed. This formulation combines the use of the finite element and boundary integral methods to represent the interior and the exteriro regions, respectively. In particular, the response of a semicylindrical alluvial valley in a homogeneous halfspace to incident antiplane SH waves is considered to determine the accuracy and convergence of the numerical procedure. Numerical results are obtained from several combinations of the incidence angle, frequency of excitation, and relative stiffness between the inclusion and the surrounding halfspace. The results tend to confirm the theoretical estimates that the convergence is of the order H(2) for the piecewise linear elements used. It was also observed that the accuracy descreases as the frequency of excitation increases or as the relative stiffness of the inclusion decreases.

  14. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  15. Numerical methods for axisymmetric and 3D nonlinear beams

    NASA Astrophysics Data System (ADS)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  16. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  17. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions.

    PubMed

    Abarajith, H S; Dhir, V K; Warrier, G; Son, G

    2004-11-01

    Numerical simulation and experimental validation of the growth and departure of multiple merging bubbles and associated heat transfer on a horizontal heated surface during pool boiling under variable gravity conditions have been performed. A finite difference scheme is used to solve the equations governing mass, momentum, and energy in the vapor liquid phases. The vapor-liquid interface is captured by a level set method that is modified to include the influence of phase change at the liquid-vapor interface. Water is used as test liquid. The effects of reduced gravity condition and orientation of the bubbles on the bubble diameter, interfacial structure, bubble merger time, and departure time, as well as local heat fluxes, are studied. In the experiments, multiple vapor bubbles are produced on artificial cavities in the 2-10 micrometer diameter range, microfabricated on the polished silicon wafer with given spacing. The wafer was heated electrically from the back with miniature strain gage type heating elements in order to control the nucleation superheat. The experiments conducted in normal Earth gravity and in the low gravity environment of KC-135 aircraft are used to validate the numerical simulations.

  18. Computational methods for aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  19. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  20. A stable numerical solution method in-plane loading of nonlinear viscoelastic laminated orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1989-01-01

    In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.

  1. A study of numerical methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Yee, H. C.

    1988-01-01

    The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained.

  2. A constrained-gradient method to control divergence errors in numerical MHD

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-10-01

    In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.

  3. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  4. Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John

    2011-01-01

    Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

  5. An analytically based numerical method for computing view factors in real urban environments

    NASA Astrophysics Data System (ADS)

    Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun

    2018-01-01

    A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.

  6. Active member vibration control experiment in a KC-135 reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Lawrence, C. R.; Lurie, B. J.; Chen, G.-S.; Swanson, A. D.

    1991-01-01

    An active member vibration control experiment in a KC-135 reduced gravity environment was carried out by the Air Force Flight Dynamics Laboratory and the Jet Propulsion Laboratory. Two active members, consisting of piezoelectric actuators, displacement sensors, and load cells, were incorporated into a 12-meter, 104 kg box-type test structure. The active member control design involved the use of bridge (compound) feedback concept, in which the collocated force and velocity signals are feedback locally. An impact-type test was designed to accommodate the extremely short duration of the reduced gravity testing window in each parabolic flight. The moving block analysis technique was used to estimate the modal frequencies and dampings from the free-decay responses. A broadband damping performance was demonstrated up to the ninth mode of 40 Hz. The best damping performance achieved in the flight test was about 5 percent in the fourth mode of the test structure.

  7. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  8. Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model.

    PubMed

    Rachagani, Satyanarayana; Macha, Muzafar A; Menning, Melanie S; Dey, Parama; Pai, Priya; Smith, Lynette M; Mo, Yin-Yuan; Batra, Surinder K

    2015-11-24

    Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in the downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets.

  9. Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model

    PubMed Central

    Rachagani, Satyanarayana; Dey, Parama; Pai, Priya; Smith, Lynette M.; Mo, Yin-Yuan; Batra, Surinder K.

    2015-01-01

    Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets. PMID:26516699

  10. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  11. An explicit mixed numerical method for mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H.-M.

    1981-01-01

    A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.

  12. Numerical methods for the design of gradient-index optical coatings.

    PubMed

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  13. Hierarchical semi-numeric method for pairwise fuzzy group decision making.

    PubMed

    Marimin, M; Umano, M; Hatono, I; Tamura, H

    2002-01-01

    Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.

  14. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    NASA Astrophysics Data System (ADS)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a

  15. A different approach to estimate nonlinear regression model using numerical methods

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  16. An unconditionally stable method for numerically solving solar sail spacecraft equations of motion

    NASA Astrophysics Data System (ADS)

    Karwas, Alex

    Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach

  17. Coastal Modeling System: Mathematical Formulations and Numerical Methods

    DTIC Science & Technology

    2014-03-01

    sediment transport , and morphology change. The CMS was designed and developed for coastal inlets and navigation applications, including channel...numerical methods of hydrodynamic, salinity and sediment transport , and morphology change model CMS-Flow. The CMS- Flow uses the Finite Volume...and the influence of coastal structures. The implicit hydrodynamic model is coupled to a nonequilibrium transport model of multiple-sized total

  18. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.

    PubMed

    Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J

    2017-01-01

    A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Critical study of higher order numerical methods for solving the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1978-01-01

    A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.

  20. Efficient Numerical Methods for Nonlinear-Facilitated Transport and Exchange in a Blood-Tissue Exchange Unit

    PubMed Central

    Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.

    2010-01-01

    The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808

  1. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  2. Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method

    NASA Astrophysics Data System (ADS)

    Bekhoucha, F.; Rechak, S.; Cadou, J. M.

    2016-12-01

    In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.

  3. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25192 (January 1986) --- Two payload specialists in training for the STS-51L mission, and a payload specialist from STS-61C share a ?zero-gravity? flight aboard a KC-135 aircraft over the Gulf of Mexico. Left to right are United States Representative Bill Nelson (Democrat, Florida), Sharon Christa McAuliffe, and Barbara R. Morgan. The congressman is a payload specialist for the STS-61C mission. McAuliffe is the prime payload specialist for the Teacher-in-Space Project aboard the STS-51L mission; and Morgan is her backup. The photo was taken by Keith meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  4. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  5. Numerical Modeling of Scour at the Head of a Vertical-Wall Breakwater in Waves

    NASA Astrophysics Data System (ADS)

    Baykal, C.; Balcı, H. B.; Sumer, B. M.; Fuhrman, D. R.

    2017-12-01

    This study presents a 3D numerical modeling study on the flow and scour at the head of a vertical-wall breakwater in regular waves. The numerical model utilized in the study is based on that given by Jacobsen (2011). The present model has been applied successfully to the scour and backfilling beneath submarine pipelines by Fuhrman et al. (2014), and around a vertical cylindrical pile mounted on a horizontal plane sediment bed by Baykal et al. (2015, 2017). The model is composed of two main modules. The first module is the hydrodynamic model where Reynolds Averaged Navier Stokes (RANS) equations are solved with a k-ω turbulence closure. The second module is the morphologic model which comprises five sub-modules, namely; bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in open-source CFD toolbox OpenFOAM. In this study, the model is applied to experimental data sets of Sumer and Fredsoe (1997) on the scour around a vertical-wall breakwater with a circular round head. Here, it is given the preliminary results of bed evolution of Test-8 of Sumer and Fredsoe (1997) in which a vertical-wall breakwater head with a width of B=140 mm is subjected to oscillatory flow with Tw=2.0 s and maximum orbital velocity at the bed Um=22cm/s, resulting in a Keulegan-Carpenter number, KC=3.14, close to KC experienced in real-life situations (KC = O(1)). The grain size is d=0.17 mm. The Shields parameter in the test case is given as θc=0.11, larger than the critical value for the initiation of motion implying that the scour is in the live-bed regime. The computational domain used in the simulations has the following dimensions: Length, l=40B, Width, w=20B, and Height, h=2B. The total number of cells is O(105) in the simulations. The scoured bed profile computed at the end of 3 periods of oscillatory flow of Test-8 is given in the figure below. The color scale in the figure is given for the ratio of bed elevation to the width of breakwater

  6. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus

    NASA Astrophysics Data System (ADS)

    Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.

    2015-05-01

    We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.

  7. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  8. Numerical analysis method for linear induction machines.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1972-01-01

    A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.

  9. Comparison of Flight Measured, Predicted and Wind Tunnel Measured Winglet Characteristics on a KC-135 Aircraft

    NASA Technical Reports Server (NTRS)

    Dodson, R. O., Jr.

    1982-01-01

    One of the objectives of the KC-135 Winglet Flight Research and Demonstration Program was to obtain experimental flight test data to verify the theoretical and wind tunnel winglet aerodynamic performance prediction methods. Good agreement between analytic, wind tunnel and flight test performance was obtained when the known differences between the tests and analyses were accounted for. The flight test measured fuel mileage improvements for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The performance improvement obtained was within the wind tunnel test data obtained from two different wind tunnel models. The buffet boundary data obtained for the baseline configuration was in good agreement with previous established data. Buffet data for the 15 deg cant/-4 deg incidence configuration showed a slight improvement, while the 15 deg cant/-2 deg incidence and 0 deg cant/-4 deg incidence data showed a slight deterioration.

  10. New numerical method for radiation heat transfer in nonhomogeneous participating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.R.; Tan, Zhiqiang

    A new numerical method, which solves the exact integral equations of distance-angular integration form for radiation transfer, is introduced in this paper. By constructing and prestoring the numerical integral formulas for the distance integral for appropriate kernel functions, this method eliminates the time consuming evaluations of the kernels of the space integrals in the formal computations. In addition, when the number of elements in the system is large, the resulting coefficient matrix is quite sparse. Thus, either considerable time or much storage can be saved. A weakness of the method is discussed, and some remedies are suggested. As illustrations, somemore » one-dimensional and two-dimensional problems in both homogeneous and inhomogeneous emitting, absorbing, and linear anisotropic scattering media are studied. Some results are compared with available data. 13 refs.« less

  11. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  12. Numerical simulation of h-adaptive immersed boundary method for freely falling disks

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Xia, Zhenhua; Cai, Qingdong

    2018-05-01

    In this work, a freely falling disk with aspect ratio 1/10 is directly simulated by using an adaptive numerical model implemented on a parallel computation framework JASMIN. The adaptive numerical model is a combination of the h-adaptive mesh refinement technique and the implicit immersed boundary method (IBM). Our numerical results agree well with the experimental results in all of the six degrees of freedom of the disk. Furthermore, very similar vortex structures observed in the experiment were also obtained.

  13. Cross-cultural adaptation of the US consumer form of the short Primary Care Assessment Tool (PCAT): the Korean consumer form of the short PCAT (KC PCAT) and the Korean standard form of the short PCAT (KS PCAT).

    PubMed

    Jeon, Ki-Yeob

    2011-01-01

    It is well known that countries with well-structured primary care have better health outcomes, better health equity and reduced healthcare costs. This study aimed to culturally modify and validate the US consumer form of the short Primary Care Assessment Tool (PCAT) in primary care in the Republic of Korea (hereafter referred to as Korea). The Korean consumer form of the short PCAT (KC PCAT) was cross-culturally modified from the original version using a standardised transcultural adaptation method. A pre-test version of the KC PCAT was formulated by replacement of four items and modification of a further four items from the 37 items of the original consumer form of the short PCAT at face value evaluation meetings. Pilot testing was done with a convenience sample of 15 responders at two different sites. Test-retest showed high reliability. To validate the KC PCAT, 606 clients participated in a survey carried out in Korea between February and May 2006. Internal consistency reliability, test-retest reliability and factor analysis were conducted in order to test validity. Psychometric testing was carried out on 37 items of the KC PCAT to make the KS PCAT which has 30 items and has seven principal domains: first contact utilisation, first contact accessibility, ongoing accountable care (ongoing care and coordinated rapport care), integrated care (patient-centred care with integration between primary and specialty care or between different specialties), comprehensive care, community-oriented care and culturally-oriented care. Component factors of the verified KS PCAT explained 58.28% of the total variance in the total item scores of primary care. The verified KS PCAT has been characterised by the seven classic domains of primary care with minor modifications. This may provide clues concerning differences in expectations for primary care in the Korean population as compared with that of the US. The KS PCAT is a reliable and valid tool for the evaluation of the quality of

  14. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    PubMed Central

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  15. Application of Numerical Integration and Data Fusion in Unit Vector Method

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-01-01

    The Unit Vector Method (UVM) is a series of orbit determination methods which are designed by Purple Mountain Observatory (PMO) and have been applied extensively. It gets the conditional equations for different kinds of data by projecting the basic equation to different unit vectors, and it suits for weighted process for different kinds of data. The high-precision data can play a major role in orbit determination, and accuracy of orbit determination is improved obviously. The improved UVM (PUVM2) promoted the UVM from initial orbit determination to orbit improvement, and unified the initial orbit determination and orbit improvement dynamically. The precision and efficiency are improved further. In this thesis, further research work has been done based on the UVM: Firstly, for the improvement of methods and techniques for observation, the types and decision of the observational data are improved substantially, it is also asked to improve the decision of orbit determination. The analytical perturbation can not meet the requirement. So, the numerical integration for calculating the perturbation has been introduced into the UVM. The accuracy of dynamical model suits for the accuracy of the real data, and the condition equations of UVM are modified accordingly. The accuracy of orbit determination is improved further. Secondly, data fusion method has been introduced into the UVM. The convergence mechanism and the defect of weighted strategy have been made clear in original UVM. The problem has been solved in this method, the calculation of approximate state transition matrix is simplified and the weighted strategy has been improved for the data with different dimension and different precision. Results of orbit determination of simulation and real data show that the work of this thesis is effective: (1) After the numerical integration has been introduced into the UVM, the accuracy of orbit determination is improved obviously, and it suits for the high-accuracy data of

  16. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

    PubMed

    Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

    2013-03-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

  17. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

    PubMed Central

    Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

    2013-01-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179

  18. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  19. USAF bioenvironmental noise data handbook. Volume 157: KC-10A in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The KC-10A is a standard USAF tanker-transport aircraft with high-speed, high altitude refueling and long range transport capability. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. Data are reported for 24 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  20. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  1. Climate Prediction for Brazil's Nordeste: Performance of Empirical and Numerical Modeling Methods.

    NASA Astrophysics Data System (ADS)

    Moura, Antonio Divino; Hastenrath, Stefan

    2004-07-01

    Comparisons of performance of climate forecast methods require consistency in the predictand and a long common reference period. For Brazil's Nordeste, empirical methods developed at the University of Wisconsin use preseason (October January) rainfall and January indices of the fields of meridional wind component and sea surface temperature (SST) in the tropical Atlantic and the equatorial Pacific as input to stepwise multiple regression and neural networking. These are used to predict the March June rainfall at a network of 27 stations. An experiment at the International Research Institute for Climate Prediction, Columbia University, with a numerical model (ECHAM4.5) used global SST information through February to predict the March June rainfall at three grid points in the Nordeste. The predictands for the empirical and numerical model forecasts are correlated at +0.96, and the period common to the independent portion of record of the empirical prediction and the numerical modeling is 1968 99. Over this period, predicted versus observed rainfall are evaluated in terms of correlation, root-mean-square error, absolute error, and bias. Performance is high for both approaches. Numerical modeling produces a correlation of +0.68, moderate errors, and strong negative bias. For the empirical methods, errors and bias are small, and correlations of +0.73 and +0.82 are reached between predicted and observed rainfall.


  2. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  3. The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models

    NASA Astrophysics Data System (ADS)

    Carpio, J.; Braack, M.

    2012-01-01

    This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.

  4. A Numerical Method for Incompressible Flow with Heat Transfer

    NASA Technical Reports Server (NTRS)

    Sa, Jong-Youb; Kwak, Dochan

    1997-01-01

    A numerical method for the convective heat transfer problem is developed for low speed flow at mild temperatures. A simplified energy equation is added to the incompressible Navier-Stokes formulation by using Boussinesq approximation to account for the buoyancy force. A pseudocompressibility method is used to solve the resulting set of equations for steady-state solutions in conjunction with an approximate factorization scheme. A Neumann-type pressure boundary condition is devised to account for the interaction between pressure and temperature terms, especially near a heated or cooled solid boundary. It is shown that the present method is capable of predicting the temperature field in an incompressible flow.

  5. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  6. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  7. Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.

    PubMed

    Rangan, Aaditya V; Cai, David

    2007-02-01

    We discuss numerical methods for simulating large-scale, integrate-and-fire (I&F) neuronal networks. Important elements in our numerical methods are (i) a neurophysiologically inspired integrating factor which casts the solution as a numerically tractable integral equation, and allows us to obtain stable and accurate individual neuronal trajectories (i.e., voltage and conductance time-courses) even when the I&F neuronal equations are stiff, such as in strongly fluctuating, high-conductance states; (ii) an iterated process of spike-spike corrections within groups of strongly coupled neurons to account for spike-spike interactions within a single large numerical time-step; and (iii) a clustering procedure of firing events in the network to take advantage of localized architectures, such as spatial scales of strong local interactions, which are often present in large-scale computational models-for example, those of the primary visual cortex. (We note that the spike-spike corrections in our methods are more involved than the correction of single neuron spike-time via a polynomial interpolation as in the modified Runge-Kutta methods commonly used in simulations of I&F neuronal networks.) Our methods can evolve networks with relatively strong local interactions in an asymptotically optimal way such that each neuron fires approximately once in [Formula: see text] operations, where N is the number of neurons in the system. We note that quantifications used in computational modeling are often statistical, since measurements in a real experiment to characterize physiological systems are typically statistical, such as firing rate, interspike interval distributions, and spike-triggered voltage distributions. We emphasize that it takes much less computational effort to resolve statistical properties of certain I&F neuronal networks than to fully resolve trajectories of each and every neuron within the system. For networks operating in realistic dynamical regimes, such as

  8. Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables.

    PubMed

    Fagerland, Morten W; Sandvik, Leiv; Mowinckel, Petter

    2011-04-13

    The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. The Welch U test (the T test with adjustment for unequal variances) and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group). The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.

  9. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.

    1986-01-01

    The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.

  10. Numerical simulation of pseudoelastic shape memory alloys using the large time increment method

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad

    2017-04-01

    The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.

  11. Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods

    ERIC Educational Resources Information Center

    Maase, Eric L.; High, Karen A.

    2008-01-01

    "Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…

  12. Some numerical methods for the Hele-Shaw equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, N.

    1994-03-01

    Tryggvason and Aref used a boundary integral method and the vortex-in-cell method to evolve the interface between two fluids in a Hele-Shaw cell. The method gives excellent results for intermediate values of the nondimensional surface tension parameter. The results are different from the predicted results of McLean and Saffman for small surface tension. For large surface tension, there are some numerical problems. In this paper, we implement the method of Tryggvason and Aref but use the point vortex method instead of the vortex-in-cell method. A parametric spline is used to represent the interface. The finger widths obtained agree well withmore » those predicted by McLean and Saffman. We conclude the the method of Tryggvason and Aref can provide excellent results but that the vortex-in-cell method may not be the method of choice for extreme values of the surface tension parameter. In a second method, we represent the interface with a Fourier representation. In addition, an alternative way of discretizing the boundary integral is used. Our results are compared to the linearized theory and the results of McLean and Saffman and are shown to be highly accurate. 21 refs., 4 figs., 2 tabs.« less

  13. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1980-01-01

    A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.

  14. Modeling of heat flow and effective thermal conductivity of fractured media: Analytical and numerical methods

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.

    2017-05-01

    The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.

  15. Discontinuous Galerkin Method with Numerical Roe Flux for Spherical Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Yi, T.; Choi, S.; Kang, S.

    2013-12-01

    In developing the dynamic core of a numerical weather prediction model with discontinuous Galerkin method, a numerical flux at the boundaries of grid elements plays a vital role since it preserves the local conservation properties and has a significant impact on the accuracy and stability of numerical solutions. Due to these reasons, we developed the numerical Roe flux based on an approximate Riemann problem for spherical shallow water equations in Cartesian coordinates [1] to find out its stability and accuracy. In order to compare the performance with its counterpart flux, we used the Lax-Friedrichs flux, which has been used in many dynamic cores such as NUMA [1], CAM-DG [2] and MCore [3] because of its simplicity. The Lax-Friedrichs flux is implemented by a flux difference between left and right states plus the maximum characteristic wave speed across the boundaries of elements. It has been shown that the Lax-Friedrichs flux with the finite volume method is more dissipative and unstable than other numerical fluxes such as HLLC, AUSM+ and Roe. The Roe flux implemented in this study is based on the decomposition of flux difference over the element boundaries where the nonlinear equations are linearized. It is rarely used in dynamic cores due to its complexity and thus computational expensiveness. To compare the stability and accuracy of the Roe flux with the Lax-Friedrichs, two- and three-dimensional test cases are performed on a plane and cubed-sphere, respectively, with various numbers of element and polynomial order. For the two-dimensional case, the Gaussian bell is simulated on the plane with two different numbers of elements at the fixed polynomial orders. In three-dimensional cases on the cubed-sphere, we performed the test cases of a zonal flow over an isolated mountain and a Rossby-Haurwitz wave, of which initial conditions are the same as those of Williamson [4]. This study presented that the Roe flux with the discontinuous Galerkin method is less

  16. Numerical sedimentation particle-size analysis using the Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.

    2015-12-01

    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

  17. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  18. Final Report for''Numerical Methods and Studies of High-Speed Reactive and Non-Reactive Flows''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwendeman, D W

    2002-11-20

    The work carried out under this subcontract involved the development and use of an adaptive numerical method for the accurate calculation of high-speed reactive flows on overlapping grids. The flow is modeled by the reactive Euler equations with an assumed equation of state and with various reaction rate models. A numerical method has been developed to solve the nonlinear hyperbolic partial differential equations in the model. The method uses an unsplit, shock-capturing scheme, and uses a Godunov-type scheme to compute fluxes and a Runge-Kutta error control scheme to compute the source term modeling the chemical reactions. An adaptive mesh refinementmore » (AMR) scheme has been implemented in order to locally increase grid resolution. The numerical method uses composite overlapping grids to handle complex flow geometries. The code is part of the ''Overture-OverBlown'' framework of object-oriented codes [1, 2], and the development has occurred in close collaboration with Bill Henshaw and David Brown, and other members of the Overture team within CASC. During the period of this subcontract, a number of tasks were accomplished, including: (1) an extension of the numerical method to handle ''ignition and grow'' reaction models and a JWL equations of state; (2) an improvement in the efficiency of the AMR scheme and the error estimator; (3) an addition of a scheme of numerical dissipation designed to suppress numerical oscillations/instabilities near expanding detonations and along grid overlaps; and (4) an exploration of the evolution to detonation in an annulus and of detonation failure in an expanding channel.« less

  19. Improving Logistics Realism in Command Post Exercises Involving the KC-135A/E/R Aircraft Using a Historical Aircraft Maintenance Database Model

    DTIC Science & Technology

    1990-09-01

    exper[ ence in u.sings both the KC-13iA/E/R d ,aboase model and other mat.hematival models. A staListical analysis of survey oz;ai,.,arons, will be...statistic. Consequently, differ- ences of opinion among respondents will be amplified. Summary The research methodology provide5 a sequential set of...Cost Accounting Direc- torate (AFLC/ACC). Though used for cost accounting pur- poses, the VAMOSC system has the capability of cross refer- encing a WUC

  20. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    PubMed

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  1. A fast numerical method for the valuation of American lookback put options

    NASA Astrophysics Data System (ADS)

    Song, Haiming; Zhang, Qi; Zhang, Ran

    2015-10-01

    A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.

  2. Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice

    2018-05-01

    In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.

  3. Numerical methods for multi-scale modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Symeonidis, Vasileios

    This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic

  4. Numerical built-in method for the nonlinear JRC/JCS model in rock joint.

    PubMed

    Liu, Qunyi; Xing, Wanli; Li, Ying

    2014-01-01

    The joint surface is widely distributed in the rock, thus leading to the nonlinear characteristics of rock mass strength and limiting the effectiveness of the linear model in reflecting characteristics. The JRC/JCS model is the nonlinear failure criterion and generally believed to describe the characteristics of joints better than other models. In order to develop the numerical program for JRC/JCS model, this paper established the relationship between the parameters of the JRC/JCS and Mohr-Coulomb models. Thereafter, the numerical implement method and implementation process of the JRC/JCS model were discussed and the reliability of the numerical method was verified by the shear tests of jointed rock mass. Finally, the effect of the JRC/JCS model parameters on the shear strength of the joint was analyzed.

  5. Vectorization on the star computer of several numerical methods for a fluid flow problem

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  6. The instanton method and its numerical implementation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  7. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  8. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.

    PubMed

    Khoromskaia, Venera; Khoromskij, Boris N

    2015-12-21

    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.

  9. Novel Numerical Methods for Optimal Control Problems Involving Fractional-Order Differential Equations

    DTIC Science & Technology

    2018-03-14

    pricing, Appl. Math . Comp. Vol.305, 174-187 (2017) 5. W. Li, S. Wang, Pricing European options with proportional transaction costs and stochastic...for fractional differential equation. Numer. Math . Theor. Methods Appl. 5, 229–241, 2012. [23] Kilbas A.A. and Marzan, S.A., Cauchy problem for...numerical technique for solving fractional optimal control problems, Comput. Math . Appl., 62, Issue 3, 1055–1067, 2011. [26] Lotfi A., Yousefi SA., Dehghan M

  10. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    NASA Astrophysics Data System (ADS)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  11. Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Lin, K.; Boschert, S.; Dold, P.; Benz, K. W.; Kriessl, O.; Schmidt, A.; Siebert, K. G.; Dziuk, G.

    2002-04-01

    This paper presents efficient numerical methods—the "inverse modeling" method and the adaptive finite element method—for optimizing the heat transport as well as for investigating the heat and mass transport under the influence of convection during crystal growth, especially near the liquid/solid interface. These methods have been applied to industrial Bridgman-furnaces for the growth of 65-75 mm diameter (Cd,Zn)Te crystals.

  12. HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates

    PubMed Central

    García-Arriaza, Juan; Perdiguero, Beatriz; Heeney, Jonathan L.; Seaman, Michael S.; Montefiori, David C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Self, Steven G.; Borate, Bhavesh; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, Jim; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Lee, Carter; Kibler, Karen V.; Jacobs, Bertram L.; Wagner, Ralf; Ding, Song; Pantaleo, Giuseppe

    2017-01-01

    ABSTRACT The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions. IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1

  13. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    NASA Astrophysics Data System (ADS)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  14. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  15. Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method

    NASA Astrophysics Data System (ADS)

    Verhoff, Ashley Marie

    Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a

  16. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  17. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  18. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  19. On time discretizations for spectral methods. [numerical integration of Fourier and Chebyshev methods for dynamic partial differential equations

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1980-01-01

    New methods are introduced for the time integration of the Fourier and Chebyshev methods of solution for dynamic differential equations. These methods are unconditionally stable, even though no matrix inversions are required. Time steps are chosen by accuracy requirements alone. For the Fourier method both leapfrog and Runge-Kutta methods are considered. For the Chebyshev method only Runge-Kutta schemes are tested. Numerical calculations are presented to verify the analytic results. Applications to the shallow water equations are presented.

  20. Numerical simulation of inductive method for determining spatial distribution of critical current density

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.

    2010-11-01

    The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.

  1. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  2. A numerical calculation method of environmental impacts for the deep sea mining industry - a review.

    PubMed

    Ma, Wenbin; van Rhee, Cees; Schott, Dingena

    2018-03-01

    Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.

  3. Numerical method of carbon-based material ablation effects on aero-heating for half-sphere

    NASA Astrophysics Data System (ADS)

    Wang, Jiang-Feng; Li, Jia-Wei; Zhao, Fa-Ming; Fan, Xiao-Feng

    2018-05-01

    A numerical method of aerodynamic heating with material thermal ablation effects for hypersonic half-sphere is presented. A surface material ablation model is provided to analyze the ablation effects on aero-thermal properties and structural heat conduction for thermal protection system (TPS) of hypersonic vehicles. To demonstrate its capability, applications for thermal analysis of hypersonic vehicles using carbonaceous ceramic ablators are performed and discussed. The numerical results show the high efficiency and validation of the method developed in thermal characteristics analysis of hypersonic aerodynamic heating.

  4. Efficient numerical method for solving Cauchy problem for the Gamma equation

    NASA Astrophysics Data System (ADS)

    Koleva, Miglena N.

    2011-12-01

    In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.

  5. Applications of numerical optimization methods to helicopter design problems: A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  6. Applications of numerical optimization methods to helicopter design problems - A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1985-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  7. Applications of numerical optimization methods to helicopter design problems - A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  8. Reconstructing gravitational wave source parameters via direct comparisons to numerical relativity I: Method

    NASA Astrophysics Data System (ADS)

    Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark; Ossokine, Serguei

    2016-03-01

    In this talk, we describe a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. For sufficiently massive sources, existing numerical relativity simulations are long enough to cover the observationally accessible part of the signal. Due to the signal's brevity, the posterior parameter distribution it implies is broad, simple, and easily reconstructed from information gained by comparing to only the sparse sample of existing numerical relativity simulations. We describe how followup simulations can corroborate and improve our understanding of a detected source. Since our method can include all physics provided by full numerical relativity simulations of coalescing binaries, it provides a valuable complement to alternative techniques which employ approximations to reconstruct source parameters. Supported by NSF Grant PHY-1505629.

  9. Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

    PubMed

    Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2011-03-23

    Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

  10. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  11. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    NASA Astrophysics Data System (ADS)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The

  12. Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility

    NASA Astrophysics Data System (ADS)

    Zertuche, Federico

    2014-05-01

    In a series of articles published in 1986, Derrida and his colleagues studied two mean field treatments (the quenched and the annealed) for NK-Kauffman networks. Their main results lead to a phase transition curve Kc 2 pc(1-pc)=1 (0Kc in terms of the bias pc of extracting a “1” for the output of the automata. Values of K bigger than Kc correspond to the so-called chaotic phase, while K<Kc, to an ordered phase. In Zertuche (2009), a new classification for the Boolean functions, called Boolean irreducibility, permitted the study of new phenomena of NK-Kauffman networks. In the present work we study once again the mean field treatment for NK-Kauffman networks, correcting it for Boolean irreducibility. A shifted phase transition curve is found. In particular, for pc=1/2 the predicted value Kc=2 by Derrida et al. changes to Kc=2.62140224613…. We support our results with numerical simulations.

  13. A New Numerical Method for Z2 Topological Insulators with Strong Disorder

    NASA Astrophysics Data System (ADS)

    Akagi, Yutaka; Katsura, Hosho; Koma, Tohru

    2017-12-01

    We propose a new method to numerically compute the Z2 indices for disordered topological insulators in Kitaev's periodic table. All of the Z2 indices are derived from the index formulae which are expressed in terms of a pair of projections introduced by Avron, Seiler, and Simon. For a given pair of projections, the corresponding index is determined by the spectrum of the difference between the two projections. This difference exhibits remarkable and useful properties, as it is compact and has a supersymmetric structure in the spectrum. These properties enable highly efficient numerical calculation of the indices of disordered topological insulators. The method, which we propose, is demonstrated for the Bernevig-Hughes-Zhang and Wilson-Dirac models whose topological phases are characterized by a Z2 index in two and three dimensions, respectively.

  14. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  15. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  16. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    NASA Astrophysics Data System (ADS)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  17. Numerical method for the solution of large systems of differential equations of the boundary layer type

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Nachtsheim, P. R.

    1972-01-01

    A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.

  18. Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method

    NASA Technical Reports Server (NTRS)

    Loulou, Patrick; Moser, Robert D.; Mansour, Nagi N.; Cantwell, Brian J.

    1997-01-01

    A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.

  19. Numerical methods for the unsymmetric tridiagonal eigenvalue problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1996-12-31

    This report summarizes the results of our project {open_quotes}Numerical Methods for the Unsymmetric Tridiagonal Eigenvalue Problem{close_quotes}. It was funded by both by a DOE grant (No. DE-FG02-92ER25122, 6/1/92-5/31/94, $100,000) and by an NSF Research Initiation Award (No. CCR-9109785, 7/1/91-6/30/93, $46,564.) The publications resulting from that project during the DOE funding period are listed below. Two other journal papers and two other conference papers were produced during the NSF funding period. Most of the listed conference papers are early or partial versions of the listed journal papers.

  20. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  1. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of

  2. Numerical methods for analyzing electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield.

  3. Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark

    2002-01-01

    Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.

  4. A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma[S

    PubMed Central

    Jiang, Xuntian; Sidhu, Rohini; Porter, Forbes D.; Yanjanin, Nicole M.; Speak, Anneliese O.; te Vruchte, Danielle Taylor; Platt, Frances M.; Fujiwara, Hideji; Scherrer, David E.; Zhang, Jessie; Dietzen, Dennis J.; Schaffer, Jean E.; Ory, Daniel S.

    2011-01-01

    Niemann-Pick type C1 (NPC1) disease is a rare, progressively fatal neurodegenerative disease for which there are no FDA-approved therapies. A major barrier to developing new therapies for this disorder has been the lack of a sensitive and noninvasive diagnostic test. Recently, we demonstrated that two cholesterol oxidation products, specifically cholestane-3β,5α,6β-triol (3β,5α,6β-triol) and 7-ketocholesterol (7-KC), were markedly increased in the plasma of human NPC1 subjects, suggesting a role for these oxysterols in diagnosis of NPC1 disease and evaluation of therapeutics in clinical trials. In the present study, we describe the development of a sensitive and specific LC-MS/MS method for quantifying 3β,5α,6β-triol and 7-KC human plasma after derivatization with N,N-dimethylglycine. We show that dimethylglycine derivatization successfully enhanced the ionization and fragmentation of 3β,5α,6β-triol and 7-KC for mass spectrometric detection of the oxysterol species in human plasma. The oxysterol dimethylglycinates were resolved with high sensitivity and selectivity, and enabled accurate quantification of 3β,5α,6β-triol and 7-KC concentrations in human plasma. The LC-MS/MS assay was able to discriminate with high sensitivity and specificity between control and NPC1 subjects, and offers for the first time a noninvasive, rapid, and highly sensitive method for diagnosis of NPC1 disease. PMID:21518695

  5. A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Komen, E. M. J.; Camilo, L. H.; Shams, A.; Geurts, B. J.; Koren, B.

    2017-09-01

    LES for industrial applications with complex geometries is mostly characterised by: a) a finite volume CFD method using a non-staggered arrangement of the flow variables and second order accurate spatial and temporal discretisation schemes, b) an implicit top-hat filter, where the filter length is equal to the local computational cell size, and c) eddy-viscosity type LES models. LES based on these three main characteristics is indicated as industrial LES in this paper. It becomes increasingly clear that the numerical dissipation in CFD codes typically used in industrial applications with complex geometries may inhibit the predictive capabilities of explicit LES. Therefore, there is a need to quantify the numerical dissipation rate in such CFD codes. In this paper, we quantify the numerical dissipation rate in physical space based on an analysis of the transport equation for the mean turbulent kinetic energy. Using this method, we quantify the numerical dissipation rate in a quasi-Direct Numerical Simulation (DNS) and in under-resolved DNS of, as a basic demonstration case, fully-developed turbulent channel flow. With quasi-DNS, we indicate a DNS performed using a second order accurate finite volume method typically used in industrial applications. Furthermore, we determine and explain the trends in the performance of industrial LES for fully-developed turbulent channel flow for four different Reynolds numbers for three different LES mesh resolutions. The presented explanation of the mechanisms behind the observed trends is based on an analysis of the turbulent kinetic energy budgets. The presented quantitative analyses demonstrate that the numerical errors in the industrial LES computations of the considered turbulent channel flows result in a net numerical dissipation rate which is larger than the subgrid-scale dissipation rate. No new computational methods are presented in this paper. Instead, the main new elements in this paper are our detailed quantification

  6. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method

    NASA Astrophysics Data System (ADS)

    Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank

    2018-02-01

    Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.

  7. Numerical study on flow over stepped spillway using Lagrangian method

    NASA Astrophysics Data System (ADS)

    Wang, Junmin; Fu, Lei; Xu, Haibo; Jin, Yeechung

    2018-02-01

    Flow over stepped spillway has been studied for centuries, due to its unstable and the characteristics of cavity, the simulation of this type of spillway flow is always difficult. Most of the early studies of flow over stepped spillway are based on experiment, while in the recent decades, numerical studies of flow over stepped spillway draw most of the researchers’ attentions due to its simplicity and efficiency. In this study, a new Lagrangian based particle method is introduced to reproduce the phenomenon of flow over stepped spillway, the inherent advantages of this particle based method provide a convincing free surface and velocity profiles compared with previous experimental data. The capacity of this new method is proved and it is anticipated to be an alternative tool of traditional mesh based method in environmental engineering field such as the simulation of flow over stepped spillway.

  8. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  9. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  10. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  11. Numerical Methods in Atmospheric and Oceanic Modelling: The Andre J. Robert Memorial Volume

    NASA Astrophysics Data System (ADS)

    Rosmond, Tom

    Most people, even including some in the scientific community, do not realize how much the weather forecasts they use to guide the activities of their daily lives depend on very complex mathematics and numerical methods that are the basis of modern numerical weather prediction (NWP). André Robert (1929-1993), to whom Numerical Methods in Atmospheric and Oceanic Modelling is dedicated, had a career that contributed greatly to the growth of NWP and the role that the atmospheric computer models of NWP play in our society. There are probably no NWP models running anywhere in the world today that do not use numerical methods introduced by Robert, and those of us who work with and use these models everyday are indebted to him.The first two chapters of the volume are chronicles of Robert's life and career. The first is a 1987 interview by Harold Ritchie, one of Robert's many proteges and colleagues at the Canadian Atmospheric Environment Service. The interview traces Robert's life from his birth in New York to French Canadian parents, to his emigration to Quebec at an early age, his education and early employment, and his rise in stature as one of the preeminent research meteorologists of our time. An amusing anecdote he relates is his impression of weather forecasts while he was considering his first job as a meteorologist in the early 1950s. A newspaper of the time placed the weather forecast and daily horoscope side by side, and Robert regarded each to have a similar scientific basis. Thankfully he soon realized there was a difference between the two, and his subsequent career certainly confirmed the distinction.

  12. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrie, Michael; Shadwick, B. A.

    2016-01-04

    Here, we present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Juttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviors that do not exist in the non relativistic case.more » The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  13. Review of numerical methods for simulation of the aortic root: Present and future directions

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hossein; Cartier, Raymond; Mongrain, Rosaire

    2016-05-01

    Heart valvular disease is still one of the main causes of mortality and morbidity in develop countries. Numerical modeling has gained considerable attention in studying hemodynamic conditions associated with valve abnormalities. Simulating the large displacement of the valve in the course of the cardiac cycle needs a well-suited numerical method to capture the natural biomechanical phenomena which happens in the valve. The paper aims to review the principal progress of the numerical approaches for studying the hemodynamic of the aortic valve. In addition, the future directions of the current approaches as well as their potential clinical applications are discussed.

  14. A numerical method for shock driven multiphase flow with evaporating particles

    NASA Astrophysics Data System (ADS)

    Dahal, Jeevan; McFarland, Jacob A.

    2017-09-01

    A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

  15. An Experimental Comparison of Two Methods Of Teaching Numerical Control Manual Programming Concepts; Visual Media Versus Hands-On Equipment.

    ERIC Educational Resources Information Center

    Biekert, Russell

    Accompanying the rapid changes in technology has been a greater dependence on automation and numerical control, which has resulted in the need to find ways of preparing programers for industrial machines using numerical control. To compare the hands-on equipment method and a visual media method of teaching numerical control, an experimental and a…

  16. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  17. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  18. Review of Methods and Approaches for Deriving Numeric ...

    EPA Pesticide Factsheets

    EPA will propose numeric criteria for nitrogen/phosphorus pollution to protect estuaries, coastal areas and South Florida inland flowing waters that have been designated Class I, II and III , as well as downstream protective values (DPVs) to protect estuarine and marine waters. In accordance with the formal determination and pursuant to a subsequent consent decree, these numeric criteria are being developed to translate and implement Florida’s existing narrative nutrient criterion, to protect the designated use that Florida has previously set for these waters, at Rule 62-302.530(47)(b), F.A.C. which provides that “In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna.” Under the Clean Water Act and EPA’s implementing regulations, these numeric criteria must be based on sound scientific rationale and reflect the best available scientific knowledge. EPA has previously published a series of peer reviewed technical guidance documents to develop numeric criteria to address nitrogen/phosphorus pollution in different water body types. EPA recognizes that available and reliable data sources for use in numeric criteria development vary across estuarine and coastal waters in Florida and flowing waters in South Florida. In addition, scientifically defensible approaches for numeric criteria development have different requirements that must be taken into consider

  19. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    PubMed

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  20. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Vandoormaal, J. P.; Turan, A.; Raithby, G. D.

    1986-01-01

    The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.

  1. Impact of Na- and K-C pi-interactions on the structure and binding of M3(sol)n(BINOLate)3Ln catalysts.

    PubMed

    Wooten, Alfred J; Carroll, Patrick J; Walsh, Patrick J

    2007-08-16

    Shibasaki's heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K; Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-pi interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes.

  2. New method of processing heat treatment experiments with numerical simulation support

    NASA Astrophysics Data System (ADS)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  3. A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.

    PubMed

    Stuebner, Michael; Haider, Mansoor A

    2010-06-18

    A new and efficient method for numerical solution of the continuous spectrum biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. Development of the method is based on a composite Gauss-Legendre quadrature approximation of the continuous spectrum relaxation function that leads to an exponential series representation. The separability property of the exponential terms in the series is exploited to develop a numerical scheme that can be reduced to an update rule requiring retention of the strain history at only the previous time step. The cost of the resulting temporal discretization scheme is O(N) for N time steps. Application and calibration of the method is illustrated in the context of a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. Accuracy of the numerical method is demonstrated by comparison to a theoretical Laplace transform solution for a range of viscoelastic relaxation times that are representative of articular cartilage. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Evaluating Blended and Flipped Instruction in Numerical Methods at Multiple Engineering Schools

    ERIC Educational Resources Information Center

    Clark, Renee; Kaw, Autar; Lou, Yingyan; Scott, Andrew; Besterfield-Sacre, Mary

    2018-01-01

    With the literature calling for comparisons among technology-enhanced or active-learning pedagogies, a blended versus flipped instructional comparison was made for numerical methods coursework using three engineering schools with diverse student demographics. This study contributes to needed comparisons of enhanced instructional approaches in STEM…

  5. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  6. The RKGL method for the numerical solution of initial-value problems

    NASA Astrophysics Data System (ADS)

    Prentice, J. S. C.

    2008-04-01

    We introduce the RKGL method for the numerical solution of initial-value problems of the form y'=f(x,y), y(a)=[alpha]. The method is a straightforward modification of a classical explicit Runge-Kutta (RK) method, into which Gauss-Legendre (GL) quadrature has been incorporated. The idea is to enhance the efficiency of the method by reducing the number of times the derivative f(x,y) needs to be computed. The incorporation of GL quadrature serves to enhance the global order of the method by, relative to the underlying RK method. Indeed, the RKGL method has a global error of the form Ahr+1+Bh2m, where r is the order of the RK method and m is the number of nodes used in the GL component. In this paper we derive this error expression and show that RKGL is consistent, convergent and strongly stable.

  7. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  8. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors.

    PubMed

    Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K

    2011-11-01

    A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America

  9. An improved numerical method to compute neutron/gamma deexcitation cascades starting from a high spin state

    DOE PAGES

    Regnier, D.; Litaize, O.; Serot, O.

    2015-12-23

    Numerous nuclear processes involve the deexcitation of a compound nucleus through the emission of several neutrons, gamma-rays and/or conversion electrons. The characteristics of such a deexcitation are commonly derived from a total statistical framework often called “Hauser–Feshbach” method. In this work, we highlight a numerical limitation of this kind of method in the case of the deexcitation of a high spin initial state. To circumvent this issue, an improved technique called the Fluctuating Structure Properties (FSP) method is presented. Two FSP algorithms are derived and benchmarked on the calculation of the total radiative width for a thermal neutron capture onmore » 238U. We compare the standard method with these FSP algorithms for the prediction of particle multiplicities in the deexcitation of a high spin level of 143Ba. The gamma multiplicity turns out to be very sensitive to the numerical method. The bias between the two techniques can reach 1.5 γγ/cascade. Lastly, the uncertainty of these calculations coming from the lack of knowledge on nuclear structure is estimated via the FSP method.« less

  10. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    NASA Astrophysics Data System (ADS)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  11. Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarnykh, Dmitrii, E-mail: d.azarnykh@tum.de; Litvinov, Sergey; Adams, Nikolaus A.

    2016-06-01

    A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker–Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solvedmore » by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau–Lifshitz Navier–Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge–Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.« less

  12. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  13. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  14. An efficient numerical method for solving the Boltzmann equation in multidimensions

    NASA Astrophysics Data System (ADS)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  15. Comparison of four stable numerical methods for Abel's integral equation

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.; Mejia, Carlos E.

    1991-01-01

    The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.

  16. Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.

    2014-03-01

    A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.

  17. The convolutional differentiator method for numerical modelling of acoustic and elastic wavefields

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Jie; Teng, Ji-Wen; Yang, Ding-Hui

    1996-02-01

    Based on the techniques of forward and inverse Fourier transformation, the authors discussed the design scheme of ordinary differentiator used and applied in the simulation of acoustic and elastic wavefields in isotropic media respectively. To compress Gibbs effects by truncation effectively, Hanning window is introduced in. The model computation shows that, the convolutional differentiator method has the advantages of rapidity, low requirements of computer’s inner storage and high precision, which is a potential method of numerical simulation.

  18. S-matrix method for the numerical determination of bound states.

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Madan, R. N.

    1973-01-01

    A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.

  19. Implementing a Flipped Classroom Approach in a University Numerical Methods Mathematics Course

    ERIC Educational Resources Information Center

    Johnston, Barbara M.

    2017-01-01

    This paper describes and analyses the implementation of a "flipped classroom" approach, in an undergraduate mathematics course on numerical methods. The approach replaced all the lecture contents by instructor-made videos and was implemented in the consecutive years 2014 and 2015. The sequential case study presented here begins with an…

  20. A numerical method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation

    NASA Astrophysics Data System (ADS)

    Mamehrashi, K.; Yousefi, S. A.

    2017-02-01

    This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.

  1. Two Approaches in the Lunar Libration Theory: Analytical vs. Numerical Methods

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Zagidullin, Arthur; Nefediev, Yurii; Kosulin, Valerii

    2016-10-01

    Observation of the physical libration of the Moon and the celestial bodies is one of the astronomical methods to remotely evaluate the internal structure of a celestial body without using expensive space experiments. Review of the results obtained due to the physical libration study, is presented in the report.The main emphasis is placed on the description of successful lunar laser ranging for libration determination and on the methods of simulating the physical libration. As a result, estimation of the viscoelastic and dissipative properties of the lunar body, of the lunar core parameters were done. The core's existence was confirmed by the recent reprocessing of seismic data Apollo missions. Attention is paid to the physical interpretation of the phenomenon of free libration and methods of its determination.A significant part of the report is devoted to describing the practical application of the most accurate to date the analytical tables of lunar libration built by comprehensive analytical processing of residual differences obtained when comparing the long-term series of laser observations with numerical ephemeris DE421 [1].In general, the basic outline of the report reflects the effectiveness of two approaches in the libration theory - numerical and analytical solution. It is shown that the two approaches complement each other for the study of the Moon in different aspects: numerical approach provides high accuracy of the theory necessary for adequate treatment of modern high-accurate observations and the analytic approach allows you to see the essence of the various kind manifestations in the lunar rotation, predict and interpret the new effects in observations of physical libration [2].[1] Rambaux, N., J. G. Williams, 2011, The Moon's physical librations and determination of their free modes, Celest. Mech. Dyn. Astron., 109, 85-100.[2] Petrova N., A. Zagidullin, Yu. Nefediev. Analysis of long-periodic variations of lunar libration parameters on the basis of

  2. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.

  3. Analytical and variational numerical methods for unstable miscible displacement flows in porous media

    NASA Astrophysics Data System (ADS)

    Scovazzi, Guglielmo; Wheeler, Mary F.; Mikelić, Andro; Lee, Sanghyun

    2017-04-01

    The miscible displacement of one fluid by another in a porous medium has received considerable attention in subsurface, environmental and petroleum engineering applications. When a fluid of higher mobility displaces another of lower mobility, unstable patterns - referred to as viscous fingering - may arise. Their physical and mathematical study has been the object of numerous investigations over the past century. The objective of this paper is to present a review of these contributions with particular emphasis on variational methods. These algorithms are tailored to real field applications thanks to their advanced features: handling of general complex geometries, robustness in the presence of rough tensor coefficients, low sensitivity to mesh orientation in advection dominated scenarios, and provable convergence with fully unstructured grids. This paper is dedicated to the memory of Dr. Jim Douglas Jr., for his seminal contributions to miscible displacement and variational numerical methods.

  4. Upscaling: Effective Medium Theory, Numerical Methods and the Fractal Dream

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Ravalec, M. Le; Ricard, L.

    2006-06-01

    Upscaling is a major issue regarding mechanical and transport properties of rocks. This paper examines three issues relative to upscaling. The first one is a brief overview of Effective Medium Theory (EMT), which is a key tool to predict average rock properties at a macroscopic scale in the case of a statistically homogeneous medium. EMT is of particular interest in the calculation of elastic properties. As discussed in this paper, EMT can thus provide a possible way to perform upscaling, although it is by no means the only one, and in particular it is irrelevant if the medium does not adhere to statistical homogeneity. This last circumstance is examined in part two of the paper. We focus on the example of constructing a hydrocarbon reservoir model. Such a construction is a required step in the process of making reasonable predictions for oil production. Taking into account rock permeability, lithological units and various structural discontinuities at different scales is part of this construction. The result is that stochastic reservoir models are built that rely on various numerical upscaling methods. These methods are reviewed. They provide techniques which make it possible to deal with upscaling on a general basis. Finally, a last case in which upscaling is trivial is considered in the third part of the paper. This is the fractal case. Fractal models have become popular precisely because they are free of the assumption of statistical homogeneity and yet do not involve numerical methods. It is suggested that using a physical criterion as a means to discriminate whether fractality is a dream or reality would be more satisfactory than relying on a limited data set alone.

  5. Parameter estimation method that directly compares gravitational wave observations to numerical relativity

    NASA Astrophysics Data System (ADS)

    Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.

    2017-11-01

    We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.

  6. An improved numerical method for the kernel density functional estimation of disperse flow

    NASA Astrophysics Data System (ADS)

    Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos

    2014-11-01

    We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.

  7. Multigrid methods for numerical simulation of laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.; Mccormick, S.

    1993-01-01

    This paper documents the result of a computational study of multigrid methods for numerical simulation of 2D diffusion flames. The focus is on a simplified combustion model, which is assumed to be a single step, infinitely fast and irreversible chemical reaction with five species (C3H8, O2, N2, CO2 and H2O). A fully-implicit second-order hybrid scheme is developed on a staggered grid, which is stretched in the streamwise coordinate direction. A full approximation multigrid scheme (FAS) based on line distributive relaxation is developed as a fast solver for the algebraic equations arising at each time step. Convergence of the process for the simplified model problem is more than two-orders of magnitude faster than other iterative methods, and the computational results show good grid convergence, with second-order accuracy, as well as qualitatively agreement with the results of other researchers.

  8. The space-time solution element method: A new numerical approach for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Chang, Sin-Chung

    1995-01-01

    This paper is one of a series of papers describing the development of a new numerical method for the Navier-Stokes equations. Unlike conventional numerical methods, the current method concentrates on the discrete simulation of both the integral and differential forms of the Navier-Stokes equations. Conservation of mass, momentum, and energy in space-time is explicitly provided for through a rigorous enforcement of both the integral and differential forms of the governing conservation laws. Using local polynomial expansions to represent the discrete primitive variables on each cell, fluxes at cell interfaces are evaluated and balanced using exact functional expressions. No interpolation or flux limiters are required. Because of the generality of the current method, it applies equally to the steady and unsteady Navier-Stokes equations. In this paper, we generalize and extend the authors' 2-D, steady state implicit scheme. A general closure methodology is presented so that all terms up through a given order in the local expansions may be retained. The scheme is also extended to nonorthogonal Cartesian grids. Numerous flow fields are computed and results are compared with known solutions. The high accuracy of the scheme is demonstrated through its ability to accurately resolve developing boundary layers on coarse grids. Finally, we discuss applications of the current method to the unsteady Navier-Stokes equations.

  9. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance

    NASA Astrophysics Data System (ADS)

    Witte, J. H.; Reisinger, C.

    2010-09-01

    We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.

  10. Numerical reconstruction of unknown Robin inclusions inside a heat conductor by a non-iterative method

    NASA Astrophysics Data System (ADS)

    Nakamura, Gen; Wang, Haibing

    2017-05-01

    Consider the problem of reconstructing unknown Robin inclusions inside a heat conductor from boundary measurements. This problem arises from active thermography and is formulated as an inverse boundary value problem for the heat equation. In our previous works, we proposed a sampling-type method for reconstructing the boundary of the Robin inclusion and gave its rigorous mathematical justification. This method is non-iterative and based on the characterization of the solution to the so-called Neumann- to-Dirichlet map gap equation. In this paper, we give a further investigation of the reconstruction method from both the theoretical and numerical points of view. First, we clarify the solvability of the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to the Green function associated with an initial-boundary value problem for the heat equation inside the Robin inclusion. This naturally provides a way of computing this Green function from the Neumann-to-Dirichlet map and explains what is the input for the linear sampling method. Assuming that the Neumann-to-Dirichlet map gap equation has a unique solution, we also show the convergence of our method for noisy measurements. Second, we give the numerical implementation of the reconstruction method for two-dimensional spatial domains. The measurements for our inverse problem are simulated by solving the forward problem via the boundary integral equation method. Numerical results are presented to illustrate the efficiency and stability of the proposed method. By using a finite sequence of transient input over a time interval, we propose a new sampling method over the time interval by single measurement which is most likely to be practical.

  11. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion

  12. Transport of reacting solutes subject to a moving dissolution boundary: Numerical methods and solutions

    USGS Publications Warehouse

    Willis, Catherine; Rubin, Jacob

    1987-01-01

    A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.

  13. A Numerical Method for Obtaining Monoenergetic Neutron Flux Distributions and Transmissions in Multiple-Region Slabs

    NASA Technical Reports Server (NTRS)

    Schneider, Harold

    1959-01-01

    This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.

  14. Impact of Na- and K-C π-Interactions on the Structure and Binding of M3(sol)n(BINOLate)3Ln Catalysts

    PubMed Central

    Wooten, Alfred J.; Carroll, Patrick J.; Walsh, Patrick J.

    2008-01-01

    Shibasaki’s heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K, Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-π interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes. PMID:17658838

  15. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  16. Alternative formulations of the Laplace transform boundary element (LTBE) numerical method for the solution of diffusion-type equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, G.

    1992-03-01

    The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.

  17. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

    PubMed

    Butera, Robert J; McCarthy, Maeve L

    2004-12-01

    Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

  18. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    PubMed

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  19. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    NASA Astrophysics Data System (ADS)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  20. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  1. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  2. The numerical-analytical implementation of the cross-sections method to the open waveguide transition of the "horn" type

    NASA Astrophysics Data System (ADS)

    Divakov, Dmitriy; Malykh, Mikhail; Sevastianov, Leonid; Sevastianov, Anton; Tiutiunnik, Anastasiia

    2017-04-01

    In the paper we construct a method for approximate solution of the waveguide problem for guided modes of an open irregular waveguide transition. The method is based on straightening of the curved waveguide boundaries by introducing new variables and applying the Kantorovich method to the problem formulated in the new variables to get a system of ordinary second-order differential equations. In the method, the boundary conditions are formulated by analogy with the partial radiation conditions in the similar problem for closed waveguide transitions. The method is implemented in the symbolic-numeric form using the Maple computer algebra system. The coefficient matrices of the system of differential equations and boundary conditions are calculated symbolically, and then the obtained boundary-value problem is solved numerically using the finite difference method. The chosen coordinate functions of Kantorovich expansions provide good conditionality of the coefficient matrices. The numerical experiment simulating the propagation of guided modes in the open waveguide transition confirms the validity of the method proposed to solve the problem.

  3. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    NASA Technical Reports Server (NTRS)

    Baker, Gregory; Siegel, Michael; Tanveer, Saleh

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.

  4. Numerical simulation of groundwater flow in strongly anisotropic aquifers using multiple-point flux approximation method

    NASA Astrophysics Data System (ADS)

    Lin, S. T.; Liou, T. S.

    2017-12-01

    Numerical simulation of groundwater flow in anisotropic aquifers usually suffers from the lack of accuracy of calculating groundwater flux across grid blocks. Conventional two-point flux approximation (TPFA) can only obtain the flux normal to the grid interface but completely neglects the one parallel to it. Furthermore, the hydraulic gradient in a grid block estimated from TPFA can only poorly represent the hydraulic condition near the intersection of grid blocks. These disadvantages are further exacerbated when the principal axes of hydraulic conductivity, global coordinate system, and grid boundary are not parallel to one another. In order to refine the estimation the in-grid hydraulic gradient, several multiple-point flux approximation (MPFA) methods have been developed for two-dimensional groundwater flow simulations. For example, the MPFA-O method uses the hydraulic head at the junction node as an auxiliary variable which is then eliminated using the head and flux continuity conditions. In this study, a three-dimensional MPFA method will be developed for numerical simulation of groundwater flow in three-dimensional and strongly anisotropic aquifers. This new MPFA method first discretizes the simulation domain into hexahedrons. Each hexahedron is further decomposed into a certain number of tetrahedrons. The 2D MPFA-O method is then extended to these tetrahedrons, using the unknown head at the intersection of hexahedrons as an auxiliary variable along with the head and flux continuity conditions to solve for the head at the center of each hexahedron. Numerical simulations using this new MPFA method have been successfully compared with those obtained from a modified version of TOUGH2.

  5. A numerical method for the dynamics of non-spherical cavitation bubbles

    NASA Technical Reports Server (NTRS)

    Lucca, G.; Prosperetti, A.

    1982-01-01

    A boundary integral numerical method for the dynamics of nonspherical cavitation bubbles in inviscid incompressible liquids is described. Only surface values of the velocity potential and its first derivatives are involved. The problem of solving the Laplace equation in the entire domain occupied by the liquid is thus avoided. The collapse of a bubble in the vicinity of a solid wall and the collapse of three bubbles with collinear centers are considered.

  6. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  7. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    PubMed

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  8. The numerical solution of ordinary differential equations by the Taylor series method

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Sullivan, E.

    1973-01-01

    A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.

  9. Performance of some numerical Laplace inversion methods on American put option formula

    NASA Astrophysics Data System (ADS)

    Octaviano, I.; Yuniar, A. R.; Anisa, L.; Surjanto, S. D.; Putri, E. R. M.

    2018-03-01

    Numerical inversion approaches of Laplace transform is used to obtain a semianalytic solution. Some of the mathematical inversion methods such as Durbin-Crump, Widder, and Papoulis can be used to calculate American put options through the optimal exercise price in the Laplace space. The comparison of methods on some simple functions is aimed to know the accuracy and parameters which used in the calculation of American put options. The result obtained is the performance of each method regarding accuracy and computational speed. The Durbin-Crump method has an average error relative of 2.006e-004 with computational speed of 0.04871 seconds, the Widder method has an average error relative of 0.0048 with computational speed of 3.100181 seconds, and the Papoulis method has an average error relative of 9.8558e-004 with computational speed of 0.020793 seconds.

  10. An analytical-numerical method for determining the mechanical response of a condenser microphone

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2011-01-01

    The paper is based on determining the reaction pressure on the diaphragm of a condenser microphone by integrating numerically the frequency domain Stokes system describing the velocity and the pressure in the air domain beneath the diaphragm. Afterwards, the membrane displacement can be obtained analytically or numerically. The method is general and can be applied to any geometry of the backplate holes, slits, and backchamber. As examples, the method is applied to the Bruel & Kjaer (B&K) 4134 1/2-inch microphone determining the mechanical sensitivity and the mechano-thermal noise for a domain of frequencies and also the displacement field of the membrane for two specified frequencies. These elements compare well with the measured values published in the literature. Also a new design, completely micromachined (including the backvolume) of the B&K micro-electro-mechanical systems (MEM) 1/4-inch measurement microphone is proposed. It is shown that its mechanical performances are very similar to those of the B&K MEMS measurement microphone. PMID:22225026

  11. Stress analysis and damage evaluation of flawed composite laminates by hybrid-numerical methods

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1992-01-01

    Structural components in flight vehicles is often inherited flaws, such as microcracks, voids, holes, and delamination. These defects will degrade structures the same as that due to damages in service, such as impact, corrosion, and erosion. It is very important to know how a structural component can be useful and survive after these flaws and damages. To understand the behavior and limitation of these structural components researchers usually do experimental tests or theoretical analyses on structures with simulated flaws. However, neither approach has been completely successful. As Durelli states that 'Seldom does one method give a complete solution, with the most efficiency'. Examples of this principle is seen in photomechanics which additional strain-gage testing can only average stresses at locations of high concentration. On the other hand, theoretical analyses including numerical analyses are implemented with simplified assumptions which may not reflect actual boundary conditions. Hybrid-Numerical methods which combine photomechanics and numerical analysis have been used to correct this inefficiency since 1950's. But its application is limited until 1970's when modern computer codes became available. In recent years, researchers have enhanced the data obtained from photoelasticity, laser speckle, holography and moire' interferometry for input of finite element analysis on metals. Nevertheless, there is only few of literature being done on composite laminates. Therefore, this research is dedicated to this highly anisotropic material.

  12. An Efficient numerical method to calculate the conductivity tensor for disordered topological matter

    NASA Astrophysics Data System (ADS)

    Garcia, Jose H.; Covaci, Lucian; Rappoport, Tatiana G.

    2015-03-01

    We propose a new efficient numerical approach to calculate the conductivity tensor in solids. We use a real-space implementation of the Kubo formalism where both diagonal and off-diagonal conductivities are treated in the same footing. We adopt a formulation of the Kubo theory that is known as Bastin formula and expand the Green's functions involved in terms of Chebyshev polynomials using the kernel polynomial method. Within this method, all the computational effort is on the calculation of the expansion coefficients. It also has the advantage of obtaining both conductivities in a single calculation step and for various values of temperature and chemical potential, capturing the topology of the band-structure. Our numerical technique is very general and is suitable for the calculation of transport properties of disordered systems. We analyze how the method's accuracy varies with the number of moments used in the expansion and illustrate our approach by calculating the transverse conductivity of different topological systems. T.G.R, J.H.G and L.C. acknowledge Brazilian agencies CNPq, FAPERJ and INCT de Nanoestruturas de Carbono, Flemish Science Foundation for financial support.

  13. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  14. Spatial weighting approach in numerical method for disaggregation of MDGs indicators

    NASA Astrophysics Data System (ADS)

    Permai, S. D.; Mukhaiyar, U.; Satyaning PP, N. L. P.; Soleh, M.; Aini, Q.

    2018-03-01

    Disaggregation use to separate and classify the data based on certain characteristics or on administrative level. Disaggregated data is very important because some indicators not measured on all characteristics. Detailed disaggregation for development indicators is important to ensure that everyone benefits from development and support better development-related policymaking. This paper aims to explore different methods to disaggregate national employment-to-population ratio indicator to province- and city-level. Numerical approach applied to overcome the problem of disaggregation unavailability by constructing several spatial weight matrices based on the neighbourhood, Euclidean distance and correlation. These methods can potentially be used and further developed to disaggregate development indicators into lower spatial level even by several demographic characteristics.

  15. Computational Modeling and Numerical Methods for Spatiotemporal Calcium Cycling in Ventricular Myocytes

    PubMed Central

    Nivala, Michael; de Lange, Enno; Rovetti, Robert; Qu, Zhilin

    2012-01-01

    Intracellular calcium (Ca) cycling dynamics in cardiac myocytes is regulated by a complex network of spatially distributed organelles, such as sarcoplasmic reticulum (SR), mitochondria, and myofibrils. In this study, we present a mathematical model of intracellular Ca cycling and numerical and computational methods for computer simulations. The model consists of a coupled Ca release unit (CRU) network, which includes a SR domain and a myoplasm domain. Each CRU contains 10 L-type Ca channels and 100 ryanodine receptor channels, with individual channels simulated stochastically using a variant of Gillespie’s method, modified here to handle time-dependent transition rates. Both the SR domain and the myoplasm domain in each CRU are modeled by 5 × 5 × 5 voxels to maintain proper Ca diffusion. Advanced numerical algorithms implemented on graphical processing units were used for fast computational simulations. For a myocyte containing 100 × 20 × 10 CRUs, a 1-s heart time simulation takes about 10 min of machine time on a single NVIDIA Tesla C2050. Examples of simulated Ca cycling dynamics, such as Ca sparks, Ca waves, and Ca alternans, are shown. PMID:22586402

  16. Probing numerical Laplace inversion methods for two and three-site molecular exchange between interconnected pore structures.

    PubMed

    Silletta, Emilia V; Franzoni, María B; Monti, Gustavo A; Acosta, Rodolfo H

    2018-01-01

    Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T 2 -T 2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-09-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less

  18. Efficient numerical method of freeform lens design for arbitrary irradiance shaping

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek

    2018-05-01

    A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.

  19. An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion

    NASA Astrophysics Data System (ADS)

    Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.

    2017-12-01

    The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.

  20. Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.

    2013-10-01

    In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.

  1. A study of numerical methods of solution of the equations of motion of a controlled satellite under the influence of gravity gradient torque

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.

    1973-01-01

    Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.

  2. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    NASA Astrophysics Data System (ADS)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  3. Use of KC-135 parabolic flights to determine if brief changes in the gravity field can influence the phase and/or period of the circadian clock

    NASA Technical Reports Server (NTRS)

    Turek, Fred W. (Principal Investigator)

    1994-01-01

    In February 1994 a total of 10 hampsters flew on two separate KC-135 flights. On one flight, 25 animals experienced 31 parabolas, thus going through 31 cycles of hypergravity (up to about 1.8 G). On the other flight, the animals were exposed to 43 parabolas. fifty additional animals served as ground based controls and were treated in the same fashion as the experimental animals. The profiles of plasma GH, corisol and coricosterone from representative parabolic flight and ground control animals during pre-flight, in-flight, and post-flight conditions are depicted.

  4. Identification of the Genome Segments of Bluetongue Virus Serotype 26 (Isolate KUW2010/02) that Restrict Replication in a Culicoides sonorensis Cell Line (KC Cells).

    PubMed

    Pullinger, Gillian D; Guimerà Busquets, Marc; Nomikou, Kyriaki; Boyce, Mark; Attoui, Houssam; Mertens, Peter P

    2016-01-01

    Bluetongue virus (BTV) can infect most ruminant species and is usually transmitted by adult, vector-competent biting midges (Culicoides spp.). Infection with BTV can cause severe clinical signs and can be fatal, particularly in naïve sheep and some deer species. Although 24 distinct BTV serotypes were recognized for several decades, additional 'types' have recently been identified, including BTV-25 (from Switzerland), BTV-26 (from Kuwait) and BTV-27 from France (Corsica). Although BTV-25 has failed to grow in either insect or mammalian cell cultures, BTV-26 (isolate KUW2010/02), which can be transmitted horizontally between goats in the absence of vector insects, does not replicate in a Culicoides sonorensis cell line (KC cells) but can be propagated in mammalian cells (BSR cells). The BTV genome consists of ten segments of linear dsRNA. Mono-reassortant viruses were generated by reverse-genetics, each one containing a single BTV-26 genome segment in a BTV-1 genetic-background. However, attempts to recover a mono-reassortant containing genome-segment 2 (Seg-2) of BTV-26 (encoding VP2), were unsuccessful but a triple-reassortant was successfully generated containing Seg-2, Seg-6 and Seg-7 (encoding VP5 and VP7 respectively) of BTV-26. Reassortants were recovered and most replicated well in mammalian cells (BSR cells). However, mono-reassortants containing Seg-1 or Seg-3 of BTV-26 (encoding VP1, or VP3 respectively) and the triple reassortant failed to replicate, while a mono-reassortant containing Seg-7 of BTV-26 only replicated slowly in KC cells.

  5. Effect of joint spacing and joint dip on the stress distribution around tunnels using different numerical methods

    NASA Astrophysics Data System (ADS)

    Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza

    2016-11-01

    Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.

  6. Method for the numerical integration of equations of perturbed satellite motion in problems of space geodesy

    NASA Astrophysics Data System (ADS)

    Plakhov, Iu. V.; Mytsenko, A. V.; Shel'Pov, V. A.

    A numerical integration method is developed that is more accurate than Everhart's (1974) implicit single-sequence approach for integrating orbits. This method can be used to solve problems of space geodesy based on the use of highly precise laser observations.

  7. The symmetries of the fine gradings of sl(n{sup k},C) associated with direct product of Pauli groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Gang

    2010-09-15

    A grading of a Lie algebra is called fine if it could not be further refined. For a fine grading of a simple Lie algebra, we define its Weyl group to describe the symmetry of this grading. It is already known that the Weyl group of the fine grading of sl(n,C) induced by the action of the group {Pi}{sub n} of the generalized Pauli matrices of rank n is SL(2,Z{sub n}), where Z{sub n} is the cyclic group of order n. In this paper, we consider the fine grading of sl(n{sup k},C) induced by the action of the group ofmore » k-fold tensor product of the generalized Pauli matrices of rank n. We prove that its Weyl group is Sp(2k,Z{sub n}) and is generated by transvections; therefore, this generalizes the previous result.« less

  8. Numerical Asymptotic Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  9. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  10. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  11. A New Family of Schroder's Method and Its Variants Based on Power Means for Multiple Roots of Nonlinear Equations

    ERIC Educational Resources Information Center

    Kanwar, V.; Sharma, Kapil K.; Behl, Ramandeep

    2010-01-01

    In this article, we derive one-parameter family of Schroder's method based on Gupta et al.'s (K.C. Gupta, V. Kanwar, and S. Kumar, "A family of ellipse methods for solving non-linear equations", Int. J. Math. Educ. Sci. Technol. 40 (2009), pp. 571-575) family of ellipse methods for the solution of nonlinear equations. Further, we introduce new…

  12. USAF Bioenvironmental Noise Data Handbook. Volume 160: KC-10A aircraft, near and far-field noise

    NASA Astrophysics Data System (ADS)

    Powell, R. G.

    1982-09-01

    The USAF KC-10A aircraft is an advanced tanker/cargo aircraft powered by three CF6-50C2 turbofan engines. This report provides measured and extrapolated data defining the bioacoustic environments produced by this aircraft operating on a concrete runup pad for eight engine/power configurations. Near-field data are reported for one location in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 15 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  13. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  14. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  15. Numerical Weather Predictions Evaluation Using Spatial Verification Methods

    NASA Astrophysics Data System (ADS)

    Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.

    2014-12-01

    During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain-­-Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is co­financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-­-2013).

  16. Hybrid matrix method for stable numerical analysis of the propagation of Dirac electrons in gapless bilayer graphene superlattices

    NASA Astrophysics Data System (ADS)

    Briones-Torres, J. A.; Pernas-Salomón, R.; Pérez-Álvarez, R.; Rodríguez-Vargas, I.

    2016-05-01

    Gapless bilayer graphene (GBG), like monolayer graphene, is a material system with unique properties, such as anti-Klein tunneling and intrinsic Fano resonances. These properties rely on the gapless parabolic dispersion relation and the chiral nature of bilayer graphene electrons. In addition, propagating and evanescent electron states coexist inherently in this material, giving rise to these exotic properties. In this sense, bilayer graphene is unique, since in most material systems in which Fano resonance phenomena are manifested an external source that provides extended states is required. However, from a numerical standpoint, the presence of evanescent-divergent states in the eigenfunctions linear superposition representing the Dirac spinors, leads to a numerical degradation (the so called Ωd problem) in the practical applications of the standard Coefficient Transfer Matrix (K) method used to study charge transport properties in Bilayer Graphene based multi-barrier systems. We present here a straightforward procedure based in the hybrid compliance-stiffness matrix method (H) that can overcome this numerical degradation. Our results show that in contrast to standard matrix method, the proposed H method is suitable to study the transmission and transport properties of electrons in GBG superlattice since it remains numerically stable regardless the size of the superlattice and the range of values taken by the input parameters: the energy and angle of the incident electrons, the barrier height and the thickness and number of barriers. We show that the matrix determinant can be used as a test of the numerical accuracy in real calculations.

  17. Numerical realization of the variational method for generating self-trapped beams.

    PubMed

    Duque, Erick I; Lopez-Aguayo, Servando; Malomed, Boris A

    2018-03-19

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schrödinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  18. Numerical realization of the variational method for generating self-trapped beams

    NASA Astrophysics Data System (ADS)

    Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.

    2018-03-01

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  19. An analytical-numerical method for determining the mechanical response of a condenser microphone.

    PubMed

    Homentcovschi, Dorel; Miles, Ronald N

    2011-12-01

    The paper is based on determining the reaction pressure on the diaphragm of a condenser microphone by integrating numerically the frequency domain Stokes system describing the velocity and the pressure in the air domain beneath the diaphragm. Afterwards, the membrane displacement can be obtained analytically or numerically. The method is general and can be applied to any geometry of the backplate holes, slits, and backchamber. As examples, the method is applied to the Bruel & Kjaer (B&K) 4134 1/2-inch microphone determining the mechanical sensitivity and the mechano-thermal noise for a domain of frequencies and also the displacement field of the membrane for two specified frequencies. These elements compare well with the measured values published in the literature. Also a new design, completely micromachined (including the backvolume) of the B&K micro-electro-mechanical systems (MEM) 1/4-inch measurement microphone is proposed. It is shown that its mechanical performances are very similar to those of the B&K MEMS measurement microphone. © 2011 Acoustical Society of America

  20. Numerical method of lines for the relaxational dynamics of nematic liquid crystals.

    PubMed

    Bhattacharjee, A K; Menon, Gautam I; Adhikari, R

    2008-08-01

    We propose an efficient numerical scheme, based on the method of lines, for solving the Landau-de Gennes equations describing the relaxational dynamics of nematic liquid crystals. Our method is computationally easy to implement, balancing requirements of efficiency and accuracy. We benchmark our method through the study of the following problems: the isotropic-nematic interface, growth of nematic droplets in the isotropic phase, and the kinetics of coarsening following a quench into the nematic phase. Our results, obtained through solutions of the full coarse-grained equations of motion with no approximations, provide a stringent test of the de Gennes ansatz for the isotropic-nematic interface, illustrate the anisotropic character of droplets in the nucleation regime, and validate dynamical scaling in the coarsening regime.

  1. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  2. A Numerical Comparison of Barrier and Modified Barrier Methods for Large-Scale Bound-Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Nash, Stephen G.; Polyak, R.; Sofer, Ariela

    1994-01-01

    When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.

  3. On numerical solution of the Schrödinger equation: the shooting method revisited

    NASA Astrophysics Data System (ADS)

    Indjin, D.; Todorović, G.; Milanović, V.; Ikonić, Z.

    1995-09-01

    An alternative formulation of the "shooting" method for a numerical solution of the Schrödinger equation is described for cases of general asymmetric one-dimensional potential (planar geometry), and spherically symmetric potential. The method relies on matching the asymptotic wavefunctions and the potential core region wavefunctions, in course of finding bound states energies. It is demonstrated in the examples of Morse and Kratzer potentials, where a high accuracy of the calculated eigenvalues is found, together with a considerable saving of the computation time.

  4. Assessing the capability of numerical methods to predict earthquake ground motion: the Euroseistest verification and validation project

    NASA Astrophysics Data System (ADS)

    Chaljub, E. O.; Bard, P.; Tsuno, S.; Kristek, J.; Moczo, P.; Franek, P.; Hollender, F.; Manakou, M.; Raptakis, D.; Pitilakis, K.

    2009-12-01

    During the last decades, an important effort has been dedicated to develop accurate and computationally efficient numerical methods to predict earthquake ground motion in heterogeneous 3D media. The progress in methods and increasing capability of computers have made it technically feasible to calculate realistic seismograms for frequencies of interest in seismic design applications. In order to foster the use of numerical simulation in practical prediction, it is important to (1) evaluate the accuracy of current numerical methods when applied to realistic 3D applications where no reference solution exists (verification) and (2) quantify the agreement between recorded and numerically simulated earthquake ground motion (validation). Here we report the results of the Euroseistest verification and validation project - an ongoing international collaborative work organized jointly by the Aristotle University of Thessaloniki, Greece, the Cashima research project (supported by the French nuclear agency, CEA, and the Laue-Langevin institute, ILL, Grenoble), and the Joseph Fourier University, Grenoble, France. The project involves more than 10 international teams from Europe, Japan and USA. The teams employ the Finite Difference Method (FDM), the Finite Element Method (FEM), the Global Pseudospectral Method (GPSM), the Spectral Element Method (SEM) and the Discrete Element Method (DEM). The project makes use of a new detailed 3D model of the Mygdonian basin (about 5 km wide, 15 km long, sediments reach about 400 m depth, surface S-wave velocity is 200 m/s). The prime target is to simulate 8 local earthquakes with magnitude from 3 to 5. In the verification, numerical predictions for frequencies up to 4 Hz for a series of models with increasing structural and rheological complexity are analyzed and compared using quantitative time-frequency goodness-of-fit criteria. Predictions obtained by one FDM team and the SEM team are close and different from other predictions

  5. The vector radiative transfer numerical model of coupled ocean-atmosphere system using the matrix-operator method

    NASA Astrophysics Data System (ADS)

    Xianqiang, He; Delu, Pan; Yan, Bai; Qiankun, Zhu

    2005-10-01

    The numerical model of the vector radiative transfer of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. In PCOART, using the Fourier analysis, the vector radiative transfer equation (VRTE) splits up into a set of independent equations with zenith angle as only angular coordinate. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation, which is calculated by using the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of ocean and atmosphere is coupled in PCOART. By comparing with the exact Rayleigh scattering look-up-table of MODIS(Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exact numerical calculation model, and the processing methods of the multi-scattering and polarization are correct in PCOART. Also, by validating with the standard problems of the radiative transfer in water, it is shown that PCOART could be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool to exactly calculate the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  6. Numerical Hydrodynamics in Special Relativity.

    PubMed

    Martí, J M; Müller, E

    1999-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results obtained with different numerical SRHD methods are compared, and two astrophysical applications of SRHD flows are discussed. An evaluation of the various numerical methods is given and future developments are analyzed. Supplementary material is available for this article at 10.12942/lrr-1999-3.

  7. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  8. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  9. Numerical methods for incompressible viscous flows with engineering applications

    NASA Technical Reports Server (NTRS)

    Rose, M. E.; Ash, R. L.

    1988-01-01

    A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.

  10. A method for data handling numerical results in parallel OpenFOAM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Alin; Muntean, Sebastian

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  11. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.

    PubMed

    Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal

    2016-11-15

    A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.

  12. A hybrid method combining the surface integral equation method and ray tracing for the numerical simulation of high frequency diffraction involved in ultrasonic NDT

    NASA Astrophysics Data System (ADS)

    Bonnet, M.; Collino, F.; Demaldent, E.; Imperiale, A.; Pesudo, L.

    2018-05-01

    Ultrasonic Non-Destructive Testing (US NDT) has become widely used in various fields of applications to probe media. Exploiting the surface measurements of the ultrasonic incident waves echoes after their propagation through the medium, it allows to detect potential defects (cracks and inhomogeneities) and characterize the medium. The understanding and interpretation of those experimental measurements is performed with the help of numerical modeling and simulations. However, classical numerical methods can become computationally very expensive for the simulation of wave propagation in the high frequency regime. On the other hand, asymptotic techniques are better suited to model high frequency scattering over large distances but nevertheless do not allow accurate simulation of complex diffraction phenomena. Thus, neither numerical nor asymptotic methods can individually solve high frequency diffraction problems in large media, as those involved in UNDT controls, both quickly and accurately, but their advantages and limitations are complementary. Here we propose a hybrid strategy coupling the surface integral equation method and the ray tracing method to simulate high frequency diffraction under speed and accuracy constraints. This strategy is general and applicable to simulate diffraction phenomena in acoustic or elastodynamic media. We provide its implementation and investigate its performances for the 2D acoustic diffraction problem. The main features of this hybrid method are described and results of 2D computational experiments discussed.

  13. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

    NASA Astrophysics Data System (ADS)

    Markou, A. A.; Manolis, G. D.

    2018-03-01

    Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  14. A Numerical Methods Course Based on B-Learning: Integrated Learning Design and Follow Up

    ERIC Educational Resources Information Center

    Cepeda, Francisco Javier Delgado

    2013-01-01

    Information and communication technologies advance continuously, providing a real support for learning processes. Learning technologies address areas which previously have corresponded to face-to-face learning, while mobile resources are having a growing impact on education. Numerical Methods is a discipline and profession based on technology. In…

  15. A numerical method for the stress analysis of stiffened-shell structures under nonuniform temperature distributions

    NASA Technical Reports Server (NTRS)

    Heldenfels, Richard R

    1951-01-01

    A numerical method is presented for the stress analysis of stiffened-shell structures of arbitrary cross section under nonuniform temperature distributions. The method is based on a previously published procedure that is extended to include temperature effects and multicell construction. The application of the method to practical problems is discussed and an illustrative analysis is presented of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

  16. Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method

    NASA Astrophysics Data System (ADS)

    Lv, Xin; Zou, Qingping; Reeve, Dominic

    2011-10-01

    This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.

  17. Direct numerical simulations of a reacting turbulent mixing layer by a pseudospectral-spectral element method

    NASA Technical Reports Server (NTRS)

    Mcmurtry, Patrick A.; Givi, Peyman

    1992-01-01

    An account is given of the implementation of the spectral-element technique for simulating a chemically reacting, spatially developing turbulent mixing layer. Attention is given to experimental and numerical studies that have investigated the development, evolution, and mixing characteristics of shear flows. A mathematical formulation is presented of the physical configuration of the spatially developing reacting mixing layer, in conjunction with a detailed representation of the spectral-element method's application to the numerical simulation of mixing layers. Results from 2D and 3D calculations of chemically reacting mixing layers are given.

  18. A unified convergence theory of a numerical method, and applications to the replenishment policies.

    PubMed

    Mi, Xiang-jiang; Wang, Xing-hua

    2004-01-01

    In determining the replenishment policy for an inventory system, some researchers advocated that the iterative method of Newton could be applied to the derivative of the total cost function in order to get the optimal solution. But this approach requires calculation of the second derivative of the function. Avoiding this complex computation we use another iterative method presented by the second author. One of the goals of this paper is to present a unified convergence theory of this method. Then we give a numerical example to show the application of our theory.

  19. A numerical method for computing unsteady 2-D boundary layer flows

    NASA Technical Reports Server (NTRS)

    Krainer, Andreas

    1988-01-01

    A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.

  20. A comparison of numerical methods for the prediction of two-dimensional heat transfer in an electrothermal deicer pad. M.S. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1988-01-01

    Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  1. a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms

    NASA Astrophysics Data System (ADS)

    Beale, D. G.; Lee, S. W.

    1996-05-01

    A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].

  2. Improving the seismic small-scale modelling by comparison with numerical methods

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann

    2017-10-01

    the Spectral Element Method. The approach shows the relevance of building a line source by sampling several source points, except the boundaries effects on later arrival times. Indeed, the experimental results highlight the amplitude feature and the delay equal to π/4 provided by a line source in the same manner than numerical data. In opposite, the 2-D corrections applied on 3-D data showed discrepancies which are higher on experimental data than on numerical ones due to the source wavelet shape and interferences between different arrivals. The experimental results from the approach proposed here show that discrepancies are avoided, especially for the reflected echoes. Concerning the second point aiming to assess the experimental reproducibility of the source, correlation coefficients of recording from a repeated source impact on a homogeneous model are calculated. The quality of the results, that is, higher than 0.98, allow to calculate a mean source wavelet by inversion of a mean data set. Results obtained on a more realistic model simulating clays on limestones, confirmed the reproducibility of the source impact.

  3. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    NASA Technical Reports Server (NTRS)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  4. A new simple and rapid LC-ESI-MS/MS method for quantification of plasma oxysterols as dimethylaminobutyrate esters. Its successful use for the diagnosis of Niemann-Pick type C disease.

    PubMed

    Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Martinelli, Diego; Verrigni, Daniela; Carrozzo, Rosalba; Bertini, Enrico; Pastore, Anna; Dionisi-Vici, Carlo; Johnson, David W

    2014-11-01

    Two oxysterols, cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC), have been recently proposed as diagnostic markers of Niemann-Pick type C (NP-C) disease, representing a potential alternative diagnostic tool to the more invasive and time consuming filipin test in cultured fibroblasts. Usually, the oxysterols are detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using atmospheric pressure chemical ionization (APCI) or electro-spray-ionization (ESI) sources, after a variety of derivatization procedures to enhance sensitivity. We developed a sensitive LC-MS/MS method to quantify the oxysterols in plasma as dimethylaminobutyrate ester, suitable for ESI analysis. This method, with an easy liquid-phase extraction and a short derivatization procedure, has been validated to demonstrate specificity, linearity, recovery, lowest limit of quantification, accuracy and precision. The assay was linear over a concentration range of 0.5-200ng/mL for C-triol and 1.0-200ng/mL for 7-KC. Intra-day and inter-day coefficients of variation (CV%) were <15% for both metabolites. Receiver operating characteristic analysis estimates that the area under curve was 0.998 for C-triol, and 0.972 for 7-KC, implying a significant discriminatory power for the method in this patient population of both oxysterols. In summary, our method provides a simple, rapid and non-invasive diagnostic tool for the biochemical diagnosis of NP-C disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    NASA Astrophysics Data System (ADS)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  6. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    NASA Astrophysics Data System (ADS)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  7. On the numerical calculation of hydrodynamic shock waves in atmospheres by an FCT method

    NASA Astrophysics Data System (ADS)

    Schmitz, F.; Fleck, B.

    1993-11-01

    The numerical calculation of vertically propagating hydrodynamic shock waves in a plane atmosphere by the ETBFCT-version of the Flux Corrected Transport (FCT) method by Boris and Book is discussed. The results are compared with results obtained by a characteristic method with shock fitting. We show that the use of the internal energy density as a dependent variable instead of the total energy density can give very inaccurate results. Consequent discretization rules for the gravitational source terms are derived. The improvement of the results by an additional iteration step is discussed. It appears that the FCT method is an excellent method for the accurate calculation of shock waves in an atmosphere.

  8. High Order Numerical Methods for the Investigation of the Two Dimensional Richtmyer-Meshkov Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don, W-S; Gotllieb, D; Shu, C-W

    2001-11-26

    For flows that contain significant structure, high order schemes offer large advantages over low order schemes. Fundamentally, the reason comes from the truncation error of the differencing operators. If one examines carefully the expression for the truncation error, one will see that for a fixed computational cost that the error can be made much smaller by increasing the numerical order than by increasing the number of grid points. One can readily derive the following expression which holds for systems dominated by hyperbolic effects and advanced explicitly in time: flops = const * p{sup 2} * k{sup (d+1)(p+1)/p}/E{sup (d+1)/p} where flopsmore » denotes floating point operations, p denotes numerical order, d denotes spatial dimension, where E denotes the truncation error of the difference operator, and where k denotes the Fourier wavenumber. For flows that contain structure, such as turbulent flows or any calculation where, say, vortices are present, there will be significant energy in the high values of k. Thus, one can see that the rate of growth of the flops is very different for different values of p. Further, the constant in front of the expression is also very different. With a low order scheme, one quickly reaches the limit of the computer. With the high order scheme, one can obtain far more modes before the limit of the computer is reached. Here we examine the application of spectral methods and the Weighted Essentially Non-Oscillatory (WENO) scheme to the Richtmyer-Meshkov Instability. We show the intricate structure that these high order schemes can calculate and we show that the two methods, though very different, converge to the same numerical solution indicating that the numerical solution is very likely physically correct.« less

  9. Numerical prediction of the energy efficiency of the three-dimensional fish school using the discretized Adomian decomposition method

    NASA Astrophysics Data System (ADS)

    Lin, Yinwei

    2018-06-01

    A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.

  10. Characterization of the antifungal activity of Lactobacillus harbinensis K.V9.3.1Np and Lactobacillus rhamnosus K.C8.3.1I in yogurt.

    PubMed

    Delavenne, Emilie; Cliquet, Sophie; Trunet, Clément; Barbier, Georges; Mounier, Jérôme; Le Blay, Gwenaëlle

    2015-02-01

    Few antifungal protective cultures adapted to fermented dairy products are commercially available because of the numerous constraints linked to their market implementation. Consumer's demand for naturally preserved food products is growing and the utilization of lactic acid bacteria is a promising way to achieve this goal. In this study, using a 2(5-1) factorial fractional design, we first evaluated the effects of fermentation time, of initial sucrose concentration and of the initial contamination amount of a spoilage yeast, on antifungal activities of single and mixed cultures of Lactobacillus rhamnosus K.C8.3.1I and Lactobacillus harbinensis K.V9.3.1Np in yogurt. L. harbinensis K.V9.3.1Np, the most relevant strain with regard to antifungal activity was then studied to determine its minimal inhibitory inoculation rate, its antifungal stability during storage and its impact on yogurt organoleptic properties. We showed that L. harbinensis K.V9.3.1Np maintained a stable antifungal activity over time, which was not affected by initial sucrose, nor by a reduction of the fermentation time. This inhibitory activity was an all-or-nothing phenomenon. Once L. harbinensis K.V9.3.1Np reached a population of ∼ 2.5 × 10(6) cfu/g of yogurt at the time of contamination, total inhibition of the yeast was achieved. We also showed that an inoculation rate of 5 × 10(6) cfu/ml in milk had no detrimental effect on yogurt organoleptic properties. In conclusion, L. harbinensis K.V9.3.1Np is a promising antifungal bioprotective strain for yogurt preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nonlinear Hyperbolic Equations - Theory, Computation Methods, and Applications. Volume 24. Note on Numerical Fluid Mechanics

    DTIC Science & Technology

    1989-01-01

    Calculations and Experiments (B.van den Berg/ D.A. Humphreysl E. Krause /J.P. F. Lindhout) Volume 20 Proceedings of the Seventh GAMM-Conference on...GRID METHODS FOR HYPERBOLIC PROBLEMS Wolfgang Hackbusch Sigrid Hagemann Institut fUr Informatik und Praktische Mathematik Christian-Albrechts...Euler Equations. Proceedings of the 8th Inter- national Conference on Numerical Methods in Fluid Dynamics (E. Krause , ed.), Aachen, 1988. Springer

  12. A discontinuous Galerkin method for numerical pricing of European options under Heston stochastic volatility

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.

    2016-12-01

    The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.

  13. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  14. Numerical methods in acoustics

    NASA Astrophysics Data System (ADS)

    Candel, S. M.

    This paper presents a survey of some computational techniques applicable to acoustic wave problems. Recent advances in wave extrapolation methods, spectral methods and boundary integral methods are discussed and illustrated by specific calculations.

  15. Numerical modeling of zero-offset laboratory data in a strong topographic environment: results for a spectral-element method and a discretized Kirchhoff integral method

    NASA Astrophysics Data System (ADS)

    Favretto-Cristini, Nathalie; Tantsereva, Anastasiya; Cristini, Paul; Ursin, Bjørn; Komatitsch, Dimitri; Aizenberg, Arkady M.

    2014-08-01

    Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.

  16. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Heuzé, Thomas

    2017-10-01

    We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.

  17. Advanced Numerical Methods for Computing Statistical Quantities of Interest from Solutions of SPDES

    DTIC Science & Technology

    2012-01-19

    and related optimization problems; developing numerical methods for option pricing problems in the presence of random arbitrage return. 1. Novel...equations (BSDEs) are connected to nonlinear partial differen- tial equations and non-linear semigroups, to the theory of hedging and pricing of contingent...the presence of random arbitrage return [3] We consider option pricing problems when we relax the condition of no arbitrage in the Black- Scholes

  18. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  19. The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje

    2006-03-20

    We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problemmore » with N surface elements, the computational complexity of the method essentially scales with N {sup {alpha}}, where {alpha} < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed.« less

  20. A Numerical Combination of Extended Boundary Condition Method and Invariant Imbedding Method Applied to Light Scattering by Large Spheroids and Cylinders

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2013-01-01

    The extended boundary condition method (EBCM) and invariant imbedding method (IIM) are two fundamentally different T-matrix methods for the solution of light scattering by nonspherical particles. The standard EBCM is very efficient but encounters a loss of precision when the particle size is large, the maximum size being sensitive to the particle aspect ratio. The IIM can be applied to particles in a relatively large size parameter range but requires extensive computational time due to the number of spherical layers in the particle volume discretization. A numerical combination of the EBCM and the IIM (hereafter, the EBCM+IIM) is proposed to overcome the aforementioned disadvantages of each method. Even though the EBCM can fail to obtain the T-matrix of a considered particle, it is valuable for decreasing the computational domain (i.e., the number of spherical layers) of the IIM by providing the initial T-matrix associated with an iterative procedure in the IIM. The EBCM+IIM is demonstrated to be more efficient than the IIM in obtaining the optical properties of large size parameter particles beyond the convergence limit of the EBCM. The numerical performance of the EBCM+IIM is illustrated through representative calculations in spheroidal and cylindrical particle cases.

  1. TURNS - A free-wake Euler/Navier-Stokes numerical method for helicopter rotors

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Baeder, J. D.

    1993-01-01

    Computational capabilities of a numerical procedure, called TURNS (transonic unsteady rotor Navier-Stokes), to calculate the aerodynamics and acoustics (high-speed impulsive noise) out to several rotor diameters are summarized. The procedure makes it possible to obtain the aerodynamics and acoustics information in one single calculation. The vortical wave and its influence, as well as the acoustics, are captured as part of the overall flowfield solution. The accuracy and suitability of the TURNS method is demonstrated through comparisons with experimental data.

  2. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  3. On a numerical method for solving integro-differential equations with variable coefficients with applications in finance

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, O.; Rodochenko, V.

    2018-03-01

    We propose a new general numerical method aimed to solve integro-differential equations with variable coefficients. The problem under consideration arises in finance where in the context of pricing barrier options in a wide class of stochastic volatility models with jumps. To handle the effect of the correlation between the price and the variance, we use a suitable substitution for processes. Then we construct a Markov-chain approximation for the variation process on small time intervals and apply a maturity randomization technique. The result is a system of boundary problems for integro-differential equations with constant coefficients on the line in each vertex of the chain. We solve the arising problems using a numerical Wiener-Hopf factorization method. The approximate formulae for the factors are efficiently implemented by means of the Fast Fourier Transform. Finally, we use a recurrent procedure that moves backwards in time on the variance tree. We demonstrate the convergence of the method using Monte-Carlo simulations and compare our results with the results obtained by the Wiener-Hopf method with closed-form expressions of the factors.

  4. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Chen, Hui; Liu, Yingwen

    2017-06-01

    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  5. Analysis of Plane-Parallel Electron Beam Propagation in Different Media by Numerical Simulation Methods

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.

    2018-04-01

    Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.

  6. The Formation of a Milky Way-sized Disk Galaxy. I. A Comparison of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Li, Yuexing

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  7. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellarmore » evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.« less

  8. Energy conserving numerical methods for the computation of complex vortical flows

    NASA Astrophysics Data System (ADS)

    Allaneau, Yves

    One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our

  9. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  10. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less

  11. A numerical solution method for acoustic radiation from axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Caruthers, John E.; Raviprakash, G. K.

    1995-01-01

    A new and very efficient numerical method for solving equations of the Helmholtz type is specialized for problems having axisymmetric geometry. It is then demonstrated by application to the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite plane. The method utilizes 'Green's Function Discretization', to obtain an accurate resolution of the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the discretization step, are obtained by quadrature. Results are computed for a range of grid spacing/piston radius ratios at a frequency parameter, omega R/c(sub 0), of 2 pi. In this case, the minimum required grid resolution appears to be fixed by the need to resolve a step boundary condition at the piston edge rather than by the length scale imposed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field radiation boundary procedure allows the domain to be truncated very near the radiating source with little effect on the solution.

  12. A new numerical method for calculating extrema of received power for polarimetric SAR

    USGS Publications Warehouse

    Zhang, Y.; Zhang, Jiahua; Lu, Z.; Gong, W.

    2009-01-01

    A numerical method called cross-step iteration is proposed to calculate the maximal/minimal received power for polarized imagery based on a target's Kennaugh matrix. This method is much more efficient than the systematic method, which searches for the extrema of received power by varying the polarization ellipse angles of receiving and transmitting polarizations. It is also more advantageous than the Schuler method, which has been adopted by the PolSARPro package, because the cross-step iteration method requires less computation time and can derive both the maximal and minimal received powers, whereas the Schuler method is designed to work out only the maximal received power. The analytical model of received-power optimization indicates that the first eigenvalue of the Kennaugh matrix is the supremum of the maximal received power. The difference between these two parameters reflects the depolarization effect of the target's backscattering, which might be useful for target discrimination. ?? 2009 IEEE.

  13. A numerical method for measuring capacitive soft sensors through one channel

    NASA Astrophysics Data System (ADS)

    Tairych, Andreas; Anderson, Iain A.

    2018-03-01

    Soft capacitive stretch sensors are well suited for unobtrusive wearable body motion capture. Conventional sensing methods measure sensor capacitances through separate channels. In sensing garments with many sensors, this results in high wiring complexity, and a large footprint of rigid sensing circuit boards. We have developed a more efficient sensing method that detects multiple sensors through only one channel, and one set of wires. It is based on a R-C transmission line assembled from capacitive conductive fabric stretch sensors, and external resistors. The unknown capacitances are identified by solving a system of nonlinear equations. These equations are established by modelling and continuously measuring transmission line reactances at different frequencies. Solving these equations numerically with a Newton-Raphson solver for the unknown capacitances enables real time reading of all sensors. The method was verified with a prototype comprising three sensors that is capable of detecting both individually and simultaneously stretched sensors. Instead of using three channels and six wires to detect the sensors, the task was achieved with only one channel and two wires.

  14. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  15. An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Ogden, Fred L.; Steinke, Robert C.; Talbot, Cary A.

    2015-03-01

    We have developed a one-dimensional numerical method to simulate infiltration and redistribution in the presence of a shallow dynamic water table. This method builds upon the Green-Ampt infiltration with Redistribution (GAR) model and incorporates features from the Talbot-Ogden (T-O) infiltration and redistribution method in a discretized moisture content domain. The redistribution scheme is more physically meaningful than the capillary weighted redistribution scheme in the T-O method. Groundwater dynamics are considered in this new method instead of hydrostatic groundwater front. It is also computationally more efficient than the T-O method. Motion of water in the vadose zone due to infiltration, redistribution, and interactions with capillary groundwater are described by ordinary differential equations. Numerical solutions to these equations are computationally less expensive than solutions of the highly nonlinear Richards' (1931) partial differential equation. We present results from numerical tests on 11 soil types using multiple rain pulses with different boundary conditions, with and without a shallow water table and compare against the numerical solution of Richards' equation (RE). Results from the new method are in satisfactory agreement with RE solutions in term of ponding time, deponding time, infiltration rate, and cumulative infiltrated depth. The new method, which we call "GARTO" can be used as an alternative to the RE for 1-D coupled surface and groundwater models in general situations with homogeneous soils with dynamic water table. The GARTO method represents a significant advance in simulating groundwater surface water interactions because it very closely matches the RE solution while being computationally efficient, with guaranteed mass conservation, and no stability limitations that can affect RE solvers in the case of a near-surface water table.

  16. Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography.

    PubMed

    Ruiz Hidalgo, Irene; Rodriguez, Pablo; Rozema, Jos J; Ní Dhubhghaill, Sorcha; Zakaria, Nadia; Tassignon, Marie-José; Koppen, Carina

    2016-06-01

    To evaluate the performance of a support vector machine algorithm that automatically and objectively identifies corneal patterns based on a combination of 22 parameters obtained from Pentacam measurements and to compare this method with other known keratoconus (KC) classification methods. Pentacam data from 860 eyes were included in the study and divided into 5 groups: 454 KC, 67 forme fruste (FF), 28 astigmatic, 117 after refractive surgery (PR), and 194 normal eyes (N). Twenty-two parameters were used for classification using a support vector machine algorithm developed in Weka, a machine-learning computer software. The cross-validation accuracy for 3 different classification tasks (KC vs. N, FF vs. N and all 5 groups) was calculated and compared with other known classification methods. The accuracy achieved in the KC versus N discrimination task was 98.9%, with 99.1% sensitivity and 98.5% specificity for KC detection. The accuracy in the FF versus N task was 93.1%, with 79.1% sensitivity and 97.9% specificity for the FF discrimination. Finally, for the 5-groups classification, the accuracy was 88.8%, with a weighted average sensitivity of 89.0% and specificity of 95.2%. Despite using the strictest definition for FF KC, the present study obtained comparable or better results than the single-parameter methods and indices reported in the literature. In some cases, direct comparisons with the literature were not possible because of differences in the compositions and definitions of the study groups, especially the FF KC.

  17. Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.

    2017-10-01

    In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.

  18. Meshless collocation methods for the numerical solution of elliptic boundary valued problems the rotational shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Blakely, Christopher D.

    This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.

  19. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  20. Some variance reduction methods for numerical stochastic homogenization

    PubMed Central

    Blanc, X.; Le Bris, C.; Legoll, F.

    2016-01-01

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. PMID:27002065

  1. Cellular Consequences of Telomere Shortening in Histologically Normal Breast Tissues

    DTIC Science & Technology

    2011-09-01

    training in numerous methods including: fluorescence in situ hybridization, immunostaining, histopathology , primary cell culture, study design and...axillary node metastasis, and histopathologic grading. Cancer 1984;54:2237–2242. 26 Anderson WF, Chu KC, Chatterjee N, et al. Tumor variants by hormone...0/29 0 0/29 0 Small cell carcinoma — — 0/1 0 0/1 0 Gallbladder Adenocarcinoma 1/27 4 0/33 0 1/60 2 Hematopoietic neoplasms non-Hodgkin’s lymphoma

  2. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults

    PubMed Central

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392

  3. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    PubMed

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  4. Fully Numerical Methods for Continuing Families of Quasi-Periodic Invariant Tori in Astrodynamics

    NASA Astrophysics Data System (ADS)

    Baresi, Nicola; Olikara, Zubin P.; Scheeres, Daniel J.

    2018-06-01

    Quasi-periodic invariant tori are of great interest in astrodynamics because of their capability to further expand the design space of satellite missions. However, there is no general consent on what is the best methodology for computing these dynamical structures. This paper compares the performance of four different approaches available in the literature. The first two methods compute invariant tori of flows by solving a system of partial differential equations via either central differences or Fourier techniques. In contrast, the other two strategies calculate invariant curves of maps via shooting algorithms: one using surfaces of section, and one using a stroboscopic map. All of the numerical procedures are tested in the co-rotating frame of the Earth as well as in the planar circular restricted three-body problem. The results of our numerical simulations show which of the reviewed procedures should be preferred for future studies of astrodynamics systems.

  5. Fully Numerical Methods for Continuing Families of Quasi-Periodic Invariant Tori in Astrodynamics

    NASA Astrophysics Data System (ADS)

    Baresi, Nicola; Olikara, Zubin P.; Scheeres, Daniel J.

    2018-01-01

    Quasi-periodic invariant tori are of great interest in astrodynamics because of their capability to further expand the design space of satellite missions. However, there is no general consent on what is the best methodology for computing these dynamical structures. This paper compares the performance of four different approaches available in the literature. The first two methods compute invariant tori of flows by solving a system of partial differential equations via either central differences or Fourier techniques. In contrast, the other two strategies calculate invariant curves of maps via shooting algorithms: one using surfaces of section, and one using a stroboscopic map. All of the numerical procedures are tested in the co-rotating frame of the Earth as well as in the planar circular restricted three-body problem. The results of our numerical simulations show which of the reviewed procedures should be preferred for future studies of astrodynamics systems.

  6. A stable high-order perturbation of surfaces method for numerical simulation of diffraction problems in triply layered media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu

    The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution ofmore » dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.« less

  7. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  8. Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    1997-01-01

    An investigation is conducted on several numerical schemes for use in the computation of two-dimensional, spatially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integration schemes use explicit or compact finite-difference derivative operators. Three classes of schemes are considered: an extension of MacCormack's original second-order temporally accurate method, a new third-order variant of the schemes proposed by Rusanov and by Kutier, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the convection-diffusion equation U(sub t) + aU(sub x) = alpha U(sub xx). Accuracy is also verified on the nonlinear problem, U(sub t) + F(sub x) = 0. Numerical treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally accurate boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Damping of high wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used to compute variable-density compressible shear layers, where regions of large gradients exist.

  9. Frontal Polymerization in Microgravity Summary of Research

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    2002-01-01

    The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.

  10. Some variance reduction methods for numerical stochastic homogenization.

    PubMed

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  11. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  12. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  13. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    NASA Astrophysics Data System (ADS)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  14. Numerical method to determine mechanical parameters of engineering design in rock masses.

    PubMed

    Xue, Ting-He; Xiang, Yi-Qiang; Guo, Fa-Zhong

    2004-07-01

    This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium; and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. The experimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Delta and the uniaxial pressure-resistant strength sc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice.

  15. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  16. Zdeněk Kopal: Numerical Analyst

    NASA Astrophysics Data System (ADS)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  17. Environmental Assessment for BRAC Actions for the 137th Airlift Wing Relocation, KC-135R Aircraft Robust, and Associated Construction at the 507th Air Refueling Wing Tinker Air Force Base, Oklahoma

    DTIC Science & Technology

    2007-10-01

    increase in both civilian and military personnel. In the 1970s, the base took over management of new weapons including the A-7D Corsair , the E-3A...one- bay hangar that would be utilized for scheduled maintenance. The existing ramp would be expanded to provide hangar access. Buildings 1041 and... Bay Hangar KC-1󈧧R Aircraft and 137th Airlift Wing Relocation The United States Air Force has prepared three Environmental Assessments (EAs

  18. Investigation of the Rock Fragmentation Process by a Single TBM Cutter Using a Voronoi Element-Based Numerical Manifold Method

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Jiang, Yalong; Wu, Zhijun; Xu, Xiangyu; Liu, Qi

    2018-04-01

    In this study, a two-dimensional Voronoi element-based numerical manifold method (VE-NMM) is developed to analyze the granite fragmentation process by a single tunnel boring machine (TBM) cutter under different confining stresses. A Voronoi tessellation technique is adopted to generate the polygonal grain assemblage to approximate the microstructure of granite sample from the Gubei colliery of Huainan mining area in China. A modified interface contact model with cohesion and tensile strength is embedded into the numerical manifold method (NMM) to interpret the interactions between the rock grains. Numerical uniaxial compression and Brazilian splitting tests are first conducted to calibrate and validate the VE-NMM models based on the laboratory experiment results using a trial-and-error method. On this basis, numerical simulations of rock fragmentation by a single TBM cutter are conducted. The simulated crack initiation and propagation process as well as the indentation load-penetration depth behaviors in the numerical models accurately predict the laboratory indentation test results. The influence of confining stress on rock fragmentation is also investigated. Simulation results show that radial tensile cracks are more likely to be generated under a low confining stress, eventually coalescing into a major fracture along the loading axis. However, with the increase in confining stress, more side cracks initiate and coalesce, resulting in the formation of rock chips at the upper surface of the model. In addition, the peak indentation load also increases with the increasing confining stress, indicating that a higher thrust force is usually needed during the TBM boring process in deep tunnels.

  19. Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: Ultrastructural studies

    PubMed Central

    Almubrad, Turki; Paladini, Iacopo; Mencucci, Rita

    2013-01-01

    Purpose Study to investigate the effects of collagen cross-linking on the ultrastructural organization of the corneal stroma in the human keratoconus cornea (KC). Methods Three normal, three keratoconus (KC1, KC2, KC3), and three cross-linked keratoconus (CXL1, CXL2, CXL3) corneas were analyzed. The KC corneas were treated with a riboflavin-ultraviolet A (UVA) treatment (CXL) method described by Wollensak et al. Penetrating keratoplasty (PKP) was performed 6 months after treatment. All samples were processed for electron microscopy. Results The riboflavin-UVA-treated CXL corneal stroma showed interlacing lamellae in the anterior stroma followed by well-organized parallel running lamellae. The lamellae contained uniformly distributed collagen fibrils (CFs) decorated with normal proteoglycans (PGs). The CF diameter and interfibrillar spacing in the CXL cornea were significantly increased compared to those in the KC cornea. The PG area in the CXL corneas were significantly smaller than the PGs in the KC cornea. The epithelium and Bowman’s layer were also normal. On rare occasions, a thick basement membrane and collagenous pannus were also observed. Conclusions Corneal cross-linking leads to modifications of the cornea stroma. The KC corneal structure showed a modification in the CF diameter, interfibrillar spacing, and PG area. This resulted in a more uniform distribution of collagen fibrils, a key feature for corneal transparency. PMID:23878503

  20. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    NASA Astrophysics Data System (ADS)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  1. Numerical Recovering of a Speed of Sound by the BC-Method in 3D

    NASA Astrophysics Data System (ADS)

    Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr

    We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.

  2. Numerical Modelling of Mechanical Properties of C-Pd Film by Homogenization Technique and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Kowalczyk, Piotr; Czerwosz, Elzbieta; Bielski, Włodzimierz

    2011-09-01

    The nanomechanical properties of nanostructural carbonaceous-palladium films are studied. The nanoindentation experiments are numerically using the Finite Element Method. The homogenization theory is applied to compute the properties of the composite material used as the input data for nanoindentation calculations.

  3. Estimating the mirror seeing for a large optical telescope with a numerical method

    NASA Astrophysics Data System (ADS)

    Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng

    2018-05-01

    It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.

  4. Numerical Analysis of an H 1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    PubMed Central

    Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong

    2014-01-01

    We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148

  5. A Fast Numerical Method for Max-Convolution and the Application to Efficient Max-Product Inference in Bayesian Networks.

    PubMed

    Serang, Oliver

    2015-08-01

    Observations depending on sums of random variables are common throughout many fields; however, no efficient solution is currently known for performing max-product inference on these sums of general discrete distributions (max-product inference can be used to obtain maximum a posteriori estimates). The limiting step to max-product inference is the max-convolution problem (sometimes presented in log-transformed form and denoted as "infimal convolution," "min-convolution," or "convolution on the tropical semiring"), for which no O(k log(k)) method is currently known. Presented here is an O(k log(k)) numerical method for estimating the max-convolution of two nonnegative vectors (e.g., two probability mass functions), where k is the length of the larger vector. This numerical max-convolution method is then demonstrated by performing fast max-product inference on a convolution tree, a data structure for performing fast inference given information on the sum of n discrete random variables in O(nk log(nk)log(n)) steps (where each random variable has an arbitrary prior distribution on k contiguous possible states). The numerical max-convolution method can be applied to specialized classes of hidden Markov models to reduce the runtime of computing the Viterbi path from nk(2) to nk log(k), and has potential application to the all-pairs shortest paths problem.

  6. Numerical methods on European option second order asymptotic expansions for multiscale stochastic volatility

    NASA Astrophysics Data System (ADS)

    Canhanga, Betuel; Ni, Ying; Rančić, Milica; Malyarenko, Anatoliy; Silvestrov, Sergei

    2017-01-01

    After Black-Scholes proposed a model for pricing European Options in 1973, Cox, Ross and Rubinstein in 1979, and Heston in 1993, showed that the constant volatility assumption made by Black-Scholes was one of the main reasons for the model to be unable to capture some market details. Instead of constant volatilities, they introduced stochastic volatilities to the asset dynamic modeling. In 2009, Christoffersen empirically showed "why multifactor stochastic volatility models work so well". Four years later, Chiarella and Ziveyi solved the model proposed by Christoffersen. They considered an underlying asset whose price is governed by two factor stochastic volatilities of mean reversion type. Applying Fourier transforms, Laplace transforms and the method of characteristics they presented a semi-analytical formula to compute an approximate price for American options. The huge calculation involved in the Chiarella and Ziveyi approach motivated the authors of this paper in 2014 to investigate another methodology to compute European Option prices on a Christoffersen type model. Using the first and second order asymptotic expansion method we presented a closed form solution for European option, and provided experimental and numerical studies on investigating the accuracy of the approximation formulae given by the first order asymptotic expansion. In the present paper we will perform experimental and numerical studies for the second order asymptotic expansion and compare the obtained results with results presented by Chiarella and Ziveyi.

  7. A Numerical Study of Three Moving-Grid Methods for One-Dimensional Partial Differential Equations Which Are Based on the Method of Lines

    NASA Astrophysics Data System (ADS)

    Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.

    1990-08-01

    In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.

  8. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.

    PubMed

    Bell, John B; Garcia, Alejandro L; Williams, Sarah A

    2007-07-01

    The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.

  9. Simulation of two-phase flow in horizontal fracture networks with numerical manifold method

    NASA Astrophysics Data System (ADS)

    Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.

    2017-10-01

    The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.

  10. Understanding kangaroo care and its benefits to preterm infants

    PubMed Central

    Campbell-Yeo, Marsha L; Disher, Timothy C; Benoit, Britney L; Johnston, C Celeste

    2015-01-01

    The holding of an infant with ventral skin-to-skin contact typically in an upright position with the swaddled infant on the chest of the parent, is commonly referred to as kangaroo care (KC), due to its simulation of marsupial care. It is recommended that KC, as a feasible, natural, and cost-effective intervention, should be standard of care in the delivery of quality health care for all infants, regardless of geographic location or economic status. Numerous benefits of its use have been reported related to mortality, physiological (thermoregulation, cardiorespiratory stability), behavioral (sleep, breastfeeding duration, and degree of exclusivity) domains, as an effective therapy to relieve procedural pain, and improved neurodevelopment. Yet despite these recommendations and a lack of negative research findings, adoption of KC as a routine clinical practice remains variable and underutilized. Furthermore, uncertainty remains as to whether continuous KC should be recommended in all settings or if there is a critical period of initiation, dose, or duration that is optimal. This review synthesizes current knowledge about the benefits of KC for infants born preterm, highlighting differences and similarities across low and higher resource countries and in a non-pain and pain context. Additionally, implementation considerations and unanswered questions for future research are addressed. PMID:29388613

  11. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.

    2016-02-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  12. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  13. cuSwift --- a suite of numerical integration methods for modelling planetary systems implemented in C/CUDA

    NASA Astrophysics Data System (ADS)

    Hellmich, S.; Mottola, S.; Hahn, G.; Kührt, E.; Hlawitschka, M.

    2014-07-01

    Simulations of dynamical processes in planetary systems represent an important tool for studying the orbital evolution of the systems [1--3]. Using modern numerical integration methods, it is possible to model systems containing many thousands of objects over timescales of several hundred million years. However, in general, supercomputers are needed to get reasonable simulation results in acceptable execution times [3]. To exploit the ever-growing computation power of Graphics Processing Units (GPUs) in modern desktop computers, we implemented cuSwift, a library of numerical integration methods for studying long-term dynamical processes in planetary systems. cuSwift can be seen as a re-implementation of the famous SWIFT integrator package written by Hal Levison and Martin Duncan. cuSwift is written in C/CUDA and contains different integration methods for various purposes. So far, we have implemented three algorithms: a 15th-order Radau integrator [4], the Wisdom-Holman Mapping (WHM) integrator [5], and the Regularized Mixed Variable Symplectic (RMVS) Method [6]. These algorithms treat only the planets as mutually gravitationally interacting bodies whereas asteroids and comets (or other minor bodies of interest) are treated as massless test particles which are gravitationally influenced by the massive bodies but do not affect each other or the massive bodies. The main focus of this work is on the symplectic methods (WHM and RMVS) which use a larger time step and thus are capable of integrating many particles over a large time span. As an additional feature, we implemented the non-gravitational Yarkovsky effect as described by M. Brož [7]. With cuSwift, we show that the use of modern GPUs makes it possible to speed up these methods by more than one order of magnitude compared to the single-core CPU implementation, thereby enabling modest workstation computers to perform long-term dynamical simulations. We use these methods to study the influence of the Yarkovsky

  14. Calculating the Bending Modulus for Multicomponent Lipid Membranes in Different Thermodynamic Phases

    PubMed Central

    2013-01-01

    We establish a computational approach to extract the bending modulus, KC, for lipid membranes from relatively small-scale molecular simulations. Fluctuations in the splay of individual pairs of lipids faithfully inform on KC in multicomponent membranes over a large range of rigidities in different thermodynamic phases. Predictions are validated by experiments even where the standard spectral analysis-based methods fail. The local nature of this method potentially allows its extension to calculations of KC in protein-laden membranes. PMID:24039553

  15. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    PubMed

    Park, SangWook; Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.

  16. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations.

    PubMed

    Barrera-Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2009-10-01

    Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel function. This assumption is probably valid at frequencies below the resonance frequency. However, at higher frequencies the movement of the membrane is heavily coupled with the damping of the air film between membrane and backplate and with resonances in the back chamber of the microphone. A solution to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses and other parameters. The agreement with experimental data is generally good. The method can be used as an alternative for validating the parameters of the microphones determined by classical calibration techniques.

  17. Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio

    2010-05-01

    In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.

  18. Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yukihito

    2018-03-01

    A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.

  19. Adaptive and dynamic meshing methods for numerical simulations

    NASA Astrophysics Data System (ADS)

    Acikgoz, Nazmiye

    -hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations

  20. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  1. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrié, Michael, E-mail: mcarrie2@unl.edu; Shadwick, B. A., E-mail: shadwick@mailaps.org

    2016-01-15

    We present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Jüttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviours that do not exist in the nonrelativistic case. The numericalmore » study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  2. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  3. Elimination of the Reaction Rate "Scale Effect": Application of the Lagrangian Reactive Particle-Tracking Method to Simulate Mixing-Limited, Field-Scale Biodegradation at the Schoolcraft (MI, USA) Site

    NASA Astrophysics Data System (ADS)

    Ding, Dong; Benson, David A.; Fernández-Garcia, Daniel; Henri, Christopher V.; Hyndman, David W.; Phanikumar, Mantha S.; Bolster, Diogo

    2017-12-01

    Measured (or empirically fitted) reaction rates at groundwater remediation sites are typically much lower than those found in the same material at the batch or laboratory scale. The reduced rates are commonly attributed to poorer mixing at the larger scales. A variety of methods have been proposed to account for this scaling effect in reactive transport. In this study, we use the Lagrangian particle-tracking and reaction (PTR) method to simulate a field bioremediation experiment at the Schoolcraft, MI site. A denitrifying bacterium, Pseudomonas Stutzeri strain KC (KC), was injected to the aquifer, along with sufficient substrate, to degrade the contaminant, carbon tetrachloride (CT), under anaerobic conditions. The PTR method simulates chemical reactions through probabilistic rules of particle collisions, interactions, and transformations to address the scale effect (lower apparent reaction rates for each level of upscaling, from batch to column to field scale). In contrast to a prior Eulerian reaction model, the PTR method is able to match the field-scale experiment using the rate coefficients obtained from batch experiments.

  4. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  5. Numerical analysis of partially molten splat during thermal spray process using the finite element method

    NASA Astrophysics Data System (ADS)

    Zirari, M.; Abdellah El-Hadj, A.; Bacha, N.

    2010-03-01

    A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.

  6. Multiscale Numerical Methods for Non-Equilibrium Plasma

    DTIC Science & Technology

    2015-08-01

    current paper reports on the implementation of a numerical solver on the Graphic Processing Units (GPUs) to model reactive gas mixtures with detailed...Governing equations The flow ismodeled as amixture of gas specieswhile neglecting viscous effects. The chemical reactions taken place between the gas ...components are to be modeled in great detail. The set of the Euler equations for a reactive gas mixture can be written as: ∂Q ∂t + ∇ · F̄ = Ω̇ (1) where Q

  7. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    NASA Astrophysics Data System (ADS)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  8. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    NASA Astrophysics Data System (ADS)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  9. Numerical method for accessing the universal scaling function for a multiparticle discrete time asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Bundschuh, Ralf

    2005-11-01

    In the universality class of the one-dimensional Kardar-Parisi-Zhang (KPZ) surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since and Derrida and Lebowitz’s original publication [Phys. Rev. Lett. 80, 209 (1998)] this universality has been verified for a variety of continuous-time, periodic-boundary systems in the KPZ universality class. Here, we present a numerical method for directly examining the entire particle flux of the asymmetric exclusion process (ASEP), thus providing an alternative to more difficult cumulant ratios studies. Using this method, we find that the Derrida-Lebowitz scaling function (DLSF) properly characterizes the large-system-size limit (N→∞) of a single-particle discrete time system, even in the case of very small system sizes (N⩽22) . This fact allows us to not only verify that the DLSF properly characterizes multiple-particle discrete-time asymmetric exclusion processes, but also provides a way to numerically solve for quantities of interest, such as the particle hopping flux. This method can thus serve to further increase the ease and accessibility of studies involving even more challenging dynamics, such as the open-boundary ASEP.

  10. Numerical simulation of wave-current interaction using the SPH method

    NASA Astrophysics Data System (ADS)

    He, Ming; Gao, Xi-feng; Xu, Wan-hai

    2018-05-01

    In this paper, the smoothed particle hydrodynamics (SPH) method is used to build a numerical wave-current tank (NWCT). The wave is generated by using a piston-type wave generator and is absorbed by using a sponge layer. The uniform current field is generated by simultaneously imposing the directional velocity and hydrostatic pressure in both inflow and outflow regions set below the NWCT. Particle cyclic boundaries are also implemented for recycling the Lagrangian fluid particles. Furthermore, to shorten the time to reach a steady state, a temporary rigid-lid treatment for the water surface is proposed. It turns out to be very effective for weakening the undesired oscillatory flow at the beginning stage of the current generation. The calculated water surface elevation and horizontal-velocity profile are validated against the available experimental data. Satisfactory agreements are obtained, demonstrating the good capability of the NWCT.

  11. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartier, Timothy P.

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less

  12. Programmable Numerical Function Generators: Architectures and Synthesis Method

    DTIC Science & Technology

    2005-08-01

    generates HDL (Hardware Descrip- tion Language) code from the design specification described by Scilab [14], a MATLAB-like numerical calculation soft...cad.com/Error-NFG/. [14] Scilab 3.0, INRIA-ENPC, France, http://scilabsoft.inria.fr/ [15] M. J. Schulte and J. E. Stine, “Approximating elementary functions

  13. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

    NASA Technical Reports Server (NTRS)

    Banyukevich, A.; Ziolkovski, K.

    1975-01-01

    A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

  14. Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio

    2011-12-01

    This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).

  15. Frontiers in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Evans, Charles R.; Finn, Lee S.; Hobill, David W.

    2011-06-01

    Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics

  16. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng

    2017-03-01

    We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.

  17. Quantity of IL-2, IL-4, IL-10, INF-γ, TNF-α and KC-like cytokines in serum of bitches with pyometra in different stages of oestrous cycle and pregnancy.

    PubMed

    Maciel, G S; Uscategui, R R; de Almeida, V T; Oliveira, Mef; Feliciano, Mar; Vicente, Wrr

    2014-08-01

    The occurrence of the pyometra is most common in the first half of the dioestrus when there is decreased cellular immunity associated with increased serum concentration of progesterone in females. The aim of this study was to determine the immunological profile of bitches with pyometra, studying serum levels of IL-2, IL-4, IL-10, IFN-γ, KC-like and TNF-α and comparing them with those of healthy bitches in anoestrus, dioestrus and pregnant. Forty females were divided into four experimental groups: group 1 (G1): with pyometra (n = 10); group 2 (G2): bitches in the second week of gestation (n = 10); group 3 (G3): in anoestrus (n = 10); and group 4 (G4): in dioestrus (n = 10). The serum levels for IL-2, KC-like, INF-γ and TNF-α were similar for all experimental groups. The values obtained for IL-10 were found increased (p < 0.001) in animals in dioestrus and pyometra compared with females in anoestrus and pregnant, and the levels of IL-4 observed were significantly greater (p < 0.001) in bitches with pyometra when compared with others. The cytokine profile in animals with pyometra is similar to bitches in dioestrus for IL-10 and had increase in IL-4 for bitches with pyometra, which represents an anti-inflammatory these cases. This suggests the presence of an immunosuppressive state in both cases, which may explain the propensity of bitches in dioestrus to be affected by pyometra and the severity of the disease on these animals. © 2014 Blackwell Verlag GmbH.

  18. Application of numerical method in calculating the internal rate of return of joint venture investment using diminishing musyarakah model

    NASA Astrophysics Data System (ADS)

    Ruslan, Siti Zaharah Mohd; Jaffar, Maheran Mohd

    2017-05-01

    Islamic banking in Malaysia offers variety of products based on Islamic principles. One of the concepts is a diminishing musyarakah. The concept of diminishing musyarakah helps Muslims to avoid transaction which are based on riba. The diminishing musyarakah can be defined as an agreement between capital provider and entrepreneurs that enable entrepreneurs to buy equity in instalments where profits and losses are shared based on agreed ratio. The objective of this paper is to determine the internal rate of return (IRR) for a diminishing musyarakah model by applying a numerical method. There are several numerical methods in calculating the IRR such as by using an interpolation method and a trial and error method by using Microsoft Office Excel. In this paper we use a bisection method and secant method as an alternative way in calculating the IRR. It was found that the diminishing musyarakah model can be adapted in managing the performance of joint venture investments. Therefore, this paper will encourage more companies to use the concept of joint venture in managing their investments performance.

  19. Status and future prospects of using numerical methods to study complex flows at High Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Maccormack, R. W.

    1978-01-01

    The calculation of flow fields past aircraft configuration at flight Reynolds numbers is considered. Progress in devising accurate and efficient numerical methods, in understanding and modeling the physics of turbulence, and in developing reliable and powerful computer hardware is discussed. Emphasis is placed on efficient solutions to the Navier-Stokes equations.

  20. Numerical Algorithm for Delta of Asian Option

    PubMed Central

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271

  1. Temporal downscaling of crop coefficients for winter wheat in the North China Plain: A case study at the Gucheng ecological-meteorological experimental station

    USDA-ARS?s Scientific Manuscript database

    The crop coefficient (Kc) method is widely used for operational estimation of actual evapotranspiration (ETa) and crop water requirements. The standard method for obtaining Kc is via a lookup table from FAO-56 (Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper No....

  2. Deformation data modeling through numerical models: an efficient method for tracking magma transport

    NASA Astrophysics Data System (ADS)

    Charco, M.; Gonzalez, P. J.; Galán del Sastre, P.

    2017-12-01

    Nowadays, multivariate collected data and robust physical models at volcano observatories are becoming crucial for providing effective volcano monitoring. Nevertheless, the forecast of volcanic eruption is notoriously difficult. Wthin this frame one of the most promising methods to evaluate the volcano hazard is the use of surface ground deformation and in the last decades many developments in the field of deformation modeling has been achieved. In particular, numerical modeling allows realistic media features such as topography and crustal heterogeneities to be included, although it is still very time cosuming to solve the inverse problem for near-real time interpretations. Here, we present a method that can be efficiently used to estimate the location and evolution of magmatic sources base on real-time surface deformation data and Finite Element (FE) models. Generally, the search for the best-fitting magmatic (point) source(s) is conducted for an array of 3-D locations extending below a predefined volume region and the Green functions for all the array components have to be precomputed. We propose a FE model for the pre-computation of Green functions in a mechanically heterogeneous domain which eventually will lead to a better description of the status of the volcanic area. The number of Green functions is reduced here to the number of observational points by using their reciprocity relationship. We present and test this methodology with an optimization method base on a Genetic Algorithm. Following synthetic and sensitivity test to estimate the uncertainty of the model parameters, we apply the tool for magma tracking during 2007 Kilauea volcano intrusion and eruption. We show how data inversion with numerical models can speed up the source parameters estimations for a given volcano showing signs of unrest.

  3. KC-135 wing and winglet flight pressure distributions, loads, and wing deflection results with some wind tunnel comparisons

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Jacobs, P.; Flechner, S.; Sims, R.

    1982-01-01

    A full-scale winglet flight test on a KC-135 airplane with an upper winglet was conducted. Data were taken at Mach numbers from 0.70 to 0.82 at altitudes from 34,000 feet to 39,000 feet at stabilized flight conditions for wing/winglet configurations of basic wing tip, 15/-4 deg, 15/-2 deg, and 0/-4 deg winglet cant/incidence. An analysis of selected pressure distribution and data showed that with the basic wing tip, the flight and wind tunnel wing pressure distribution data showed good agreement. With winglets installed, the effects on the wing pressure distribution were mainly near the tip. Also, the flight and wind tunnel winglet pressure distributions had some significant differences primarily due to the oilcanning in flight. However, in general, the agreement was good. For the winglet cant and incidence configuration presented, the incidence had the largest effect on the winglet pressure distributions. The incremental flight wing deflection data showed that the semispan wind tunnel model did a reasonable job of simulating the aeroelastic effects at the wing tip. The flight loads data showed good agreement with predictions at the design point and also substantiated the predicted structural penalty (load increase) of the 15 deg cant/-2 deg incidence winglet configuration.

  4. Numerical modeling method on the movement of water flow and suspended solids in two-dimensional sedimentation tanks in the wastewater treatment plant.

    PubMed

    Zeng, Guang-Ming; Jiang, Yi-Min; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-01-01

    Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.

  5. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer

    PubMed Central

    Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688

  6. Fourth-order numerical solutions of diffusion equation by using SOR method with Crank-Nicolson approach

    NASA Astrophysics Data System (ADS)

    Muhiddin, F. A.; Sulaiman, J.

    2017-09-01

    The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.

  7. Numerical Calculation Method for Prediction of Ground-borne Vibration near Subway Tunnel

    NASA Astrophysics Data System (ADS)

    Tsuno, Kiwamu; Furuta, Masaru; Abe, Kazuhisa

    This paper describes the development of prediction method for ground-borne vibration from railway tunnels. Field measurement was carried out both in a subway shield tunnel, in the ground and on the ground surface. The generated vibration in the tunnel was calculated by means of the train/track/tunnel interaction model and was compared with the measurement results. On the other hand, wave propagation in the ground was calculated utilizing the empirical model, which was proposed based on the relationship between frequency and material damping coefficient α in order to predict the attenuation in the ground in consideration of frequency characteristics. Numerical calculation using 2-dimensinal FE analysis was also carried out in this research. The comparison between calculated and measured results shows that the prediction method including the model for train/track/tunnel interaction and that for wave propagation is applicable to the prediction of train-induced vibration propagated from railway tunnel.

  8. Improvment of short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry

    NASA Astrophysics Data System (ADS)

    Chernov, Anton; Kurkin, Andrey; Pelinovsky, Efim; Yalciner, Ahmet; Zaytsev, Andrey

    2010-05-01

    A short cut numerical method for evaluation of the modes of free oscillations of the basins which have irregular geometry and bathymetry was presented in the paper (Yalciner A.C., Pelinovsky E., 2007). In the method, a single wave is inputted to the basin as an initial impulse. The respective agitation in the basin is computed by using the numerical method solving the nonlinear form of long wave equations. The time histories of water surface fluctuations at different locations due to propagation of the waves in relation to the initial impulse are stored and analyzed by the fast Fourier transform technique (FFT) and energy spectrum curves for each location are obtained. The frequencies of each mode of free oscillations are determined from the peaks of the spectrum curves. Some main features were added for this method and will be discussed here: 1. Instead of small number of gauges which were manually installed in the studied area the information from numerical simulation now is recorded on the regular net of the «simulation» gauges which was place everywhere on the sea surface in the depth deeper than "coast" level with the fixed presetted distance between gauges. The spectral analysis of wave records was produced by Welch periodorgam method instead of simple FFT so it's possible to get spectral power estimation for wave process and determine confidence interval for spectra peaks. 2. After the power spectral estimation procedure the common peak of studied seiche can be found and mean spectral amplitudes for this peak were calculated numerically by a Simpson integration method for all gauges in the basin and the mean spectral amplitudes spatial distribution map can be ploted. The spatial distribution helps to study structure of seiche and determine effected dangerous areas. 3. Nested grid module in the NAMI-DANCE - nonlinear shallow water equations calculation software package was developed. This is very important feature for complicated different scale (ocean

  9. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules

    DOE PAGES

    Marion, Bill

    2017-03-27

    Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less

  10. A numerical method for determination of source time functions for general three-dimensional rupture propagation

    NASA Technical Reports Server (NTRS)

    Das, S.

    1979-01-01

    A method to determine the displacement and the stress on the crack plane for a three-dimensional shear crack of arbitrary shape propagating in an infinite, homogeneous medium which is linearly elastic everywhere off the crack plane is presented. The main idea of the method is to use a representation theorem in which the displacement at any given point on the crack plane is written as an integral of the traction over the whole crack plane. As a test of the accuracy of the numerical technique, the results are compared with known solutions for two simple cases.

  11. On Numerical Heating

    NASA Astrophysics Data System (ADS)

    Liou, Meng-Sing

    2013-11-01

    The development of computational fluid dynamics over the last few decades has yielded enormous successes and capabilities that are being routinely employed today; however there remain some open problems to be properly resolved. One example is the so-called overheating problem, which can arise in two very different scenarios, from either colliding or receding streams. Common in both is a localized, numerically over-predicted temperature. Von Neumann reported the former, a compressive overheating, nearly 70 years ago and numerically smeared the temperature peak by introducing artificial diffusion. However, the latter is unphysical in an expansive (rarefying) situation; it still dogs every method known to the author. We will present a study aiming at resolving this overheating problem and we find that: (1) the entropy increase is one-to-one linked to the increase in the temperature rise and (2) the overheating is inevitable in the current computational fluid dynamics framework in practice. Finally we will show a simple hybrid method that fundamentally cures the overheating problem in a rarefying flow, but also retains the property of accurate shock capturing. Moreover, this remedy (enhancement of current numerical methods) can be included easily in the present Eulerian codes. This work is performed under NASA's Fundamental Aeronautics Program.

  12. Fully coupled simulation of cosmic reionization. I. numerical methods and tests

    DOE PAGES

    Norman, Michael L.; Reynolds, Daniel R.; So, Geoffrey C.; ...

    2015-01-09

    Here, we describe an extension of the Enzo code to enable fully coupled radiation hydrodynamical simulation of inhomogeneous reionization in large similar to(100 Mpc)(3) cosmological volumes with thousands to millions of point sources. We solve all dynamical, radiative transfer, thermal, and ionization processes self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. But, we employ a simple subgrid model for star formation which we calibrate to observations. The numerical method presented is a modification of an earlier method presented in Reynolds et al. differing principally in the operator splitting algorithm we use tomore » advance the system of equations. Radiation transport is done in the gray flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the hypre optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a grid field as opposed to rays, our method is scalable with respect to the number of ionizing sources, limited only by the parallel scaling properties of the radiation solver. We test the speed and accuracy of our approach on a number of standard verification and validation tests. We show by direct comparison with Enzo's adaptive ray tracing method Moray that the well-known inability of FLD to cast a shadow behind opaque clouds has a minor effect on the evolution of ionized volume and mass fractions in a reionization simulation validation test. Finally, we illustrate an application of our method to the problem of inhomogeneous reionization in a 80 Mpc comoving box resolved with 3200(3) Eulerian grid cells and dark matter particles.« less

  13. Numerical Study of Boundary Layer Interaction with Shocks: Method Improvement and Test Computation

    NASA Technical Reports Server (NTRS)

    Adams, N. A.

    1995-01-01

    The objective is the development of a high-order and high-resolution method for the direct numerical simulation of shock turbulent-boundary-layer interaction. Details concerning the spatial discretization of the convective terms can be found in Adams and Shariff (1995). The computer code based on this method as introduced in Adams (1994) was formulated in Cartesian coordinates and thus has been limited to simple rectangular domains. For more general two-dimensional geometries, as a compression corner, an extension to generalized coordinates is necessary. To keep the requirements or limitations for grid generation low, the extended formulation should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, periodicity can be assumed in one cross-flow direction. For easy vectorization, the compact-ENO coupling algorithm as used in Adams (1994) treated whole planes normal to the derivative direction with the ENO scheme whenever at least one point of this plane satisfied the detection criterion. This is apparently too restrictive for more general geometries and more complex shock patterns. Here we introduce a localized compact-ENO coupling algorithm, which is efficient as long as the overall number of grid points treated by the ENO scheme is small compared to the total number of grid points. Validation and test computations with the final code are performed to assess the efficiency and suitability of the computer code for the problems of interest. We define a set of parameters where a direct numerical simulation of a turbulent boundary layer along a compression corner with reasonably fine resolution is affordable.

  14. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  15. Microfluidics and numerical simulation as methods for standardization of zebrafish sperm cell activation

    PubMed Central

    Scherr, Thomas; Knapp, Gerald L.; Guitreau, Amy; Park, Daniel Sang-Won; Tiersch, Terrence; Nandakumar, Krishnaswamy

    2017-01-01

    Sperm cell activation plays a critical role in a range of biological and engineering processes, from fertilization to cryopreservation protocol evaluation. Across a range of species, ionic and osmotic effects have been discovered that lead to activation. Sperm cells of zebrafish (Danio rerio) initiate motility in a hypoosmotic environment. In this study, we employ a microfluidic mixer for the purpose of rapidly diluting the extracellular medium to initiate the onset of cell motility. The use of a microchannel offers a rapid and reproducible mixing profile throughout the device. This greatly reduces variability from trial to trial relative to the current methods of analysis. Coupling these experiments with numerical simulations, we were able to investigate the dynamics of intracellular osmolality as each cell moves along its path through the micromixer. Our results suggest that intracellular osmolality, and hence intracellular ion concentration, only slightly decreases, contrary to the common thought that larger changes in these parameters are required for activation. Utilizing this framework, microfluidics for controlled extracellular environments and associated numerical modeling, has practical applicability in standardizing high-throughput aquatic sperm activation, and more fundamentally, investigations of the intracellular environment leading to motility. PMID:26026298

  16. Comparing the Effectiveness of Blended, Semi-Flipped, and Flipped Formats in an Engineering Numerical Methods Course

    ERIC Educational Resources Information Center

    Clark, Renee M.; Kaw, Autar; Besterfield-Sacre, Mary

    2016-01-01

    Blended, flipped, and semi-flipped instructional approaches were used in various sections of a numerical methods course for undergraduate mechanical engineers. During the spring of 2014, a blended approach was used; in the summer of 2014, a combination of blended and flipped instruction was used to deliver a semi-flipped course; and in the fall of…

  17. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    PubMed

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.

  18. Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation

    PubMed Central

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858

  19. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  20. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  1. Numerical Optimization Using Computer Experiments

    NASA Technical Reports Server (NTRS)

    Trosset, Michael W.; Torczon, Virginia

    1997-01-01

    Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.

  2. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  3. Comparison of four statistical and machine learning methods for crash severity prediction.

    PubMed

    Iranitalab, Amirfarrokh; Khattak, Aemal

    2017-11-01

    Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A study on the behaviour of high-order flux reconstruction method with different low-dissipation numerical fluxes for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Boxi, Lin; Chao, Yan; Shusheng, Chen

    2017-10-01

    This work focuses on the numerical dissipation features of high-order flux reconstruction (FR) method combined with different numerical fluxes in turbulence flows. The famous Roe and AUSM+ numerical fluxes together with their corresponding low-dissipation enhanced versions (LMRoe, SLAU2) and higher resolution variants (HR-LMRoe, HR-SLAU2) are incorporated into FR framework, and the dissipation interplay of these combinations is investigated in implicit large eddy simulation. The numerical dissipation stemming from these convective numerical fluxes is quantified by simulating the inviscid Gresho vortex, the transitional Taylor-Green vortex and the homogenous decaying isotropic turbulence. The results suggest that low-dissipation enhanced versions are preferential both in high-order and low-order cases to their original forms, while the use of HR-SLAU2 has marginal improvements and the HR-LMRoe leads to degenerated solution with high-order. In high-order the effects of numerical fluxes are reduced, and their viscosity may not be dissipative enough to provide physically consistent turbulence when under-resolved.

  5. A simplified method for numerical simulation of gas grilling of non-intact beef steaks to elimate Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to develop a numerical simulation method to study gas grilling of non-intact beef steaks (NIBS) and evaluate the effectiveness of grilling on inactivation of Escherichia coli O157:H7. A numerical analysis program was developed to determine the effective heat transfer ...

  6. Numerical investigations on mapping permeability heterogeneity in coal seam gas reservoirs using seismo-electric methods

    NASA Astrophysics Data System (ADS)

    Gross, L.; Shaw, S.

    2016-04-01

    Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.

  7. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  8. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  9. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  10. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  11. Pore-scale Numerical Simulation Using Lattice Boltzmann Method for Mud Erosion in Methane Hydrate Bearing Layers

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Sato, T.; Oyama, H.

    2014-12-01

    Methane hydrates in subsea environments near Japan are believed to new natural gas resources. These methane hydrate crystals are very small and existed in the intergranular pores of sandy sediments in sand mud alternate layers. For gas production, several processes for recovering natural gas from the methane hydrate in a sedimentary reservoir have been proposed, but almost all technique are obtain dissociated gas from methane hydrates. When methane hydrates are dissociated, gas and water are existed. These gas and water are flown in pore space of sand mud alternate layers, and there is a possibility that the mud layer is eroded by these flows. It is considered that the mad erosion causes production trouble such as making skins or well instability. In this study, we carried out pore scale numerical simulation to represent mud erosion. This research aims to develop a fundamental simulation method based on LBM (Lattice Boltzmann Method). In the simulation, sand particles are generated numerically in simulation area which is approximately 200x200x200μm3. The periodic boundary condition is used except for mud layers. The water/gas flow in pore space is calculated by LBM, and shear stress distribution is obtained at the position flow interacting mud surface. From this shear stress, we consider that the driving force of mud erosion. As results, mud erosion can be reproduced numerically by adjusting the parameters such as critical shear stress. We confirmed that the simulation using LBM is appropriate for mud erosion.

  12. Numerical solution of the electron transport equation

    NASA Astrophysics Data System (ADS)

    Woods, Mark

    The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.

  13. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    NASA Astrophysics Data System (ADS)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  14. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  15. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    NASA Astrophysics Data System (ADS)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  16. Development of Numerical Methods to Estimate the Ohmic Breakdown Scenarios of a Tokamak

    NASA Astrophysics Data System (ADS)

    Yoo, Min-Gu; Kim, Jayhyun; An, Younghwa; Hwang, Yong-Seok; Shim, Seung Bo; Lee, Hae June; Na, Yong-Su

    2011-10-01

    The ohmic breakdown is a fundamental method to initiate the plasma in a tokamak. For the robust breakdown, ohmic breakdown scenarios have to be carefully designed by optimizing the magnetic field configurations to minimize the stray magnetic fields. This research focuses on development of numerical methods to estimate the ohmic breakdown scenarios by precise analysis of the magnetic field configurations. This is essential for the robust and optimal breakdown and start-up of fusion devices especially for ITER and its beyond equipped with low toroidal electric field (ET <= 0.3 V/m). A field-line-following analysis code based on the Townsend avalanche theory and a particle simulation code are developed to analyze the breakdown characteristics of actual complex magnetic field configurations including the stray magnetic fields in tokamaks. They are applied to the ohmic breakdown scenarios of tokamaks such as KSTAR and VEST and compared with experiments.

  17. An efficient soil water balance model based on hybrid numerical and statistical methods

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  18. Numerical studies of unsteady two dimensional subsonic flows using the ICE method. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.

    1973-01-01

    A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.

  19. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

    DTIC Science & Technology

    2006-12-01

    theory for charged vacancy diffusion in elastic dielectric materials is formulated and implemented numerically in a finite difference code. The...one of the co-authors on neutral vacancy kinetics (Grinfeld and Hazzledine, 1997). The theory is implemented numerically in a finite difference code...accuracy of order ( )2x∆ , using a finite difference approximation (Hoffman, 1992) for the second spatial derivative of φ : ( )21 1 0ˆ2 /i i i i Rxφ

  20. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods.

    PubMed

    Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G

    2014-01-27

    Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.