Sample records for kcch neutron therapy

  1. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  2. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  3. Design of a boron neutron capture enhanced fast neutron therapy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhonglu

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator nearmore » the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm 2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm 2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm 2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm 2 collimator. Five 1.0-cm thick 20x20 cm 2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5

  4. Neutron-beam-shaping assembly for boron neutron-capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, L.; Kashaeva, E. A.; Lezhnin, S. I.

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-qualitymore » therapeutic neutron beam.« less

  5. Gadolinium as a Neutron Capture Therapy Agent

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  6. Approach to magnetic neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.

    2005-11-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area ofmore » tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.« less

  7. Neutron therapy for salivary and thyroid gland cancer

    NASA Astrophysics Data System (ADS)

    Gribova, O. V.; Musabaeva, L. I.; Choynzonov, E. L.; Lisin, V. A.; Novikov, V. A.

    2016-08-01

    The purpose of this study was to analyze the results of the combined modality treatment and radiation therapy using 6.3 MeV fast neutrons for salivary gland cancer and prognostically unfavorable thyroid gland cancer. The study group comprised 127 patients with salivary gland cancer and 46 patients with thyroid gland cancer, who received neutron therapy alone and in combination with surgery. The results obtained demonstrated that the combined modality treatment including fast neutron therapy led to encouraging local control in patients with salivary and thyroid gland cancers.

  8. Neutron therapy for salivary and thyroid gland cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribova, O. V., E-mail: gribova79@mail.ru; Choynzonov, E. L., E-mail: nii@oncology.tomsk.ru; National Research Tomsk Polytechnic University, Lenina Avenue 30, Tomsk, 634050

    The purpose of this study was to analyze the results of the combined modality treatment and radiation therapy using 6.3 MeV fast neutrons for salivary gland cancer and prognostically unfavorable thyroid gland cancer. The study group comprised 127 patients with salivary gland cancer and 46 patients with thyroid gland cancer, who received neutron therapy alone and in combination with surgery. The results obtained demonstrated that the combined modality treatment including fast neutron therapy led to encouraging local control in patients with salivary and thyroid gland cancers.

  9. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    PubMed

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  10. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  11. Neutron therapy of resistant thyroid gland cancer

    NASA Astrophysics Data System (ADS)

    Choynzonov, E. L.; Gribova, O. V.; Startseva, Zh. A.; Lisin, V. A.; Novikov, V. A.; Musabaeva, L. I.

    2017-09-01

    The purpose of this study was to analyze the results of the combined modality treatment and radiation therapy using 6.3 MeV fast neutrons c. The study included 45 patients with thyroid gland cancers who received the combined modality treatment and radiation therapy alone with the use of 6.3 MeV fast neutrons generated within U-120 cyclotron. The clinical trial of neutron-photon therapy used alone and in combination with the surgery for the patients with aggressive forms of thyroid cancer showed feasibility of increasing the effectiveness of treatment due to the reduction in the incidence of local recurrences. In addition, satisfactory treatment tolerance and absence of severe specific complications dictate the necessity of prospective studies to improve treatment outcomes.

  12. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  13. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  14. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  15. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  16. Neutron capture therapy: Years of experimentation---Years of reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

  17. Neutron capture therapy: Years of experimentation---Years of reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

  18. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  19. Adjuvant neutron therapy in complex treatment of patients with locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Lisin, V. A.; Velikaya, V. V.; Startseva, Zh. A.; Popova, N. O.; Goldberg, V. E.

    2017-09-01

    The study included 128 patients with stage T2-4N0-3M0 locally advanced breast cancer. All patients were divided into two groups. Group I (study group) consisted of 68 patients, who received neutron therapy, and group II (control group) comprised 60 patients, who received electron beam therapy. Neutron therapy was well tolerated by the patients and 1-2 grade radiation skin reactions were the most common. Neutron therapy was shown to be effective in multimodality treatment of the patients with locally advanced breast cancer. The 8-year recurrence-free survival rate in the patients with locally advanced breast cancer was 94.5 ± 4.1% after neutron therapy and 81.4 ± 5.9% after electron beam therapy (p = 0.05).

  20. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  1. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  2. Monte Carlo based dosimetry for neutron capture therapy of brain tumors

    NASA Astrophysics Data System (ADS)

    Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid

    2016-11-01

    Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].

  3. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  4. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  5. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  6. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized. by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  7. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  8. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  9. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  10. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy.

    PubMed

    Young, Lori A; Yang, Fei; Woodworth, Davis; McCormick, Zephyr; Sandison, George

    2016-01-01

    Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al2O3:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7 cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0-150 cGy. OSLD measurement uncertainties were lowered to within ±2%-3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer's recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors and minimizing transient fading effects.

  11. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  12. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  13. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    PubMed

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy.

  14. Perspectives of boron-neutron capture therapy of malignant brain tumors

    NASA Astrophysics Data System (ADS)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  15. Iodine neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  16. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  17. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Lori A., E-mail: layoung@uw.edu; Sandison, George; Yang, Fei

    Purpose: Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. Methods: A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al{sub 2}O{sub 3}:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7more » cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0–150 cGy. Results: OSLD measurement uncertainties were lowered to within ±2%–3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer’s recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Conclusions: Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors

  18. Boron Neutron Capture Therapy - A Literature Review

    PubMed Central

    Nedunchezhian, Kavitaa; Thiruppathy, Manigandan; Thirugnanamurthy, Sarumathi

    2016-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiation science which is emerging as a hopeful tool in treating cancer, by selectively concentrating boron compounds in tumour cells and then subjecting the tumour cells to epithermal neutron beam radiation. BNCT bestows upon the nuclear reaction that occurs when Boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield α particles (Helium-4) and recoiling lithium-7 nuclei. A large number of 10 Boron (10B) atoms have to be localized on or within neoplastic cells for BNCT to be effective, and an adequate number of thermal neutrons have to be absorbed by the 10B atoms to maintain a lethal 10B (n, α) lithium-7 reaction. The most exclusive property of BNCT is that it can deposit an immense dose gradient between the tumour cells and normal cells. BNCT integrates the fundamental focusing perception of chemotherapy and the gross anatomical localization proposition of traditional radiotherapy. PMID:28209015

  19. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA

    PubMed Central

    Lee, Chaeyeong; Lee, Sangmin; Lee, Seung-Jae; Song, Hankyeol; Kim, Dae-Hyun; Cho, Sungkoo; Jo, Kwanghyun; Han, Youngyih; Chung, Yong Hyun

    2017-01-01

    Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC) by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1) was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators. PMID:29045491

  20. MEASUREMENT OF SECONDARY NEUTRONS GENERATED DURING PROTON THERAPY.

    PubMed

    Vykydal, Z; Andrlík, M; Bártová, H; Králík, M; Šolc, J; Vondráček, V

    2016-12-01

    Measurements described in this article were carried out with the aim of evaluating risks of the patient exposure to secondary neutrons during treatment at the Proton Therapy Centre Prague. The neutron spectral fluence was measured by means of the extended Bonner sphere spectrometer (EBS). The article presents secondary neutron spectral fluences obtained by the EBS with passive thermoluminescent detectors, i.e. pairs of 6 LiF and 7 LiF chips. Measurements were performed in two positions: the first one behind the Nylon 6 phantom, and the second one close to the range shifter to evaluate their contribution to the generation of neutrons. Both the Nylon 6 phantom and the range shifter were irradiated with a pencil beam of protons 4 mm in diameter and the energy of 200 MeV. The results are supplemented with the values of effective dose derived from neutron spectral fluences. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Workshop on neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed tomore » be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.« less

  2. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy.

    PubMed

    Ishikawa, M; Ono, K; Sakurai, Y; Unesaki, H; Uritani, A; Bengua, G; Kobayashi, T; Tanaka, K; Kosako, T

    2004-11-01

    A new thermal neutron monitor for boron neutron capture therapy was developed in this study. We called this monitor equipped boron-loaded plastic scintillator that uses optical fiber for signal transmission as an [scintillator with optical fiber] SOF detector. A water phantom experiment was performed to verify how the SOF detector compared with conventional method of measuring thermal neutron fluence. Measurements with a single SOF detector yielded indistinguishable signals for thermal neutrons and gamma rays. To account for the gamma ray contribution in the signal recorded by the SOF detector, a paired SOF detector system was employed. This was composed of an SOF detector with boron-loaded scintillator and an SOF detector with a boron-free scintillator. The difference between the recorded counts of these paired SOF detectors was used as the measure of the gamma ray contribution in the measured neutron fluence. The paired SOF detectors were ascertained to be effective in measuring thermal neutron flux in the range above 10(6)(n/cm(2)/s). Clinical trials using paired SOF to measure thermal neutron flux during therapy confirmed that paired SOF detectors were effective as a real-time thermal neutron flux monitor.

  3. Epithermal neutron formation for boron neutron capture therapy by adiabatic resonance crossing concept

    NASA Astrophysics Data System (ADS)

    Khorshidi, A.; Ghafoori-Fard, H.; Sadeghi, M.

    2014-05-01

    Low-energy protons from the cyclotron in the range of 15-30 MeV and low current have been simulated on beryllium (Be) target with a lead moderator around the target. This research was accomplished to design an epithermal neutron beam for Boron Neutron Capture Therapy (BNCT) using the moderated neutron on the average produced from 9Be target via (p, xn) reaction in Adiabatic Resonance Crossing (ARC) concept. Generation of neutron to proton ratio, energy distribution, flux and dose components in head phantom have been simulated by MCNP5 code. The reflector and collimator were designed in prevention and collimation of derivation neutrons from proton bombarding. The scalp-skull-brain phantom consisting of bone and brain equivalent material has been simulated in order to evaluate the dosimetric effect on the brain. Results of this analysis demonstrated while the proton energy decreased, the dose factor altered according to filters thickness. The maximum epithermal flux revealed using fluental, Fe and bismuth (Bi) filters with thicknesses of 9.4, 3 and 2 cm, respectively and also the epithermal to thermal neutron flux ratio was 103.85. The potential of the ARC method to replace or complement the current reactor-based supply sources of BNCT purposes.

  4. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  5. A scintillator-based approach to monitor secondary neutron production during proton therapy.

    PubMed

    Clarke, S D; Pryser, E; Wieger, B M; Pozzi, S A; Haelg, R A; Bashkirov, V A; Schulte, R W

    2016-11-01

    The primary objective of this work is to measure the secondary neutron field produced by an uncollimated proton pencil beam impinging on different tissue-equivalent phantom materials using organic scintillation detectors. Additionally, the Monte Carlo code mcnpx-PoliMi was used to simulate the detector response for comparison to the measured data. Comparison of the measured and simulated data will validate this approach for monitoring secondary neutron dose during proton therapy. Proton beams of 155- and 200-MeV were used to irradiate a variety of phantom materials and secondary particles were detected using organic liquid scintillators. These detectors are sensitive to fast neutrons and gamma rays: pulse shape discrimination was used to classify each detected pulse as either a neutron or a gamma ray. The mcnpx-PoliMi code was used to simulate the secondary neutron field produced during proton irradiation of the same tissue-equivalent phantom materials. An experiment was performed at the Loma Linda University Medical Center proton therapy research beam line and corresponding models were created using the mcnpx-PoliMi code. The authors' analysis showed agreement between the simulations and the measurements. The simulated detector response can be used to validate the simulations of neutron and gamma doses on a particular beam line with or without a phantom. The authors have demonstrated a method of monitoring the neutron component of the secondary radiation field produced by therapeutic protons. The method relies on direct detection of secondary neutrons and gamma rays using organic scintillation detectors. These detectors are sensitive over the full range of biologically relevant neutron energies above 0.5 MeV and allow effective discrimination between neutron and photon dose. Because the detector system is portable, the described system could be used in the future to evaluate secondary neutron and gamma doses on various clinical beam lines for commissioning and

  6. Accelerator driven neutron source design via beryllium target and 208Pb moderator for boron neutron capture therapy in alternative treatment strategy by Monte Carlo method.

    PubMed

    Khorshidi, Abdollah

    2017-01-01

    The reactor has increased its area of application into medicine especially boron neutron capture therapy (BNCT); however, accelerator-driven neutron sources can be used for therapy purposes. The present study aimed to discuss an alternative method in BNCT functions by a small cyclotron with low current protons based on Karaj cyclotron in Iran. An epithermal neutron spectrum generator was simulated with 30 MeV proton energy for BNCT purposes. A low current of 300 μA of the proton beam in spallation target concept via 9Be target was accomplished to model neutron spectrum using 208Pb moderator around the target. The graphite reflector and dual layer collimator were planned to prevent and collimate the neutrons produced from proton interactions. Neutron yield per proton, energy distribution, flux, and dose components in the simulated head phantom were estimated by MCNPX code. The neutron beam quality was investigated by diverse filters thicknesses. The maximum epithermal flux transpired using Fluental, Fe, Li, and Bi filters with thicknesses of 7.4, 3, 0.5, and 4 cm, respectively; as well as the epithermal to thermal neutron flux ratio was 161. Results demonstrated that the induced neutrons from a low energy and low current proton may be effective in tumor therapy using 208Pb moderator with average lethargy and also graphite reflector with low absorption cross section to keep the generated neutrons. Combination of spallation-based BNCT and proton therapy can be especially effective, if a high beam intensity cyclotron becomes available.

  7. A Bayesian Approach for Measurements of Stray Neutrons at Proton Therapy Facilities: Quantifying Neutron Dose Uncertainty.

    PubMed

    Dommert, M; Reginatto, M; Zboril, M; Fiedler, F; Helmbrecht, S; Enghardt, W; Lutz, B

    2017-11-28

    Bonner sphere measurements are typically analyzed using unfolding codes. It is well known that it is difficult to get reliable estimates of uncertainties for standard unfolding procedures. An alternative approach is to analyze the data using Bayesian parameter estimation. This method provides reliable estimates of the uncertainties of neutron spectra leading to rigorous estimates of uncertainties of the dose. We extend previous Bayesian approaches and apply the method to stray neutrons in proton therapy environments by introducing a new parameterized model which describes the main features of the expected neutron spectra. The parameterization is based on information that is available from measurements and detailed Monte Carlo simulations. The validity of this approach has been validated with results of an experiment using Bonner spheres carried out at the experimental hall of the OncoRay proton therapy facility in Dresden. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Neutrons in active proton therapy: Parameterization of dose and dose equivalent.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Lomax, Tony

    2017-06-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160MeV or 177MeV instead of 138MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy. Copyright © 2016. Published by Elsevier GmbH.

  10. Dosimetric characteristics of the University of Washington Clinical Neutron Therapy System

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory B.; Stewart, Robert D.; Sandison, George A.; Goorley, John T.; Argento, David C.; Jevremovic, Tatjana; Emery, Robert; Wootton, Landon S.; Parvathaneni, Upendra; Laramore, George E.

    2018-05-01

    The University of Washington (UW) Clinical Neutron Therapy System (CNTS), which generates high linear energy transfer fast neutrons through interactions of 50.5 MeV protons incident on a Be target, has depth-dose characteristics similar to 6 MV x-rays. In contrast to the fixed beam angles and primitive blocking used in early clinical trials of neutron therapy, the CNTS has a gantry with a full 360° of rotation, internal wedges, and a multi-leaf collimator (MLC). Since October of 1984, over 3178 patients have received conformal neutron therapy treatments using the UW CNTS. In this work, the physical and dosimetric characteristics of the CNTS are documented through comparisons of measurements and Monte Carlo simulations. A high resolution computed tomography scan of the model 17 ionization chamber (IC-17) has also been used to improve the accuracy of simulations of the absolute calibration geometry. The response of the IC-17 approximates well the kinetic energy released per unit mass (KERMA) in water for neutrons and photons for energies from a few tens of keV up to about 20 MeV. Above 20 MeV, the simulated model 17 ion chamber response is 20%–30% higher than the neutron KERMA in water. For CNTS neutrons, simulated on- and off-axis output factors in water match measured values within ~2%  ±  2% for rectangular and irregularly shaped field with equivalent square areas ranging in a side dimension from 2.8 cm to 30.7 cm. Wedge factors vary by less than 1.9% of the measured dose in water for clinically relevant field sizes. Simulated tissue maximum ratios in water match measured values within 3.3% at depths up to 20 cm. Although the absorbed dose for water and adipose tissue are within 2% at a depth of 1.7 cm, the absorbed dose in muscle and bone can be as much as 12 to 40% lower than the absorbed dose in water. The reported studies are significant from a historical perspective and as additional validation of a new tool for patient quality assurance

  11. Boron containing compounds and their preparation and use in neutron capture therapy

    DOEpatents

    Gabel, D.

    1992-09-01

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  12. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released ismore » microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.« less

  13. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.

    PubMed

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-02-22

    Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of

  14. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer.

    PubMed

    Haapaniemi, Aaro; Kankaanranta, Leena; Saat, Riste; Koivunoro, Hanna; Saarilahti, Kauko; Mäkitie, Antti; Atula, Timo; Joensuu, Heikki

    2016-05-01

    To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  16. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  17. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  18. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.

    PubMed

    Moghaddasi, Leyla; Bezak, Eva

    2018-03-01

    Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.

  19. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    PubMed

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  20. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    NASA Astrophysics Data System (ADS)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  1. Ambient neutron dose equivalent during proton therapy using wobbling scanning system: Measurements and calculations

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chieh; Lee, Chung-Chi; Chao, Tsi-Chian; Tsai, Hui-Yu

    2017-11-01

    Neutron production is a concern in proton therapy, particularly in scattering proton beam delivery systems. Despite this fact, little is known about the effects of secondary neutron exposure around wobbling scattered proton treatment nozzles. The objective of this study was to estimate the neutron dose level resulting from the use of a wobbling scattered proton treatment unit. We applied the Monte Carlo method for predict the ambient neutron dose equivalent, H*(10), per absorbed dose at the treatment isocenter, D, in the proton therapy center of Chang Gung Memorial Hospital, Linkou, Taiwan. For a 190-MeV proton beam, H* (10) / D values typically decreased with the distance from the isocenter, being 1.106 mSv/Gy at the isocenter versus 0.112 mSv/Gy at a distance of 150 cm from the isocenter. The H* (10) / D values generally decreased as the neutron receptors moved away from the isocenter, and increased when the angle from the initial beam axis increased. The ambient neutron dose equivalents were observed to be slightly lower in the direction of multileaf collimator movement. For radiation protection, the central axis of a proton-treated patient is suggested to be at the 0° angle of the beam. If the beam direction at the 90° angle is necessary, the patient axis is suggested to be along with the direction of MLC movement. Our study provides the neutron dose level and neutron energy fluence for the first wobbling proton system at the proton therapy center of Chang Gung Memorial Hospital.

  2. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.

    PubMed

    Matsumoto, Shinnosuke; Koba, Yusuke; Kohno, Ryosuke; Lee, Choonsik; Bolch, Wesley E; Kai, Michiaki

    2016-04-01

    Proton therapy has the physical advantage of a Bragg peak that can provide a better dose distribution than conventional x-ray therapy. However, radiation exposure of normal tissues cannot be ignored because it is likely to increase the risk of secondary cancer. Evaluating secondary neutrons generated by the interaction of the proton beam with the treatment beam-line structure is necessary; thus, performing the optimization of radiation protection in proton therapy is required. In this research, the organ dose and energy spectrum were calculated from secondary neutrons using Monte Carlo simulations. The Monte Carlo code known as the Particle and Heavy Ion Transport code System (PHITS) was used to simulate the transport proton and its interaction with the treatment beam-line structure that modeled the double scattering body of the treatment nozzle at the National Cancer Center Hospital East. The doses of the organs in a hybrid computational phantom simulating a 5-y-old boy were calculated. In general, secondary neutron doses were found to decrease with increasing distance to the treatment field. Secondary neutron energy spectra were characterized by incident neutrons with three energy peaks: 1×10, 1, and 100 MeV. A block collimator and a patient collimator contributed significantly to organ doses. In particular, the secondary neutrons from the patient collimator were 30 times higher than those from the first scatter. These results suggested that proactive protection will be required in the design of the treatment beam-line structures and that organ doses from secondary neutrons may be able to be reduced.

  3. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  4. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi; Kankaanranta, Leena; Saat, Riste

    2016-05-01

    Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patientsmore » who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.« less

  5. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F; Sandison, G

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depthmore » of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron

  6. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  7. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  8. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  9. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru; Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head andmore » neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.« less

  10. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical neutron radiation therapy system. 892.5300 Section 892.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  11. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300 Section 892.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  12. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical neutron radiation therapy system. 892.5300 Section 892.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  13. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical neutron radiation therapy system. 892.5300 Section 892.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  14. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical neutron radiation therapy system. 892.5300 Section 892.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  15. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  16. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    PubMed

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  17. Neutron therapy in Saudi Arabia: an overview and results of dose searching study in head and neck cancer.

    PubMed

    el-Akkad, S; Schultz, H P; Ahmad, K; Clubb, B; McArthur, P; Dobson, H; DeVol, E

    1992-01-01

    The King Faisal Specialist Hospital and Research Centre is the only center in the Middle East that incorporates a neutron therapy facility. The neutron beam is produced by a cyclotron, which produces a beam by either a (d(15)+Be) or (p(26)+Be) reaction. The beam from the proton reaction is selected for therapy because of its superior physical characteristics. These were verified by an intercomparison conducted by the European Organization for Research on Treatment of Cancer (EORTC) Heavy Particle Therapy Group. Full beam data are presented. The first study in the neutron therapy Program is on the treatment of squamous cancers of the head and neck. This consists of two parts. Part I is a dose searching phase and Part II is a comparison of our current photon treatment versus neutrons using the neutron dose selected by Part I of the study. Results of the dose searching phase (Part I) are presented.

  18. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    NASA Astrophysics Data System (ADS)

    Musabaeva, L. I.; Startseva, Zh. A.; Gribova, O. V.; Velikaya, V. V.; Lisin, V. A.

    2016-08-01

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  19. In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Matsumura, A.; Yamamoto, K.; Kumada, H.; Shibata, Y.; Nose, T.

    2002-07-01

    The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours.

  20. A 13C(d,n)-based epithermal neutron source for Boron Neutron Capture Therapy.

    PubMed

    Capoulat, M E; Kreiner, A J

    2017-01-01

    Boron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is 13 C(d,n) 14 N. The aim of this work is to evaluate the therapeutic capabilities of the neutron beam produced by this reaction, through a 30mA beam of deuterons of 1.45MeV. A Beam Shaping Assembly design was computationally optimized. Depth dose profiles in a Snyder head phantom were simulated with the MCNP code for a number of BSA configurations. In order to optimize the treatment capabilities, the BSA configuration was determined as the one that allows maximizing both the tumor dose and the penetration depth while keeping doses to healthy tissues under the tolerance limits. Significant doses to tumor tissues were achieved up to ∼6cm in depth. Peak doses up to 57Gy-Eq can be delivered in a fractionated scheme of 2 irradiations of approximately 1h each. In a single 1h irradiation, lower but still acceptable doses to tumor are also feasible. Treatment capabilities obtained here are comparable to those achieved with other accelerator-based neutron sources, making of the 13 C(d,n) 14 N reaction a realistic option for producing therapeutic neutron beams through a low-energy particle accelerator. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Final Stage in the Design of a Boron Neutron Capture Therapy facility at CEADEN, Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabal, F. Padilla; Martin, G.

    A neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, the therapeutic gain and the neutron fluence are utilized as beam assessment parameters. An irradiation cavity is used instead of a parallel beam port for the therapy. Calculations are performed using the MCNP5 code. After the optimization of our beam-shaper a study of the dose distribution in the head, neck, tyroids, lungs and upper and middle spine had been made. The therapeutic gain is increased whilemore » the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT.« less

  2. [Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors].

    PubMed

    Kanygin, V V; Kichigin, A I; Gubanova, N V; Taskaev, S Yu

    2015-01-01

    Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.

  3. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent.

    PubMed

    Dewi, Novriana; Mi, Peng; Yanagie, Hironobu; Sakurai, Yuriko; Morishita, Yasuyuki; Yanagawa, Masashi; Nakagawa, Takayuki; Shinohara, Atsuko; Matsukawa, Takehisa; Yokoyama, Kazuhito; Cabral, Horacio; Suzuki, Minoru; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Nishiyama, Nobuhiro; Kataoka, Kazunori; Takahashi, Hiroyuki

    2016-04-01

    A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.

  4. Changes in prescribed doses for the Seattle neutron therapy system

    NASA Astrophysics Data System (ADS)

    Popescu, A.

    2008-06-01

    From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.

  5. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  6. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. Copyright © 2014

  7. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.

    PubMed

    Deagostino, Annamaria; Protti, Nicoletta; Alberti, Diego; Boggio, Paolo; Bortolussi, Silva; Altieri, Saverio; Crich, Simonetta Geninatti

    2016-05-01

    Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.

  8. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    PubMed

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days). © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Tetrakis(p-Carboranylthio-Tetrafluorophenyl)Chlorin (TPFC): Application for Photodynamic Therapy and Boron Neutron Capture Therapy

    PubMed Central

    HIRAMATSU, RYO; KAWABATA, SHINJI; TANAKA, HIROKI; SAKURAI, YOSHINORI; SUZUKI, MINORU; ONO, KOJI; MIYATAKE, SHIN-ICHI; KUROIWA, TOSHIHIKO; HAO, ERHONG; VICENTE, M. GRAÇA H.

    2015-01-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC’s applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm2) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 1012 n/cm2) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37–43 days). PMID:25546823

  10. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study.

    PubMed

    Jung, Joo-Young; Yoon, Do-Kun; Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-06-13

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy.

  11. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study

    PubMed Central

    Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-01-01

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy. PMID:28427153

  12. Paving the Road for Modern Particle Therapy - What Can We Learn from the Experience Gained with Fast Neutron Therapy in Munich?

    PubMed

    Specht, Hanno M; Neff, Teresa; Reuschel, Waltraud; Wagner, Franz M; Kampfer, Severin; Wilkens, Jan J; Petry, Winfried; Combs, Stephanie E

    2015-01-01

    While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies.

  13. Cyclotron Provides Neutron Therapy for Cancer Patients

    NASA Image and Video Library

    1978-01-21

    A cancer patient undergoes treatment in the Neutron Therapy Treatment Facility, or Cylotron, at the National Aeronautics and Space Administration (NASA) Lewis Research Center. After World War II Lewis researchers became interested in nuclear energy for propulsion. The focused their efforts on thermodynamics and strength of materials after radiation. In 1950 an 80-person Nuclear Reactor Division was created, and a cyclotron was built behind the Materials and Structures Laboratory. An in-house nuclear school was established to train these researchers in their new field. NASA cancelled its entire nuclear program in January 1973, just as the cyclotron was about to resume operations after a major upgrade. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron for a new type of radiation treatment for cancer patients. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. The facility had a dual-beam system that could target the tumor both vertically and horizontally. Over the course of five years, the cyclotron was used to treat 1200 patients. It was found to be particularly effective on salivary gland, prostrate, and other tumors. It was not as successful with tumors of the central nervous system. The program was terminated in 1980 as the Clinic began concentrating on non-radiation treatments.

  14. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreiner, A. J.; Escuela de Ciencia y Tecnologia, Universidad de Gral San Martin; CONICET,

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  15. MONDO: a neutron tracker for particle therapy secondary emission characterisation

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Gasparini, L.; Mirabelli, R.; Pinci, D.; Patera, V.; Sciubba, A.; Spiriti, E.; Stoppa, D.; Traini, G.; Sarti, A.

    2017-04-01

    Tumour control is performed in particle therapy using particles and ions, whose high irradiation precision enhances the effectiveness of the treatment, while sparing the healthy tissue surrounding the target volume. Dose range monitoring devices using photons and charged particles produced by the beam interacting with the patient’s body have already been proposed, but no attempt has been made yet to exploit the detection of the abundant neutron component. Since neutrons can release a significant dose far away from the tumour region, precise measurements of their flux, production energy and angle distributions are eagerly sought in order to improve the treatment planning system (TPS) software. It will thus be possible to predict not only the normal tissue toxicity in the target region, but also the risk of late complications in the whole body. The aforementioned issues underline the importance of an experimental effort devoted to the precise characterisation of neutron production, aimed at the measurement of their abundance, emission point and production energy. The technical challenges posed by a neutron detector aimed at high detection efficiency and good backtracking precision are addressed within the MONDO (monitor for neutron dose in hadrontherapy) project, whose main goal is to develop a tracking detector that can target fast and ultrafast neutrons. A full reconstruction of two consecutive elastic scattering interactions undergone by the neutrons inside the detector material will be used to measure their energy and direction. The preliminary results of an MC simulation performed using the FLUKA software are presented here, together with the DSiPM (digital SiPM) readout implementation. New detector readout implementations specifically tailored to the MONDO tracker are also discussed, and the neutron detection efficiency attainable with the proposed neutron tracking strategy are reported.

  16. MONDO: a neutron tracker for particle therapy secondary emission characterisation.

    PubMed

    Marafini, M; Gasparini, L; Mirabelli, R; Pinci, D; Patera, V; Sciubba, A; Spiriti, E; Stoppa, D; Traini, G; Sarti, A

    2017-04-21

    Tumour control is performed in particle therapy using particles and ions, whose high irradiation precision enhances the effectiveness of the treatment, while sparing the healthy tissue surrounding the target volume. Dose range monitoring devices using photons and charged particles produced by the beam interacting with the patient's body have already been proposed, but no attempt has been made yet to exploit the detection of the abundant neutron component. Since neutrons can release a significant dose far away from the tumour region, precise measurements of their flux, production energy and angle distributions are eagerly sought in order to improve the treatment planning system (TPS) software. It will thus be possible to predict not only the normal tissue toxicity in the target region, but also the risk of late complications in the whole body. The aforementioned issues underline the importance of an experimental effort devoted to the precise characterisation of neutron production, aimed at the measurement of their abundance, emission point and production energy. The technical challenges posed by a neutron detector aimed at high detection efficiency and good backtracking precision are addressed within the MONDO (monitor for neutron dose in hadrontherapy) project, whose main goal is to develop a tracking detector that can target fast and ultrafast neutrons. A full reconstruction of two consecutive elastic scattering interactions undergone by the neutrons inside the detector material will be used to measure their energy and direction. The preliminary results of an MC simulation performed using the FLUKA software are presented here, together with the DSiPM (digital SiPM) readout implementation. New detector readout implementations specifically tailored to the MONDO tracker are also discussed, and the neutron detection efficiency attainable with the proposed neutron tracking strategy are reported.

  17. Spot scanning proton therapy minimizes neutron dose in the setting of radiation therapy administered during pregnancy.

    PubMed

    Wang, Xin; Poenisch, Falk; Sahoo, Narayan; Zhu, Ronald X; Lii, MingFwu; Gillin, Michael T; Li, Jing; Grosshans, David

    2016-09-08

    This is a real case study to minimize the neutron dose equivalent (H) to a fetus using spot scanning proton beams with favorable beam energies and angles. Minimum neutron dose exposure to the fetus was achieved with iterative planning under the guidance of neutron H measurement. Two highly conformal treatment plans, each with three spot scanning beams, were planned to treat a 25-year-old pregnant female with aggressive recurrent chordoma of the base of skull who elected not to proceed with termination. Each plan was scheduled for delivery every other day for robust target coverage. Neutron H to the fetus was measured using a REM500 neutron survey meter placed at the fetus position of a patient simulating phantom. 4.1 and 44.1 μSv/fraction were measured for the two initial plans. A vertex beam with higher energy and the fetal position closer to its central axis was the cause for the plan that produced an order higher neutron H. Replacing the vertex beam with a lateral beam reduced neutron H to be comparable with the other plan. For a prescription of 70 Gy in 35 fractions, the total neutron H to the fetus was estimated to be 0.35 mSv based on final measurement in single fraction. In comparison, the passive scattering proton plan and photon plan had an estimation of 26 and 70 mSv, respectively, for this case. While radiation therapy in pregnant patients should be avoided if at all possible, our work demonstrated spot scanning beam limited the total neutron H to the fetus an order lower than the suggested 5 mSv regulation threshold. It is far superior than passive scattering beam and careful beam selection with lower energy and keeping fetus further away from beam axis are essential in minimizing the fetus neutron exposure. © 2016 The Authors.

  18. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.

    PubMed

    Sakamoto, S; Kiger, W S; Harling, O K

    1999-09-01

    Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.

  19. The MONDO project: A secondary neutron tracker detector for particle therapy

    NASA Astrophysics Data System (ADS)

    Valle, S. M.; Battistoni, G.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.; Marafini, M.

    2017-02-01

    During Particle Therapy treatments the patient irradiation produces, among different types of secondary radiation, an abundant flux of neutrons that can release a significant dose far away from the tumour region. A precise measurement of their flux, energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems software and to properly take into account the risk of late complications in the whole body. The technical challenges posed by a neutron detector aiming for high detection efficiency and good backtracking precision will be addressed within the MONDO project, whose main goal is to develop a tracking detector targeting fast and ultra-fast secondary neutrons. The neutron tracking principle is based on the reconstruction of two consequent elastic scattering interactions of a neutron with a target material. Reconstructing the recoiling protons it is hence possible to measure the energy and incoming direction of the neutron. Plastic scintillators will be used as scattering and detection media: the tracker is being developed as a matrix of squared scintillating fibres of 250 μm side. The light produced and collected in fibres will be amplified using a triple GEM-based image intensifier and acquired using CMOS Single Photon Avalanche Diode arrays. Using therapeutic beams, the principal detector goal will be the measurement of the neutron production yields, as a function of production angle and energy.

  20. Boron neutron capture therapy for recurrent high-grade meningiomas.

    PubMed

    Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Ono, Koji; Miyatake, Shin-Ichi

    2013-10-01

    Similar to glioblastomas, high-grade meningiomas are difficult pathologies to control. In this study, the authors used boron neutron capture therapy (BNCT), a tumor-selective intensive particle radiation modality, to treat high-grade meningioma. From June 2005 to September 2011, BNCT was applied 28 times in 20 cases of recurrent high-grade meningioma. All patients had previously undergone intensive treatments such as repetitive surgeries and multiple sessions of radiation therapy. Fluorine-18-labeled boronophenylalanine ((18)F-BPA) PET was performed before BNCT in 19 of the 20 cases; BPA is itself a therapeutic compound. Compound uptake, tumor shrinkage, long-term control rate including survival time, and failure pattern of the treated patients were all evaluated. Eighteen of 19 cases studied using (18)F-BPA PET showed good BPA uptake, with ratios of tumor to normal brain greater than 2.7. These ratios indicated the likely effects of BNCT prior to neutron irradiation. The original tumor sizes were between 4.3 cm(3) and 109 cm(3). A mean tumor volume reduction of 64.5% was obtained after BNCT within just 2 months. The median follow-up duration was 13 months. Six patients are still alive; at present, the median survival times after BNCT and diagnosis are 14.1 months (95% CI 8.6-40.4 months) and 45.7 months (95% CI 32.4-70.7 months), respectively. Clinical symptoms before BNCT, such as hemiparesis and facial pain, were improved after BNCT in symptomatic cases. Systemic metastasis, intracranial distant recurrence outside the radiation field, CSF dissemination, and local tumor progression were observed in 6, 7, 3, and 3 cases, respectively, during the clinical course. Apparent pseudoprogression was observed in at least 3 cases. Symptomatic radiation injuries occurred in 6 cases, and were controllable in all but 1 case. Boron neutron capture therapy may be especially effective in cases of high-grade meningioma.

  1. Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of malignant melanoma

    DOEpatents

    Gabel, D.

    1991-06-04

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  2. Paving the Road for Modern Particle Therapy – What Can We Learn from the Experience Gained with Fast Neutron Therapy in Munich?

    PubMed Central

    Specht, Hanno M.; Neff, Teresa; Reuschel, Waltraud; Wagner, Franz M.; Kampfer, Severin; Wilkens, Jan J.; Petry, Winfried; Combs, Stephanie E.

    2015-01-01

    While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies. PMID:26640777

  3. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    PubMed

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  4. Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)

    NASA Astrophysics Data System (ADS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.

  5. Proceedings of the first international symposium on neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairchild, R.G.; Brownell, G.L.

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  6. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy

    PubMed Central

    Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli

    2007-01-01

    Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463

  7. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  8. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a realmore » patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.« less

  9. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  10. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system.

    PubMed

    Howell, Rebecca M; Burgett, E A

    2014-09-01

    Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to

  11. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    PubMed Central

    Howell, Rebecca M.; Burgett, E. A.

    2014-01-01

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  12. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    PubMed

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-07

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H (*)(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H (*)(10) value of 2.7 μSv Gy(-1) was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H (*)(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy(-1) at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to

  13. Characteristics of a heavy water photoneutron source in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani

    2013-07-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.

  14. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  15. SU-E-J-115: Graticule for Verification of Treatment Position in Neutron Therapy.

    PubMed

    Halford, R; Snyder, M

    2012-06-01

    Until recently the treatment verification for patients undergoing fast neutron therapy at our facility was accomplished through a combination of neutron beam portal films aligned with a graticule mounted on an orthronormal x-ray tube. To eliminate uncertainty with respect to the relative positions of the x-ray graticule and the therapy beam, we have developed a graticule which is placed in the neutron beam itself. For a graticule to be visible on the portal film, the attenuation of the neutron beam by the graticule landmarks must be significantly greater than that of the material in which the landmarks are mounted. Various materials, thicknesses, and mounting points were tried to gain the largest contrast between the graticule landmarks and the mounting material. The final design involved 2 inch steel pins of 0.125 inch diameter captured between two parallel plates of 0.25 inch thick clear acrylic plastic. The distance between the two acrylic plates was 1.625 inches, held together at the perimeter with acrylic sidewall spacers. This allowed the majority of length of the steel pins to be surrounded by air. The pins were set 1 cm apart and mounted at angles parallel to the divergence of the beam dependent on their position within the array. The entire steel pin and acrylic plate assembly was mounted on an acrylic accessory tray to allow for graticule alignment. Despite the inherent difficulties in attenuating fast neutrons, our simple graticule design produces the required difference of attenuation between the arrays of landmarks and the mounting material. The graticule successfully provides an in-beam frame of reference for patient portal verification. © 2012 American Association of Physicists in Medicine.

  16. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  17. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    PubMed

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. SU-E-T-21: A D-D Based Neutron Generator System for Boron Neutron Capture Therapy: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M; Liu, Y; Nie, L

    2015-06-15

    Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30more » ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.« less

  19. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.

    PubMed

    Wangerin, K; Culbertson, C N; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.

  20. Osteogenic Sarcoma of the Maxilla: Neutron Therapy for Unresectable Disease

    DOE PAGES

    Smoron, Geoffrey L.; Lennox, Arlene J.; Mcgee, James L.

    1999-01-01

    Purpose. To present a case study involving the use of fast neutron therapy to treat an extensive unresectable osteogenic sarcoma arising from the left maxilla. Patient. A 14-year-old male presented with a massive tumor producing severe distortion of his facial structures. He had already received six courses of chemotherapy, which had reduced his pain, but had not measurably reduced the tumor. Methods. The patient was treated with 66 MeV fast neutrons to a dose of 20.4 Gy in 13 fractions over 35 days. Results. CT assessments indicate gradually increasing calcification and noticeable reduction of soft-tissue disease in the frontal sinus,more » orbit and maxillary antrum.There has been some recontouring of the facial structures.The boy conducts an active life, has no pain, and feels well. He was 17 years old at the last follow-up. Discussion. Fast neutrons have a greater biological effectiveness than conventional photon beams. Their use has been associated with improved chance for local control of unresectable disease.This case illustrates their effectiveness in controlling an unusual and aggressive osteogenic sarcoma of the facial bone and sinuses.« less

  1. Micro-scale characterization of a CMOS-based neutron detector for in-phantom measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Arbor, Nicolas; Higueret, Stephane; Husson, Daniel

    2018-04-01

    The CMOS sensor AlphaRad has been designed at the IPHC Strasbourg for real-time monitoring of fast and thermal neutrons over a full energy spectrum. Completely integrated, highly transparent to photons and optimized for low power consumption, this sensor offers very interesting characteristics for the study of internal neutrons in radiation therapy with anthropomorphic phantoms. However, specific effects related to the CMOS metal substructure and to the charge collection process of low energy particles must be carefully estimated before being used for medical applications. We present a detailed characterization of the AlphaRad chip in the MeV energy range using proton and alpha micro-beam experiments performed at the AIFIRA facility (CENBG, Bordeaux). Two-dimensional maps of the charge collection were carried out on a micro-metric scale to be integrated into a Geant4 Monte Carlo simulation of the system. The gamma rejection, as well as the fast and thermal neutrons separation, were studied using both simulation and experimental data. The results highlight the potential of a future system based on CMOS sensor for in-phantom neutron detection in radiation therapies.

  2. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Schuemann, J

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalentmore » was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less

  3. Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model.

    PubMed Central

    Yanagië, H.; Tomita, T.; Kobayashi, H.; Fujii, Y.; Takahashi, T.; Hasumi, K.; Nariuchi, H.; Sekiguchi, M.

    1991-01-01

    An immunoliposome containing a 10B-compound has been examined as a selective drug delivery system in boron neutron-capture therapy. Liposomes, conjugated with monoclonal antibodies specific for carcinoembryonic antigen (CEA) were shown to bind selectively to cells bearing CEA on their surface. The immunoliposomes attached to tumour cells suppressed growth in vitro upon thermal neutron irradiation and suppression was dependent upon the concentration of the 10B-compound in the liposomes and on the density of antibody conjugated to the liposomes. The results suggest that immunoliposomes containing the 10B-compound could act as a selective and efficient carrier of 10B atoms to target tumour cells in boron neutron-capture therapy. Images Figure 1 PMID:2021537

  4. MONDO: A tracker for the characterization of secondary fast and ultrafast neutrons emitted in particle therapy

    NASA Astrophysics Data System (ADS)

    Mirabelli, R.; Battistoni, G.; Giacometti, V.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Traini, G.; Marafini, M.

    2018-01-01

    In Particle Therapy (PT) accelerated charged particles and light ions are used for treating tumors. One of the main limitation to the precision of PT is the emission of secondary particles due to the beam interaction with the patient: secondary emitted neutrons can release a significant dose far from the tumor. Therefore, a precise characterization of their flux, production energy and angle distribution is eagerly needed in order to improve the Treatment Planning Systems (TPS) codes. The principal aim of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is the development of a tracking device optimized for the detection of fast and ultra-fast secondary neutrons emitted in PT. The detector consists of a matrix of scintillating square fibres coupled with a CMOS-based readout. Here, we present the characterization of the detector tracker prototype and CMOS-based digital SPAD (Single Photon Avalanche Diode) array sensor tested with protons at the Beam Test Facility (Frascati, Italy) and at the Proton Therapy Centre (Trento, Italy), respectively.

  5. Boron neutron capture therapy for malignant melanoma: first clinical case report in China

    PubMed Central

    Yong, Zhong; Song, Zewen; Zhou, Yongmao; Liu, Tong; Zhang, Zizhu; Zhao, Yanzhong; Chen, Yang; Jin, Congjun; Chen, Xiang; Lu, Jianyun; Han, Rui; Li, Pengzhou; Sun, Xulong; Wang, Guohui; Shi, Guangqing; Zhu, Shaihong

    2016-01-01

    A phase I/II clinical trial for treating malignant melanoma by boron neutron capture therapy (BNCT) was designed to evaluate whether the world’s first in-hospital neutron irradiator (IHNI) was qualified for BNCT. In this clinical trial planning to enroll 30 patients, the first case was treated on August 19, 2014. We present the protocol of this clinical trial, the treating procedure, and the clinical outcome of this first case. Only grade 2 acute radiation injury was observed during the first four weeks after BNCT and the injury healed after treatment. No late radiation injury was found during the 24-month follow-up. Based on positron emission tomography-computed tomography (PET/CT) scan, pathological analysis and gross examination, the patient showed a complete response to BNCT, indicating that BNCT is a potent therapy against malignant melanoma and IHNI has the potential to enable the delivery of BNCT in hospitals. PMID:28174492

  6. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar

  8. Opportunities afforded by the intense nanosecond neutron pulses from a plasma focus source for neutron capture therapy and the preliminary simulation results

    NASA Astrophysics Data System (ADS)

    Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.

    2012-11-01

    The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.

  9. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    NASA Astrophysics Data System (ADS)

    Gräfe, James L.

    2017-09-01

    Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and

  10. The possible use of a spallation neutron source for neutron capture therapy with epithermal neutrons.

    PubMed

    Grusell, E; Condé, H; Larsson, B; Rönnqvist, T; Sornsuntisook, O; Crawford, J; Reist, H; Dahl, B; Sjöstrand, N G; Russel, G

    1990-01-01

    Spallation is induced in a heavy material by 72-MeV protons. The resulting neutrons can be characterized by an evaporation spectrum with a peak energy of less than 2 MeV. The neutrons are moderated in two steps: first in iron and then in carbon. Results from neutron fluence measurements in a perspex phantom placed close to the moderator are presented. Monte Carlo calculations of neutron fluence in a water phantom are also presented under some chosen configurations of spallation source and moderator. The calculations and measurements are in good agreement and show that, for proton currents of less than 0.5 mA, useful thermal-neutron fluences are attainable in the depth of the brain. However, the dose contribution from the unavoidable gamma background component has not been included in the present investigation.

  11. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application.

    PubMed

    Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo

    2014-04-01

    Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.

  12. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.

    PubMed

    Yu, Haiyan; Tang, Xiaobin; Shu, Diyun; Liu, Yuanhao; Geng, Changran; Gong, Chunhui; Hang, Shuang; Chen, Da

    2017-03-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high Linear Energy Transfer (LET). It is considered a potential therapeutic approach for non-small cell lung cancer (NSCLC). It could avoid the inaccurate treatment caused by the lung motion during radiotherapy, because the dose deposition mainly depends on the boron localization and neutron source. Thus, B concentration and neutron sources are both principal factors of BNCT, and they play significant roles in the curative effect of BNCT for different cases. The purpose was to explore the feasibility of BNCT treatment for NSCLC with either of two neutron sources (the epithermal reactor at the Massachusetts Institute of Technology named "MIT source" and the accelerator neutron source designed in Argentina named "MEC source") and various boron concentrations. Shallow and deeper lung tumors were defined in the Chinese hybrid radiation phantom, and the Monte Carlo method was used to calculate the dose to tumors and healthy organs. The MEC source was more appropriate to treat the shallow tumor (depth of 6 cm) with a shorter treatment time. However, the MIT source was more suitable for deep lung tumor (depth of 9 cm) treatment, as the MEC source is more likely to exceed the skin dose limit. Thus, a neutron source consisting of more fast neutrons is not necessarily suitable for deep treatment of lung tumors. Theoretical distribution of B in tumors and organs at risk (especially skin) was obtained to meet the treatable requirement of BNCT, which may provide the references to identify the feasibility of BNCT for the treatment of lung cancer using these two neutron sources in future clinical applications.

  13. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    PubMed

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5  n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13  Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13  Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to

  14. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditionsmore » in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization

  15. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the

  16. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  18. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  19. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.

    PubMed

    Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos

    2013-09-01

    To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.

  20. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less

  1. Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy.

    PubMed

    Kawasaki, Riku; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2017-01-29

    Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and, consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. SERA -- An advanced treatment planning system for neutron therapy and BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wemple, C.A.; Wessol, D.E.

    1999-09-01

    Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT{_}rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinicalmore » trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT{_}rtpe system upon general

  3. Performance verification of an epithermal neutron flux monitor using accelerator-based BNCT neutron sources

    NASA Astrophysics Data System (ADS)

    Guan, X.; Murata, I.; Wang, T.

    2017-09-01

    The performance of an epithermal neutron flux monitor developed for boron neutron capture therapy (BNCT) is verified by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results indicate that the developed epithermal neutron flux monitor works well and it can be efficiently used in practical applications to measure the epithermal neutron fluxes of ABNSs in a high accuracy.

  4. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro.

    PubMed

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-08-06

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma.

  6. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).

    PubMed

    Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana

    2016-01-21

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.

  7. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms

    NASA Astrophysics Data System (ADS)

    Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald

    2008-02-01

    Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the

  8. Exploring Boron Neutron Capture Therapy for non-small cell lung cancer.

    PubMed

    Farías, Rubén O; Bortolussi, Silva; Menéndez, Pablo R; González, Sara J

    2014-12-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high LET radiation. It consists in the enrichment of tumour with (10)B and in the successive irradiation of the target with low energy neutrons producing charged particles that mainly cause non-repairable damages to the cells. The feasibility to treat Non Small Cells Lung Cancer (NSCLC) with BNCT was explored. This paper proposes a new approach to determine treatment plans, introducing the possibility to choose the irradiation start and duration to maximize the tumour dose. A Tumour Control Probability (TCP) suited for lung BNCT as well as other high dose radiotherapy schemes was also introduced. Treatment plans were evaluated in localized and disseminated lung tumours. Semi-ideal and real energy spectra beams were employed to assess the best energy range and the performance of non-tailored neutron sources for lung tumour treatments. The optimal neutron energy is within [500 eV-3 keV], lower than the 10 keV suggested for the treatment of deep-seated tumours in the brain. TCPs higher than 0.6 and up to 0.95 are obtained for all cases. Conclusions drawn from [Suzuki et al., Int Canc Conf J 1 (4) (2012) 235-238] supporting the feasibility of BNCT for shallow lung tumours are confirmed, however discussions favouring the treatment of deeper lesions and disseminated disease are also opened. Since BNCT gives the possibility to deliver a safe and potentially effective treatment for NSCLC, it can be considered a suitable alternative for patients with few or no treatment options. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Riku; JST-ERATO, Japan Science and Technology Agency; Sasaki, Yoshihiro

    Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and,more » consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. - Highlights: • A carborane-bearing pullulan nanogel is developed as a boron delivery agent. • The nanogels are cell-friendly and show effective cell uptake for drug delivery. • The nanogels show passive tumor targeting by enhanced permeation and retention.« less

  10. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    PubMed Central

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  11. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system.

    PubMed

    Nakamura, Satoshi; Imamichi, Shoji; Masumoto, Kazuyoshi; Ito, Masashi; Wakita, Akihisa; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Abe, Yoshihisa; Igaki, Hiroshi; Kurita, Kazuyoshi; Nishio, Teiji; Masutani, Mitsuko; Itami, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24 Na, 38 Cl, 80m Br, 82 Br, 56 Mn, and 42 K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 10 2 , (2.2 ± 0.1) × 10 1 , (3.4 ± 0.4) × 10 2 , 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 10 1 Bq/g/mA, respectively. The 24 Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system.

  12. Neutron collimator design of neutron radiography based on the BNCT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  13. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide.

    PubMed

    Michiue, Hiroyuki; Sakurai, Yoshinori; Kondo, Natsuko; Kitamatsu, Mizuki; Bin, Feng; Nakajima, Kiichiro; Hirota, Yuki; Kawabata, Shinji; Nishiki, Tei-ichi; Ohmori, Iori; Tomizawa, Kazuhito; Miyatake, Shin-ichi; Ono, Koji; Matsui, Hideki

    2014-03-01

    New anti-cancer therapy with boron neutron capture therapy (BNCT) is based on the nuclear reaction of boron-10 with neutron irradiation. The median survival of BNCT patients with glioblastoma was almost twice as long as those receiving standard therapy in a Japanese BNCT clinical trial. In this clinical trial, two boron compounds, BPA (boronophenylalanine) and BSH (sodium borocaptate), were used for BNCT. BPA is taken up into cells through amino acid transporters that are expressed highly in almost all malignant cells, but BSH cannot pass through the cell membrane and remains outside the cell. We simulated the energy transfer against the nucleus at different locations of boron from outside the cell to the nuclear region with neutron irradiation and concluded that there was a marked difference between inside and outside the cell in boron localization. To overcome this disadvantage of BSH in BNCT, we used a cell-penetrating peptide system for transduction of BSH. CPP (cell-membrane penetrating peptide) is very common peptide domains that transduce many physiologically active substances into cells in vitro and in vivo. BSH-fused CPPs can penetrate the cell membrane and localize inside a cell. To increase the boron ratio in one BSH-peptide molecule, 8BSH fused to 11R with a dendritic lysine structure was synthesized and administrated to malignant glioma cells and a brain tumor mouse model. 8BSH-11R localized at the cell nucleus and showed a very high boron value in ICP results. With neutron irradiation, the 8BSH-11R administrated group showed a significant cancer killing effect compared to the 100 times higher concentration of BSH-administrated group. We concluded that BSH-fused CPPs were one of the most improved and potential boron compounds in the next-stage BNCT trial and 8BSH-11R may be applied in the clinical setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc.; Longhino, Juan

    Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60more » mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.« less

  15. Experiments to increase the parameters of the vacuum insulation tandem accelerator for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D. A.; Kolesnikov, J. A.; Koshkarev, A. M.; Kuznetsov, A. S.; Makarov, A. N.; Sokolova, E. O.; Sorokin, I. N.; Sycheva, T. V.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-12-01

    An epithermal neutron source that is based on a vacuum insulation tandem accelerator (VITA) and lithium target was created in the Budker Institute of Nuclear Physics for the development of boron neutron capture therapy (BNCT). A stationary proton beam with 2 MeV energy and 1.6 mA current has been obtained. To carry out BNCT, it is necessary to increase the beam parameters up to 2.3 MeV and 3 mA. Ways to increase the parameters of the proton beam have been proposed and discussed in this paper. The results of the experiments are presented.

  16. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, eithermore » 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.« less

  17. NEUTRON CAPTURE THERAPY OF A CEREBELLAR HEMANGIOSARCOMA AFTER SURGICAL AND RADIATION TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, L.E.; Yamamoto, L.Y.

    1961-10-01

    A patient with a hioghly maliognant vascular sarcoma of the cerebellum was treated hv neutron capture therapy. Almost complete elimination of the neoplasm was attained. Other than the skin, normal tissues about and within the neoplastioc mass did not appear to be adversely affected. An unusual and unexpected bulbar conjunctivitis was observed as a complication. The degree of control attained by this experimental procedure was more positive than that previously attained by surgery or conventional x-ray therapy. This is the first attempt to control an intracranial tumor other than glioblastoma multiforme by this procedure. The patient is noteworthy for themore » extreme retention of carbon dioxiode, 60 milli-equivalents per liter in the blood, apparently resulting from functional disturbances of the respiratory center. (auth)« less

  18. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    NASA Astrophysics Data System (ADS)

    Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao

    2017-09-01

    Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  19. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  20. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  1. First neutron generation in the BINP accelerator based neutron source.

    PubMed

    Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S

    2009-07-01

    Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.

  2. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Lin, Y; Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure ismore » 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)« less

  3. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model.

    PubMed

    Lin, Sy-Yu; Lin, Chen-Jou; Liao, Jiunn-Wang; Peir, Jinn-Jer; Chen, Wei-Lin; Chi, Chin-Wen; Lin, Yung-Chang; Liu, Yu-Ming; Chou, Fong-In

    2013-11-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Boron neutron capture therapy (BNCT) may provide an alternative therapy for HCC. This study investigated the therapeutic efficacy of boric acid (BA)-mediated BNCT for HCC in a rat model. The pharmacokinetic and biodistribution of BA in N1S1 tumor-bearing rats were analyzed. Rats were injected with 25 mg B/kg body weight via tail veins before neutron irradiation at the Tsing Hua Open-pool Reactor, and the efficacy of BNCT was evaluated from the tumor size, tumor blood flow, and biochemical analyses. HCC-bearing rats administered BNCT showed reductions in tumor size on ultrasound imaging, as well as an obvious reduction in the distribution of tumor blood flow. The lesion located in livers had disappeared on the 80th day after BNCT; a recovery of values to normal levels was also recorded. BA-mediated BNCT is a promising alternative for liver cancer therapy since the present study demonstrated the feasibility of curing a liver tumor and restoring liver function in rats. Efforts are underway to investigate the histopathological features and the detailed mechanisms of BA-mediated BNCT.

  4. Boron neutron capture therapy as new treatment for clear cell sarcoma: trial on different animal model.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki

    2014-06-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    NASA Astrophysics Data System (ADS)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  7. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy

    NASA Astrophysics Data System (ADS)

    Athar, Basit S.; Paganetti, Harald

    2009-08-01

    In this work we have simulated the absorbed equivalent doses to various organs distant to the field edge assuming proton therapy treatments of brain or spine lesions. We have used computational whole-body (gender-specific and age-dependent) voxel phantoms and considered six treatment fields with varying treatment volumes and depths. The maximum neutron equivalent dose to organs near the field edge was found to be approximately 8 mSv Gy-1. We were able to clearly demonstrate that organ-specific neutron equivalent doses are age (stature) dependent. For example, assuming an 8-year-old patient, the dose to brain from the spinal fields ranged from 0.04 to 0.10 mSv Gy-1, whereas the dose to the brain assuming a 9-month-old patient ranged from 0.5 to 1.0 mSv Gy-1. Further, as the field aperture opening increases, the secondary neutron equivalent dose caused by the treatment head decreases, while the secondary neutron equivalent dose caused by the patient itself increases. To interpret the dosimetric data, we analyzed second cancer incidence risks for various organs as a function of patient age and field size based on two risk models. The results show that, for example, in an 8-year-old female patient treated with a spinal proton therapy field, breasts, lungs and rectum have the highest radiation-induced lifetime cancer incidence risks. These are estimated to be 0.71%, 1.05% and 0.60%, respectively. For an 11-year-old male patient treated with a spinal field, bronchi and rectum show the highest risks of 0.32% and 0.43%, respectively. Risks for male and female patients increase as their age at treatment time decreases.

  8. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    PubMed Central

    2013-01-01

    Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213

  9. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  10. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M; Liu, Y; Nie, L

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics aremore » measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.« less

  11. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy

    PubMed Central

    Sato, Eisuke; Zaboronok, Alexander; Yamamoto, Tetsuya; Nakai, Kei; Taskaev, Sergey; Volkova, Olga; Mechetina, Ludmila; Taranin, Alexander; Kanygin, Vladimir; Isobe, Tomonori; Mathis, Bryan J; Matsumura, Akira

    2018-01-01

    Abstract In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2–3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5–3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm−2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear–quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase. PMID:29281044

  12. SU-F-T-217: A Comprehensive Monte-Carlo Study of Out-Of-Field Secondary Neutron Spectra in a Scanned-Beam Proton Therapy Treatment Room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englbrecht, F; Parodi, K; Trinkl, S

    2016-06-15

    Purpose: To simulate secondary neutron radiation-fields produced at different positions during phantom irradiation inside a scanning proton therapy gantry treatment room. Further, to identify origin, energy distribution and angular emission as function of proton beam energy. Methods: GEANT4 and FLUKA Monte-Carlo codes were used to model the relevant parts of the treatment room in a gantry-equipped pencil beam scanning proton therapy facility including walls, floor, metallic gantry-components, patient table and the homogeneous PMMA target. The proton beams were modeled based on experimental beam ranges in water and spot shapes in air. Neutron energy spectra were simulated at 0°, 45°, 90°more » and 135° relative to the beam axis at 2m distance from isocenter, as well as 11×11 cm2 fields for 75MeV, 140MeV, 200MeV and for 118MeV with 5cm PMMA range-shifter. The total neutron energy distribution was recorded for these four positions and proton energies. Additionally, the room-components generating secondary neutrons in the room and their contributions to the total spectrum were identified and quantified. Results: FLUKA and GEANT4 simulated neutron spectra showed good general agreement in the whole energy range of 10{sup −}9 to 10{sup 2} MeV. Comparison of measured spectra with the simulated contributions of the various room components helped to limit the complexity of the room model, by identifying the dominant contributions to the secondary neutron spectrum. The iron of the bending magnet and counterweight were identified as sources of secondary evaporation-neutrons, which were lacking in simplified room models. Conclusion: Thorough Monte-Carlo simulations have been performed to complement Bonner-sphere spectrometry measurements of secondary neutrons in a clinical proton therapy treatment room. Such calculations helped disentangling the origin of secondary neutrons and their dominant contributions to measured spectra, besides providing a useful validation of

  13. SU-F-T-154: An Evaluation and Quantification of Secondary Neutron Radiation Dose Due to Double Scatter and Pencil Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glick, A; Diffenderfer, E

    2016-06-15

    Proton radiation therapy can deliver high radiation doses to tumors while sparing normal tissue. However, protons yield secondary neutron and gamma radiation that is difficult to detect, small in comparison to the prescribed dose, and not accounted for in most treatment planning systems. The risk for secondary malignancies after proton therapy may be dependent on the quality of this dose. Consequently, there is interest in characterizing the secondary radiation. Previously, we used the dual ionization chamber method to measure the separate absorbed dose from gamma-rays and neutrons secondary to the proton beam1, relying on characterization of ionization chamber response inmore » the unknown neutron spectrum from Monte Carlo simulation. We developed a procedure to use Shieldwerx activation foils, with neutron activation energies ranging from 0.025 eV to 13.5 MeV, to measure the neutron energy spectrum from double scattering (DS) and pencil beam scanning (PBS) protons outside of the treatment volume in a water tank. The activated foils are transferred to a NaI well chamber for gamma-ray spectroscopy and activity measurement. Since PBS treats in layers, the switching time between layers is used to correct for the decay of the activated foils and the relative dose per layer is assumed to be proportional to the neutron fluence per layer. MATLAB code was developed to incorporate the layer delivery and switching time into a calculation of foil activity, which is then used to determine the neutron energy fluence from tabulated foil activation energy thresholds.1. Diffenderfer et. al., Med. Phys., 38(11) 2011.« less

  14. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    PubMed

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    PubMed

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  16. Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy

    PubMed Central

    Dewi, Novriana; Higashi, Syushi; Ikushima, Ichiro; Seguchi, Koji; Mizumachi, Ryoji; Murata, Yuji; Morishita, Yasuyuki; Shinohara, Atsuko; Mikado, Shoji; Yasuda, Nakahiro; Fujihara, Mitsuteru; Sakurai, Yuriko; Mouri, Kikue; Yanagawa, Masashi; Iizuka, Tomoya; Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shin-ichiro; Tanaka, Hiroki; Matsukawa, Takehisa; Yokoyama, Kazuhito; Fujino, Takashi; Ogura, Koichi; Nonaka, Yasumasa; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Yui, Sho; Nishimura, Ryohei; Ono, Koji; Takamoto, Sinichi; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Hasumi, Kenichiro; Takahashi, Hiroyuki

    2017-01-01

    Objective: Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. Methods: We prepared the 10BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 1012 n cm−2. Morphological and pathological analyses were performed on Day 14 after neutron irradiation. Results: Biodistribution results have revealed that 10B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. Conclusion: Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure. PMID:28406315

  17. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  18. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy

    PubMed Central

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-01-01

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT. PMID:27191269

  19. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy.

    PubMed

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-07-12

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT.

  20. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  1. DNA Double-strand Breaks Induced byFractionated Neutron Beam Irradiation for Boron Neutron Capture Therapy.

    PubMed

    Kinashi, Yuko; Yokomizo, Natsuya; Takahashi, Sentaro

    2017-04-01

    To use the 53BP1 foci assay to detect DNA double-strand breaks induced by fractionated neutron beam irradiation of normal cells. The Kyoto University Research Reactor heavy-water facility and gamma-ray irradiation system were used as experimental radiation sources. After fixation of Chinese Hamster Ovary cells with 3.6% formalin, immunofluorescence staining was performed. Number and size of foci were analyzed using ImageJ software. Fractionated neutron irradiation induced 25% fewer 53BP1 foci than single irradiation at the same dose. By contrast, gamma irradiation induced 30% fewer 53BP1 foci than single irradiation at the same dose. Fractionated neutron irradiation induced larger foci than gamma irradiation, raising the possibility that persistent unrepaired DNA damage was amplified due to the high linear energy transfer component in the neutron beam. Unrepaired cluster DNA damage was more prevalent after fractionated neutron irradiation than after gamma irradiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Monti Hughes; ECC Pozzi; S. Thorp

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  3. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor.

    PubMed

    Wang, Ling-Wei; Liu, Yen-Wan Hsueh; Chou, Fong-In; Jiang, Shiang-Huei

    2018-06-19

    Head and neck (HN) cancer is an endemic disease in Taiwan, China. Locally recurrent HN cancer after full-dose irradiation poses a therapeutic challenge, and boron neutron capture therapy (BNCT) may be a solution that could provide durable local control with tolerable toxicity. The Tsing-Hua Open Pool Reactor (THOR) at National Tsing-Hua University in Hsin-Chu, provides a high-quality epithermal neutron source for basic and clinical BNCT research. Our first clinical trial, entitled "A phase I/II trial of boron neutron capture therapy for recurrent head and neck cancer at THOR", was carried out between 2010 and 2013. A total of 17 patients with 23 recurrent HN tumors who had received high-dose photon irradiation were enrolled in the study. The fructose complex of L-boronophenylalanine was used as a boron carrier, and a two-fraction BNCT treatment regimen at 28-day intervals was used for each patient. Toxicity was acceptable, and although the response rate was high (12/17), re-recurrence within or near the radiation site was common. To obtain better local control, another clinical trial entitled "A phase I/II trial of boron neutron capture therapy combined with image-guided intensity-modulated radiotherapy (IG-IMRT) for locally recurrent HN cancer" was initiated in 2014. The first administration of BNCT was performed according to our previous protocol, and IG-IMRT was initiated 28 days after BNCT. As of May 2017, seven patients have been treated with this combination. The treatment-related toxicity was similar to that previously observed with two BNCT applications. Three patients had a complete response, but locoregional recurrence was the major cause of failure despite initially good responses. Future clinical trials combining BNCT with other local or systemic treatments will be carried out for recurrent HN cancer patients at THOR.

  5. The Perspectives of the Boron Neutron Capture Therapy-Clinical Applications Research and Development in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Badhrees, I.; Alrumayan, F.; Mahube, F.

    Boron Neutron Capture Therapy (BNCT) is a binary form of experimental radiotherapy which is based on the administration of a drug able to concentrate the isotopes in a tumor cell that later are irradiated with a neutron beam. Even though the first evidence of the success of this treatment dates back many years ago, BNCT showed successful treatment results in malignant melanoma, and Glioblastoma. In order for BNCT to be successful, a sufficient amount of Boron (10B) must be selectively delivered to the tumor cell, and then irradiated by neutrons of sufficient enough. The CS-30 cyclotron at King Faisal Specialist Hospital & Research Center is a positive-ion machine capable of accelerating protons at 26MeV, and other isotopes as well. Although the peak beam intensity from the CS-30 is low, the key to success of using it for the BNCT is by using a high average beam current at low energy. This work is aimed at testing the capability of the CS-30 Cyclotron to produce a low-energy neutron beam to be used to activate the Boron atoms injected into the tumor cell, through simulation of a compatible moderator. We are also planning to measure the overall dosimetry of the energy dose as well as that for the boron in the tumor cell.

  6. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    PubMed

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less

  8. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model.

    PubMed

    Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Thorp, Silvia; Monti Hughes, Andrea; Molinari, Ana J; Garabalino, Marcela A; Heber, Elisa M; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Trivillin, Verónica A; Schwint, Amanda E

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT, boronophenylalanine (BPA) + neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA-BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks post-treatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA-BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mg fell significantly to 19 ± 16 mg for BPA-BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA-BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA-BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  9. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David W. Nigg

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8more » for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.« less

  10. Neutron-activatable radionuclide cancer therapy using graphene oxide nanoplatelets.

    PubMed

    Kim, Junghyun; Jay, Michael

    2017-09-01

    Neutron-activation is a promising method of generating radiotherapeutics with minimal handling of radioactive materials. Graphene oxide nanoplatelets (GONs) were examined as a carrier for neutron-activatable holmium with the purpose of exploiting inherent characteristics for theranostic application. GONs were hypothesized to be an ideal candidate for this application owing to their desirable characteristics such as a rigid structure, high metal loading capacity, low density, heat resistance, and the ability to withstand harsh environments associated with the neutron-activation process. Non-covalently PEGylated GONs (GONs-PEG) offered enhanced dispersibility and biocompatibility, and also exhibited increased holmium loading capacity nearly two-fold greater than GONs. Holmium leaching was investigated over a wide pH range, including conditions that mimic the tumor microenvironment, following neutron irradiation. The in vitro cell-based cytotoxicity analysis of GONs-based formulations with non-radioactive holmium confirmed their safety profile within cells. The results demonstrate the potential of GONs as a carrier of neutron-activatable radiotherapeutic agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Beam shaping assembly design of 7Li(p,n)7Be neutron source for boron neutron capture therapy of deep-seated tumor.

    PubMed

    Zaidi, L; Belgaid, M; Taskaev, S; Khelifi, R

    2018-05-31

    The development of a medical facility for boron neutron capture therapy at Budker Institute of Nuclear Physics is under way. The neutron source is based on a tandem accelerator with vacuum insulation and lithium target. The proposed accelerator is conceived to deliver a proton beam around 10 mA at 2.3 MeV proton beam. To deliver a therapeutic beam for treatment of deep-seated tumors a typical Beam Shaping Assembly (BSA) based on the source specifications has been explored. In this article, an optimized BSA based on the 7 Li(p,n) 7 Be neutron production reaction is proposed. To evaluate the performance of the designed beam in a phantom, the parameters and the dose profiles in tissues due to the irradiation have been considered. In the simulations, we considered a proton energy of 2.3 MeV, a current of 10 mA, and boron concentrations in tumor, healthy tissues and skin of 52.5 ppm, 15 ppm and 22.5 ppm, respectively. It is found that, for a maximum punctual healthy tissue dose seated to 11 RBE-Gy, a mean dose of 56.5 RBE Gy with a minimum of 52.2 RBE Gy can be delivered to a tumor in 40 min, where the therapeutic ratio is estimated to 5.38. All of these calculations were carried out using the Monte Carlo MCNP code. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  14. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study.

    PubMed

    Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L; Bevitt, Joseph; Wu, Zimei

    2017-05-30

    The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.

  16. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study

    PubMed Central

    Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L.; Bevitt, Joseph; Wu, Zimei

    2017-01-01

    The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma. PMID:28402271

  17. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.

    PubMed

    Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji

    2016-08-09

    Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.

  18. The neutron flux monitors from 20 keV to 1 MeV for BNCT: performance study using accelerator-based neutron sources

    NASA Astrophysics Data System (ADS)

    Guan, X. C.; Gong, Y.; Murata, I.; Wang, T. S.

    2018-05-01

    The performance of the neutron flux monitors from 20 keV to 1 MeV developed for boron neutron capture therapy (BNCT) is studied by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results show that the performance of the neutron flux monitors is very satisfactory and they can be efficiently used in practical applications to measure the neutron fluxes from 20 keV to 1 MeV of ABNSs for BNCT to high accuracy.

  19. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.

    PubMed

    Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K

    2010-06-01

    Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a

  20. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  1. A preliminary area survey of neutron radiation levels associated with the NASA variable energy cyclotron horizontal neutron delivery system

    NASA Technical Reports Server (NTRS)

    Roberts, W. K.; Leonard, R. F.

    1976-01-01

    The 25 MeV deuteron beam from the NASA variable energy cyclotron incident on a thick beryllium target will deliver a tissue neutron dose rate of 2.14 rad micron A-min at a source to skin distance of 125 cm. A neutron survey of the existing hallways with various shielding configurations made during operating of the horizontal neutron delivery system indicates that minimal amounts of additional neutron shielding material are required to provide a low level radiation environment within a self-contained neutron therapy control station. Measurements also indicate that the primary neutron distribution delivered by a planned vertical delivery system will be minimally perturbed by neutrons backscattered from the floor.

  2. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  3. Configuration and validation of an analytical model predicting secondary neutron radiation in proton therapy using Monte Carlo simulations and experimental measurements.

    PubMed

    Farah, J; Bonfrate, A; De Marzi, L; De Oliveira, A; Delacroix, S; Martinetti, F; Trompier, F; Clairand, I

    2015-05-01

    This study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy. Using Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements. Following the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties. Analytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.K.C.; Sutton, M.; Evans, T.M.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and themore » cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.« less

  5. BINP accelerator based epithermal neutron source.

    PubMed

    Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S

    2011-12-01

    Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  7. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  8. Basic requirements and parameter optimization for boron neutron capture therapy of extracorporeal irradiated and auto-transplanted organs.

    PubMed

    Wortmann, Birgit; Knorr, Jürgen

    2012-08-01

    In 2001 and 2003, at the University of Pavia, Italy, boron neutron capture therapy (BNCT) has been successfully used in the treatment of hepatic colorectal metastases (Pinelli et al., 2002; Zonta et al., 2006). The treatment procedure (TAOrMINA protocol) is characterised by the auto-transplantation and extracorporeal irradiation of the liver using a thermal neutron beam. The clinical use of this approach requires well founded data and an optimized irradiation facility. In order to start with this work and to decide upon its feasibility at the research reactor TRIGA Mainz, basic data and requirements have been considered (Wortmann, 2008). Computer calculations using the ATTILA (Transpire Inc. 2006) and MCNP (LANL, 2005) codes have been performed, including data from conventional radiation therapy, from the TAOrMINA approach, resulting in reasonable estimations. Basic data and requirements and optimal parameters have been worked out, especially for use at an optimized TRIGA irradiation facility (Wortmann, 2008). Advantages of the extracorporeal irradiation with auto-transplantation and the potential of an optimized irradiation facility could be identified. Within the requirements, turning the explanted organ over by 180° appears preferable to a whole side source, similar to a permanent rotation of the organ. The design study and the parameter optimization confirm the potential of this approach to treat metastases in explanted organs. The results do not represent actual treatment data but a first estimation. Although all specific values refer to the TRIGA Mainz, they may act as a useful guide for other types of neutron sources. The recommended modifications (Wortmann, 2008) show the suitability of TRIGA reactors as a radiation source for BNCT of extracorporeal irradiated and auto-transplanted organs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    DOE PAGES

    Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.; ...

    2017-08-01

    Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less

  10. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.

    Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less

  11. Influence of p53 status on the effects of boron neutron capture therapy in glioblastoma.

    PubMed

    Seki, Keiko; Kinashi, Yuko; Takahashi, Sentaro

    2015-01-01

    The tumor suppressor gene p53 is mutated in glioblastoma. We studied the relationship between the p53 gene and the biological effects of boron neutron capture therapy (BNCT). The human glioblastoma cells; A172, expressing wild-type p53, and T98G, with mutant p53, were irradiated by the Kyoto University Research Reactor (KUR). The biological effects after neutron irradiation were evaluated by the cell killing effect, 53BP1 foci assay and apoptosis induction. The survival-fraction data revealed that A172 was more radiosensitive than T98G, but the difference was reduced when boronophenylalanine (BPA) was present. Both cell lines exhibited similar numbers of foci, suggesting that the initial levels of DNA damage did not depend on p53 function. Detection of apoptosis revealed a lower rate of apoptosis in the T98G. BNCT causes cell death in glioblastoma cells, regardless of p53 mutation status. In T98G cells, cell killing and apoptosis occurred effectively following BNCT. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  13. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S; Shin, E H; Kim, J

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using themore » production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.« less

  14. 6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru; Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050

    The study included 135 breast cancer patients (70 patients with locally recurrent breast cancer and 65 patients with locally advanced breast cancer with unfavorable prognostic factors) who received the neutron therapy alone or in combination with the photon therapy. The neutron therapy was shown to be effective in multimodality treatment of patients with locally advanced and locally recurrent breast cancer. The 8-year survival rate in patients without repeated breast cancer recurrence was 87.6 ± 8.7% after the neutron and neutron-photon therapy and 54.3 ± 9.2% after the electron beam therapy.

  15. Grazing-Incidence Neutron Optics based on Wolter Geometries

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Ramsey, B. D.; Mildner, D. F. R.

    2008-01-01

    The feasibility of grazing-incidence neutron imaging optics based on the Wolter geometries have been successfully demonstrated. Biological microscopy, neutron radiography, medical imaging, neutron crystallography and boron neutron capture therapy would benefit from high resolution focusing neutron optics. Two bounce optics can also be used to focus neutrons in SANS experiments. Here, the use of the optics would result in lower values of obtainable scattering angles. The high efficiency of the optics permits a decrease in the minimum scattering vector without lowering the neutron intensity on sample. In this application, a significant advantage of the reflective optics over refractive optics is that the focus is independent of wavelength, so that the technique can be applied to polychromatic beams at pulsed neutron sources.

  16. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy.

    PubMed

    Takada, Kenta; Kumada, Hiroaki; Liem, Peng Hong; Sakurai, Hideyuki; Sakae, Takeji

    2016-12-01

    We simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently. We simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture. For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared. In the evaluations of body movements, there were no significant differences even with shifting up to 9mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9mm in a direction away from the irradiation aperture. When comparing both calculations in the phantom surface up to 3cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation. In the evaluation, the longitudinal displacement has a considerable effect on the organ doses. We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Neutron medical treatment of tumours — a survey of facilities

    NASA Astrophysics Data System (ADS)

    Wagner, F. M.; Loeper-Kabasakal, B.; Breitkreutz, H.

    2012-03-01

    Neutron therapy has two branches: Fast Neutron Therapy (FNT) and Boron Neutron Capture Therapy (BNCT). The mean neutron energies used for FNT range from 2 MeV to 25 MeV whereas the maximum energy for BNCT is about 10 keV. Neutron generators for FNT have been cyclotrons, accelerators and reactors, whereas BNCT is so far bound to reactors. Both therapies use the effects of high-LET radiation (secondary recoil protons and alpha particles, respectively) and can attack otherwise radioresistant tumours, however, with the hazard of adverse effects for irradiated healthy tissue. FNT has been administered to about 30,000 patients world-wide. From formerly 40 facilities, only eight are operational or stand-by today. The reasons for this development have been, on the one hand, related to technical and economical conditions; on the other hand, strong side effects and insufficient proof of clinical results in the early years as well as increasing competition with new clinical methods have reduced patient numbers. In fact, strict observations of indications, appropriate therapy-planning including low-LET radiation, and consequent treatment of side effects have lead to remarkable results in the meantime. BNCT initially was developed for the treatment of extremely aggressive forms of brain tumour, taking advantage of the action of the blood-brain-barrier which allows for a boronated compound to be selectively enriched in tumour cells. Meanwhile, also malignant melanoma (MM) and Head-and-Neck (H&T) tumours are treated because of their relative radioresistance. At present, epithermal beams with sufficient flux are available only at two facilities. Existing research reactors were indispensable in the development of BNCT, but are to be replaced by hospital-based epithermal neutron sources. Clinical results indicate significantly increased survival times, but the number of patients ever treated is still below 1,000. 3D-dose calculation systems have been developed at several facilities

  18. Apoptosis through Bcl-2/Bax and Cleaved Caspase Up-Regulation in Melanoma Treated by Boron Neutron Capture Therapy

    PubMed Central

    Faião-Flores, Fernanda; Coelho, Paulo Rogério Pinto; Toledo Arruda-Neto, João Dias; Maria-Engler, Silvya Stuchi; Tiago, Manoela; Capelozzi, Vera Luiza; Giorgi, Ricardo Rodrigues; Maria, Durvanei Augusto

    2013-01-01

    Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and 7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT. PMID:23527236

  19. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna

    2007-10-01

    Purpose: Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. Methods and Materials: Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were treated with BNCT in a prospective, single-center Phase I-II study. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 56-74 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed using the RECIST (Response Evaluation Criteria in Solid Tumors) criteria andmore » adverse effects using the National Cancer Institute common toxicity grading v3.0. Intravenously administered boronophenylalanine-fructose (BPA-F, 400 mg/kg) was used as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Ten patients received BNCT twice; 2 were treated once. Ten (83%) patients responded to BNCT, and 2 (17%) had tumor growth stabilization for 5.5 and 7.6 months. The median duration of response was 12.1 months; six responses were ongoing at the time of analysis or death (range, 4.9-19.2 months). Four (33%) patients were alive without recurrence with a median follow-up of 14.0 months (range, 12.8-19.2 months). The most common acute adverse effects were mucositis, fatigue, and local pain; 2 patients had a severe (Grade 3) late adverse effect (xerostomia, 1; dysphagia, 1). Conclusions: Boron neutron capture therapy is effective and safe in the treatment of inoperable, locally advanced head and neck carcinomas that recur at previously irradiated sites.« less

  20. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer

    NASA Astrophysics Data System (ADS)

    Velikaya, V. V.; Musabaeva, L. I.; Lisin, V. A.; Startseva, Zh. A.

    2016-08-01

    The study included 135 breast cancer patients (70 patients with locally recurrent breast cancer and 65 patients with locally advanced breast cancer with unfavorable prognostic factors) who received the neutron therapy alone or in combination with the photon therapy. The neutron therapy was shown to be effective in multimodality treatment of patients with locally advanced and locally recurrent breast cancer. The 8-year survival rate in patients without repeated breast cancer recurrence was 87.6 ± 8.7% after the neutron and neutron-photon therapy and 54.3 ± 9.2% after the electron beam therapy.

  2. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  3. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  4. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  5. An Accelerator Neutron Source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability,more » and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.« less

  6. Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study.

    PubMed

    Shu, Di-Yun; Geng, Chang-Ran; Tang, Xiao-Bin; Gong, Chun-Hui; Shao, Wen-Cheng; Ai, Yao

    2018-07-01

    This paper was aimed to explore the physics of Cherenkov radiation and its potential application in boron neutron capture therapy (BNCT). The Monte Carlo toolkit Geant4 was used to simulate the interaction between the epithermal neutron beam and the phantom containing boron-10. Results showed that Cherenkov photons can only be generated from secondary charged particles of gamma rays in BNCT, in which the 2.223 MeV prompt gamma rays are the main contributor. The number of Cherenkov photons per unit mass generated in the measurement region decreases linearly with the increase of boron concentration in both water and tissue phantom. The work presented the fundamental basis for applications of Cherenkov radiation in BNCT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer.

    PubMed

    Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro

    2014-03-01

    New boron-containing chlorin derivatives 9 and 13 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized from photoprotoporphyrin IX dimethyl ester (2) and L-4-boronophenylalanine-related compounds. The in vivo biodistribution and clearance of 9 and 13 were investigated in tumor-bearing mice. The time to maximum accumulation of compound 13 in tumor tissue was one-fourth of that of compound 9, and compound 13 showed rapid clearance from normal tissues within 24h after injection. The in vivo therapeutic efficacy of PDT using 13 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3h after injection of 13. Tumor growth was significantly inhibited by PDT using 13. These results suggested that 13 might be a good candidate for both PDT and BNCT of cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT.

  9. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Trivalent galactosyl-functionalized mesoporous silica nanoparticles as a target-specific delivery system for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Lai, Chian-Hui; Lai, Nien-Chu; Chuang, Yung-Jen; Chou, Fong-In; Yang, Chia-Min; Lin, Chun-Cheng

    2013-09-01

    A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium borocaptate (BSH), T-Gal-B-Cy3@MSN provides a higher delivery efficiency (over 40-50 fold) of boron atoms and a better effect of BNCT in neutron irradiation experiments. MTT assays show a very low cytotoxicity for T-Gal-B-Cy3@MSN over a 2 h incubation time. The results are promising for the design of multifunctional MSNs as potential BNCT agents for clinical use.A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium

  11. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    PubMed

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  12. Designing of the 14 MeV neutron moderator for BNCT

    NASA Astrophysics Data System (ADS)

    Cheng, Dao-Wen; Lu, Jing-Bin; Yang, Dong; Liu, Yu-Min; Wang, Hui-Dong; Ma, Ke-Yan

    2012-09-01

    In boron neutron capture therapy (BNCT), the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%. If a D-T neutron generator is used in BNCT, the 14 MeV neutron moderator must be optimized to reduce the RFNT. Based on the neutron moderation theory and the simulation results, tungsten, lead and diamond were used to moderate the 14 MeV neutrons. Satisfying RFNT of less than 3%, the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer, a 14 cm thick lead layer and a 21 cm thick diamond layer.

  13. First Evaluation of the Biologic Effectiveness Factors of Boron Neutron Capture Therapy (BNCT) in a Human Colon Carcinoma Cell Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.a; National Research Council; Crivello, Martin

    2011-01-01

    Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gammamore » rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3

  14. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  15. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model.

    PubMed

    Takahara, Kiyoshi; Inamoto, Teruo; Minami, Koichiro; Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean ± SD 6.9 ± 1.5 vs 12.7 ± 4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.

  16. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  17. Commissioning of intensity modulated neutron radiotherapy (IMNRT).

    PubMed

    Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael

    2013-02-01

    Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4

  18. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    PubMed Central

    2010-01-01

    Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E

  19. Preliminary dosimetric study on feasibility of multi-beam boron neutron capture therapy in patients with diffuse intrinsic pontine glioma without craniotomy.

    PubMed

    Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue; Wu, Yuan-Hung

    2017-01-01

    Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting.

  20. Preliminary dosimetric study on feasibility of multi-beam boron neutron capture therapy in patients with diffuse intrinsic pontine glioma without craniotomy

    PubMed Central

    Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue

    2017-01-01

    Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting. PMID:28662135

  1. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  2. Novel Hyaluronan Formulation Enhances the Efficacy of Boron Neutron Capture Therapy for Murine Mesothelioma.

    PubMed

    Sasai, Masao; Nakamura, Hiroyuki; Sougawa, Nagako; Sakurai, Yoshinori; Suzuki, Minoru; Lee, Chun Man

    2016-03-01

    Malignant pleural mesothelioma (MPM) is a refractory cancer of the pleura caused by asbestos exposure. MPM is difficult to treat because it easily disseminates. Boron neutron capture therapy (BNCT) is a radiotherapy in which cancer cells that selectively take up (10)Boron-containing compounds are destroyed, and normal cells are uninjured. Hyaluronan (HA) is a ligand of cluster of differentiation 44 (CD44), that is expressed on MPM cells. In order to enhance BNCT for MPM tumors, we developed a novel HA-containing (10)B (sodium borocaptate: BSH) formulation (HA-BND-S). We examined the efficacy of HA-BND-S using MPM cells and a mouse MPM model. HA-BND-S preferentially bound MPM cells dose-dependently, and increased the cytotoxicity of BNCT compared to BSH in vitro. HA-BND-S administration significantly increased the survival of MPM tumor-bearing mice compared to BSH at the same (10)B dosage in BNCT. Modifying BSH with HA is a promising strategy for enhancing the efficacy of BNCT for therapy of MPM. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, S; Christodouleas, J; Delaney, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBsmore » to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.« less

  4. Boron Neutron Capture Therapy for HER2+ breast cancers: A feasibility study evaluating BNCT for potential role in breast conservation therapies

    NASA Astrophysics Data System (ADS)

    Jenkins, Peter Anthony

    A novel Boron Neutron Capture Therapy (BNCT) regimen for the treatment of HER2+ breast cancers has been proposed as an alternative to whole breast irradiation for breast conservation therapy patients. The proposed therapy regimen is based on the assumed production of boron delivery agents that would be synthesized from compounds of Trastuzumab (Herceptin ®) and oligomeric phosphate diesters (OPDs). The combination of the anti-HER2 monoclonal antibody and the high boron loading capability of OPDs has led to the assumption that boron could be delivered to the HER2+ cancer cells at Tumor to Healthy Tissue ratios (T:H) of up to 35:1 and boron concentrations above 50 μg/g. This significantly increased boron delivery efficiency has opened new BNCT possibilities. This proof of concept study examined treatment parameters derived as the results in previous efforts in the context of patient-specific geometry and compared calculated dose results to those observed during actual patient therapy. These results were based on dose calculations performed with a set of calculated Kerma coefficients derived from tissues specific to the regions of interest for breast cancer. A comparison was made of the dose to the tumor region, the patient's skin, and the peripheral organs. The results of this study demonstrated that, given the performance of the proposed boron delivery agent, the BNCT treatment regimen is feasible. The feasibility is based on the findings that the equivalent dose could be delivered to the treatment volume with less dose to the skin and peripheral organs. This is anticipated to improve the treatment outcomes by maintaining local control of tumor cells while reducing dose to healthy tissues.

  5. Cyclotron-based neutron source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutronmore » collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.« less

  6. Synthesis and biological evaluation of new BSH-conjugated chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer.

    PubMed

    Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro

    2014-11-01

    New disodium mercaptoundecahydro-closo-dodecaborate (BSH)-conjugated chlorin derivatives 11, 12, 16 and 20 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized. The in vivo biodistribution and clearance of 11, 12, 16 and 20 were investigated in tumor-bearing mice. Compounds 12 and 16 showed good tumor-selective accumulation among the four derivatives. The time to maximum accumulation of compound 16 in tumor tissue was one-fourth of that of compound 12, and clearance from normal tissues of compound 16 was similar to that of compound 12. The in vivo therapeutic efficacy of PDT using 16, which has twice as many boron atoms as 12, was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 6h after injection of 16. Tumor growth was significantly inhibited by PDT using 16. These results suggested that 16 is a good candidate for both PDT and BNCT of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model.

    PubMed

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2013-08-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.

  8. Clinical trials of boron neutron capture therapy [in humans] [at Beth Israel Deaconess Medical Center][at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Christine

    2001-05-29

    Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected from subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports.

  9. Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT).

    PubMed

    Kageji, T; Mizobuchi, Y; Nagahiro, S; Nakagawa, Y; Kumada, H

    2014-06-01

    The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68Gy(w) and 44Gy(w), respectively. Copyright © 2014. Published by Elsevier Ltd.

  10. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Ganda; Jasmina Vujic; Ehud Greenspan

    2010-12-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved withmore » the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.« less

  11. Histamine reduces boron neutron capture therapy-induced mucositis in an oral precancer model.

    PubMed

    Monti Hughes, A; Pozzi, Ecc; Thorp, S I; Curotto, P; Medina, V A; Martinel Lamas, D J; Rivera, E S; Garabalino, M A; Farías, R O; Gonzalez, S J; Heber, E M; Itoiz, M E; Aromando, R F; Nigg, D W; Trivillin, V A; Schwint, A E

    2015-09-01

    Searching for more effective and selective therapies for head and neck cancer, we demonstrated the therapeutic effect of boron neutron capture therapy (BNCT) to treat oral cancer and inhibit long-term tumor development from field-cancerized tissue in the hamster cheek pouch model. However, BNCT-induced mucositis in field-cancerized tissue was dose limiting. In a clinical scenario, oral mucositis affects patients' treatment and quality of life. Our aim was to evaluate different radioprotectors, seeking to reduce the incidence of BNCT-induced severe mucositis in field-cancerized tissue. Cancerized pouches treated with BNCT mediated by boronophenylalanine at 5 Gy were treated as follows: control: saline solution; Hishigh : histamine 5 mg kg(-1) ; Hislow : histamine 1 mg kg(-1) ; and JNJ7777120: 10 mg kg(-1). Hislow reduced the incidence of severe mucositis in field-cancerized tissue to 17% vs 55%; Hishigh : 67%; JNJ7777120: 57%. Hislow was non-toxic and did not compromise the long-term therapeutic effect of BNCT or alter gross boron concentration. Histamine reduces BNCT-induced mucositis in experimental oral precancer without jeopardizing therapeutic efficacy. The fact that both histamine and boronophenylalanine are approved for use in humans bridges the gap between experimental work and potential clinical application to reduce BNCT-induced radiotoxicity in patients with head and neck cancer. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy

    PubMed Central

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-01-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825

  13. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy.

    PubMed

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-07-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their (24)Na and (38)Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to (24)Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive (24)Na is mainly generated from (23)Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood (24)Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood (24)Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood (24)Na was determined using a germanium counter. The activity of (24)Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood (24)Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible.

  14. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment.

    PubMed

    Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio

    2015-04-01

    This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Understanding the potentiality of accelerator based-boron neutron capture therapy for osteosarcoma: dosimetry assessment based on the reported clinical experience.

    PubMed

    Bortolussi, Silva; Postuma, Ian; Protti, Nicoletta; Provenzano, Lucas; Ferrari, Cinzia; Cansolino, Laura; Dionigi, Paolo; Galasso, Olimpio; Gasparini, Giorgio; Altieri, Saverio; Miyatake, Shin-Ichi; González, Sara J

    2017-08-15

    Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1 h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is

  16. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  17. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

    PubMed

    Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji

    2012-08-29

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials

  18. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    PubMed Central

    2012-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized

  19. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfrate, A; Farah, J; Sayah, R

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less

  20. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  1. Study on a liquid-moderator-based neutron spectrometer for BNCT-Development and experimental test of the prototype spectrometer

    NASA Astrophysics Data System (ADS)

    Tamaki, S.; Sato, F.; Murata, I.

    2017-10-01

    Boron neutron capture therapy (BNCT) is known to be an effective radiation cancer therapy that requires neutron irradiation. A neutron field generated by an accelerator-based neutron source has various energy spectra, and it is necessary to evaluate the neutron spectrum in the treatment field. However, the method used to measure the neutron spectrum in the treatment field is not well established, and many researchers are making efforts to improve the spectrometers used. In the present study, we developed a prototype of a new neutron spectrometer that can measure the neutron spectra more accurately and precisely. The spectrometer is based on the same theory as that of the Bonner sphere spectrometer, and it uses a liquid moderator and an absorber. By carrying out an experimental test of the developed spectrometer, we finally revealed the problems and necessary conditions of the prototype detector.

  2. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: comparison of clinical results obtained with BNCT and conventional treatment.

    PubMed

    Kageji, Teruyoshi; Nagahiro, Shinji; Mizobuchi, Yoshifumi; Matsuzaki, Kazuhito; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2014-01-01

    The purpose of this study was to evaluate the clinical outcome of boron neutron capture therapy (BNCT) and conventional treatment in patients with newly diagnosed glioblastoma. Since 1998 we treated 23 newly-diagosed GBM patients with BNCT without any additional chemotherapy. Their median survival time was 19.5 months; the 2-, 3-, and 5-year survival rates were 31.8%, 22.7%, and 9.1%, respectively. The clinical results of BNCT in patients with GBM are similar to those of recent conventional treatments based on radiotherapy with concomitant and adjuvant temozolomide.

  4. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model

    PubMed Central

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-01-01

    Abstract The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and 7Li particles from the 10B(n, α)7Li reaction, 0.54-MeV protons from the 14N(n, p)14C reaction, the recoiled protons from the 1H(n, n) 1H reaction, and photons from the neutron beam and 1H(n, γ)2H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. PMID:25428243

  5. Poster - 25: Neutron Spectral Measurements around a Scanning Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kildea, John; Enger, Shirin; Maglieri, Robert

    We describe the measurements of neutron spectra that we undertook around a scanning proton beam at the Skandion proton therapy clinic in Uppsala, Sweden. Measurements were undertaken using an extended energy range Nested Neutron Spectrometer (NNS, Detec Inc., Gatineau, QC) operated in pulsed and current mode. Spectra were measured as a function of location in the treatment room and for various Bragg peak depths. Our preliminary unfolded data clearly show the direct, evaporation and thermal neutron peaks and we can show the effect on the neutron spectrum of a water phantom in the primary proton beam.

  6. Synthesis and in vitro evaluation of thiododecaborated α, α- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy.

    PubMed

    Hattori, Yoshihide; Kusaka, Shintaro; Mukumoto, Mari; Ishimura, Miki; Ohta, Yoichiro; Takenaka, Hiroshi; Uehara, Kouki; Asano, Tomoyuki; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji; Tanimori, Shinji; Kirihata, Mitsunori

    2014-12-01

    Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11](2-)-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.

  7. The changing role of accelerators in radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.F.

    Conventional low energy x-rays have been used in radiation therapy since the turn of the century. Van de Graaff and Betatron accelerators changed the complexion of radiation therapy in the mid 1940's by providing significantly deeper penetrating photon beams and also providing therapeutic quality electron beams. The development of Cobalt-60 teletherapy in the mid 1950's suppressed the role of accelerators in radiation therapy for nearly 20 years. However, with the development of reliable isocentric rotating linear accelerators, accelerators are rapidly becoming the most popular conventional therapy devices. Following unfavorable clinical results with fast neutron therapy in the late 1930's andmore » early 1940's, the role of cyclotron produced fast neutrons is presently experiencing a renewal in radiation therapy. Several facilities are also experimenting with heavy charged particle beams for therapy.« less

  8. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  9. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschel, R; Mukherjee, B

    2014-06-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:Cmore » (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors.« less

  10. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy.

    PubMed

    Bonfrate, A; Farah, J; De Marzi, L; Delacroix, S; Hérault, J; Sayah, R; Lee, C; Bolch, W E; Clairand, I

    2016-04-01

    In scattering proton therapy, the beam incidence, i.e. the patient's orientation with respect to the beam axis, can significantly influence stray neutron doses although it is almost not documented in the literature. MCNPX calculations were carried out to estimate stray neutron doses to 25 healthy organs of a 10-year-old female phantom treated for an intracranial tumor. Two beam incidences were considered in this article, namely a superior (SUP) field and a right lateral (RLAT) field. For both fields, a parametric study was performed varying proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and air gap size. Using a standard beam line configuration for a craniopharyngioma treatment, neutron absorbed doses per therapeutic dose of 63μGyGy(-1) and 149μGyGy(-1) were found at the heart for the SUP and the RLAT fields, respectively. This dose discrepancy was explained by the different patient's orientations leading to changes in the distance between organs and the final collimator where external neutrons are mainly produced. Moreover, investigations on neutron spectral fluence at the heart showed that the number of neutrons was 2.5times higher for the RLAT field compared against the SUP field. Finally, the influence of some irradiation parameters on neutron doses was found to be different according to the beam incidence. Beam incidence was thus found to induce large variations in stray neutron doses, proving that this parameter could be optimized to enhance the radiation protection of the patient. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    PubMed

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  12. SU-E-T-132: Assess the Shielding of Secondary Neutrons From Patient Collimator in Proton Therapy Considering Secondary Photons Generated in the Shielding Process with Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, M; Takashina, M; Kurosu, K

    Purpose: In this study we present Monte Carlo based evaluation of the shielding effect for secondary neutrons from patient collimator, and secondary photons emitted in the process of neutron shielding by combination of moderator and boron-10 placed around patient collimator. Methods: The PHITS Monte Carlo Simulation radiation transport code was used to simulate the proton beam (Ep = 64 to 93 MeV) from a proton therapy facility. In this study, moderators (water, polyethylene and paraffin) and boron (pure {sup 10}B) were placed around patient collimator in this order. The rate of moderator and boron thicknesses was changed fixing the totalmore » thickness at 3cm. The secondary neutron and photons doses were evaluated as the ambient dose equivalent per absorbed dose [H*(10)/D]. Results: The secondary neutrons are shielded more effectively by combination moderators and boron. The most effective combination of shielding neutrons is the polyethylene of 2.4 cm thick and the boron of 0.6 cm thick and the maximum reduction rate is 47.3 %. The H*(10)/D of secondary photons in the control case is less than that of neutrons by two orders of magnitude and the maximum increase of secondary photons is 1.0 µSv/Gy with the polyethylene of 2.8 cm thick and the boron of 0.2 cm thick. Conclusion: The combination of moderators and boron is beneficial for shielding secondary neutrons. Both the secondary photons of control and those emitted in the shielding neutrons are very lower than the secondary neutrons and photon has low RBE in comparison with neutron. Therefore the secondary photons can be ignored in the shielding neutrons.This work was supported by JSPS Core-to-Core Program (No.23003). This work was supported by JSPS Core-to-Core Program (No.23003)« less

  13. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  14. Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels.

    PubMed

    Molinari, Ana J; Thorp, Silvia I; Portu, Agustina M; Saint Martin, Gisela; Pozzi, Emiliano C C; Heber, Elisa M; Bortolussi, Silva; Itoiz, Maria E; Aromando, Romina F; Monti Hughes, Andrea; Garabalino, Marcela A; Altieri, Saverio; Trivillin, Verónica A; Schwint, Amanda E

    2015-01-01

    We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.

  15. Neutron track length estimator for GATE Monte Carlo dose calculation in radiotherapy.

    PubMed

    Elazhar, H; Deschler, T; Létang, J M; Nourreddine, A; Arbor, N

    2018-06-20

    The out-of-field dose in radiation therapy is a growing concern in regards to the late side-effects and secondary cancer induction. In high-energy x-ray therapy, the secondary neutrons generated through photonuclear reactions in the accelerator are part of this secondary dose. The neutron dose is currently not estimated by the treatment planning system while it appears to be preponderant for distances greater than 50 cm from the isocenter. Monte Carlo simulation has become the gold standard for accurately calculating the neutron dose under specific treatment conditions but the method is also known for having a slow statistical convergence, which makes it difficult to be used on a clinical basis. The neutron track length estimator, a neutron variance reduction technique inspired by the track length estimator method has thus been developped for the first time in the Monte Carlo code GATE to allow a fast computation of the neutron dose in radiotherapy. The details of its implementation, as well as the comparison of its performances against the analog MC method, are presented here. A gain of time from 15 to 400 can be obtained by our method, with a mean difference in the dose calculation of about 1% in comparison with the analog MC method.

  16. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    PubMed Central

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-01-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052

  17. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-10-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.

  18. Hadron Therapy in Latin America

    NASA Astrophysics Data System (ADS)

    Kreiner, A. J.; Bergueiro, J.; Burlon, A. A.; Di Paolo, H.; Castell, W.; Thatar Vento, V.; Levinas, P.; Cartelli, D.; Kesque, J. M.; Valda, A. A.; Ilardo, J. C.; Baldo, M.; Erhardt, J.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J. C.; Igarzabal, M.; Huck, H.; Repetto, M.; Obligado, M.; Lell, J.; Padulo, J.; Herrera, M.; Gonzalez, S. R.; Capoulat, M. E.; Davidson, J.; Davidson, M.

    2010-08-01

    The use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality in the first world, which is becoming increasingly widespread, due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we briefly describe the situation in Latin America and in particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-Boron Neutron Capture Therapy (BNCT) at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. The machine being currently designed and constructed is a folded TESQ with a terminal at 0.6 MV as a smaller scale prototype. Since the concept is modular the same structure will be used for the 1.2 MV final accelerator.

  19. Fast neutron irradiation for locally advanced pancreatic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.P.; Schein, P.S.; MacDonald, J.S.

    1981-11-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore,more » caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials.« less

  20. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment ofmore » glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).« less

  1. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.

    PubMed

    Taheri, Ali; Pazirandeh, Ali

    2016-12-01

    To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10 7 (n/cm 2 .s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.

  2. CONVECTION ENHANCED DELIVERY OF CARBORANYLPORPHYRINS FOR NEUTRON CAPTURE THERAPY OF BRAIN TUMORS

    PubMed Central

    Kawabata, Shinji; Yang, Weilian; Wu, Gong; Huo, Tianyao; Binns, Peter J.; Riley, Kent J.; Ongayi, Owendi; Gottumukkala, Vijay; Vicente, M. Graça H.

    2010-01-01

    Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when non-radioactive 10B is irradiated with low energy thermal neutrons to produce α-particles (10B[n,α]7Li). Carboranylporphyrins are a class of substituted porphyrins containing multiple carborane clusters. Three of these have been evaluated in the present study: 5,10,15,20-tetra-(4-nido-carboranyphenyl)tetrabenzoporphyrin (H2TBP), 5,10,15,20-tetra-(4-nido-carboranylphenyl)porphyrin (H2TCP) and 5,15-di-[3,5-(nido-carboranylmethyl)phenyl]-porphyrin (H2DCP). The goals of this study were two-fold. First, to determine the biodistribution of H2TBP, H2TCP and H2DCP following intracerebral (i.c.) administration by means of short term (30 min) convection enhanced delivery (CED) or sustained delivery over 24 h by osmotic pumps to F98 glioma bearing rats. Second, to determine the efficacy of H2TCP and H2TBP as boron delivery agents for BNCT in F98 glioma bearing rats. Tumor boron concentrations immediately after i.c. osmotic pump delivery were high (36–88 µg/g) and they remained so at 24 h (62–103 µg/g) The corresponding normal brain concentrations were low (0.8–5.2 µg/g) and the blood and liver concentrations were all undetectable. Based on these data, therapy studies were initiated at the Massachusetts Institute of Technology (MIT) Research Reactor (MITRR) with H2TCP and H2TBP 24 h after CED or osmotic pump delivery. Mean survival times (MST) of untreated and irradiated control rats were 23±3 and 27±3 d, respectively, while animals that received H2TCP or H2TBP, followed by BNCT, had a MST of 35±4 d and 44±10 d, respectively, which were better than those obtained following i.v. administration of boronophenylalanine (37±3 d). However, since the tumor boron concentrations of the carboranylporphyrins were 3–5X > i.v. BPA (~25 µg/g), we had expected that the MSTs would have been greater. Histopathologic examination of brains of BNCT treated rats revealed

  3. TU-F-CAMPUS-T-02: Risk Assessment of Scattered Neutrons for a Fetus From Proton Therapy of a Brain Tumor During Pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Moteabbed, M

    Purpose: To determine the scattered neutron dose and the resulting risk for a fetus from proton therapy for brain tumors during pregnancy. Methods: Using the Monte Carlo platform TOPAS, the ICRP reference parameters based anthropomorphic pregnancy phantoms for three stages (3-, 6-, 9-month) were applied to evaluate the scattered neutron dose and dose equivalent. To calculate the dose equivalent, organ specific linear energy transfer (LET) based quality factor was used. Treatment plans from both passive scattering (PS) and pencil beam scanning (PBS) methods were considered in this study. Results: For pencil beam scanning, the neutron dose equivalent in the softmore » tissue of the fetus increases from 1.53x10−{sup 3} to 2.84x10−{sup 3} mSv per treatment Gy with increasing stage of gestation. This is due to scattered neutrons from the patient as the main contaminant source in PBS and a decrease in distance between the soft tissue of the fetus and GTV with increasing stage of gestation. For passive scattering, neutron dose equivalent to the soft tissue of the fetus shows a decrease from 0.17 to 0.13 mSv per treatment Gy in different stages, while the dose to the brain shows little difference around 0.18 mSv per treatment Gy because scattered neutrons from the treatment head contribute predominantly in passive scattering. Conclusion: The results show that the neutron dose to the fetus assuming a prescribed dose of 52.2 Gy is negligible for PBS, and is comparable to the scattered dose (0–10 mSv) from a head and neck CT scan for PS. It can be concluded that the dose to fetus is far lower than the thresholds of malformation, SMR and lethal death. The excess relative risk of childhood cancer induction would be increased by 0.48 and 0.103 using the Oxford Survey of Childhood Cancers and Japanese atomic model, respectively. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less

  4. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma.

    PubMed

    Futamura, Gen; Kawabata, Shinji; Nonoguchi, Naosuke; Hiramatsu, Ryo; Toho, Taichiro; Tanaka, Hiroki; Masunaga, Shin-Ichiro; Hattori, Yoshihide; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi

    2017-01-23

    Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.

  6. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes

    PubMed Central

    Kueffer, Peter J.; Maitz, Charles A.; Khan, Aslam A.; Schuster, Seth A.; Shlyakhtina, Natalia I.; Jalisatgi, Satish S.; Brockman, John D.; Nigg, David W.; Hawthorne, M. Frederick

    2013-01-01

    The application of boron neutron capture therapy (BNCT) following liposomal delivery of a 10B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2′-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h—with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)—following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 1012 neutrons per cm2 (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study. PMID:23536304

  7. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less

  8. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    PubMed

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours. Copyright © 2015. Published by Elsevier Ireland Ltd.

  9. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  10. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  11. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model.

    PubMed

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-03-01

    The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and (7)Li particles from the (10)B(n, α)(7)Li reaction, 0.54-MeV protons from the (14)N(n, p)(14)C reaction, the recoiled protons from the (1)H(n, n) (1)H reaction, and photons from the neutron beam and (1)H(n, γ)(2)H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Feasibility study of using laser-generated neutron beam for BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-09-01

    The feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×10(6) n/cm(2) shot. To achieve an appropriate epithermal neutron flux for BNCT treatment, the laser must operate at repetition rates of 1 kHz, which is rather ambitious at this moment. But it can be used in some BNCT researches field such as biological research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira

    2006-03-01

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  14. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours.

    PubMed

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-Ichi; Maruhashi, Akira

    2006-03-07

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  15. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.

    PubMed

    Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S

    2008-01-01

    The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.

  16. Assessment of 10B concentration in boron neutron capture therapy: potential of image-guided therapy using 18FBPA PET.

    PubMed

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of 10 B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The 10 B concentration in normal organs after loading with 10 B, however, has not been established in humans. In this study, we performed 4-borono-2-[ 18 F]-fluoro-phenylalanine ( 18 FBPA) PET in healthy volunteers and estimated the chronological changes in the 10 B concentrations of normal organs. In 6 healthy volunteers, whole-body 18 FBPA PET scans were repeated 7 times during 1 h, and the mean 18 FBPA distributions of 13 organs were measured. Based on the 18 FBPA PET data, we then estimated the changes in the 10 B concentrations of the organs when the injection of a therapeutic dose of 10 BPA-fructose complex ( 10 BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean 18 FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean 18 FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of 10 BPA-fr was assumed, the estimated mean 10 B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean 10 B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean 10 B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. 18 FBPA PET has a potential to estimate 10 B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  17. Assessment of biological effectiveness of boron neutron capture therapy in primary and metastatic melanoma cell lines.

    PubMed

    Rossini, Andrés E; Dagrosa, Maria A; Portu, Agustina; Saint Martin, Giselle; Thorp, Silvia; Casal, Mariana; Navarro, Aimé; Juvenal, Guillermo J; Pisarev, Mario A

    2015-01-01

    In order to optimize the effectiveness of Boron Neutron Capture Therapy (BNCT), Relative Biological Effectiveness (RBE) and Compound Biological Effectiveness (CBE) were determined in two human melanoma cell lines, M8 and Mel-J cells, using the amino acid p-boronophenylalanine (BPA) as boron carrier. The effects of BNCT on the primary amelanotic cell line M8 and on the metastatic pigmented melanoma cell line Mel-J were studied using colony formation assay. The RBE values were determined using both a gamma ray source, and the neutron beam from the Nuclear Reactor of the National Atomic Energy Commission (RA-3). For the determination of the RBE, cells were irradiated with increasing doses of both sources, between 1 and 8 Gy; and for the determination of CBE factors, the cells were pre-incubated with BPA before irradiation. Afterwards, the cell surviving fraction (SF) was determined for each treatment. Marked differences were observed between both cell lines. Mel-J cells were more radioresistant than the M8 cell line. The clonogenic assays showed that for a SF of 1%, the RBE values were 1.3 for M8 cells and 1.5 for Mel-J cells. Similarly, the CBE values for a 1% SF were 2.1 for M8 and 3 for Mel-J cell lines. For the endpoint of 0.1% of SF the RBE values obtained were 1.2 for M8 and 1.4 for Mel-J cells. Finally, CBE values calculated for a 0.1% were 2 and 2.6 for M8 and Mel-J cell lines respectively. In order to estimate the uptake of the non-radioactive isotope Boron 10 ((10)B), a neutron induced autoradiographic technique was performed showing discrepancies in (10)B uptake between both cell lines. These obtained in vitro results are the first effectiveness factors determined for human melanoma at the RA-3 nuclear reactor and show that BNCT dosimetry planning for patients could be successfully performed using these new factors.

  18. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  19. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT.

    PubMed

    Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon

    2006-10-01

    For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the

  20. Study of low energy neutron beam formation based on GEANT4 simulations

    NASA Astrophysics Data System (ADS)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  1. Neutron beams implemented at nuclear research reactors for BNCT

    NASA Astrophysics Data System (ADS)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  2. Towards boron neutron capture therapy: the formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane.

    PubMed

    Theodoropoulos, Dimitrios; Rova, Aikaterini; Smith, James R; Barbu, Eugen; Calabrese, Gianpiero; Vizirianakis, Ioannis S; Tsibouklis, John; Fatouros, Dimitrios G

    2013-11-15

    Liposomes of phosphatidylcholine or of dimyristoylphosphatidylcholine that incorporate bis-nido-carborane dequalinium salt are stable in physiologically relevant media and have in vitro toxicity profiles that appear to be compatible with potential therapeutic applications. These features render the structures suitable candidate boron-delivery vehicles for evaluation in the boron neutron capture therapy of cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    PubMed

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper

  4. Real time spectrometer for thermal neutrons from radiotherapic accelerators

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.

    2007-10-01

    Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.

  5. Boron neutron capture therapy for clear cell sarcoma (CCS): biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models.

    PubMed

    Andoh, T; Fujimoto, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Kawabata, S; Kirihata, M; Akisue, T; Yayama, K; Kurosaka, M; Miyatake, S; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake l-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of (10)B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Experimental evaluation of boron neutron capture therapy of human breast carcinoma implanted on nude mice

    NASA Astrophysics Data System (ADS)

    Bose, Satya Ranjan

    2000-06-01

    An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large

  7. Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Taewoong; Lee, Hyounggun; Lee, Wonho

    2015-10-01

    This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.

  8. Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model.

    PubMed

    Garabalino, Marcela A; Monti Hughes, Andrea; Molinari, Ana J; Heber, Elisa M; Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Nievas, Susana; Nigg, David W; Aromando, Romina F; Itoiz, Maria E; Trivillin, Verónica A; Schwint, Amanda E

    2011-03-01

    We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. © Springer-Verlag 2010

  9. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas

    PubMed Central

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-01-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  10. Final Report for the “WSU Neutron Capture Therapy Facility Support”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald E. Tripard; Keith G. Fox

    2006-08-24

    The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and

  11. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber.

    PubMed

    Endo, Satoru; Sato, Hitoshi; Shimazaki, Takuto; Nakajima, Erika; Kotani, Kei; Suda, Mitsuru; Hamano, Tsuyoshi; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Hoshi, Masaharu

    2017-08-01

    An LBO (Li 2 B 4 O 7 ) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9 Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm 2 , i.e., from the chamber response divided by neutron fluence (cm -2 ). The measured LBO chamber sensitivities were 2.23 × 10 -7  ± 0.34 × 10 -7 (pC cm 2 ) for thermal neutrons and 2.00 × 10 -5  ± 0.12 × 10 -5 (pC cm 2 ) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.

  12. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  13. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).

    PubMed

    Capoulat, M E; Minsky, D M; Kreiner, A J

    2014-03-01

    The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5-6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Liposome-based delivery of a boron-containing cholesteryl ester for high-LET particle-induced damage of prostate cancer cells: a boron neutron capture therapy study.

    PubMed

    Gifford, Ian; Vreeland, Wyatt; Grdanovska, Slavica; Burgett, Eric; Kalinich, John; Vergara, Vernieda; Wang, C-K Chris; Maimon, Eric; Poster, Dianne; Al-Sheikhly, Mohamad

    2014-06-01

    The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 μg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.

  16. Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential

    PubMed Central

    Sköld, K; Gorlia, T; Pellettieri, L; Giusti, V; H-Stenstam, B; Hopewell, J W

    2010-01-01

    The purpose of this study was to assess the potential of boron neutron capture therapy (BNCT), with a 6-h infusion of the boron carrier l-boronophenylalanine as a fructose preparation (BPA-f), as first-line radiotherapy for newly diagnosed glioblastoma multiforme (GBM). Patient survival data from a Phase II study using BNCT were compared with retrospective data from the two arms of a Phase III study using conventional radiotherapy (RT) in the reference arm and using RT plus concomitant and adjuvant medication with temozolomide (TMZ) in the experimental arm, and were also compared with small subgroups of these patients for whom the methylation status of the MGMT (O6-methylguanine–DNA methyltransferase) DNA repair gene was known. Differences in the baseline characteristics, salvage therapy after recurrence and levels of severe adverse events were also considered. The results indicate that BNCT offers a treatment that is at least as effective as conventional RT alone. For patients with an unmethylated MGMT DNA repair gene, a possible clinical advantage of BNCT over RT/TMZ was suggested. BNCT is a single-day treatment, which is of convenience to patients, with mild side effects, which would offer an initial 6 weeks of good-quality life during the time when patients would otherwise be undergoing daily treatments with RT and TMZ. It is suggested that the use of BNCT with a 6-h infusion of BPA-f should be explored in a stratified randomised Phase II trial in which patients with the unmethylated MGMT DNA repair gene are offered BNCT in the experimental arm and RT plus TMZ in the reference arm. PMID:20603410

  17. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  18. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma.

    PubMed

    Luderer, Micah John; Muz, Barbara; de la Puente, Pilar; Chavalmane, Sanmathi; Kapoor, Vaishali; Marcelo, Raymundo; Biswas, Pratim; Thotala, Dinesh; Rogers, Buck; Azab, Abdel Kareem

    2016-10-01

    Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on hypoxic tumor metabolism. Further studies are warranted to evaluate B-381 and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma.

  19. Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy

    PubMed Central

    Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji

    2012-01-01

    Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290

  20. Biological effectiveness of neutrons: Research needs

    NASA Astrophysics Data System (ADS)

    Casarett, G. W.; Braby, L. A.; Broerse, J. J.; Elkind, M. M.; Goodhead, D. T.; Oleinick, N. L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  1. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari

    2011-03-01

    Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studiesmore » at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.« less

  2. Contemporary Proton Therapy Systems Adequately Protect Patients from Exposure to Stray Radiation

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne D.; Fontenot, Jonas D.; Taddei, Phillip J.; Mirkovic, Dragan; Giebeler, Annelise; Zhang, Rui; Mahajan, Anita; Kornguth, David; Stovall, Marilyn; Yepes, Pablo; Woo, Shiao; Mohan, Radhe

    2009-03-01

    Proton beam therapy has provided safe and effective treatments for a variety of adult cancers. In recent years, there has been increasing interest in utilizing proton therapy for pediatric cancers because it allows better sparing of healthy tissues. Minimizing exposures of normal tissues is especially important in children because they are highly susceptible to consequential late effects, including the development of a radiogenic second cancer, which may occur years or even decades after treatment of the first cancer. While the dosimetric advantage of therapeutic proton beams is well understood, relatively little attention has been paid to the whole-body exposure to stray neutron radiation that is inherent in proton therapy. In this report, we review the physical processes that lead to neutron exposures, discuss the potential for mitigating these exposures using advanced proton beam delivery systems, and present a comparative analysis of predicted second cancer incidence following various external beam therapies. In addition, we discuss uncertainties in the relative biological effectiveness of neutrons for carcinogenesis and the impact that these uncertainties have on second-cancer risk predictions for survivors of adult and childhood cancer who receive proton therapy.

  3. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility.

    PubMed

    Maughan, Richard L; Yudelev, Mark; Aref, Amr; Chuba, Paul J; Forman, Jeffrey; Blosser, Emanuel J; Horste, Timothy

    2002-04-01

    The d(48.5) + Be neutron beam from the Harper Hospital superconducting cyclotron is collimated using a unique multirod collimator (MRC). A computer controlled multileaf collimator (MLC) is being designed to improve efficiency and allow for the future development of intensity modulated radiation therapy with neutrons. For the current study the use of focused or unfocused collimator leaves has been studied. Since the engineering effort associated with the leaf design and materials choice impacts significantly on cost, it was desirable to determine the clinical impact of using unfocused leaves in the MLC design. The MRC is a useful tool for studying the effects of using focused versus unfocused beams on beam penumbra. The effects of the penumbra for the different leaf designs on tumor and normal tissue DVHs in two selected sites (prostate and head and neck) was investigated. The increase in the penumbra resulting from using unfocused beams was small (approximately 1.5 mm for a 5 x 5 cm2 field and approximately 7.6 mm for a 25 x 25 cm2 field at 10 cm depth) compared to the contribution of phantom scatter to the penumbra width (5.4 and 20 mm for the small and large fields at 10 cm depth, respectively). Comparison of DVHs for tumor and critical normal tissue in a prostate and head and neck case showed that the dosimetric disadvantages of using an unfocused rather than focused beam were minimal and only significant at shallow depths. For the rare cases, where optimum penumbra conditions are required, a MLC incorporating tapered leaves and, thus, providing focused collimation in one plane is necessary.

  4. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with themore » well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  5. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    PubMed

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  6. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  7. Positron emission tomography-guided conformal fast neutron therapy for glioblastoma multiforme

    PubMed Central

    Stelzer, Keith J.; Douglas, James G.; Mankoff, David A.; Silbergeld, Daniel L.; Krohn, Kenneth A.; Laramore, George E.; Spence, Alexander M.

    2008-01-01

    Glioblastoma multiforme (GBM) continues to be a difficult therapeutic challenge. Our study was conducted to determine whether improved survival and tumor control could be achieved with modern delivery of fast neutron radiation using three-dimensional treatment planning. Ten patients were enrolled. Eligibility criteria included pathologic diagnosis of GBM, age ≥ 18 years, and KPS ≥60. Patients underwent MRI and 18F-fluorodeoxyglucose PET (FDG PET) as part of initial three-dimensional treatment planning. Sequential targets were treated with noncoplanar fields to a total dose of 18 Gy in 16 fractions over 4 weeks. Median and 1-year overall survival were 55 weeks and 60%, respectively. One patient remains alive at last follow-up 255 weeks after diagnosis. Median progression-free survival was 16 weeks, and all patients had tumor progression by 39 weeks. Treatment was clinically well tolerated, but evidence of mild to moderate gliosis and microvascular sclerosis consistent with radiation injury was observed at autopsy in specimens taken from regions of contralateral brain that received approximately 6–10 Gy. Fast neutron radiation using modern imaging, treatment planning, and beam delivery was feasible to a total dose of 18 Gy, but tumor control probability was poor in comparison to that predicted from a dose-response model based on older studies. Steep dose-response curves for both tumor control and neurotoxicity continue to present a challenge to establishing a therapeutic window for fast neutron radiation in GBM, even with modern techniques. PMID:18055860

  8. Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases.

    PubMed

    Miyatake, Shin-Ichi; Furuse, Motomasa; Kawabata, Shinji; Maruyama, Takashi; Kumabe, Toshihiro; Kuroiwa, Toshihiko; Ono, Koji

    2013-06-01

    Bevacizumab, an anti-vascular endothelial growth factor antibody, has been used for the treatment of radiation necrosis. Thus far, however, there has been no definitive report on its use for the treatment of symptomatic pseudoprogression. Here we report 2 cases of successful treatment with bevacizumab for symptomatic pseudoprogression after boron neutron capture therapy (BNCT) was applied for recurrent malignant gliomas. Two recurrent malignant gliomas received BNCT. Both cases were treated with intravenous administration of bevacizumab at the deterioration that seemed to be symptomatic pseudoprogression. The first case was recurrent glioblastoma multiforme and the second was recurrent anaplastic oligoastrocytoma. Both cases recurred after standard chemoradiotherapy and were referred to our institute for BNCT, which is tumor-selective particle radiation. Just prior to neutron irradiation, PET with an amino acid tracer was applied in each case to confirm tumor recurrence. Both cases showed deterioration in symptoms, as well as on MRI, at intervals of 4 months and 2 months, respectively, after BNCT. For the first case, a second PET was applied in order to confirm no increase in tracer uptake. We diagnosed both cases as symptomatic pseudoprogression and started the intravenous administration of 5 mg/kg bevacizumab biweekly with 6 cycles. Both cases responded well to this, showing rapid and dramatic improvement in neuroimaging and clinical symptoms. No tumor progression was observed 8 months after BNCT. Bevacizumab showed marked effects on symptomatic pseudoprogression after BNCT. BNCT combined with bevacizumab may prolong the survival of patients with recurrent malignant gliomas.

  9. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model.

    PubMed

    Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki

    2015-07-01

    Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Proton therapy versus intensity modulated x-ray therapy in the treatment of prostate cancer: Estimating secondary cancer risks

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas David

    External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only

  11. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Measured Neutron Spectra and Dose Equivalents From a Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation.

    PubMed

    Howell, Rebecca M; Burgett, Eric A; Isaacs, Daniel; Price Hedrick, Samantha G; Reilly, Michael P; Rankine, Leith J; Grantham, Kevin K; Perkins, Stephanie; Klein, Eric E

    2016-05-01

    To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth-dose data to in-air H* (10) values. For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10(6) to 1.04 × 10(7) n/cm(2)/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    PubMed

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  14. DOE Research Contributions to Radiation and Cancer Therapy

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis DOE Research Contributions to Radiation and Cancer Therapy research has made many contributions to radiation and cancer therapy, including PEREGRINE and Boron Neutron planning radiation treatment for cancer patients. About 90 percent of radiation treatment patients receive

  15. Nuclear magnetic resonance study of Gd-based nanoparticles to tag boron compounds in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Corti, M.; Bonora, M.; Borsa, F.; Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S.; Zonta, C.; Clerici, A. M.; Cansolino, L.; Ferrari, C.; Dionigi, P.; Porta, A.; Zanoni, G.; Vidari, G.

    2011-04-01

    We report the investigation of new organic complexes containing a magnetic moment (Gd-based molecular nanomagnets), which can serve the double purpose of acting as boron neutron capture therapy (BNCT) agents, and at the same time act as contrast agents to detect the molecule in the tissue by a proton magnetic resonance imaging (MRI). We also explore the possibility of monitoring the concentration of the BNCT agent directly via proton and boron NMR relaxation. The absorption of 10B-enriched molecules inside tumoral liver tissues has been shown by NMR measurements and confirmed by α spectroscopy. A new molecular Gd-tagged nanomagnet and BNCT agent (GdBPA) has been synthesized and characterized measuring its relaxivity R1 between 10 kHz and 66 MHz, and its use as a contrast agent in MRI has been demonstrated. The NMR-based evidence of the absorption of GdBPA into living tumoral cells is also shown.

  16. Spectral Performance of a Composite Single-Crystal Filtered Thermal Neutron Beam for BNCT Research at the University of Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Brockman; D. W. Nigg; M. F. Hawthorne

    2009-07-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6x108 and 8.8x108 neutrons/cm2-s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux formore » a variety of small animal BNCT studies.« less

  17. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma

    PubMed Central

    Luderer, Micah John; Muz, Barbara; de la Puente, Pilar; Chavalmane, Sanmathi; Kapoor, Vaishali; Marcelo, Raymundo; Biswas, Pratim; Thotala, Dinesh; Rogers, Buck; Azab, Abdel Kareem

    2016-01-01

    Purpose Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. Methods B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. Results B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. Conclusions B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on tumor hypoxic metabolism, and further studies are warranted to evaluate this compound and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma. PMID:27401411

  18. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    PubMed Central

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  19. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  20. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  1. Compact D-D/D-T neutron generators and their applications

    NASA Astrophysics Data System (ADS)

    Lou, Tak Pui

    2003-10-01

    Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production

  2. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    PubMed

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases

    PubMed Central

    Miyatake, Shin-Ichi; Furuse, Motomasa; Kawabata, Shinji; Maruyama, Takashi; Kumabe, Toshihiro; Kuroiwa, Toshihiko; Ono, Koji

    2013-01-01

    Background Bevacizumab, an anti–vascular endothelial growth factor antibody, has been used for the treatment of radiation necrosis. Thus far, however, there has been no definitive report on its use for the treatment of symptomatic pseudoprogression. Here we report 2 cases of successful treatment with bevacizumab for symptomatic pseudoprogression after boron neutron capture therapy (BNCT) was applied for recurrent malignant gliomas. Methods Two recurrent malignant gliomas received BNCT. Both cases were treated with intravenous administration of bevacizumab at the deterioration that seemed to be symptomatic pseudoprogression. Results The first case was recurrent glioblastoma multiforme and the second was recurrent anaplastic oligoastrocytoma. Both cases recurred after standard chemoradiotherapy and were referred to our institute for BNCT, which is tumor-selective particle radiation. Just prior to neutron irradiation, PET with an amino acid tracer was applied in each case to confirm tumor recurrence. Both cases showed deterioration in symptoms, as well as on MRI, at intervals of 4 months and 2 months, respectively, after BNCT. For the first case, a second PET was applied in order to confirm no increase in tracer uptake. We diagnosed both cases as symptomatic pseudoprogression and started the intravenous administration of 5 mg/kg bevacizumab biweekly with 6 cycles. Both cases responded well to this, showing rapid and dramatic improvement in neuroimaging and clinical symptoms. No tumor progression was observed 8 months after BNCT. Conclusions Bevacizumab showed marked effects on symptomatic pseudoprogression after BNCT. BNCT combined with bevacizumab may prolong the survival of patients with recurrent malignant gliomas. PMID:23460324

  4. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion.

    PubMed

    Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun; Ono, Minoru; Takahashi, Hiroyuki; Eriguchi, Masazumi

    2014-06-01

    A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a (10)BSH-containing water-in-oil-in-water emulsion ((10)BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that (10)BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; includingmore » (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D 2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  6. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  7. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  8. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  9. Thermal neutron flux mapping in a head phantom

    NASA Astrophysics Data System (ADS)

    Lee, C. L.; Zhou, X.-L.; Harmon, J. F.; Bartholomay, R. W.; Harker, Y. D.; Kudchadker, R. J.

    1999-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment modality in which a boron-containing compound is preferentially loaded into a tumor, followed by irradiation by thermal neutrons. In accelerator-based BNCT, neutrons are produced by charged particle-induced reactions such as 7Li(p, n) 7Be. For deeply seated brain tumors, epithermal (1 eV to 10 kev) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. Cell damage in BNCT is caused by the high linear energy transfer (LET) products from the 10B(n, α) 7Li reaction. Because the cross section for this reaction is of 1/ v character, the dose due to 10B has essentially the same spatial distribution as the thermal neutron flux. A cylindrical acrylic head phantom (15.24 cm diameter by 21.59 cm length) has been constructed to simulate the patient's head and neck, and acrylic spacers of varying width allow placement of small (active sizes: 0.635 cm diameter by 1.27 cm length and 1.5875 cm diameter by 2.54 cm length) BF 3 proportional counters at nearly all radial and axial locations. Measurements of the thermal flux have also been benchmarked with gold and indium foils (bare and cadmium covered), as well as MCNP simulations. Measurement of the thermal neutron flux using these small BF 3 counters is shown to be adequate for experimentally determining the spatial variation of the 10B dose in head phantoms for accelerator-based BNCT.

  10. Metalloporphyrins and their uses as radiosensitizers for radiation therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    2004-07-06

    The present invention covers radiosensitizers containing as an active ingredient halogenated derivatives of boronated porphyrins containing multiple carborane cages having the structure ##STR1## which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies including, but not limited to, boron neutron--capture therapy and photodynamic therapy. The present invention also covers methods for using these radiosensitizers in tumor imaging and cancer treatment.

  11. First experimental results from 2 MeV proton tandem accelerator for neutron production.

    PubMed

    Kudryavtsev, A; Belchenko, Yu; Burdakov, A; Davydenko, V; Ivanov, A; Khilchenko, A; Konstantinov, S; Krivenko, A; Kuznetsov, A; Mekler, K; Sanin, A; Shirokov, V; Sorokin, I; Sulyaev, Yu; Tiunov, M

    2008-02-01

    A 2 MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction (7)Li(p,n)(7)Be for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724 MeV resonance gamma, which are produced via reaction (13)C(p,gamma)(14)N, absorption in nitrogen.

  12. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    The field of fast neutron therapy, and to some extent the practice of radiation protection in the vicinity of medical linear accelerators, requires accurate physical data. The paucity of physical data for neutron cross sections above about 15 MeV in low- Z materials is best exemplified (and somewhat exaggerated!) in the late Herb Attix's standard textbook Introduction to Radiological Physics and Radiation Dosimetry (Attix 1986). On page 464, the contributions to kerma in tissue from neutrons stops abruptly shortly above about 15 MeV. Photon and electron dosimetry has benefited from a well established and highly cohesive relationship between measurement and theory due to the enormous success of quantum electrodynamics. In contrast, measurements in the field of neutron radiotherapy have benefited less from theory because of the complexity of the quantum mechanics of nuclear structure, especially for light elements. This is because the nuclear levels are widely spaced at low excitation energies unlike for heavy elements where the energy level spacing is more dense and statistical assumptions can be applied with success. This means that accurate measurements are crucial for guiding and testing theoretical development. Measurements contributing to the field of fast neutron dosimetry are few and far between. Amazingly, in this issue of Physics in Medicine and Biology there are two such contributions! The paper by Benck, Slypen, Meulders and Corcalciuc (1998) entitled `Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV' reports on a set of measurements of the doubly-differential cross sections (energy and angle) for fast neutrons on for 9 energies between 25 and 65 MeV. The reaction channels measured were (n, px), (n, dx), (n, tx) and (n, x). These cross sections were then integrated to produce partial and total kerma factors. There are several features of this paper that are

  13. 124Sb-Be photo-neutron source for BNCT: Is it possible?

    NASA Astrophysics Data System (ADS)

    Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser

    2016-11-01

    In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  14. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  15. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  16. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  17. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  18. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer.

    PubMed

    Suzuki, Minoru; Kato, Ituro; Aihara, Teruhito; Hiratsuka, Junichi; Yoshimura, Kenichi; Niimi, Miyuki; Kimura, Yoshihiro; Ariyoshi, Yasunori; Haginomori, Shin-Ichi; Sakurai, Yoshinori; Kinashi, Yuko; Masunaga, Shin-Ichiro; Fukushima, Masanori; Ono, Koji; Maruhashi, Akira

    2014-01-01

    We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and clinical outcomes were retrieved from hospital records. Either a combination of borocaptate sodium and boronophenylalanine (BPA) or BPA alone were used as boron compounds. In all the treatment cases, the dose constraint was set to deliver a dose <10-12 Gy-eq to the skin or oral mucosa. There was a patient cohort of 62, with a median follow-up of 18.7 months (range, 0.7-40.8). A total of 87 BNCT procedures were performed. The overall response rate was 58% within 6 months after BNCT. The median survival time was 10.1 months from the time of BNCT. The 1- and 2-year overall survival (OS) rates were 43.1% and 24.2%, respectively. The major acute Grade 3 or 4 toxicities were hyperamylasemia (38.6%), fatigue (6.5%), mucositis/stomatitis (9.7%) and pain (9.7%), all of which were manageable. Three patients died of treatment-related toxicity. Three patients experienced carotid artery hemorrhage, two of whom had coexistent infection of the carotid artery. This study confirmed the feasibility of our dose-estimation method and that controlled trials are warranted.

  19. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer

    PubMed Central

    Suzuki, Minoru; Kato, Ituro; Aihara, Teruhito; Hiratsuka, Junichi; Yoshimura, Kenichi; Niimi, Miyuki; Kimura, Yoshihiro; Ariyoshi, Yasunori; Haginomori, Shin-ichi; Sakurai, Yoshinori; Kinashi, Yuko; Masunaga, Shin-ichiro; Fukushima, Masanori; Ono, Koji; Maruhashi, Akira

    2014-01-01

    We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and clinical outcomes were retrieved from hospital records. Either a combination of borocaptate sodium and boronophenylalanine (BPA) or BPA alone were used as boron compounds. In all the treatment cases, the dose constraint was set to deliver a dose <10–12 Gy-eq to the skin or oral mucosa. There was a patient cohort of 62, with a median follow-up of 18.7 months (range, 0.7–40.8). A total of 87 BNCT procedures were performed. The overall response rate was 58% within 6 months after BNCT. The median survival time was 10.1 months from the time of BNCT. The 1- and 2-year overall survival (OS) rates were 43.1% and 24.2%, respectively. The major acute Grade 3 or 4 toxicities were hyperamylasemia (38.6%), fatigue (6.5%), mucositis/stomatitis (9.7%) and pain (9.7%), all of which were manageable. Three patients died of treatment-related toxicity. Three patients experienced carotid artery hemorrhage, two of whom had coexistent infection of the carotid artery. This study confirmed the feasibility of our dose-estimation method and that controlled trials are warranted. PMID:23955053

  20. Development of a high-power neutron-producing lithium target for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Brown, Adam V.; Scott, Malcolm C.

    2000-12-01

    A neutron producing lithium target for a novel, accelerator based cancer treatment requires the removal of up to 6kW of heat produced by 1-2mA beam of 2.3-3.0MeV protons. This paper presents the results form computer simulations which show that, using submerged jet cooling, a solid lithium target can be maintained up to 1.6mA, and a liquid target up to 2.6mA, assuming a 3.0MeV proton beam. The predictions from the simulations are verified through the use of an experimental heat transfer test-rig and the result form a number of metallurgical studies made to select a compatible substrate material for the lithium are reported.

  1. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.

    PubMed

    Porras, I

    2008-04-07

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. (10)B is being used to induce reactions (n, alpha), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of (33)S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of (33)S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  2. Multiple-wavelength neutron holography with pulsed neutrons

    PubMed Central

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-01-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering—that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique. PMID:28835917

  3. Multiple-wavelength neutron holography with pulsed neutrons.

    PubMed

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF 2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  4. Improvement of the boron neutron capture therapy (BNCT) by the previous administration of the histone deacetylase inhibitor sodium butyrate for the treatment of thyroid carcinoma.

    PubMed

    Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A

    2013-08-01

    We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p < 0.05) in WRO cells incubated with both boron compounds. NaB increased the percentage of necrotic and apoptotic cells in both BNCT groups (p < 0.05). An accumulation of cells in G2/M phase at 24 h was observed for all the irradiated groups and the addition of NaB increased this percentage. Biodistribution studies of BPA (350 mg kg⁻¹ body weight) 24 h after NaB injection were performed. The in vivo studies showed that NaB treatment increases the amount of boron in the tumor at 2-h post-BPA injection (p < 0.01). We conclude that NaB could be used as a radiosensitizer for the treatment of thyroid carcinoma by BNCT.

  5. Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator

    NASA Astrophysics Data System (ADS)

    Hamm, Robert W.

    2000-12-01

    Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.

  6. Radiation-induced changes in gustatory function comparison of effects of neutron and photon irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossman, K.L.; Chencharick, J.D.; Scheer, A.C.

    1979-04-01

    Changes in gustatory function were measured in 51 patients with various forms of cancer who received radiation to the head and neck region. Forty patients (group I) were treated with conventional photon radiation (e.g. 66 Gy/7 weeks), and 11 patients (group II) were treated with cyclotron produced fast neutrons (e.g. 22 Gy/7 weeks). Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured taste intensity responsiveness. Subjective complaints of anorexia, dysgeusia, taste loss, and xerostomia weremore » also recorded. Patients were studied before, during and up to two months after therapy. Prior to therapy, detection and recognition thresholds, intensity responsiveness, and the frequency of subjective complaints in patients from groups I and II were statistically equivalent. During and up to 2 months after therapy, taste impairment and frequency of subjective complaints increased significantly in neutron and photon treated patients, but were statistically equivalent. Results of this study indicate that gustatory tissue response as measured by taste detection and recognition and intensity responsiveness, and the frequency of subjective complaints related to taste are statistically equivalent in patients before, during, or up 2 months after they were given either neutron or photon radiation for tumors of the head and neck.« less

  7. Effect of Boron Neutron Capture Therapy (BNCT) on Normal Liver Regeneration: Towards a Novel Therapy for Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorge E. Cardoso; Elisa M. Heber; David W. Nigg

    2007-10-01

    The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis ismore » that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.« less

  8. Sci-Sat AM: Brachy - 04: Neutron production around a radiation therapy linac bunker - monte carlo simulations and physical measurements.

    PubMed

    Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J

    2012-07-01

    Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.

  9. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment

  10. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  11. Suppression of Rabbit VX‐2 Subcutaneous Tumor Growth by Gadolinium Neutron Capture Therapy

    PubMed Central

    Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko; Pechoux, Cécile Le; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    VX‐2 tumors growing in hind legs of New Zealand White rabbits (n=4) were exposed to thermal neutrons for 40 min (2.1 × 1012 neutrons cm−2) while one of two hind leg tumors of each rabbit was infused continuously with meglumine gadopentetate through a branch of the left femoral artery. The contralateral (uninfused) tumors served as controls. Although no differential distribution of gadolinium was achieved between the tumor and its adjacent normal tissue, the gadolinium concentration in the infused tumor was approximately 5–6 fold higher than that in the contralateral tumor. Growth of gadolinium‐infused tumors was significantly inhibited compared to that of control tumors (P<0.05) between the 16th and 23rd days after treatment. PMID:8407547

  12. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  13. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  14. Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors.

    PubMed

    Arbor, Nicolas; Higueret, Stephane; Elazhar, Halima; Combe, Rodolphe; Meyer, Philippe; Dehaynin, Nicolas; Taupin, Florence; Husson, Daniel

    2017-03-07

    The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.

  15. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  16. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    PubMed Central

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  17. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    PubMed

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  18. Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.

    PubMed

    Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J

    2000-03-01

    Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.

  19. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  20. Neutron spectrometry in a mixed field of neutrons and protons with a phoswich neutron detector Part I: response functions for photons and neutrons of the phoswich neutron detector

    NASA Astrophysics Data System (ADS)

    Takada, M.; Taniguchi, S.; Nakamura, T.; Nakao, N.; Uwamino, Y.; Shibata, T.; Fujitaka, K.

    2001-06-01

    We have developed a phoswich neutron detector consisting of an NE213 liquid scintillator surrounded by an NE115 plastic scintillator to distinguish photon and neutron events in a charged-particle mixed field. To obtain the energy spectra by unfolding, the response functions to neutrons and photons were obtained by the experiment and calculation. The response functions to photons were measured with radionuclide sources, and were calculated with the EGS4-PRESTA code. The response functions to neutrons were measured with a white neutron source produced by the bombardment of 135 MeV protons onto a Be+C target using a TOF method, and were calculated with the SCINFUL code, which we revised in order to calculate neutron response functions up to 135 MeV. Based on these experimental and calculated results, response matrices for photons up to 20 MeV and neutrons up to 132 MeV could finally be obtained.

  1. Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito

    Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less

  2. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  3. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less

  4. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  5. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Epithermal neutron beam for BNCT research at Washington State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.; Nigg, D.W.; Wheeler, F.J.

    1999-09-01

    Veterinary radiation oncology researchers at the Washington State University (WSU) School of Veterinary Medicine have made major contributions to the understanding of the in-vivo radiobiology of boron neutron capture therapy (BNCT) over the years. Recent attention has been focused on the development of a more convenient and cost-effective local epithermal-neutron beam facility for BNCT research and boronated pharmaceutical screening in large-animal models at WSU. The design of such a facility, to be installed in the thermal column region of the TRIGA research reactor at WSU, was performed in a collaborative effort of SWU and the Idaho National Engineering and Environmentalmore » Laboratory. Construction is now underway.« less

  7. Performance characteristics of the MIT fission converter based epithermal neutron beam.

    PubMed

    Riley, K J; Binns, P J; Harling, O K

    2003-04-07

    A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed with activation foils and paired ionization chambers. The facility currently provides an epithermal neutron flux of 4.6 x 10(9) n cm(-2) s(-1) in-air at the patient position that makes it the most intense BNCT source in the world. This epithermal neutron flux is accompanied by very low specific photon and fast neutron absorbed doses of 3.5 +/- 0.5 and 1.4 +/- 0.2 x 10(-13) Gy cm2, respectively. A therapeutic dose rate of 1.7 RBE Gy min(-1) is achievable at the advantage depth of 97 mm when boronated phenylalanine (BPA) is used as the delivery agent, giving an average therapeutic ratio of 5.7. In clinical trials of normal tissue tolerance when using the FCB, the effective prescribed dose is due principally to neutron interactions with the nonselectively absorbed BPA present in brain. If an advanced compound is considered, the dose to brain would instead be predominately from the photon kerma induced by thermal neutron capture in hydrogen and advantage parameters of 0.88 Gy min(-1), 121 mm and 10.8 would be realized for the therapeutic dose rate, advantage depth and therapeutic ratio, respectively. This study confirms the success of a new approach to producing a high intensity, high purity epithermal neutron source that attains near optimal physical performance and which is well suited to exploit the next generation of boron delivery agents.

  8. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  9. SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR

    DOEpatents

    Newson, H.W.

    1959-02-01

    Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.

  10. High-flux neutron source based on a liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  11. A feasibility study of the Tehran research reactor as a neutron source for BNCT.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi

    2014-08-01

    Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  13. Neutron imaging integrated circuit and method for detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarkar, Vivek V.; More, Mitali J.

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge statemore » less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.« less

  14. Thermal Neutron Radiography using a High-flux Compact Neutron Generator

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross

    A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.

  15. Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium.

    PubMed

    Morris, G M; Coderre, J A; Hopewell, J W; Micca, P L; Rezvani, M

    1994-08-01

    The effects of boron neutron capture irradiation employing either BPA or BSH as neutron capture agents has been assessed using the dorsal skin of Fischer 344 rats. Pharmacokinetic studies, using prompt gamma spectrometry, revealed comparable levels of boron-10 (10B) in blood and skin after the intravenous infusion of BSH (100 mg/kg body wt.). The 10B content of blood (12.0 +/- 0.5 micrograms/g) was slightly higher than that of skin (10.0 +/- 0.5 micrograms/g) after oral dosing with BPA. Biphasic skin reactions were observed after irradiation with the thermal neutron beam alone or in combination with BPA or BSH. The time of onset of the first phase of the skin reaction, moist desquamation, was approximately 2 weeks. The time at which the second-wave skin reaction, dermal necrosis, became evident was dose-related and occurred after a latent interval of > or = 24 weeks, well after the acute epithelial reaction had healed. The incidence of both phases of skin damage was also dose-related. The radiation doses required to produce skin damage in 50% of skin sites (ED50 values) were calculated from dose-effect curves and these values were used to determine relative biological effectiveness (RBE) and compound biological effectiveness (CBE) factors for both moist desquamation and dermal necrosis. It was concluded on the basis of these calculations that the microdistribution of the two neutron capture agents had a critical bearing on the overall biological effect after thermal neutron activation. BSH, which was possibly excluded from the cytoplasm of epidermal cells, had a low CBE factor value (0.56 +/- 0.06) while BPA, which may be selectively accumulated in epidermal cells had a very high CBE factor (3.74 +/- 0.7). For the dermal reaction, where vascular endothelial cells represent the likely target cell population, the CBE factor values were comparable, at 0.73 +/- 0.42 and 0.86 +/- 0.08 for BPA ad BSH, respectively.

  16. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  17. High Boron-loaded DNA-Oligomers as Potential Boron Neutron Capture Therapy and Antisense Oligonucleotide Dual-Action Anticancer Agents.

    PubMed

    Kaniowski, Damian; Ebenryter-Olbińska, Katarzyna; Sobczak, Milena; Wojtczak, Błażej; Janczak, Sławomir; Leśnikowski, Zbigniew J; Nawrot, Barbara

    2017-08-23

    Boron cluster-modified therapeutic nucleic acids with improved properties are of interest in gene therapy and in cancer boron neutron capture therapy (BNCT). High metallacarborane-loaded antisense oligonucleotides (ASOs) targeting epidermal growth factor receptor (EGFR) were synthesized through post-synthetic Cu (I)-assisted "click" conjugation of alkyne-modified DNA-oligonucleotides with a boron cluster alkyl azide component. The obtained oligomers exhibited increased lipophilicity compared to their non-modified precursors, while their binding affinity to complementary DNA and RNA strands was slightly decreased. Multiple metallacarborane residues present in the oligonucleotide chain, each containing 18 B-H groups, enabled the use of IR spectroscopy as a convenient analytical method for these oligomers based on the diagnostic B-H signal at 2400-2650 cm -1 . The silencing activity of boron cluster-modified ASOs used at higher concentrations was similar to that of unmodified oligonucleotides. The screened ASOs, when used in low concentrations (up to 50 μM), exhibited pro-oxidative properties by inducing ROS production and an increase in mitochondrial activities in HeLa cells. In contrast, when used at higher concentrations, the ASOs exhibited anti-oxidative properties by lowering ROS species levels. In the HeLa cells (tested in the MTT assay) treated (without lipofectamine) or transfected with the screened compounds, the mitochondrial activity remained equal to the control level or only slightly changed (±30%). These findings may be useful in the design of dual-action boron cluster-modified therapeutic nucleic acids with combined antisense and anti-oxidant properties.

  18. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  19. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  20. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  1. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  2. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model.

    PubMed

    Monti Hughes, A M; Pozzi, E C C; Thorp, S; Garabalino, M A; Farías, R O; González, S J; Heber, E M; Itoiz, M E; Aromando, R F; Molinari, A J; Miller, M; Nigg, D W; Curotto, P; Trivillin, V A; Schwint, A E

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model. Groups of cancerized hamsters were locally exposed to single or double (2 or 4 weeks apart) applications of BNCT at different dose levels, mediated by the boron compounds boronophenylalanine (BPA) or BPA and decahydrodecaborate (GB-10) administered jointly. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumour development from field-cancerized tissue and mucositis were followed for 8 months. A double application (4 weeks apart) of BNCT mediated by GB-10+ BPA at a total dose of 10 Gy in two 5-Gy doses rendered the best therapeutic advantage (63-100% inhibition of tumour development from field-cancerized tissue), minimizing dose-limiting mucositis. BNCT can be optimized for the integral treatment for head and neck cancer, considering the implications for field-cancerized tissue. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Suh, T; Yoon, D

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less

  4. Elastic neutron scattering studies at 96 MeV for transmutation.

    PubMed

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  5. Neutron detector

    DOEpatents

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  6. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  7. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  8. Design of an epithermal column for BNCT based on D D fusion neutron facility

    NASA Astrophysics Data System (ADS)

    Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U.

    2007-05-01

    Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D-D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities.

  9. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    PubMed

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  10. Development of fast neutron radiography system based on portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. Themore » raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.« less

  11. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based onmore » D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.« less

  12. Metalloporphyrins and their uses as imageable tumor-targeting agents for radiation therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    2003-05-20

    The present invention covers halogenated derivatives of boronated porphyrins containing multiple carborane cages having the formula ##STR1## which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies including, but not limited to, boron neutron- capture therapy and photodynamic therapy. The present invention also covers methods for using these halogenated derivatives of boronated porphyrins in tumor imaging and cancer treatment.

  13. Use of novel metalloporphyrins as imageable tumor-targeting agents for radiation therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    2005-10-04

    The present invention covers halogenated derivatives of boronated phorphyrins containing multiple carborane cages having the formula ##STR1## which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies including, but not limited to, boron neutron-capture therapy and photodynamic therapy. The present invention also covers methods for using these halogenated derivatives of boronated porphyrins in tumor imaging and cancer treatment.

  14. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  15. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  16. Boron microlocalization in oral mucosal tissue: implications for boron neutron capture therapy

    PubMed Central

    Morris, G M; Smith, D R; Patel, H; Chandra, S; Morrison, G H; Hopewell, J W; Rezvani, M; Micca, P L; Coderre, J A

    2000-01-01

    Clinical studies of the treatment of glioma and cutaneous melanoma using boron neutron capture therapy (BNCT) are currently taking place in the USA, Europe and Japan. New BNCT clinical facilities are under construction in Finland, Sweden, England and California. The observation of transient acute effects in the oral mucosa of a number of glioma patients involved in the American clinical trials, suggests that radiation damage of the oral mucosa could be a potential complication in future BNCT clinical protocols, involving higher doses and larger irradiation field sizes. The present investigation is the first to use a high resolution surface analytical technique to relate the microdistribution of boron-10 (10B) in the oral mucosa to the biological effectiveness of the 10B(n,α)7Li neutron capture reaction in this tissue. The two boron delivery agents used clinically in Europe/Japan and the USA, borocaptate sodium (BSH) and p-boronophenylalanine (BPA), respectively, were evaluated using a rat ventral tongue model. 10B concentrations in various regions of the tongue mucosa were estimated using ion microscopy. In the epithelium, levels of 10B were appreciably lower after the administration of BSH than was the case after BPA. The epithelium:blood 10B partition ratios were 0.2:1 and 1:1 for BSH and BPA respectively. The 10B content of the lamina propria was higher than that measured in the epithelium for both BSH and BPA. The difference was most marked for BSH, where 10B levels were a factor of six higher in the lamina propria than in the epithelium. The concentration of 10B was also measured in blood vessel walls where relatively low levels of accumulation of BSH, as compared with BPA, was demonstrated in blood vessel endothelial cells and muscle. Vessel wall:blood 10B partition ratios were 0.3:1 and 0.9:1 for BSH and BPA respectively. Evaluation of tongue mucosal response (ulceration) to BNC irradiation indicated a considerably reduced radiation sensitivity using BSH as

  17. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    PubMed

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  18. Cancer Therapy

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The patient shown is undergoing cancer radiation treatment in a hospital-like atmosphere but he is not in a hospital. The treatment room is at NASA's Lewis Research Center, Cleveland, Ohio. It is a converted portion of the Center's cyclotron facility, originally designed for radiation studies related to nuclear propulsion for aircraft and spacecraft. Under an agreement between the Center and the Cleveland Clinic Foundation, the 50 million volt cyclotron is now being used to evaluate the effectiveness of "fast neutron" therapy in the treatment of cancerous tumors.

  19. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  20. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  1. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  2. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGES

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  3. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less

  4. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  5. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  6. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  7. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  8. Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy.

    PubMed

    Reifschneider, Olga; Schütz, Christian L; Brochhausen, Christoph; Hampel, Gabriele; Ross, Tobias; Sperling, Michael; Karst, Uwe

    2015-03-01

    An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 μm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.

  9. High-flux neutron source based on a liquid-lithium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Paul, M.

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less

  10. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  11. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  12. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  13. Dendrimer-based nanoparticles for cancer therapy.

    PubMed

    Baker, James R

    2009-01-01

    Recent work has suggested that nanoparticles in the form of dendrimers may be a keystone in the future of therapeutics. The field of oncology could soon be revolutionized by novel strategies for diagnosis and therapy employing dendrimer-based nanotherapeutics. Several aspects of cancer therapy would be involved. Diagnosis using imaging techniques such as MRI will be improved by the incorporation of dendrimers as advanced contrast agents. This might involve novel contrast agents targeted specifically to cancer cells. Dendrimers can also be being applied to a variety of cancer therapies to improve their safety and efficacy. A strategy, somewhat akin to the "Trojan horse," involves targeting anti-metabolite drugs via vitamins or hormones that tumors need for growth. Further applications of dendrimers in photodynamic therapy, boron neutron capture therapy, and gene therapy for cancer are being examined. This presentation will cover the fundamentals of research utilizing dendrimers for cancer diagnosis and therapy. An evaluation of this new technologies will detail what advantage dendrimer based therapeutics might have over conventional cancer drugs.

  14. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential.

    PubMed

    Heber, Elisa M; Kueffer, Peter J; Lee, Mark W; Hawthorne, M Frederick; Garabalino, Marcela A; Molinari, Ana J; Nigg, David W; Bauer, William; Hughes, Andrea Monti; Pozzi, Emiliano C C; Trivillin, Verónica A; Schwint, Amanda E

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of (10)B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na(3) [ae-B(20)H(17)NH(3)], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  15. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1)more » MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.« less

  16. Avidin self-associates with boric acid gel suspensions: an affinity boron carrier that might be developed for boron neutron-capture therapy.

    PubMed

    Bench, Bennie J; Johnson, Rebecca; Hamilton, Craig; Gooch, Joey; Wright, John R

    2004-02-15

    It has been shown in preliminary studies that the antibacterial protein avidin self-associates with the boric acid gel polymer, and avidin-coated gel particles in the micrometer and submicrometer size ranges are of interest for boron neutron-capture therapy (BNCT), which is neutron-induced fission of boron-10 to produce intense alpha radiation for tumor destruction. The gel particles carry large amounts of boron-10 and are theoretically able effect a meaningful tissue dosing through BNCT. A gross precipitation of gel particles occurs within 46 min of mixing when the avidin/colloid ratio is about 0.34 g avidin/g colloid. This is a minimum time if gel and avidin concentrations are in the low microgram/milliliter range, but at higher proportions of avidin the time delay to precipitation increases significantly; i.e., the colloid surface becomes blocked, inhibiting lattice formation. The avidin-coated gel particles eventually cross-link, forming a solid matrix and precipitating on a timescale measured on the order of an hour. At shorter exposure times rapid agglutination-like reactions were observed with biotinylated bovine albumin, suggesting that two-stage pretargeting of specific tissues should be possible with biotinylated antitumor antibodies. However, for BNCT to be practical, avidin's interaction with the gel needs to be strengthened, and all aryl-B(OH)(2) groups on the particle surfaces must be blocked, or else the particles will interact strongly and nonspecifically with each other and with the carbohydrate groups present on most cell surfaces. Glyceric acid delays the precipitation of the particle suspensions while most simple and complex carbohydrates accelerate it.

  17. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  18. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  19. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  20. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  1. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  2. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  3. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  4. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  5. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    NASA Astrophysics Data System (ADS)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  6. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  7. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  8. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Science.gov Websites

    Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April

  9. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  10. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  11. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  12. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  13. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    NASA Astrophysics Data System (ADS)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  14. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; hide

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  15. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  16. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  17. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited).

    PubMed

    Yeamans, C B; Gharibyan, N

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  18. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  19. Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy.

    PubMed

    Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M

    2018-03-01

    One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.

  20. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  1. A critical assessment of boron target compounds for boron neutron capture therapy.

    PubMed

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  2. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  3. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.

    PubMed

    DeMarco, J; Kupelian, P; Santhanam, A; Low, D

    2013-07-01

    Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV. Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons. A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10(-3) mSv per proton Gy) was greatest along the direction of the incident proton spot (0°-10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°-180°) with a mean energy of 4.4 MeV. An 8 × 8

  4. Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA).

    PubMed

    Henriksson, Roger; Capala, Jacek; Michanek, Annika; Lindahl, Sten-Ake; Salford, Leif G; Franzén, Lars; Blomquist, Erik; Westlin, Jan-Erik; Bergenheim, A Tommy

    2008-08-01

    To evaluate the efficacy and safety of boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM) using a novel protocol for the boronophenylalanine-fructose (BPA-F) infusion. This phase II study included 30 patients, 26-69 years old, with a good performance status of which 27 have undergone debulking surgery. BPA-F (900 mg BPA/kg body weight) was given i.v. over 6h. Neutron irradiation started 2h after the completion of the infusion. Follow-up reports were monitored by an independent clinical research institute. The boron-blood concentration during irradiation was 15.2-33.7 microg/g. The average weighted absorbed dose to normal brain was 3.2-6.1 Gy (W). The minimum dose to the tumour volume ranged from 15.4 to 54.3 Gy (W). Seven patients suffered from seizures, 8 from skin/mucous problem, 5 patients were stricken by thromboembolism and 4 from abdominal disturbances in close relation to BNCT. Four patients displayed 9 episodes of grade 3-4 events (WHO). At the time for follow-up, minimum ten months, 23 out of the 29 evaluable patients were dead. The median time from BNCT treatment to tumour progression was 5.8 months and the median survival time after BNCT was 14.2 months. Following progression, 13 patients were given temozolomide, two patients were re-irradiated, and two were re-operated. Patients treated with temozolomide lived considerably longer (17.7 vs. 11.6 months). The quality of life analysis demonstrated a progressive deterioration after BNCT. Although, the efficacy of BNCT in the present protocol seems to be comparable with conventional radiotherapy and the treatment time is shorter, the observed side effects and the requirement of complex infrastructure and higher resources emphasize the need of further phase I and II studies, especially directed to improve the accumulation of (10)B in tumour cells.

  5. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  6. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  7. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  8. Localized Unresectable Pancreatic Cancer Treated with High Energy Neutrons and Chemotherapy at Fermilab - Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saroja, K. R.; Cohen, Lionel; Hendrickson, Frank R.

    1990-01-01

    Between January 1985 and July 1989 a total of thirty-eight patients with locally advanced pancreatic cancer were treated with high energy neutrons at Fermilab. Twenty-one patients received only neutrons and seventeen were given chemotherapy in addition, either concurrently or subsequently following the completion of neutron irradiation. This is a retrospective study. Data were analyzed for tolerance, complications and survival. Three of the twenty-one (14%) patients who received only neutron beam therapy developed Grade ID or greater complications in the RTOG/EORTC scale. The median survival was 6.4 months. One of these patients is alive 10 months post treatment. Of seventeen patientsmore » who also received chemotherapy, five (29%) had severe complications. However, median survival was 13.5 months. Four of these seventeen patients are still alive at the time of this analysis. The preliminary results show that there is improvement in the survival of patients treated with combined neutron irradiation and chemotherapy. A pilot study to further evaluate these results in a larger group of patients is underway. Details of complications and chemotherapy regimen will be preseqted.« less

  9. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    PubMed

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  10. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; ...

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  11. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  12. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  13. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  15. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  16. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  17. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    PubMed

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  18. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  19. Isotope-Identifying neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  20. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  1. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the timemore » is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.« less

  3. Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution.

    PubMed

    Sato, Tatsuhiko; Masunaga, Shin-Ichiro; Kumada, Hiroaki; Hamada, Nobuyuki

    2018-01-17

    We here propose a new model for estimating the biological effectiveness for boron neutron capture therapy (BNCT) considering intra- and intercellular heterogeneity in 10 B distribution. The new model was developed from our previously established stochastic microdosimetric kinetic model that determines the surviving fraction of cells irradiated with any radiations. In the model, the probability density of the absorbed doses in microscopic scales is the fundamental physical index for characterizing the radiation fields. A new computational method was established to determine the probability density for application to BNCT using the Particle and Heavy Ion Transport code System PHITS. The parameters used in the model were determined from the measured surviving fraction of tumor cells administrated with two kinds of 10 B compounds. The model quantitatively highlighted the indispensable need to consider the synergetic effect and the dose dependence of the biological effectiveness in the estimate of the therapeutic effect of BNCT. The model can predict the biological effectiveness of newly developed 10 B compounds based on their intra- and intercellular distributions, and thus, it can play important roles not only in treatment planning but also in drug discovery research for future BNCT.

  4. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    NASA Astrophysics Data System (ADS)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  5. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  6. Introduction to neutron stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2015-02-01

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  7. Introduction to neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattimer, James M.

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less

  8. NeutronSTARS: A segmented neutron and charged particle detector for low-energy reaction studies

    DOE PAGES

    Akindele, O. A.; Casperson, R. J.; Wang, B. S.; ...

    2017-08-10

    NeutronSTARS (Neutron-S ilicon T elescope A rray for R eaction S tudies) consists of 2.2-tons of gadolinium-doped liquid scintillator for neutron detection and large area silicon detectors for charged particle identification. This detector array is intended for low-energy-nuclear-reaction measurements that result in the emission of neutrons such as and fission. This paper describes the NeutronSTARS experimental setup, calibration, and the array’s response to neutral and charged particles.

  9. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.

    PubMed

    Diffenderfer, Eric S; Ainsley, Christopher G; Kirk, Maura L; McDonough, James E; Maughan, Richard L

    2011-11-01

    To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy

  10. Neutron Scattering Announcements

    Science.gov Websites

    will be added. We encourage everyone interested in neutron scattering to take full advantage of this neutron source ESS. After an initial layout phase using analytical considerations further assessment of Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron

  11. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  12. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  13. High-power liquid-lithium jet target for neutron production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based onmore » a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.« less

  14. Magnetic trapping of neutrons

    PubMed

    Huffman; Brome; Butterworth; Coakley; Dewey; Dzhosyuk; Golub; Greene; Habicht; Lamoreaux; Mattoni; McKinsey; Wietfeldt; Doyle

    2000-01-06

    Accurate measurement of the lifetime of the neutron (which is unstable to beta decay) is important for understanding the weak nuclear force and the creation of matter during the Big Bang. Previous measurements of the neutron lifetime have mainly been limited by certain systematic errors; however, these could in principle be avoided by performing measurements on neutrons stored in a magnetic trap. Neutral-particle and charged-particle traps are widely used for studying both composite and elementary particles, because they allow long interaction times and isolation of particles from perturbing environments. Here we report the magnetic trapping of neutrons. The trapping region is filled with superfluid 4He, which is used to load neutrons into the trap and as a scintillator to detect their decay. Neutrons in the trap have a lifetime of 750(+330)(-200) seconds, mainly limited by their beta decay rather than trap losses. Our experiment verifies theoretical predictions regarding the loading process and magnetic trapping of neutrons. Further refinement of this method should lead to improved precision in the neutron lifetime measurement.

  15. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  16. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  17. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  18. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model.

    PubMed

    Heber, Elisa M; Hawthorne, M Frederick; Kueffer, Peter J; Garabalino, Marcela A; Thorp, Silvia I; Pozzi, Emiliano C C; Monti Hughes, Andrea; Maitz, Charles A; Jalisatgi, Satish S; Nigg, David W; Curotto, Paula; Trivillin, Verónica A; Schwint, Amanda E

    2014-11-11

    The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.

  19. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    PubMed Central

    Heber, Elisa M.; Hawthorne, M. Frederick; Kueffer, Peter J.; Garabalino, Marcela A.; Thorp, Silvia I.; Pozzi, Emiliano C. C.; Hughes, Andrea Monti; Maitz, Charles A.; Jalisatgi, Satish S.; Nigg, David W.; Curotto, Paula; Trivillin, Verónica A.; Schwint, Amanda E.

    2014-01-01

    The application of boron neutron capture therapy (BNCT) mediated by liposomes containing 10B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70–88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70–88%. PMID:25349432

  20. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    NASA Astrophysics Data System (ADS)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT