Sample records for kda pea-15 reprograms

  1. Vicilin and convicilin are potential major allergens from pea.

    PubMed

    Sanchez-Monge, R; Lopez-Torrejón, G; Pascual, C Y; Varela, J; Martin-Esteban, M; Salcedo, G

    2004-11-01

    Allergic reactions to pea (Pisum sativum) ingestion are frequently associated with lentil allergy in the Spanish population. Vicilin have been described as a major lentil allergen. To identify the main IgE binding components from pea seeds and to study their potential cross-reactivity with lentil vicilin. A serum pool or individual sera from 18 patients with pea allergy were used to detect IgE binding proteins from pea seeds by immunodetection and immunoblot inhibition assays. Protein preparations enriched in pea vicilin were obtained by gel filtration chromatography followed by reverse-phase high-performance liquid chromatography (HPLC). IgE binding components were identified by means of N-terminal amino acid sequencing. Complete cDNAs encoding pea vicilin were isolated by PCR, using primers based on the amino acid sequence of the reactive proteins. IgE immunodetection of crude pea extracts revealed that convicilin (63 kDa), as well as vicilin (44 kDa) and one of its proteolytic fragments (32 kDa), reacted with more than 50% of the individual sera tested. Additional proteolytic subunits of vicilin (36, 16 and 13 kDa) bound IgE from approximately 20% of the sera. The lentil vicilin allergen Len c 1 strongly inhibited the IgE binding to all components mentioned above. The characterization of cDNA clones encoding pea vicilin has allowed the deduction of its complete amino acid sequence (90% of sequence identity to Len c 1), as well as those of its reactive proteolytic processed subunits. Vicilin and convicilin are potential major allergens from pea seeds. Furthermore, proteolytic fragments from vicilin are also relevant IgE binding pea components. All these proteins cross-react with the major lentil allergen Len c 1.

  2. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  3. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    PubMed

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  4. Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP).

    PubMed

    Tani, Tetsuya; Shimada, Hiroaki; Kato, Yoko; Tsunoda, Yukio

    2007-01-01

    Despite the long-held assumption that reprogramming factors are present in mammalian oocytes at the second metaphase stage, the molecular nature of these factors is not known. Here, we demonstrated that oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Injection of TCTP double-stranded RNA into germinal vesicle oocytes decreased the potential of nuclear-transferred (NT) oocytes, but not in vitro fertilized oocytes, to develop into blastocysts. Phosphorylated TCTP is considered to facilitate the first step of somatic cell reprogramming. After transfer of blastocysts that developed from NT oocytes fused with cumulus cells in which phosphorylated TCTP peptide was previously incorporated, the recipient pregnancy rate (47%) increased and the abortion rate (13%) decreased. Moreover, all seven cloned calves survived for at least 1 month after parturition, and had no morphologic abnormalities. The present study demonstrated that pretreatment of donor cells with phosphorylated TCTP peptide has a beneficial effect on the potential of bovine somatic cell nuclei to develop into normal cloned calves. Before widespread application of TCTP for bovine cloning, however, a large-scale embryo transfer study using different donor cell lines of various origins is necessary.

  5. Recognition of RNA Editing Sites Is Directed by Unique Proteins in Chloroplasts: Biochemical Identification of cis-Acting Elements and trans-Acting Factors Involved in RNA Editing in Tobacco and Pea Chloroplasts

    PubMed Central

    Miyamoto, Tetsuya; Obokata, Junichi; Sugiura, Masahiro

    2002-01-01

    RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants. PMID:12215530

  6. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  7. Serum 25-Hydroxyvitamin D Levels, phosphoprotein enriched in diabetes gene product (PED/PEA-15) and leptin-to-adiponectin ratio in women with PCOS.

    PubMed

    Savastano, Silvia; Valentino, Rossella; Di Somma, Carolina; Orio, Francesco; Pivonello, Claudia; Passaretti, Federica; Brancato, Valentina; Formisano, Pietro; Colao, Annamaria; Beguinot, Francesco; Tarantino, Giovanni

    2011-11-23

    Polycystic ovary syndrome (PCOS) is frequently associated with hypovitaminosis D. Vitamin D is endowed with pleiotropic effects, including insulin resistance (IR) and apoptotic pathway. Disruption of the complex mechanism that regulated ovarian apoptosis has been reported in PCOS. Phosphoprotein enriched in diabetes gene product (PED/PEA-15), an anti-apoptotic protein involved in type 2 diabetes mellitus (T2DM), is overexpressed in PCOS women, independently of obesity. Leptin-to-adiponectin ratio (L/A) is a biomarker of IR and low-grade inflammation in PCOS. The aim of the study was to investigate the levels of 25-hydroxy vitamin D (25(OH)D), and L/A, in association with PED/PEA-15 protein abundance, in both lean and overweight/obese (o/o) women with PCOS. PED/PEA-15 protein abundance and circulating levels of 25(OH)D, L/A, sex hormone-binding globulin, and testosterone were evaluated in 90 untreated PCOS patients (25 ± 4 yrs; range 18-34) and 40 healthy controls age and BMI comparable, from the same geographical area. FAI (free androgen index) and the homeostasis model assessment of insulin resistance (HoMA-IR) index were calculated. In o/o PCOS, 25(OH)D levels were significantly lower, and L/A values were significantly higher than in lean PCOS (p < 0.001), while there were no differences in PED/PEA-15 protein abundance. An inverse correlation was observed between 25(OH)D and BMI, PED/PEA-15 protein abundance, insulin, HoMA-IR, FAI (p < 0.001), and L/A (p < 0.05). At the multivariate analysis, in o/o PCOS L/A, insulin and 25(OH)D were the major determinant of PED/PEA-15 protein abundance (β = 0.45, β = 0.41, and β = -0.25, respectively). Lower 25(OH)D and higher L/A were associated to PED/PEA-15 protein abundance in PCOS, suggesting their involvement in the ovarian imbalance between pro-and anti-apoptotic mechanisms, with high L/A and insulin and low 25(OH)D levels as the main determinants of PED/PEA-15 protein variability. Further studies, involving also

  8. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development.

    PubMed Central

    Lobreaux, S; Briat, J F

    1991-01-01

    Iron concentration and ferritin distribution have been determined in different organs of pea (Pisum sativum) during development under conditions of continuous iron supply from hydroponic cultures. No ferritin was detected in total protein extracts from roots or leaves. However, a transient iron accumulation in the roots, which corresponds to an increase in iron uptake, was observed when young fruits started to develop. Ferritin was detectable in total protein extracts of flowers and pods, and it accumulated in seeds. In seeds, the same relative amount of ferritin was detected in cotyledons and in the embryo axis. In cotyledons, ferritin and iron concentration decrease progressively during the first week of germination. Ferritin in the embryo axis was processed, and disappeared, during germination, within the first 4 days of radicle and epicotyl growth. This degradation of ferritin in vivo was marked by a shortening of a 28 kDa subunit, giving 26.5 and 25 kDa polypeptides, reminiscent of the radical damage occurring in pea seed ferritin during iron exchange in vitro [Laulhere, Laboure & Briat (1989) J. Biol. Chem. 264, 3629-3635]. Developmental control of iron concentration and ferritin distribution in different organs of pea is discussed. Images Fig. 4. Fig. 6. Fig. 7. PMID:2006922

  9. Isolation and characterization of the pea cytochrome c oxidase Vb gene.

    PubMed

    Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi

    2006-11-01

    Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.

  10. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment.

    PubMed

    Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi

    2016-01-01

    In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  12. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    PubMed

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  13. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    PubMed

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  14. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B

    PubMed Central

    Lee, Chih-Yung Sean; Lu, Tu

    2017-01-01

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin. PMID:29111977

  15. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B.

    PubMed

    Lee, Chih-Yung Sean; Lu, Tu; Seydoux, Geraldine

    2017-11-07

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.

  16. Purification and immunolocalization of an annexin-like protein in pea seedlings

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1992-01-01

    As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.

  17. An antifungal protein from the pea Pisum sativum var. arvense Poir.

    PubMed

    Wang, H X; Ng, T B

    2006-07-01

    An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.

  18. Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae.

    PubMed

    de Sousa-Majer, Maria José; Hardie, Darryl C; Turner, Neil C; Higgins, Thomas J V

    2007-08-01

    This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.

  19. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers.

    PubMed

    Gallego-Perez, Daniel; Otero, Jose J; Czeisler, Catherine; Ma, Junyu; Ortiz, Cristina; Gygli, Patrick; Catacutan, Fay Patsy; Gokozan, Hamza Numan; Cowgill, Aaron; Sherwood, Thomas; Ghatak, Subhadip; Malkoc, Veysi; Zhao, Xi; Liao, Wei-Ching; Gnyawali, Surya; Wang, Xinmei; Adler, Andrew F; Leong, Kam; Wulff, Brian; Wilgus, Traci A; Askwith, Candice; Khanna, Savita; Rink, Cameron; Sen, Chandan K; Lee, L James

    2016-02-01

    Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of roasted pea flour/starch and encapsulated pea starch incorporation on the in vitro starch digestibility of pea breads.

    PubMed

    Lu, Zhan-Hui; Donner, Elizabeth; Liu, Qiang

    2018-04-15

    Oven or microwave roasting and alginate encapsulation of pea flour and starch to produce novel pea ingredients for enrichment of slowly digestible starch (SDS) and resistant starch (RS) content in pea bread were investigated. Pea flour treated either by oven roasting (160°C, 30min) or by microwave roasting (1.1kW, 6min) effectively retained its low starch digestibility similar to its native form (∼25% SDS; ∼60% RS). When oven roasting was applied to pea starch, SDS content increased triply compared to the fully boiled counterpart. Alginate encapsulation effectively controlled carbohydrate release to simulated gastric, intestinal and colonic fluids, and thus largely enriched the SDS and RS fractions in starch. Pea bread containing up to 37.5% of encapsulated roasted MPS pea starch not only provided high SDS and RS fractions (23.9% SDS and 30.2% RS) compared to a white bread control (0.2% SDS and 2.5% RS), but also provided an acceptable palatability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice*

    PubMed Central

    Kasaikina, Marina V.; Fomenko, Dmitri E.; Labunskyy, Vyacheslav M.; Lachke, Salil A.; Qiu, Wenya; Moncaster, Juliet A.; Zhang, Jie; Wojnarowicz, Mark W.; Natarajan, Sathish Kumar; Malinouski, Mikalai; Schweizer, Ulrich; Tsuji, Petra A.; Carlson, Bradley A.; Maas, Richard L.; Lou, Marjorie F.; Goldstein, Lee E.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency. PMID:21768092

  2. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  3. Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases.

    PubMed

    Lomate, Purushottam R; Hivrale, Vandana K

    2012-08-01

    Wounding of plants by chewing insects or other damage induces the synthesis of defensive proteinase inhibitors (PI) in both wounded and distal unwounded leaves. In the present paper we report the characterization of inducible defensive PI from pigeon pea (Cajanus cajan) and its in vitro interaction with Helicoverpa armigera gut proteinases (HGP). We found that PI activity was induced in local as well as systemic leaves of pigeon pea by the wounding and methyl jasmonate (MeJA) application. Consistent induction of PI was observed in two wild cultivars of pigeon pea at various growth stages. The estimated molecular weight of inducible PI was ~16.5 kDa. Electrophoretic analysis and enzyme assays revealed that the induced PI significantly inhibited total gut proteinase as well as trypsin-like activity from the midgut of H. armigera. The induced PI was found to be inhibitor of trypsin as well as chymotrypsin. Study could be important to know the further roles of defensive PIs. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. PED/PEA-15 Controls Fibroblast Motility and Wound Closure by ERK1/2-Dependent Mechanisms

    PubMed Central

    Buonomo, Roberta; Giacco, Ferdinando; Vasaturo, Angela; Caserta, Sergio; Guido, Stefano; Pagliara, Valentina; Garbi, Corrado; Mansueto, Gelsomina; Cassese, Angela; Perruolo, Giuseppe; Oriente, Francesco; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2012-01-01

    Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2. J. Cell. Physiol. 227: 2106–2116, 2012. © 2011 Wiley Periodicals, Inc. PMID:21780113

  5. Peas in a Pod: Environment and Ionization in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael

    2016-01-01

    The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.

  6. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  7. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  8. Structure of allelic variants of subtype 5 of histone H1 in pea Pisum sativum L.

    PubMed

    Bogdanova, V S; Lester, D R; Berdnikov, V A; Andersson, I

    2005-06-01

    The pea genome contains seven histone H1 genes encoding different subtypes. Previously, the DNA sequence of only one gene, His1, coding for the subtype H1-1, had been identified. We isolated a histone H1 allele from a pea genomic DNA library. Data from the electrophoretic mobility of the pea H1 subtypes and their N-bromosuccinimide cleavage products indicated that the newly isolated gene corresponded to the H1-5 subtype encoded by His5. We confirmed this result by sequencing the gene from three pea lines with H1-5 allelic variants of altered electrophoretic mobility. The allele of the slow H1-5 variant differed from the standard allele by a nucleotide substitution that caused the replacement of the positively charged lysine with asparagine in the DNA-interacting domain of the histone molecule. A temperature-related occurrence had previously been demonstrated for this H1-5 variant in a study on a worldwide collection of pea germplasm. The variant tended to occur at higher frequencies in geographic regions with a cold climate. The fast allelic variant of H1-5 displayed a deletion resulting in the loss of a duplicated pentapeptide in the C-terminal domain.

  9. The pea stem

    PubMed Central

    Karahara, Ichirou

    2012-01-01

    The Casparian strip is commonly observed in the endodermis of roots of vascular plants and, in some cases, also in the stems. Pea stems develop the Casparian strip, and its development has been reported to be regulated by blue light. In addition, for the purpose of photobiological studies, pea stems provide a unique experimental system for other physiological studies of the development of the Casparian strip. In this article, I have briefly summarized (1) the effects of environmental factors on the development of the Casparian strip, (2) the advantage of using pea stems for physiological studies of the development of the Casparian strip, and (3) cellular events indicated to be involved in the development of the Casparian strip, focusing on the studies using pea stems as well as other recent studies. PMID:22899074

  10. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells.

    PubMed

    Bhise, Nupura S; Wahlin, Karl J; Zack, Donald J; Green, Jordan J

    2013-01-01

    Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester) nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs) from human fibroblasts. A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling. 1-(3-aminopropyl)-4-methylpiperazine end-terminated poly(1,4-butanediol diacry-late-co-4-amino-1-butanol) polymer (B4S4E7) self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available reagents, including Lipofectamine® 2000, FuGENE® HD, and 25 kDa branched polyethylenimine, for nonviral gene transfer. B4S4E7 nanoparticles showed effective gene delivery to IMR-90 human primary fibroblasts and to dermal fibroblasts derived from a patient with retinitis pigmentosa, and enabled coexpression of exogenously delivered genes, as is needed for reprogramming. The karyotypically normal hiPSC-like cells generated by conventional electroporation, but not by poly(beta-amino ester) reprogramming, could be differentiated toward the neuronal lineage, specifically pseudostratified optic cups. This

  11. How does pea architecture influence light sharing in virtual wheat–pea mixtures? A simulation study based on pea genotypes with contrasting architectures

    PubMed Central

    Barillot, Romain; Combes, Didier; Chevalier, Valérie; Fournier, Christian; Escobar-Gutiérrez, Abraham J.

    2012-01-01

    Background and aims Light interception is a key factor driving the functioning of wheat–pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat–pea mixtures. Methodology Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat–pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. Principal results Three groups of pea genotypes were distinguished: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. Conclusions This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat–pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition. PMID:23240074

  12. Antihypertensive Properties of a Pea Protein Hydrolysate during Short- and Long-Term Oral Administration to Spontaneously Hypertensive Rats.

    PubMed

    Girgih, Abraham T; Nwachukwu, Ifeanyi D; Onuh, John O; Malomo, Sunday A; Aluko, Rotimi E

    2016-05-01

    This study investigated short-term (24 h) and long-term (5 wk) systolic blood pressure (SBP)-lowering effects in spontaneously hypertensive rats (SHR) of a 5 kDa membrane pea protein hydrolysate permeate (PPH-5) produced through thermoase hydrolysis of pea protein isolate (PPI). Amino acid analysis showed that the PPH-5 had lower contents of sulfur-containing amino acids than the PPI. Size-exclusion chromatography indicated mainly low molecular weight (<10 kDa) peptides in PPH-5 but not in the PPI. The PPH-5 had renin and angiotensin converting enzyme inhibition IC50 values of 0.57 and 0.10 mg/mL (P < 0.05), respectively, and consisted mainly of peptides with 2 to 6 amino acids. Mass spectrometry analysis revealed mainly hydrophilic tetrapeptide sequences. After a single oral administration (100 mg/kg body weight) to SHR, the unheated PPI showed weakest (P < 0.05) SBP-lowering effect with a -4 mm Hg maximum when compared to -25 mm Hg for heat-treated PPI and -36 mm Hg for PPH-5. Incorporation of the PPH-5 as 0.5% or 1% (w/w) casein substitute in the SHR diet produced maximum SBP reductions of -22 or -26 mm Hg (P < 0.05), respectively after 3 wk. In comparison, the unhydrolyzed PPI produced a maximum SBP reduction of -17 mm Hg also after 3 wk. Potency of the pea products decreased in the 4th and 5th wk, though SBP values of the treated rats were still lower than the untreated control. We conclude that the antihypertensive potency of PPH-5 may have been due to the presence of easily absorbed hydrophilic peptides. © 2016 Institute of Food Technologists®

  13. Replication of pea enation mosaic virus RNA in isolated pea nuclei

    PubMed Central

    Powell, C. A.; Zoeten, G. A. de

    1977-01-01

    Isolated nuclei from healthy pea plants were primed with pea enation mosaic virus (PEMV), southern bean mosaic virus (SBMV), radish mosaic virus (RdMV), tobacco mosaic virus (TMV), PEMV RNA, SBMV RNA, RdMV RNA, or TMV RNA. RNA replication occurred only with PEMV RNA and not with intact PEMV or any of the other viruses or RNAs, as judged by ensuing actinomycin D-insensitive polymerase activity. Molecular hybridization experiments showed that some of the product of the polymerase was PEMV-specific (-)RNA. The substrate and ionic requirements of this polymerase were the same as those for the RNA-dependent RNA polymerase present in nuclei isolated from PEMV-infected pea plants. No virus particles could be recovered from nuclei primed with PEMV RNA. These results are discussed in relation to the possible mechanism for in vivo infection of pea cells. PMID:16592421

  14. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene

    PubMed Central

    Wimmer, Bernhard; Lottspeich, Friedrich; van der Klei, Ida; Veenhuis, Marten; Gietl, Christine

    1997-01-01

    The monoclonal a-70-kDa heat shock protein (hsp70) antibody recognizes in crude extracts from watermelon (Citrullus vulgaris) cotyledons two hsps with molecular masses of 70 and 72 kDa. Immunocytochemistry on watermelon cotyledon tissue and on isolated glyoxysomes identified hsp70s in the matrix of glyoxysomes and plastids. Affinity purification and partial amino acid determination revealed the 70-kDa protein to share high sequence identity with cytosolic hsp70s from a number of plant species, while the 72 kDa protein was very similar to plastid hsp70s from pea and cucumber. A full-length cDNA clone encoding the 72-kDa hsp70 was isolated and identified two start methionines in frame within the N-terminal presequence leading either to an N-terminal extension of 67 amino acids or to a shorter one of 47 amino acids. The longer presequence was necessary and sufficient to target a reporter protein into watermelon proplastids in vitro. The shorter extension starting from the second methionine within the long version harbored a consensus peroxisomal targeting signal (RT-X5-KL) that directed in vivo a reporter protein into peroxisomes of the yeast Hansenula polymorpha. Peroxisomal targeting was however prevented, when the 67-residue presequence was fused to the reporter protein, indicating that the peroxisomal targeting signal 2 information is hidden in this context. We propose that the 72-kDa hsp70 is encoded by a single gene, but targeted alternatively into two organelles by the modulated use of its presequence. PMID:9391076

  15. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  16. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    PubMed

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  17. Influences of pea morphology and interacting factors on pea aphid (Homoptera: Aphididae) reproduction.

    PubMed

    Buchman, N; Cuddington, K

    2009-08-01

    It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.

  18. Reprogramming cancer cells: overview & current progress.

    PubMed

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  19. Discovery and progress of direct cardiac reprogramming.

    PubMed

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  20. Epigenetic reprogramming in plant sexual reproduction.

    PubMed

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

  1. Spin glass model for cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Castillo, Horacio E.

    2014-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor state to another attractor state. We use a simple model based on spin glass theory that can construct a simulated epigenetic landscape starting from the experimental genomic data. We modify the model to incorporate experimental reprogramming protocols. Our simulations successfully reproduce several reprogramming experiments. We probe the robustness of the results against random changes in the model, explore the importance of asymmetric interactions between transcription factors and study the importance of histone modification errors in reprogramming.

  2. Isolation of pisumin, a novel antifungal protein from legumes of the sugar snap pea Pisum sativum var macrocarpon.

    PubMed

    Ye, X Y; Ng, T B

    2003-02-01

    An antifungal protein with a novel N-terminal sequence GVGAAYGCFG and a molecular mass of 31 kDa was isolated from the legumes of the sugar snap pea Pisum sativum var. macrocarpon. The protein, designated pisumin, exhibited antifungal activity against Coprinus comatus and Pleurotus ostreatus and much weaker activity against Fusarium oxysporum and Rhizoctonia solani. Pisumin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 6 microM. Pisumin was similar to other leguminous antifungal proteins in that it was adsorbed on Affi-gel blue gel and CM-Sepharose.

  3. Reprogramming cells with synthetic proteins

    PubMed Central

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  4. Contributions of PIP(2)-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves.

    PubMed

    Liu, Hong-Tao; Huang, Wei-Dong; Pan, Qiu-Hong; Weng, Fang-Hua; Zhan, Ji-Cheng; Liu, Yan; Wan, Si-Bao; Liu, Yan-Yan

    2006-03-01

    The relationship between the accumulation in endogenous free salicylic acid (SA) induced by heat acclimation (37 degrees C) and the activity of PIP(2)-phospholipase C (PIP(2)-PLC; EC 3.1.4.3) in the plasma membrane fraction was investigated in pea (Pisum sativum L.) leaves. We focused our attention on the hypothesis that positive SA signals induced by heat acclimation may be relayed by PIP(2)-PLC. Heat acclimation induced an abrupt elevation of free SA preceding the activation of PLC toward PIP(2). Immunoblotting indicated a molecular mass with 66.5kDa PLC plays key role in the development of thermotolerance in pea leaves. In addition, some characterizations of PLC toward PIP(2) isolated from pea leaves with two-phase purification containing calcium concentration, pH and a protein concentration were also studied. Neomycin sulfate, a well-known PIP(2)-PLC inhibitor, was employed to access the involvement of PIP(2)-PLC in the acquisition of heat acclimation induced-thermotolerance. We were able to identify a PIP(2)-PLC, which was similar to a conventional PIP(2)-PLC in higher plants, from pea leaves suggesting that PIP(2)-PLC was involved in the signal pathway that leads to the acquisition of heat acclimation induced-thermotolerance. On the basis of these results, we conclude that the involvement of free SA may function as the upstream event in the stimulation of PIP(2)-PLC in response to heat acclimation treatment.

  5. Boosters and barriers for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Response of Pea Varieties to Damage Degree of Pea Weevil, Bruchus pisorum L.

    PubMed Central

    Nikolova, Ivelina Mitkova

    2016-01-01

    A study was conducted to determine the response of five pea varieties (Pisum sativum L.) to damage degree of Bruchus pisorum: Glyans, Modus, Kamerton, and Svit (Ukrainian cultivars) and Pleven 4 (Bulgarian cultivar). The seeds were classified into three types: healthy seeds (type 1), damaged seeds with parasitoid emergence hole (type 2), and damaged seeds with bruchid emergence hole (type 3) and they were sown. It was found that the weight of 1000 seeds did not affect the field germination of the pea varieties. Healthy and damaged seeds with parasitoid emergence holes (first and second seed types) provide a very good opportunity for growth and development while plants from damaged seeds with bruchid emergence holes had poor germination and vigor and low productivity. These seeds cannot provide the creation of well-garnished seeding and stable crop yields. Among tested varieties, the Ukrainian variety Glyans had considerably higher seed weight, field germination, and index germination and weak egg-laying activity of B. pisorum compared to others. Use of spring pea cultivars that are weakly preferred by the pea weevil in breeding programs would reduce losses due to pea weevil and provide an environmentally safer option to its control. PMID:27042379

  7. Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production.

    PubMed

    Samanta, A K; Jayapal, Natasha; Kolte, A P; Senani, S; Sridhar, Manpal; Mishra, Sukriti; Prasad, C S; Suresh, K P

    2013-04-01

    Pigeon pea (Cajanus cajan) is a perennial plant widely cultivated in tropical and subtropical regions of many countries. The present studies aimed to produce xylooligosaccharides (XOS) from pigeon pea stalks in order to do value addition. The chemical analysis of stalks revealed 18.33 ± 1.40 % hemicelluloses in addition to cellulose, protein, and lignin. Sodium hydroxide coupled with steam application enabled almost 96 % recovery of original xylan, present in the pigeon pea stalks. Enzymatic hydrolysis of xylan led to production of XOS namely, xylobiose and xylotriose. Response surface model indicated a maximum yield of xylobiose (0.502 mg/ml) under the hydrolysis conditions of pH 4.91, temperature at 48.11 °C, enzyme dose at 11.01 U, and incubation time at 15.65 h. The ideal conditions for higher xylotriose yield (0.204 mg/ml) were pH 5.44, temperature at 39.29 °C, enzyme dose at 3.23 U, and incubation time at 15.26 h. The present investigation was successful in assessing the prospect of using pigeon pea stalks as a raw material for xylan extraction vis-à-vis XOS production.

  8. 78 FR 63160 - United States Standards for Feed Peas, Split Peas, and Lentils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration United States... Administration, USDA ACTION: Notice and request for comments. SUMMARY: The Department of Agriculture's (USDA... Standards for Feed Peas, Split Peas, and Lentils under the Agriculture Marketing Act (AMA) of 1946. To...

  9. [Possibility of using flour of pigeon pea in products prepared with rice or wheat flour].

    PubMed

    Mueses, C; de León, L; Bressani, R

    1993-03-01

    The present study reports on the development of foods containing processed pigeon pea (Cajanus cajan) flour. The pigeon pea flours described in a previous publication were prepared from dehulled pigeon peas by cooking in autoclave, by extrusion-cooking and by cooking/dehydration by drum-drying. Mixtures of cooked pigeon peas and rice were first evaluated biological through a protein complementation design using NPR. The results of this study showed that the two products had high protein quality and were similar when mixed in ratios of 80:20 to 40:60. For the evaluation of the processed pigeon pea flour, mixtures with rice (80:20) were used. All pigeon pea flours gave similar protein quality values. On the basis of these results three products were developed and tested. One was a gruel ("atole"), a second a fruit-flavored thick drink with and without 15% milk. Cookies were also prepared with a series of blends of pigeon pea flour (extrusion-cooked) and wheat. The gruel and the fruit flavored products had high acceptability based on a sensory evaluation test. Cookies with 100% pigeon pea flour were unacceptable, however, mixtures of 75% wheat flour and 25% pigeon pea flour gave cookies of attractive appearance and good taste. The study showed the possibility of preparing and utilizing tropical grain legume flours for food products of relatively high acceptability and nutritive value.

  10. Faba beans and peas in poultry feed: economic assessment.

    PubMed

    Proskina, Liga; Cerina, Sallija

    2017-10-01

    Broiler diets mainly consist of cereals and protein-rich feed sources; in the EU-27, poultry farming consumes 24% of the total amount of protein-rich feedstuffs. Since the EU produces only 30% of the total quantity of protein crops used for feed, it is necessary to promote the use of traditional European protein crops (beans, peas) for feed in livestock farming. The research aim is to identify economic gains from the production of broiler chicken meat, replacing soybean meal with domestic faba beans and field peas in broiler chicken diets. Adding field peas and faba beans to the broiler feed ration resulted in a significant live weight increase (5.74-11.95%) at the selling age, a decrease in the feed conversion ratio by 0.61-6.06%, and decrease in the product unit cost (15.34-37.06%) as well as an increase in the production efficiency factor (8.70-48.54), compared with the control group. The optimum kind of legume species used in the broiler diet was peas, which were added in the amount of 200 g kg -1 , resulting in live weight gain, a decrease in the feed conversion ratio and an increase in the production efficiency factor. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    NASA Astrophysics Data System (ADS)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  12. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    PubMed

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  13. Immunofluorescence detection of pea protein in meat products.

    PubMed

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  14. Saponin content and trypsin inhibitor activity in processed and cooked pigeon pea cultivars.

    PubMed

    Duhan, A; Khetarpaul, N; Bishnoi, S

    2001-01-01

    Four high-yielding varieties of pigeon pea namely UPAS-120, Manak, JCPL-151. ICPL-87 had considerable amounts of antinutrients i.e. saponins and trypsin inhibitors. Saponin content of these unprocessed cultivars ranged from 2164 to 3494 mg/100 g. There were significant varietal variations in trypsin inhibitor activity (1007-1082 TIU/g) of these pigeon pea cultivars. Some simple, inexpensive and easy-to-use domestic processing and cooking methods, namely, soaking (6, 12, 18 h), soaking (12 h)-dehulling, ordinary cooking, pressure cooking and germination (24, 36, 48 h) were found to be quite effective in lowering the level of saponins and trypsin inhibitors in all the pigeon pea cultivars. Pressure cooking of soaked and dehulled seeds lowered the content of saponins to a maximum extent (28 to 38%) followed by ordinary cooking of soaked and dehulled seeds (28 to 35%), soaked dehulled raw seeds (22 to 27%) and 48 h germinated seeds (15 to 19%). Loss of TIA was marginal due to soaking but ordinary as well as pressure cooking of unsoaked and soaked-dehulled pigeon pea seeds reduced the TIA drastically. Pressure cooking of pigeon pea seeds completely destroyed the TIA while it was reduced to the extent of 86-88% against the control in 48 h pigeon pea sprouts.

  15. Totipotency, Pluripotency and Nuclear Reprogramming

    NASA Astrophysics Data System (ADS)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  16. Pea weevil damage and chemical characteristics of pea cultivars determining their resistance to Bruchus pisorum L.

    PubMed

    Nikolova, I

    2016-04-01

    Bruchus pisorum (L.) is one of the most intractable pest problems of cultivated pea in Europe. Development of resistant cultivars is very important to environmental protection and would solve this problem to a great extent. Therefore, the resistance of five spring pea cultivars was studied to B. pisorum: Glyans, Modus; Kamerton and Svit and Pleven 4 based on the weevil damage and chemical composition of seeds. The seeds were classified as three types: healthy seeds (type one), damaged seeds with parasitoid emergence holes (type two) and damaged seeds with bruchid emergence holes (type three). From visibly damaged pea seeds by pea weevil B. pisorum was isolated the parasitoid Triaspis thoracica Curtis (Hymenoptera, Braconidae). Modus, followed by Glyans was outlined as resistant cultivars against the pea weevil. They had the lowest total damaged seed degree, loss in weight of damaged seeds (type two and type three) and values of susceptibility coefficients. A strong negative relationship (r = -0.838) between the weight of type one seeds and the proportion of type three seeds was found. Cultivars with lower protein and phosphorus (P) content had a lower level of damage. The crude protein, crude fiber and P content in damaged seeds significantly or no significantly were increased as compared with the healthy seeds due to weevil damage. The P content had the highest significant influence on pea weevil infestation. Use of chemical markers for resistance to the creation of new pea cultivars can be effective method for defense and control against B. pisorum.

  17. Pea3 transcription factor promotes neurite outgrowth

    PubMed Central

    Kandemir, Basak; Caglayan, Berrak; Hausott, Barbara; Erdogan, Burcu; Dag, Ugur; Demir, Ozlem; Sogut, Melis S.; Klimaschewski, Lars; Kurnaz, Isil A.

    2014-01-01

    Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3. PMID:25018694

  18. Delayed transition to new cell fates during cellular reprogramming

    PubMed Central

    Cheng, Xianrui; Lyons, Deirdre C.; Socolar, Joshua E. S.; McClay, David R.

    2014-01-01

    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues. PMID:24780626

  19. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  20. The pea END1 promoter drives anther-specific gene expression in different plant species.

    PubMed

    Gómez, María D; Beltrán, José-Pío; Cañas, Luis A

    2004-10-01

    END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (beta-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the -330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.

  1. UV-induced changes of active components and antioxidant activity in postharvest pigeon pea [Cajanus cajan (L.) Millsp.] leaves.

    PubMed

    Wei, Zuo-Fu; Luo, Meng; Zhao, Chun-Jian; Li, Chun-Ying; Gu, Cheng-Bo; Wang, Wei; Zu, Yuan-Gang; Efferth, Thomas; Fu, Yu-Jie

    2013-02-13

    In this study, the effect of UV irradiation (UV-A, UV-B, and UV-C) on phytochemicals, total phenolics, and antioxidant activity of postharvest pigeon pea leaves was evaluated. The response of pigeon pea leaves to UV irradiation was phytochemical specific. UV-B and UV-C induced higher levels of phytochemicals, total phenolics, and antioxidant activity in pigeon pea leaves compared with UV-A. Furthermore, UV-B irradiation proved to possess a long-lasting effect on the levels of phenolics and antioxidant activity. After adapting for 48 h at 4 °C following 4 h UV-B irradiation, total phenolics and antioxidant activity were approximately 1.5-fold and 2.2-fold increased from 39.4 mg GAE/g DM and 15.0 μmol GAE/g DM to 59.1 mg GAE/g DM and 32.5 μmol GAE/g DM, respectively. These results indicate that UV irradiation of pigeon pea leaves can be beneficial in terms of increasing active components and antioxidant activity.

  2. Direct reprogramming and biomaterials for controlling cell fate.

    PubMed

    Kim, Eunsol; Tae, Giyoong

    2016-01-01

    Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.

  3. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.

    PubMed

    Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul

    2017-05-15

    Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.

  4. Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea

    NASA Technical Reports Server (NTRS)

    Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.

    1996-01-01

    A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.

  5. Domestication of Pea (Pisum sativum L.): The Case of the Abyssinian Pea

    PubMed Central

    Weeden, Norman F.

    2018-01-01

    Phylogenetic relationships of the Abyssinian pea (Pisum sativum ssp. abyssinicum) to other subspecies and species in the genus were investigated to test between different hypotheses regarding its origin and domestication. An extensive sample of the Pisum sativum ssp. sativum germplasm was investigated, including groups a-1, a-2, b, c, and d as identified by Kwon et al. (2012). A broad sample of P. fulvum but relatively few P. s. ssp. elatius accessions were analyzed. Partial sequences of 18 genes were compared and these results combined with comparisons of additional genes done by others and available in the literature. In total, 54 genes or gene fragment sequences were involved in the study. The observed affinities between alleles in P. ssp. sativum, P. s. ssp. abyssinicum, P. s. ssp. elatius, and P. fulvum clearly demonstrated a close relationship among the three P. sativum subspecies and rejected the hypothesis that the Abyssinian pea was formed by hybridization between one of the P. sativum subspecies and P. fulvum. If hybridization were involved in the generation of the Abyssinian pea, it must have been between P. s. ssp. sativum and P. s. ssp. elatius, although the Abyssinian pea possesses a considerable number of highly unique alleles, implying that the actual P. s. ssp. elatius germplasm involved in such a hybridization has yet to be tested or that the hybridization occurred much longer ago than the postulated 4000 years bp. Analysis of the P. s. ssp. abyssinicum alleles in genomic regions thought to contain genes critical for domestication indicated that the indehiscent pod trait was independently developed in the Abyssinian pea, whereas the loss of seed dormancy was either derived from P. s. ssp. sativum or at least partially developed before the P. s. ssp. abyssinicum lineage diverged from that leading to P. s. ssp. sativum. PMID:29720994

  6. Effect of 14-kDa and 47-kDa protein molecules of age garlic extract on peritoneal macrophages.

    PubMed

    Daneshmandi, Saeed; Hajimoradi, Monire; Ahmadabad, Hasan Namdar; Hassan, Zuhair Mohammad; Roudbary, Maryam; Ghazanfari, Tooba

    2011-03-01

    Garlic (Allium sativum), traditionally being used as a spice worldwide, has different applications and is claimed to possess beneficial effects in several health ailments such as tumor and atherosclerosis. Garlic is also an immunomodulator and its different components are responsible for different properties. The present work aimed to assess the effect of protein fractions of garlic on peritoneal macrophages. 14-kDa and 47-kDa protein fractions of garlic were purified. Mice peritoneal macrophages were lavaged and cultured in a microtiter plate and exposed to different concentrations of garlic proteins. MTT assay was performed to evaluate the viability of macrophage. The amount of nitric oxide (NO) was detected in culture supernatants of macrophages by Griess reagent and furthermore, the cytotoxicity study of culture supernatants was carried out on WEHI-164 fibrosarcoma cell line as tumor necrosis factor-α bioassay. MTT assay results for both 14-kDa and 47-kDa protein fractions of stimulated macrophages were not significant (P > 0.05). Both 14-kDa and 47-kDa fractions significantly suppressed production of NO from macrophages (P = 0.007 and P = 0.003, respectively). Cytotoxicity of macrophages' supernatant on WEHI-164 fibrosarcoma cells was not affected by garlic protein fractions (P = 0.066 for 14-kDa and P = 0.085 for 47-kDa fractions). according to our finding, 14-kDa and 47-kDa fractions of aged garlic extract are able to suppress NO production from macrophages, which can be used as a biological advantage. These molecules had no cytotoxic effect on macrophages and do not increase tumoricidal property of macrophages.

  7. Deterministic direct reprogramming of somatic cells to pluripotency.

    PubMed

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  8. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    PubMed

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  9. Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.

    PubMed

    Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C

    2017-06-05

    Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.

  10. Marine Corps Budgetary Reprogramming Effectiveness

    DTIC Science & Technology

    2015-03-01

    infrastructure (Appropriations Act of Congress, 2008). The environmental restoration is a transfer account controlled by the DOD. Usually in the case of...at an average just over 11 percent and the Marine Corps encircle the backend of the DOD portion of reprogramming with the Marine Corps reprogramming...blue force tracker (BFT), radio systems, high mobility multipurpose wheeled vehicle (HMMWV), medium tactical vehicle replacement (MTVR), and

  11. Dynamic effects of adrenaline (epinephrine) in out-of-hospital cardiac arrest with initial pulseless electrical activity (PEA).

    PubMed

    Nordseth, Trond; Olasveengen, Theresa Mariero; Kvaløy, Jan Terje; Wik, Lars; Steen, Petter Andreas; Skogvoll, Eirik

    2012-08-01

    In cardiac arrest, pulseless electrical activity (PEA) is a challenging clinical syndrome. In a randomized study comparing intravenous (i.v.) access and drugs versus no i.v. access or drugs during advanced life support (ALS), adrenaline (epinephrine) improved return of spontaneous circulation (ROSC) in patients with PEA. Originating from this study, we investigated the time-dependent effects of adrenaline on clinical state transitions in patients with initial PEA, using a non-parametric multi-state statistical model. Patients with available defibrillator recordings were included, of whom 101 received adrenaline and 73 did not. There were significantly more state transitions in the adrenaline group than in the no-adrenaline group (rate ratio = 1.6, p<0.001). Adrenaline markedly increased the rate of transition from PEA to ROSC during ALS and slowed the rate of being declared dead; e.g. by 20 min 20% of patients in the adrenaline group had been declared dead and 25% had obtained ROSC, whereas 50% in the no-adrenaline group have been declared dead and 15% had obtained ROSC. The differential effect of adrenaline could be seen after approx. 10 min of ALS for most transitions. For both groups the probability of deteriorating from PEA to asystole was highest during the first 15 min. Adrenaline increased the rate of transition from PEA to ventricular fibrillation or -tachycardia (VF/VT), and from ROSC to VF/VT. Adrenaline has notable clinical effects during ALS in patients with initial PEA. The drug extends the time window for ROSC to develop, but also renders the patient more unstable. Further research should investigate the optimal dose, timing and mode of adrenaline administration during ALS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Usefulness of 8 kDa protein of Fasciola hepatica in diagnosis of fascioliasis

    PubMed Central

    Kim, Kwangsig; Yang, Hyun Jong

    2003-01-01

    This study was designed to detect and evaluate an antigenicity of low molecular weight proteins of Fasciola hepatica in fascioliasis. Low molecular weight protein of F. hepatica was purified by ammonium sulfate precipitation and Sephacryl S-100 HR gel filtration. The protein obtained was estimated to be 8 kDa on 7.5-15% gradient sodium dodecyl sulfate gel electrophoresis. Immunoblotting studies showed that the 8 kDa protein reacted with human fascioliasis sera, but not other trematodiasis sera. This result suggests that the 8 kDa protein of F. hepatica is one of diagnostic antigens in human fascioliasis without cross-reaction with other human trematodiasis. PMID:12815325

  13. Small molecule-induced cellular fate reprogramming: promising road leading to Rome.

    PubMed

    Li, Xiang; Xu, Jun; Deng, Hongkui

    2018-05-29

    Cellular fate reprogramming holds great promise to generate functional cell types for replenishing new cells and restoring functional loss. Inspired by transcription factor-induced reprogramming, the field of cellular reprogramming has greatly advanced and developed into divergent streams of reprogramming approaches. Remarkably, increasing studies have shown the power and advantages of small molecule-based approaches for cellular fate reprogramming, which could overcome the limitations of conventional transgenic-based reprogramming. In this concise review, we discuss these findings and highlight the future potentiality with particular focus on this new trend of chemical reprogramming. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Role of human oocyte-enriched factors in somatic cell reprograming.

    PubMed

    El-Gammal, Zaynab; AlOkda, Abdelrahman; El-Badri, Nagwa

    2018-06-08

    Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    PubMed

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  16. Review of the health benefits of peas (Pisum sativum L.).

    PubMed

    Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T

    2012-08-01

    Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.

  17. Advances in Reprogramming-Based Study of Neurologic Disorders

    PubMed Central

    Baldwin, Kristin K.

    2015-01-01

    The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing. PMID:25749371

  18. Genomic Tools in Pea Breeding Programs: Status and Perspectives

    PubMed Central

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  19. Yield potential of pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...

  20. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour

    PubMed Central

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-01-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P < 0.05) value of protein and little or no effect on moisture content. There were slight decreases in crude fiber and ash content of the irradiated samples compared with the control sample. The result of functional properties of the irradiated flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour. PMID:24804044

  1. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour.

    PubMed

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-09-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P < 0.05) value of protein and little or no effect on moisture content. There were slight decreases in crude fiber and ash content of the irradiated samples compared with the control sample. The result of functional properties of the irradiated flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour.

  2. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    PubMed

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Reprogramming cellular identity for regenerative medicine

    PubMed Central

    Cherry, Anne B.C.; Daley, George Q.

    2012-01-01

    The choreographed development of over 200 distinct differentiated cell types from a single zygote is a complex and poorly understood process. Whereas development leads unidirectionally towards more restricted cell fates, recent work in cellular reprogramming has proven that striking conversions of one cellular identity into another can be engineered, promising countless applications in biomedical research and paving the way for modeling disease with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. We here review evidence demonstrating that because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. However, manipulating in vitro culture conditions may ultimately enable cell-based models to recapitulate gene-environment interactions. Here, we discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration. PMID:22424223

  4. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    NASA Astrophysics Data System (ADS)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  5. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions

    PubMed Central

    Morton, Roger L.; Schroeder, Hart E.; Bateman, Kaye S.; Chrispeels, Maarten J.; Armstrong, Eric; Higgins, Thomas J. V.

    2000-01-01

    Two α-amylase inhibitors, called αAI-1 and αAI-2, that share 78% amino acid sequence identity and have a differential specificity toward mammalian and insect α-amylases are present in different accessions of the common bean (Phaseolus vulgaris). Using greenhouse-grown transgenic peas (Pisum sativum), we have shown previously that expression of αAI-1 in pea seeds can provide complete protection against the pea weevil (Bruchus pisorum). Here, we report that αAI-1 also protects peas from the weevil under field conditions. The high degree of protection is explained by our finding that αAI-1 inhibits pea bruchid α-amylase by 80% over a broad pH range (pH 4.5–6.5). αAI-2, on the other hand, is a much less effective inhibitor of pea bruchid α-amylase, inhibiting the enzyme by only 40%, and only in the pH 4.0–4.5 range. Nevertheless, this inhibitor was still partially effective in protecting field-grown transgenic peas against pea weevils. The primary effect of αAI-2 appeared to be a delay in the maturation of the larvae. This contrasts with the effect of αAI-1, which results in larval mortality at the first or second instar. These results are discussed in relationship to the use of amylase inhibitors with different specificities to bring about protection of crops from their insect pests or to decrease insect pest populations below the economic injury level. PMID:10759552

  6. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  7. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  8. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  9. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  10. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings.

    PubMed

    Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun

    2011-10-26

    Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.

  11. Fibril formation from pea protein and subsequent gel formation.

    PubMed

    Munialo, Claire Darizu; Martin, Anneke H; van der Linden, Erik; de Jongh, Harmen H J

    2014-03-19

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20 h at pH 2.0. Following heating of pea proteins, it was observed that all of the proteins were hydrolyzed into peptides and that 50% of these peptides were assembled into fibrils. Changes on a structural level in pea proteins were studied using circular dichroism, transmission electron microscopy, and particle size analysis. During the fibril assembly process, an increase in aggregate size was observed, which coincided with an increase in thioflavin T binding, indicating the presence of β-sheet aggregates. Fibrils made using pea proteins were more branched and curly. Gel formation of preformed fibrils was induced by slow acidification from pH 7.0 to a final pH of around pH 5.0. The ability of pea protein-based fibrillar gels to fracture during an amplitude sweep was comparable to those of soy protein and whey protein-based fibrillar gels, although gels prepared from fibrils made using pea protein and soy protein were weaker than those of whey protein. The findings show that fibrils can be prepared from pea protein, which can be incorporated into protein-based fibrillar gels.

  12. Direct Reprogramming of Murine Fibroblasts to Hematopoietic Progenitor Cells

    PubMed Central

    Batta, Kiran; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2014-01-01

    Summary Recent reports have shown that somatic cells, under appropriate culture conditions, could be directly reprogrammed to cardiac, hepatic, or neuronal phenotype by lineage-specific transcription factors. In this study, we demonstrate that both embryonic and adult somatic fibroblasts can be efficiently reprogrammed to clonal multilineage hematopoietic progenitors by the ectopic expression of the transcription factors ERG, GATA2, LMO2, RUNX1c, and SCL. These reprogrammed cells were stably expanded on stromal cells and possessed short-term reconstitution ability in vivo. Loss of p53 function facilitated reprogramming to blood, and p53−/− reprogrammed cells efficiently generated erythroid, megakaryocytic, myeloid, and lymphoid lineages. Genome-wide analyses revealed that generation of hematopoietic progenitors was preceded by the appearance of hemogenic endothelial cells expressing endothelial and hematopoietic genes. Altogether, our findings suggest that direct reprogramming could represent a valid alternative approach to the differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) for disease modeling and autologous blood cell therapies. PMID:25466247

  13. Somatic cell reprogramming informed by the oocyte.

    PubMed

    Gonzalez-Munoz, Elena; Cibelli, Jose B

    2018-05-08

    The successful production of animals and embryonic stem cells (ESCs) using somatic cell nuclear transfer (SCNT) has demonstrated the unmatched nuclear reprogramming capacity of the oocyte and helped prove the degree of plasticity of differentiated cells. The introduction of transcription factors to generate induced pluripotent stem cells (iPSCs) displaced SCNT and, due to its ease of implementation, became the method of choice for cell reprogramming. Nonetheless, iPSC derivation remains inefficient and stochastic. This review article focuses on using the oocyte as a source of reprogramming factors, comparing the SCNT and iPSC mechanisms for remodeling chromatin and acquiring pluripotency.

  14. Spin glass model for dynamics of cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2015-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.

  15. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  16. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  17. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  18. 21 CFR 158.170 - Frozen peas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and designations shall apply: Size designation Round hole sieve size through which peas will pass... paragraph (a)(2) of this section or the applicable sieve size. However, the optional descriptive words... transfer peas to U.S. No. 8 sieve, using (20 cm.) size for container of less than 3 lb. net weight and (30...

  19. Establishing alighting preferences and species transmission differences for Pea seed-borne mosaic virus aphid vectors.

    PubMed

    Congdon, B S; Coutts, B A; Renton, M; Flematti, G R; Jones, R A C

    2017-09-15

    Pea seed-borne mosaic virus (PSbMV) infection causes a serious disease of field pea (Pisum sativum) crops worldwide. The PSbMV transmission efficiencies of five aphid species previously found landing in south-west Australian pea crops in which PSbMV was spreading were studied. With plants of susceptible pea cv. Kaspa, the transmission efficiencies of Aphis craccivora, Myzus persicae, Acyrthosiphon kondoi and Rhopalosiphum padi were 27%, 26%, 6% and 3%, respectively. Lipaphis erysimi did not transmit PSbMV in these experiments. The transmission efficiencies found for M. persicae and A. craccivora resembled earlier findings, but PSbMV vector transmission efficiency data were unavailable for A. kondoi, R. padi and L. erysimi. With plants of partially PSbMV resistant pea cv. PBA Twilight, transmission efficiencies of M. persicae, A. craccivora and R. padi were 16%, 12% and 1%, respectively, reflecting putative partial resistance to aphid inoculation. To examine aphid alighting preferences over time, free-choice assays were conducted with two aphid species representing efficient (M. persicae) and inefficient (R. padi) vector species. For this, alatae were set free on multiple occasions (10-15 repetitions each) amongst PSbMV-infected and mock-inoculated pea or faba bean (Vicia faba) plants. Following release, non-viruliferous R. padi alatae exhibited a general preference for PSbMV-infected pea and faba bean plants after 30min-4h, but preferred mock-inoculated plants after 24h. In contrast, non-viruliferous M. persicae alatae alighted on mock-inoculated pea plants preferentially for up to 48h following their release. With faba bean, M. persicae preferred infected plants at the front of assay cages, but mock-inoculated ones their backs, apparently due to increased levels of natural light there. When preliminary analyses were performed to detect PSbMV-induced changes in the volatile organic compound profiles of pea and faba bean plants, higher numbers of volatiles

  20. Potential alternative hosts for a powdery mildew on pea

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew on pea is Erysiphe pisi, but E. trifolii and E. baeumleri have also been reported. From greenhouse-grown peas, we obtained powdery mildew samples with rDNA ITS ...

  1. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols. PMID:24625220

  2. Artificial acceleration of mammalian cell reprogramming by bacterial proteins.

    PubMed

    Ikeda, Takashi; Uchiyama, Ikuo; Iwasaki, Mio; Sasaki, Tetsuhiko; Nakagawa, Masato; Okita, Keisuke; Masui, Shinji

    2017-10-01

    The molecular mechanisms of cell reprogramming and differentiation involve various signaling factors. Small molecule compounds have been identified to artificially influence these factors through interacting cellular proteins. Although such small molecule compounds are useful to enhance reprogramming and differentiation and to show the mechanisms that underlie these events, the screening usually requires a large number of compounds to identify only a very small number of hits (e.g., one hit among several tens of thousands of compounds). Here, we show a proof of concept that xenospecific gene products can affect the efficiency of cell reprogramming to pluripotency. Thirty genes specific for the bacterium Wolbachia pipientis were forcibly expressed individually along with reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) that can generate induced pluripotent stem cells in mammalian cells, and eight were found to affect the reprogramming efficiency either positively or negatively (hit rate 26.7%). Mechanistic analysis suggested one of these proteins interacted with cytoskeleton to promote reprogramming. Our results raise the possibility that xenospecific gene products provide an alternative way to study the regulatory mechanism of cell identity. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. Therapeutic cloning and cellular reprogramming.

    PubMed

    Rodriguez, Ramon M; Ross, Pablo J; Cibelli, Jose B

    2012-01-01

    Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.

  4. Nodulation, Nitrogen Fixation, and Hydrogen Oxidation by Pigeon Pea Bradyrhizobium spp. in Symbiotic Association with Pigeon Pea, Cowpea, and Soybean †

    PubMed Central

    Nautiyal, C. S.; Hegde, S. V.; van Berkum, P.

    1988-01-01

    The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp. PMID:16347542

  5. Protective Effects of Ultramicronized Palmitoylethanolamide (PEA-um) in Myocardial Ischaemia and Reperfusion Injury in VIVO.

    PubMed

    Di Paola, Rosanna; Cordaro, Marika; Crupi, Rosalia; Siracusa, Rosalba; Campolo, Michela; Bruschetta, Giuseppe; Fusco, Roberta; Pugliatti, Pietro; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-08-01

    Myocardial infarction is the leading cause of death, occurs after prolonged ischemia of the coronary arteries. Restore blood flow is the first intervention help against heart attack. However, reperfusion of the arteries leads to ischemia/reperfusion injury (I/R). The fatty acid amide palmitoylethanolamide (PEA) is an endogenous compound widely present in living organisms, with analgesic and anti-inflammatory properties. The present study evaluated the effect of ultramicronized palmitoylethanolamide (PEA-um) treatment on the inflammatory process associated with myocardial I/R. Myocardial ischemia reperfusion injury was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. PEA-um, was administered (10 mg/kg) 15 min after ischemia and 1 h after reperfusion. In this study, we demonstrated that PEA-um treatment reduces myocardial tissue injury, neutrophil infiltration, adhesion molecules (ICAM-1, P-selectin) expression, proinflammatory cytokines (TNF-α, IL-1β) production, nitrotyrosine and PAR formation, nuclear factor kB expression, and apoptosis (Fas-L, Bcl-2) activation. In addition to study whether the protective effect of PEA-um on myocardial ischemia reperfusion injury is also related to the activation of PPAR-α, in a separate set of experiments it has been performed myocardial I/R in PPARα mice. Genetic ablation of peroxisome proliferator activated receptor (PPAR)-α in PPAR-αKO mice exacerbated Myocardial ischemia reperfusion injury when compared with PPAR-αWT mice. PEA-um induced cardioprotection in PPAR-α wild-type mice, but the same effect cannot be observed in PPAR-αKO mice. Our results have clearly shown a modulation of the inflammatory process, associated with myocardial ischemia reperfusion injury, following administration of PEA-um.

  6. Non-stochastic reprogramming from a privileged somatic cell state

    PubMed Central

    Guo, Shangqin; Zi, Xiaoyuan; Schulz, Vincent P.; Cheng, Jijun; Zhong, Mei; Koochaki, Sebastian H.J.; Megyola, Cynthia M.; Pan, Xinghua; Heydari, Kartoosh; Weissman, Sherman M.; Gallagher, Patrick G.; Krause, Diane S.; Fan, Rong; Lu, Jun

    2014-01-01

    SUMMARY Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient, and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a non-stochastic manner. Subsets of murine hematopoietic progenitors are privileged, whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after 4–5 divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ~8 hours. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression, and is increased by p53-knockdown. This ultrafast-cycling population accounts for >99% of the bulk reprogramming activity in wildtype or p53-knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state, and suggest that cell cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PMID:24486105

  7. PEA: an integrated R toolkit for plant epitranscriptome analysis.

    PubMed

    Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang

    2018-05-29

    The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.

  8. Feeding value of field pea as a protein source in forage-based diets fed to beef cattle.

    PubMed

    Soto-Navarro, S A; Encinias, A M; Bauer, M L; Lardy, G P; Caton, J S

    2012-02-01

    Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation

  9. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development

    PubMed Central

    Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming

    2015-01-01

    Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856

  10. Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State

    PubMed Central

    Fu, Ji-Dong; Stone, Nicole R.; Liu, Lei; Spencer, C. Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G.; Srivastava, Deepak

    2013-01-01

    Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  11. Estimating demand for perennial pigeon pea in Malawi using choice experiments.

    PubMed

    Waldman, Kurt B; Ortega, David L; Richardson, Robert B; Snapp, Sieglinde S

    2017-01-01

    Perennial crops have numerous ecological and agronomic advantages over their annual counterparts. We estimate discrete choice models to evaluate farmers' preferences for perennial attributes of pigeon pea intercropped with maize in central and southern Malawi. Pigeon pea is a nitrogen-fixing leguminous crop, which has the potential to ameliorate soil fertility problems related to continuous maize cultivation, which are common in Southern Africa. Adoption of annual pigeon pea is relatively low but perennial production of pigeon pea may be more appealing to farmers due to some of the ancillary benefits associated with perenniality. We model perennial production of pigeon pea as a function of the attributes that differ between annual and perennial production: lower labor and seed requirements resulting from a single planting with multiple harvests, enhanced soil fertility and higher levels of biomass production. The primary tradeoff associated with perennial pigeon pea intercropped with maize is competition with maize in subsequent years of production. While maize yield is approximately twice as valuable to farmers as pigeon pea yield, we find positive yet heterogeneous demand for perenniality driven by soil fertility improvements and pigeon pea grain yield.

  12. Growth parameters of vegetable pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Pigeon pea is an important crop in the dry regions of eastern Kenya, due to its drought tolerance and high protein content; however, farmer’s yield is limiting. Ojwang et al. (HortTech Vol 26 (1), 2016) evaluated twelve pigeon pea cultivars for flowering, plant height, branches, pod length and yield...

  13. Quality evaluation of stiff porridges prepared from Irish potato (Solanum tuberosum) and pigeon pea (Cajanus cajan) starch blends.

    PubMed

    Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne

    2012-06-01

    Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.

  14. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United States from Kenya only under the following conditions and in accordance with all other applicable...

  15. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  16. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  17. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  18. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  19. Five classic articles in somatic cell reprogramming.

    PubMed

    Park, In-Hyun

    2010-09-01

    Research on somatic cell reprogramming has progressed significantly over the past few decades, from nuclear transfer into frogs' eggs in 1952 to the derivation of human-induced pluripotent stem (iPS) cells in the present day. In this article, I review five landmark papers that have laid the foundation for current efforts to apply somatic cell reprogramming in the clinic.

  20. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    PubMed

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  1. Ly α and UV Sizes of Green Pea Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Wang, Junxian; Malhotra, Sangeeta

    Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lymore » α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.« less

  2. Lyα and UV Sizes of Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Wang, Junxian

    2017-03-01

    Green Peas are nearby analogs of high-redshift Lyα-emitting galaxies (LAEs). To probe their Lyα escape, we study the spatial profiles of Lyα and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. We extract the spatial profiles of Lyα emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Lyα emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lyα spatial profile is about 2-4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high-z LAEs probably have larger Lyα sizes than UV sizes. We also compare the spatial profiles of Lyα photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Lyα line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Lyα line wings. We show that Green Peas and MUSE z = 3-6 LAEs have similar Lyα and UV continuum sizes, which probably suggests that starbursts in both low-z and high-z LAEs drive similar gas outflows illuminated by Lyα light. Five Lyman continuum (LyC) leakers in this sample have similar Lyα to UV continuum size ratios (˜1.4-4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.

  3. Insecticidal components from field pea extracts: sequences of some variants of pea albumin 1b.

    PubMed

    Taylor, Wesley G; Sutherland, Daniel H; Olson, Douglas J H; Ross, Andrew R S; Fields, Paul G

    2004-12-15

    Methanol soluble insecticidal peptides with masses of 3752, 3757, and 3805 Da, isolated from crude extracts (C8 extracts) derived from the protein-enriched flour of commercial field peas [Pisum sativum (L.)], were purified by reversed phase chromatography and, after reduction and alkylation, were sequenced by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry with the aid of various peptidases. These major peptides were variants of pea albumin 1b (PA1b) with methionine sulfoxide rather than methionine at position 12. Peptide 3752 showed additional variations at positions 29 (valine for isoleucine) and 34 (histidine for asparagine). A minor, 37 amino acid peptide with a molecular mass of 3788 Da was also sequenced and differed from a known PA1b variant at positions 1, 25, and 31. Sequence variants of PA1b with their molecular masses were compiled, and variants that matched the accurate masses of the experimental peptides were used to narrow the search. MALDI postsource decay experiments on pronase fragments helped to confirm the sequences. Whole and dehulled field peas gave insecticidal C8 extracts in the laboratory that were enriched in peptides with masses of 3736, 3741, and 3789 Da, as determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry. It was therefore concluded that oxidation of the methionine residues to methionine sulfoxide occurred primarily during the processing of dehulled peas in a mill.

  4. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique

    PubMed Central

    Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.

    2017-01-01

    Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707

  5. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.

    PubMed

    Qian, Li; Berry, Emily C; Fu, Ji-dong; Ieda, Masaki; Srivastava, Deepak

    2013-06-01

    Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.

  6. Chromatin reprogramming in breast cancer.

    PubMed

    Swinstead, Erin E; Paakinaho, Ville; Hager, Gordon

    2018-04-24

    Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions, and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions and reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single cell approaches enable the coupling of population based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.

  7. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  8. Beta-ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme.

    PubMed

    Jones, A Lesley; Gane, Andy M; Herbert, Derek; Willey, David L; Rutter, Andrew J; Kille, Peter; Dancer, Jane E; Harwood, John L

    2003-03-01

    A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during

  9. 2-Pentadecyl-2-Oxazoline, the Oxazoline of Pea, Modulates Carrageenan-Induced Acute Inflammation

    PubMed Central

    Petrosino, Stefania; Campolo, Michela; Impellizzeri, Daniela; Paterniti, Irene; Allarà, Marco; Gugliandolo, Enrico; D’Amico, Ramona; Siracusa, Rosalba; Cordaro, Marika; Esposito, Emanuela; Di Marzo, Vincenzo; Cuzzocrea, Salvatore

    2017-01-01

    N-acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, with N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic and neuroprotective activities. Because PEA is produced on demand and exerts pleiotropic effects, the modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here we investigate the effect of 2-Pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA, on human recombinant NAAA in vitro and in an established model of Carrageenan (CAR)-induced rat paw inflammation. PEA-OXA dose-dependently significantly inhibited recombinant NAAA and, orally administered to rats (10 mg/kg), limiting histological damage, thermal hyperalgesia and the increase of infiltrating inflammatory cells after CAR injection in the rat right hindpaw, compared to ultramicronized PEA given orally at the same dose (10 mg/kg). These effects were accompanied by elevation of paw PEA levels. Moreover, PEA-OXA markedly reduced neutrophil infiltration and pro-inflammatory cytokine release and prevented CAR-induced IκB-α degradation, nuclear translocation of NF-κB p65, the increase of inducible nitric oxide synthase, cyclooxygenase-2, intercellular adhesion molecule-1, and mast cell activation. Experiments in PPAR-α knockout mice showed that the anti-inflammatory effects of PEA-OXA were not dependent on the presence of PPAR-α receptors. In conclusion, NAAA modulators as PEA-OXA could help to maximize the tissue availability of PEA by increasing its levels and anti-inflammatory effects. PMID:28611664

  10. Local epigenetic reprograming induced by G-quadruplex ligands

    PubMed Central

    Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-01-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here we demonstrate that impeding replication by small molecule-mediated stabilisation of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterisation of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps, first loss of H3K4me3 and subsequently DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming. PMID:29064488

  11. Local epigenetic reprogramming induced by G-quadruplex ligands

    NASA Astrophysics Data System (ADS)

    Guilbaud, Guillaume; Murat, Pierre; Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-11-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

  12. Overcoming reprogramming resistance of Fanconi anemia cells

    PubMed Central

    Müller, Lars U. W.; Milsom, Michael D.; Harris, Chad E.; Vyas, Rutesh; Brumme, Kristina M.; Parmar, Kalindi; Moreau, Lisa A.; Schambach, Axel; Park, In-Hyun; London, Wendy B.; Strait, Kelly; Schlaeger, Thorsten; DeVine, Alexander L.; Grassman, Elke; D'Andrea, Alan; Daley, George Q.

    2012-01-01

    Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs. PMID:22371882

  13. The Pisum Genus: Getting out of Pea Soup!

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) has long been a model for plant genetics and is a widely grown pulse crop producing protein-rich seeds in a sustainable manner. However, many questions remain open about (sub)species relationships in the Pisumgenus. The ongoing pea genome sequencing project and the recent geno...

  14. Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1997-01-01

    Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)

  15. Assessment of flubendiamide residues in pigeon pea in different agro-climatic zones of India.

    PubMed

    Kale, V D; Walunj, A R; Battu, R S; Sahoo, Sanjay K; Singh, Balwinder; Paramasivam, M; Roy, Sankhajit; Banerjee, Tirthankar; Banerjee, Hemanta; Rao, Cherukuri Sreenivasa; Reddy, D Jagdishwar; Reddy, K Narasimha; Reddy, C Narendra; Tripathy, Vandana; Jaya, Maisnam; Pant, Shashi; Gupta, Monika; Singh, Geeta; Sharma, K K

    2012-07-01

    Supervised field trials were conducted at the research farms of four agricultural universities located at different agro-climatic zones of India to find out the harvest time residues of flubendiamide and its des-iodo metabolite on pigeon pea (Cajanus cajan) during the year 2006-2007. Two spray applications of flubendiamide 20 WDG at 50 g (T(1)) and 100 g (T(2)) a.i./ha were given to the crop at 15-days interval. The foliage samples at different time intervals were drawn at only one location, however, the harvest time samples of pigeon pea grain, shell, and straw were drawn at all the four locations. The residues were estimated by HPLC coupled with UV-VIS variable detector. No residues of flubendiamide and its des-iodo metabolite were found at harvest of the crop at or above the LOQ level of 0.05 μg/g. On the basis of the data generated, a pre-harvest interval (PHI) of 28 days has been recommended and the flubendiamide 20 WDG has been registered for use on pigeon pea by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India and the MRL has been fixed by Ministry of Health and Family Welfare, Government of India under Prevention of Food and Adulteration as 0.05 μg/g on pigeon pea grains.

  16. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  17. Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men--a randomized crossover trial.

    PubMed

    Mollard, Rebecca C; Luhovyy, Bohdan L; Smith, Christopher; Anderson, G Harvey

    2014-12-01

    Whether pulse components can be used as value-added ingredients in foods formulated for blood glucose (BG) and food intake (FI) control requires investigation. The objective of this study was to examine of the effects of pea components on FI at an ad libitum meal, as well as appetite and BG responses before and after the meal. In a repeated-measures crossover trial, men (n = 15) randomly consumed (i) pea hull fibre (7 g), (ii) pea protein (10 g), (iii) pea protein (10 g) plus hull fibre (7 g), (iv) yellow peas (406 g), and (v) control. Pea hull fibre and protein were served with tomato sauce and noodles, while yellow peas were served with tomato sauce. Control was noodles and tomato sauce. FI was measured at a pizza meal (135 min). Appetite and BG were measured pre-pizza (0-135 min) and post-pizza (155-215 min). Protein plus fibre and yellow peas led to lower pre-pizza BG area under the curve compared with fibre and control. At 30 min, BG was lower after protein plus fibre and yellow peas compared with fibre and control, whereas at 45 and 75 min, protein plus fibre and yellow peas led to lower BG compared with fibre (p < 0.05). Following the pizza meal (155 min), yellow peas led to lower BG compared with fibre (p < 0.05). No differences were observed in FI or appetite. This trial supports the use of pea components as value-added ingredients in foods designed to improve glycemic control.

  18. Understanding direct neuronal reprogramming-from pioneer factors to 3D chromatin.

    PubMed

    Ninkovic, Jovica; Götz, Magdalena

    2018-06-14

    Cell replacement therapies aim at reestablishment of neuronal circuits after brain injury, stroke or neurodegeneration. Recently, direct reprogramming of resident glial cells into the affected neuronal subtypes has become a feasible and promising option for central nervous system regeneration. Direct reprogramming relies on the implementation of a new transcriptional program defining the desired neuronal identity in fully differentiated glial cells implying the more or less complete down-regulation of the program for the former identity of the glial cell. Despite the enormous progress achieved in this regard with highly efficient in vivo reprogramming after injury, a number of hurdles still need to be resolved. One way to further improve direct neuronal reprogramming is to understand the molecular hurdles which we discuss with the focus on chromatin states of the starting versus the reprogrammed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cellular reprogramming in skin cancer.

    PubMed

    Song, Ihn Young; Balmain, Allan

    2015-06-01

    Early primitive stem cells have long been viewed as the cancer cells of origin (tumor initiating target cells) due to their intrinsic features of self-renewal and longevity. However, emerging evidence suggests a surprising capacity for normal committed cells to function as reserve stem cells upon reprogramming as a consequence of tissue damage resulting in inflammation and wound healing. This results in an alternative concept positing that tumors may originate from differentiated cells that can re-acquire stem cell properties due to genetic or epigenetic reprogramming. It is likely that both models are correct, and that a continuum of potential cells of origin exists, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells. A combination of the nature of the target cell and the specific types of gene mutations introduced determine tumor cell lineage, as well as potential for malignant conversion. Evidence from mouse skin models of carcinogenesis suggests that initiated cells at different stages within a stem cell hierarchy have varying degrees of requirement for reprogramming (e.g. inflammation stimuli), depending on their degree of differentiation. This article will present evidence in favor of these concepts that has been developed from studies of several mouse models of skin carcinogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

    PubMed

    Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak

    2017-03-07

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.

  1. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming

    PubMed Central

    Mohamed, Tamer M. A.; Stone, Nicole R.; Berry, Emily C.; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N.; Srivastava, Deepak

    2017-01-01

    Background Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) in situ represents a promising strategy for cardiac regeneration. A combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5 (GMT), can convert fibroblasts into iCMs, albeit with low efficiency in vitro. Methods We screened 5,500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. Results We found that a combination of the transforming growth factor (TGF)-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency eight-fold when added to GMT-overexpressing cardiac fibroblasts. The small-molecules also enhanced the speed and the quality of cell conversion, as we observed beating cells as early as 1 week after reprogramming compared to 6–8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared to those exposed to only GMT. Human cardiac reprogramming was similarly enhanced upon TGF-β and WNT inhibition and was achieved most efficiently with GMT plus Myocardin. Conclusions Thus, TGF-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. PMID:27834668

  2. Characterization of pea (Pisum sativum) seed protein fractions.

    PubMed

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  3. Potential alternative hosts for the pea powdery mildew pathogen Erysiphe trifolii

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew pathogen on pea is Erysiphe pisi, but E. baeumleri and E. trifolii have also been reported. We recently showed that E. trifolii is frequently found on pea in th...

  4. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice.

    PubMed

    Lee, Rui-Yun; Reiner, Daniela; Dekan, Gerhard; Moore, Andrew E; Higgins, T J V; Epstein, Michelle M

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice.

  5. Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice

    PubMed Central

    Dekan, Gerhard; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  6. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  7. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    PubMed

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A comparison of non-integrating reprogramming methods

    PubMed Central

    Schlaeger, Thorsten M; Daheron, Laurence; Brickler, Thomas R; Entwisle, Samuel; Chan, Karrie; Cianci, Amelia; DeVine, Alexander; Ettenger, Andrew; Fitzgerald, Kelly; Godfrey, Michelle; Gupta, Dipti; McPherson, Jade; Malwadkar, Prerana; Gupta, Manav; Bell, Blair; Doi, Akiko; Jung, Namyoung; Li, Xin; Lynes, Maureen S; Brookes, Emily; Cherry, Anne B C; Demirbas, Didem; Tsankov, Alexander M; Zon, Leonard I; Rubin, Lee L; Feinberg, Andrew P; Meissner, Alexander; Cowan, Chad A; Daley, George Q

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs1–3) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV)4, episomal (Epi)5 and mRNA transfection mRNA6 methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation. PMID:25437882

  9. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney

    PubMed Central

    Tain, You-Lin; Joles, Jaap A.

    2015-01-01

    Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of hypertension has been assessed in many mother-child cohorts of human developmental programming, interventions necessary to prove causation and provide a reprogramming strategy are lacking. Since the developing kidney is particularly vulnerable to environmental insults and blood pressure is determined by kidney function, renal programming is considered key in developmental programming of hypertension. Common pathways, whereby both genetic and acquired developmental programming converge into the same phenotype, have been recognized. For instance, the same reprogramming interventions aimed at shifting nitric oxide (NO)-reactive oxygen species (ROS) balance, such as perinatal citrulline or melatonin supplements, can be protective in both genetic and developmentally programmed hypertension. Furthermore, a significantly increased expression of gene Ephx2 (soluble epoxide hydrolase) was noted in both genetic and acquired animal models of hypertension. Since a suboptimal environment is often multifactorial, such common reprogramming pathways are a practical finding for translation to the clinic. This review provides an overview of potential clinical applications of reprogramming strategies to prevent programmed hypertension. We emphasize the kidney in the following areas: mechanistic insights from human studies and animal models to interpret programmed hypertension; identified risk factors of human programmed hypertension from mother-child cohorts; and the impact of reprogramming strategies on programmed hypertension from animal models. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies. PMID

  10. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    PubMed

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (p<0.05). Pea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (p<0.05). Hepatic mRNA concentration of genes involved in fatty acids synthesis, such as fatty acid synthase and stearoyl-CoA desaturase, was lower in pea protein-fed rats than in rats fed casein (p<0.05). In conclusion, the present study demonstrates a marked cholesterol and triglyceride-lowering activity of pea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  11. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Possibility of the transformation of eEF-2 (100 kDa) to eEF-2 (65 kDa) in the peptide elongation process in vitro.

    PubMed

    Gajko, A; Sredzińska, K; Galasiński, W; Gindzieński, A

    1999-02-16

    Two active eEF-2 polypeptides of approximately 100 and 65 kDa were copurified from rat liver cells and separated. The fate of eEF-2 (100 kDa) during its binding to ribosomes and in the translocation step of the peptide elongation process was investigated. It was shown that eEF-2 (100 kDa) did not change its form during the process of binding to the ribosomes. In the postribosomal supernatant, obtained from the postincubation mixture of the elongation process, only eEF-2 (65 kDa) was found. These results suggest that the form of eEF-2 (100 kDa), when bound to the ribosome during the elongation process, is transformed to eEF-2 (65 kDa). Copyright 1999 Academic Press.

  13. [Non-thermal effect of GSM electromagnetic radiation on quality of pea seeds].

    PubMed

    Veselova, T V; Veselovskiĭ, V A; Deev, L I; Baĭzhumanov, A A

    2012-01-01

    The seeds with low level of room temperature phosphorescence (RTP) were selected from a lot of air-dry peas (Pisum sativum) with 62% germination. These strong seeds (95-97% germination percentage) in air-dry, imbibed or emerged states were exposed to 905 MHz GSM-band electromagnetic radiation (EMR). The following effects of EMR were observed. Fraction II with higher RTP level appeared in the air-dry seeds. The germination rate decreased 2-3 fold in the air-dry, swollen and sprouting seeds due to an increase in the ratio of the seedlings with morphological defects (from 3 to 38%) and suffocated seeds (from 1 to 15%). We suggest tentative mechanisms to account for the decreased fitness of peas under GSM-band EMR (905 MHz); also discussed is the role of non-enzymatic hydrolysis of carbohydrates and amino-carbonyl reaction in this process.

  14. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content.

    PubMed

    Kumar, Shiv; Bejiga, G; Ahmed, S; Nakkoul, H; Sarker, A

    2011-03-01

    Grass pea is a promising crop for adaptation under climate change because of its tolerance to drought, water-logging and salinity, and being almost free from insect-pests and diseases. In spite of such virtues, global area under its cultivation has decreased because of ban on its cultivation in many countries. The ban is imposed due to its association with neurolathyrism, a non-reversible neurological disorder in humans and animals due to presence of neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) in its seedlings and seeds. The traditional varieties of grass pea contain 0.5-2.5% β-ODAP. Exploitable genetic variability for β-ODAP has been observed for development of low ODAP varieties, which along with improved agronomic and detoxification practices can help reduce the risk of lathyrism. Collaborative efforts between ICARDA and NARS have resulted in development of improved varieties such as Wasie in Ethiopia, Ratan, Prateek and Mahateora in India, and BARI Khesari-1 and BARI Khesari-2 in Bangladesh with <0.10% β-ODAP. Soil application of 15-20 kg ha(-1) zinc sulphate, early planting, and soaking seeds in water have shown significant effects on β-ODAP. Because of the often cross-pollination nature, the current breeding procedures being followed in grass pea requires paradigm shift in its approach for a possible genetic breakthrough. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Algorithm for cellular reprogramming.

    PubMed

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  16. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    PubMed

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-02-16

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the "developmental origins of health and disease" (DOHaD) or "developmental programming". The DOHaD concept offers the "reprogramming" strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  17. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    PubMed

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The 29-kDa proteins phosphorylated ion thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M.E.; Yan Zhu; O'Neill, S.

    Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less

  19. Diversity of Pea-Associated F. proliferatum and F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis

    PubMed Central

    Waśkiewicz, Agnieszka; Stępień, Łukasz; Wilman, Karolina; Kachlicki, Piotr

    2013-01-01

    Fusarium proliferatum and F. verticillioides are considered as minor pathogens of pea (Pisum sativum L.). Both species can survive in seed material without visible disease symptoms, but still contaminating it with fumonisins. Two populations of pea-derived F. proliferatum and F. verticillioides strains were subjected to FUM1 sequence divergence analysis, forming a distinct group when compared to the collection strains originating from different host species. Furthermore, the mycotoxigenic abilities of those strains were evaluated on the basis of in planta and in vitro fumonisin biosynthesis. No differences were observed in fumonisin B (FB) levels measured in pea seeds (maximum level reached 1.5 μg g−1); however, in rice cultures, the majority of F. proliferatum genotypes produced higher amounts of FB1–FB3 than F. verticillioides strains. PMID:23470545

  20. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    PubMed

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    PubMed

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  2. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming

    PubMed Central

    Mitani, Yasuyuki; Vagnozzi, Ronald J.; Millay, Douglas P.

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non–muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle–specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.—Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. PMID:27825107

  3. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less

  4. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into

  5. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    NASA Astrophysics Data System (ADS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-10-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings.

  6. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry pea crop insurance provisions. 457.140 Section 457.140 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.140 Dry pea crop insurance...

  7. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance...

  8. 1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  9. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  10. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.

    PubMed

    Ferraro, Kiva; Jin, Alena L; Nguyen, Trinh-Don; Reinecke, Dennis M; Ozga, Jocelyn A; Ro, Dae-Kyun

    2014-09-16

    Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in

  11. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine

    PubMed Central

    Asuelime, Grace E.; Shi, Yanhong

    2012-01-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting. PMID:22371436

  12. KASP assays for powdery mildew resistance breeding in pea

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea, caused by Erysiphe pisi DC, is a serious production constraint to pea (Pisum sativum L.) production in the U.S. and elsewhere. Utilization of genetic resistance to powdery mildew using er1 has been an effective strategy to manage this disease. This gene, er1, conferring powde...

  13. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.

    PubMed

    Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong

    2018-05-04

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.

  14. Effects of ionizing radiation on sensorial, chemical, and microbiological quality of frozen corn and peas.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B

    2007-08-01

    The effects of irradiation (0, 1.8, and 4.5 kGy) on the quality of frozen corn and peas were investigated during a 12month period of postirradiation storage at -18 degrees C. Irradiation of frozen corn and peas caused a reduction in ascorbic acid content of both vegetables and a loss of texture in peas but had no significant effects on instrumental color parameters (L*, a*, and b*), carotenoid and chlorophyll content, or antioxidant capacity of corn and peas. Irradiation reduced microbial loads of frozen peas and increased display life at 23 degrees C of thawed peas by preserving the green color, apparently because of slower increases in the population of acid-producing microorganisms in the irradiated samples. Overall, irradiation significantly reduced the microbial load and increased the display life of peas and had minimal detrimental effects on the quality of frozen corn and peas.

  15. Epigenomic Reprogramming of the Developing Reproductive Tract and Disease Susceptibility in Adulthood

    PubMed Central

    Walker, Cheryl Lyn

    2014-01-01

    During development, epigenetic programs are “installed” on the genome that direct differentiation and normal tissue and organ function in adulthood. Consequently, development is also a period of susceptibility to reprogramming of the epigenome. Developmental reprogramming occurs when an adverse stimulus or insult interrupts the proper “install” of epigenetic programs during development, reprogramming normal physiological responses in such a way as to promote disease later in life. Some of the best examples of developmental reprogramming involve the reproductive tract, where early life exposures to environmental estrogens can increase susceptibility to benign and malignant tumors in adulthood including leiomyoma (fibroids), endometrial and prostate cancer. Although specific mechanism(s) by which environmental estrogens reprogram the developing epigenome were unknown, both DNA and histone methylation were considered likely targets for epigenetic reprogramming. We have now identified a mechanism by which developmental exposures to environmental estrogens reprogram the epigenome by inducing inappropriate activation of nongenomic estrogen receptor (ER) signaling. Activation of non-genomic ER signaling via the PI3K pathway activates the kinase AKT/PKB in the developing reproductive tract, which phosphorylates the histone lysine methyltransferase (HKMT) EZH2, the key “installer” of epigenetic histone H3 lysine 27 trimethylation (H3K27me3). AKT phosphorylation inactivates EZH2, decreasing levels of H3K27 methylation, a repressive mark that inhibits gene expression, in the developing uterus. As a result of this developmental reprogramming, many estrogen-responsive genes become hypersensitive to estrogen in adulthood, exhibiting elevated expression throughout the estrus cycle, and resulting in a “hyper-estrogenized” phenotype in the adult uterus that promotes development of hormone dependent tumors. PMID:21656660

  16. LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming

    PubMed Central

    Huang, Delun; Wang, Ling; Duan, Jingyue; Huang, Chang; Tian, Xiuchun (Cindy); Zhang, Ming

    2018-01-01

    ABSTRACT The regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb) serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs). However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs), and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation. PMID:29212799

  17. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange

    PubMed Central

    Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.

    2017-01-01

    The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766

  18. Functional Properties of Pea (Pisum sativum, L.) Protein Isolates Modified with Chymosin

    PubMed Central

    Barać, Miroljub; Čabrilo, Slavica; Pešić, Mirjana; Stanojević, Slađana; Pavlićević, Milica; Maćej, Ognjen; Ristić, Nikola

    2011-01-01

    In this paper, the effects of limited hydrolysis on functional properties, as well as on protein composition of laboratory-prepared pea protein isolates, were investigated. Pea protein isolates were hydrolyzed for either 15, 30 and 60 min with recombined chymosin (Maxiren). The effect of enzymatic action on solubility, emulsifying and foaming properties at different pH values (3.0; 5.0; 7.0 and 8.0) was monitored. Chymosin can be a very useful agent for improvement of functional properties of isolates. Action of this enzyme caused a low degree of hydrolysis (3.9–4.7%), but improved significantly functional properties of pea protein isolates (PPI), especially at lower pH values (3.0–5.0). At these pH values all hydrolysates had better solubility, emulsifying activity and foaming stability, while longer-treated samples (60 min) formed more stable emulsions at higher pH values (7.0, 8.0) than initial isolates. Also, regardless of pH value, all hydrolysates showed improved foaming ability. A moderate positive correlation between solubility and emulsifying activity index (EAI) (0.74) and negative correlation between solubility and foam stability (−0.60) as well as between foam stability (FS) and EAI (−0.77) were observed. Detected enhancement in functional properties was a result of partial hydrolysis of insoluble protein complexes. PMID:22272078

  19. Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.

    USDA-ARS?s Scientific Manuscript database

    Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...

  20. 76 FR 37136 - Post-Entry Amendment (PEA) Processing Test: Modification, Clarification, and Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    .... Customs and Border Protection's (CBP's) Post-Entry Amendment (PEA) Processing test, which allows the...: The Post-Entry Amendment (PEA) Processing test modification set forth in this document is effective...: Background I. Post-Entry Amendment Processing Test Program The Post-Entry Amendment (PEA) Processing test...

  1. NF-κB activation impairs somatic cell reprogramming in ageing.

    PubMed

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  2. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    PubMed Central

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318

  3. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Sijun, E-mail: sliu@iastate.ed; Sivakumar, S., E-mail: sivaento@iastate.ed; Sparks, Wendy O., E-mail: wosparks@iastate.ed

    2010-05-25

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptakemore » of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.« less

  4. Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.

    PubMed

    Malinowski, Andrzej R; Fisher, Amanda G

    2016-01-01

    Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts.

  5. Addition of sucralose enhances the release of satiety hormones in combination with pea protein.

    PubMed

    Geraedts, Maartje C P; Troost, Freddy J; Saris, Wim H M

    2012-03-01

    Exposing the intestine to proteins or tastants, particularly sweet, affects satiety hormone release. There are indications that each sweetener has different effects on this release, and that combining sweeteners with other nutrients might exert synergistic effects on hormone release. STC-1 cells were incubated with acesulfame-K, aspartame, saccharine, sucralose, sucrose, pea, and pea with each sweetener. After a 2-h incubation period, cholecystokinin(CCK) and glucagon-like peptide 1 (GLP-1) concentrations were measured. Using Ussing chamber technology, the mucosal side of human duodenal biopsies was exposed to sucrose, sucralose, pea, and pea with each sweetener. CCK and GLP-1 levels were measured in basolateral secretions. In STC-1 cells, exposure to aspartame, sucralose, sucrose, pea, and pea with sucralose increased CCK levels, whereas GLP-1 levels increased after addition of all test products. Addition of sucrose and sucralose to human duodenal biopsies did not affect CCK and GLP-1 release; addition of pea stimulated CCK and GLP-1 secretion. Combining pea with sucrose and sucralose induced even higher levels of CCK and GLP-1. Synchronous addition of pea and sucralose to enteroendocrine cells induced higher levels of CCK and GLP-1 than addition of each compound alone. This study shows that combinations of dietary compounds synergize to enhance satiety hormone release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  7. Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products

    PubMed Central

    Marinangeli, Christopher P. F.; Tremorin, Denis

    2018-01-01

    Incorporating low cost pulses, such as yellow peas, that are rich in nutrients and low in fertilizer requirements, into daily food items, can improve the nutritional and sustainability profile of national diets. This paper systematically characterized the effect of using Canadian grown whole yellow pea and refined wheat flours on nutritional density and carbon footprint in cereal-based food products. Canada-specific production data and the levels of 27 macro- and micronutrients were used to calculate the carbon footprint and nutrient balance score (NBS), respectively, for traditional and reformulated pan bread, breakfast cereal, and pasta. Results showed that partial replacement of refined wheat flour with yellow pea flour increased the NBS of pan bread, breakfast cereal, and pasta by 11%, 70%, and 18%, and decreased the life cycle carbon footprint (kg CO2 eq/kg) by 4%, 11%, and 13%, respectively. The cultivation stage of wheat and yellow peas, and the electricity used during the manufacturing stage of food production, were the hotspots in the life cycle. The nutritional and greenhouse gas (GHG) data were combined as the nutrition carbon footprint score (NCFS) (NBS/g CO2 per serving), a novel indicator that reflects product-level nutritional quality per unit environmental impact. Results showed that yellow pea flour increased the NCFS by 15% for pan bread, 90% for breakfast cereal, and 35% for pasta. The results and framework of this study are relevant for food industry, consumers, as well as global and national policy-makers evaluating the effect of dietary change and food reformulation on nutritional and climate change targets. PMID:29659497

  8. Physicochemical and sensory characteristics of soy sauce substituted with pigeon pea (Cajanus cajan (Linn.))

    NASA Astrophysics Data System (ADS)

    Retnaningsih, C.; Sumardi; Meiliana; Surya, A.

    2018-01-01

    The objective of this study wasto investigate the physicochemical and sensory properties of the soy sauce substituted with pigeon pea. Soybean was substituted by 20%, 50%, 75%, and 100% of pigeon pea. The observation included viscosity, total solids, protein levels, antioxidant activity, and sensory characteristics. The results showed that the more substitution of pigeon pea, the less the protein content of soy sauce and the more the antioxidant activity as well as total solids. The most favored group was 25% pigeon pea substitution. It is suggested that soy sauce could be prepared using 25% to 75% pigeon pea substitution.

  9. Cellular trajectories and molecular mechanisms of iPSC reprogramming.

    PubMed

    Apostolou, Effie; Stadtfeld, Matthias

    2018-06-16

    The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits.

    PubMed Central

    Fearnley, I M; Finel, M; Skehel, J M; Walker, J E

    1991-01-01

    The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859

  11. Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.

    PubMed

    Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F; Zeeman, Sam; Smith, Alison; Martin, Cathie

    2002-08-01

    Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.

  12. Forecasting model for Pea seed-borne mosaic virus epidemics in field pea crops in a Mediterranean-type environment.

    PubMed

    Congdon, B S; Coutts, B A; Jones, R A C; Renton, M

    2017-09-15

    An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    PubMed Central

    Li, Dong; Secher, Jan O.; Mashayekhi, Kaveh; Nielsen, Troels T.; Hyttel, Poul; Freude, Kristine K.

    2017-01-01

    ABSTRACT Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig. PMID:28426281

  14. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation.

    PubMed

    Woźniak, Agnieszka; Drzewiecka, Kinga; Kęsy, Jacek; Marczak, Łukasz; Narożna, Dorota; Grobela, Marcin; Motała, Rafał; Bocianowski, Jan; Morkunas, Iwona

    2017-08-24

    The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea ( Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid ( Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum . Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.

  15. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  16. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice

    PubMed Central

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C.; Zhou, Qiao

    2016-01-01

    Aims/hypothesis Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Methods Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. Results We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue’s response to clear the pancreas from insufficiently reprogrammed cells. Conclusions/interpretation Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications. PMID:26693711

  17. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.

    PubMed

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C; Zhou, Qiao

    2016-03-01

    Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue's response to clear the pancreas from insufficiently reprogrammed cells. Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.

  18. Biophysical regulation of epigenetic state and cell reprogramming

    NASA Astrophysics Data System (ADS)

    Downing, Timothy L.; Soto, Jennifer; Morez, Constant; Houssin, Timothee; Fritz, Ashley; Yuan, Falei; Chu, Julia; Patel, Shyam; Schaffer, David V.; Li, Song

    2013-12-01

    Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.

  19. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse.

    PubMed

    Martín-Sanz, Alberto; de la Vega, Marcelino Pérez; Murillo, Jesús; Caminero, Constantino

    2013-07-01

    Pseudomonas syringae pv. syringae causes extensive yield losses in the pea crop worldwide, although there is little information on its host specialization and its interactions with pea. A collection of 88 putative P. syringae pv. syringae strains (including 39 strains isolated from pea) was characterized by repetitive polymerase chain reaction (rep-PCR), multilocus sequence typing (MLST), and syrB amplification and evaluated for pathogenicity and virulence. rep-PCR data grouped the strains from pea into two groups (1B and 1C) together with strains from other hosts; a third group (1A) was formed exclusively with strains isolated from non-legume species. MLST data included all strains from pea in the genomospecies 1 of P. syringae pathovars defined in previous studies; they were distributed in the same three groups defined by rep-PCR. The inoculations performed in two pea cultivars showed that P. syringae pv. syringae strains from groups 1A and 1C were less virulent than strains from group 1B, suggesting a possible pathogenic specialization in this group. This study shows the existence of genetically and pathogenically distinct P. syringae pv. syringae strain groups from pea, which will be useful for the diagnostic and epidemiology of this pathogen and for disease resistance breeding.

  20. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.

    PubMed

    Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil

    2017-03-01

    Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.

  1. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

    PubMed

    Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat

    2014-05-01

    Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative

  2. Physicochemical properties and in vitro digestibility of flour and starch from pea (Pisum sativum L.) cultivars.

    PubMed

    Chung, Hyun-Jung; Liu, Qiang

    2012-01-01

    Flours and isolated starches from three different cultivars (1544-8, 1658-11 and 1760-8) of pea grown under identical environmental conditions were evaluated for their physicochemical properties and in vitro digestibility. The protein content, total starch content and apparent amylose content of pea flour ranged from 24.4 to 26.3%, 48.8 to 50.2%, and 13.9 to 16.7%, respectively. In pea starches, the 1760-8 showed higher apparent amylose content and total starch content than the other cultivars. Pea starch granules were irregularly shaped, ranging from oval to round with a smooth surface. All pea starches showed C-type X-ray diffraction pattern with relative crystallinity ranging between 23.7 and 24.7%. Pea starch had only a single endothermic transition (12.1-14.2 J/g) in the DSC thermogram, whereas pea flour showed two separate endothermic transitions corresponding to starch gelatinization (4.54-4.71 J/g) and disruption of the amylose-lipid complex (0.36-0.78 J/g). In pea cultivars, the 1760-8 had significantly higher setback and final viscosity than the other cultivars in both pea flour (672 and 1170cP, respectively) and isolated starch (2901 and 4811cP). The average branch chain length of pea starches ranged from 20.1 to 20.3. The 1760-8 displayed a larger proportion of short branch chains, DP (degree of polymerization) 6-12 (21.1%), and a smaller proportion of long branch chains, DP≥37 (8.4%). The RDS, SDS and RS contents of pea flour ranged from 23.7 to 24.1%, 11.3 to 12.8%, and 13.2 to 14.8%, respectively. In pea starches, the 1760-8 showed a lower RDS content but higher SDS and RS contents. The expected glycemic index (eGI), based on the hydrolysis index, ranged from 36.9 to 37.7 and 69.8 to 70.7 for pea flour and isolated pea starch, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Pea belongs to the Leguminosae plant family, the third largest flowering plant family with 800 genera and over 18,000 species. Tribe Fabeae is considered one of the youngest groups in the legumes and Bayesian molecular clock and ancestral range analysis suggest a crown age of 23 – 16 Mya, in the mi...

  4. Purification and characterization of ornithine transcarbamylase from pea (Pisum sativum L.)

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Richardson, D. P.

    1991-01-01

    Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using delta-N-(phosphonacetyl)-L-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37 degrees C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.

  5. Plant characteristics and growth parameters of vegetable pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Pigeon pea is an important crop in dry land and semi-arid regions and is a supplementary source of dietary protein for the resource-constrained farmers. The aim of this research was to evaluate growth parameters of twelve vegetable pigeon pea genotypes at two locations in Eastern Kenya. The number o...

  6. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers.

    PubMed

    Goodarzi Boroojeni, F; Senz, M; Kozłowski, K; Boros, D; Wisniewska, M; Rose, D; Männer, K; Zentek, J

    2017-10-01

    The present study examined the impacts of native, fermented or enzymatically treated peas (Pisum sativum L.) inclusion in broiler diets, on growth performance and nutrient digestibility. For the fermentation process, Madonna pea was mixed with water (1/1) containing 2.57×108 Bacillus subtilis (GalliPro®) spores/kg pea and then, incubated for 48 h at 30 °C. For the enzymatic treatment process, the used water for dough production contained three enzymes, AlphaGalTM (α-galactosidase), RONOZYME® ProAct and VP (protease and pectinases respectively - DSM, Switzerland) and the pea dough incubated for 24 h at 30°C. Nine corn-wheat-soybean diets were formulated by supplying 10%, 20% and 30% of the required CP with either native, fermented or enzymatically treated peas. Performance was recorded weekly and at the end of the experiment (day 35), apparent ileal digestibility (AID) of CP, amino acids (AA), crude fat, starch, Ca, P and K were determined. Data were subjected to ANOVA using GLM procedure with a 3×3 factorial arrangement of treatments. Both processes reduced α-galactosides, phytate, trypsin inhibitor activity and resistant starch in peas. Increasing levels of pea products up to 300 g/kg diet, reduced BW gain and feed intake (P⩽0.05). Broilers fed diets containing enzymatically treated pea had the best feed conversion ratio at day 35. Different types of pea product and their inclusion levels had no effect on AID of all nutrients. The interaction between type of the pea products and inclusion levels was significant for AID of starch. For native pea diets, 10% group showed similar AID of starch to 20% native pea but it had higher AID than 30% native pea. For fermented and enzymatically treated groups, all three levels displayed similar AID of starch. In conclusion, enzymatic treatment and fermentation could improve the nutritional quality of pea. Inclusion of enzymatically treated pea in broiler diets could improve broiler performance compared with other pea

  7. Reprogramming human gallbladder cells into insulin-producing β-like cells

    PubMed Central

    Benedetti, Eric; Wang, Yuhan; Pelz, Carl; Schug, Jonathan; Kaestner, Klaus H.; Grompe, Markus

    2017-01-01

    The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes. PMID:28813430

  8. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha.

    PubMed

    Schmid, Marc W; Giraldo-Fonseca, Alejandro; Rövekamp, Moritz; Smetanin, Dmitry; Bowman, John L; Grossniklaus, Ueli

    2018-01-25

    In plants, the existence and possible role of epigenetic reprogramming has been questioned because of the occurrence of stably inherited epialleles. Evidence suggests that epigenetic reprogramming does occur during land plant reproduction, but there is little consensus on the generality and extent of epigenetic reprogramming in plants. We studied DNA methylation dynamics during the life cycle of the liverwort Marchantia polymorpha. We isolated thalli and meristems from male and female gametophytes, archegonia, antherozoids, as well as sporophytes at early and late developmental stages, and compared their DNA methylation profiles. Of all cytosines tested for differential DNA methylation, 42% vary significantly in their methylation pattern throughout the life cycle. However, the differences are limited to few comparisons between specific stages of the life cycle and suggest four major epigenetic states specific to sporophytes, vegetative gametophytes, antherozoids, and archegonia. Further analyses indicated clear differences in the mechanisms underlying reprogramming in the gametophytic and sporophytic generations, which are paralleled by differences in the expression of genes involved in DNA methylation. Differentially methylated cytosines with a gain in methylation in antherozoids and archegonia are enriched in the CG and CHG contexts, as well as in gene bodies and gene flanking regions. In contrast, gain of DNA methylation during sporophyte development is mostly limited to the CHH context, LTR retrotransposons, DNA transposons, and repeats. We conclude that epigenetic reprogramming occurs at least twice during the life cycle of M. polymorpha and that the underlying mechanisms are likely different between the two events.

  9. Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia.

    PubMed

    Uchegbu, Nneka N; Ishiwu, Charles N

    2016-09-01

    This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan-induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28°C). The total phenolic, 1,1,diphenyl-2-picrylhy-drazyl free radical (DPPH) scavenging, the inhibition of α-amylase and α-glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectrophotometrically. The total phenolic and DPPH scavenging activity increased by 30% and 63%, respectively, after germinating pigeon pea. Also after germination there was an increase in the inhibitory potential of pigeon pea extract against α-glucosidase compared with the nongerminated pigeon pea extract. There was a significant increase (P < 0.05) in fasting blood glucose level of alloxan-induced rats. Consumption of germinated pigeon pea extract gave rise to a reduced fasting blood glucose level in diabetic rats. On administration of germinated pigeon pea extract, LPO reduced drastically but there was an increase in the level of GSH. This study concluded that intake of germinated pigeon pea is a good dietary supplement for controlling hyperglycemia and LPO.

  10. Influence of the inclusion of cooked cereals and pea starch in diets based on soy or pea protein concentrate on nutrient digestibility and performance of young pigs.

    PubMed

    Parera, N; Lázaro, R P; Serrano, M P; Valencia, D G; Mateos, G G

    2010-02-01

    An experiment was conducted to compare different dietary vegetable sources of starch and protein on the coefficient of apparent total tract digestibility (CATTD) of energy and nutrients and performance of piglets from 29 to 60 d of age. The experiment was completely randomized with 6 treatments arranged factorially with 3 sources of starch (cooked-flaked corn, cooked-flaked rice, and pea starch) and 2 sources of protein [soy protein concentrate (SPC) and pea protein concentrate (PPC)]. The pea starch and the PPC used were obtained by dehulling and grinding pea seeds to a mean particle size of 30 microm. Each treatment was replicated 6 times (6 pigs per pen). For the entire experiment, piglets fed cooked rice had greater ADG than piglets fed pea starch with piglets fed cooked corn being intermediate (471, 403, and 430 g/d, respectively; P < 0.05). Protein source did not have any effect on piglet performance. The CATTD of DM, OM, and GE were greater (P < 0.05) for diets based on cooked rice than diets based on cooked corn with diets based on pea starch being intermediate. Crude protein digestibility was not affected by source of starch but was greater for the diets based on SPC than for diets based on PPC (0.836 vs. 0.821; P < 0.01). Protein source did not affect the digestibility of any of the other dietary components. It is concluded that cooked rice is an energy source of choice in diets for young pigs. The inclusion of PPC in the diet reduced protein digestibility but had no effects on energy digestibility or piglet performance. Therefore, the finely ground starch and protein fractions of peas can be used in substitution of cooked corn or SPC, respectively, in diets for young pigs.

  11. Selenoamino Acid-Enriched Green Pea as a Value-Added Plant Protein Source for Humans and Livestock.

    PubMed

    Garousi, Farzaneh; Domokos-Szabolcsy, Éva; Jánószky, Mihály; Kovács, Andrea Balláné; Veres, Szilvia; Soós, Áron; Kovács, Béla

    2017-06-01

    Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg -1 Se IV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower Se IV concentration range. Elevating the dose of Se IV (≥30 mg kg -1 ) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of Se VI and Se IV . Selenocysteine, another organic form of proteinogenic amino acid, was determined when Se IV (≥10 mg kg -1 ) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.

  12. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae.

    PubMed

    Pretheep-Kumar, P; Mohan, S; Ramaraju, K

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack.

  13. Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes

    PubMed Central

    Masserdotti, Giacomo; Gillotin, Sébastien; Sutor, Bernd; Drechsel, Daniela; Irmler, Martin; Jørgensen, Helle F.; Sass, Steffen; Theis, Fabian J.; Beckers, Johannes; Berninger, Benedikt; Guillemot, François; Götz, Magdalena

    2015-01-01

    Summary Direct lineage reprogramming induces dramatic shifts in cellular identity, employing poorly understood mechanisms. Recently, we demonstrated that expression of Neurog2 or Ascl1 in postnatal mouse astrocytes generates glutamatergic or GABAergic neurons. Here, we take advantage of this model to study dynamics of neuronal cell fate acquisition at the transcriptional level. We found that Neurog2 and Ascl1 rapidly elicited distinct neurogenic programs with only a small subset of shared target genes. Within this subset, only NeuroD4 could by itself induce neuronal reprogramming in both mouse and human astrocytes, while co-expression with Insm1 was required for glutamatergic maturation. Cultured astrocytes gradually became refractory to reprogramming, in part by the repressor REST preventing Neurog2 from binding to the NeuroD4 promoter. Notably, in astrocytes refractory to Neurog2 activation, the underlying neurogenic program remained amenable to reprogramming by exogenous NeuroD4. Our findings support a model of temporal hierarchy for cell fate change during neuronal reprogramming. PMID:26119235

  14. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum

    PubMed Central

    2012-01-01

    Background White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L.), however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb) and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. Results 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs) from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs) and S. sclerotiorum (2,780 contigs) categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings) and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia). Among those ESTs specifically expressed, 277 (9.8%) pea ESTs

  15. Characterization of two brassinosteroid C-6 oxidase genes in pea.

    PubMed

    Jager, Corinne E; Symons, Gregory M; Nomura, Takahito; Yamada, Yumiko; Smith, Jennifer J; Yamaguchi, Shinjiro; Kamiya, Yuji; Weller, James L; Yokota, Takao; Reid, James B

    2007-04-01

    C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea.

  16. Requirement of PEA3 for Transcriptional Activation of FAK Gene in Tumor Metastasis

    PubMed Central

    Li, Shufeng; Huang, Xiaofeng; Zhang, Dapeng; Huang, Qilai; Pei, Guoshun; Wang, Lixiang; Jiang, Wenhui; Hu, Qingang; Tan, Renxiang; Hua, Zi-Chun

    2013-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides −170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis. PMID:24260201

  17. Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in PeaW⃞

    PubMed Central

    Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C. J. M.; Visser, Richard G. F.; Zeeman, Sam; Smith, Alison; Martin, Cathie

    2002-01-01

    Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses. PMID:12172021

  18. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  19. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae

    PubMed Central

    Pretheep-Kumar, P.; Mohan, S.; Ramaraju, K.

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack. PMID:15861241

  20. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    PubMed Central

    Qian, Li; Huang, Yu; Spencer, C. Ian; Foley, Amy; Vedantham, Vasanth; Liu, Lei; Conway, Simon J.; Fu, Ji-dong; Srivastava, Deepak

    2012-01-01

    SUMMARY The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. PMID:22522929

  1. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...

  2. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-6 Legume or pea family, Fabaceae (Leguminosae). Kinds of seed: Alfalfa, alyceclover, asparagusbean...

  3. Aging and reprogramming: a two-way street

    PubMed Central

    Mahmoudi, Salah; Brunet, Anne

    2012-01-01

    Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and will provide new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity. PMID:23146768

  4. Protein and starch concentrates of air-classified field pea and zero-tannin faba bean for weaned pigs.

    PubMed

    Gunawardena, C K; Zijlstra, R T; Goonewardene, L A; Beltranena, E

    2010-08-01

    Air-classified pulse (non-oilseed legume) protein and starch may replace specialty protein and starch feedstuffs in diets for weaned pigs. In Exp. 1, three specialty protein sources (5% soy protein concentrate, 5% corn gluten meal, and 5% menhaden meal in the control diet) were replaced with 16% zero-tannin hulled or dehulled faba bean, or 17.5% field pea protein concentrate. In total, 192 group-housed pigs (2 gilts and 2 barrows per pen; BW = 7.5 +/- 1.4 kg) were fed wheat-based diets (3.60 Mcal/kg of DE and 3.3 g of standardized ileal digestible Lys/Mcal DE) over 28 d for 12 pen observations per each of 4 diets. Overall, protein source did not affect ADFI, ADG, or G:F. Apparent total tract digestibility (ATTD) of DM, GE, and P was greater (P < 0.05) for dehulled faba bean and field pea protein concentrate diets than the diet with 3 specialty protein sources. In Exp. 2, faba bean and field pea starch concentrates were compared with corn, wheat, tapioca, and potato starch as dietary energy sources. In total, 36 individually housed barrows (BW = 8.0 +/- 1.5 kg) were fed 1 of 6 diets for 15 d. Feces and urine were collected from d 8 to 14, and jugular blood was sampled after overnight fast and refeeding on d 15. Starch source did not affect N retention as a percentage of N intake. For d 0 to 14, ADFI of pigs fed field pea starch was greater (P < 0.05) than pigs fed corn, wheat, potato, and faba bean starch. Pigs fed tapioca, field pea, wheat, or corn starch grew faster (P < 0.05) than those fed faba bean or potato starch. For d 0 to 14, pigs fed corn or wheat starch had a 0.1 greater (P < 0.05) G:F than pigs fed faba bean, field pea, or potato starch. The ATTD of DM, GE, CP, and starch and the DE value of potato starch were much less (P < 0.05) than those of other starch diets. Postprandial plasma glucose was 4.9, 6.3, and 9 mmol/L greater (P < 0.05) for pigs fed tapioca than for pigs fed faba bean, wheat, and potato starch, respectively. However, postprandial plasma

  5. Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b

    PubMed Central

    Hu, Gangqing; Yu, Zu-Xi; Liu, Chengyu

    2013-01-01

    Embryonic stem (ES) cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in induced pluripotent stem (iPS) cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. Transcriptome analysis revealed the persistent expression of pluripotency genes and underexpression of developmental genes during differentiation in the absence of Kdm5b, suggesting that KDM5B plays a key role in cellular fate changes. We also observed accelerated reprogramming of differentiated cells in the absence of Kdm5b, demonstrating that KDM5B is a barrier to the reprogramming process. Expression analysis revealed that mesenchymal master regulators associated with the epithelial-to-mesenchymal transition (EMT) are downregulated during reprogramming in the absence of Kdm5b. Moreover, global analysis of H3K4me3/2 revealed that enhancers of fibroblast genes are rapidly deactivated in the absence of Kdm5b, and genes associated with EMT lose H3K4me3/2 during the early reprogramming process. These findings provide functional insight into the role for KDM5B in regulating ES cell differentiation and as a barrier to the reprogramming process. PMID:24100015

  6. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    PubMed Central

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-01-01

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the “developmental origins of health and disease” (DOHaD) or “developmental programming”. The DOHaD concept offers the “reprogramming” strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs. PMID:28212315

  7. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA

    USGS Publications Warehouse

    Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.

    2016-01-01

    New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.

  8. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors.

    PubMed

    Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V

    2018-05-22

    Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.

  9. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  10. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    PubMed Central

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  11. Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons.

    PubMed

    Broccoli, Vania; Rubio, Alicia; Taverna, Stefano; Yekhlef, Latefa

    2015-06-01

    The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.

  12. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors

    PubMed Central

    Cheng, Hui; Ang, Heather Yin-Kuan; A. EL Farran, Chadi; Li, Pin; Fang, Hai Tong; Liu, Tong Ming; Kong, Say Li; Chin, Michael Lingzi; Ling, Wei Yin; Lim, Edwin Kok Hao; Li, Hu; Huber, Tara; Loh, Kyle M.; Loh, Yuin-Han; Lim, Bing

    2016-01-01

    Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. PMID:27869129

  14. Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency.

    PubMed

    Adachi, Kenjiro; Kopp, Wolfgang; Wu, Guangming; Heising, Sandra; Greber, Boris; Stehling, Martin; Araúzo-Bravo, Marcos J; Boerno, Stefan T; Timmermann, Bernd; Vingron, Martin; Schöler, Hans R

    2018-06-11

    Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Reprogramming Human Retinal Pigmented Epithelial Cells to Neurons Using Recombinant Proteins

    PubMed Central

    Hu, Qirui; Chen, Renwei; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Somatic cells can be reprogrammed to an altered lineage by overexpressing specific transcription factors. To avoid introducing exogenous genetic material into the genome of host cells, cell-penetrating peptides can be used to deliver transcription factors into cells for reprogramming. Position-dependent C-end rule (CendR) cell- and tissue-penetrating peptides provide an alternative to the conventional cell-penetrating peptides, such as polyarginine. In this study, we used a prototypic, already active CendR peptide, RPARPAR, to deliver the transcription factor SOX2 to retinal pigmented epithelial (RPE) cells. We demonstrated that RPE cells can be directly reprogrammed to a neuronal fate by introduction of SOX2. Resulting neuronal cells expressed neuronal marker mRNAs and proteins and downregulated expression of RPE markers. Cells produced extensive neurites and developed synaptic machinery capable of dye uptake after depolarization with potassium. The RPARPAR-mediated delivery of SOX2 alone was sufficient to allow cell lineage reprogramming of both fetal and stem cell-derived RPE cells to become functional neurons. PMID:25298373

  16. Nature and origin of the calcium asymmetry-arising during gravitropic response in etiolated pea epicotyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliaccio, F.; Galston, A.W.

    1987-10-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with /sup 3/H-indole 3-acetic acid (IAA) or /sup 45/Ca/sup 2 +/, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca/sup 2 +/ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca/sup 2 +/ asymmetries, but substances known to interfere with normal Ca/sup 2 +/ transport do not significantly alter either IAA or Ca/sup 2 +/ asymmetries. These substances,more » however, are active in modifying both Ca/sup 2 +/ uptake and efflux through oat and pea leaf protoplast membranes. The authors conclude that the /sup 45/Ca/sup 2 +/ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca/sup 2 +/ movement secondary in gravitropism. They hypothesize that apoplastic Ca/sup 2 +/ changes during the graviresponse because it is displaced by H/sup +/ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increased calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H/sup +/ efflux, increase Ca/sup 2 +/ release from pea epicotyl segments, whereas cycloheximide, which inhibits H/sup +/ efflux, has the reverse effect.« less

  17. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    PubMed

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  18. Reprogramming Enhancers to Drive Metastasis.

    PubMed

    Mostoslavsky, Raul; Bardeesy, Nabeel

    2017-08-24

    Acquired molecular changes can promote the spreading of primary tumor cells to distant tissues. In this issue of Cell, Roe et al. show that metastatic progression of pancreatic cancer involves large-scale enhancer reprogramming by Foxa1, which activates transcriptional program specifying early endodermal stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds

    PubMed Central

    2011-01-01

    Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923

  20. Effects of pea chips on pig performance, carcass quality and composition, and palatability of pork.

    PubMed

    Newman, D J; Harris, E K; Lepper, A N; Berg, E P; Stein, H H

    2011-10-01

    Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late finishing diets for 35 d. A corn-soybean meal (SBM) control diet and 3 diets containing pea chips were formulated for each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually, and all pigs were slaughtered at the conclusion of the experiment. Overall, there were no differences (P > 0.11) in final BW, ADFI, and G:F of pigs among treatments, but there was a quadratic response in ADG (P = 0.04), with the smallest value observed in pigs fed the control diet. Dressing percentage linearly decreased (P = 0.04) as pea chips replaced SBM in diets, but there were no differences (P > 0.20) among treatments in HCW, LM area, 10th-rib backfat, lean meat percentage, and marbling. Likewise, pH in loin and ham, drip loss, and purge loss were not influenced (P > 0.13) by treatment. However, there was a quadratic response (P = 0.08) in 24-h pH in the shoulder, with the smallest value present in pigs fed the diet, in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and Japanese color score standard were reduced (quadratic, P = 0.03 and 0.05, respectively) and LM b* values and hue angle were increased (quadratic, P = 0.09 and 0.10, respectively) when pea chips replaced SBM in the diets. Ham L* (quadratic, P = 0.04), a* (linear, P = 0.02), b* (quadratic, P = 0.07), color saturation (linear, P = 0.02), and hue angle (quadratic, P = 0.05) were increased when pea chips replaced SBM. However, there were no differences (P > 0.16) in shoulder and fat

  1. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.

    PubMed

    Ebrahimi, Behnam

    2017-07-01

    Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Insecticidal components from field pea extracts: soyasaponins and lysolecithins.

    PubMed

    Taylor, Wesley G; Fields, Paul G; Sutherland, Daniel H

    2004-12-15

    Extracts from field peas (Pisum sativum L.) have previously been shown to have a utility to control insect pests. To identify potentially new bioinsecticides in field crops, we describe the fractionation of impure extracts (C8 extracts) derived from protein-rich fractions of commercial pea flour. The activity of separated fractions was determined by a flour disk antifeedant bioassay with the rice weevil [Sitophilus oryzae (L.)], an insect pest of stored products. Bioassay-guided fractionation showed that the triterpenoid saponin fractions were partly responsible for the antifeedant activity of C8 extracts. Soyasaponin I (soyasaponin Bb), isolated from peas and soybeans, and mixtures of soyasaponins, comprised of soyasaponins I-III and isolated from soybeans, were inactive antifeedants, but dehydrosoyasaponin I (the C-22 ketone derivative of soyasaponin I), a minor component found in C8 extracts, was shown to be an active component. Dehydrosoyasaponin I (soyasaponin Be) and soyasaponin VI (soyasaponin betag) coeluted under conditions of silica gel thin-layer chromatography and C18 high-performance liquid chromatography. However, dehydrosoyasaponin I could be isolated from saponin-enriched fractions with a reversed phase column of styrene/divinylbenzene operated at alkaline pH. Phospholipids of the lysolecithin type were also identified in saponin fractions of C8 extracts from peas. Three of the lysolecithins were inactive alone against rice weevils, but mixtures of these phospholipids enhanced the insecticidal activity of dehydrosoyasaponin I.

  3. Genetic Diversity of Chinese and Global Pea (Pisum sativum L.) Collections.

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) is an important food and feed legume grown across many temperate regions of the world, especially from Asia to Europe and North America. The goal of this study was to use 30 informative pea microsatellite markers to compare genetic diversity in a global core from the USDA and ...

  4. Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming.

    PubMed

    Gascón, Sergio; Murenu, Elisa; Masserdotti, Giacomo; Ortega, Felipe; Russo, Gianluca L; Petrik, David; Deshpande, Aditi; Heinrich, Christophe; Karow, Marisa; Robertson, Stephen P; Schroeder, Timm; Beckers, Johannes; Irmler, Martin; Berndt, Carsten; Angeli, José P Friedmann; Conrad, Marcus; Berninger, Benedikt; Götz, Magdalena

    2016-03-03

    Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Metabolic Reprogramming and Oncogenesis: One Hallmark, Many Organelles.

    PubMed

    Costa, A S H; Frezza, C

    2017-01-01

    The process of tumorigenesis can be described by a series of molecular features, among which alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic repertoire to survive and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. During the last decade, the complex reprogramming of cancer cell metabolism has been widely investigated, revealing cancer-specific metabolic alterations. These include dysregulation of glucose and glutamine metabolism, alterations of lipid synthesis and oxidation, and a complex rewiring of mitochondrial function. However, mitochondria are not the only metabolically active organelles within the cell, and other organelles, including lysosomes, peroxisomes, and endoplasmic reticulum, harbor components of the metabolic network. Of note, dysregulation of the function of these organelles is increasingly recognized in cancer cells. However, to what extent these organelles contribute to the metabolic reprogramming of cancer is not fully understood. In this review, we describe the main metabolic functions of these organelles and provide insights into how they communicate to orchestrate a coordinated metabolic reprogramming during transformation. © 2017 Elsevier Inc. All rights reserved.

  6. Commentary: "re-programming or selecting adult stem cells?".

    PubMed

    Trosko, James E

    2008-01-01

    The recent observations that embryonic stemness-associated genes could assist in the "de-differentiation" of adult skin fibroblast cells to "embryonic-like stem cells", using the "somatic cell nuclear transfer" techniques, have been interpreted as indicating a "re-programming" of genes. These reports have demonstrated a "proof of principle" approach to by-pass many, but not all, of the ethical, scientific and medical limitations of the "therapeutic cloning" of embryonic stem cells from embryos. However, while the interpretation that real "re-programming" of all those somatic fibroblastic differentiation genes might be correct, there does exists an alternative hypothesis of these exciting results. Based on the fact that multipotent adult stem cells exist in most, if not all, adult organs, the possibility exists that all these recent "re-programming" results, using the somatic nuclear transfer techniques, actually were the results of transferred rare nuclear material from the adult stem cells residing in the skin of the mouse, monkey and human samples. An examination of the rationale for this challenging hypothesis has been drawn from the hypothesis of the "stem cell theory of cancer", as well as from the field of human adult stem cells research.

  7. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells

    PubMed Central

    Bhutani, Nidhi; Decker, Matthew N.; Brady, Jennifer J.; Bussat, Rose T.; Burns, David M.; Corbel, Stephane Y.; Blau, Helen M.

    2013-01-01

    Mechanistic insights into the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) are limited, particularly for early acting molecular regulators. Here we use an acute loss of function approach to demonstrate that activation-induced deaminase (AID) activity is necessary for the initiation of reprogramming to iPSCs. While AID is well known for antibody diversification, it has also recently been shown to have a role in active DNA demethylation in reprogramming toward pluripotency and development. These findings suggested a potential role for AID in iPSC generation, yet, iPSC yield from AID-knockout mouse fibroblasts was similar to that of wild-type (WT) fibroblasts. We reasoned that an acute loss of AID function might reveal effects masked by compensatory mechanisms during development, as reported for other proteins. Accordingly, we induced an acute reduction (>50%) in AID levels using 4 different shRNAs and determined that reprogramming to iPSCs was significantly impaired by 79 ± 7%. The deaminase activity of AID was critical, as coexpression of WT but not a catalytic mutant AID rescued reprogramming. Notably, AID was required only during a 72-h time window at the onset of iPSC reprogramming. Our findings show a critical role for AID activity in the initiation of reprogramming to iPSCs.—Bhutani, N., Decker, M. N., Brady, J. J., Bussat, R. T., Burns, D. M., Corbel, S. Y., Blau, H. M. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. PMID:23212122

  8. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    PubMed

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  9. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  10. Phenetic, genetic diversity and symbiotic compatibility of rhizobial strains nodulating pigeon pea in Northern India.

    PubMed

    Arora, Naveen Kumar; Khare, Ekta; Singh, Sachin; Tewari, Sakshi

    2018-01-01

    Pigeon pea ( Cajanus cajan ) is one of the most important legumes grown in the northern province of Uttar Pradesh, India. However, its productively in Uttar Pradesh is lower than the average yield of adjoining states. During the course of the present study, a survey of pigeon pea growing agricultural fields was carried out and it was found that 80% of plants were inadequately nodulated. The study was aimed to evaluate the pigeon pea symbiotic compatibility and nodulation efficiency of root nodulating bacteria isolated from various legumes, and to explore the phenetic and genetic diversity of rhizobial population nodulating pigeon pea growing in fields of Uttar Pradesh. Amongst all the 96 isolates, 40 isolates showed nodulation in pigeon pea. These 40 isolates were further characterized by phenotypic, biochemical and physiological tests. Intrinsic antibiotic resistance pattern was taken to generate similarity matrix revealing 10 phenons. The study shows that most of the isolates nodulating pigeon pea in this region were rapid growers. The dendrogram generated using the NTSYSpc software grouped RAPD patterns into 19 clusters. The high degree of phenetic and genetic diversity encountered is probably because of a history of mixed cropping of legumes. The assessment of diversity is a very important tool and can be used to improve the nodulation and quality of pigeon pea crop. It is also concluded that difference between phenetic and RAPD clustering pattern is an indication that rhizobial diversity of pigeon pea is not as yet completely understood and settled.

  11. Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2012-07-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas, originate from soils at global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes allow to reduce N fertilizer use, and possibly N2O emission. Nevertheless, the decomposition of crop organic matter during the crop cycle and during the residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed-rape crops, fertilized or not, in various rotations. A field experiment was conducted during 4 consecutive years, aiming at comparing the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly linked with the site soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after pea. These results, combined with the emission reduction allowed by the production and transport of the N fertiliser not applied on the pea crop, should be confirmed in a larger range of soil types. Nevertheless, they demonstrate the absence of N2O emission linked to the symbiotic N fixation process, and allow us to estimate the decrease of N2O emissions to 20-25% by including one pea crop in a three-year rotation. At a larger scale, this reduction of GHG emissions at field level has to be cumulated with the reduction of GHG emissions linked with the lower level of production and transport of the N

  12. Reprogramming retinal neurons and standardized quantification of their differentiation in 3-dimensional retinal cultures

    PubMed Central

    Hiler, Daniel J.; Barabas, Marie E.; Griffiths, Lyra M.; Dyer, Michael A.

    2017-01-01

    Postmitotic differentiated neurons are among the most difficult cells to reprogram into induced pluripotent stem cells (iPSCs) because they have poor viability when cultured as dissociated cells. Other protocols to reprogram postmitotic neurons have required the inactivation of the p53 tumor suppressor. We describe a method that does not require p53 inactivation and induces reprogramming in cells purified from the retinae of reprogrammable mice in aggregates with wild-type retinal cells. After the first 10 days of reprogramming, the aggregates are then dispersed and plated on irradiated feeder cells to propagate and isolate individual iPSC clones. The reprogramming efficiency of different neuronal populations at any stage of development can be quantitated using this protocol. Reprogramming retinal neurons with this protocol will take 56 days, and these retina-derived iPSCs can undergo retinal differentiation to produce retinae in 34 days. In addition, we describe a quantitative assessment of retinal differentiation from these neuron-derived iPSCs called STEM-RET. The procedure quantitates eye field specification, optic cup formation, and retinal differentiation in 3-dimensional cultures using molecular, cellular and morphological criteria. An advanced level of cell culture experience is required to carry out this protocol. PMID:27658012

  13. PEAS AND PARTICLES, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    1966

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT ON "PEAS AND PARTICLES" WHICH DEALS WITH LARGE NUMBERS AND ESTIMATIONS. ITS PURPOSE IS TO GIVE ELEMENTARY SCHOOL CHILDREN AN UNDERSTANDING OF WHAT LARGE NUMBERS MEAN THROUGH INFORMAL ACTIVITIES INVOLVING FAMILIAR OBJECTS. THE MATERIAL HAS BEEN FOUND SUITABLE…

  14. CEI-PEA Alert, Summer 2006

    ERIC Educational Resources Information Center

    Center for Educational Innovation - Public Education Association, 2006

    2006-01-01

    The "CEI-PEA Alert" is an advocacy newsletter that deals with topics of interest to all concerned with the New York City public schools. This issue includes: (1) Practical Skills & High Academic Standards: Career Technical Education; (2) Parents: Help Your Children Gain "Soft Skills" for the Workforce; (3) Culinary Arts…

  15. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    PubMed

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  16. Biological control of fusarial wilt of pigeon pea by Bacillus brevis.

    PubMed

    Bapat, S; Shah, A K

    2000-02-01

    A virulent strain of pigeon pea wilt pathogen was isolated from wilted pigeon pea plants and was identified as Fusarium oxysporum f. sp. udum. Many bacterial cultures showing antagonism to the pathogen were isolated from various ecological niches. When tested under pot and field conditions, development of fusarial wilt symptoms was prevented in pigeon pea seeds treated with one such antagonist, Bacillus brevis. A formulation of B. brevis with vermiculite as a carrier had a shelf life of at least 6 months. Bacillus brevis produced an extracellular antagonistic substance which induced swelling of the pathogen's hyphal tips, and cells were bulbous and swollen with shrunken and granulated cytoplasm. The antagonistic substance also inhibited germination of conidia, and was fungicidal to the vegetative mycelia of the pathogen. Comparison of the properties of our antagonistic substance with that of known antibiotics produced by B. brevis suggests that our antagonistic substance is a novel compound. The observations reported here indicate that this strain of B. brevis may have potential as a biocontrol agent against fusarial wilt in pigeon pea.

  17. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi.

    PubMed

    Souza Filho, Pedro F; Nair, Ramkumar B; Andersson, Dan; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2018-01-01

    Currently around one billion people in the world do not have access to a diet which provides enough protein and energy. However, the production of one of the main sources of protein, animal meat, causes severe impacts on the environment. The present study investigates the production of a vegan-mycoprotein concentrate from pea-industry byproduct (PpB), using edible filamentous fungi, with potential application in human nutrition. Edible fungal strains of Ascomycota ( Aspergillus oryzae , Fusarium venenatum , Monascus purpureus , Neurospora intermedia ) and Zygomycota ( Rhizopus oryzae ) phyla were screened and selected for their protein production yield. A. oryzae had the best performance among the tested fungi, with a protein yield of 0.26 g per g of pea-processing byproduct from the bench scale airlift bioreactor cultivation. It is estimated that by integrating the novel fungal process at an existing pea-processing industry, about 680 kg of fungal biomass attributing to about 38% of extra protein could be produced for each 1 metric ton of pea-processing byproduct. This study is the first of its kind to demonstrate the potential of the pea-processing byproduct to be used by filamentous fungi to produce vegan-mycoprotein for human food applications. The pea-processing byproduct (PpB) was proved to be an efficient medium for the growth of filamentous fungi to produce a vegan-protein concentrate. Moreover, an industrial scenario for the production of vegan-mycoprotein concentrate for human nutrition is proposed as an integrated process to the existing PPI production facilities.

  18. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals.

    PubMed

    Sirtori, Cesare R; Triolo, Michela; Bosisio, Raffaella; Bondioli, Alighiero; Calabresi, Laura; De Vergori, Viviana; Gomaraschi, Monica; Mombelli, Giuliana; Pazzucconi, Franco; Zacherl, Christian; Arnoldi, Anna

    2012-04-01

    The present study was aimed to evaluate the effect of plant proteins (lupin protein or pea protein) and their combinations with soluble fibres (oat fibre or apple pectin) on plasma total and LDL-cholesterol levels. A randomised, double-blind, parallel group design was followed: after a 4-week run-in period, participants were randomised into seven treatment groups, each consisting of twenty-five participants. Each group consumed two bars containing specific protein/fibre combinations: the reference group consumed casein+cellulose; the second and third groups consumed bars containing lupin or pea proteins+cellulose; the fourth and fifth groups consumed bars containing casein and oat fibre or apple pectin; the sixth group and seventh group received bars containing combinations of pea protein and oat fibre or apple pectin, respectively. Bars containing lupin protein+cellulose ( - 116 mg/l, - 4·2%), casein+apple pectin ( - 152 mg/l, - 5·3%), pea protein+oat fibre ( - 135 mg/l, - 4·7%) or pea protein+apple pectin ( - 168 mg/l, - 6·4%) resulted in significant reductions of total cholesterol levels (P<0·05), whereas no cholesterol changes were observed in the subjects consuming the bars containing casein+cellulose, casein+oat fibre or pea protein+cellulose. The present study shows the hypocholesterolaemic activity and potential clinical benefits of consuming lupin protein or combinations of pea protein and a soluble fibre, such as oat fibre or apple pectin.

  19. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    PubMed

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  20. Geographical Gradient of the eIF4E Alleles Conferring Resistance to Potyviruses in Pea (Pisum) Germplasm

    PubMed Central

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    Background The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Methodology/Principal findings Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4EA-B-C-S variants, whose distribution was geographically structured. The eIF4EA variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4EB, was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4EC variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4ES variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4EA-1-2-3-4-5-6-7, eIF4EB-1, eIF4EC-2) conferred resistance to the P1 PSbMV pathotype. Conclusions/Significance This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4ES1 allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis

  1. Cross-reactivity of a new food ingredient, dun pea, with legumes, and risk of anaphylaxis in legume allergic children.

    PubMed

    Richard, C; Jacquenet, S; Sergeant, P; Moneret-Vautrin, D A

    2015-07-01

    Legume allergy is the fifth food allergy in Europe. The dun pea (Pisum sativum sativum var. arvense), a pea belonging to the same subspecies as green pea, has been recently introduced as an ingredient in the human food industry. The aims of this study were to evaluate the cross-reactivity between dun pea and other legumes and to search for modification of allergenicity induced by food technologies. A series of 36 patients with legume and/or peanut allergy was studied. They underwent skin tests to peanut and a panel of legumes including dun pea. Specific IgE to dun pea and cross-reactivity to peanut allergens, particularly to Ara h 1, were evaluated by ELISA. Proteins and allergens of different pea extracts were studied by SDS-PAGE and immunoblots. In France and Belgium, 7.7% of severe food anaphylaxis cases were due to legumes. Patients with isolated legume allergy had positive prick tests to dun pea, whereas patients with isolated peanut allergy had negative prick tests. Cross-reactivity between sIgE to peanut and dun pea was observed, and more frequently than expected (96%) peanut-allergic patients with legume sensitization or allergy had sIgE to Ara h 1. Analysis of dun pea allergens suggested that protein epitopes were presented differently in dun pea seeds, isolate and flour. This study identifies, for the first time, a risk of dun pea allergy in legume-allergic patients and in a subset of peanut-allergic patients.

  2. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  3. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    PubMed

    Twomey, Edward C; Cordasco, Dana F; Kozuch, Stephen D; Wei, Yufeng

    2013-01-01

    Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) protein in the complex with a mitogen-activated protein (MAP) kinase, extracellular regulated kinase 2 (ERK2), which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  4. Carbohydrate binding specificity of pea lectin studied by NMR spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee

    1999-02-01

    The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.

  5. Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation

    PubMed Central

    Tan, S.J.; Fang, J.Y.; Wu, Y.; Yang, Z.; Liang, G.; Han, B.

    2015-01-01

    Efficiency of cell-based tissue engineering and regenerative medicine has been limited by inadequate cellular responses to injury because of aging and poor controllability of cellular interactions. Since cell progression is under a tight epigenetic regulation, epigenetic modulators such as 5-azacytidine (5-Aza-CR) have been utilized to facilitate reprogramming and development of somatic cells in 2-dimensional (2-D) settings. Nonetheless, progression of a specific tissue lineage toward the terminal phenotype is dependent not only on the genomic potential, but also on the microenvironment cues that are beyond the capability of 2-D approaches. In this study, we investigated the combined effects of matrices of variable rigidities and the treatment with the epigenetic modulator 5-Aza-CR on reprogramming adipose-derived stromal cells (ADSCs) into myoblast-like cells by utilizing tunable transglutaminase cross-linked gelatin (Col-Tgel) in vitro and in vivo. Our experiments demonstrated that cellular plasticity and trans-differentiation were significantly enhanced when ADSCs were treated with an effective dose of 5-Aza-CR (1.25 to 12.5 ng) in the optimal myogenic matrix (15 ± 5 kPa Col-Tgel). Our findings suggest that both physical signals and chemical milieu are critical for the regulation of cellular responses. PMID:26548559

  6. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea.

    PubMed

    Lee, Bao-Hong; Lai, Yi-Syuan; Wu, She-Ching

    2015-12-01

    Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids) and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight) and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight) significantly improved systolic blood pressure (21 mmHg) and diastolic blood pressure (30 mmHg) in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension. Copyright © 2015. Published by Elsevier B.V.

  7. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    PubMed

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  8. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea.

    PubMed

    Desgroux, Aurore; L'Anthoëne, Virginie; Roux-Duparque, Martine; Rivière, Jean-Philippe; Aubert, Grégoire; Tayeh, Nadim; Moussart, Anne; Mangin, Pierre; Vetel, Pierrick; Piriou, Christophe; McGee, Rebecca J; Coyne, Clarice J; Burstin, Judith; Baranger, Alain; Manzanares-Dauleux, Maria; Bourion, Virginie; Pilet-Nayel, Marie-Laure

    2016-02-20

    Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and

  9. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications.

    PubMed

    Moraghebi, Roksana; Kirkeby, Agnete; Chaves, Patricia; Rönn, Roger E; Sitnicka, Ewa; Parmar, Malin; Larsson, Marcus; Herbst, Andreas; Woods, Niels-Bjarne

    2017-08-25

    Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. The potentially large donor base from caesarean section

  10. VizieR Online Data Catalog: Lyα profile in 43 Green Pea galaxies (Yang+, 2017)

    NASA Astrophysics Data System (ADS)

    Yang, H.; Malhotra, S.; Gronke, M.; Rhoads, J. E.; Leitherer, C.; Wofford, A.; Jiang, T.; Dijkstra, M.; Tilvi, V.; Wang, J.

    2018-03-01

    In SDSS DR7, a sample of 251 Green Peas was observed as serendipitous spectroscopic targets (Cardamone+ 2009MNRAS.399.1191C). A subset of 66 Green Peas have sufficient signal-to-noise ratio (S/N) in both continuum and emission lines (Hα, Hβ, and [OIII]λ5007) to study galactic properties. In Paper I (Yang+ 2016ApJ...820..130Y), we matched these 66 Green Peas with the COS archive and studied Lyα escape in a sample of 12 Green Peas with COS UV spectra. To address the bias and expand the sample size, we took the Lyα spectra of 20 additional Green Peas (PI S. Malhotra, GO 14201). We also supplement this sample with 11 additional Green Peas from published literature. In total, we have 43 Green Peas from six HST programs -- 20 galaxies from GO 14201 (PI S. Malhotra), 9 galaxies from GO 12928 (PI A. Henry; Henry+ 2015ApJ...809...19H), 7 galaxies from GO 11727 and GO 13017 (PI T. Heckman; Heckman+ 2011ApJ...730....5H ; Alexandroff+ 2015ApJ...810..104A), 2 galaxies from GO 13293 (PI A. Jaskot; Jaskot & Oey 2014ApJ...791L..19J), and 5 galaxies from GO 13744 (PI T. Thuan; Izotov+ 2016MNRAS.461.3683I). (4 data files).

  11. Fermented pigeon pea (Cajanus cajan) ingredients in pasta products.

    PubMed

    Torres, Alexia; Frias, J; Granito, M; Vidal-Valverde, C

    2006-09-06

    Pigeon pea (Cajanus cajan var. aroíto) seeds were fermented in order to remove antinutritional factors and to obtain functional legume flour to be used as pasta ingredients. Fermentation brought about a drastic reduction of alpha-galactosides (82%), phytic acid (48%), and trypsin inhibitor activity (39%). Fermented legume flours presented a notable increase of fat and total soluble available carbohydrates, a slight decrease of protein, dietary fiber, calcium, vitamin B2, vitamin E, and total antioxidant capacity, and a decrease of soluble dietary fiber, Na, K, Mg, and Zn contents. No changes were observed in the level of starch and tannins as a consequence of fermentation. The fermented flour was used as an ingredient to make pasta products in a proportion of 5, 10, and 12%. The supplemented pasta products obtained had longer cooking times, higher cooking water absorptions, higher cooking loss, and higher protein loss in water than control pasta (100% semolina). From sensory evaluations, fortified pasta with 5 and 10% fermented pigeon pea flour had an acceptability score similar to control pasta. Pasta supplemented with 10% fermented pigeon pea flour presented higher levels of protein, fat, dietary fiber, mineral, vitamin E, and Trolox equivalent antioxidant capacity than 100% semolina pasta and similar vitamins B1 and B2 contents. Protein efficiency ratios and true protein digestibility improved (73 and 6%, respectively) after supplementation with 10% fermented pigeon pea flour; therefore, the nutritional value was enhanced.

  12. Nutritional evaluation of low-phytate peas (Pisum sativum L.) for young broiler chicks.

    PubMed

    Thacker, Philip; Deep, Aman; Petri, Daniel; Warkentin, Thomas

    2013-02-01

    This experiment determined the effects of including normal and low-phytate peas in diets fed to young broiler chickens on performance, phosphorus availability and bone strength. A total of 180, day-old, male broilers (Ross-308 line) were assigned to six treatments. The control was based on corn and soybean meal while two additional corn-based diets were formulated containing 30% of either normal or low-phytate pea providing 0.45% available phosphorus. For each of these three diets, a similar diet was formulated by reducing the amount of dicalcium phosphate to produce a diet with 0.3% available phosphorus. The total tract apparent availability (TTAA) of phosphorus was higher (p = 0.02) for broilers fed the low-phytate pea than for birds fed the normal pea diets. Birds fed diets containing the lower level of phosphorus had a higher TTAA of phosphorus (50.64 vs. 46.68%) than broilers fed diets adequate in phosphorus. Protein source had no effect on weight gain, feed intake or feed conversion. Broilers fed the low phosphorus diets had lower weight gain (p = 0.04) and feed intake (p < 0.01) than broilers fed the higher phosphorus level. Bone strength was higher (p < 0.01) for broilers fed diets based on low-phytate pea than for those fed diets based on normal pea or soybean meal. Increasing the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required in order to meet the nutritional requirements of broilers. Since inorganic phosphorus sources tend to be expensive, a reduction in their use would lower ration costs. In addition, increased availability of phosphorus would reduce the amount of phosphorus excreted thus reducing the amount of phosphorus that can potentially pollute the environment.

  13. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells

    PubMed Central

    Martinez-Fernandez, Almudena; Nelson, Timothy J.; Ikeda, Yasuhiro; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, 4-factor c-MYC dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct-4 and Fgf4 genes and repressed cardiac differentiation. In contrast, 3-factor c-MYC-less iPS clones efficiently up-regulated pre-cardiac (CXCR4, Flk-1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and Myocardin) gene expression patterns. In fact, 3-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential. PMID:20221419

  14. Effect of extrusion on the nutritional value of peas for broiler chickens.

    PubMed

    Hejdysz, Marcin; Kaczmarek, Sebastian Andrzej; Rutkowski, Andrzej

    2016-10-01

    The study was conducted to investigate the nutritional value of five samples of raw and extruded pea seeds (Pisum sativum L., Tarachalska cv.) from different experimental fields. The study included 150 male 1-day-old Ross 308 chickens, which were randomly assigned to three dietary treatments (50 replications each) and kept in individual cages. From days 1 to 16, all birds received only the basal diets. From days 17 to 21, the control group received still the basal diet, but for the two other groups, 20% of basal diet was replaced by raw or extruded peas. Furthermore, the groups receiving raw or extruded peas were divided into five subgroups of 10 animals each, where the diets contained one of the five pea samples of the same cultivar grown at different locations, respectively. On days 19 and 20, excreta were individually collected, and then all chickens were sacrificed and ileal digesta were sampled for determination of ileal digestibility, which was calculated by the difference method. Extrusion of pea seeds decreased the contents of crude fibre, acid and neutral detergent fibre, trypsin inhibitor activity (TIA), phytic P and resistant starch (RS) (p ≤ 0.05), but increased the contents of apparent metabolisable energy (AMEN) by approximately 2.25 MJ/kg dry matter (DM). Furthermore, extrusion improved the DM and crude protein digestibility significantly by about 21.3% and 11.6%, respectively. Similar results were observed for the digestibility of all analysed amino acids. In conclusion, extrusion markedly influenced the chemical composition of peas, reduced their contents of phytic P, TIA and RS and consequently had a positive impact on nutrient digestibility and AMEN values.

  15. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea

    PubMed Central

    2014-01-01

    Background Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding. PMID:24521263

  16. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats.

    PubMed

    Parolini, Cinzia; Manzini, Stefano; Busnelli, Marco; Rigamonti, Elena; Marchesi, Marta; Diani, Erika; Sirtori, Cesare R; Chiesa, Giulia

    2013-10-01

    Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; P< 0·005). In rats fed the diets containing oat fibres or apple pectin, alone or in combination with pea proteins, a lower hepatic cholesterol content (P< 0·005) and higher hepatic mRNA concentrations of CYP7A1 and NTCP were found when compared with the control rats (P< 0·05). In summary, the dietary combinations of pea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.

  17. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans.

    PubMed

    Li, Huan; Prairie, Natalie; Udenigwe, Chibuike C; Adebiyi, Abayomi P; Tappia, Paramjit S; Aukema, Harold M; Jones, Peter J H; Aluko, Rotimi E

    2011-09-28

    The blood pressure lowering effect of a pea protein hydrolysate (PPH) that contained <3 kDa peptides, isolated by membrane ultrafiltration from the thermolysin digest of pea protein isolate (PPI), was examined using different rat models of hypertension as well as hypertensive human subjects. The PPH showed weak in vitro activities against renin and angiotensin converting enzyme (ACE) with inhibitory activities of 17 and 19%, respectively, at 1 mg/mL test concentration. Oral administration of the PPH to spontaneously hypertensive rats (SHR) at doses of 100 and 200 mg/kg body weight led to a lowering of hourly systolic blood pressure (SBP), with a maximum reduction of 19 mmHg at 4 h. In contrast, orally administered unhydrolyzed PPI had no blood pressure reducing effect in SHR, suggesting that thermolysin hydrolysis may have been responsible for releasing bioactive peptides from the native protein. Oral administration of the PPH to the Han:SPRD-cy rat (a model of chronic kidney disease) over an 8-week period led to 29 and 25 mmHg reductions in SBP and diastolic blood pressure, respectively. The PPH-fed rats had lower plasma levels of angiotensin II, the major vasopressor involved in development of hypertension, but there was no effect on plasma activity or renal mRNA levels of ACE. However, renal expression of renin mRNA levels was reduced by approximately 50% in the PPH-fed rats, suggesting that reduced renin may be responsible for the reduced levels of angiotensin II. In a 3-week randomized double blind placebo-controlled crossover human intervention trial (7 volunteers), significant (p<0.05) reductions (over placebo) in SBP of 5 and 6 mmHg were obtained in the second and third weeks, respectively, for the PPH group. Therefore, thermolysin derived bioactive peptides from PPH reduced blood pressure in hypertensive rats and human subjects, likely via effects on the renal angiotensin system.

  18. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  19. Reprogrammed mouse astrocytes retain a "memory" of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts.

    PubMed

    Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C

    2011-02-01

    Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.

  20. Studying Lyman-alpha escape and reionization in Green Pea galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Leitherer, Claus; Wofford, Aida; Dijkstra, Mark

    2017-01-01

    Green Pea galaxies are low-redshift galaxies with extreme [OIII]5007 emission line. We built the first statistical sample of Green Peas observed by HST/COS and used them as analogs of high-z Lyman-alpha emitters to study Ly-alpha escape and Ly-alpha sizes. Using the HST/COS 2D spectra, we found that Ly-alpha sizes of Green Peas are larger than the UV continuum sizes. We found many correlations between Ly-alpha escape fraction and galactic properties -- dust extinction, Ly-alpha kinematic features, [OIII]/[OII] ratio, and gas outflow velocities. We fit an empirical relation to predict Ly-alpha escape fraction from dust extinction and Ly-alpha red-peak velocity. In the JWST era, we can use this relation to derive the IGM HI column density along the line of sight of each high-z Ly-alpha emitter and probe the reionization process.

  1. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    PubMed

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  2. Stress-triggered atavistic reprogramming (STAR) addiction: driving force behind head and neck cancer?

    PubMed Central

    Masuda, Muneyuki; Wakasaki, Takahiro; Toh, Satoshi

    2016-01-01

    Recent results of the Cancer Genome Atlas on head and neck squamous cell carcinoma (HNSCC) revealed that HNSCC lacked predominant gain-of-function mutations in oncogenes, whereas an essential role for epigenetics in oncogenesis has become apparent. In parallel, it has gained general acceptance that cancer is considered as complex adaptive system, which evolves responding environmental selective pressures. This somatic evolution appears to proceed concurrently with the acquisition of an atavistic pluripotent state (i.e., “stemness”), which is inducible by intrinsic epigenetic reprogramming program as demonstrated by induced pluripotent stem (iPS) cells. This Nobel prize-winning discovery has markedly accelerated and expanded cancer stem cell research from the point of epigenetic reprogramming. Taken together, we hypothesize that stress-triggered atavistic reprogramming (STAR) may be the major driving force of HNSCC evolution. In this perspective, we discuss the possible mechanisms of STAR in HNSCC, focusing on recent topics of epigenetic reprogramming in developmental and cancer cell biology. PMID:27429838

  3. Differential impact of environmental stresses on the pea mitochondrial proteome.

    PubMed

    Taylor, Nicolas L; Heazlewood, Joshua L; Day, David A; Millar, A Harvey

    2005-08-01

    Exposure to adverse environmental conditions causes oxidative stress in many organisms, leading either to disease and debilitation or to response and tolerance. Mitochondria are a key site of oxidative stress and of cellular response and play important roles in cell survival. We analyzed the response of mitochondria in pea (Pisum sativum) plants to the common stresses associated with drought, cold, and herbicides. These treatments all altered photosynthetic and respiratory rates of pea leaves to various extents, but only herbicides significantly increased lipid peroxidation product accumulation. Mitochondria isolated from the stressed pea plants maintained their electron transport chain activity, but changes were evident in the abundance of uncoupling proteins, non-phosphorylating respiratory pathways, and oxidative modification of lipoic acid moieties on mitochondrial proteins. These data suggest that herbicide treatment placed a severe oxidative stress on mitochondria, whereas chilling and particularly drought were milder stresses. Detailed analysis of the soluble proteome of mitochondria by gel electrophoresis and mass spectrometry revealed differential degradation of key matrix enzymes during treatments with chilling being significantly more damaging than drought. Differential induction of heat shock proteins and specific losses of other proteins illustrated the diversity of response to these stresses at the protein level. Cross-species matching was required for mass spectrometry identification of nine proteins because only a limited number of pea cDNAs have been sequenced, and the full pea genome is not available. Blue-native separation of intact respiratory chain complexes revealed little if any change in response to environmental stresses. Together these data suggest that although many of the molecular events identified by chemical stresses of mitochondria from a range of model eukaryotes are also apparent during environmental stress of plants, their extent

  4. Insecticidal components from field pea extracts: isolation and separation of peptide mixtures related to pea albumin 1b.

    PubMed

    Taylor, Wesley G; Fields, Paul G; Elder, James L

    2004-12-15

    Chromatographic fractionation of crude extracts (C8 extracts) from the protein-enriched flour of commercial field peas (Pisum sativum L.) has been shown here to yield peptide mixtures related to the pea albumin 1b (PA1b) family of cysteine-rich plant peptides. The mixtures were obtained initially by flash chromatography with silica gel. Following elution of soyasaponins and lysolecithins, the end fractions obtained with the use of two flash chromatographic solvent systems displayed activity in a flour disk antifeedant bioassay with the rice weevil [Sitophilus oryzae (L.)]. Chemical properties of these mixtures were compared by thin-layer chromatography, high-performance liquid chromatography (HPLC), IR, MS, and amino acid analyses. The major peptides of C8 extracts, with average masses of 3752, 3757, and 3805 Da, were isolated by anion exchange chromatography. Samples enriched in the peptide of mass 3752 were isolated by cation exchange chromatography. Reduction plus alkylation experiments in combination with electrospray ionization mass spectrometry showed that C8 extracts contained about 10 peptides and, like PA1b, each peptide possessed six cysteine residues (three disulfide bonds). Disulfide bond reduction with 2-mercaptoethanol destroyed the antifeedant activity. The native peptides of C8 extracts were found to be resolved into nine peaks with XTerra HPLC columns operating at alkaline pH. These columns were employed to assess the distribution of pea peptides in the isolated fractions, with photodiode array and electrospray detection.

  5. Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.

    PubMed

    Saberi, Bahareh; Vuong, Quan V; Chockchaisawasdee, Suwimol; Golding, John B; Scarlett, Christopher J; Stathopoulos, Costas E

    2015-12-24

    The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%-96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above a w = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%-96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer-Emmitt-Teller (BET), Flory-Huggins, and Iglesias-Chirife), three-parameter equations Guggenhiem-Anderson-deBoer (GAB), Ferro-Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%-98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments.

  6. Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models

    PubMed Central

    Saberi, Bahareh; Vuong, Quan V.; Chockchaisawasdee, Suwimol; Golding, John B.; Scarlett, Christopher J.; Stathopoulos, Costas E.

    2015-01-01

    The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%–96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments. PMID:28231096

  7. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  8. Effective stabilization of CLA by microencapsulation in pea protein.

    PubMed

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.

  10. NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    PubMed Central

    Overduin, Joost; Guérin-Deremaux, Laetitia; Wils, Daniel; Lambers, Tim T.

    2015-01-01

    Background Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. Objective In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. Design Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein). Results In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals. PMID:25882536

  11. Assessing the effects of architectural variations on light partitioning within virtual wheat–pea mixtures

    PubMed Central

    Barillot, Romain; Escobar-Gutiérrez, Abraham J.; Fournier, Christian; Huynh, Pierre; Combes, Didier

    2014-01-01

    Background and Aims Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivum–Pisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning. Methods First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea. Key results By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition. Conclusions In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly

  12. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  13. Validation of quantitative method for azoxystrobin residues in green beans and peas.

    PubMed

    Abdelraheem, Ehab M H; Hassan, Sayed M; Arief, Mohamed M H; Mohammad, Somaia G

    2015-09-01

    This study presents a method validation for extraction and quantitative analysis of azoxystrobin residues in green beans and peas using HPLC-UV and the results confirmed by GC-MS. The employed method involved initial extraction with acetonitrile after the addition of salts (magnesium sulfate and sodium chloride), followed by a cleanup step by activated neutral carbon. Validation parameters; linearity, matrix effect, LOQ, specificity, trueness and repeatability precision were attained. The spiking levels for the trueness and the precision experiments were (0.1, 0.5, 3 mg/kg). For HPLC-UV analysis, mean recoveries ranged between 83.69% to 91.58% and 81.99% to 107.85% for green beans and peas, respectively. For GC-MS analysis, mean recoveries ranged from 76.29% to 94.56% and 80.77% to 100.91% for green beans and peas, respectively. According to these results, the method has been proven to be efficient for extraction and determination of azoxystrobin residues in green beans and peas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Abnormalities in human pluripotent cells due to reprogramming mechanisms

    PubMed Central

    Ma, Hong; Morey, Robert; O’Neil, Ryan C.; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D.; Hariharan, Manoj; Nery, Joseph R.; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D.; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P.; Ecker, Joseph R.; Laurent, Louise C.; Mitalipov, Shoukhrat

    2016-01-01

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies. PMID:25008523

  15. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  16. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.

    PubMed

    Miyamoto, Kazutaka; Akiyama, Mizuha; Tamura, Fumiya; Isomi, Mari; Yamakawa, Hiroyuki; Sadahiro, Taketaro; Muraoka, Naoto; Kojima, Hidenori; Haginiwa, Sho; Kurotsu, Shota; Tani, Hidenori; Wang, Li; Qian, Li; Inoue, Makoto; Ide, Yoshinori; Kurokawa, Junko; Yamamoto, Tsunehisa; Seki, Tomohisa; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2018-01-04

    Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pea disease diagnostic series - White mold

    USDA-ARS?s Scientific Manuscript database

    White mold is a serious disease of pea worldwide, and it is caused by the fungus Sclerotinia sclerotiorum. Water soaked lesions and white mycelial growth may occur on leaves, stems and pods, and are characteristics of the disease. The pathogen may form black fruiting bodies called sclerotia on infec...

  18. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.

    PubMed

    Grzybek, Maciej; Golonko, Aleksandra; Walczak, Marta; Lisowski, Pawel

    2017-03-01

    The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. (Re-)programming of subtype specific cardiomyocytes.

    PubMed

    Hausburg, Frauke; Jung, Julia Jeannine; Hoch, Matti; Wolfien, Markus; Yavari, Arash; Rimmbach, Christian; David, Robert

    2017-10-01

    Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania

    2008-06-01

    Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.

  1. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2013-03-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20-25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.

  2. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences.

    PubMed

    Cieślar-Pobuda, Artur; Knoflach, Viktoria; Ringh, Mikael V; Stark, Joachim; Likus, Wirginia; Siemianowicz, Krzysztof; Ghavami, Saeid; Hudecki, Andrzej; Green, Jason L; Łos, Marek J

    2017-07-01

    Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cellular reprogramming through mitogen-activated protein kinases.

    PubMed

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression-including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  4. Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems

    NASA Technical Reports Server (NTRS)

    Steed, C. L.; Taylor, L. K.; Harrison, M. A.

    2004-01-01

    During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.

  5. Improving quality of an innovative pea puree by high hydrostatic pressure.

    PubMed

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. SCL, LMO1 and Notch1 Reprogram Thymocytes into Self-Renewing Cells

    PubMed Central

    Rojas-Sutterlin, Shanti; Herblot, Sabine; Hébert, Josée; Sauvageau, Guy; Lemieux, Sébastien; Lécuyer, Eric; Veiga, Diogo F. T.; Hoang, Trang

    2014-01-01

    The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network

  7. Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea Germplasm

    PubMed Central

    Siol, Mathieu; Jacquin, Françoise; Chabert-Martinello, Marianne; Smýkal, Petr; Le Paslier, Marie-Christine; Aubert, Grégoire; Burstin, Judith

    2017-01-01

    Pea (Pisum sativum, L.) is a major pulse crop used both for animal and human alimentation. Owing to its association with nitrogen-fixing bacteria, it is also a valuable component for low-input cropping systems. To evaluate the genetic diversity and the scale of linkage disequilibrium (LD) decay in pea, we genotyped a collection of 917 accessions, gathering elite cultivars, landraces, and wild relatives using an array of ∼13,000 single nucleotide polymorphisms (SNP). Genetic diversity is broadly distributed across three groups corresponding to wild/landraces peas, winter types, and spring types. At a finer subdivision level, genetic groups relate to local breeding programs and type usage. LD decreases steeply as genetic distance increases. When considering subsets of the data, LD values can be higher, even if the steep decay remains. We looked for genomic regions exhibiting high level of differentiation between wild/landraces, winter, and spring pea, respectively. Two regions on linkage groups 5 and 6 containing 33 SNPs exhibit stronger differentiation between winter and spring peas than would be expected under neutrality. Interestingly, QTL for resistance to cold acclimation and frost resistance have been identified previously in the same regions. PMID:28611254

  8. Effect of Processing on the in Vitro and in Vivo Protein Quality of Yellow and Green Split Peas (Pisum sativum).

    PubMed

    Nosworthy, Matthew G; Franczyk, Adam J; Medina, Gerardo; Neufeld, Jason; Appah, Paulyn; Utioh, Alphonsus; Frohlich, Peter; House, James D

    2017-09-06

    In order to determine the effect of extrusion, baking, and cooking on the protein quality of yellow and green split peas, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS) of green split peas (71.4%) was higher than that of yellow split peas (67.8%), on average. Similarly, the average Digestible Indispensable Amino Acid Score (DIAAS) of green split peas (69%) was higher than that of yellow split peas (67%). Cooked green pea flour had lower PDCAAS and DIAAS values (69.19% and 67%) than either extruded (73.61%, 70%) or baked (75.22%, 70%). Conversely, cooked yellow split peas had the highest PDCCAS value (69.19%), while extruded yellow split peas had the highest DIAAS value (67%). Interestingly, a strong correlation was found between in vivo and in vitro analysis of protein quality (R 2 = 0.9745). This work highlights the differences between processing methods on pea protein quality and suggests that in vitro measurements of protein digestibility could be used as a surrogate for in vivo analysis.

  9. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Taisuke; Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellularmore » response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.« less

  10. Pea disease diagnostic series - Powdery Mildew

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew is a serious disease of pea worldwide, and it could be caused by two fungal species Erysiphe pisi and E. trifolii. White powdery patches on leaves, stems and pods are characteristics of the disease. The pathogen may form black fruiting bodies called chasmothecia near the end of the gr...

  11. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon.

    PubMed

    Rahman, Mohammad Farhadur; Ghosal, Anubrata; Alam, Mohammad Firoz; Kabir, Ahmad Humayan

    2017-01-01

    Cadmium (Cd) is an important phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) influences the alleviation of Cd toxicity in field peas at biochemical and molecular level. The addition of Si in Cd-stressed plants noticeably increased growth and development as well as total protein and membrane stability of Cd-stressed plants, suggesting that Si does have critical roles in Cd detoxification in peas. Furthermore, Si supplementation in Cd-stressed plants showed simultaneous significant increase and decrease of Cd and Fe in roots and shoots, respectively, compared with Cd-stressed plants. At molecular level, GSH1 (phytochelatin precursor) and MT A (metallothionein) transcripts predominantly expressed in roots and strongly induced due to Si supplementation in Cd-stressed plants compared with Cd-free conditions, suggesting that these chelating agents may bind to Cd leading to vacuolar sequestration in roots. Furthermore, pea Fe transporter (RIT1) showed downregulation in shoots when plants were treated with Si along with Cd compared with Cd-treated conditions. It is consistent with the physiological observations and supports the conclusion that alleviation of Cd toxicity in pea plants might be associated with Cd sequestration in roots and reduced Cd translocation in shoots through the regulation of Fe transport. Furthermore, increased CAT, POD, SOD and GR activity along with elevated S-metabolites (cysteine, methionine, glutathione) implies the active involvement of ROS scavenging and plays, at least in part, to the Si-mediated alleviation of Cd toxicity in pea. The study provides first mechanistic evidence on the beneficial effect of Si on Cd toxicity in pea plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    PubMed Central

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  13. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    PubMed

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  14. Effects of pigeon pea and plantain starches on the compressional, mechanical, and disintegration properties of paracetamol tablets.

    PubMed

    Dare, Kunle; Akin-Ajani, Dorothy O; Odeku, Oluwatoyin A; Itiola, Oludele A; Odusote, Omotunde M

    2006-03-01

    A study has been made of the effects of pigeon pea starch obtained from the plant Cajanus cajan (L) Millisp. (family Fabaceae) and plantain starch obtained from the unripe fruit of Musa paradisiaca L. (family Musaceae) on the compressional, mechanical, and disintegration properties of paracetamol tablets in comparison with official corn starch BP. Analysis of compressional properties was done by using density measurements, and the Heckel and Kawakita equations, whereas the mechanical properties of the tablets were evaluated by using tensile strength (T--a measure of bond strength) and brittle fracture index (BFI--a measure of lamination tendency). The ranking for the mean yield pressure, P(y), for the formulations containing the different starches was generally corn < pigeon pea < plantain starch while the ranking for P(k), an inverse measure of the amount of plasticity, was pigeon pea < plantain < corn starch, which indicated that formulations containing corn starch generally exhibited the fastest onset of plastic deformation, whereas those formulations containing pigeon pea starch exhibited the highest amount of plastic deformation during tableting. The tensile strength of the tablets increased with increase in concentration of the starches while the Brittle Fracture Index decreased. The ranking for T was pigeon pea > plantain > corn starch while the ranking for BFI was corn > plantain > pigeon pea starch. The bonding capacity of the formulations was in general agreement with the tensile strength results. The disintegration time (DT) of the formulation increased with concentration of plantain and corn starches but decreased with concentration of pigeon pea starch. The general ranking of DT values was plantain < pigeon pea < corn starch. Notably, formulations containing pigeon pea starch exhibited the highest bond strength and lowest brittleness, suggesting the usefulness of pigeon pea starch in producing strong tablets with minimal lamination tendency. Plantain

  15. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    PubMed Central

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  16. Environments of z~0.2 Star Forming Galaxies: Building on the Citizen Science Discovery of the Green Peas

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team

    2018-01-01

    ‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M < 1 x 1010 M⊙) galaxies, experiencing an episode of compact, relatively low-metalicity (z ≈ 1/5 z⊙), intense starformation (3-60 M⊙/yr). While their spectra have been investigated in a wide-array of follow-up studies, a detailed study of their environments is missing. Two-point correlation functions have been used to show the environmental dependence of an array of galaxy properties (eg., mass, luminosity, color, star formation, and morphology). In this study, we present a cross-correlation analysis between the Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11

  17. A Single, Plastic Population of Mycosphaerella pinodes Causes Ascochyta Blight on Winter and Spring Peas (Pisum sativum) in France

    PubMed Central

    Guibert, Michèle; Leclerc, Aurélie; Andrivon, Didier; Tivoli, Bernard

    2012-01-01

    Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant. PMID:23023742

  18. Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation

    PubMed Central

    Xu, Li; Zhang, Kun; Wang, Jin

    2014-01-01

    We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good

  19. Aflatoxins, discolouration and insect damage in dried cowpea and pigeon pea in Malawi and the effectiveness of flotation/washing operation in eliminating the aflatoxins.

    PubMed

    Matumba, Limbikani; Singano, Lazarus; Pungulani, Lawrent; Mvula, Naomi; Matumba, Annie; Singano, Charles; Matita, Grey

    2017-05-01

    Aflatoxin contamination and biodeterioration were examined in 302 samples of dry cowpeas and pigeon peas that were randomly purchased from 9 districts of the Southern Region of Malawi during July and November 2015. Further, the impact of flotation/washing on aflatoxin levels on the pulses was elucidated. Aflatoxin analyses involved immunoaffinity column (IAC) clean-up and HPLC quantification with fluorescence detection (FLD) while legume biodeterioration assessments were done by visual inspection. Aflatoxins were frequently detected in cowpea (24%, max., 66 μg/kg) and pigeon pea (22%, max., 80 μg/kg) samples that were collected in the month of July. Lower aflatoxin incidence of 15% in cowpeas (max., 470 μg/kg) and 14% in pigeon peas (max., 377 μg/kg) was recorded in the November collection. Overall, aflatoxin levels were significantly higher in the pulses that were collected in November. However, there were no significant differences in the total aflatoxin (aflatoxin B 1 (AFB 1 ) + AFB 2 + AFG 1 + AFG 2 ) levels between the two types of pulses. Remarkably, in 76.2% of the aflatoxin positive cowpea and in 41.7% of the aflatoxin positive pigeon pea samples, aflatoxin G 1 concentration exceeded aflatoxin B 1. Insect damage percentage averaged at 18.1 ± 18.2% (mean ± SD) in the cowpeas and 16.1 ± 19.4% in pigeon peas. Mean discolouration percentage (number of pulses) of the cowpeas and pigeon peas was found to be at 6.7 ± 4.9 and 8.7 ± 6.2%, respectively. Washing and discarding the buoyant fraction was highly efficient in reducing aflatoxin levels; only 5.2 ± 11.1% of the initial aflatoxin level was found in the cleaned samples. In conclusion, cowpeas and pigeon peas sold on the local market in Malawi may constitute a hazard especially if floatation/washing step is skipped.

  20. Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Razavi, Seyed Morteza; Salari, Ali

    2017-06-01

    Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and

  1. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.

    PubMed

    Dai, Fan-Jhen; Hsu, Wei-Hsuan; Huang, Jan-Jeng; Wu, She-Ching

    2013-03-01

    Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  4. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  5. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency

    PubMed Central

    Cacchiarelli, Davide; Trapnell, Cole; Ziller, Michael J.; Soumillon, Magali; Cesana, Marcella; Karnik, Rahul; Donaghey, Julie; Smith, Zachary D.; Ratanasirintrawoot, Sutheera; Zhang, Xiaolan; Ho Sui, Shannan J.; Wu, Zhaoting; Akopian, Veronika; Gifford, Casey A.; Doench, John; Rinn, John L.; Daley, George Q.; Meissner, Alexander; Lander, Eric S.; Mikkelsen, Tarjei S.

    2015-01-01

    Summary Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered reactivation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PMID:26186193

  6. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    PubMed

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.

  8. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)

    PubMed Central

    Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.

    2018-01-01

    Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142

  9. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    PubMed

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  10. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    PubMed Central

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  11. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    PubMed Central

    Rodriguez-Osorio, Nelida; Wang, Zhongde; Kasinathan, Poothappillai; Page, Grier P; Robl, James M; Memili, Erdogan

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research. PMID:19393066

  12. Oocyte extract improves epigenetic reprogramming of yak fibroblast cells and cloned embryo development.

    PubMed

    Xiong, X R; Li, J; Fu, M; Gao, C; Wang, Y; Zhong, J C

    2013-02-01

    The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Nutritional composition and antinutritional properties of maize ogi cofermented with pigeon pea.

    PubMed

    Okafor, Uchechukwu I; Omemu, Adebunkola M; Obadina, Adewale O; Bankole, Mobolaji O; Adeyeye, Samuel A O

    2018-03-01

    Maize was cofermented with pigeon pea for ogi production and evaluated for nutritional (proximate composition, minerals, vitamins, and amino acid profile analyses) and antinutritional (phytate, tannin, and trypsin inhibitor activity analyses) qualities. White maize and pigeon pea were mixed at ratios of 90:10, 80:20, 70:30, 60:40, and 50:50, respectively, with 100:0 serving as the control. Mixtures were cofermented for 96 hr at 27°C ± 2°C and nutritional, mineral, and antinutritional qualities were analyzed using analysis of variance. Results of proximate analysis showed that the values were significantly difference at p  ≤   .05. Maize cofermented with pigeon pea at a ratio of 60:40 had the highest protein (22.79 mg/100 g), fat (19.27 mg/100 g), ash (2.98 mg/100 g), crude fiber (0.73 mg/100 g), and lowest moisture (1.98 mg/100 g) content, and was significantly ( p  ≤   .05) different from the other ratios. Of all the mixtures analyzed, 60:40 was significantly ( p  ≤   .05) different and had the highest Vitamin B 1 , B 2 , and B 3 contents. Amino acid profile results showed that maize cofermented with pigeon pea at a ratio of 60:40 showed the highest contents of lysine (93.95 mg/g), tryptophan (20.38 mg/g), isoleucine (54.78 mg/g), phenylalanine (86.23 mg/g), leucine (109.55 mg/g), and valine (68.29 mg/g), respectively, and was significantly ( p  ≤   .05) different from the other ratios. Results of antinutritional analysis showed low phytate, tannin, and trypsin inhibitor values in maize cofermented with pigeon pea at a ratio of 60:40 when compared with other ratios. The cofermented maize-pigeon pea product 60:40 had high amino acid profile than the others.

  14. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., glucose sirup, and fructose. (viii) Spice. (ix) Flavoring (except artificial). (x) Color additives. (xi... additive has been added, the name of the food shall include the term “artificially colored.” (ii) The... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Canned peas. 155.170 Section 155.170 Food and...

  15. Biofortification of soybean meal: immunological properties of the 27 kDa γ-zein.

    PubMed

    Krishnan, Hari B; Jang, Sungchan; Kim, Won-Seok; Kerley, Monty S; Oliver, Melvin J; Trick, Harold N

    2011-02-23

    Legumes, including soybeans ( Glycine max ), are deficient in sulfur-containing amino acids, which are required for the optimal growth of monogastric animals. This deficiency can be overcome by expressing heterologous proteins rich in sulfur-containing amino acids in soybean seeds. A maize 27 kDa γ-zein, a cysteine-rich protein, has been successfully expressed in several crops including soybean, barley, and alfalfa with the intent to biofortify these crops for animal feed. Previous work has shown that the maize 27 kDa zein can withstand digestion by pepsin and elicit an immunogenic response in young pigs. By use of sera from patients who tested positive by ImmunoCAP assay for elevated IgE to maize proteins, specific IgE binding to the 27 kDa γ-zein is demonstrated. Bioinformatic analysis using the full-length and 80 amino acid sliding window FASTA searches identified significant sequence homology of the 27 kDa γ-zein with several known allergens. Immunoblot analysis using human serum that cross-reacts with maize seed proteins also revealed specific IgE-binding to the 27 kDa γ-zein in soybean seed protein extracts containing the 27 kDa zein. This study demonstrates for the first time the allergenicity potential of the 27 kDa γ-zein and the potential that this protein has to limit livestock performance when used in soybeans that serve as a biofortified feed supplement.

  16. Mechanism of gibberellin-dependent stem elongation in peas

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Sovonick-Dunford, S. A.

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.

  17. Auxin Does Not Alter the Permeability of Pea Segments to Tritium-labeled Water.

    PubMed

    Dowler, M J; Rayle, D L

    1974-02-01

    The possibility of an auxin effect on the permeability of pea (Pisum sativum L. ev. Alaska) segments to tritium-labeled water has been investigated by three separate laboratories, and the combined results are presented. We were unable to obtain any indication of a rapid effect of indoleacetic acid on the efflux of (3)HHO when pea segments previously "loaded" for 90 minutes with (3)HHO were transferred to unlabeled aqueous medium with indoleacetic acid. We were able to confirm that segments pretreated with (3)HHO plus indoleacetic acid for 60 to 90 minutes can show an enhanced (3)HHO release as compared with minus indoleacetic acid controls. However, this phenomenon appears to be due to an increased uptake of (3)HHO during the prolonged indoleacetic acid pretreatment, and therefore we conclude that auxin does not alter the permeability of pea segments to (3)HHO in either short term or long term tests. We confirm previous reports that the uptake of (3)HHO in pea segments proceeds largely through the cut surfaces, and that the cuticle is a potent barrier to (3)HHO flux.

  18. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.

    PubMed

    Hadwiger, Lee A; Tanaka, Kiwamu

    2014-12-23

    Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.

  19. Elixir of Life: Thwarting Aging With Regenerative Reprogramming.

    PubMed

    Beyret, Ergin; Martinez Redondo, Paloma; Platero Luengo, Aida; Izpisua Belmonte, Juan Carlos

    2018-01-05

    All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity. © 2017 American Heart Association, Inc.

  20. Cloning, expression and activation of a truncated 92-kDa gelatinase minienzyme.

    PubMed

    Kröger, M; Tschesche, H

    1997-09-01

    The matrix metalloproteinases (MMPs) are a family of highly homologous zinc-endopeptidases that degrade extracellular matrix components. Human 92-kDa gelatinase (MMP-9) represents one of the MMPs that cleaves native collagen type IV. As a basis for structural investigations, the short form (catalytic domain, amino acid residues 113-450) of the 92-kDa gelatinase cDNA was cloned and expressed in E. coli as a minienzyme. By combination of reverse transcription (RT) and polymerase chain reaction (PCR), the truncated 92-kDa gelatinase-cDNA was amplified from the corresponding mRNA derived from ovarian carcinoma cells. The cDNA fragment obtained was cloned in E. coli and sequenced. With the exception of one nucleotide inversion at position 745 (gt-->tg) the cDNA sequence was identical to the nucleotide sequence of the 92-kDa gelatinase as has been previously reported. The protein was expressed in E. coli using the vector pET-12b. The recombinant protein was stored in inclusion bodies and extracted as a 38 kDa species from the inclusion bodies by solubilization in 8 M urea. The product was purified by affinity chromatography and gel filtration. Amino-terminal sequence analysis confirmed the identity with the catalytic domain of 92-kDa gelatinase. The recombinant protein was refolded in the presence of Ca2+ and Zn2+ and yielded an active minienzyme with gelatinolytic activity. It degrades the native substrate collagen type IV and the synthetic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 x AcOH like the full-length 92-kDa gelatinase. The catalytic activity could be inhibited by the specific MMP inhibitors TIMP-1 and TIMP-2.

  1. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    PubMed Central

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  2. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yingying; Chen, Xi; Yu, Dehai

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phasemore » blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.« less

  3. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes

    PubMed Central

    Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant

    2017-01-01

    The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells. PMID:28796841

  4. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.

    PubMed

    Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant; Fu, Ji-Dong

    2017-01-01

    The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells.

  5. The Wnt/β-catenin signaling pathway tips the balance between apoptosis and reprograming of cell fusion hybrids.

    PubMed

    Lluis, Frederic; Pedone, Elisa; Pepe, Stefano; Cosma, Maria Pia

    2010-11-01

    Cell-cell fusion contributes to cell differentiation and developmental processes. We have previously showed that activation of Wnt/β-catenin enhances somatic cell reprograming after polyethylene glycol (PEG)-mediated fusion. Here, we show that neural stem cells and ESCs can fuse spontaneously in cocultures, although with very low efficiency (about 2%), as the hybrids undergo apoptosis. In contrast, when Wnt/β-catenin signaling is activated in ESCs and leads to accumulation of low amounts of β-catenin in the nucleus, activated ESCs can reprogram somatic cells with very high efficiency after spontaneous fusion. Furthermore, we also show that different levels of β-catenin accumulation in the ESC nuclei can modulate cell proliferation, although in our experimental setting, cell proliferation does not modulate the reprograming efficiency per se. Overall, the present study provides evidence that spontaneous fusion occurs, while the survival of the reprogramed clones is strictly dependent on induction of a Wnt-mediated reprograming pathway. Copyright © 2010 AlphaMed Press.

  6. Blood pressure reprogramming adapter assists signal recording

    NASA Technical Reports Server (NTRS)

    Vick, H. A.

    1967-01-01

    Blood pressure reprogramming adapter separates the two components of a blood pressure signal, a dc pressure signal and an ac Korotkoff sounds signal, so that the Korotkoff sounds are recorded on one channel as received while the dc pressure signal is converted to FM and recorded on a second channel.

  7. Retinoic Acid Inducible Gene 1 Protein (RIG1)-like Receptor Pathway is Required for Efficient Nuclear Reprogramming

    PubMed Central

    Sayed, Nazish; Ospino, Frank; Himmati, Farhan; Lee, Jieun; Chanda, Palas; Mocarski, Edward S.; Cooke, John P.

    2017-01-01

    We have revealed a critical role for innate immune signaling in nuclear reprogramming to pluripotency, and in the nuclear reprogramming required for somatic cell transdifferentiation. Activation of innate immune signaling causes global changes in the expression and activity of epigenetic modifiers to promote epigenetic plasticity. In our previous papers, we focused on the role of toll-like receptor 3 (TLR3) in this signaling pathway. Here we define the role of another innate immunity pathway known to participate in the response to viral RNA, the retinoic acid-inducible gene 1 receptor (RIG-1)-like receptor (RLR) pathway. This pathway is represented by the sensors of viral RNA, RIG-1, LGP2 and MDA5. We first found that TLR3 deficiency only causes a partial inhibition of nuclear reprogramming to pluripotency in mouse tail-tip fibroblasts, which motivated us to determine the contribution of RLR. We found that knockdown of iPS-1, the common adaptor protein for the RLR family, substantially reduced nuclear reprogramming induced by retroviral or by mmRNA expression of Oct 4, Sox2, KLF4 and cMYC (OSKM). Importantly a double knockdown of both RLR and TLR3 pathway led to a further decrease in iPSC colonies suggesting an additive effect of both these pathways on nuclear reprogramming. Furthermore, in murine embryonic fibroblasts expressing a dox-inducible cassette of the genes encoding OSKM, an RLR agonist increased the yield of iPSCs. Similarly, the RLR agonist enhanced nuclear reprogramming by cell permeant peptides of the Yamanaka factors. Finally, in the dox-inducible system, RLR activation promotes activating histone marks in the promoter region of pluripotency genes. To conclude, innate immune signaling mediated by RLR plays a critical role in nuclear reprogramming. Manipulation of innate immune signaling may facilitate nuclear reprogramming to achieve pluripotency. PMID:28276156

  8. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  9. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.

    PubMed

    Ma, Hong; Wang, Li; Liu, Jiandong; Qian, Li

    2017-01-01

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds great promise as a novel therapy for the treatment of heart failure, a common and morbid disease that is usually caused by irreversible loss of functional cardiomyocytes (CMs). Recently, we and others showed that in a murine model of acute myocardial infarction, delivery of three transcription factors, Gata4, Mef2c, and Tbx5 converted endogenous cardiac fibroblasts into functional iCMs. These iCMs integrated electrically and mechanically with surrounding myocardium, resulting in a reduction in scar size and an improvement in heart function. Our findings suggest that iCM reprogramming may be a means of regenerating functional CMs in vivo for patients with heart disease. However, because relatively little is known about the factors that regulate iCM reprogramming, the applicability of iCM reprogramming is currently limited to the experimental settings in which it has been attempted. Specific hurdles include the relatively low conversion rate of iCMs and the need for reprogramming to occur in the context of acute injury. Therefore, before this treatment can become a viable therapy for human heart disease, the optimal condition for efficient iCM generation must be determined. Here, we provide a detailed protocol for both in vitro and in vivo iCM generation that has been optimized so far in our lab. We hope that this protocol will lay a foundation for future further improvement of iCM generation and provide a platform for mechanistic studies.

  10. Physiological Studies on Pea Tendrils. IV. Flavonoids and Contact Coiling

    PubMed Central

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Pea tendrils contain high concentrations of flavonoids, mainly quercetin-triglucosyl-p-coumarate (QGC). QGC is most abundant near the highly responsive apex of the tendril, and least abundant at the base. After mechanical stimulation, and during coiling of the tendril, the QGC titer drops to about 30% of its original value. The kinetics of flavonoid disappearance are significantly correlated with the kinetics of coiling. Aqueous extracts of unstimulated pea tendrils or 10 μm QGC inhibit contact coiling of excised tendrils. Extracts of coiled tendrils do not. The evidence indicates a possible regulatory role for flavonoids in contact coiling. PMID:16656581

  11. End of inevitability: programming and reprogramming.

    PubMed

    Turksen, Kursad

    2013-08-01

    Stem cell commitment and differentiation leading to functional cell types and organs has generally been considered unidirectional and deterministic. Starting first with a landmark study 50 years ago, and now with more recent observations, this paradigm has been challenged, necessitating a rethink of what constitutes both programming and reprogramming processes, and how we can use this new understanding for new approaches to drug discovery and regenerative medicine.

  12. Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif1

    PubMed Central

    Berbel, Ana; Navarro, Cristina; Ferrándiz, Cristina; Cañas, Luis Antonio; Beltrán, José-Pío; Madueño, Francisco

    2005-01-01

    Current understanding of floral development is mainly based on what we know from Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus. However, we can learn more by comparing developmental mechanisms that may explain morphological differences between species. A good example comes from the analysis of genes controlling flower development in pea (Pisum sativum), a plant with more complex leaves and inflorescences than Arabidopsis and Antirrhinum, and a different floral ontogeny. The analysis of UNIFOLIATA (UNI) and STAMINA PISTILLOIDA (STP), the pea orthologs of LEAFY and UNUSUAL FLORAL ORGANS, has revealed a common link in the regulation of flower and leaf development not apparent in Arabidopsis. While the Arabidopsis genes mainly behave as key regulators of flower development, where they control the expression of B-function genes, UNI and STP also contribute to the development of the pea compound leaf. Here, we describe the characterization of P. sativum PISTILLATA (PsPI), a pea MADS-box gene homologous to B-function genes like PI and GLOBOSA (GLO), from Arabidopsis and Antirrhinum, respectively. PsPI encodes for an atypical PI-type polypeptide that lacks the highly conserved C-terminal PI motif. Nevertheless, constitutive expression of PsPI in tobacco (Nicotiana tabacum) and Arabidopsis shows that it can specifically replace the function of PI, being able to complement the strong pi-1 mutant. Accordingly, PsPI expression in pea flowers, which is dependent on STP, is identical to PI and GLO. Interestingly, PsPI is also transiently expressed in young leaves, suggesting a role of PsPI in pea leaf development, a possibility that fits with the established role of UNI and STP in the control of this process. PMID:16113230

  13. The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.

    PubMed

    Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki

    2016-01-01

    Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase.

  14. Ultramicronized palmitoylethanolamide (PEA-um(®)) in the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Di Paola, Rosanna; Impellizzeri, Daniela; Fusco, Roberta; Cordaro, Marika; Siracusa, Rosalba; Crupi, Rosalia; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-09-01

    Pulmonary fibrosis is a chronic condition characterized by progressive scarring of lung parenchyma. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (PEA-um(®)), an endogenous fatty acid amide, in mice subjected to idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis was induced in male mice by a single intratracheal administration of saline with bleomycin sulphate (1mg/kg body weight) in a volume of 100μL. PEA-um(®) was injected intraperitoneally at 1, 3 or 10mg/kg 1h after bleomycin instillation and daily thereafter. Animals were sacrificed after 7 and 21days by pentobarbitone overdose. One cohort of mice was sacrificed after seven days of bleomycin administration, followed by bronchoalveloar lavage and determination of myeloperoxidase activity, lung edema and histopathology features. In the 21-day cohort, mortality was assessed daily, and surviving mice were sacrificed followed by the above analyses together with immunohistochemical localization of CD8, tumor necrosis factor-α, CD4, interleukin-1β, transforming growth factor-β, inducible nitric oxide synthase and basic fibroblast growth factor. Compared to bleomycin-treated mice, animals that received also PEA-um(®) (3 or 10mg/kg) had significantly decreased weight loss, mortality, inflammation, lung damage at the histological level, and lung fibrosis at 7 and 21days. PEA-um(®) (1mg/kg) did not significantly inhibit the inflammation response and lung fibrosis. This study demonstrates that PEA-um(®) (3 and 10mg/kg) reduces the extent of lung inflammation in a mouse model of idiopathic pulmonary fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.

  16. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  17. Proper reprogramming of imprinted and non-imprinted genes in cloned cattle gametogenesis.

    PubMed

    Kaneda, Masahiro; Watanabe, Shinya; Akagi, Satoshi; Inaba, Yasushi; Geshi, Masaya; Nagai, Takashi

    2017-11-01

    Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non-imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non-cloned bulls. We found no differences between cloned and non-cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha-satellite and Art2) in oocytes recovered from cloned and non-cloned cows. Again, no significant differences were observed between clones and non-clones. These results suggested that imprinted and non-imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring. © 2017 Japanese Society of Animal Science.

  18. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

    PubMed

    Li, Xiang; Liu, Defang; Ma, Yantao; Du, Xiaomin; Jing, Junzhan; Wang, Lipeng; Xie, Bingqing; Sun, Da; Sun, Shaoqiang; Jin, Xueqin; Zhang, Xu; Zhao, Ting; Guan, Jingyang; Yi, Zexuan; Lai, Weifeng; Zheng, Ping; Huang, Zhuo; Chang, Yanzhong; Chai, Zhen; Xu, Jun; Deng, Hongkui

    2017-08-03

    Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. X Chromosome of female cells shows dynamic changes in status during human somatic cell reprogramming.

    PubMed

    Kim, Kun-Yong; Hysolli, Eriona; Tanaka, Yoshiaki; Wang, Brandon; Jung, Yong-Wook; Pan, Xinghua; Weissman, Sherman Morton; Park, In-Hyun

    2014-06-03

    Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. Thus, it is still not fully understood when and how the X chromosome reactivation occurs during reprogramming. Here, we report a dynamic change in the X chromosome state throughout reprogramming, with an initial robust reactivation of the inactive X chromosome followed by an inactivation upon generation of nascent iPSC clones. iPSCs with two active X chromosomes or an eroded X chromosome arise in passaging iPSCs. These data provide important insights into the plasticity of the X chromosome of human female iPSCs and will be crucial for the future application of such cells in cell therapy and X-linked disease modeling.

  20. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders.

    PubMed

    Smith, Derek K; He, Miao; Zhang, Chun-Li; Zheng, Jialin C

    2017-10-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. Copyright © 2016. Published by Elsevier Ltd.

  1. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders

    PubMed Central

    Smith, Derek K.; He, Miao; Zhang, Chun-Li; Zheng, Jialin C.

    2018-01-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. PMID:26844759

  2. Chemical compound-based direct reprogramming for future clinical applications

    PubMed Central

    Takeda, Yukimasa; Harada, Yoshinori; Yoshikawa, Toshikazu; Dai, Ping

    2018-01-01

    Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy. PMID:29739872

  3. Effect of an extruded pea or rice diet on postprandial insulin and cardiovascular responses in dogs.

    PubMed

    Adolphe, J L; Drew, M D; Silver, T I; Fouhse, J; Childs, H; Weber, L P

    2015-08-01

    Peas are increasing in popularity as a source of carbohydrate, protein and fibre in extruded canine diets. The aim of this study was to test the health effects of two canine diets with identical macronutrient profiles, but containing either yellow field peas or white rice as the carbohydrate source on metabolism, cardiovascular outcomes and adiposity. First, the acute glycemic, insulinemic and cardiovascular responses to the pea- or rice-based diets were determined in normal weight beagles (n = 7 dogs). The glycemic index did not differ between the pea diet (56 ± 12) and rice diet (63 ± 9). Next, obese beagles (n = 9) were fed the yellow field pea diet or white rice diet ad libitum for 12 weeks in a crossover study. Adiposity (measured using computed tomography), metabolic (oral glucose tolerance test, plasma leptin, adiponectin, C-reactive protein) and cardiovascular assessments (echocardiography and blood pressure) were performed before and after each crossover study period. After 12 weeks on each diet, peak insulin (p = 0.05) and area under the curve (AUC) for insulin after a 10 g oral glucose tolerance test (p = 0.05) were lower with the pea than the rice diet. Diet did not show a significant effect on body weight, fat distribution, cardiovascular variables, adiponectin or leptin. In conclusion, a diet containing yellow field peas reduced the postprandial insulin response after glucose challenge in dogs despite continued obesity, indicating improved metabolic health. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  4. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.

    PubMed

    Song, Hyun-Ouk

    2016-02-01

    Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

  5. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes.

    PubMed

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products.

  6. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    NASA Astrophysics Data System (ADS)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  7. Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development.

    PubMed

    Perera, P I P; Ordoñez, C A; Dedicova, B; Ortega, P E M

    2014-05-21

    Gametes have the unique potential to enter the sporophytic pathway, called androgenesis. The plants produced are usually haploid and recombinant due to the preceding meiosis and they can double their chromosome number to form doubled haploids, which are completely homozygous. Availability of the doubled haploids facilitates mapping the genes of agronomically important traits, shortening the time of the breeding process required to produce new hybrids and homozygous varieties, and saving the time and cost for inbreeding. This study aimed to test the feasibility of using isolated and in vitro cultured immature cassava (Manihot esculenta) microspores to reprogramme and initiate sporophytic development. Different culture media and different concentrations of two ion components (Cu(2+) and Fe(2+)) were tested in two genotypes of cassava. External structural changes, nuclear divisions and cellular changes during reprogramming were analysed by scanning electron microscopy, by staining with 4',6-diamidino-2-phenylindole, and through classical histology and transmission electron microscopy. In two cassava genotypes, different developmental stages of microspores were found to initiate sporophytic cell divisions, that is, with tetrads of TMS 60444 and with mid or late uni-nucleate microspores of SM 1219-9. In the modified NLN medium (NLNS), microspore enlargements were observed. The medium supplemented with either sodium ferrous ethylene-diamine-tetraacetic acid (NaFeEDTA) or CuSO4·5H2O induced sporophytic cell division in both genotypes. A low frequency of the reprogramming and the presence of non-responsive microspores among the responsive ones in tetrads were found to be related to the viability and exine formation of the microspores. The present study clearly demonstrated that reprogramming occurs much faster in isolated microspore culture than in anther culture. This paves the way for the development of an efficient technique for the production of homozygous lines in

  8. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells

    PubMed Central

    Li, Hedong; Chen, Gong

    2017-01-01

    Neuroregeneration in the central nervous system (CNS) has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart and liver, and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient’s own internal cells for tissue repair. PMID:27537482

  9. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    Hawkins, Kate E.; Joy, Shona; Delhove, Juliette M.K.M.; Kotiadis, Vassilios N.; Fernandez, Emilio; Fitzpatrick, Lorna M.; Whiteford, James R.; King, Peter J.; Bolanos, Juan P.; Duchen, Michael R.; Waddington, Simon N.; McKay, Tristan R.

    2016-01-01

    Summary The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation. PMID:26904936

  10. Doing the Basics Better in Africa: How School Support, Autonomy, and Accountability Improved Outcomes for Girls in PEAS Schools

    ERIC Educational Resources Information Center

    Hills, Libby

    2017-01-01

    Promoting Equality in African Schools (PEAS) seeks to expand access to sustainably delivered, quality secondary education in Africa. PEAS builds and runs chains of not-for-profit, low-cost private schools in public-private partnership with governments. External evaluation data show that PEAS schools in Uganda are delivering higher quality…

  11. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer *

    PubMed Central

    Hutton, Josiah E.; Wang, Xiaojing; Zimmerman, Lisa J.; Slebos, Robbert J. C.; Trenary, Irina A.; Young, Jamey D.; Li, Ming; Liebler, Daniel C.

    2016-01-01

    Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25–twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238

  12. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

    PubMed Central

    Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis

    2006-01-01

    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494

  13. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing.

    PubMed

    Ma, Zhen; Boye, Joyce I; Hu, Xinzhong

    2017-02-01

    Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (T o ), peak (T p ), and conclusion (T c ) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Conversion of partially reprogrammed cells to fully pluripotent stem cells is associated with further activation of stem cell maintenance- and gamete generation-related genes.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Seo, Han Geuk; Moon, Sung-Hwan; Chung, Hyung-Min; Do, Jeong Tae

    2014-11-01

    Somatic cells are reprogrammed to induced pluripotent stem cells (iPSCs) by overexpression of a combination of defined transcription factors. We generated iPSCs from mouse embryonic fibroblasts (with Oct4-GFP reporter) by transfection of pCX-OSK-2A (Oct4, Sox2, and Klf4) and pCX-cMyc vectors. We could generate partially reprogrammed cells (XiPS-7), which maintained more than 20 passages in a partially reprogrammed state; the cells expressed Nanog but were Oct4-GFP negative. When the cells were transferred to serum-free medium (with serum replacement and basic fibroblast growth factor), the XiPS-7 cells converted to Oct4-GFP-positive iPSCs (XiPS-7c, fully reprogrammed cells) with ESC-like properties. During the conversion of XiPS-7 to XiPS-7c, we found several clusters of slowly reprogrammed genes, which were activated at later stages of reprogramming. Our results suggest that partial reprogrammed cells can be induced to full reprogramming status by serum-free medium, in which stem cell maintenance- and gamete generation-related genes were upregulated. These long-term expandable partially reprogrammed cells can be used to verify the mechanism of reprogramming.

  15. Genetic control of floral zygomorphy in pea (Pisum sativum L.).

    PubMed

    Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da

    2008-07-29

    Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.

  16. An Evaluation of the Pea Pod System for Assessing Body Composition of Moderately Premature Infants.

    PubMed

    Forsum, Elisabet; Olhager, Elisabeth; Törnqvist, Caroline

    2016-04-22

    (1) BACKGROUND: Assessing the quality of growth in premature infants is important in order to be able to provide them with optimal nutrition. The Pea Pod device, based on air displacement plethysmography, is able to assess body composition of infants. However, this method has not been sufficiently evaluated in premature infants; (2) METHODS: In 14 infants in an age range of 3-7 days, born after 32-35 completed weeks of gestation, body weight, body volume, fat-free mass density (predicted by the Pea Pod software), and total body water (isotope dilution) were assessed. Reference estimates of fat-free mass density and body composition were obtained using a three-component model; (3) RESULTS: Fat-free mass density values, predicted using Pea Pod, were biased but not significantly (p > 0.05) different from reference estimates. Body fat (%), assessed using Pea Pod, was not significantly different from reference estimates. The biological variability of fat-free mass density was 0.55% of the average value (1.0627 g/mL); (4) CONCLUSION: The results indicate that the Pea Pod system is accurate for groups of newborn, moderately premature infants. However, more studies where this system is used for premature infants are needed, and we provide suggestions regarding how to develop this area.

  17. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections.

    PubMed

    Liu, Rong; Fang, Li; Yang, Tao; Zhang, Xiaoyan; Hu, Jinguo; Zhang, Hongyan; Han, Wenliang; Hua, Zeke; Hao, Junjie; Zong, Xuxiao

    2017-07-19

    Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

  18. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis

    PubMed Central

    Tomasetti, Marco; Amati, Monica; Santarelli, Lory; Neuzil, Jiri

    2016-01-01

    The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs). The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance. PMID:27213336

  19. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain.

    PubMed

    López-León, Micaela; Outeiro, Tiago F; Goya, Rodolfo G

    2017-11-01

    Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Response of the calf pancreas to differently processed soya bean and pea diets.

    PubMed

    Le Dréan, G; Le Huërou-Luron, I; Philouze-Romé, V; Toullec, R; Guilloteau, P

    1995-01-01

    The purpose of this study was to determine the effect of replacing skim-milk powder by differently treated soya bean or pea products on growth, pancreas size and pancreatic enzyme activities in calves. Three separate experiments have been performed. In experiments 1 and 2, 28 and 21 male Holstein calves were divided into 4 or 3 groups, respectively, and fed either dairy products or milk substitutes in which protein was mainly provided by soya bean products differing in their protein concentration due to the technological processing applied. In experiment 3, 45 male Holstein calves were divided into 3 groups and were fed either dairy products, or raw or flaked pea flour as a protein source. After an experimental period of 99 +/- 4 days in experiments 1 and 2, and of 88 days in experiment 3, animal growth rate was significantly lower with raw pea flour (16%) and with the soya bean diet, which was highly concentrated in carbohydrates and allergenic proteins (13-27%). Pancreas weight decreased significantly (16-18%) with pea diets and tended to be lower (NS) with the water extracted, concentrated and heated flour (soya bean). Amylase-specific activity increased significantly (43%) with pea diets but showed opposite tendencies with the most refined soya bean products. Proteolytic enzyme activities were slightly influenced by dietary protein source, but this was not as obvious as in the literature reviewed. Specific messenger RNAs corresponding to amylase, trypsin and chymotrypsin seemed to increase (NS) with the soya bean diets, particularly with the less elaborated one. However, further investigations are required before any conclusions may be drawn concerning regulation levels of pancreatic adaptation to dietary protein. According to this study and the literature, results concerning pancreatic response to diets were different suggesting that the origin of soya bean, pea seeds and technological treatments applied to them were of great importance. Also, the level of

  1. 21 CFR 155.172 - Canned dry peas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned dry peas. 155.172 Section 155.172 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED VEGETABLES Requirements for Specific Standardized Canned Vegetables § 155.172 Canned dry...

  2. Influence of grinding on the nutritive value of peas for ruminants: comparison between in vitro and in situ approaches

    PubMed Central

    Giger-Reverdin, Sylvie; Maaroufi, Chiraze; Chapoutot, Patrick; Peyronnet, Corinne; Sauvant, Daniel

    2014-01-01

    In ruminant nutrition, peas are characterized by high protein solubility and degradability, which impair its protein value estimated by the official in situ method. Grinding can be used as a technological treatment of pea seeds to modify their nutritional value. The aim of this study was to compare the in situ method with an in vitro method on the same pea either in a coarse pea flour form (PCF) or in a ground pea fine flour form (PFF) to understand the effect of grinding. Both forms were also reground (GPCF and GPFF). PCF presented a lower rate of in vitro degradation than PFF, and more stable fermentation parameters (pH, ammonia, soluble carbohydrates) even if gas production was higher for the PCF after 48 h of incubation. In situ dry matter and protein degradation were lower for PCF than those for PFF; these differences were more marked than with the in vitro method. Reground peas were very similar to PFF. The values for pea protein digestible in the intestine (PDI) were higher for PCF than those for PFF. This study points out the high sensitivity of the in situ method to grinding. The study needs to be validated by in vivo measurements. PMID:25473488

  3. Thermochemical characterization of pigeon pea stalk for its efficient utilization as an energy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katyal, S.K.; Iyer, P.V.R.

    2000-05-01

    Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char tomore » generate producer gas.« less

  4. NANOG priming before full reprogramming may generate germ cell tumours.

    PubMed

    Grad, I; Hibaoui, Y; Jaconi, M; Chicha, L; Bergström-Tengzelius, R; Sailani, M R; Pelte, M F; Dahoun, S; Mitsiadis, T A; Töhönen, V; Bouillaguet, S; Antonarakis, S E; Kere, J; Zucchelli, M; Hovatta, O; Feki, A

    2011-11-09

    Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC) lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  5. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    PubMed Central

    Wong, Chui E; Bhalla, Prem L; Ottenhof, Harald; Singh, Mohan B

    2008-01-01

    Background Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin

  6. Greenhouse Studies of Thiamethoxam Effects on Pea Leaf Weevil, Sitona lineatus

    PubMed Central

    Cárcamo, Héctor; Herle, Carolyn; Hervet, Vincent

    2012-01-01

    The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), has recently emerged as an important pest of field peas in the Canadian prairies. Systemic seed-coated insecticides may provide a tool for the integrated pest management of this pest. Therefore, several controlled assays were performed in order to determine effects of a recently registered neonicotinoid, (thiamethoxam) on S. lineatus damage to foliage, weevil mortality, fertility, egg viability, larval mortality, and root nodule damage. Foliage damage was reduced by thiamethoxam relative to untreated controls during the seedling stage (2nd–5th nodes), but weevil adult mortality was only 15–30%. Fertility was reduced substantially through an extra seven-day delay in the preoviposition period and reduced egg-laying rate during the first 20 days of the study (92% lower than controls). Overall egg viability was lower in females fed foliage grown from thiamethoxamtreated seeds. Larval survivorship and nodule damage were also lower, but only when eggs were added to treated plants at the 2nd node stage. When eggs were added late, at the 5th node stage, thiamethoxam had no effect on larval survivorship or nodule damage. The results of this study led to the conclusion that seed treatments such as thiamethoxam have potential to be used as tools that will aid in the integrated pest management of S. lineatus, especially in combination with other methods such as biocontrol and trap crops. PMID:23461362

  7. Pea Chaperones under Centrifugation

    NASA Astrophysics Data System (ADS)

    Talalaiev, Oleksandr

    2008-06-01

    Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.

  8. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase

    USDA-ARS?s Scientific Manuscript database

    Rice, the staple food of South and East Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16 kDa, 26 kDa, 33 kDa and 56 kDa have been identified as allergens. Re...

  9. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease.

    PubMed

    Cantone, Irene; Fisher, Amanda G

    2017-11-05

    X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  10. Broad bean and pea by-products as sources of fibre-rich ingredients: potential antioxidant activity measured in vitro.

    PubMed

    Mateos-Aparicio, Inmaculada; Redondo-Cuenca, Araceli; Villanueva-Suárez, María-José

    2012-02-01

    By-products generated during the processing of plant food can be considered a promising source of dietary fibre as a functional compound. The dietary fibre composition, soluble sugars and antioxidant activity of the extractable polyphenols of pea and broad bean by-products have been analysed in this study. Total dietary fibre using AOAC methods plus hydrolysis (broad bean pod: 337.3 g kg⁻¹; pea pod: 472.6 g kg⁻¹) is higher (P < 0.05) in both by-products than with the Englyst method (broad bean pod: 309.7 g kg⁻¹; pea pod: 434.6 g kg⁻¹). The main monomers are uronic acids, glucose, arabinose and galactose in broad bean pods. However, pea pods are very rich in glucose and xylose. The soluble sugars analysed by high-performance liquid chromatography in both by-products have glucose as the most important component, followed by sucrose and fructose. The ferric reducing antioxidant power (broad bean pod: 406.4 µmol Trolox equivalents g⁻¹; pea pod: 25.9 µmol Trolox equivalents g⁻¹) and scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical (EC₅₀ of broad bean pod: 0.4 mg mL⁻¹; EC₅₀ of pea pod: 16.0 mg mL⁻¹) were also measured. Broad bean and pea by-products are very rich in dietary fibre, particularly insoluble dietary fibre and their extractable polyphenols demonstrate antioxidant activity. Therefore they might be regarded as functional ingredients. Copyright © 2011 Society of Chemical Industry.

  11. Effect of Replacing Soybean Meal by Raw or Extruded Pea Seeds on Growth Performance and Selected Physiological Parameters of the Ileum and Distal Colon of Pigs

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Bachanek, Ilona; Skomiał, Jacek

    2017-01-01

    The use of pea seeds is limited due to the content of antinutritional factors that may affect gut physiology. Heat treatment such as extrusion may reduce heat-labile antinutritional factors and improve the nutritional value of pea seeds. This study determined the effect of partial replacement of soybean meal in pig diets by raw or extruded pea seeds on growth performance, nitrogen balance and physiology of the ileum and distal colon. The experiment was carried out in 18 castrated male piglets of initial body weight of 11 kg, divided into three groups. The animals were fed cereal-based diets with soybean meal (C), which was partly replaced by raw (PR) or extruded pea (PE) seeds. Nitrogen balance was measured at about 15 kg body weight. After 26 days of feeding, tissue samples were taken from the ileum and distal colon for histological measurements, and colonic digesta samples for analyses of microbial activity indices. The animals fed the PE diet had a significantly greater average daily gain than those fed the C diet and better apparent protein digestibility than those on the PR diet. Pigs fed the PR diet had a significantly greater butyric acid concentration and lower pH in the colon than pigs fed PE and C diets. There was no significant effect of the diet on other indices of microbial activity or morphological parameters. In conclusion, feeding a diet with extruded pea seeds improved growth performance of pigs, did not affect intestinal morphology and had a negligible effect on microbial activity in the distal colon. PMID:28060879

  12. Induced Pluripotency and Epigenetic Reprogramming

    PubMed Central

    Hochedlinger, Konrad; Jaenisch, Rudolf

    2015-01-01

    SUMMARY Induced pluripotency defines the process by which somatic cells are converted into induced pluripotent stem cells (iPSCs) upon overexpression of a small set of transcription factors. In this article, we put transcription factor–induced pluripotency into a historical context, review current methods to generate iPSCs, and discuss mechanistic insights that have been gained into the process of reprogramming. In addition, we focus on potential therapeutic applications of induced pluripotency and emerging technologies to efficiently engineer the genomes of human pluripotent cells for scientific and therapeutic purposes. PMID:26626939

  13. Somatic Nucleus Reprogramming Is Significantly Improved by m-Carboxycinnamic Acid Bishydroxamide, a Histone Deacetylase Inhibitor*

    PubMed Central

    Dai, Xiangpeng; Hao, Jie; Hou, Xiao-jun; Hai, Tang; Fan, Yong; Yu, Yang; Jouneau, Alice; Wang, Liu; Zhou, Qi

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has shown tremendous potential for understanding the mechanisms of reprogramming and creating applications in the realms of agriculture, therapeutics, and regenerative medicine, although the efficiency of reprogramming is still low. Somatic nucleus reprogramming is triggered in the short time after transfer into recipient cytoplasm, and therefore, this period is regarded as a key stage for optimizing SCNT. Here we report that CBHA, a histone deacetylase inhibitor, modifies the acetylation status of somatic nuclei and increases the developmental potential of mouse cloned embryos to reach pre- and post-implantation stages. Furthermore, the cloned embryos treated by CBHA displayed higher efficiency in the derivation of nuclear transfer embryonic stem cell lines by promoting outgrowths. More importantly, CBHA increased blastocyst quality compared with trichostatin A, another prevalent histone deacetylase inhibitor reported previously. Use of CBHA should improve the productivity of SCNT for a variety of research and clinical applications, and comparisons of cells with different levels of pluripotency and treated with CBHA versus trichostatin A will facilitate studies of the mechanisms of reprogramming. PMID:20566633

  14. Maize 27 kDa gamma-zein is a potential allergen for early weaned pigs.

    PubMed

    Krishnan, Hari B; Kerley, Monty S; Allee, Gary L; Jang, Sungchan; Kim, Won-Seok; Fu, Chunjiang J

    2010-06-23

    Soybean and maize are extensively used in animal feed, primarily in poultry, swine, and cattle diets. Soybean meal can affect pig performance in the first few weeks following weaning and elicit specific antibodies in weaned piglets. Though maize is a major component of pig feed, it is not known if any of the maize proteins can elicit immunological response in young pigs. In this study, we have identified a prominent 27 kDa protein from maize as an immunodominant protein in young pigs. This protein, like some known allergens, exhibited resistance to pepsin digestion in vitro. Several lines of evidence identify the immunodominant 27 kDa protein as a gamma-zein, a maize seed storage protein. First, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of different solubility classes of maize seed proteins revealed the presence of an abundant 27 kDa protein in the prolamin (zein) fraction. Antibodies raised against the purified maize 27 kDa gamma-zein also reacted against the same protein recognized by the young pig serum. Additionally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the peptides generated by trypsin digestion of the immunodominant 27 kDa protein showed significant homology to the maize 27 kDa gamma-zein. Since eliminating the allergenic protein will have a great impact on the nutritive value of the maize meal and expand its use in the livestock industry, it will be highly desirable to develop maize cultivars completely lacking the 27 kDa allergenic protein.

  15. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes

    PubMed Central

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products. PMID:21614186

  16. Rational Development of A Polycistronic Plasmid with A CpG-Free Bacterial Backbone as A Potential Tool for Direct Reprogramming.

    PubMed

    Dormiani, Kianoush; Mir Mohammad Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Forouzanfar, Mahboobeh; Baharvand, Hossein; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2017-01-01

    Induced pluripotent stem cells are generated from somatic cells by direct reprogramming. These reprogrammed pluripotent cells have different applications in biomedical fields such as regenerative medicine. Although viral vectors are widely used for efficient reprogramming, they have limited applications in the clinic due to the risk for immunogenicity and insertional mutagenesis. Accordingly, we designed and developed a small, non-integrating plasmid named pLENSO/Zeo as a 2A-mediated polycistronic expression vector. In this experimental study, we developed a single plasmid which includes a single expression cassette containing open reading frames of human LIN28, NANOG, SOX2 and OCT4 along with an EGFP reporter gene. Each reprogramming factor is separated by an intervening sequence that encodes a 2A self-processing peptide. The reprogramming cassette is located downstream of a CMV promoter. The vector is easily propagated in the E. coli GT115 strain through a CpG-depleted vector backbone. We evaluated the stability of the constructed vector bioinformatically, and its ability to stoichiometric expression of the reprogramming factors using quantitative molecular methods analysis after transient transfection into HEK293 cells. In the present study, we developed a nonviral episomal vector named pLENSO/ Zeo. Our results demonstrated the general structural stability of the plasmid DNA. This relatively small vector showed concomitant, high-level expression of the four reprogramming factors with similar titers, which are considered as the critical parameters for efficient and consistent reprogramming. According to our experimental results, this stable extrachromosomal plasmid expresses reliable amounts of four reprogramming factors simultaneously. Consequently, these promising results encouraged us to evaluate the capability of pLENSO/Zeo as a simple and feasible tool for generation of induced pluripotent stem cells from primary cells in the future.

  17. AMP-Activated Protein Kinase as a Reprogramming Strategy for Hypertension and Kidney Disease of Developmental Origin.

    PubMed

    Tain, You-Lin; Hsu, Chien-Ning

    2018-06-12

    Suboptimal early-life conditions affect the developing kidney, resulting in long-term programming effects, namely renal programming. Adverse renal programming increases the risk for developing hypertension and kidney disease in adulthood. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life. AMP-activated protein kinase (AMPK) plays a key role in normal renal physiology and the pathogenesis of hypertension and kidney disease. This review discusses the regulation of AMPK in the kidney and provides hypothetical mechanisms linking AMPK to renal programming. This will be followed by studies targeting AMPK activators like metformin, resveratrol, thiazolidinediones, and polyphenols as reprogramming strategies to prevent hypertension and kidney disease. Further studies that broaden our understanding of AMPK isoform- and tissue-specific effects on renal programming are needed to ultimately develop reprogramming strategies. Despite the fact that animal models have provided interesting results with regard to reprogramming strategies targeting AMPK signaling to protect against hypertension and kidney disease with developmental origins, these results await further clinical translation.

  18. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth.

    PubMed

    Kukavica, Biljana M; Veljovicc-Jovanovicc, Sonja D; Menckhoff, Ljiljana; Lüthje, Sabine

    2012-07-01

    Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS-PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5-9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes.

  19. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  20. A relevant IgE-reactive 28kDa protein identified from Salsola kali pollen extract by proteomics is a natural degradation product of an integral 47kDa polygalaturonase.

    PubMed

    Mas, Salvador; Oeo-Santos, Carmen; Cuesta-Herranz, Javier; Díaz-Perales, Araceli; Colás, Carlos; Fernández, Javier; Barber, Domingo; Rodríguez, Rosalía; de Los Ríos, Vivian; Barderas, Rodrigo; Villalba, Mayte

    2017-08-01

    A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m 3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells

    PubMed Central

    Ross, Jason; Busch, Julia; Mintz, Ellen; Ng, Damian; Stanley, Alexandra; Brafman, David; Sutton, V. Reid; Van den Veyver, Ignatia; Willert, Karl

    2015-01-01

    SUMMARY WNT signaling promotes the reprogramming of somatic cells to an induced pluripotent state. We provide genetic evidence that WNT signaling is a requisite step during the induction of pluripotency. Fibroblasts from individuals with Focal Dermal Hypoplasia (FDH), a rare genetic syndrome caused by mutations in the essential WNT processing enzyme PORCN, fail to reprogram using standard methods. This blockade in reprogramming is overcome by ectopic WNT signaling and by PORCN overexpression, thus demonstrating that WNT signaling is essential for reprogramming. The rescue of reprogramming is critically dependent on the level of WNT signaling: steady baseline activation of the WNT pathway yields karyotypically normal iPS cells, whereas daily stimulation with Wnt3a produces FDH-iPS cells with severely abnormal karyotypes. Therefore, although WNT signaling is required for cellular reprogramming, inappropriate activation of WNT signaling induces chromosomal instability, highlighting the precarious nature of ectopic WNT activation, and its tight relationship with oncogenic transformation. PMID:25464842

  2. Microbiological quality of frozen cauliflower, corn, and peas obtained at retail markets.

    PubMed Central

    Barnard, R J; Duran, A P; Swartzentruber, A; Schwab, A H; Wentz, B A; Read, R B

    1982-01-01

    The microbiological quality of blanched frozen cauliflower, cut corn, and peas at the retail level was determined. At 35 degrees C, mean aerobic plate count (APC) values for cauliflower, corn, and peas, respectively, were 30,000, 6,100, and 4,700 per g; at 30 degrees C, the mean APC values were 45,000, 8,500, and 6,800 per g, respectively. Geometric means for coliform, Escherichia coli, and Staphylococcus aureus counts for all three vegetables were less than 10 per g. PMID:6751226

  3. On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Galston, A. W.

    1987-01-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.

  4. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress.

    PubMed

    Sujkowska-Rybkowska, Marzena; Borucki, Wojciech

    2014-12-01

    Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sukheung; Roberts, D.M.

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less

  6. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes

    PubMed Central

    Li, Weida; Nakanishi, Mio; Zumsteg, Adrian; Shear, Matthew; Wright, Christopher; Melton, Douglas A; Zhou, Qiao

    2014-01-01

    Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin+ β-cells, glucagon+ α-cells, and somatostatin+ δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001 PMID:24714494

  7. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    PubMed Central

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  8. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.

    PubMed

    Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe

    2014-06-01

    Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  9. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens.

    PubMed

    Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M

    2009-09-11

    Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.

  10. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence

    PubMed Central

    Winiecka-Klimek, Marta; Smolarz, Maciej; Walczak, Maciej P.; Zieba, Jolanta; Hulas-Bigoszewska, Krystyna; Kmieciak, Blazej; Piaskowski, Sylwester; Rieske, Piotr; Grzela, Dawid P.; Stoczynska-Fidelus, Ewelina

    2015-01-01

    Tumorigenic potential of induced pluripotent stem cells (iPSCs) infiltrating population of induced neural stem cells (iNSCs) generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc) obtained with different methods—direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like) or SOX2 and c-MYC (SMiNSc-like) and induced pluripotent stem cells differentiation to ebiNSc—in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU) incorporation and senescence-associated beta-galactosidase (SA-β-gal) assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or reprogrammed

  11. Biscuit-making potential of millet/pigeon pea flour blends.

    PubMed

    Eneche, E H

    1999-01-01

    Biscuits were produced from millet flour (MF) and pigeon pea flour (PPF) blends. The various ratios of MF to PPF used were 100:0, 75:25, 65:35, and 50:50. The biscuits were analyzed for their nutritional composition. They all contained high proportions of protein (7.5-15.2%), fat (17.1-18.1%) and digestible carbohydrate (60.2-66.5%). The moisture content was in the range 5.0 to 6.6%, ash 1.5-2.3% and crude fiber 0-0.1%. Sensory evaluation results indicated that all the biscuits had high sensory ratings for all the selected attributes evaluated. The recipe with the 65% MF/35% PPF blend resulted in the highest scores for flavor, texture and general acceptability. There was no significant difference (p > 0.05) between all the biscuits and the familiar Nasco short cake biscuit (reference) in flavor, color, texture and general acceptability.

  12. Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of In Vitro Transcribed mRNA.

    PubMed

    Kim, Bo-Eun; Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Kang, Insung; Lee, Byung-Chul; Lee, Jin Young; Kook, Myoung Geun; Kang, Kyung-Sun

    2018-01-01

    Neural stem cells (NSCs) are a prominent cell source for understanding neural pathogenesis and for developing therapeutic applications to treat neurodegenerative disease because of their regenerative capacity and multipotency. Recently, a variety of cellular reprogramming technologies have been developed to facilitate in vitro generation of NSCs, called induced NSCs (iNSCs). However, the genetic safety aspects of established virus-based reprogramming methods have been considered, and non-integrating reprogramming methods have been developed. Reprogramming with in vitro transcribed (IVT) mRNA is one of the genetically safe reprogramming methods because exogenous mRNA temporally exists in the cell and is not integrated into the chromosome. Here, we successfully generated expandable iNSCs from human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via transfection with IVT mRNA encoding SOX2 (SOX2 mRNA) with properly optimized conditions. We confirmed that generated human UCB-MSC-derived iNSCs (UM-iNSCs) possess characteristics of NSCs, including multipotency and self-renewal capacity. Additionally, we transfected human dermal fibroblasts (HDFs) with SOX2 mRNA. Compared with human embryonic stem cell-derived NSCs, HDFs transfected with SOX2 mRNA exhibited neural reprogramming with similar morphologies and NSC-enriched mRNA levels, but they showed limited proliferation ability. Our results demonstrated that human UCB-MSCs can be used for direct reprogramming into NSCs through transfection with IVT mRNA encoding a single factor, which provides an integration-free reprogramming tool for future therapeutic application.

  13. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming.

    PubMed

    West, Jason A; Cook, April; Alver, Burak H; Stadtfeld, Matthias; Deaton, Aimee M; Hochedlinger, Konrad; Park, Peter J; Tolstorukov, Michael Y; Kingston, Robert E

    2014-08-27

    Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes.

  14. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    PubMed

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  15. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    PubMed Central

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  16. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    PubMed

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  17. Fast-ball sports experts depend on an inhibitory strategy to reprogram their movement timing.

    PubMed

    Nakamoto, Hiroki; Ikudome, Sachi; Yotani, Kengo; Maruyama, Atsuo; Mori, Shiro

    2013-07-01

    The purpose of our study was to clarify whether an inhibitory strategy is used for reprogramming of movement timing by experts in fast-ball sports when they correct their movement timing due to unexpected environmental changes. We evaluated the influence of disruption of inhibitory function of the right inferior frontal gyrus (rIFG) on reprogramming of movement timing of experts and non-experts in fast-ball sports. The task was to manually press a button to coincide with the arrival of a moving target. The target moved at a constant velocity, and its velocity was suddenly either increased or decreased in some trials. The task was performed either with or without transcranial magnetic stimulation (TMS), which was delivered to the region of the rIFG. Under velocity change conditions without TMS, the experts showed significantly smaller timing errors and a higher rate of reprogramming of movement timing than the non-experts. Moreover, TMS application during the task significantly diminished the expert group's performance, but not the control group, particularly in the condition where the target velocity decreases. These results suggest that experts use an inhibitory strategy for reprogramming of movement timing. In addition, the rIFG inhibitory function contributes to the superior movement correction of experts in fast-ball sports.

  18. The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity

    PubMed Central

    Wielbo, Jerzy; Podleśna, Anna; Kidaj, Dominika; Podleśny, Janusz; Skorupska, Anna

    2015-01-01

    The growth and yield of peas cultivated on eight different soils, as well as the diversity of pea microsymbionts derived from these soils were investigated in the present study. The experimental plot was composed of soils that were transferred from different parts of Poland more than a century ago. The soils were located in direct vicinity of each other in the experimental plot. All soils examined contained pea microsymbionts, which were suggested to belong to Rhizobium leguminosarum sv. viciae based on the nucleotide sequence of the partial 16S rRNA gene. PCR-RFLP analyses of the 16S-23S rRNA gene ITS region and nodD alleles revealed the presence of numerous and diversified groups of pea microsymbionts and some similarities between the tested populations, which may have been the result of the spread or displacement of strains. However, most populations retained their own genetic distinction, which may have been related to the type of soil. Most of the tested populations comprised low-effective strains for the promotion of pea growth. No relationships were found between the characteristics of soil and symbiotic effectiveness of rhizobial populations; however, better seed yield was obtained for soil with medium biological productivity inhabited by high-effective rhizobial populations than for soil with high agricultural quality containing medium-quality pea microsymbionts, and these results showed the importance of symbiosis for plant hosts. PMID:26370165

  19. Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions.

    PubMed

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-04-29

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10⁻¹¹ M) or water (control) before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay), nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.

  20. Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression.

    PubMed

    Umei, Tomohiko C; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2017-08-19

    Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.

  1. Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression

    PubMed Central

    Umei, Tomohiko C.; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2017-01-01

    Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming. PMID:28825623

  2. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  3. GREEN PEA GALAXIES REVEAL SECRETS OF Lyα ESCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Wang, Junxian; Malhotra, Sangeeta

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fractionmore » and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.« less

  4. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein.

    PubMed

    Escobar Galvis, M L; Marttila, S; Håkansson, G; Forsberg, J; Knorpp, C

    2001-05-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein.

  5. Biological changes of green pea (Pisum sativum L.) by selenium enrichment.

    PubMed

    Garousi, Farzaneh; Kovács, Béla; Domokos-Szabolcsy, Éva; Veres, Szilvia

    2017-03-01

    Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg -1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg -1 selenite and 1 mg kg -1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg -1 ) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (Ф PSII ) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.

  6. Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage “Switch” Phenotype

    PubMed Central

    Malyshev, Igor; Malyshev, Yuri

    2015-01-01

    Macrophages play a key role in immunity. In this review, we consider the traditional notion of macrophage plasticity, data that do not fit into existing concepts, and a hypothesis for existence of a new switch macrophage phenotype. Depending on the microenvironment, macrophages can reprogram their phenotype toward the proinflammatory M1 phenotype or toward the anti-inflammatory M2 phenotype. Macrophage reprogramming involves well-coordinated changes in activities of signalling and posttranslational mechanisms. Macrophage reprogramming is provided by JNK-, PI3K/Akt-, Notch-, JAK/STAT-, TGF-β-, TLR/NF-κB-, and hypoxia-dependent pathways. Posttranscriptional regulation is based on micro-mRNA. We have hypothesized that, in addition to the M1 and M2 phenotypes, an M3 switch phenotype exists. This switch phenotype responds to proinflammatory stimuli with reprogramming towards the anti-inflammatory M2 phenotype or, contrarily, it responds to anti-inflammatory stimuli with reprogramming towards the proinflammatory M1 phenotype. We have found signs of such a switch phenotype in lung diseases. Understanding the mechanisms of macrophage reprogramming will assist in the selection of new therapeutic targets for correction of impaired immunity. PMID:26366410

  7. Bowman-Birk inhibitor-like protein is secreted by sprouted pea seeds in response to induced colonization by enteropathogenic Escherichia coli.

    PubMed

    Anuradha, Ravi; Raveendran, Muthuraj; Babu, Subramanian

    2013-11-01

    The interaction between the clinical isolate of enteropathogenic Escherichia coli (EPEC) SBANU8 and pea sprouts was compared with avirulent K 12. E. coli. This was carried out by repeated co-incubation with pea sprouts for 5 days, and the protein profile of the culture supernatant was analyzed by single and two-dimensional electrophoresis. Mass spectrometry analysis led to the identification of two serine protease inhibitors including a Bowman-Birk-type protein secreted by pea sprouts in response to clinical isolate. Expression of the E. coli intimin gene involved in animal host colonization and virulence was studied by reverse transcription polymerase chain reaction. Expression of this gene was high in SBANU8 when co-incubated with pea sprouts. The present study gives baseline data on the molecular level interactions of EPEC and pea sprouts, which are needed to design the outbreak control strategies.

  8. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs).

    PubMed

    Pawar, Rahul S; Grundel, Erich

    2017-03-01

    The multi-billion dollar dietary supplement industry is global in reach. The industry has been criticized for problems related to poor quality control, safety, misbranding, and adulteration. In this review, we describe how the US Food and Drug Administration (FDA) regulates dietary supplements within the framework of the Federal Food, Drug, and Cosmetic Act (FD&C Act). The Dietary Supplement Health and Education Act of 1994 (DSHEA), which amended the FD&C Act, gave the FDA the authority to promulgate Good Manufacturing Practices for dietary supplements and required that manufacturers provide the FDA information supporting a conclusion that the ingredients are reasonably expected to be safe if the dietary ingredients were not marketed in the USA before 15 October 1994. Recent amendments to the FD&C Act require that serious dietary-supplement-related adverse events be reported to the FDA and provide the agency with mandatory recall authority. We discuss the presence of naturally occurring (e.g. Ephedra, Citrus aurantium, Acacia) and synthetic (e.g. β-methylphenethylamines, methylsynephrine, α-ethyl-phenethylamine) biologically active phenethylamines (PEAs) in dietary supplements and of PEA drugs (e.g. clenbuterol, fenfluramine, sibutramine, lorcaserin) in weight-loss products. Regulatory actions against manufacturers of products labelled as dietary supplements that contain the aliphatic amines 1,3-dimethylamine and 1,3-dimethylbutylamine, and PEAs such as β-methylphenethylamine, aegeline, and Dendrobium illustrate the FDA's use of its authority under the FD&C Act to promote dietary supplement safety. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Balfanz, Sabine

    2017-01-01

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141

  10. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    PubMed

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  11. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours.

    PubMed

    Aluko, Rotimi E; Mofolasayo, Olawunmi A; Watts, Beverley M

    2009-10-28

    Commercial yellow pea seed flours prepared by a patented wet-milling process and pea protein isolate (PPI) were analyzed for emulsifying and foaming properties at pH 3.0, 5.0, and 7.0 and compared to soybean protein isolate (SPI). PPI and SPI formed emulsions with significantly smaller (p < 0.05) oil droplet sizes, 16-30 and 23-54 microm, respectively, than flours that primarily contained fiber such as Centara III and IV, or those that consisted mainly of starch: Centu-tex, Uptake 80 and Accu-gel. PPI was a better emulsifier than SPI at pH 7.0, and a better foaming agent at pH 3.0 and pH 7.0, although foaming capacity varied with sample concentration. Centu-tex and Uptake 80 have exactly the same chemical composition, but the latter has a much smaller flour particle size range, and had significantly smaller (p < 0.05) emulsion oil droplets. Incorporation of pea starch into SPI emulsions produced a synergistic effect that led to significant increases (p < 0.05) in emulsification capacity (reduced emulsion oil droplet size) when compared to SPI or starch alone. These results showed that PPI had generally significantly higher (p < 0.05) emulsion and foam forming properties than SPI, and that pea starch could be used to improve the quality of SPI-stabilized food emulsions.

  12. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts.

    PubMed

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela

    2015-04-14

    The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Regenerating the human heart: direct reprogramming strategies and their current limitations.

    PubMed

    Ghiroldi, Andrea; Piccoli, Marco; Ciconte, Giuseppe; Pappone, Carlo; Anastasia, Luigi

    2017-10-27

    Cardiovascular diseases are the leading cause of death in the Western world. Unfortunately, current therapies are often only palliative, consequently essentially making heart transplantation necessary for many patients. However, several novel therapeutic approaches in the past two decades have yielded quite encouraging results. The generation of induced pluripotent stem cells, through the forced expression of stem cell-specific transcription factors, has inspired the most promising strategies for heart regeneration by direct reprogramming of cardiac fibroblasts into functional cardiomyocytes. Initial attempts at this reprogramming were conducted using a similar approach to the one used with transcription factors, but during years, novel strategies have been tested, e.g., miRNAs, recombinant proteins and chemical molecules. Although preliminary results on animal models are promising, the low reprogramming efficiency, as well as the incomplete maturation of the cardiomyocytes, still represents important obstacles. This review covers direct transdifferentiation strategies that have been proposed and developed and illustrates the pros and cons of each approach. Indeed, as described in the manuscript, there are still many unanswered questions and drawbacks that require a better understanding of the basic signaling pathways and transcription factor networks before functional cells, suitable for cardiac regeneration and safe for the patients, can be generated and used for human therapies.

  14. Potential of roselle and blue pea in the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  15. Trichinella spiralis: strong antibody response to a 49 kDa newborn larva antigen in infected rats.

    PubMed

    Salinas-Tobon, Maria Del Rosario; Navarrete-Leon, Anaid; Mendez-Loredo, Blanca Esther; Esquivel-Aguirre, Dalia; Martínez-Abrajan, Dulce Maria; Hernandez-Sanchez, Javier

    2007-02-01

    In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal

  16. Dryland pea production and water use in responses to tillage, crop rotation, and weed management practice

    USDA-ARS?s Scientific Manuscript database

    Pea has been used to replace fallow and sustain dryland crop yields in arid and semiarid regions, but information to optimize its management is required. We evaluated pea growth, yield, and water use in response to tillage, crop rotation, and weed management practice from 2005 to 2010 in the norther...

  17. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  18. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens

    PubMed Central

    Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M

    2009-01-01

    Background Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Results Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. Conclusion The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market. PMID:19747368

  19. Genetic reprogramming of host cells by bacterial pathogens.

    PubMed

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  20. Isoform composition and stoichiometry of the approx. 90-kDa heat shock protein associated with glucocorticoid receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, D.B.; Orti, E.

    1988-05-15

    The authors observed that the approx. 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approx. 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approx. 90-kDa heat shock protein. The observation that TSTA and the approx. 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested thatmore » the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the approx. 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approx. 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approx. 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with (/sup 35/S)methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two approx. 90-kDa non-steroid-binding subunits. The consistency with which a approx. 1:2 stoichiometric ratio of steroid binding to approx. 90-kDa protein is observed supports the view that the approx. 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes.« less

  1. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    PubMed

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  2. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramanian, Anuradha; Ponnuraj, Karthe, E-mail: pkarthe@hotmail.com

    Urease from pigeon pea was purified and crystallized and X-ray diffraction data were collected at 2.5 Å resolution. Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized andmore » the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å.« less

  3. The composition of pigeon peas (Cajanus cajan (L.) Millsp.) grown in Botswana.

    PubMed

    Amarteifio, J O; Munthali, D C; Karikari, S K; Morake, T K

    2002-01-01

    This study investigated the composition of pigeon peas (Cajanus cajan), grown at Sebele, Botswana. The raw seeds of six varieties were analyzed for dry matter, crude fat, protein, fiber, and ash, using Association of Official Analytical Chemists procedures. Major minerals, Ca, K, P, Mg, Na and trace minerals, Cu, Fe and Zn were also assessed. The range of nutrient contents obtained were: dry matter 86.6-88.0%, crude protein 19.0-21.7%, crude fat 1.2-1.3%, crude fiber 9.8-13.0%, and ash 3.9-4.3%. Minerals ranges (mg/100 g dry matter) were: K 1845-1941, P 163-293, Ca 120-167, Mg 113-127, Na 11.3-12.0, Zn 7.2-8.2, Fe 2.5-4.7 and Cu 1.6-1.8. There were no significant differences in Na among the six varieties (p > 0.05). For the other components, varietal differences (p < 0.05) were observed. The values obtained for the dry matter, crude protein, fat, ash, Ca, Cu, Fe, and Mg were similar to those in pigeon peas grown elsewhere, while those for crude fiber and Zn were higher. In general, the composition of pigeon peas compared favorably with those of other legumes such as Bambara groundnut (Vigna subterranea). The levels of crude protein, crude fiber, K, Ca, P and Mg indicated that pigeon peas could be valuable in the diet of the people of Botswana. This crop would positively contribute protein in the diet and the diversification of agricultural produce.

  4. Somatic cell cloning: the ultimate form of nuclear reprogramming?

    PubMed

    Piedrahita, Jorge A; Mir, Bashir; Dindot, Scott; Walker, Shawn

    2004-05-01

    With the increasing difficulties associated with meeting the required needs for organs used in transplantation, alternative approaches need to be considered. These include the use of stem cells as potential sources of specialized cells, the ability to transdifferentiate cell types in culture, and the development of complete organs that can be used in humans. All of the above goals will require a complete understanding of the factors affecting cell differentiation and nuclear reprogramming. To make this a reality, however, techniques associated with cloning and genetic modifications in somatic cells need to be continued to be developed and optimized. This includes not only an enhancement of the rate of homologous recombination in somatic cells, but also a thorough understanding of the nuclear reprogramming process taking place during nuclear transfer. The understanding of this process is likely to have an effect beyond the area of nuclear transfer and assist with better methods for transdifferentiation of mammalian cells.

  5. The analysis Arabidopsis thaliana overexpressing a 14kDa self-folding protein [abstract

    USDA-ARS?s Scientific Manuscript database

    A recent study in banana identified a 14kDa protein that has been hypothesized to function in regulating the nucleation and growth of the needle-shaped crystals of calcium oxalate that accumulate within the tissues of this plant. To gain further insight in to the functional role of this 14 kDa prote...

  6. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas

  7. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  8. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    PubMed Central

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen

    2016-01-01

    Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713

  9. Reprogramming mediated radio-resistance of 3D-grown cancer cells.

    PubMed

    Xue, Gang; Ren, Zhenxin; Grabham, Peter W; Chen, Yaxiong; Zhu, Jiayun; Du, Yarong; Pan, Dong; Li, Xiaoman; Hu, Burong

    2015-07-01

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Glucose enhances tilapia against Edwardsiella tarda infection through metabolome reprogramming.

    PubMed

    Zeng, Zao-hai; Du, Chao-Chao; Liu, Shi-Rao; Li, Hui; Peng, Xuan-Xian; Peng, Bo

    2017-02-01

    We have recently reported that the survival of tilapia, Oreochromis niloticus, during Edwardsiella tarda infection is tightly associated with their metabolome, where the survived O. niloticus has distinct metabolomic profile to dying O. niloticus. Glucose is the key metabolite to distinguish the survival- and dying-metabolome. More importantly, exogenous administration of glucose to the fish greatly enhances their survival for the infection, indicating the functional roles of glucose in metabolome repurposing, known as reprogramming metabolomics. However, the underlying information for the reprogramming is not yet available. Here, GC/MS based metabolomics is used to understand the mechanisms by which how exogenous glucose elevates O. niloticus, anti-infectious ability to E. tarda. Results showed that exogenous glucose promotes stearic acid and palmitic acid biosynthesis but attenuates TCA cycle to potentiate O. niloticus against bacterial infection, which is confirmed by the fact that exogenous stearic acid increases immune protection in O. niloticus against E. tarda infection in a manner of Mx protein. These results indicate that exogenous glucose reprograms O. niloticus anti-infective metabolome that characterizes elevation of stearic acid and palmitic acid and attenuation of the TCA cycle. Therefore, our results proposed a novel mechanism that glucose promotes unsaturated fatty acid biosynthesis to cope with infection, thereby highlighting a potential way of enhancing fish immunity in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Shifting behaviour: epigenetic reprogramming in eusocial insects.

    PubMed

    Patalano, Solenn; Hore, Timothy A; Reik, Wolf; Sumner, Seirian

    2012-06-01

    Epigenetic modifications are ancient and widely utilised mechanisms that have been recruited across fungi, plants and animals for diverse but fundamental biological functions, such as cell differentiation. Recently, a functional DNA methylation system was identified in the honeybee, where it appears to underlie queen and worker caste differentiation. This discovery, along with other insights into the epigenetics of social insects, allows provocative analogies to be drawn between insect caste differentiation and cellular differentiation, particularly in mammals. Developing larvae in social insect colonies are totipotent: they retain the ability to specialise as queens or workers, in a similar way to the totipotent cells of early embryos before they differentiate into specific cell lineages. Further, both differentiating cells and insect castes lose phenotypic plasticity by committing to their lineage, losing the ability to be readily reprogrammed. Hence, a comparison of the epigenetic mechanisms underlying lineage differentiation (and reprogramming) between cells and social insects is worthwhile. Here we develop a conceptual model of how loss and regain of phenotypic plasticity might be conserved for individual specialisation in both cells and societies. This framework forges a novel link between two fields of biological research, providing predictions for a unified approach to understanding the molecular mechanisms underlying biological complexity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp].

    PubMed

    Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  13. Effect of Xyloglucan Oligosaccharides on Growth, Viscoelastic Properties, and Long-Term Extension of Pea Shoots.

    PubMed Central

    Cutillas-Iturralde, A.; Lorences, E. P.

    1997-01-01

    The growth-promoting effect of xyloglucan-derived oligosaccharides was investigated using a bioassay with entire pea (Pisum sativum L., var Alaska) shoots. After a 24-h incubation period at 25[deg]C, xyloglucan oligosaccharide (XGO) solutions with concentrations of 10-6 M notably increased the growth rate of pea shoots, whereas the same oligosaccharides at 10-7 M were less effective. To investigate the possible correlation between growth rate changes in the XGO-treated shoots and changes in the wall mechanical properties of their growing regions (third internodes), we used a short-term creep assay. The promotion of elongation by XGOs was reflected in an enhancement of the viscoelasticity of the growing regions of the shoots. To show whether this effect on wall viscoelastic properties was the cause or a consequence of their growth promotion, we tested the effect of XGOs on the long-term extension of isolated cell walls. We characterized an acid-induced extension in isolated cell walls from pea shoots that was not inhibited by preincubation in neutral buffers. Exogenously added XGOs did not alter the pattern of pea segment extension at any pH tested, indicating that XGOs have no direct effect on cell wall viscoelasticity. Finally, preincubation of pea segments in neutral buffers with XGOs enhanced their capacity to extend under acidic conditions. This finding suggests that XGOs at a neutral pH can act via transglycosylation, weakening the wall matrix and making the wall more responsive to other mechanisms of acid-induced extension as an expansin-mediated extension. PMID:12223593

  14. Development of SCAR markers linked to sin-2, the stringless pod locus in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    With increasing consumer demand for vegetables, edible-podded peas have become more popular. Stringlessness is one of most important traits for snap peas. A single recessive gene, sin-2, controls this trait. Because pollen carrying the stringless gene is less competitive than pollen carrying the str...

  15. A community resource for exploring and utilizing genetic diversity in the USDA Pea Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Globally, pea (Pisum sativum L.) is an important temperate legume crop for food, feed, and fodder, and many breeding programs exist to develop cultivars adapted to these end uses. In order to conserve genetic diversity useful to researchers, large pea collections have been constructed by numerous na...

  16. Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal.

    PubMed

    Laudadio, V; Nahashon, S N; Tufarelli, V

    2012-11-01

    This study was conducted to evaluate the effect of substitution of soybean meal (SBM) with dehulled-micronized peas (Pisum sativum) in diets of guinea fowl broilers on their growth performance, carcass yields, and fatty acid composition of meat. One hundred forty 1-d-old guinea fowl keets were randomly assigned to 2 dietary treatments, which were fed from hatch to 12 wk. The birds were fed 2 wheat middling-based diets comprising a control diet, which contained SBM (78 g/kg) and a test diet containing dehulled-micronized peas (180 g/kg) as the main protein source. The substitution of SBM with peas had no adverse effect on growth performance, dressing percentage, or breast and thigh muscle relative weights of the guinea broilers. However, a reduction of abdominal fat content (P < 0.05) was observed in birds fed the pea diet compared with the control. Breast and thigh meat of birds fed the pea diet had higher lightness scores (P < 0.05) and water-holding capacity (P < 0.01) than the control. Meat from guinea fowls fed the pea diet had less cholesterol (P < 0.01) and lipids (P < 0.05), and higher concentrations of phospholipids (P < 0.05). Feeding peas increased polyunsaturated fatty acid concentration in breast and thigh muscles, and decreased the saturated fatty acid concentration. Feeding the pea diet also lowered the n-6/n-3 polyunsaturated fatty acid ratio of the guinea broiler muscles. Our results suggest that replacing the conventional SBM as the protein source with dehulled-micronized pea meal in diets of guinea fowls broilers can improve carcass quality and favorable lipid profile without adversely affecting growth performance traits.

  17. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    PubMed

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening

  18. Heat Stress Response in Pea Involves Interaction of Mitochondrial Nucleoside Diphosphate Kinase with a Novel 86-Kilodalton Protein1

    PubMed Central

    Escobar Galvis, Martha L.; Marttila, Salla; Håkansson, Gunilla; Forsberg, Jens; Knorpp, Carina

    2001-01-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein. PMID:11351071

  19. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  20. Effect of feeding soybean meal and differently processed peas on the gut mucosal immune system of broilers.

    PubMed

    Röhe, I; Göbel, T W; Goodarzi Boroojeni, F; Zentek, J

    2017-07-01

    Peas are traditionally used as a protein source for poultry. However, peas contain antinutritional factors (ANF), which are associated with the initiation of local and systemic immune reactions. The current study examined the effect of feeding raw or differently processed peas in comparison with feeding a soybean meal (SBM) based control diet (C) on the gut mucosal immune system of broilers in a 35 day feeding trial. In six replicates, a total of 360 one-day-old male broilers were randomly allocated to four different groups receiving C, or three treatment diets containing raw, fermented, and enzymatically pre-digested peas, each supplying 30% of required crude protein. After slaughtering, jejunal samples were taken for immunohistochemical, flow cytometric, and gene expression analyses. Investigations were focused on the topological distribution of intraepithelial leukocytes (villus tip, villus mid, and crypt region) as well as on the further characterization of the different intraepithelial lymphocytes (IEL) and concomitant pro- and anti-inflammatory cytokines. Broilers receiving the raw or processed pea diets had higher numbers of intraepithelial CD45+ leukocytes in the tip (P = 0.004) and mid region (P < 0.001) of villi than birds fed C. Higher numbers of intraepithelial CD3+ lymphocytes were found in the villus tip (P = 0.002) and mid region (P = 0.003) of birds fed raw or processed pea containing diets in comparison with those fed C. The flow cytometric phenotyping showed a similar relative distribution of IEL among the feeding groups. The expression of intestinal pro- and anti-inflammatory cytokines was affected by feeding the different diets only to a minor extent. To conclude, feeding of diets formulated with raw and processed peas in comparison with feeding a SBM control diet initiated mucosal immune responses in the jejunum of broilers indicated by a quantitative increase of intraepithelial T cells. Further research is needed in order to ascertain the

  1. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea.

    PubMed

    Cercós, M; Santamaría, S; Carbonell, J

    1999-04-01

    A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.

  2. Developmental Programming of Renal Function and Re-Programming Approaches.

    PubMed

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early

  3. Formation of the 67-kDa laminin receptor by acylation of the precursor.

    PubMed

    Butò, S; Tagliabue, E; Ardini, E; Magnifico, A; Ghirelli, C; van den Brûle, F; Castronovo, V; Colnaghi, M I; Sobel, M E; Ménard, S

    1998-06-01

    Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule.

  4. Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates.

    PubMed

    Adenekan, Monilola K; Fadimu, Gbemisola J; Odunmbaku, Lukumon A; Oke, Emmanuel K

    2018-01-01

    In this study, the effect of different isolation techniques on the isolated proteins from pigeon pea was investigated. Water, methanol, ammonium sulfate, and acetone were used for the precipitation of proteins from pigeon pea. Proximate composition, and antinutritional and functional properties of the pigeon pea flour and the isolated proteins were measured. Data generated were statistically analyzed. The proximate composition of the water-extracted protein isolate was moisture 8.30%, protein 91.83%, fat 0.25%, ash 0.05%, and crude fiber 0.05%. The methanol-extracted protein isolate composition was moisture 7.87%, protein 91.83%, fat 0.17%, and ash 0.13%, while crude fiber and carbohydrates were not detected. The composition of the ammonium sulfate-extracted protein isolate was moisture 7.73%, protein 91.73%, fat 0.36, ash 0.13%, and crude fiber 0.67%. The acetone-extracted protein isolate composition was moisture 8.03%, protein 91.50%, ash 0.67%, and fat 0.30%, but crude fiber and carbohydrates were not detected. The isolate precipitated with ammonium sulfate displayed the highest foaming capacity (37.63%) and foaming stability (55.75%). Isolates precipitated with methanol and acetone had the highest water absorption capacity (160%). Pigeon pea protein isolates extracted with methanol and ammonium sulfate had the highest oil absorption capacity of 145%. Protein isolates recovered through acetone and methanol had the highest emulsifying capacity of 2.23% and emulsifying stability of 91.47%, respectively. The proximate composition of the recovered protein isolates were of high purity. This shows the efficiency of the extraction techniques. The isolates had desirable solubility index. All the isolation techniques brought significant impact on the characteristics of the isolated pigeon pea protein.

  5. Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis.

    PubMed Central

    Mukherjee, T; Basu, D; Mahapatra, S; Goffin, C; van Beeumen, J; Basu, J

    1996-01-01

    The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR2-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor, behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of M(r) 52,000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin. PMID:8947487

  6. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family.

    PubMed

    Hysolli, Eriona; Tanaka, Yoshiaki; Su, Juan; Kim, Kun-Yong; Zhong, Tianyu; Janknecht, Ralf; Zhou, Xiao-Ling; Geng, Lin; Qiu, Caihong; Pan, Xinghua; Jung, Yong-Wook; Cheng, Jijun; Lu, Jun; Zhong, Mei; Weissman, Sherman M; Park, In-Hyun

    2016-07-12

    Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Determination of adulteration of malachite green in green pea and some prepared foodstuffs by micellar liquid chromatography.

    PubMed

    Ashok, Vipin; Agrawal, Nitasha; Durgbanshi, Abhilasha; Esteve-Romero, Josep; Bose, Devasish

    2014-01-01

    A simple, fast, and robust micellar LC method was developed for the separation and identification of the nonpermitted color malachite green in green pea and some ready-to-eat foodstuffs. Malachite green (4-[(4-dimethylaminophenyl) phenyl-methyl]-N,N-dimethylaniline) is a hazardous dye that is used to treat fungal and protozoan infections in fish and is a common adulterant (coloring agent) in green pea and other green vegetables because of its green color. In the present work, malachite green was determined in various foodstuffs using a direct injection technique on an RP C18 column with isocratic elution. The optimum mobile phase consisted of 0.15 M sodium dodecyl sulfate (SDS), 6% pentanol buffered at pH 5. Detection was carried out at 620 nm. Malachite green was eluted in 9.2 min without any interference caused by endogenous compounds. Linearities (r > 0.9999), intraday and interday precision (RSD less than 1.00%) in micellar media, and robustness were studied for method validation. LOD and LOQ were 0.10 and 0.25 ppm, respectively. The simplicity of the developed method makes it useful for routine analysis in the area of food QC.

  8. RADIO DETECTION OF GREEN PEAS: IMPLICATIONS FOR MAGNETIC FIELDS IN YOUNG GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak

    Green Peas are a new class of young, emission line galaxies that were discovered by citizen volunteers in the Galaxy Zoo project. Their low stellar mass, low metallicity, and very high star formation rates make Green Peas the nearby (z {approx} 0.2) analogs of the Lyman break galaxies which account for the bulk of the star formation in the early universe (z {approx} 2-5). They thus provide accessible laboratories in the nearby universe for understanding star formation, supernova feedback, particle acceleration, and magnetic field amplification in early galaxies. We report the first direct radio detection of Green Peas with lowmore » frequency Giant Metrewave Radio Telescope observations and our stacking detection with archival Very Large Array FIRST data. We show that the radio emission implies that these extremely young galaxies already have magnetic fields ({approx}> 30 {mu}G) even larger than that of the Milky Way. This is at odds with the present understanding of magnetic field growth based on amplification of seed fields by dynamo action over a galaxy's lifetime. Our observations strongly favor models with pregalactic magnetic fields at {mu}G levels.« less

  9. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells.

    PubMed

    Patel, Vivekkumar; Singh, Vivek P; Pinnamaneni, Jaya Pratap; Sanagasetti, Deepthi; Olive, Jacqueline; Mathison, Megumi; Cooney, Austin; Flores, Elsa R; Crystal, Ronald G; Yang, Jianchang; Rosengart, Todd K

    2018-04-13

    Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. p63 Knockout ( -/- ) and knockdown murine embryonic fibroblasts (MEFs), p63 -/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). Flow cytometry revealed that a significantly greater number of p63 -/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63 -/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63 -/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  10. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... business enterprise regularly engaged in the processing of contract seed peas, that possesses all licenses... your production guarantee. Base contract price. The price per pound stipulated in the processor/seed... producer for at least 50 percent of the total production under contract with the processor/seed company...

  11. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... business enterprise regularly engaged in the processing of contract seed peas, that possesses all licenses... your production guarantee. Base contract price. The price per pound stipulated in the processor/seed... producer for at least 50 percent of the total production under contract with the processor/seed company...

  12. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... business enterprise regularly engaged in the processing of contract seed peas, that possesses all licenses... your production guarantee. Base contract price. The price per pound stipulated in the processor/seed... producer for at least 50 percent of the total production under contract with the processor/seed company...

  13. Pea (Pisum sp.) genetic resources, its analysis and exploration

    USDA-ARS?s Scientific Manuscript database

    Pea is important temperate region pulse, with feed, fodder and vegetable uses. Originated and domesticated in Middle East and Mediterranean, it formed important dietary components of early civilizations. Although Pisum is a small genus with two or three species, it is very diverse and structured, r...

  14. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Translocation of an 89-kDa periplasmic protein is associated with Holospora infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatani, Koichi; Dohra, Hideo; Lang, B. Franz

    2005-12-02

    The symbiotic bacterium Holospora obtusa infects the macronucleus of the ciliate Paramecium caudatum. After ingestion by its host, an infectious form of Holospora with an electron-translucent tip passes through the host digestive vacuole and penetrates the macronuclear envelope with this tip. To investigate the underlying molecular mechanism of this process, we raised a monoclonal antibody against the tip-specific 89-kDa protein, sequenced this partially, and identified the corresponding complete gene. The deduced protein sequence carries two actin-binding motifs. Indirect immunofluorescence microscopy shows that during escape from the host digestive vacuole, the 89-kDa proteins translocates from the inside to the outside ofmore » the tip. When the bacterium invades the macronucleus, the 89-kDa protein is left behind at the entry point of the nuclear envelope. Transmission electron microscopy shows the formation of fine fibrous structures that co-localize with the antibody-labeled regions of the bacterium. Our findings suggest that the 89-kDa protein plays a role in Holospora's escape from the host digestive vacuole, the migration through the host cytoplasm, and the invasion into the macronucleus.« less

  16. The effect of pea albumin 1F on glucose metabolism in mice.

    PubMed

    Dun, Xin-Peng; Li, Fa-Fang; Wang, Jian-He; Chen, Zheng-Wang

    2008-06-01

    Pea albumin 1F (PA1F), a plant peptide isolated from pea seeds, can dramatically increase blood glucose concentration by subcutaneous injection with a dosage of 5 or 10 microg/g (body weight) in normal and type II diabetic mice (KK/upj-Ay). The voltage-dependent anion channel 1 (VDAC-1) has been identified as the PA1F binding protein from mice pancreatic cell membrane, which may be involved in the regulation of enhancing blood glucose in response to PA1F binding. The results clearly show that peptide-signaling molecules from plants can affect mammalian physiological functions, especially, in association with glucose metabolism.

  17. Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids.

    PubMed

    Yan, Xianxi; Khan, Sultan; Hase, Toshiharu; Emes, Michael J; Bowsher, Caroline G

    2006-11-27

    The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.

  18. Effects of porcine 25 kDa amelogenin and its proteolytic derivatives on bone sialoprotein expression.

    PubMed

    Nakayama, Y; Yang, L; Mezawa, M; Araki, S; Li, Z; Wang, Z; Sasaki, Y; Takai, H; Nakao, S; Fukae, M; Ogata, Y

    2010-10-01

    Amelogenins are hydrophobic proteins that are the major component of developing enamel. Enamel matrix derivative has been used for periodontal regeneration. Bone sialoprotein is an early phenotypic marker of osteoblast differentiation. In this study, we examined the ability of porcine amelogenins to regulate bone sialoprotein transcription. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene by amelogenins, we conducted northern hybridization, transient transfection analyses and gel mobility shift assays using the osteoblast-like ROS 17/2.8 cells. Amelogenins (100 ng/mL) up-regulated bone sialoprotein mRNA at 3 h, with maximal mRNA expression occurring at 12 h (25 and 20 kDa) and 6 h (13 and 6 kDa). Amelogenins (100 ng/mL, 12 h) increased luciferase activities in pLUC3 (nucleotides -116 to +60), and 6 kDa amelogenin up-regulated pLUC4 (nucleotides -425 to +60) activity. The tyrosine kinase inhibitor inhibited amelogenin-induced luciferase activities, whereas the protein kinase A inhibitor abolished 25 kDa amelogenin-induced bone sialoprotein transcription. The effects of amelogenins were abrogated by 2-bp mutations in the fibroblast growth factor 2 response element (FRE). Gel-shift assays with radiolabeled FRE, homeodomain-protein binding site (HOX) and transforming growth factor-beta1 activation element (TAE) double-strand oligonucleotides revealed increased binding of nuclear proteins from amelogenin-stimulated ROS 17/2.8 cells at 3 h (25 and 13 kDa) and 6 h (20 and 6 kDa). These results demonstrate that porcine 25 kDa amelogenin and its proteolytic derivatives stimulate bone sialoprotein transcription by targeting FRE, HOX and TAE in the bone sialoprotein gene promoter, and that full-length amelogenin and amelogenin cleavage products are able to regulate bone sialoprotein transcription via different signaling pathways. (c) 2010 John Wiley & Sons A/S.

  19. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics

    PubMed Central

    2011-01-01

    Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants. PMID:22018401

  20. Osmolytic Effect of Sucrose on Thermal Denaturation of Pea Seedling Copper Amine Oxidase.

    PubMed

    Amani, Mojtaba; Barzegar, Aboozar; Mazani, Mohammad

    2017-04-01

    Protein stability is a subject of interest by many researchers. One of the common methods to increase the protein stability is using the osmolytes. Many studies and theories analyzed and explained osmolytic effect by equilibrium thermodynamic while most proteins undergo an irreversible denaturation. In current study we investigated the effect of sucrose as an osmolyte on the thermal denaturation of pea seedlings amine oxidase by the enzyme activity, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry. All experiments are in agreement that pea seedlings amine oxidase denaturation is controlled kinetically and its kinetic stability is increased in presence of sucrose. Differential scanning calorimetry experiments at different scanning rates showed that pea seedlings amine oxidase unfolding obeys two-state irreversible model. Fitting the differential scanning calorimetry data to two-state irreversible model showed that unfolding enthalpy and T * , temperature at which rate constant equals unit per minute, are increased while activation energy is not affected by increase in sucrose concentration. We concluded that osmolytes decrease the molecular oscillation of irreversible proteins which leads to decline in unfolding rate constant.

  1. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  2. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction

    PubMed Central

    Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc

    2018-01-01

    Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation. PMID:29367857

  3. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction.

    PubMed

    Bourion, Virginie; Heulin-Gotty, Karine; Aubert, Véronique; Tisseyre, Pierre; Chabert-Martinello, Marianne; Pervent, Marjorie; Delaitre, Catherine; Vile, Denis; Siol, Mathieu; Duc, Gérard; Brunel, Brigitte; Burstin, Judith; Lepetit, Marc

    2017-01-01

    Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum . The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.

  4. Characterization of the Epigenetic Changes During Human Gonadal Primordial Germ Cells Reprogramming.

    PubMed

    Eguizabal, C; Herrera, L; De Oñate, L; Montserrat, N; Hajkova, P; Izpisua Belmonte, J C

    2016-09-01

    Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428. © 2016 AlphaMed Press.

  5. Recombinant expression, isolation, and proteolysis of extracellular matrix-secreted phosphoprotein-24 kDa.

    PubMed

    Murray, Elsa J Brochmann; Murray, Samuel S; Simon, Robert; Behnam, Keyvan

    2007-01-01

    Secreted phosphoprotein-24 kDa (spp24) is an extracellular matrix protein first cloned from bone. Bovine spp24 is transcribed as a 203 amino acid residue protein that undergoes cleavage of a secretory peptide to form the mature protein (spp24, residues 24 to 203). While not osteogenic itself, spp24 is degraded to a pro-osteogenic protein, spp18.5, in bone. Both spp18.5 and spp24 contain a cyclic TRH1 (TGF-beta receptor II homology-1) domain similar to that found in the receptor itself and in fetuin. A synthetic peptide corresponding to the TRH1 domain of spp18.5 and spp24 specifically binds BMP-2 and enhances the rate and magnitude of BMP-2-induced ectopic bone formation in vivo. The parental protein, spp24, exhibits a high affinity for bone and mineral complexes, but its abundance there is low, suggesting that it is rapidly degraded. The availability of recombinant spp24 and its degradation products would facilitate the elucidation of their structure:function relationships. We describe here the expression of His(6)-tagged bovine spp24 (residues 24 to 203) in E. coli, its purification by high-resolution IMAC (immobilized metal affinity chromatography), and the characterization of the full-length recombinant 21.5 kDa protein and its two major 16 kDa and 14.5 kDa degradation products (spp24, residues 24 to 157, and spp24, residues 24 to 143) by mass spectroscopy. The recombinant spp24 protein was resistant to proteolysis by MC3T3-E1 osteoblastic cell extracts in the absence of calcium; however, in the presence of 4 mM Ca, it can undergo essentially complete proteolysis to small peptides, bypassing the 16 kDa and 14.5 kDa intermediates. This confirms the proteolytic susceptibility of spp24. It also suggests that the levels of spp24 in bone may be regulated, in part, by calcium-dependent proteolysis mediated by osteoblastic cells.

  6. Effects of dietary inclusion of pea and faba bean as a replacement for soybean meal on grower and finisher pig performance and carcass quality.

    PubMed

    Smith, L A; Houdijk, J G M; Homer, D; Kyriazakis, I

    2013-08-01

    To reduce reliance on imported soybean meal (SBM) in temperate environments, pea and faba bean may be alternative protein sources for pig diets. We assessed the effects of dietary pea and faba bean inclusion on grower and finisher pig performance and carcass quality. There were 9 dietary treatments tested on both grower (30 to 60 kg) and finisher (60 to 100 kg) pigs in a dose response feeding trial. The control diet included SBM at 14 and 12% for grower and finisher pigs, respectively, whereas in the test diets, pea or faba bean were included at 7.5, 15, 22.5, and 30%, gradually and completely replacing SBM. Diets were formulated to be isoenergetic for NE and with the same standard ileal digestible Lys content. After a 1-wk adaptation period, each diet was available on an ad libitum basis to 4 pens of pigs with 4 pigs per pen (2 entire males and 2 females) for 4 wk. Weekly BW for individual pigs, and pen intakes were recorded to assess ADG, ADFI, and G:F. Finisher pigs were then slaughtered at a commercial slaughter house to record carcass quality and assess skatole and indole concentration in the backfat. There were no effects (P > 0.10) on grower ADG, ADFI, and G:F, but pulse inclusion reduced finisher ADG (P = 0.04), with a quadratic effect of pulse inclusion (P = 0.03), as ADG tended to be reduced over initial inclusion levels only. There were no associated effects (P > 0.10) on ADFI or G:F, and pea and faba bean diets resulted in similar finisher performance. Increasing pulse inclusion linearly increased fecal DM content both in grower pigs (P = 0.02) and finisher pigs (P < 0.01). There were no effects on carcass quality or backfat skatole concentrations, but indole concentration was linearly reduced with increasing pulse inclusion (P = 0.05). It is concluded that pea and faba bean may be a viable alternative to SBM in grower and finisher pig diets.

  7. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach.

    PubMed

    Barba-Espín, Gregorio; Diaz-Vivancos, Pedro; Job, Dominique; Belghazi, Maya; Job, Claudette; Hernández, José Antonio

    2011-11-01

    In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels. © 2011 Blackwell Publishing Ltd.

  8. Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves.

    PubMed

    Taylor, S; Hofer, J; Murfet, I

    2001-01-01

    Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2-mutations known to influence leaf, inflorescence, and flower development in pea-suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea.

  9. A diagnostic guide for Fusarium Root Rot of pea

    USDA-ARS?s Scientific Manuscript database

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  10. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.

    PubMed

    Ho, Lin; Hsu, Shan-Hui

    2018-04-01

    3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be

  11. Cigarette smoke induces mitochondrial metabolic reprogramming in lung cells.

    PubMed

    Solanki, Hitendra S; Babu, Niraj; Jain, Ankit P; Bhat, Mohd Younis; Puttamallesh, Vinuth N; Advani, Jayshree; Raja, Remya; Mangalaparthi, Kiran K; Kumar, Mahesh M; Prasad, T S Keshava; Mathur, Premendu Prakash; Sidransky, David; Gowda, Harsha; Chatterjee, Aditi

    2018-05-01

    Cellular transformation owing to cigarette smoking is due to chronic exposure and not acute. However, systematic studies to understand the molecular alterations in lung cells due to cigarette smoke are lacking. To understand these molecular alterations induced by chronic cigarette smoke exposure, we carried out tandem mass tag (TMT) based temporal proteomic profiling of lung cells exposed to cigarette smoke for upto 12months. We identified 2620 proteins in total, of which 671 proteins were differentially expressed (1.5-fold) after 12months of exposure. Prolonged exposure of lung cells to smoke for 12months revealed dysregulation of oxidative phosphorylation and overexpression of enzymes involved in TCA cycle. In addition, we also observed overexpression of enzymes involved in glutamine metabolism, fatty acid degradation and lactate synthesis. This could possibly explain the availability of alternative source of carbon to TCA cycle apart from glycolytic pyruvate. Our data indicates that chronic exposure to cigarette smoke induces mitochondrial metabolic reprogramming in cells to support growth and survival. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Alterations in the Helicoverpa armigera Midgut Digestive Physiology after Ingestion of Pigeon Pea Inducible Leucine Aminopeptidase

    PubMed Central

    Lomate, Purushottam R.; Jadhav, Bhakti R.; Giri, Ashok P.; Hivrale, Vandana K.

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory. PMID:24098675

  13. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    PubMed

    Lomate, Purushottam R; Jadhav, Bhakti R; Giri, Ashok P; Hivrale, Vandana K

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  14. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development

    PubMed Central

    Sussmilch, Frances C.; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K.; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L.

    2015-01-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. PMID:25804541

  15. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911

  16. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    PubMed

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  17. Cloning and characterization of mouse extracellular-signal-regulated protein kinase 3 as a unique gene product of 100 kDa.

    PubMed

    Turgeon, B; Saba-El-Leil, M K; Meloche, S

    2000-02-15

    MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.

  18. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1.

    PubMed

    Arczewska, Katarzyna D; Tomazella, Gisele G; Lindvall, Jessica M; Kassahun, Henok; Maglioni, Silvia; Torgovnick, Alessandro; Henriksson, Johan; Matilainen, Olli; Marquis, Bryce J; Nelson, Bryant C; Jaruga, Pawel; Babaie, Eshrat; Holmberg, Carina I; Bürglin, Thomas R; Ventura, Natascia; Thiede, Bernd; Nilsen, Hilde

    2013-05-01

    Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.

  19. Physiological effects of a pea protein isolate in gnotobiotic rats: comparison with a soybean isolate and meat.

    PubMed

    Lhoste, E F; Mouzon, B; Andrieux, C; Gueugneau, A M; Fiszlewicz, M; Corring, T; Szylit, O

    1998-01-01

    Pea proteins have been considered for the introduction into the human diet only recently. This protein source was tested on nutritional and digestive parameters in heteroxenic male Fischer rats inoculated with a human faecal microflora from a methane producer. Compared to soybean proteins, pea proteins have similar effects on the rat's endogenous and bacterial digestive patterns. Compared to the pea proteins, a diet containing a standard meat meal enhanced the pH and the production of ammonia, while a lyophilized beef meat enhanced that of urea. The diet containing the standard meat decreases short-chain fatty acids and modifies the ratio of caecal short-chain fatty acids. Both animal diets decreased the specific activities of pancreatic proteases such as chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), and carboxypeptidase A (EC 3.4.17.1) when compared to the diet containing the pea isolate. In conclusion, the whole composition of the diet, more than the origin of the dietary protein, influences the rat's digestive pattern.

  20. Development of cookies made with cocoyam, fermented sorghum and germinated pigeon pea flour blends using response surface methodology.

    PubMed

    Okpala, Laura C; Okoli, Eric C

    2014-10-01

    Cookies were produced from blends of cocoyam, fermented sorghum and germinated pigeon pea flours. The study was carried out to evaluate the effects of varying the proportions of these components on the sensory and protein quality of the cookies. The sensory attributes studied were colour, taste, texture, crispness and general acceptability while the protein quality indices were biological value (BV) and net protein utilization (NPU). Mixture response surface methodology was used to model the sensory and protein quality with single, binary and ternary combinations of germinated pigeon pea, fermented sorghum and cocoyam flours. Results showed that BV and NPU of most of the cookies were above minimum acceptable levels. With the exception of cookies containing high levels of pigeon pea flour, cookies had acceptable sensory scores. Increase in pigeon pea flour resulted in increase in the BV and NPU. Regression equations suggested that the ternary blends produced the highest increase in all the sensory attributes (with the exception of colour).