Sample records for kda protein detected

  1. Effect of 14-kDa and 47-kDa protein molecules of age garlic extract on peritoneal macrophages.

    PubMed

    Daneshmandi, Saeed; Hajimoradi, Monire; Ahmadabad, Hasan Namdar; Hassan, Zuhair Mohammad; Roudbary, Maryam; Ghazanfari, Tooba

    2011-03-01

    Garlic (Allium sativum), traditionally being used as a spice worldwide, has different applications and is claimed to possess beneficial effects in several health ailments such as tumor and atherosclerosis. Garlic is also an immunomodulator and its different components are responsible for different properties. The present work aimed to assess the effect of protein fractions of garlic on peritoneal macrophages. 14-kDa and 47-kDa protein fractions of garlic were purified. Mice peritoneal macrophages were lavaged and cultured in a microtiter plate and exposed to different concentrations of garlic proteins. MTT assay was performed to evaluate the viability of macrophage. The amount of nitric oxide (NO) was detected in culture supernatants of macrophages by Griess reagent and furthermore, the cytotoxicity study of culture supernatants was carried out on WEHI-164 fibrosarcoma cell line as tumor necrosis factor-α bioassay. MTT assay results for both 14-kDa and 47-kDa protein fractions of stimulated macrophages were not significant (P > 0.05). Both 14-kDa and 47-kDa fractions significantly suppressed production of NO from macrophages (P = 0.007 and P = 0.003, respectively). Cytotoxicity of macrophages' supernatant on WEHI-164 fibrosarcoma cells was not affected by garlic protein fractions (P = 0.066 for 14-kDa and P = 0.085 for 47-kDa fractions). according to our finding, 14-kDa and 47-kDa fractions of aged garlic extract are able to suppress NO production from macrophages, which can be used as a biological advantage. These molecules had no cytotoxic effect on macrophages and do not increase tumoricidal property of macrophages.

  2. Usefulness of 8 kDa protein of Fasciola hepatica in diagnosis of fascioliasis

    PubMed Central

    Kim, Kwangsig; Yang, Hyun Jong

    2003-01-01

    This study was designed to detect and evaluate an antigenicity of low molecular weight proteins of Fasciola hepatica in fascioliasis. Low molecular weight protein of F. hepatica was purified by ammonium sulfate precipitation and Sephacryl S-100 HR gel filtration. The protein obtained was estimated to be 8 kDa on 7.5-15% gradient sodium dodecyl sulfate gel electrophoresis. Immunoblotting studies showed that the 8 kDa protein reacted with human fascioliasis sera, but not other trematodiasis sera. This result suggests that the 8 kDa protein of F. hepatica is one of diagnostic antigens in human fascioliasis without cross-reaction with other human trematodiasis. PMID:12815325

  3. The 29-kDa proteins phosphorylated ion thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M.E.; Yan Zhu; O'Neill, S.

    Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less

  4. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  5. Bombyx mori nucleopolyhedrovirus orf25 encodes a 30kDa late protein in the infection cycle.

    PubMed

    Wang, Haiyan; Chen, Keping; Guo, Zhongjian; Yao, Qin

    2008-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf25 gene was characterized for the first time. The coding sequence of Bm25 was amplified and subcloned into the prokaryotic expression vector pGEX-4T-2 to produce glutathione S-transferase-tagged fusion protein in the BL21 (DE3) cells. The GST-Bm25 fusion protein was expressed efficiently after induction with IPTG. The purified fusion protein was used to immunize New Zealand white rabbits to prepare polyclonal antibody. Temporal expression analysis revealed a 30-kDa protein, which was detected beginning 24 hours post-infection using a polyclonal antibody against GST-Bm25 fusion protein. The transcript of Bm25 was detected by RT-PCR at 18-72 h p.i. In conclusion, the available data suggest that Bm25 encodes a 30kDa protein expressed in the late stage of infection cycle.

  6. Identification of a 27.8 kDa protein from flounder gill cells involved in lymphocystis disease virus binding and infection.

    PubMed

    Wang, Mu; Sheng, Xiu-Zhen; Xing, Jing; Tang, Xiao-Qian; Zhan, Wen-Bin

    2011-03-16

    In vitro, lymphocystis disease virus (LCDV) infection of flounder gill (FG) cell cultures causes obvious cytopathic effect (CPE). We describe attempts to isolate and characterize the LCDV-binding molecule(s) on the plasma membrane of FG cells that were responsible for virus entry. The results showed that the co-immunoprecipitation assay detected a 27.8 kDa molecule from FG cells that bound to LCDV. In a blocking ELISA, pre-incubation of FG cell membrane proteins with the specific antiserum developed against the 27.8 kDa protein could block LCDV binding. Similarly, antiserum against 27.8 kDa protein could also inhibit LCDV infection of FG cells in vitro. Mass spectrometric analysis established that the 27.8 kDa protein and beta-actin had a strong association. These results strongly supported the possibility that the 27.8 kDa protein was the putative receptor specific for LCDV infection of FG cells.

  7. Size-Sorting Combined with Improved Nanocapillary-LC-MS for Identification of Intact Proteins up to 80 kDa

    PubMed Central

    Vellaichamy, Adaikkalam; Tran, John C.; Catherman, Adam D.; Lee, Ji Eun; Kellie, John F.; Sweet, Steve M.M.; Zamdborg, Leonid; Thomas, Paul M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Valaskovic, Gary A.; Kelleher, Neil L.

    2010-01-01

    Despite the availability of ultra-high resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for on-line LC-MS to drive high-throughput top-down proteomics in a fashion similar to bottom-up. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary-LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier-Transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation (NSD) and detection of fragment ions with <5 ppm mass accuracy for highly-specific database searching using custom software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines pre-fractionated by their molecular weight using a gel-based sieving system. PMID:20073486

  8. Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein.

    PubMed

    Kukkonen, Sami K J; Vaheri, Antti; Plyusnin, Alexander

    2004-05-01

    The complete open reading frame of Tula hantavirus (TULV) L RNA was cloned in three parts. The middle third (nt 2191-4344) could be expressed in E. coli and was used to immunize rabbits. The resultant antiserum was then used to immunoblot concentrated TULV and infected Vero E6 cells. The L protein of a hantavirus was detected, for the first time, in infected cells and was found to be expressed as a single protein with an apparent molecular mass of 250 kDa in both virions and infected cells. Using the antiserum, the expression level of the L protein was followed and image analysis of immunoblots indicated that there were 10(4) copies per cell at the peak level of expression. The antiserum was also used to detect the L protein in cell fractionation studies. In cells infected with TULV and cells expressing recombinant L, the protein pelleted with the microsomal membrane fraction. The membrane association was confirmed with membrane flotation assays. To visualize L protein localization in cells, a fusion protein of L and enhanced green fluorescent protein, L-EGFP, was expressed in Vero E6 cells with a plasmid-driven T7 expression system. L-EGFP localized in the perinuclear region where it had partial co-localization with the Golgi matrix protein GM130 and the TULV nucleocapsid protein.

  9. High expression of 23 kDa protein of augmenter of liver regeneration (ALR) in human hepatocellular carcinoma

    PubMed Central

    Yu, Hai-Ying; Zhu, Man-Hua; Xiang, Dai-Rong; Li, Jun; Sheng, Ji-Fang

    2014-01-01

    Background Augmenter of liver regeneration (ALR) is an important polypeptide that participates in the process of liver regeneration. Two forms of ALR proteins are expressed in hepatocytes. Previous data have shown that ALR is essential for cell survival and has potential antimetastatic properties in hepatocellular carcinoma (HCC). Aims The study aimed to evaluate the expression levels of two forms of ALR proteins in HCC and their possible significance in HCC development. Methods Balb/c mouse monoclonal antibody against ALR protein was prepared in order to detect the ALR protein in HCC by Western blotting and immunohistochemistry. ALR mRNA expression levels were measured by real-time polymerase chain reaction in HCC tissues and compared to paracancerous liver tissues in 22 HCC patients. Results ALR mRNA expression in HCC liver tissues (1.51×106 copies/μL) was higher than in paracancerous tissues (1.04×104 copies/μL). ALR protein expression was also enhanced in HCC liver tissues. The enhanced ALR protein was shown to be 23 kDa by Western blotting. Immunohistochemical analysis showed that the 23 kDa ALR protein mainly existed in the hepatocyte cytosol. Conclusion The 23 kDa ALR protein was highly expressed in HCC and may play an important role in hepatocarcinogenesis. PMID:24940072

  10. Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein.

    PubMed

    Nagdas, Subir K; Smith, Linda; Medina-Ortiz, Ilza; Hernandez-Encarnacion, Luisa; Raychoudhury, Samir

    2016-03-01

    Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction comprises three major (54, 50, and 45 kDa) and several minor (38-19 kDa) polypeptides. The set of minor polypeptides (38-19 kDa) termed "OMCrpf polypeptides" is selectively solubilized by high-pH extraction (pH 10.5), while the three major polypeptides (55, 50, and 45 kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32 kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38-19-kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent-soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment, whereas IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidylcholine (LPC)-induced acrosome

  11. Translocation of an 89-kDa periplasmic protein is associated with Holospora infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatani, Koichi; Dohra, Hideo; Lang, B. Franz

    2005-12-02

    The symbiotic bacterium Holospora obtusa infects the macronucleus of the ciliate Paramecium caudatum. After ingestion by its host, an infectious form of Holospora with an electron-translucent tip passes through the host digestive vacuole and penetrates the macronuclear envelope with this tip. To investigate the underlying molecular mechanism of this process, we raised a monoclonal antibody against the tip-specific 89-kDa protein, sequenced this partially, and identified the corresponding complete gene. The deduced protein sequence carries two actin-binding motifs. Indirect immunofluorescence microscopy shows that during escape from the host digestive vacuole, the 89-kDa proteins translocates from the inside to the outside ofmore » the tip. When the bacterium invades the macronucleus, the 89-kDa protein is left behind at the entry point of the nuclear envelope. Transmission electron microscopy shows the formation of fine fibrous structures that co-localize with the antibody-labeled regions of the bacterium. Our findings suggest that the 89-kDa protein plays a role in Holospora's escape from the host digestive vacuole, the migration through the host cytoplasm, and the invasion into the macronucleus.« less

  12. Isoform composition and stoichiometry of the approx. 90-kDa heat shock protein associated with glucocorticoid receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, D.B.; Orti, E.

    1988-05-15

    The authors observed that the approx. 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approx. 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approx. 90-kDa heat shock protein. The observation that TSTA and the approx. 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested thatmore » the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the approx. 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approx. 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approx. 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with (/sup 35/S)methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two approx. 90-kDa non-steroid-binding subunits. The consistency with which a approx. 1:2 stoichiometric ratio of steroid binding to approx. 90-kDa protein is observed supports the view that the approx. 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes.« less

  13. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    PubMed

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  14. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    PubMed

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  15. Carboxyl methylation of 21-23 kDa membrane proteins in intact neuroblastoma cells is increased with differentiation.

    PubMed

    Haklai, R; Kloog, Y

    1990-01-01

    Evidence is presented for specific enzymatic methylation of 21-23 kDa membrane proteins in intact neuroblastoma N1E 115 cells, which is increased in dimethylsulfoxide-induced differentiated cells. Methylation of these proteins has characteristics typical of enzymatic reactions in which base labile volatile methyl groups are incorporated into proteins, consistent with the formation of protein carboxyl methylesters. However, these methylesters of the 21-23 kDa proteins are relatively stable compared to other protein carboxyl methylesters. The 3-fold increase in methylated 21-23 kDa proteins in the differentiated cells suggest biological significance in differentiation of the cell membranes.

  16. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    PubMed Central

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-01-01

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart. Images Fig. 1 Fig. 3 PMID:8637874

  17. Ultratight crystal packing of a 10 kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trillo-Muyo, Sergio; Jasilionis, Andrius; Domagalski, Marcin J.

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  18. Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis.

    PubMed Central

    Mukherjee, T; Basu, D; Mahapatra, S; Goffin, C; van Beeumen, J; Basu, J

    1996-01-01

    The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR2-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor, behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of M(r) 52,000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin. PMID:8947487

  19. The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin.

    PubMed Central

    Lin, H Y; Masso-Welch, P; Di, Y P; Cai, J W; Shen, J W; Subjeck, J R

    1993-01-01

    Anoxia, glucose starvation, calcium ionophore A23187, EDTA, glucosamine, and several other conditions that adversely affect the function of the endoplasmic reticulum (ER) induce the synthesis of the glucose-regulated class of stress proteins (GRPs). The primary GRPs induced by these stresses migrate at 78 and 94 kDa (GRP78 and GRP94). In addition, another protein of approximately 150-170 kDa (GRP170) has been previously observed and is coordinately induced with GRP78 and GRP94. To characterize this novel stress protein, we have prepared an antisera against purified GRP170. Immunofluorescence, Endoglycosidase H sensitivity, and protease resistance of this protein in microsomes indicates that GRP170 is an ER lumenal glycoprotein retained in a pre-Golgi compartment. Immunoprecipitation of GRP170 with our antibody coprecipitates the GRP78 (also referred to as the B cell immunoglobulin-binding protein) and GRP94 members of this stress protein family in Chinese hamster ovary cells under stress conditions. ATP depletion, by immunoprecipitation in the presence of apyrase, does not affect the interaction between GRP78 and GRP170 but results in the coprecipitation of an unidentified 60-kDa protein. In addition, GRP170 is found to be coprecipitated with immunoglobulin (Ig) in four different B cell hybridomas expressing surface IgM, cytoplasmic Ig light chain only, cytoplasmic Ig heavy chain only, or an antigen specific secreted IgG. In addition, in IgM surface expressing WEHI-231 B cells, anti-IgM coprecipitates GRP78, GRP94, as well as GRP170; antibodies against GRP170 and GRP94 reciprocally coprecipitate GRP94/GRP170 as well as GRP78. Results suggest that this 170-kDa GRP is a retained ER lumenal glycoprotein that is constitutively present and that may play a role in immunoglobulin folding and assembly in conjunction or consecutively with GRP78 and GRP94. Images PMID:8305733

  20. The analysis Arabidopsis thaliana overexpressing a 14kDa self-folding protein [abstract

    USDA-ARS?s Scientific Manuscript database

    A recent study in banana identified a 14kDa protein that has been hypothesized to function in regulating the nucleation and growth of the needle-shaped crystals of calcium oxalate that accumulate within the tissues of this plant. To gain further insight in to the functional role of this 14 kDa prote...

  1. Cloning and characterization of mouse extracellular-signal-regulated protein kinase 3 as a unique gene product of 100 kDa.

    PubMed

    Turgeon, B; Saba-El-Leil, M K; Meloche, S

    2000-02-15

    MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.

  2. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase

    USDA-ARS?s Scientific Manuscript database

    Rice, the staple food of South and East Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16 kDa, 26 kDa, 33 kDa and 56 kDa have been identified as allergens. Re...

  3. A 21-35 kDa Mixed Protein Component from Helicobacter pylori Activates Mast Cells Effectively in Chronic Spontaneous Urticaria.

    PubMed

    Tan, Ran-Jing; Sun, He-Qiang; Zhang, Wei; Yuan, Han-Mei; Li, Bin; Yan, Hong-Tao; Lan, Chun-Hui; Yang, Jun; Zhao, Zhuo; Wu, Jin-Jin; Wu, Chao

    2016-12-01

    Helicobacter pylori (H. pylori) seem to involve in the etiology of chronic spontaneous urticaria (CSU). But studies of the pathogenic mechanism are very little. In this study, we detected the serum-specific anti-H. pylori IgG and IgE antibodies in 211 CSU and 137 normal subjects by enzyme-linked immunosorbent assay (ELISA), evaluated the direct activation effects of H. pylori preparations and its protein components on human LAD 2 mast cell line in vitro, and analyzed the specific protein ingredients and functions of the most effective H. pylori mixed protein component using liquid chromatography-mass spectrometry and ELISA assay. In CSU patients, the positive rate of anti-H. pylori IgG positive rate was significantly higher than that in normal controls, and the anti-H. pylori IgE levels had no statistical difference between H. pylori-infected patients with and without CSU. Further studies suggested that H. pylori preparations can directly activate human LAD 2 mast cell line in a dose-dependent manner and its most powerful protein component was a mixture of 21-35 kDa proteins. Moreover, the 21-35 kDa mixed protein component mainly contained 23 kinds of proteins, which can stimulate the release of histamine, TNF-a, IL-3, IFN-γ, and LTB4 by LAD 2 cells in a dose-dependent or time-dependent manner. A 21-35 kDa mixed protein component should be regarded as the most promising pathogenic factor contributing to the CSU associated with H. pylori infection. © 2016 John Wiley & Sons Ltd.

  4. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  5. Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi.

    PubMed

    Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma

    2011-04-01

    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Evaluation of the immunomodulatory effect of the 14 kDa protein isolated from aged garlic extract on dendritic cells.

    PubMed

    Ahmadabad, Hasan Namdar; Hassan, Zuhair Mohammad; Safari, Elahe; Bozorgmehr, Mahmood; Ghazanfari, Tooba; Moazzeni, Seyed Mohammad

    2011-01-01

    Garlic is used all over the world for treatment of different diseases. A wide range of biological activities of garlic has been verified in vitro and in vivo. One of major proteins of garlic which has been isolated and purified is the 14 kDa protein. This protein has been shown to have immunomodulatory effects. In this study, the effect of the 14 kDa protein isolated from aged garlic extract (AGE) was investigated on maturation and immunomodulatory activity of dendritic cells (DC). Proteins were purified from AGE by biochemical method; the semi-purified 14 kDa protein was run on gel filtration Sephadex G50 and its purity was checked by SDS-PAGE. DC were isolated from spleen of BALB/c mice by Nycodenz centrifugation and their adhesiveness to plastic dish. 14 kDa protein from AGE was added to overnight culture of DC medium and the expression percentage of CD40, CD86, and MHC-II was evaluated by flowcytometric analysis. Also, proliferation of T-cells was measured by allogenic mixed lymphocyte reaction (MLR) test. The purified 14 kDa protein isolated from AGE increased the expression of CD40 molecule on DC, but it did not influence CD86 and MHCII molecules. Furthermore, no significant differences were noticed in the pulsed-DC with 14 kDa protein and non-pulsed DC on the MLR. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A relevant IgE-reactive 28kDa protein identified from Salsola kali pollen extract by proteomics is a natural degradation product of an integral 47kDa polygalaturonase.

    PubMed

    Mas, Salvador; Oeo-Santos, Carmen; Cuesta-Herranz, Javier; Díaz-Perales, Araceli; Colás, Carlos; Fernández, Javier; Barber, Domingo; Rodríguez, Rosalía; de Los Ríos, Vivian; Barderas, Rodrigo; Villalba, Mayte

    2017-08-01

    A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m 3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (<30 kDa). Recent studies have focused on improving the analysis of larger intact proteins (up to 75 kDa), but they have also highlighted several challenges to be addressed. One major hurdle is the efficient dissociation of larger protein ions, which often to do not yield extensive fragmentation via conventional tandem MS methods. Here we describe the first application of activated ion electron transfer dissociation (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  9. The 21.5-kDa isoform of myelin basic protein has a non-traditional PY-nuclear-localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Graham S.T.; Seymour, Lauren V.; Boggs, Joan M.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Full-length 21.5-kDa MBP isoform is translocated to the nucleus. Black-Right-Pointing-Pointer We hypothesized that the exon-II-encoded sequence contained the NLS. Black-Right-Pointing-Pointer We mutated this sequence in RFP-tagged constructs and transfected N19-cells. Black-Right-Pointing-Pointer Abolition of two key positively-charged residues resulted in loss of nuclear-trafficking. Black-Right-Pointing-Pointer The 21.5-kDa isoform of classic MBP contains a non-traditional PY-NLS. -- Abstract: The predominant 18.5-kDa classic myelin basic protein (MBP) is mainly responsible for compaction of the myelin sheath in the central nervous system, but is multifunctional, having numerous interactions with Ca{sup 2+}-calmodulin, actin, tubulin, and SH3-domains, and can tether these proteins to a lipidmore » membrane in vitro. The full-length 21.5-kDa MBP isoform has an additional 26 residues encoded by exon-II of the classic gene, which causes it to be trafficked to the nucleus of oligodendrocytes (OLGs). We have performed site-directed mutagenesis of selected residues within this segment in red fluorescent protein (RFP)-tagged constructs, which were then transfected into the immortalized N19-OLG cell line to view protein localization using epifluorescence microscopy. We found that 21.5-kDa MBP contains two non-traditional PY-nuclear-localization signals, and that arginine and lysine residues within these motifs were involved in subcellular trafficking of this protein to the nucleus, where it may have functional roles during myelinogenesis.« less

  10. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    NASA Astrophysics Data System (ADS)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  11. Diagnostic potential of Fasciola gigantica-derived 14.5 kDa fatty acid binding protein in the immunodiagnosis of bubaline fascioliasis.

    PubMed

    Allam, G; Bauomy, I R; Hemyeda, Z M; Diab, T M; Sakran, T F

    2013-06-01

    The 14.5 kDa fatty acid binding protein (FABP) was isolated from the crude extract of adult Fasciola gigantica worms. Polyclonal anti-FABP IgG was generated in rabbits immunized with prepared FABP antigen. Sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect coproantigen in stools and circulating Fasciola antigen (CA) in sera of 126 water buffaloes by using purified and horseradish peroxidase (HRP)-conjugated anti-FABP IgG. Sandwich ELISA sensitivity was 96.97% and 94.95%; while specificity was 94.12% and 82.35% for coproantigen and CA detection, respectively. However, sensitivity and specificity of the Kato-Katz technique was 73.74% and 100%, respectively. The diagnostic efficacy of sandwich ELISA was 96.55% and 93.1% for coproantigen and CA detection, respectively. In contrast, the diagnostic efficacy of the Kato-Katz technique was 77.59%. In conclusion, these results demonstrate that the purified 14.5 kDa FABP provides a more suitable antigen for immunodiagnosis of early and current bubaline fascioliasis by using sandwich ELISA.

  12. Release of carrot plasma membrane-associated phosphatidylinositol kinase by phospholipase A2 and activation by a 70 kDa protein.

    PubMed

    Gross, W; Yang, W; Boss, W F

    1992-02-19

    Plasma membranes were isolated from carrot (Daucus carota L.) cells grown in suspension culture and treated with phospholipase A2 from snake or bee venom for 10 min. As a result of this treatment, phosphatidylinositol kinase activity was recovered in the soluble fraction. There was no detectable diacylglycerol kinase or phosphatidylinositol monophosphate kinase activity released from the membranes after the phospholipase A2 treatment. Treating the plasma membranes with phospholipase C or D did not release PI kinase activity. The phospholipase A2-released PI kinase was activated over 2-fold by a heat stable, soluble 70 kDa protein. The partially purified 70 kDa activator increases the Vmax but does not affect the Km of the phospholipase A2-released PI kinase.

  13. NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits.

    PubMed Central

    Fearnley, I M; Finel, M; Skehel, J M; Walker, J E

    1991-01-01

    The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859

  14. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene

    PubMed Central

    Wimmer, Bernhard; Lottspeich, Friedrich; van der Klei, Ida; Veenhuis, Marten; Gietl, Christine

    1997-01-01

    The monoclonal a-70-kDa heat shock protein (hsp70) antibody recognizes in crude extracts from watermelon (Citrullus vulgaris) cotyledons two hsps with molecular masses of 70 and 72 kDa. Immunocytochemistry on watermelon cotyledon tissue and on isolated glyoxysomes identified hsp70s in the matrix of glyoxysomes and plastids. Affinity purification and partial amino acid determination revealed the 70-kDa protein to share high sequence identity with cytosolic hsp70s from a number of plant species, while the 72 kDa protein was very similar to plastid hsp70s from pea and cucumber. A full-length cDNA clone encoding the 72-kDa hsp70 was isolated and identified two start methionines in frame within the N-terminal presequence leading either to an N-terminal extension of 67 amino acids or to a shorter one of 47 amino acids. The longer presequence was necessary and sufficient to target a reporter protein into watermelon proplastids in vitro. The shorter extension starting from the second methionine within the long version harbored a consensus peroxisomal targeting signal (RT-X5-KL) that directed in vivo a reporter protein into peroxisomes of the yeast Hansenula polymorpha. Peroxisomal targeting was however prevented, when the 67-residue presequence was fused to the reporter protein, indicating that the peroxisomal targeting signal 2 information is hidden in this context. We propose that the 72-kDa hsp70 is encoded by a single gene, but targeted alternatively into two organelles by the modulated use of its presequence. PMID:9391076

  15. Monoclonal antibodies against 27.8 kDa protein receptor efficiently block lymphocystis disease virus infection in flounder Paralichthys olivaceus gill cells.

    PubMed

    Sheng, Xiu-Zhen; Wang, Mu; Xing, Jing; Zhan, Wen-Bin

    2012-08-13

    In previous research using co-immunoprecipitation, a 27.8 kDa protein in flounder Paralichthys olivaceus gill (FG) cells was found to bind lymphocystis disease virus (LCDV). In this paper, 13 hybridomas secreting monoclonal antibodies (MAbs) against the 27.8 kDa protein were obtained, and 2 MAbs designated as 2G11 and 3D9 were cloned by limiting dilution. Analyzed by indirect enzyme-linked immunosorbent assay (ELISA) and western blotting, the MAbs specifically reacted with the 27.8 kDa protein of FG cells. Confocal fluorescence microscopy and immunogold electron microscopy (IEM) provided evidence that the epitopes recognized by these MAbs were located primarily on the cell membrane and occasionally in the cytoplasm near the cell membrane of FG cells. The MAbs could block LCDV binding after MAbs were pre-incubated with isolated membrane proteins of FG cells in a blocking ELISA, and MAbs also could inhibit LCDV infection of FG cells in culture. Moreover, several target tissues of LCDV in flounder, including gill, stomach, intestine and liver, displayed the presence of the LCDV receptor-27.8 kDa. These results strongly supported the possibility that the 27.8 kDa protein is the putative receptor specific for LCDV infection of FG cells in flounder.

  16. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost,more » a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.« less

  17. Nano-LC FTICR tandem mass spectrometry for top-down proteomics: routine baseline unit mass resolution of whole cell lysate proteins up to 72 kDa.

    PubMed

    Tipton, Jeremiah D; Tran, John C; Catherman, Adam D; Ahlf, Dorothy R; Durbin, Kenneth R; Lee, Ji Eun; Kellie, John F; Kelleher, Neil L; Hendrickson, Christopher L; Marshall, Alan G

    2012-03-06

    Current high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis. Further, a goal of high-throughput top-down proteomics is to extend the mass range for routine nLC MS analysis up to 80 kDa because gene sequence analysis predicts that ~70% of the human proteome is transcribed to be less than 80 kDa. Normally, large proteins greater than 50 kDa are identified and characterized by top-down proteomics through fraction collection and direct infusion at relatively low throughput. Further, other MS-based techniques provide top-down protein characterization, however at low resolution for intact mass measurement. Here, we present analysis of standard (up to 78 kDa) and whole cell lysate proteins by Fourier transform ion cyclotron resonance mass spectrometry (nLC electrospray ionization (ESI) FTICR MS). The separation platform reduced the complexity of the protein matrix so that, at 14.5 T, proteins from whole cell lysate up to 72 kDa are baseline mass resolved on a nano-LC chromatographic time scale. Further, the results document routine identification of proteins at improved throughput based on accurate mass measurement (less than 10 ppm mass error) of precursor and fragment ions for proteins up to 50 kDa.

  18. A conserved 19-kDa Eimeria tenella antigen is a profilin-like protein.

    PubMed

    Fetterer, R H; Miska, K B; Jenkins, M C; Barfield, R C

    2004-12-01

    A wide range of recombinant proteins from Eimeria species have been reported to offer some degree of protection against infection and disease, but the specific biological function of these proteins is largely unknown. Previous studies have demonstrated a 19-kDa protein of unknown function designated SZ-1 in sporozoites and merozoites of Eimeria acervulina that can be used to confer partial protection against coccidiosis. Reverse transcriptase-polymerase chain reaction indicated that the gene for SZ-1 is expressed by all the asexual stages of Eimeria tenella. Rabbit antisera to recombinant SZ-1 recognized an approximately 19-kDa protein from extracts of E. tenella sporozoites, merozoites, sporulated oocysts, and oocysts in various stages of sporulation. Immunofluorescence antibody staining indicated specific staining of E. tenella sporozoites and merozoites. Staining was most intense in the cytoplasm of the posterior end of the parasite. The primary amino acid sequence of the gene for E. tenella SZ-1 deduced from the E. tenella genome indicated a conserved domain for the actin-regulatory protein profilin. A conserved binding site for poly-L-proline (PLP), characteristic of profilin was also observed. SZ-1 was separated from soluble extract of E. tenella proteins by affinity chromatography using a PLP ligand, confirming the ability of SZ-1 to bind PLP. SZ-1 also partially inhibited the polymerization of actin. The current results are consistent with the classification of SZ-1 as a profilin-related protein.

  19. In vivo exposure to ozone produces an increase in a 72-kDa heat shock protein in guinea pigs.

    PubMed

    Su, W Y; Gordon, T

    1997-09-01

    Although several lines of evidence have suggested that oxidizing agents can induce heat shock proteins (HSPs) in vitro, little is known about the induction of HSPs during in vivo exposure to oxidants. Guinea pigs were exposed to ozone for 6 h and euthanized up to 72 h later. Proteins from lavage cells and lung tissue were characterized by immunoblotting with 72- and 73/72-kDa HSP monoclonal antibodies. Although 73-kDa HSP was expressed constituitively in lung tissue, it was not affected by ozone. In contrast, 72-kDa HSP was significantly increased in lavage cells and lung tissue of animals exposed to 0.4 and 0.66 parts/million of ozone. Both heat treatment and arsenite induced 72-kDa HSP in cultured alveolar macrophages. The increase in 72-kDa HSP in the lavage cell pellet peaked at 24 h after ozone, whereas the influx of polymorphonuclear leukocytes peaked at 4 h. Examination of the induction of HSPs by ozone may provide clues to the development of ozone tolerance in humans and animals.

  20. Single-protein detection in crowded molecular environments in cryo-EM images

    PubMed Central

    Rickgauer, J Peter; Grigorieff, Nikolaus; Denk, Winfried

    2017-01-01

    We present an approach to study macromolecular assemblies by detecting component proteins’ characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and—in the presence of protein background—a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material. DOI: http://dx.doi.org/10.7554/eLife.25648.001 PMID:28467302

  1. Cloning and sequencing of a gene encoding the 69-kDa extracellular chitinase of Janthinobacterium lividum.

    PubMed

    Gleave, A P; Taylor, R K; Morris, B A; Greenwood, D R

    1995-09-15

    Janthinobacterium lividum secretes a major 56-kDa chitinase and a minor 69-kDa chitinase. A chitinase gene was defined on a 3-kb fragment of clone pRKT10, by virtue of fluorescent colonies in the presence of 4-methylumbelliferyl-beta-D-N,N',N"-chitotrioside. Nucleotide sequencing revealed an 1998-bp open reading frame with the potential to encode a 69,716-Da protein with amino acid sequences similar to those in other chitinases, suggesting it encodes the minor chitinase (Chi69). Chitinase activity of Escherichia coli (pRKT10) lysates was detected mainly in the periplasmic fraction and immunoblotting detected a 70-kDa protein in this fraction. Chi69 has an N-terminal secretory leader peptide preceding two probable chitin-binding domains and a catalytic domain. These functional domains are separated by linker regions of proline-threonine repeats. Amino acid sequencing of cyanogen bromide cleavage-derived peptides from the major 56-kDa chitinase suggested that Chi69 may be a precursor of Chi56. In addition, an N-terminally truncated version of Chi69 retained chitinase activity as expected if in vivo processing of Chi69 generates Chi56.

  2. Fed batch fermentation and purification strategy for high yield production of Brucella melitensis recombinant Omp 28 kDa protein and its application in disease diagnosis.

    PubMed

    Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N

    2013-07-01

    Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.

  3. 16 kDa heat shock protein from heat-inactivated Mycobacterium tuberculosis is a homodimer - suitability for diagnostic applications with specific llama VHH monoclonals.

    PubMed

    Srivastava, Saurabh K; Ruigrok, Vincent J B; Thompson, Natalie J; Trilling, Anke K; Heck, Albert J R; van Rijn, Cees; Beekwilder, Jules; Jongsma, Maarten A

    2013-01-01

    The 16 kDa heat shock protein (HSP) is an immuno-dominant antigen, used in diagnosis of infectious Mycobacterium tuberculosis (M.tb.) causing tuberculosis (TB). Its use in serum-based diagnostics is limited, but for the direct identification of M.tb. bacteria in sputum or cultures it may represent a useful tool. Recently, a broad set of twelve 16 kDa specific heavy chain llama antibodies (VHH) has been isolated, and their utility for diagnostic applications was explored. To identify the epitopes recognized by the nine (randomly selected from a set of twelve 16 kDa specific VHH antibodies) distinct VHH antibodies, 14 overlapping linear epitopes (each 20 amino acid long) were characterized using direct and sandwich ELISA techniques. Seven out of 14 epitopes were recognized by 8 out of 9 VHH antibodies. The two highest affinity binders B-F10 and A-23 were found to bind distinct epitopes. Sandwich ELISA and SPR experiments showed that only B-F10 was suitable as secondary antibody with both B-F10 and A-23 as anchoring antibodies. To explain this behavior, the epitopes were matched to the putative 3D structure model. Electrospray ionization time-of-flight mass spectrometry and size exclusion chromatography were used to determine the higher order conformation. A homodimer model best explained the differential immunological reactivity of A-23 and B-F10 against heat-treated M.tb. lysates. The concentrations of secreted antigens of M.tb. in sputum are too low for immunological detection and existing kits are only used for identifying M.tb. in cultures. Here we describe how specific combinations of VHH domains could be used to detect the intracellular HSP antigen. Linked to methods of pre-concentrating M.tb. cells prior to lysis, HSP detection may enable the development of protein-based diagnostics of sputum samples and earlier diagnosis of diseases.

  4. A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.

    PubMed Central

    Enrich, C; Bachs, O; Evans, W H

    1988-01-01

    The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436

  5. Nup93, a Vertebrate Homologue of Yeast Nic96p, Forms a Complex with a Novel 205-kDa Protein and Is Required for Correct Nuclear Pore Assembly

    PubMed Central

    Grandi, Paola; Dang, Tam; Pané, Nelly; Shevchenko, Andrej; Mann, Matthias; Forbes, Douglass; Hurt, Ed

    1997-01-01

    Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates. PMID:9348540

  6. Detection of 70 kDa heat shock protein in the saliva of dairy cows.

    PubMed

    Lamy, Elsa; Jurkovich, Viktor; Rodrigues, Lénia; Geraldo, Ana; Cachucho, Liliana; Silva, Flávio; Matos, Catarina; Capela E Silva, Fernando; Pinheiro, Cristina; Könyves, László; Bakony, Mikolt; Pereira, Alfredo

    2017-08-01

    This Research Communication describes, for the first time, the detection of HSP70 in saliva of dairy cows. Thermal stress is a major environmental stress that limits animal growth, metabolism, and productivity. The cellular response to heat stress involves the synthesis of heat shock proteins (HSPs), presumably to protect the functional stability of cells at increasing temperatures. HSP70 has been found to be present in cattle blood serum and may also be present in other secretory fluids, such as saliva, as already observed in humans. The aim of this study was to detect heat shock protein HSP70 in bovine saliva. Saliva samples were taken from higher- (n = 5) and lower milk producing (n = 5) Holstein-Friesian cows in summer and in winter for the detection of HSP70. HSP70 concentrations were assayed using the ELISA technique. Salivary HSP70 concentrations ranged from 0·524 to 12·174 ng/ml in cows. Higher salivary HSP70 concentrations were significantly associated with higher milk production and higher environmental temperature, but not with rectal temperature.

  7. Elastin-like polypeptide switches: A design strategy to detect multimeric proteins.

    PubMed

    Dhandhukia, Jugal P; Brill, Dab A; Kouhi, Aida; Pastuszka, Martha K; MacKay, J Andrew

    2017-09-01

    Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent K d of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates. © 2017 The Protein Society.

  8. Maize 27 kDa gamma-zein is a potential allergen for early weaned pigs.

    PubMed

    Krishnan, Hari B; Kerley, Monty S; Allee, Gary L; Jang, Sungchan; Kim, Won-Seok; Fu, Chunjiang J

    2010-06-23

    Soybean and maize are extensively used in animal feed, primarily in poultry, swine, and cattle diets. Soybean meal can affect pig performance in the first few weeks following weaning and elicit specific antibodies in weaned piglets. Though maize is a major component of pig feed, it is not known if any of the maize proteins can elicit immunological response in young pigs. In this study, we have identified a prominent 27 kDa protein from maize as an immunodominant protein in young pigs. This protein, like some known allergens, exhibited resistance to pepsin digestion in vitro. Several lines of evidence identify the immunodominant 27 kDa protein as a gamma-zein, a maize seed storage protein. First, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of different solubility classes of maize seed proteins revealed the presence of an abundant 27 kDa protein in the prolamin (zein) fraction. Antibodies raised against the purified maize 27 kDa gamma-zein also reacted against the same protein recognized by the young pig serum. Additionally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the peptides generated by trypsin digestion of the immunodominant 27 kDa protein showed significant homology to the maize 27 kDa gamma-zein. Since eliminating the allergenic protein will have a great impact on the nutritive value of the maize meal and expand its use in the livestock industry, it will be highly desirable to develop maize cultivars completely lacking the 27 kDa allergenic protein.

  9. Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment.

    PubMed

    Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François

    2016-04-20

    The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.

  10. Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus.

    PubMed

    Lu, Yuwen; Yan, Fei; Guo, Wei; Zheng, Hongying; Lin, Lin; Peng, Jiejun; Adams, Michael J; Chen, Jianping

    2011-09-01

    The subcellular localization of the 11-kDa protein (p11) encoded by ORF3 of Garlic virus X (GarVX; genus Allexivirus, family Alphaflexiviridae) was examined by confocal microscopy. Granules with intense fluorescence were visible on the endoplasmic reticulum when p11 fused with green or red fluorescent protein (GFP or RFP) was expressed in epidermal cells of Nicotiana benthamiana. Moreover, the p11-RFP granules moved in the cytoplasm, along the cell periphery and through the cell membranes to adjacent cells. A 17-kDa protein (p17) of garlic interacting with p11 was identified by yeast two-hybridization and bimolecular fluorescence complementation assay. When p17 fused to GFP was expressed in epidermal cells of N. benthamiana, it localized to the nucleolus. However, in the presence of GarVX p11, the distribution of p17 changed to that of p11, but did not appear to affect the pattern of movement of p11. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD. NO CLAIM TO ORIGINAL US GOVERNMENT WORKS.

  11. The 30 kDa protein co-purified with chick liver glutathione S-transferases is a carbonyl reductase.

    PubMed

    Tsai, S P; Wang, L Y; Yeh, H I; Tam, M F

    1996-02-08

    An unidentified 30 kDa protein was co-purified with chick liver glutathione S-transferases from S-hexylglutathione affinity column. The protein was isolated to apparent homogeneity with chromatofocusing. The molecular mass of the protein was determined to be 30 277 +/- 3 dalton by mass spectrometry. The protein was digested with Achromobacter proteinase I. Amino-acid sequence analyses of the resulting peptides show a high degree of identity with those of human carbonyl reductase. The protein is active with menadione as substrate. Thus, it is identified as chick liver carbonyl reductase.

  12. Biofortification of soybean meal: immunological properties of the 27 kDa γ-zein.

    PubMed

    Krishnan, Hari B; Jang, Sungchan; Kim, Won-Seok; Kerley, Monty S; Oliver, Melvin J; Trick, Harold N

    2011-02-23

    Legumes, including soybeans ( Glycine max ), are deficient in sulfur-containing amino acids, which are required for the optimal growth of monogastric animals. This deficiency can be overcome by expressing heterologous proteins rich in sulfur-containing amino acids in soybean seeds. A maize 27 kDa γ-zein, a cysteine-rich protein, has been successfully expressed in several crops including soybean, barley, and alfalfa with the intent to biofortify these crops for animal feed. Previous work has shown that the maize 27 kDa zein can withstand digestion by pepsin and elicit an immunogenic response in young pigs. By use of sera from patients who tested positive by ImmunoCAP assay for elevated IgE to maize proteins, specific IgE binding to the 27 kDa γ-zein is demonstrated. Bioinformatic analysis using the full-length and 80 amino acid sliding window FASTA searches identified significant sequence homology of the 27 kDa γ-zein with several known allergens. Immunoblot analysis using human serum that cross-reacts with maize seed proteins also revealed specific IgE-binding to the 27 kDa γ-zein in soybean seed protein extracts containing the 27 kDa zein. This study demonstrates for the first time the allergenicity potential of the 27 kDa γ-zein and the potential that this protein has to limit livestock performance when used in soybeans that serve as a biofortified feed supplement.

  13. Solid-state NMR spectroscopy of 18.5 kDa myelin basic protein reconstituted with lipid vesicles: spectroscopic characterisation and spectral assignments of solvent-exposed protein fragments.

    PubMed

    Zhong, Ligang; Bamm, Vladimir V; Ahmed, Mumdooh A M; Harauz, George; Ladizhansky, Vladimir

    2007-12-01

    Myelin basic protein (MBP, 18.5 kDa isoform) is a peripheral membrane protein that is essential for maintaining the structural integrity of the multilamellar myelin sheath of the central nervous system. Reconstitution of the most abundant 18.5 kDa MBP isoform with lipid vesicles yields an aggregated assembly mimicking the protein's natural environment, but which is not amenable to standard solution NMR spectroscopy. On the other hand, the mobility of MBP in such a system is variable, depends on the local strength of the protein-lipid interaction, and in general is of such a time scale that the dipolar interactions are averaged out. Here, we used a combination of solution and solid-state NMR (ssNMR) approaches: J-coupling-driven polarization transfers were combined with magic angle spinning and high-power decoupling to yield high-resolution spectra of the mobile fragments of 18.5 kDa murine MBP in membrane-associated form. To partially circumvent the problem of short transverse relaxation, we implemented three-dimensional constant-time correlation experiments (NCOCX, NCACX, CONCACX, and CAN(CO)CX) that were able to provide interresidue and intraresidue backbone correlations. These experiments resulted in partial spectral assignments for mobile fragments of the protein. Additional nuclear Overhauser effect spectroscopy (NOESY)-based experiments revealed that the mobile fragments were exposed to solvent and were likely located outside the lipid bilayer, or in its hydrophilic portion. Chemical shift index analysis showed that the fragments were largely disordered under these conditions. These combined approaches are applicable to ssNMR investigations of other peripheral membrane proteins reconstituted with lipids.

  14. Immunological detection of phenylalanine hydroxylase protein in Drosophila melanogaster.

    PubMed Central

    Silva, F J; Bel, Y; Botella, L M; Cotton, R G; Ferré, J

    1992-01-01

    A monoclonal antibody raised against monkey liver phenylalanine hydroxylase (PAH) has been used to detect this protein in Drosophila melanogaster. A cross-reacting material (CRM) band of apparent molecular mass 50-52 kDa, equivalent to that deduced for the Drosophila melanogaster PAH protein based on the pah gene cDNA sequence, has been detected. This CRM was analysed throughout development and showed an equivalent pattern to that reported for PAH activity in this insect, with maxima at pupariation and at pharate adult formation. Distribution of this CRM in larval tissues, the haemolymph and the adult body is mainly restricted to the larval fat body and the adult head. Demonstration of this CRM as the PAH protein comes from the correlation between the decreased PAH enzyme activities of two mutant strains and their decreased amounts of CRM by Western blotting. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1417795

  15. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth. [Fragaria ananassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-04-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with (/sup 35/S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12more » h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth.« less

  16. A novel Amoeba proteus 120 kDa actin-binding protein with only 1 filamin repeat and a coiled-coil region.

    PubMed

    Sobczak, Magdalena; Kocik, Elzbieta; Redowicz, Maria Jolanta

    2007-02-01

    A novel 120 kDa actin-binding protein (ApABP-F1) was found in Amoeba proteus. It was distributed throughout the cytoplasm, mainly in the subplasma membrane and perinuclear-nuclear areas, enriched in actin. The full-length cDNA of ApABP consisted of 2672 nucleotides with an open reading frame of 878 amino acids, giving a ~95 kDa protein with a theoretical pI value of 5.11. It had a novel domain organization pattern: the N terminus (residues 1-104) contained 1 calponin-homology (CH) domain, followed by only 1 region that was homologous to the filamin repeat (FR, residues 209-324), and a central region (residues 344-577) exhibiting a very high probability of coiled-coil formation, probably engaged in the observed protein dimerization. A phylogenetic tree constructed for CH domains from 25 various proteins revealed that the CH domain of ApABP was most related to that of the hypothetical mouse KIAA0903-like protein, whereas not much relationship to either filamins or the gelation factor (ABP-120) of Dictyostelium discoideum and Entamoeba histolytica was found.

  17. Modeling and Docking Studies on Novel Mutants (K71L and T204V) of the ATPase Domain of Human Heat Shock 70 kDa Protein 1

    PubMed Central

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2014-01-01

    The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO) were mutated. 3D mutant models (K71L and T204V) using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255), as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of −9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy. PMID:24758925

  18. Trichinella spiralis: strong antibody response to a 49 kDa newborn larva antigen in infected rats.

    PubMed

    Salinas-Tobon, Maria Del Rosario; Navarrete-Leon, Anaid; Mendez-Loredo, Blanca Esther; Esquivel-Aguirre, Dalia; Martínez-Abrajan, Dulce Maria; Hernandez-Sanchez, Javier

    2007-02-01

    In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal

  19. Probing the size of proteins with glass nanopores

    NASA Astrophysics Data System (ADS)

    Steinbock, L. J.; Krishnan, S.; Bulushev, R. D.; Borgeaud, S.; Blokesch, M.; Feletti, L.; Radenovic, A.

    2014-11-01

    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process.Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their

  20. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.

    PubMed

    Song, Hyun-Ouk

    2016-02-01

    Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

  1. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingestedmore » ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.« less

  2. A dominant sulfhydryl-containing protein in the outer membrane of Neisseria gonorrhoeae.

    PubMed Central

    Norrod, E P; Browne, S L; Feldweg, A; Leonard, J

    1993-01-01

    By using a method that labels sulfhydryl-containing proteins in situ, we have detected a major outer membrane protein of Neisseria gonorrhoeae at 41 kDa. A protein of this molecular mass has not previously been shown to be a major outer membrane protein in gonococci. In addition, a minor protein rich in cysteinyl residues was detected at 31.5 kDa. Images PMID:8432710

  3. Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042.

    PubMed

    García-Cano, Israel; Campos-Gómez, Manuel; Contreras-Cruz, Mariana; Serrano-Maldonado, Carlos Eduardo; González-Canto, Augusto; Peña-Montes, Carolina; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Farrés, Amelia

    2015-10-01

    Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 °C, and all activity was lost after 1 h of incubation at 70 °C. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.

  4. Possible role of the 38 kDa protein, lacking in the gastrula-arrested Xenopus mutant, in gastrulation.

    PubMed

    Tanaka, Tetsuya S; Ikenishi, Kohji

    2002-02-01

    An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.

  5. Characterization of Bufo arenarum oocyte plasma membrane proteins that interact with sperm.

    PubMed

    Coux, Gabriela; Cabada, Marcelo O

    2006-04-28

    Sperm-oocyte plasma membrane interaction is an essential step in fertilization. In amphibians, the molecules involved have not been identified. Our aim was to detect and characterize oocyte molecules with binding affinity for sperm. We isolated plasma membranes free from vitelline envelope and yolk proteins from surface-biotinylated Bufo arenarum oocytes. Using binding assays we detected a biotinylated 100 kDa plasma membrane protein that consistently bound to sperm. Chromatographic studies confirmed the 100 kDa protein and detected two additional oocyte molecules of 30 and 70 kDa with affinity for sperm. Competition studies with an integrin-interacting peptide and cross-reaction with an anti-HSP70 antibody suggested that the 100 and 70 kDa proteins are members of the integrin family and HSP70, respectively. MS/MS analysis suggested extra candidates for a role in this step of fertilization. In conclusion, we provide evidence for the involvement of several proteins, including integrins and HSP70, in B. arenarum sperm-oocyte plasma membrane interactions.

  6. Correlation between phosphorylation level of a hippocampal 86kDa protein and extinction of a behaviour in a model of Wernicke-Korsakoff syndrome.

    PubMed

    Pires, Rita G W; Pereira, Sílvia R C; Carvalho, Fabiana M; Oliveira-Silva, Ieda F; Ferraz, Vany P; Ribeiro, Angela M

    2007-06-04

    The effects of chronic ethanol and thiamine deficiency, alone or associated, on hippocampal protein phosphorylation profiles ranging in molecular weight from 30 to 250kDa molecular weight, in stimulated (high K(+) concentration) and unstimulated (basal) conditions were investigated. These treatments significantly changed the phosphorylation level of an 86kDa phosphoprotein. Thiamine deficiency, but not chronic ethanol, induced a decrease in a behavioural extinction index, which is significantly correlated to the phosphorylation level of the p86 protein. These data add to and extend previous findings by our laboratory implicating the involvement of hippocampal neurotransmission components in extinction of a behaviour which involves learning of environmental spatial cues.

  7. Recombinant expression, isolation, and proteolysis of extracellular matrix-secreted phosphoprotein-24 kDa.

    PubMed

    Murray, Elsa J Brochmann; Murray, Samuel S; Simon, Robert; Behnam, Keyvan

    2007-01-01

    Secreted phosphoprotein-24 kDa (spp24) is an extracellular matrix protein first cloned from bone. Bovine spp24 is transcribed as a 203 amino acid residue protein that undergoes cleavage of a secretory peptide to form the mature protein (spp24, residues 24 to 203). While not osteogenic itself, spp24 is degraded to a pro-osteogenic protein, spp18.5, in bone. Both spp18.5 and spp24 contain a cyclic TRH1 (TGF-beta receptor II homology-1) domain similar to that found in the receptor itself and in fetuin. A synthetic peptide corresponding to the TRH1 domain of spp18.5 and spp24 specifically binds BMP-2 and enhances the rate and magnitude of BMP-2-induced ectopic bone formation in vivo. The parental protein, spp24, exhibits a high affinity for bone and mineral complexes, but its abundance there is low, suggesting that it is rapidly degraded. The availability of recombinant spp24 and its degradation products would facilitate the elucidation of their structure:function relationships. We describe here the expression of His(6)-tagged bovine spp24 (residues 24 to 203) in E. coli, its purification by high-resolution IMAC (immobilized metal affinity chromatography), and the characterization of the full-length recombinant 21.5 kDa protein and its two major 16 kDa and 14.5 kDa degradation products (spp24, residues 24 to 157, and spp24, residues 24 to 143) by mass spectroscopy. The recombinant spp24 protein was resistant to proteolysis by MC3T3-E1 osteoblastic cell extracts in the absence of calcium; however, in the presence of 4 mM Ca, it can undergo essentially complete proteolysis to small peptides, bypassing the 16 kDa and 14.5 kDa intermediates. This confirms the proteolytic susceptibility of spp24. It also suggests that the levels of spp24 in bone may be regulated, in part, by calcium-dependent proteolysis mediated by osteoblastic cells.

  8. The 33.1 kDa Excretory/secretory Protein Produced by Toxocara canis Larvae Serves as a Potential Common Biomarker for Serodiagnosis of Toxocariasis in Paratenic Animals and Human.

    PubMed

    Nguyen, Huu-Hung; Vo, Doan-Trung; Thai, Thi-Tuyet-Trinh; LE, Thi-Thanh-Thao; LE, Thanh-Dong; Hoang, Nghia-Son

    2017-01-01

    Toxocariasis is a prevalent zoonosis disease caused by the closely related nematode species Toxocara canis and Toxocara cati which parasitise Canidae and Felidae respectively. In paratenic hosts, larvae of these worms cause multiple organ damage. However, how these paratenic hosts response to these worms and whether any common biomarker can be applied for diagnosis are still unclear. Excreted/secreted (E/S) antigens were prepared by culture of T. canis larvae in vitro. Using a western blot (WB) assay the humoral IgG responses, induced by Toxocara spp. larvae to the worm's E/S antigens in different infected hosts including mice, rabbits and human, were examined. In a mouse model of toxocariasis, intraperitoneal injection of T. canis larvae induces inflammatory leukocyte accumulation in the liver and the lungs but not in the brain, although a remarkable number of larvae were detected in this organ. Mice and rabbits responded differently to Toxocara spp. resulting in distinct heterogenous WB band patterns. Mice and rabbits both responded to a 33.1 kDa E/S constituent that turned out to be the most sensitive protein for serodiagnosis. Sera from human toxocariasis patients showed heterogenous WB band patterns similar to those observed in rabbits and all responded to the 33.1 kDa band. 33.1 kDa E/S protein can be considered as a critical common biomarker for toxocariasis immuno-diagnosis in both paratenic animals and human and its specificity requires further investigation.

  9. The 33.1 kDa Excretory/secretory Protein Produced by Toxocara canis Larvae Serves as a Potential Common Biomarker for Serodiagnosis of Toxocariasis in Paratenic Animals and Human

    PubMed Central

    NGUYEN, Huu-Hung; VO, Doan-Trung; THAI, Thi-Tuyet-Trinh; LE, Thi-Thanh-Thao; LE, Thanh-Dong; HOANG, Nghia-Son

    2017-01-01

    Background: Toxocariasis is a prevalent zoonosis disease caused by the closely related nematode species Toxocara canis and Toxocara cati which parasitise Canidae and Felidae respectively. In paratenic hosts, larvae of these worms cause multiple organ damage. However, how these paratenic hosts response to these worms and whether any common biomarker can be applied for diagnosis are still unclear. Methods: Excreted/secreted (E/S) antigens were prepared by culture of T. canis larvae in vitro. Using a western blot (WB) assay the humoral IgG responses, induced by Toxocara spp. larvae to the worm’s E/S antigens in different infected hosts including mice, rabbits and human, were examined. Results: In a mouse model of toxocariasis, intraperitoneal injection of T. canis larvae induces inflammatory leukocyte accumulation in the liver and the lungs but not in the brain, although a remarkable number of larvae were detected in this organ. Mice and rabbits responded differently to Toxocara spp. resulting in distinct heterogenous WB band patterns. Mice and rabbits both responded to a 33.1 kDa E/S constituent that turned out to be the most sensitive protein for serodiagnosis. Sera from human toxocariasis patients showed heterogenous WB band patterns similar to those observed in rabbits and all responded to the 33.1 kDa band. Conclusion: 33.1 kDa E/S protein can be considered as a critical common biomarker for toxocariasis immuno-diagnosis in both paratenic animals and human and its specificity requires further investigation. PMID:28761463

  10. Cloning, expression and activation of a truncated 92-kDa gelatinase minienzyme.

    PubMed

    Kröger, M; Tschesche, H

    1997-09-01

    The matrix metalloproteinases (MMPs) are a family of highly homologous zinc-endopeptidases that degrade extracellular matrix components. Human 92-kDa gelatinase (MMP-9) represents one of the MMPs that cleaves native collagen type IV. As a basis for structural investigations, the short form (catalytic domain, amino acid residues 113-450) of the 92-kDa gelatinase cDNA was cloned and expressed in E. coli as a minienzyme. By combination of reverse transcription (RT) and polymerase chain reaction (PCR), the truncated 92-kDa gelatinase-cDNA was amplified from the corresponding mRNA derived from ovarian carcinoma cells. The cDNA fragment obtained was cloned in E. coli and sequenced. With the exception of one nucleotide inversion at position 745 (gt-->tg) the cDNA sequence was identical to the nucleotide sequence of the 92-kDa gelatinase as has been previously reported. The protein was expressed in E. coli using the vector pET-12b. The recombinant protein was stored in inclusion bodies and extracted as a 38 kDa species from the inclusion bodies by solubilization in 8 M urea. The product was purified by affinity chromatography and gel filtration. Amino-terminal sequence analysis confirmed the identity with the catalytic domain of 92-kDa gelatinase. The recombinant protein was refolded in the presence of Ca2+ and Zn2+ and yielded an active minienzyme with gelatinolytic activity. It degrades the native substrate collagen type IV and the synthetic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 x AcOH like the full-length 92-kDa gelatinase. The catalytic activity could be inhibited by the specific MMP inhibitors TIMP-1 and TIMP-2.

  11. Striated fibers in trichomonads: costa proteins represent a new class of proteins forming striated roots.

    PubMed

    Viscogliosi, E; Brugerolle, G

    1994-01-01

    The production of monoclonal antibodies and the use of biochemical techniques revealed that B-type costa proteins in trichomonads are composed of several major polypeptides with molecular weight detected between 100 and 135 kDa similar to those found in the A-type costae. Although differences were observed between the two types in their fine structure, we tested whether proteins composing the two costa types belong to the same protein family. A polyclonal antibody produced against the 118 kDa costa protein of Trichomonas vaginalis also recognized a 118 kDa costa protein in all other trichomonad genera studied so far whether they have A- or B-type costae. Moreover biochemical characteristics of costa proteins indicated that these proteins might represent a novel class of striated root-forming proteins in addition to centrin, giardin, and assemblin.

  12. Modified properties of a glycated and cross-linked soy protein isolate by transglutaminase and an oligochitosan of 5 kDa.

    PubMed

    Fu, Miao; Zhao, Xin-Huai

    2017-01-01

    Soy protein is an important protein ingredient for the food industry; however, its properties can be improved by enzymatic and chemical modifications. This study applied a new enzymatic glycation and cross-linking to modify soy protein isolate (SPI), using an oligochitosan of 5 kDa and transglutaminase. Properties of the obtained glycated and cross-linked SPI (GC-SPI) were unknown and thus assessed. GC-SPI contained glucosamine of 13.6 g kg -1 protein, but less reactable &bond;NH 2 than SPI (0.42 vs. 0.50 mol kg -1 protein). Infrared spectra and circular dichroism results showed that GC-SPI other than SPI and cross-linked SPI had more &bond;OH in molecules, and was more disordered in secondary structure. In comparison with SPI, GC-SPI showed enhanced water-binding capacity, could form aggregates with enlarged hydrodynamic radius (180.2 vs. 82.9 nm) and negative zeta-potential (-31.2 vs. -27.7 mV) in dispersion, but exhibited lower thermal stability (e.g. greater mass loss) upon heating at a temperature above 288 °C. GC-SPI also had lower in vitro proteolytic digestibility than SPI due to the protein cross-linking. Oligochitosan of 5 kDa and transglutaminase can be used to glycate and cross-link SPI. This approach is applicable to generate potential protein ingredient with good hydration and dispersive stabilisation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    PubMed Central

    Barkla, B J; Blumwald, E

    1991-01-01

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport. Images PMID:1662387

  14. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    PubMed

    Barkla, B J; Blumwald, E

    1991-12-15

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport.

  15. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes.

    PubMed Central

    Culver, J N; Lehto, K; Close, S M; Hilf, M E; Dawson, W O

    1993-01-01

    Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. Images Fig. 2 Fig. 3 Fig. 4 PMID:8446627

  16. Molecular cloning and developmental expression of the catalytic and 65-kDa regulatory subunits of protein phosphatase 2A in Drosophila.

    PubMed Central

    Mayer-Jaekel, R E; Baumgartner, S; Bilbe, G; Ohkura, H; Glover, D M; Hemmings, B A

    1992-01-01

    cDNA clones encoding the catalytic subunit and the 65-kDa regulatory subunit of protein phosphatase 2A (PR65) from Drosophila melanogaster have been isolated by homology screening with the corresponding human cDNAs. The Drosophila clones were used to analyze the spatial and temporal expression of the transcripts encoding these two proteins. The Drosophila PR65 cDNA clones contained an open reading frame of 1773 nucleotides encoding a protein of 65.5 kDa. The predicted amino acid sequence showed 75 and 71% identity to the human PR65 alpha and beta isoforms, respectively. As previously reported for the mammalian PR65 isoforms, Drosophila PR65 is composed of 15 imperfect repeating units of approximately 39 amino acids. The residues contributing to this repeat structure show also the highest sequence conservation between species, indicating a functional importance for these repeats. The gene encoding Drosophila PR65 was located at 29B1,2 on the second chromosome. A major transcript of 2.8 kilobase (kb) encoding the PR65 subunit and two transcripts of 1.6 and 2.5 kb encoding the catalytic subunit could be detected throughout Drosophila development. All of these mRNAs were most abundant during early embryogenesis and were expressed at lower levels in larvae and adult flies. In situ hybridization of different developmental stages showed a colocalization of the PR65 and catalytic subunit transcripts. The mRNA expression is high in the nurse cells and oocytes, consistent with a high equally distributed expression in early embryos. In later embryonal development, the expression remains high in the nervous system and the gonads but the overall transcript levels decrease. In third instar larvae, high levels of mRNA could be observed in brain, imaginal discs, and in salivary glands. These results indicate that protein phosphatase 2A transcript levels change during development in a tissue and in a time-specific manner. Images PMID:1320961

  17. Specific antibodies induced by nasally administered 40-kDa outer membrane protein of Porphyromonas gingivalis inhibits coaggregation activity of P. gingivalis.

    PubMed

    Namikoshi, Jun; Otake, Shigeo; Maeba, Satomi; Hayakawa, Mitsuo; Abiko, Yoshimitsu; Yamamoto, Masafumi

    2003-12-12

    In this study, we have assessed the efficacy of the 40-kDa outer membrane protein (40k-OMP) of Porphyromonas gingivalis as a nasal vaccine for the prevention of adult periodontitis. Mice nasally immunized with 40k-OMP and cholera toxin as mucosal adjuvant displayed significant levels of 40k-OMP-specific serum IgG1, IgG2b and IgA as well as mucosal IgA antibodies (Abs) in saliva and nasal secretions. Ab-forming cell (AFC) analysis confirmed the antibody titers by detecting high numbers of 40k-OMP-specific AFCs in spleen, salivary glands and nasal passages. Because 40k-OMP-specific IgG inhibited coaggregation of P. gingivalis vesicles and S. gordonii, it may be an important tool for the prevention of adult periodontitis.

  18. Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts.

    PubMed

    Chen, Kuan-Yu; Li, Hsou-min

    2007-01-01

    The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex.

  19. Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts

    PubMed Central

    Chen, Kuan-Yu; Li, Hsou-min

    2007-01-01

    The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex. PMID:17144891

  20. Type I allergy to elderberry (Sambucus nigra) is elicited by a 33.2 kDa allergen with significant homology to ribosomal inactivating proteins.

    PubMed

    Förster-Waldl, E; Marchetti, M; Schöll, I; Focke, M; Radauer, C; Kinaciyan, T; Nentwich, I; Jäger, S; Schmid, E R; Boltz-Nitulescu, G; Scheiner, O; Jensen-Jarolim, E

    2003-12-01

    Patients suffering from allergic rhinoconjunctivitis and dyspnoea during summer may exhibit these symptoms after contact with flowers or dietary products of the elderberry tree Sambucus nigra. Patients with a history of summer hayfever were tested in a routine setting for sensitization to elderberry. Nine patients having allergic symptoms due to elderberry and specific sensitization were investigated in detail. We studied the responsible allergens in extracts from elderberry pollen, flowers and berries, and investigated cross-reactivity with allergens from birch, grass and mugwort. Sera from patients were tested for IgE reactivity to elderberry proteins by one-dimensional (1D) and 2D electrophoresis/immunoblotting. Inhibition studies with defined allergens and elderberry-specific antibodies were used to evaluate cross-reactivity. The main elderberry allergen was purified by gel filtration and reversed-phase HPLC, and subjected to mass spectrometry. The in-gel-digested allergen was analysed by the MS/MS sequence analysis and peptide mapping. The N-terminal sequence of the predominant allergen was analysed. 0.6% of 3668 randomly tested patients showed positive skin prick test and/or RAST to elderberry. IgE in patients' sera detected a predominant allergen of 33.2 kDa in extracts from elderberry pollen, flowers and berries, with an isoelectric point at pH 7.0. Pre-incubation of sera with extracts from birch, mugwort or grass pollen rendered insignificant or no inhibition of IgE binding to blotted elderberry proteins. Specific mouse antisera reacted exclusively with proteins from elderberry. N-terminal sequence analysis, as well as MS/MS spectrometry of the purified elderberry allergen, indicated homology with ribosomal inactivating proteins (RIPs). We present evidence that the elderberry plant S. nigra harbours allergenic potency. Independent methodologies argue for a significant homology of the predominant 33.2 kDa elderberry allergen with homology to RIPs. We

  1. Effects of porcine 25 kDa amelogenin and its proteolytic derivatives on bone sialoprotein expression.

    PubMed

    Nakayama, Y; Yang, L; Mezawa, M; Araki, S; Li, Z; Wang, Z; Sasaki, Y; Takai, H; Nakao, S; Fukae, M; Ogata, Y

    2010-10-01

    Amelogenins are hydrophobic proteins that are the major component of developing enamel. Enamel matrix derivative has been used for periodontal regeneration. Bone sialoprotein is an early phenotypic marker of osteoblast differentiation. In this study, we examined the ability of porcine amelogenins to regulate bone sialoprotein transcription. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene by amelogenins, we conducted northern hybridization, transient transfection analyses and gel mobility shift assays using the osteoblast-like ROS 17/2.8 cells. Amelogenins (100 ng/mL) up-regulated bone sialoprotein mRNA at 3 h, with maximal mRNA expression occurring at 12 h (25 and 20 kDa) and 6 h (13 and 6 kDa). Amelogenins (100 ng/mL, 12 h) increased luciferase activities in pLUC3 (nucleotides -116 to +60), and 6 kDa amelogenin up-regulated pLUC4 (nucleotides -425 to +60) activity. The tyrosine kinase inhibitor inhibited amelogenin-induced luciferase activities, whereas the protein kinase A inhibitor abolished 25 kDa amelogenin-induced bone sialoprotein transcription. The effects of amelogenins were abrogated by 2-bp mutations in the fibroblast growth factor 2 response element (FRE). Gel-shift assays with radiolabeled FRE, homeodomain-protein binding site (HOX) and transforming growth factor-beta1 activation element (TAE) double-strand oligonucleotides revealed increased binding of nuclear proteins from amelogenin-stimulated ROS 17/2.8 cells at 3 h (25 and 13 kDa) and 6 h (20 and 6 kDa). These results demonstrate that porcine 25 kDa amelogenin and its proteolytic derivatives stimulate bone sialoprotein transcription by targeting FRE, HOX and TAE in the bone sialoprotein gene promoter, and that full-length amelogenin and amelogenin cleavage products are able to regulate bone sialoprotein transcription via different signaling pathways. (c) 2010 John Wiley & Sons A/S.

  2. Insulin stimulates the tyrosine phosphorylation of a 61-kilodalton protein in rat adipocytes.

    PubMed

    Mooney, R A; Bordwell, K L

    1992-03-01

    Insulin stimulated the tyrosine phosphorylation of a 61-kilodalton (kDa) protein in rat adipocytes prelabeled for 2 h with [32P]orthophosphate. Tyrosine phosphorylation of this 61-kDa protein displayed very similar insulin concentration dependency to receptor autophosphorylation and tyrosine phosphorylation of a high molecular mass receptor substrate of 160 kDa. Phosphorylation of the 61-kDa protein was very rapid with maximum labeling attained at 30 sec, paralleling that of the other two proteins. Phosphoamino acid analysis revealed that each of the insulin-responsive phosphoproteins contained phosphoserine as well as phosphotyrosine, though the ratio of two phosphoamino acids recovered from each protein differed. The 61-kDa protein yielded relatively equal proportions of phosphoserine and phosphotyrosine. In contrast, the insulin receptor yielded relatively more label on phosphotyrosine than phosphoserine, whereas label incorporated into the 160-kDa protein was recovered primarily on phosphoserine. Cleveland peptide maps using either Staphylococcus aureus V8 proteinase or chymotrypsin revealed no similarities between the 61-kDa protein and the other tyrosine phosphorylated proteins. With subcellular fractionation, the 160-kDa protein was found in equal proportions in the high speed pellet (100,000 g) and supernatant. The 61-kDa protein had a similar distribution to that of the 160-kDa protein but was also detected in the low speed pellet (10,000 g). The insulin receptor was localized to the low speed pellet. In summary, rat adipocytes contain an insulin-dependent phosphotyrosyl protein of 61 kDa which is distinct from the more prominent high molecular mass receptor substrate. This 61-kDa protein has characteristics consistent with it being a substrate for the insulin receptor tyrosine kinase.

  3. Formation of the 67-kDa laminin receptor by acylation of the precursor.

    PubMed

    Butò, S; Tagliabue, E; Ardini, E; Magnifico, A; Ghirelli, C; van den Brûle, F; Castronovo, V; Colnaghi, M I; Sobel, M E; Ménard, S

    1998-06-01

    Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule.

  4. A 92-kDa human immunostimulatory protein.

    PubMed Central

    Fontan, E; Briend, E; Saklani-Jusforgues, H; d'Alayer, J; Vandekerckhove, J; Fauve, R M

    1994-01-01

    We purified to apparent homogeneity a human urinary glycoprotein of 92 kDa (HGP.92) that, administered intravenously at 250 micrograms/kg, fully protected mice against a lethal inoculum of Listeria monocytogenes. Since HGP.92 protected scid mice, which lack B and T lymphocytes, this increased resistance to Listeria did not appear to be lymphocyte mediated. Furthermore, inflammatory macrophages incubated with 6 nM HGP.92 inhibited the growth of Lewis carcinoma cells in vitro. These two activities appeared to depend on an oligosaccharide moiety, as they were lost after N-Glycanase treatment of HGP.92. Thus, the biological activity of HGP.92 was in some way related to a glycan moiety. Images PMID:8078887

  5. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    PubMed

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  6. Proteomic Methods of Detection and Quantification of Protein Toxins.

    PubMed

    Duracova, Miloslava; Klimentova, Jana; Fucikova, Alena; Dresler, Jiri

    2018-02-28

    Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins , Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis , Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album . The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.

  7. Proteomic Methods of Detection and Quantification of Protein Toxins

    PubMed Central

    Klimentova, Jana; Fucikova, Alena

    2018-01-01

    Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents. PMID:29495560

  8. Identification of Collagen-Binding Proteins in Lactobacillus spp. with Surface-Enhanced Laser Desorption/Ionization–Time of Flight ProteinChip Technology

    PubMed Central

    Howard, Jeffrey C.; Heinemann, Christine; Thatcher, Bradley J.; Martin, Brian; Gan, Bing Siang; Reid, Gregor

    2000-01-01

    Biosurfactants produced by Lactobacillus fermentum RC-14, L. rhamnosus GR-1 and 36, and L. casei Shirota were found to contain proteins that bind to both collagen types III and VI, as determined by surface-enhanced laser desorption/ionization (SELDI)–time of flight mass spectrometry. Both collagen types III and VI immobilized on SELDI preactivated ProteinChip arrays detected several different sizes (2 to 48 kDa) of collagen-binding proteins. Overall, the RC-14-produced biosurfactant contained the greatest number of collagen-binding proteins (RC-14 > GR-1 > 36 > Shirota), including the mature form of a previously cloned 29-kDa collagen-binding protein (referred to in its mature 26-kDa form). Although biosurfactants isolated from L. casei Shirota and L. rhamnosus 36 and GR-1 also contain several collagen-binding proteins, they do not contain the 26-kDa collagen-binding protein. Together, these results demonstrate the utility of the SELDI system as a means of rapidly characterizing clinically important but complex biosurfactant solutions. PMID:11010889

  9. Plasmodium vivax: a monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Wirtz, R A; Sina, B J; Palomeque, O L; Nettel, J A; Tsutsumi, V

    1998-11-01

    The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells. Plasmodium vivax CS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with other Plasmodium species, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with all P. vivax sporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur. Copyright 1998 Academic Press.

  10. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    PubMed

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to

  11. A DOUBLE KNOCKOUT; A NOVEL APPROACH TO UNDERSTANDING STRESS-INDUCIBLE 70 KDA HEAT SHOCK PROTEINS (HSP70S) ON DEVELOPMENT AND REPRODUCTION

    EPA Science Inventory

    Heat and chemical toxicants which disrupt spermatogenesis and cause male infertility are thought to induce the expression of Hsp70-1 and 70-3, the major inducible heat shock proteins of the 70kDa family. Previous studies from several laboratories including our own have characteri...

  12. Molecular differentiation and phylogenetic relationships of three Angiostrongylus species and Angiostrongylus cantonensis geographical isolates based on a 66-kDa protein gene of A. cantonensis (Nematoda: Angiostrongylidae).

    PubMed

    Eamsobhana, Praphathip; Lim, Phaik Eem; Zhang, Hongman; Gan, Xiaoxian; Yong, Hoi Sen

    2010-12-01

    The phylogenetic relationships and molecular differentiation of three species of angiostrongylid nematodes (Angiostrongylus cantonensis, Angiostrongylus costaricensis and Angiostrongylus malaysiensis) were studied using the AC primers for a 66-kDa protein gene of A. cantonensis. The AC primers successfully amplified the genomic DNA of these angiostrongylid nematodes. No amplification was detected for the DNA of Ascaris lumbricoides, Ascaris suum, Anisakis simplex, Gnathostoma spinigerum, Toxocara canis, and Trichinella spiralis. The maximum-parsimony (MP) consensus tree and the maximum-likelihood (ML) tree both showed that the Angiostrongylus taxa could be divided into two major clades - Clade 1 (A. costaricensis) and Clade 2 (A. cantonensis and A. malaysiensis) with a full support bootstrap value. A. costaricensis is the most distant taxon. A. cantonensis is a sister group to A. malaysiensis; these two taxa (species) are clearly separated. There is no clear distinction between the A. cantonensis samples from four different geographical localities (Thailand, China, Japan and Hawaii); only some of the samples are grouped ranging from no support or low support to moderate support of bootstrap values. The published nucleotide sequences of A. cantonensis adult-specific native 66kDa protein mRNA, clone L5-400 from Taiwan (U17585) appear to be very distant from the A. cantonensis samples from Thailand, China, Japan and Hawaii, with the uncorrected p-distance values ranging from 26.87% to 29.92%.

  13. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  14. Using human sera to identify a 52-kDa exoantigen of Penicillium chrysogenum and implications of polyphasic taxonomy of anamorphic ascomycetes in the study of antigenic proteins.

    PubMed

    Wilson, Aaron M; Luo, Wen; Miller, J David

    2009-11-01

    We are interested in isolating and identifying antigenic fungal proteins from species that grow on damp building materials. The indoor clade of Penicillium chrysogenum, the so-called Fleming clade, is the most common species of Penicillium on moldy building materials. We have identified a 52-kDa marker protein for the indoor clade of P. chrysogenum not present in a taxonomically diverse selection of fungi. It is found in high concentrations in protein extracted from the fungus grown on paper-faced gypsum wallboard. During this process, we illuminated the variability in response to patient sera and of strains of the fungus collected over a wide geographic area. From a collection of sera from all over the USA, 25 of the 48 patients reacted to the 52-kDa protein from this prescreened collection of sera. Most strain/antibody combinations had proportionate ELISA response associated with the presence of the target. However, approximately 25% of the strain/patient serum combinations included people who responded to many common allergens from the Penicillia. All the P. chrysogenum strains tested produced the target protein. However, there was considerable variability in patient IgG response to 32-, 30-, and 18-kDa antigens and in their production by the various clade 4 strains. The target protein was not found in spores or culture extracts of a wide selection of relevant fungi. It appears that the previous studies have been conducted on strains of the fungus from the three clades not those associated with the built environment.

  15. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.

    PubMed

    Jeong, Kyoung Yong; Son, Mina; Lee, June Yong; Park, Kyung Hee; Lee, Jae-Hyun; Park, Jung-Won

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.

  16. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori

    PubMed Central

    Son, Mina; Lee, June Yong

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm. PMID:26770033

  17. Identification, characterization and purification to near-homogeneity of a novel 67 kDa phosphotyrosyl protein phosphatase associated with pig lung annexin extract.

    PubMed Central

    Vicendo, P; Fauvel, J; Ragab-Thomas, J M; Chap, H

    1991-01-01

    During the purification of annexin VI from pig lung, we previously reported the isolation of another 67 kDa protein (protein 67E) differing from the former by immunological reactivity, amino acid composition, inability to interact with anionic phospholipids in the presence of Ca2+ and inability to inhibit phospholipase A2 [Fauvel, Vicendo, Roques, Ragab-Thomas, Granier, Vilgrain, Chambaz, Rochat, Chap & Douste-Blazy (1987) FEBS Lett. 221, 397-402]. Attempts to phosphorylate protein 67E by the protein tyrosine kinase of epidermal-growth-factor receptor revealed a dramatic inhibition of receptor autophosphorylation, which was also observed with insulin receptor. This inhibitory effect was found to be supported by a phosphatase active towards p-nitrophenyl phosphate, phosphotyrosine, [32P]phosphotyrosyl histones and [32P]phosphotyrosyl poly(Glu,Tyr), but inactive towards phosphoserine, phosphothreonine and [32P]phosphoseryl histones. Although not purified to complete homogeneity, the enzyme was purified 273-fold over EGTA extracts from pig lung and corresponded to a monomeric protein displaying an apparent molecular mass of 67 kDa. With [32P]phosphotyrosyl poly(Glu,Tyr) as substrate, the purified enzyme displayed Km and Vmax. values of 10 microM and 1.93 mumol/min per mg respectively, which compare reasonably well with other recently described phosphotyrosyl protein phosphatases. From these data and from its sensitivity to various inhibitors, it is concluded that protein fraction 67E contains a novel phosphotyrosyl protein phosphatase, the association of which with annexin extract might offer a clue to the understanding of its possible targeting to membrane substrates. Images Fig. 1. Fig. 3. Fig. 5. PMID:1654882

  18. Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin.

    PubMed

    Peyretaillade, E; Broussolle, V; Peyret, P; Méténier, G; Gouy, M; Vivarès, C P

    1998-06-01

    An intronless gene encoding a protein of 592 amino acid residues with similarity to 70-kDa heat shock proteins (HSP70s) has been cloned and sequenced from the amitochondrial protist Encephalitozoon cuniculi (phylum Microsporidia). Southern blot analyses show the presence of a single gene copy located on chromosome XI. The encoded protein exhibits an N-terminal hydrophobic leader sequence and two motifs shared by proteobacterial and mitochondrially expressed HSP70 homologs. Phylogenetic analysis using maximum likelihood and evolutionary distances place the E. cuniculi sequence in the cluster of mitochondrially expressed HSP70s, with a higher evolutionary rate than those of homologous sequences. Similar results were obtained after cloning a fragment of the homologous gene in the closely related species E. hellem. The presence of a nuclear targeting signal-like sequence supports a role of the Encephalitozoon HSP70 as a molecular chaperone of nuclear proteins. No evidence for cytosolic or endoplasmic reticulum forms of HSP70 was obtained through PCR amplification. These data suggest that Encephalitozoon species have evolved from an ancestor bearing mitochondria, which is in disagreement with the postulated presymbiotic origin of Microsporidia. The specific role and intracellular localization of the mitochondrial HSP70-like protein remain to be elucidated.

  19. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    PubMed

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were

  20. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    NASA Astrophysics Data System (ADS)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana

    2018-01-01

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.

  1. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase Mnx from Bacillus sp. PL-12 has been successfully overexpressed in active form, unexpectedly, as a protein complex with a molecular weight of 211 kDa with no homology to known proteins in the database. We have recently used surface induced dissociation (SID) and ion mobility – mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data frommore » the native mass spectrometry experiment led to a plausible model of this unknown multicopper oxidase which has been difficult to study by conventional structural biology methods. However, because each subunit of Mnx binds copper ions as cofactor at varying ratios, there were remaining ambiguities in assigning some of the observed peaks to metal-binding species because of the sample heterogeneity and limited mass resolution. In this study, we performed SID in a modified Fourier transform – ion cyclotron resonance (FT-ICR) mass spectrometer for obtaining the ultimate resolution on the released subcomplexes of Mnx. The high mass accuracy and resolution unveiled unexpected artificial modifications in the protein that have been previously thought to be iron bound species based on lower resolution data. Additionally, most released subcomplexes were isotopically resolved for defining metal binding stoichiometry at each structural level. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes.« less

  2. Effect of gamma irradiation on the expressed proteins in the foodborne pathogen Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Trudeau, Karine; Dang Vu, Khanh; Shareck, François; Lacroix, Monique

    2012-08-01

    A capillary electrophoresis method with UV detection was developed to analyze protein composition of the foodborne pathogen Staphylococcus aureus. Bacterial samples containing 109 CFU/ml, obtained after two cycles of incubations of 24 h, were gamma irradiated at different doses of 1.2, 3.5 and 2.9 kGy to respectively create damage cells, to kill cells and to provoke viable but non cultivable cells (VBNC). It was observed that an irradiation at a sensitive dose of 1.2 kGy caused a significantly increase in the protein with molecular weight (MW) of 17.7 kDa (from 0.61% to 1.2%). This treatment also caused decreases in the expressed proteins with the MWs of 16.3 kDa (from 6.2% to 5.3%) and of 23.4 kDa (from 4.0% to 2.30%). Irradiation at a VBCN dose of 2.9 kGy caused increases in expressed proteins with the MWs of 17.7 kDa (from 0.61% to 3.43%), 18.7 kDa (from 1.04% to 4.30%), 19.5 kDa (from 0.71% to 2.30%), 21.1 kDa (from 1.20% to 3.80%). Moreover, this treatment (2.9 kGy) also caused significantly decreases (P≤0.05) in the expressed proteins with the MW of 30.7 kDa (from 8.6% to 5.15%), 36.3 kDa (from 3.1% to 2.7%) and 40.5 kDa (from 11.3% to 8.5%). Finally, for the irradiation at a lethal dose of 3.5 kGy, it can be found that the expressed proteins with the MW of 17.7 kDa, 18.7 kDa and 19.5 kDa were increased less than that of expressed proteins at the VCNC dose (2.9 kGy) and these might be the very important proteins which are responsible for the survival of the S. aureus. Further, there were also the decreases in expressed proteins with the MW of 30.7 kDa, 36.3 kDa and 75.1 kDa at this dose of treatment (3.5 kGy) which can be expected that these proteins are seriously affected at high dose of γ-irradiation treatment.

  3. The purification and characterization of an 88-kDa Porphyromonas endodontalis 35406 protease.

    PubMed

    Rosen, G; Shoshani, M; Naor, R; Sela, M N

    2001-12-01

    A Porphyromonas endodontalis ATCC 35406 protease was purified from Triton X-114 cell extracts by preparative SDS-PAGE followed by electroelution. The purified enzyme exhibits a molecular size of 88 kDa and was dissociated into two polypeptides of 43 and 41 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The protease (pH optimum 7.5-8.0) degraded the extracellular matrix proteins fibrinogen and fibronectin. Collagen IV was also degraded at 37 degrees C but not at 28 degrees C. The protease also cleaved the bioactive peptide angiotensin at amino acid residue phenylalanine-8 and tyrosine-4 but failed to hydrolyze bradykinin, vasopressin and synthetic chromogenic substrates with phenylalanine or tyrosine at the P1 position. In addition, two peptidases were detected in P. endodontalis cells: a proline aminopeptidase that remained associated with the cell pellet after detergent extraction and peptidase/s that partitioned into the Triton X-114 phase after phase separation and degraded the bioactive peptides bradykinin and vasopressin. These P. endodontalis peptidases and proteases may play an important role in both the nutrition and pathogenicity of these assacharolytic microorganisms. The inactivation of bioactive peptides and degradation of extracellular matrix proteins by bacterial enzymes may contribute to the damage of host tissues accompanied with endodontic infections.

  4. An immunoblotting diagnostic assay for heartwater based on the immunodominant 32-kilodalton protein of Cowdria ruminantium detects false positives in field sera.

    PubMed Central

    Mahan, S M; Tebele, N; Mukwedeya, D; Semu, S; Nyathi, C B; Wassink, L A; Kelly, P J; Peter, T; Barbet, A F

    1993-01-01

    Heartwater, a major constraint to improved livestock production in Zimbabwe, threatens to invade areas which have been previously unaffected. To monitor its spread in Zimbabwe, an immunoblotting diagnostic assay based on the responses of animals to the immunodominant, conserved 32-kDa protein of Cowdria ruminantium was evaluated. In this assay, no false reactions were detected with sera known to be positive and negative, but sera from some cattle, sheep, and goats from heartwater-free areas of Zimbabwe reacted strongly with the 32-kDa protein, suggesting that either these animals had previous exposure to heartwater or they were false positives. To investigate the possibility of previous exposure to heartwater, 11 immunoblot-positive and 6 immunoblot-negative sheep from heartwater-free areas of Zimbabwe were compared regarding their susceptibilities to challenge with C. ruminantium. Prior to challenge, C. ruminantium could not be detected in any sheep by transmission to Amblyomma hebraeum ticks or by the polymerase chain reaction (PCR) conducted with plasma samples. All sheep were equally susceptible to the challenge, and infection was confirmed by brain biopsy, necropsy, PCR, and transmission of C. ruminantium to ticks. Our data suggest that the immunoblot-positive reactions of sera from heartwater-free areas were due not to previous C. ruminantium infection but rather to antigenic cross-reactivity between C. ruminantium and another agent(s) such as Ehrlichia species. In conclusion, the immunodominant 32-kDa protein is not antigenically specific to C. ruminantium and its use in serological diagnosis of heartwater requires reevaluation. Images PMID:8253974

  5. Oleosins (24 and 18 kDa) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination.

    PubMed

    Chen, Yeming; Zhao, Luping; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2014-01-29

    After oil bodies (OBs) were extracted from ungerminated soybean by pH 6.8 extraction, it was found that 24 and 18 kDa oleosins were hydrolyzed in the extracted OBs, which contained many OB extrinsic proteins (i.e., lipoxygenase, β-conglycinin, γ-conglycinin, β-amylase, glycinin, Gly m Bd 30K (Bd 30K), and P34 probable thiol protease (P34)) as well as OB intrinsic proteins. In this study, some properties (specificity, optimal pH and temperature) of the proteases of 24 and 18 kDa oleosins and the oleosin hydrolysis in soybean germination were examined, and the high relationship between Bd 30K/P34 and the proteases was also discussed. The results showed (1) the proteases were OB extrinsic proteins, which had high specificity to hydrolyze 24 and 18 kDa oleosins, and cleaved the specific peptide bonds to form limited hydrolyzed products; (2) 24 and 18 kDa oleosins were not hydrolyzed in the absence of Bd 30K and P34 (or some Tricine-SDS-PAGE undetectable proteins); (3) the protease of 24 kDa oleosin had strong resistance to alkaline pH while that of 18 kDa oleosin had weak resistance to alkaline pH, and Bd 30K and P34, resolved into two spots on two-dimensional electrophoresis gel, also showed the same trend; (4) 16 kDa oleosin as well as 24 and 18 kDa oleosins were hydrolyzed in soybean germination, and Bd 30K and P34 were always contained in the extracted OBs from germinated soybean even when all oleosins were hydrolyzed; (5) the optimal temperature and pH of the proteases were respectively determined as in the ranges of 35-50 °C and pH 6.0-6.5, while 60 °C or pH 11.0 could denature them.

  6. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of (/sup 3/H)-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound (/sup 3/H)oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation ofmore » the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 ..mu..g/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10/sup 4/ adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut.« less

  7. Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast.

    PubMed Central

    Oblong, J E; Lamppa, G K

    1992-01-01

    Two proteins of 145 and 143 kDa were identified in pea which co-purify with a chloroplast processing activity that cleaves the precursor for the major light-harvesting chlorophyll binding protein (preLHCP). Antiserum generated against the 145/143 kDa doublet recognizes only these two polypeptides in a chloroplast soluble extract. In immunodepletion experiments the antiserum removed the doublet, and there was a concomitant loss of cleavage of preLHCP as well as of precursors for the small subunit of Rubisco and the acyl carrier protein. The 145 and 143 kDa proteins co-eluted in parallel with the peak of processing activity during all fractionation procedures, but they were not detectable as a homo- or heterodimeric complex. The 145 and 143 kDa proteins were used separately to affinity purify immunoglobulins; each preparation recognized both polypeptides, indicating that they are antigenically related. Wheat chloroplasts contain a soluble species similar in size to the 145/143 kDa doublet. Images PMID:1385116

  8. Detection of antigenic proteins expressed by lymphocystis virus as vaccine candidates in olive flounder, Paralichthys olivaceus (Temminck & Schlegel).

    PubMed

    Jang, H B; Kim, Y R; Cha, I S; Noh, S W; Park, S B; Ohtani, M; Hikima, J; Aoki, T; Jung, T S

    2011-07-01

    Although the major capsid proteins (MCPs) of lymphocystis disease virus (LCDV) have been characterized, little is known about the host-derived immune response to MCPs and other LCDV antigenic proteins. To identify antigenic proteins of LCDV that could be used as vaccine candidates in olive flounder, Paralichthys olivaceus, we analysed the viral proteins responsible for its virulence by applying immuno-proteomics. LCDV proteins were separated by one-dimensional gel electrophoresis, transferred to polyvinylidene difluoride membrane, and probed with homogeneous P. olivaceus antisera elicited by LCDV natural infection and vaccination with formalin-killed LCDV. Four immune-reactive proteins were obtained at 68-, 51-, 41- and 21 kDa using antisera collected from natural infection while two proteins at 51- and 21 kDa exhibited response to antisera from vaccinated fish, indicating that the latter two proteins have vaccine potential. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray MS/MS, the 51 and 21 kDa proteins were identified as MCP and an unknown protein, respectively. © 2011 Blackwell Publishing Ltd.

  9. Ultrahigh-Resolution Differential Ion Mobility Separations of Conformers for Proteins above 10 kDa: Onset of Dipole Alignment?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.

    2014-11-04

    Biomacromolecules tend to assume numerous structures in solution or the gas phase. It has been possible to resolve disparate conformational families but not unique geometries within each, and drastic peak broadening has been the bane of protein analyses by chromatography, electrophoresis, and ion mobility spectrometry (IMS). The new differential IMS (FAIMS) approach using hydrogen-rich gases was recently found to separate conformers of a small protein ubiquitin with same peak width and resolving power up to ~400 as for peptides. Present work explores the reach of this approach for larger proteins, exemplified by cytochrome c and myoglobin. Resolution similar to thatmore » for ubiquitin was largely achieved with longer separations, while the onset of peak broadening and coalescence with shorter separations suggests the limitation of present technique to proteins under ~20 kDa. This capability may enable distinguishing whole proteins with differing residue sequences or localizations of posttranslational modifications. Small features at negative compensation voltages that markedly grow from cytochrome c to myoglobin indicate the dipole alignment of rare conformers in accord with theory, further supporting the concept of pendular macroions in FAIMS.« less

  10. Crucial role of neuron-enriched endosomal protein of 21 kDa in sorting between degradation and recycling of internalized G-protein-coupled receptors.

    PubMed

    Debaigt, Colin; Hirling, Harald; Steiner, Pascal; Vincent, Jean-Pierre; Mazella, Jean

    2004-08-20

    Recycling of endocytosed G-protein-coupled receptors involves a series of molecular events through early and recycling endosomes. The purpose of this work was to study the role of neuron-enriched endosomal protein of 21 kDa (NEEP21) in the recycling process of neurotensin receptors-1 and -2. Here we showed that suppression of NEEP21 expression does not modify the internalization rate of both receptors but strongly inhibited the recycling of the neurotensin receptor-2. In contrast, overexpression of NEEP21 changes the behavior of the neurotensin receptor-1 from a non-recycling to a recycling state. Recycling of the neurotensin receptor-2 involves both the phosphatidylinositol 3-kinase and the recycling endosome pathways, whereas recycling of the neurotensin receptor-1 induced by overexpression of NEEP21 only occurs by the phosphatidylinositol 3-kinase-dependent pathway. Taken together, these results confirm the essential role of NEEP21 in the recycling mechanism and show that this protein acts at the level of early endosomes to promote sorting of receptors toward a recycling pathway.

  11. Calmyonemin: a 23 kDa analogue of algal centrin occurring in contractile myonemes of Eudiplodinium maggii (ciliate).

    PubMed

    David, C; Viguès, B

    1994-01-01

    Myonemes are bundles of thin filaments (3-6 nm in diameter) which mediate calcium-induced contraction of the whole or only parts of the cell body in a number of protists. In Eudiplodinium maggii, a rumen ciliate which lacks a uniform ciliation of the cell body, myonemes converge toward the bases of apical ciliary zones that can be retracted under stress conditions, entailing immobilization of the cell. An mAB (A69) has been produced that identifies a calcium-binding protein by immunoblot, immunoprecipitation experiments and specifically labels the myonemes in immunoelectron microscopy. Solubility properties, apparent molecular weight (23 kDa) and isoelectric point (4.9) of the myonemal protein, are similar to the values reported for the calcium-modulated contractile protein centrin. Western-blot analysis indicates that the 23 kDa protein cross-reacts antigenically with anti-centrin antibodies. In addition, the 23 kDa protein displays calcium-induced changes in both electrophoretic and chromatographic behaviour, and contains calcium-binding domains that conform to the EF-hand structure, as known for centrin. Based on these observations, we conclude that a calcium-binding protein with major similarities to centrin occurs in the myonemes of E. maggii. We postulate that this protein plays an essential role in myoneme-mediated retraction of the ciliature.

  12. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose

    PubMed Central

    Tripathi, Siddharth Kaushal; Singh, Amar Pal; Sane, Aniruddha P.; Nath, Pravendra

    2009-01-01

    Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease. PMID:19346241

  13. The effects of thermal treatments on protein profiles of Macrobrachium rosenbergii (giant river prawn)

    NASA Astrophysics Data System (ADS)

    Sockalingam, Komathi; Misnan, Rosmilah; Yadzir, Zailatul Hani Mohd

    2017-05-01

    Prawn allergy is certainly the most frequent cause of allergic reactions in countries where this crustacean is a popular dish of seafood. The aim of this study was to determine the protein profiles of giant river prawn which scientifically known as Macrobrachium rosenbergii. Raw and cooked extracts (boiled, steamed and fried) of prawn samples were prepared and then resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 27 protein bands between 6 to 207 kDa were detected in the SDS-PAGE gel of raw extracts while boiled, steamed and fried extracts revealed fewer protein bands. Steamed and boiled prawns presented higher numbers of protein bands compared to fried prawn. A prominent heat-resistant band between 32 to 38 kDa was seen in all extracts, might hypothesized to be tropomyosin. Other prominent bands between 17 to 20 kDa were also seen in all treated prawn extracts while bands of 24 to 27 kDa were seen in steamed and boiled prawn extracts. These positions are consistent with the known shellfish allergens myosin light chain, sacroplasmic calcium binding protein and troponin C respectively. Several other heat-sensitive protein bands at various molecular weights were also not detected in boiled, steamed and fried extracts of this prawn. This study showed that M. rosenbergii contains numerous heat-sensitive and heat-resistant proteins, which may play an important role in prawn allergy.

  14. The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugu, H.; Horowitz, R.; Gibson, N.

    1994-12-01

    Sera from approximately 30% of patients with systemic lupus erythematosus (SLE) contain high titers of autoantibodies that bind to the 52-kDa Ro/SSA protein. We previously detected polymorphisms in the 52-kDa Ro/SSA gene (SSA1) with restriction enzymes, one of which is strongly associated with the presence of SLE (P < 0.0005) in African Americans. A higher disease frequency and more severe forms of the disease are commonly noted among these female patients. To determine the location and nature of this polymorphism, we obtained two clones that span 8.5 kb of the 52-kDa Ro/SSA locus including its upstream regulatory region. Six exonsmore » were identified, and their nucleotide sequences plus adjacent noncoding regions were determined. No differences were found between these exons and the coding region of one of the reported cDNAs. The disease-associated polymorphic site suggested by a restriction enzyme map and confirmed by DNA amplification and nucleotide sequencing was present upstream of exon 1. This polymorphism may be a genetic marker for a disease-related variation in the coding region for the protein or in the upstream regulatory region of this gene. Although this RFLP is present in Japanese, it is not associated with lupus in this race. 41 refs., 4 figs., 2 tabs.« less

  15. Purification and characterization of a 22-kDa microsomal protein from rat parotid gland which is phosphorylated following stimulation by agonists involving cAMP as second messenger.

    PubMed

    Thiel, G; Schmidt, W E; Meyer, H E; Söling, H D

    1988-01-04

    Stimulation of secretion in exocrine glands by agonists involving cAMP as second messenger leads to the phosphorylation of the ribosomal protein S6 (protein I) and two other particulate proteins with apparent molecular masses of 24 kDa (protein II) and 22 kDa (protein III) [Jahn, R., Unger, C. & Söling, H. D. (1980) Eur. J. Biochem. 112, 345-352]. This report describes the purification and characterization of protein III. Solubilization studies indicate that protein III is an intrinsic membrane protein. It could be extracted from the endoplasmic reticulum membrane only with Triton X-100, SDS or concentrated formic or acetic acid. The purification of this protein involved extraction of the microsomes with Triton X-100, removal of the detergent by acetone precipitation, extraction of water-soluble proteins, lipids and lipoproteins, and preparative SDS polyacrylamide gel electrophoresis. The protein has a basic pI (greater than 8.7). For determination of the amino acid composition of protein III and for sequencing of its amino-terminal portion, the protein was electroeluted out off the gel, the detergent removed and the protein finally purified by reversed-phase HPLC. Protein III could be phosphorylated in vitro by the catalytic subunit of the cAMP-dependent protein kinase to a degree of approximately 0.14 mol phosphate/mol protein. The only phosphopeptide obtained after in vitro phosphorylation and subsequent tryptic or chymotryptic digestion was identical with the phosphopeptide obtained after stimulation of intact rat parotid gland lobules with isoproterenol. The sequence of this peptide was Lys-Leu-Ser(P)-Glu-Ala-Asp-Asn-Arg. It was confirmed by an analysis of the synthetic peptide following in vitro phosphorylation with cAMP-dependent protein kinase. The first 41 N-terminal residues of protein III were sequenced. So far no sequence homology with other known peptides or proteins could be found.

  16. RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development.

    PubMed

    Baviskar, Sandhya N; Shields, Malcolm S

    2010-01-01

    Glucose-regulated 94 kDa protein (Grp94) is a resident of the endoplasmic reticulum (ER) of multicellular eukaryotes. It is a constitutively expressed protein that is overexpressed in certain abnormal conditions of the cell such as depletion of glucose and calcium, and low oxygen and pH. The protein is also implicated in diseased conditions like cancer and Alzheimer's disease. In this study, the consequences of downregulation of Grp94 were investigated at both unicellular and multicellular stages of Dictyostelium discoideum. Previous studies have shown the expression of Dd-Grp94 (Dictyostelium discoideum glucose-regulated 94 kDa protein) in wild-type cells varies during development, and overexpression of Dd-Grp94 leads to abnormal cell shape and inhibition of development (i.e., formation of fruiting bodies). Grp94 is a known calcium binding protein and an efficient calcium buffer. Therefore, in the present study we hypothesized that downregulation of Dd-Grp94 protein would affect Dictyostelium cell structure, growth, and development. We found that Dd-grp94 RNAi recombinants exhibited reduced growth rate, cell size, and a subtle change in cell motility compared to the parental cells. The recombinants also exhibited a delay in development and small fruiting bodies. These results establish that Dd-grp94 plays a crucial role in determining normal cell structure, growth and differentiation.

  17. [A case of IgA2-lambda type M-protein that IgA concentration differs from the values of M-protein by serum protein electrophoresis].

    PubMed

    Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K

    2001-07-01

    We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.

  18. beta. -Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkoe, D.J.; Podlisny, M.B.; Joachim, C.L.

    1988-10-01

    Progressive cerebral deposition of extracellular filaments composed of the {beta}-amyloid protein ({beta}AP) is a constant feature of Alzheimer disease (AD). Since the gene on chromosome 21 encoding the {beta}AP precursor ({beta}APP) is not known to be altered in AD, transcriptional or posttranslational changes may underlie accelerated {beta}AP deposition. Using two antibodies to the predicted carboxyl terminus of {beta}APP, the authors have identified the native {beta}APP in brain and nonneural human tissues as a 110- to 135-kDa protein complex that is insoluble in buffer and found in various membrane-rich subcellular fractions. These proteins are relatively uniformly distributed in adult brain, abundantmore » in fetal brain, and detected in nonneural tissues that contain {beta}APP mRNA. Similarly sized proteins occur in rat, cow, and monkey brain and in cultured human HL-60 and HeLa cells; the precise patterns in the 110- to 135-kDa range are heterogeneous among various tissues and cell lines. They conclude that the highly conserved {beta}APP molecule occurs in mammalian tissues as a heterogeneous group of membrane-associated proteins of {approx} 120 kDa. Detection of the nonamyloidogenic carboxyl terminus within plaques suggests that proteolytic processing of the {beta}APP into insoluble filaments occurs locally in cortical regions that develop {beta}-amyloid deposits with age.« less

  19. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion.

    PubMed

    Bassan, Juliana C; Goulart, Antonio J; Nasser, Ana L M; Bezerra, Thaís M S; Garrido, Saulo S; Rustiguel, Cynthia B; Guimarães, Luis H S; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey.

  20. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion

    PubMed Central

    Bassan, Juliana C.; Goulart, Antonio J.; Nasser, Ana L. M.; Bezerra, Thaís M. S.; Garrido, Saulo S.; Rustiguel, Cynthia B.; Guimarães, Luis H. S.; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey. PMID:26465145

  1. Heat shock 70-kDa protein 8 isoform 1 is expressed on the surface of human embryonic stem cells and downregulated upon differentiation.

    PubMed

    Son, Yeon Sung; Park, Jae Hyun; Kang, Young Kook; Park, Jin-Sung; Choi, Hong Seo; Lim, Ji Young; Lee, Jeoung Eun; Lee, Jung Bok; Ko, Myoung Seok; Kim, Yong-Sam; Ko, Jeong-Heon; Yoon, Hyun Soo; Lee, Kwang-Woong; Seong, Rho Hyun; Moon, Shin Yong; Ryu, Chun Jeih; Hong, Hyo Jeong

    2005-01-01

    The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.

  2. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology.

    PubMed

    Kiang, J G; Tsokos, G C

    1998-11-01

    Heat shock proteins (HSPs) are detected in all cells, prokaryotic and eukaryotic. In vivo and in vitro studies have shown that various stressors transiently increase production of HSPs as protection against harmful insults. Increased levels of HSPs occur after environmental stresses, infection, normal physiological processes, and gene transfer. Although the mechanisms by which HSPs protect cells are not clearly understood, their expression can be modulated by cell signal transducers, such as changes in intracellular pH, cyclic AMP, Ca2+, Na+, inositol trisphosphate, protein kinase C, and protein phosphatases. Most of the HSPs interact with other proteins in cells and alter their function. These and other protein-protein interactions may mediate the little understood effects of HSPs on various cell functions. In this review, we focus on the structure of the HSP-70 family (HSP-70s), regulation of HSP-70 gene expression, their cytoprotective effects, and the possibility of regulating HSP-70 expression through modulation of signal transduction pathways. The clinical importance and therapeutic potential of HSPs are discussed.

  3. Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin.

    PubMed

    Schmucker, B; Ballhausen, W G; Kressel, M

    1997-01-01

    To elucidate the physiological function of the neurofibromatosis type 2 (NF2) tumor suppressor protein merlin/schwannomin, we studied the expression pattern and subcellular localization in human fibroblasts by Western blot analyses and immunofluorescence using a polyclonal antibody raised against the C-terminus of merlin. Three of the six merlin isoforms identified in this study (75 kDa, 58 kDa, 45 kDa) have been reported earlier and can be explained by alternative splicing. In addition, we detected higher molecular weight bands of about 110 kDa, 100 kDa and 84 kDa. Although the merlin bands of 100 kDa and 110 kDa may represent homo- or heterodimers, oligomerization due to formation of disulfide bonds was excluded. Furthermore, the isoforms of 84 kDa and 58 kDa were quantitatively extractable in Lubrol WX, indicating a localization in or close to the plasma membrane. The 45 kDa band, however, was not soluble in Lubrol WX compatible with a localization of this NF2 isoform in the endoplasmic reticulum. Applying confocal laser scanning microscopy, merlin was shown to be located in four subcellular compartments: (i) perinuclear in a compartment resembling endoplasmic reticulum, (ii) in ruffling membranes and at the leading edges, (iii) in filopodia, and (iv) at cell/substrate adhesion points. Codistribution of merlin and F-actin filaments was found in filopodia, ruffling membranes and at the insertion points of stress fibers at cell/substrate adhesion junctions as shown by phalloidin-rhodamine staining. Double immunofluorescence analyses of merlin and moesin revealed a colocalization in filopodia and ruffling membranes. The localization of merlin in the actin-rich cortical cytoskeleton corresponds to the ezrin-radixin-moesin family of proteins suggesting the NF2 protein to contribute to the regulation of cell growth by interaction with cytoskeleton-associated proteins.

  4. Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting.

    PubMed

    Carthew, James; Karakesisoglou, Iakowos

    2016-01-01

    Heavily utilized in cell and molecular biology, western blotting is considered a crucial technique for the detection and quantification of proteins within complex mixtures. In particular, the detection of members of the nesprin (nuclear envelope spectrin repeat protein) family has proven difficult to analyze due to their substantial isoform diversity, molecular weight variation, and the sheer size of both nesprin-1 and nesprin-2 giant protein variants (>800 kDa). Nesprin isoforms contain distinct domain signatures, perform differential cytoskeletal associations, occupy different subcellular compartments, and vary in their tissue expression profiles. This structural and functional variance highlights the need to distinguish between the full range of proteins within the nesprin protein family, allowing for greater understanding of their specific roles in cell biology and disease. Herein, we describe a western blotting protocol modified for the detection of low to high molecular weight (50-1000 kDa) nesprin proteins.

  5. Thermodynamic analysis of the disorder-to-α-helical transition of 18.5-kDa myelin basic protein reveals an equilibrium intermediate representing the most compact conformation.

    PubMed

    Vassall, Kenrick A; Jenkins, Andrew D; Bamm, Vladimir V; Harauz, George

    2015-05-22

    The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia.

    PubMed

    Glausier, Jill R; Kimoto, Sohei; Fish, Kenneth N; Lewis, David A

    2015-01-15

    Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc

  7. ZP Domain Proteins in the Abalone Egg Coat Include a Paralog of VERL under Positive Selection That Binds Lysin and 18-kDa Sperm Proteins

    PubMed Central

    Aagaard, Jan E.; Vacquier, Victor D.; MacCoss, Michael J.; Swanson, Willie J.

    2010-01-01

    Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope receptor for lysin (VERL). Rapid adaptive divergence of abalone lysin and VERL are an example of positive selection on interacting fertilization proteins contributing to reproductive isolation. Previously, we characterized a subset of the abalone VE proteins that share a structural feature, the zona pellucida (ZP) domain, which is common to VERL and the egg envelopes of vertebrates. Here, we use additional expressed sequence tag sequencing and shotgun proteomics to characterize this family of proteins in the abalone egg VE. We expand 3-fold the number of known ZP domain proteins present within the VE (now 30 in total) and identify a paralog of VERL (vitelline envelope zona pellucida domain protein [VEZP] 14) that contains a putative lysin-binding motif. We find that, like VERL, the divergence of VEZP14 among abalone species is driven by positive selection on the lysin-binding motif alone and that these paralogous egg VE proteins bind a similar set of sperm proteins including a rapidly evolving 18-kDa paralog of lysin, which may mediate sperm–egg fusion. This work identifies an egg coat paralog of VERL under positive selection and the candidate sperm proteins with which it may interact during abalone fertilization. PMID:19767347

  8. The expression of a novel stress protein '150-kDa oxygen regulated protein' in sudden infant death.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro

    2003-03-01

    The oxygen regulated protein 150-kDa (ORP-150) is only induced in hypoxic conditions. We performed an immunohistochemical and morphometrical study on the expression of ORP-150 in the brains of sudden infant death (SID) victims. The cerebral cortexes of 18 infants were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibodies and the number of ORP-150 positive cells was counted. In the cluster analysis, the 18 cases were classified into three groups (A-C groups). Group A was composed of six sudden infant death syndrome (SIDS) cases and its mean value of ORP-150 positive cells was 66.75+/-3.44, Group B (six severe respiratory infectious disease such as pneumonia and bronchitis including sepsis): 39.50+/-2.52 and Group C (five SIDS and one severe respiratory infectious disease): 16.00+/-2.92, respectively. These results might reflect chronic hypoxic condition before death, because ORP-150 is only induced when a hypoxic condition exist, but not acute hypoxia. And chronic hypoxic state is likely to be antecedent to SIDS. Therefore, immunohistochemical analysis of OPR-150 in the brain of SID cases may be very useful to differentiate between SIDS and acute asphyxia.

  9. Characterization of structural proteins of hirame rhabdovirus, HRV

    USGS Publications Warehouse

    Nishizawa, Toyohiko; Yoshimizu, Mamoru; Winton, James; Ahne, Winfried; Kimura, Takahisa

    1991-01-01

    Structural proteins of hirame rhabdovirus (HRV) were analyzed by SDS-polyacrylarnide gel electrophoresis, western blotting, 2-dimensional gel electrophoresis, and Triton X-100 treatment. Purified HRV virions were composed of: polymerase (L), glycoprotein (G), nucleoprotein (N), and 2 matrix proteins (M1 and M2). Based upon their relative mobilities, the estimated molecular weights of the proteins were: L, 156 KDa; G, 68 KDa; N, 46.4 KDa; M1, 26.4 KDa; and M2, 19.9 KDa. The electrophorehc pattern formed by the structural proteins of HRV was clearly different from that formed by pike fry rhabdovirus, spring viremia of carp virus, eel virus of America, and eel virus European X which belong to the Vesiculovirus genus; however, it resembled the pattern formed by structural proteins of viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) which are members of the Lyssavirus genus. Among HRV, IHNV, and VHSV, differences were observed in the relative mobilities of the G, N, M1, and M2 proteins. Western blot analysis revealed that the G. N, and M2 proteins of HRV shared antigenic determinants with IHNV and VHSV, but not with any of the 4 fish vesiculoviruses tested. Cross-reactions between the M1 proteins of HRV, IHNV, or VHSV were not detected in this assay. Two-dimensional gel electrophoresis was used to show that HRV differed from IHNV or VHSV in the isoelectric point (PI) of the M1 and M2 proteins. In this system, 2 forms of the M1 protein of HRV and IHNV were observed.These subspecies of M1 had the same relative mobility but different p1 values. Treatment of purified virions with 2% Triton X-100 in Tris buffer containing NaCl removed the G, M1, and M2 proteins of IHNV, but HRV virions were more stable under these conditions.

  10. Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

    PubMed Central

    Kim, Nam-Gyu; Seo, Eun-Young; Han, Sang-Hyuk; Gong, Jun-Su; Park, Cheol-Nam; Park, Ho-Seop; Domier, Leslie L; Hammond, John; Lim, Hyoun-Sub

    2017-01-01

    Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004. PMID:28811756

  11. Purification and Immunobiochemical Characterization of a 31 kDa Cross-Reactive Allergen from Phaseolus vulgaris (Kidney Bean)

    PubMed Central

    Kasera, Ramkrashan; Singh, Anand Bahadur; Lavasa, Shakuntala; Nagendra, Komarla; Arora, Naveen

    2013-01-01

    Background Legumes are a rich source of proteins but are also potential elicitors of IgE-mediated food allergy. This study aimed to isolate and characterize a major allergen of Phaseolus vulgaris (kidney bean) and determine its allergenicity. Methodology Kidney bean allergen was purified using Q Sepharose column (anion exchanger) and eluates with high intensity were pooled to purify protein using Superdex 75 (gel filtration) and C18 column (RP-HPLC). Patients with history of kidney bean allergy were skin prick tested (SPT) with crude kidney bean extract and the purified protein. Specific IgE was estimated in sera by enzyme-linked immunosorbent assay (ELISA). Characterization of purified protein and its cross-reactivity was investigated by immunobiochemical methods. Identification of purified protein was carried out by tandem mass spectrometry. Principal Findings Purified protein appeared as a single band at 31 kDa on SDS-PAGE and showed IgE binding to 88% patients’ sera by ELISA and immunoblotting. SPT with purified protein identified 78% hypersensitive patients of kidney bean. Significant release of histamine from sensitized basophils was observed after challenge with purified protein. PAS staining suggested it to be a glycoprotein, but no change in IgE binding was observed after periodate oxidation. The 31 kDa protein remained stable for 60 min on incubation with pepsin. The purified protein had high allergenic potential since it required only 102 ng of self protein for 50% IgE inhibition. Mass spectrometric analysis identified it as Phytohemagglutinin. It also showed hemagglutination with human RBCs. Cross-reactivity was observed with peanut and black gram with IC50 of 185 and 228 ng respectively. Conclusion/Significance A 31 kDa major allergen of kidney bean was purified and identified as phytohemagglutinin with cross-reactivity to peanut and black gram. PMID:23671655

  12. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum.

    PubMed

    Ishikawa, Yoshihiro; Holden, Paul; Bächinger, Hans Peter

    2017-10-20

    Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/ SERPINH1 ) and 65-kDa FK506-binding protein (FKBP65/ FKBP10 ), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    PubMed

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  14. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    PubMed

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  15. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.

    PubMed

    Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D

    1990-04-15

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27

  16. Comparison of extracellular protein profiles of seven serotypes of mutans streptococci grown under controlled conditions.

    PubMed

    Hardy, L N; Knox, K W; Brown, R A; Wicken, A J; Fitzgerald, R J

    1986-05-01

    Extracellular proteins produced by the four human commensal species of mutans streptococci were analysed. The organisms used were Streptococcus mutans, serotypes c, e and f, Streptococcus cricetus, serotype a, Streptococcus rattus, serotype b, and Streptococcus sobrinus, serotypes d and g. They were grown in continuous culture at different generation times and pH values in media containing either glucose or fructose to determine the extent of variation in extracellular protein production that could occur for an individual strain. The results for different organisms grown under the same conditions were then compared. The total amount of protein of molecular mass greater than or equal to 60 kDa varied considerably with the growth conditions and with the strain. Generally more protein was present at a higher pH, conditions under which the organisms also form more lipoteichoic acid. With respect to individual protein components SDS-PAGE proved better than isoelectric focusing for detecting phenotypic responses by a particular strain to environmental changes and differences between the different strains. Differences in the molecular masses of protein components were particularly pronounced in the regions designated P1 (185-200 kDa), P2 (130-155 kDa) and P3 (60-95 kDa). Every strain produced at least one component in the P1 region that cross-reacted with antiserum to the purified protein from S. mutans serotype c, a protein which is indistinguishable from antigens B and I/II. Two components in the P2 region were dominant in the case of S. cricetus and S. sobrinus strains and showed glucosyltransferase (GTF) activity. GTF activity was also detected in the P3 region, particularly with S. mutans strains.

  17. Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR.

    PubMed

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira M; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, Jungoo; Güntert, Peter; Aceti, David J; Markley, John L; Kainosho, Masatsune

    2008-12-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniform (13)C/(15)N labeling methods, we used stereo-array isotope labeling (SAIL) technology to prepare an optimally (2)H/(13)C/(15)N-labeled sample. NMR data sets collected using the SAIL protein enabled us to assign (1)H, (13)C and (15)N chemical shifts to 95.5% of all atoms, even at a low concentration (0.2 mm) of protein product. We collected additional NOESY data and determined the three-dimensional structure using the cyana software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent but similar lectin-fold domains, each composed of three beta-sheets.

  18. Sarcoplasmic calcium-binding protein: identification as a new allergen of the black tiger shrimp Penaeus monodon.

    PubMed

    Shiomi, Kazuo; Sato, Yuichiro; Hamamoto, Shohei; Mita, Hajime; Shimakura, Kuniyoshi

    2008-01-01

    Tropomyosin and arginine kinase have been identified as crustacean allergens. During purification of arginine kinase from black tiger shrimp Penaeus monodon, we found a new allergen of 20-kDa. A 20-kDa allergen was purified from the abdominal muscle of black tiger shrimp by salting-out, anion-exchange HPLC and reverse-phase HPLC. Following digestion of the 20-kDa allergen with lysyl endopeptidase, peptide fragments were isolated by reverse-phase HPLC, and 2 of them were sequenced. The 20-kDa allergen, together with tropomyosin and arginine kinase purified from black tiger shrimp, was evaluated for IgE reactivity by ELISA. Five species of crustaceans (kuruma shrimp, American lobster, pink shrimp, king crab and snow crab) were surveyed for the 20-kDa allergen by immunoblotting. The 20-kDa allergen was purified from black tiger shrimp and identified as a sarcoplasmic calcium-binding protein (SCP) based on the determined amino acid sequences of 2 enzymatic fragments. Of 16 sera from crustacean-allergic patients, 8 and 13 reacted to SCP and tropomyosin, respectively; the reactivity to arginine kinase was weakly recognized with 10 sera. In immunoblotting, an IgE-reactive 20-kDa protein was also detected in kuruma shrimp, American lobster and pink shrimp but not in 2 species of crab. Preadsorption of the sera with black tiger shrimp SCP abolished the IgE reactivity of the 20-kDa protein, suggesting the 20-kDa protein to be an SCP. SCP is a new crustacean allergen, and distribution of IgE-reactive SCP is probably limited to shrimp and crayfish. (c) 2008 S. Karger AG, Basel.

  19. Detection of platinum species in plant material.

    PubMed

    Messerschmidt, J; Alt, F; Tölg, G

    1995-05-01

    Model experiments for the detection of platinum species in extracts from native and platinum-treated grass cultivations are described. The procedural steps are cultivation of the grass samples, extraction and concentration of the platinum species by ultrafiltration and freeze-drying, preparative separation of the species by gel chromatography followed by isotachophoresis, and sequential analytical detection of the separated platinum species by adsorptive voltammetry. After isotachophoresis, sharp peaks of platinum species could be detected. In the native grass extract only one platinum species (160-200 kDa) was found. In the platinum-treated grass extracts several platinum species were observed in the molecular mass range from 1 to > 1000 kDa. By an extremely sensitive platinum determination method (adsorptive voltammetry; detection limit, 2 pg Pt abs.) it was possible to detect platinum even in stained protein bands from horizontal gel electrophoresis of platinum containing fractions obtained after isotachophoresis.

  20. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  1. Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium.

    PubMed

    Bargieri, Daniel Y; Leite, Juliana A; Lopes, Stefanie C P; Sbrogio-Almeida, Maria Elisabete; Braga, Catarina J M; Ferreira, Luis C S; Soares, Irene S; Costa, Fabio T M; Rodrigues, Mauricio M

    2010-04-01

    In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coli and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His(6)FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund's adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP1(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.

  2. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family.

    PubMed

    Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J

    2000-08-01

    The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.

  3. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.

    PubMed

    Manolson, M F; Proteau, D; Preston, R A; Stenbit, A; Roberts, B T; Hoyt, M A; Preuss, D; Mulholland, J; Botstein, D; Jones, E W

    1992-07-15

    Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.

  4. Analysis of protein profiles in diabetic rat blood plasma that induced by alloxan

    NASA Astrophysics Data System (ADS)

    Hidayati, Dewi; Abdulgani, Nurlita; Setiyawan, Hengki; Trisnawati, Indah; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis

    2017-06-01

    Proteomics is the study to identify the proteins involved in physiological metabolic pathway. The protein profiles of blood plasma from alloxan-induced diabetic rats has investigated using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Data were analyzed descriptively based on variations of the type and intensity of the protein. There were identified the similarity of protein variant between diabetic and control rats included ankyrin (200kDa), IgG (150kDa), nephrin (136 kDa), IDE (112 kDA), albumin (66 kDa), prealbumin (55 kDA), CICP (43 kDa), ApoA-V (39 kDa), GAPDH (35 kDa), C-RP (27,1 kDa), leptin (16 kDa) and apelin (13 kDa). However, the apelin profile at diabetic rats shows the higher intensity than control.

  5. Localization and dynamic expression of a 27.8 kDa receptor protein for lymphocystis disease virus infection in sea bass ( Lateolabrax japonicus) tissues

    NASA Astrophysics Data System (ADS)

    Wu, Ronghua; Sheng, Xiuzhen; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin

    2017-10-01

    Lymphocystis disease virus (LCDV) infects target cells by attaching to a 27.8 kDa receptor (27.8R) protein in flounder Paralichthys olivaceus, and anti-27.8R monoclonal antibodies (MAbs) have been developed. However, the 27.8R existence in tissues of sea bass ( Lateolabrax japonicus) and its role in LCDV infection have remained unclear. In this study, the results of western blotting demonstrated that the same 27.8R was shared by flounder and sea bass. LCDV-free sea bass individuals were intramuscularly injected with LCDV, and viral copies were detected in tissues from 3 h post infection and showed a time-dependent increase during 9 days infection. Distribution and synthesis of 27.8R in sea bass tissues were investigated by using anti-27.8R MAbs as probes. It was found that 27.8R was distributed in all the tested tissues. The levels of 27.8R protein were highest in gill and skin, then a bit lowly in stomach, head kidney and heart, followed by spleen, intestine, blood cells, gonad and liver, and least in kidney and brain in healthy sea bass. Upon LCDV infection, 27.8R synthesis was up-regulated in each tissue, and higher in the tissues with higher LCDV copies. The 27.8R and LCDV were detected in some peripheral blood leukocytes but not in red blood cells. These results suggested that 27.8R was widely distributed in sea bass tissues, and it served as a receptor and correlated with tissue tropism of LCDV infection. Furthermore, leukocytes had the potential of being a LCDV carrier and were responsible for a systemic infection of LCDV in sea bass.

  6. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.

    PubMed

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).

  7. The serine proteinase inhibitory proteins of the chondrodystrophoid (beagle) and non-chondrodystrophoid (greyhound) canine intervertebral disc.

    PubMed

    Melrose, J; Taylor, T K; Ghosh, P

    1997-06-01

    Trypsin inhibitory proteins of low buoyant density (p < or = 1.35 g/mL) fractions were prepared by CsCl density gradient ultracentrifugation of 4 M guanidinium hydrochloride extracts of lumbar beagle and greyhound annulus fibrosus and nucleus pulposus from animals aged 1 to 6 years. Affinity blotting with biotinylated trypsin was used to identify active trypsin inhibitory protein species; these species were also identified immunologically by Western blotting using antibodies against bovine pancreatic trypsin inhibitor (BPTI), and human inter-alpha-trypsin inhibitor (ITI). None of the trypsin inhibitory species evident in Western blots were reactive with anti-human alpha1-proteinase inhibitor (alpha-1-PI), alpha2-macroglobulin or secretory leucocyte proteinase inhibitor. The greyhound intervertebral disc samples generally had higher levels of active trypsin inhibitor species per unit weight of tissue extracted, and a more extensive range of inhibitor species. Inhibitor species of 30, 32, 34 kDa were identified in both beagle and greyhound intervertebral disc samples; these species were generally most prominent in the annulus fibrosus samples. In contrast, the nucleus pulposus samples contained relatively large trypsin inhibitor species; the anti-BPTI detected an inhibitor species of approximately 85-90 kDa; anti-ITI detected species of 120-250 kDa; biotinylated trypsin detected species of 60-110 kDa. A small molecular mass trypsin inhibitor species of 6 kDa, which was of similar mobility to BPTI, was also detected in annulus fibrosus samples; however, this species did not react with anti-BPTI.

  8. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3.

    PubMed Central

    Osman, T A; Buck, K W

    1997-01-01

    A sucrose density gradient-purified, membrane-bound tobacco mosaic virus (tomato strain L) (TMV-L) RNA polymerase containing endogenous RNA template was efficiently solubilized with sodium taurodeoxycholate. Solubilization resulted in an increase in the synthesis of positive-strand, 6.4-kb genome-length single-stranded RNA (ssRNA) and a decrease in the production of 6.4-kbp double-stranded RNA (dsRNA) to levels close to the limits of detection. The solubilized TMV-L RNA polymerase was purified by chromatography on columns of DEAE-Bio-Gel and High Q. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining showed that purified RNA polymerase preparations consistently contained proteins with molecular masses of 183, 126, 56, 54, and 50 kDa, which were not found in equivalent material from healthy plants. Western blotting showed that the two largest of these proteins are the TMV-L-encoded 183- and 126-kDa replication proteins and that the 56-kDa protein is related to the 54.6-kDa GCD10 protein, the RNA-binding subunit of yeast eIF-3. The 126-, 183-, and 56-kDa proteins were coimmunoaffinity selected by antibodies against the TMV-L 126-kDa protein and by antibodies against the GCD10 protein. Antibody-linked polymerase assays showed that active TMV-L RNA polymerase bound to antibodies against the TMV-L 126-kDa protein and to antibodies against the GCD10 protein. Synthesis of genome-length ssRNA and dsRNA by a template-dependent, membrane-bound RNA polymerase was inhibited by antibodies against the GCD10 protein, and this inhibition was reversed by prior addition of GCD10 protein. PMID:9223501

  9. A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin

    PubMed Central

    Rothnie, Alice; Clarke, Anthony R.; Kuzmic, Petr; Cameron, Angus; Smith, Corinne J.

    2011-01-01

    An essential stage in endocytic coated vesicle recycling is the dissociation of clathrin from the vesicle coat by the molecular chaperone, 70-kDa heat-shock cognate protein (Hsc70), and the J-domain-containing protein, auxilin, in an ATP-dependent process. We present a detailed mechanistic analysis of clathrin disassembly catalyzed by Hsc70 and auxilin, using loss of perpendicular light scattering to monitor the process. We report that a single auxilin per clathrin triskelion is required for maximal rate of disassembly, that ATP is hydrolyzed at the same rate that disassembly occurs, and that three ATP molecules are hydrolyzed per clathrin triskelion released. Stopped-flow measurements revealed a lag phase in which the scattering intensity increased owing to association of Hsc70 with clathrin cages followed by serial rounds of ATP hydrolysis prior to triskelion removal. Global fit of stopped-flow data to several physically plausible mechanisms showed the best fit to a model in which sequential hydrolysis of three separate ATP molecules is required for the eventual release of a triskelion from the clathrin–auxilin cage. PMID:21482805

  10. Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins. PMID:24784323

  11. Monoclonal Antibody Analysis and Insecticidal Spectrum of Three Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus thuringiensis

    PubMed Central

    Höfte, Herman; Van Rie, Jeroen; Jansens, Stefan; Van Houtven, Annemie; Vanderbruggen, Hilde; Vaeck, Mark

    1988-01-01

    We have investigated the protein composition and the insecticidal spectrum of crystals of 29 Bacillus thuringiensis strains active against lepidopteran larvae. All crystals contained proteins of 130 to 140 kilodaltons (kDa) which could be grouped into three types by the molecular weight of the protoxin and the trypsin-activated core fragment. Proteins of the three types showed a characteristic insecticidal spectrum when tested against five lepidopteran species. Type A crystal proteins were protoxins of 130 or 133 kDa, which were processed into 60-kDa toxins by trypsin. Several genes encoding crystal proteins of this type have been cloned and sequenced earlier. They are highly conserved in the N-terminal half of the toxic fragment and were previously classified in three subtypes (the 4.5-, 5.3-, and 6.6-kilobase subtypes) based on the restriction map of their genes. The present study shows that different proteins of these three subtypes were equally toxic against Manduca sexta and Pieris brassicae and had no detectable activity against Spodoptera littoralis. However, the 4.5-, 5.3-, and 6.6-kilobase subtypes differed in their toxicity against Heliothis virescens and Mamestra brassicae. Type B crystal proteins consisted of 140-kDa protoxins with a 55-kDa tryptic core fragment. These were only active against one of the five insect species tested (P. brassicae). The protoxin and the trypsin-activated toxin of type C were 135- and 63-kDa proteins, respectively. Proteins of this type were associated with high toxicity against S. littoralis and M. brassicae. A panel of 35 monoclonal antibodies was used to compare the structural characteristics of crystal proteins of the three different types and subtypes. Each type of protein could be associated with a typical epitope structure, indicating an unambiguous correlation between antigenic structure and insect specificity. Images PMID:16347711

  12. Structure of the Putative 32 kDa Myrosinase Binding Protein from Arabidopsis (At3g16450.1) Determined by SAIL-NMR

    PubMed Central

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira Mei; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, JunGoo; Güntert, Peter; Aceti, David J.; Markley, John L.; Kainosho, Masatsune

    2009-01-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme, myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniformly 13C/15N labeling methods, we used our stereo-array isotope labeling (SAIL) technology to prepare an optimally 2H/13C/15N-labeled sample. NMR data sets collected with the SAIL-protein enabled us to assign 1H, 13C and 15N chemical shifts to 95.5% of all atoms, even at the low concentration (0.2 mM) of the protein product. We collected additional NOESY data and solved the three-dimensional structure with the CYANA software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent, but similar, lectin-fold domains composed of three β-sheets. PMID:19021763

  13. Possibility of the transformation of eEF-2 (100 kDa) to eEF-2 (65 kDa) in the peptide elongation process in vitro.

    PubMed

    Gajko, A; Sredzińska, K; Galasiński, W; Gindzieński, A

    1999-02-16

    Two active eEF-2 polypeptides of approximately 100 and 65 kDa were copurified from rat liver cells and separated. The fate of eEF-2 (100 kDa) during its binding to ribosomes and in the translocation step of the peptide elongation process was investigated. It was shown that eEF-2 (100 kDa) did not change its form during the process of binding to the ribosomes. In the postribosomal supernatant, obtained from the postincubation mixture of the elongation process, only eEF-2 (65 kDa) was found. These results suggest that the form of eEF-2 (100 kDa), when bound to the ribosome during the elongation process, is transformed to eEF-2 (65 kDa). Copyright 1999 Academic Press.

  14. Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP).

    PubMed

    Tani, Tetsuya; Shimada, Hiroaki; Kato, Yoko; Tsunoda, Yukio

    2007-01-01

    Despite the long-held assumption that reprogramming factors are present in mammalian oocytes at the second metaphase stage, the molecular nature of these factors is not known. Here, we demonstrated that oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Injection of TCTP double-stranded RNA into germinal vesicle oocytes decreased the potential of nuclear-transferred (NT) oocytes, but not in vitro fertilized oocytes, to develop into blastocysts. Phosphorylated TCTP is considered to facilitate the first step of somatic cell reprogramming. After transfer of blastocysts that developed from NT oocytes fused with cumulus cells in which phosphorylated TCTP peptide was previously incorporated, the recipient pregnancy rate (47%) increased and the abortion rate (13%) decreased. Moreover, all seven cloned calves survived for at least 1 month after parturition, and had no morphologic abnormalities. The present study demonstrated that pretreatment of donor cells with phosphorylated TCTP peptide has a beneficial effect on the potential of bovine somatic cell nuclei to develop into normal cloned calves. Before widespread application of TCTP for bovine cloning, however, a large-scale embryo transfer study using different donor cell lines of various origins is necessary.

  15. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    PubMed

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  16. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia

    PubMed Central

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252

  17. Detection of an unknown fusion protein in confiscated black market products.

    PubMed

    Walpurgis, Katja; Krug, Oliver; Thomas, Andreas; Laussmann, Tim; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    Even without clinical approval, many performance-enhancing drugs are available on the black market and can therefore be easily obtained by cheating athletes. The misuse of these preparations can be associated with unforeseeable health risks - either due to a poor quality of the drugs or as a result of an insufficient clinical assessment. Moreover, confiscated black market products have frequently been shown to contain ingredients other than those declared on the label as well as additional by-products or compounds with a modified molecular structure. This communication describes the identification of an unknown fusion protein observed in several unlabelled black market products obtained from independent sources. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the confiscated preparations indicated the presence of an 18-kDa fusion protein consisting of the bacterial redox protein thioredoxin-1 (Trx, 12 kDa) and a 6-kDa peptide of unassigned composition. Trx has no relevance as performance enhancing agent but is routinely used as solubility tag for recombinant protein production. Further evaluation of the acquired MS/MS data revealed both an additional His tag and a thrombin cleavage site between the tags and the presumed bioactive peptide. However, thrombin cleavage of the fusion protein and LC-MS/MS analysis of the resulting peptide fragment finally suggested that the unknown protein is only the product of an empty expression vector without the DNA insert of interest. These findings are a further alarming example for the high level of risk that athletes take when misusing drugs obtained from the black market. Copyright © 2014 John Wiley & Sons, Ltd.

  18. S-adenosyl methionine regulates calcium channels and inhibits uterine smooth muscle contraction in rats with infectious premature delivery through the transient receptor protein 3/protein kinase Cβ/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa signaling pathway

    PubMed Central

    Ge, Jing; Han, Tao; Li, Xiaoqiu; Shan, Lili; Zhang, Jinhuan; Hong, Yan; Xia, Yanqiu; Wang, Jun; Hou, Mingxiao

    2018-01-01

    The aim of the present study was to investigate the effects of S-adenosyl methionine (SAMe) on infectious premature inflammatory factors and uterine contraction, and to further explore its mechanism of action via the transient receptor protein 3 (TRPC3)/protein kinase Cβ (PKCβ)/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) signaling pathway, following intervention by a TRPC3 inhibitor. A rat model of premature delivery induced by lipopolysaccharide (LPS) was established. Following treatment with SAMe and inhibiting TRPC3 expression, rat serum and uterus were isolated. Hematoxylin and eosin staining was used to observe the histopathological changes in the uterus. Uterine muscle strips in vitro were selected to measure the changes in muscle tension. ELISA was utilized to measure the changes in serum inflammatory factor and oxidative stress indexes. Immunohistochemistry, western blot assay and reverse transcription-quantitative polymerase chain reaction were applied to detect calcium channel protein expression in the uterus. Western blot analysis was employed to measure the expression of TRPC3/PKCβ/CPI-17 signaling pathway-related proteins. TRPC3 was highly expressed in the uterus of rat models of premature delivery induced by LPS. Following treatment with SAMe, inflammatory cell infiltration markedly reduced in the uterus and the tension of in vitro uterine muscle strips significantly decreased. SAMe treatment suppressed inflammatory reaction and oxidative stress, and diminished L-type and T-type calcium channel protein expression. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression was also reduced. When TRPC3 expression was suppressed, the effects of SAMe against inflammation and oxidative stress were diminished. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression significantly increased. SAMe was able to reduce inflammatory reaction and oxidative stress in the uterus of rat model of infectious premature delivery

  19. Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities

    PubMed Central

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

  20. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  1. Production of pure protein antibodies and development of immunoassays to detect Ara h 3 levels in peanut varieties.

    USDA-ARS?s Scientific Manuscript database

    Peanuts are one of the most allergenic foods, and are widespread in western food products; therefore, there has been intense research into the allergic nature of the proteins involved. Ara h 3 is one of three immunodominant allergenic proteins responsible. It is a 60 kDa protein which forms follow...

  2. Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, C.A.; Hoffman, P.S.

    1990-05-01

    A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled ((35S)cysteine or (35S)methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid permore » mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus.« less

  3. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex.

    PubMed

    Siritapetawee, J; Thammasirirak, S; Samosornsuk, W

    2012-01-01

    Artocarpus heterophyllus (jackfruit) is a latex producing plant. Plant latex is produced from secretory cells and contains many intergradients. It also has been used in folk medicine. This study aimed to purify and characterize the biological activities of a protease from jackfruit latex. A protease was isolated and purified from crude latex of a jackfruit tree by acid precipitation and ion exchange chromatography. The proteolytic activities of protein were tested using gelatin- and casein-zymography. The molecular weight and isoelectric point (pl) of protein were analysed by SDS/12.5% PAGE and 2D-PAGE, respectively. Antimicrobial activity of protein was analysed by broth microdilution method. In addition, the antibacterial activity of protein against Pseudomonas aeruginosa ATCC 27853 was observed and measured using atomic force microscopy (AFM) technique. The purified protein contained protease activity by digesting gelatin- and casein-substrates. The protease was designated as antimicrobial protease-48 kDa or AMP48 due to its molecular mass on SDS-PAGE was approximately 48 kDa. The isoelectric point (pl) of AMP48 was approximately 4.2. In addition, AMP48 contained antimicrobial activities by it could inhibit the growths of Pseudomonas aeruginosa ATCC 27853 and clinical isolated Candida albicans at minimum inhibitory concentration (MIC) 2.2 mg/ml and Minimum microbicidal concentration (MMC) 8.8 mg/ml. AFM image also supported the antimicrobial activities of AMP48 by the treated bacterial morphology and size were altered from normal.

  4. A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system.

    PubMed

    Geadkaew, Amornrat; Kosa, Nanthawat; Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi

    2014-09-01

    Cystatins are functional as intra- and extracellular inhibitors of cysteine proteases and are expressed as single or multi-domain proteins. We have previously described two single domain type 1 cystatins in the trematode Fasciola gigantica that are released into the parasite's intestinal tract and exhibit inhibitory activity against endogenous and host cathepsin L and B proteases. In contrast, the here presented 170kDa multi-domain cystatin (FgMDC) comprises signal peptide and 12 tandem repeated cystatin-like domains with similarity to type 2 single domain cystatins. The domains show high sequence divergence with identity values often <20% and at only 26.8% between the highest matching domains 6 and 10. Several domains contain degenerated QVVAG core motifs and/or lack other important residues of active type 2 cystatins. Domain-specific antisera detected multiple forms of FgMDC ranging from <10 to >120kDa molecular mass in immunoblots of parasite crude extracts and ES product with different banding patterns for each antiserum demonstrating complex processing of the proprotein. The four domains with the highest conserved QVVAG motifs were expressed in Escherichia coli and the refolded recombinant proteins blocked cysteine protease activity in the parasite's ES product. Strikingly, immunohistochemical analysis using seven domain-specific antisera localized FgMDC in testis lobes and sperm. It is speculated that the processed cystatin-like domains have function analogous to the mammalian group of male reproductive tissue-specific type 2 cystatins and are functional in spermiogenesis and fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coseno,M.; Martin, G.; Berger, C.

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less

  6. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  7. Detecting protein-protein interactions using Renilla luciferase fusion proteins.

    PubMed

    Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W

    2002-11-01

    We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.

  8. Identification and Characterization of a 25 kDa Protein That Is Indispensable for the Efficient Saccharification of Eisenia bicyclis in the Digestive Fluid of Aplysia kurodai

    PubMed Central

    Tsuji, Akihiko; Kuwamura, Shuji; Shirai, Akihiro; Yuasa, Keizo

    2017-01-01

    The digestive fluid of the sea hare Aplysia kurodai can liberate approximately 2.5 mg of glucose from 10 mg of dried Eisenia bicyclis powder. Although laminaran, a major storage polysaccharide in E. bicyclis, is easily digested to glucose by the synergistic action of the 110 and 210 kDa A. kurodai β-glucosidases (BGLs), glucose is not liberated from E. bicyclis by direct incubation with these BGLs. To clarify this discrepancy, we searched for an Eisenia hydrolysis enhancing protein (EHEP) in the digestive fluid of A. kurodai. A novel 25 kDa protein that enhances E. bicyclis saccharification by β-glucosidases was purified to a homogeneous state from the digestive fluid of A. kurodai, and its cDNA was cloned from total cDNAs reverse-transcribed from hepatopancreas total RNA. The E. bicyclis extract strongly inhibited BGLs, suggesting some compound within this brown alga functioned as a feeding deterrent. However, when E. bicyclis was incubated with BGLs in the presence of EHEP, glucose production was markedly increased. As E. bicyclis is rich in phlorotannin, which are only found in brown algae, our study suggested that these compounds are the main BGL inhibitors in E. bicyclis extract. EHEP protects BGLs from phlorotannin inhibition by binding to phlorotannins and forming an insoluble complex with phloroglucinol and phlorotannins. These findings indicated that EHEP plays a key role in the saccharification of brown seaweeds containing phlorotannins in the digestive fluid of A. kurodai. This is the first report of EHEP as a phlorotannin-binding protein that protects BGLs from inhibition. PMID:28129373

  9. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  10. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofbauer, Anna; Peters, Jenny; Arcalis, Elsa

    2014-12-11

    Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PBmore » formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.« less

  11. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence.

    PubMed

    Sengupta, Isha; Das, Dipanwita; Singh, Shivaram Prasad; Chakravarty, Runu; Das, Chandrima

    2017-12-15

    Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A metal-linked gapped zipper model is proposed for the 90 kDa heat shock protein-estrogen receptor interface.

    PubMed

    Schwartz, J A; Mizukami, H

    1991-06-01

    A novel arrangement is proposed for the association of the 90 kDa heat shock protein (hsp 90) dimer and the human estrogen receptor (hER) monomer. Secondary structure analyses of the hsp 90 molecule reveal the presence of a cysteine-containing, leucine-rich, heptad repeat, which we refer to as region C. Similar analyses on the hER, at its hormone binding domain (HBD), have indicated the presence of a central subdomain bordered by 2 alpha-helical flanking segments which also display the heptad substructure. Due to its predicted potential for conformational change (1) we refer to this central subdomain as the Helix Conversion Unit or HCU. It contains an HX5C peptide and shares significant homology with the metal-binding domain of a gag-encoded HIV-LAV protein (2). We predict that, by virtue of its presence in duplicate, region C may be capable of simultaneous leucine zipper-like pairing with the hER at its flanking helices, as well as the formation of a shared CCHC-box-type metal binding link with the same hER at the putative HCU which lies in between.

  13. Major immunogenic proteins of phocid herpes-viruses and their relationships to proteins of canine and feline herpesviruses.

    PubMed

    Harder, T C; Harder, M; de Swart, R L; Osterhaus, A D; Liess, B

    1998-04-01

    The immunogenic proteins of cells infected with the alpha- or the gamma-herpesvirus of seals, phocid herpesvirus-1 and -2 (PhHV-1, -2), were examined in radioimmunoprecipitation assays as a further step towards the development of a PhHV-1 vaccine. With sera obtained from convalescent seals of different species or murine monoclonal antibodies (Mabs), at least seven virus-induced glycoproteins were detected in lysates of PhHV-1-infected CrFK cells. A presumably disulphide-linked complex composed of glycoproteins of 59, 67 and 113/120 kDa, expressed on the surface of infected cells, was characterized as a major immunogenic infected cell protein of PhHV-1. This glycoprotein complex has previously been identified as the proteolytically cleavable glycoprotein B homologue of PhHV-1 (14). At least three distinct neutralization-relevant epitopes were operationally mapped, by using Mabs, on the glycoprotein B of PhHV-1. Among the infected cell proteins of the antigenically closely related feline and canine herpesvirus, the glycoprotein B equivalent proved to be the most highly conserved glycoprotein. Sera obtained from different seal species from Arctic, Antarctic, and European habitats did not precipitate uniform patterns of infected cell proteins from PhHV-1-infected cell lysates although similar titres of neutralizing antibodies were displayed. Thus, antigenic differences among the alphaherpesvirus species prevalent in the different pinniped populations cannot be excluded. PhHV-2 displayed a different pattern of infected cell proteins and only limited cross-reactivity to PhHV-1 at the protein level was detected, which is in line with its previous classification as a distinct species, based on nucleotide sequence analysis, of the gammaherpesvirus linenge. A Mab raised against PhHV-2 and specific for a major glycoprotein of 117 kDa, cross reacted with the glycoprotein B of PhHV-1. The 117-kDa glycoprotein could represent the uncleaved PhHV-2 glycoprotein B homologue.

  14. Completely monodisperse, highly repetitive proteins for bioconjugate capillary electrophoresis: Development and characterization

    PubMed Central

    Lin, Jennifer S.; Albrecht, Jennifer Coyne; Meagher, Robert J.; Wang, Xiaoxiao; Barron, Annelise E.

    2011-01-01

    Protein-based polymers are increasingly being used in biomaterial applications due to their ease of customization and potential monodispersity. These advantages make protein polymers excellent candidates for bioanalytical applications. Here we describe improved methods for producing drag-tags for Free-Solution Conjugate Electrophoresis (FSCE). FSCE utilizes a pure, monodisperse recombinant protein, tethered end-on to a ssDNA molecule, to enable DNA size separation in aqueous buffer. FSCE also provides a highly sensitive method to evaluate the polydispersity of a protein drag-tag and thus its suitability for bioanalytical uses. This method is able to detect slight differences in drag-tag charge or mass. We have devised an improved cloning, expression, and purification strategy that enables us to generate, for the first time, a truly monodisperse 20 kDa protein polymer and a nearly monodisperse 38 kDa protein. These newly produced proteins can be used as drag-tags to enable longer read DNA sequencing by free-solution microchannel electrophoresis. PMID:21553840

  15. Structural protein 4.1 is located in mammalian centrosomes

    PubMed Central

    Krauss, Sharon Wald; Chasis, Joel Anne; Rogers, Catherine; Mohandas, Narla; Krockmalnic, Gabriela; Penman, Sheldon

    1997-01-01

    Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are rearranged during the cell cycle. Here we report that protein 4.1 epitopes are present in centrosomes of human and murine cells and are detected by using affinity-purified antibodies specific for 80-kDa red cell 4.1 and for 4.1 peptides. Immunofluorescence, by both conventional and confocal microscopy, showed that protein 4.1 epitopes localized in the pericentriolar region. Protein 4.1 epitopes remained in centrosomes after extraction of cells with detergent, salt, and DNase. Higher resolution electron microscopy of detergent-extracted cell whole mounts showed centrosomal protein 4.1 epitopes distributed along centriolar cylinders and on pericentriolar fibers, at least some of which constitute the filamentous network surrounding each centriole. Double-label electron microscopy showed that protein 4.1 epitopes were predominately localized in regions also occupied by epitopes for centrosome-specific autoimmune serum 5051 but were not found on microtubules. Our results suggest that protein 4.1 is an integral component of centrosome structure, in which it may play an important role in centrosome function during cell division and organization of cellular architecture. PMID:9207085

  16. Crystal structure of the 25 kDa subunit of human cleavage factor Im

    PubMed Central

    Coseno, Molly; Martin, Georges; Berger, Christopher; Gilmartin, Gregory; Keller, Walter; Doublié, Sylvie

    2008-01-01

    Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing. PMID:18445629

  17. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears)

    PubMed Central

    Obinata, Takashi; Ono, Kanako

    2011-01-01

    Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca2+-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction. PMID:21866271

  18. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion.

    PubMed

    Phongthai, Suphat; D'Amico, Stefano; Schoenlechner, Regine; Homthawornchoo, Wantida; Rawdkuen, Saroat

    2018-02-01

    Rice bran was used as a starting material to prepare protein concentrate through enzyme-assisted extraction. The hydrolysis of protein concentrate under in vitro gastrointestinal digestion (pepsin-trypsin system) greatly improved the antioxidant properties. Rice bran protein hydrolysate was further fractionated by membrane ultrafiltration (UF, F1: molecular weight (MW) <3kDa, F2: MW 3-5kDa, and F3: MW 5-10kDa). Peptides with smaller MW possessed higher antioxidant activities (P<0.05). UF showed a great efficacy to selectively separate the metal-chelating peptides. Tyrosine and phenylalanine had positive correlations with their DPPH & ABTS radicals scavenging activities and ferric reducing antioxidant power (r>0.831). A major peptide fragment was detected at m/z 1088 by a MALDI-TOF mass spectrometry. There is high potential that antioxidative peptides from rice bran might also be produced in the gastrointestinal tract of the human body. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Effects of Threonine Phosphorylation on the Stability and Dynamics of the Central Molecular Switch Region of 18.5-kDa Myelin Basic Protein

    PubMed Central

    De Avila, Miguel; Polverini, Eugenia; Harauz, George

    2013-01-01

    The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence –T92-P93-R94-T95-P96-P97-P98-S99–) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72–S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global

  20. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    PubMed

    Vassall, Kenrick A; Bessonov, Kyrylo; De Avila, Miguel; Polverini, Eugenia; Harauz, George

    2013-01-01

    The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure

  1. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A.

    PubMed

    Tommasino, M; Adamczewski, J P; Carlotti, F; Barth, C F; Manetti, R; Contorni, M; Cavalieri, F; Hunt, T; Crawford, L

    1993-01-01

    E7 is the major transforming protein of human papillomavirus type 16 (HPV16). It has been found to associate with the retinoblastoma protein Rb1. We investigated whether HPV16 E7 protein was associated with other cellular proteins, in particular with those involved in cell cycle control. Immunoprecipitates from CaSki cell extracts with an anti E7 monoclonal antibody contained a histone H1 kinase. Recombinant E7, synthesized in yeast, when mixed with protein extracts from epithelial cells bound histone H1 kinase activity in vitro. The in vivo and the in vitro-formed E7-kinase complex had the same periodicity of activity during the cell cycle, being most active in S and G2/M. Immunoblotting of E7 immunoprecipitates with an antibody raised against the p33CDK2, revealed a 33 kDa protein band not detected by an anti-p34cdc2 antibody, suggesting that the E7-associated kinase activity is due to the p33CDK2. The interaction appears to be via cyclin A, since probing of similar immunoblots showed a 50 kDa band corresponding to cyclin A. The association of E7 with cyclin A appeared to be direct, not involving Rb 1 or other proteins.

  2. High Speed Intact Protein Characterization Using 4X Frequency Multiplication, Ion Trap Harmonization, and 21 Tesla FTICR-MS.

    PubMed

    Shaw, Jared B; Gorshkov, Mikhail V; Wu, Qinghao; Paša-Tolić, Ljiljana

    2018-05-01

    Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.

  3. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes.

    PubMed

    Smith, Graham S T; De Avila, Miguel; Paez, Pablo M; Spreuer, Vilma; Wills, Melanie K B; Jones, Nina; Boggs, Joan M; Harauz, George

    2012-01-01

    The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92-99 (murine sequence -T(92)PRTPPPS(99)-) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP's SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca(2+) influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein-protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP's SH3 ligand domain. These results suggest that MBP's SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that phosphorylation

  4. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  5. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    PubMed

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  6. The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family

    NASA Technical Reports Server (NTRS)

    Munson, D.; Obar, R.; Tzertzinis, G.; Margulis, L.

    1993-01-01

    A 65-kDa protein (called S1) from Spirochaeta bajacaliforniensis was identified as 'tubulin-like' because it cross-reacted with at least four different antisera raised against tubulin and was isolated, with a co-polymerizing 45-kDa protein, by warm-cold cycling procedures used to purify tubulin from mammalian brain. Furthermore, at least three genera of non-cultivable symbiotic spirochetes (Pillotina, Diplocalyx, and Hollandina) that contain conspicuous 24-nm cytoplasmic tubules displayed a strong fluorescence in situ when treated with polyclonal antisera raised against tubulin. Here we summarize results that lead to the conclusion that this 65-kDa protein has no homology to tubulin. S1 is an hsp65 stress protein homologue. Hsp65 is a highly immunogenic family of hsp60 proteins which includes the 65-kDa antigens of Mycobacterium tuberculosis (an active component of Freund's complete adjuvant), Borrelia, Treponema, Chlamydia, Legionella, and Salmonella. The hsp60s, also known as chaperonins, include E. coli GroEL, mitochondrial and chloroplast chaperonins, the pea aphid 'symbionin' and many other proteins involved in protein folding and the stress response.

  7. A DNA fragment of Leptospira interrogans encodes a protein which shares epitopes with equine cornea.

    PubMed

    Lucchesi, P M; Parma, A E

    1999-11-30

    Horses infected with Leptospira interrogans present several clinical disorders, one of them being recurrent uveitis. An antigenic relationship between this bacterium and equine cornea has been described in previous studies. With the aim to make progress on defining the molecular basis and pathogenesis of equine recurrent uveitis, here we describe the cloning of one DNA fragment from a Leptospira interrogans serovar pomona genomic lambda gt11 library. Although there are references of transcription of leptospiral genes in E. coli from their own leptospiral promoters, in this recombinant construction the leptospiral DNA was located under the control of lacZ promoter since no expression could be detected in the absence of IPTG. This clone, isolated by expression screening with polyclonal serum raised against equine corneal proteins, encodes a 90 kDa protein of L. interrogans which crossreacts with equine cornea as proved Western-blotting. Antibodies directed against this leptospiral protein strongly recognised a 66 kDa equine corneal protein, one of those recognised by an anti-equine cornea serum. Our findings suggest that an immune response to 90 kDa protein participates in pathogenesis of equine uveitis.

  8. Identification of a major yolk protein as an allergen in sea urchin roe.

    PubMed

    Yamasaki, Ayako; Higaki, Hiromi; Nakashima, Keiko; Yamamoto, Osamu; Hein, Kyaw Zaw; Takahashi, Hitoshi; Chinuki, Yuko; Morita, Eishin

    2010-05-01

    Anaphylaxis after eating sea urchin roe has been reported. However, its major allergens have not yet been identified. The aim of this study was to identify the major allergens of sea urchin roe. Proteins of sea urchin roe were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis (2-DE). An immunoglobulin (Ig)E-binding protein was detected by immunoblotting using the patient's serum. An allergen isolated from 2DE-gel was identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Immunoblot analysis of sea urchin extracts showed that a 160-kDa protein at pI 6-7 was recognized by the patient's IgE. Peptide mass fingerprint analysis revealed that the protein was the major yolk protein (152 kDa, pI 6.9) of sea urchins. The results show that a major allergen of sea urchin roe is the major yolk protein.

  9. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR.

    PubMed

    Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming

    2017-09-16

    Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.

  10. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis.

    PubMed Central

    Goldbaum, F A; Leoni, J; Wallach, J C; Fossati, C A

    1993-01-01

    Some anticytoplasmic protein monoclonal antibodies (MAbs) from mice immunized by infection with Brucella ovis cells have been obtained. One of these MAbs, BI24, was used to purify by immunoaffinity a protein with a pI of 5.6 and a molecular mass of 18 kDa. This protein was present in all of the rough and smooth Brucella species studied, but it could not be detected in Yersinia enterocolitica 09. Three internal peptides of this protein were partially sequenced; no homology with other bacterial proteins was found. The immunogenicity of the 18-kDa protein was studied with both human and bovine sera by a capture enzyme-linked immunosorbent assay system with MAb BI24. Images PMID:8370742

  11. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis.

    PubMed

    Goldbaum, F A; Leoni, J; Wallach, J C; Fossati, C A

    1993-08-01

    Some anticytoplasmic protein monoclonal antibodies (MAbs) from mice immunized by infection with Brucella ovis cells have been obtained. One of these MAbs, BI24, was used to purify by immunoaffinity a protein with a pI of 5.6 and a molecular mass of 18 kDa. This protein was present in all of the rough and smooth Brucella species studied, but it could not be detected in Yersinia enterocolitica 09. Three internal peptides of this protein were partially sequenced; no homology with other bacterial proteins was found. The immunogenicity of the 18-kDa protein was studied with both human and bovine sera by a capture enzyme-linked immunosorbent assay system with MAb BI24.

  12. Protein denaturation improves enzymatic digestion efficiency for direct tissue analysis using mass spectrometry

    NASA Astrophysics Data System (ADS)

    Setou, M.; Hayasaka, T.; Shimma, S.; Sugiura, Y.; Matsumoto, M.

    2008-12-01

    Molecular identification using high-sensitivity tandem mass spectrometry is essential for protein analysis on the tissue surface. Here we report an improved digestion protocol for protein identification directly on the tissue surface using mass spectrometry. By denaturation process and the use of detergent-supplemented trypsin solution, we could successfully detect and identify many molecules such as tubulin, neurofilament, and synaptosomal-associated 25 kDa protein directly from a mouse cerebellum section.

  13. Evaluation of a newly designed sandwich enzyme linked immunosorbent assay for the detection of hydatid antigen in serum, urine and cyst fluid for diagnosis of cystic echinococcosis.

    PubMed

    Chaya, Dr; Parija, Subhash Chandra

    2013-07-01

    Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE.

  14. Evaluation of a newly designed sandwich enzyme linked immunosorbent assay for the detection of hydatid antigen in serum, urine and cyst fluid for diagnosis of cystic echinococcosis

    PubMed Central

    Chaya, DR; Parija, Subhash Chandra

    2013-01-01

    Introduction: Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. Materials and Methods: A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. Results: The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. Conclusions: ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE. PMID:24470996

  15. Characterization of yam bean (Pachyrhizus erosus) proteins.

    PubMed

    Morales-Arellano, G Y; Chagolla-López, A; Paredes-López, O; Barba de la Rosa, A P

    2001-03-01

    Seed proteins from Mexican yam bean seeds (Pachyrhizus erosus L.) were sequentially extracted according to the Osborne classification. Albumins were the major fraction (52.1-31.0%), followed by globulins (30.7-27.5%). The minor protein fraction was prolamins (0.8%). Defatting with chloroform/methanol remarkably affected the distribution of protein solubility classes; albumins were the most affected fraction (4.3-17.5%). Electrophoretic patterns of albumins showed bands at 55, 40, 35, and 31 kDa. After reduction of the globulin fraction exhibited two triplets, one from 35 to 31 kDa and the second from 19 to 21 kDa, these could be compared to the acid and basic polypeptides of 11S-like proteins. Prolamins showed one band at 31 kDa, and glutelins after reduction showed three main bands at 52, 27, and 14 kDa. Trypsin inhibitors were assayed in saline extracts; the values found (1232-2608 IU/g of meal) were lower than those of other legumes. In general, yam bean seed proteins showed an excellent balance of all essential amino acids; albumins contain the highest amount of essential amino acids.

  16. Measles virus attachment proteins with impaired ability to bind CD46 interact more efficiently with the homologous fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corey, Elizabeth A.; Iorio, Ronald M.; Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655

    2009-01-05

    Fusion promotion by measles virus (MV) depends on an interaction between the hemagglutinin (H) and fusion (F) glycoproteins. Amino acid substitutions in MV H that drastically reduce hemagglutinating activity result in an increase in the amount of H (primarily the 74 kDa isoform) detectable in a complex with F at the cell surface. This is in direct contrast to the loss of the ability to detect a complex between the fusion protein of Newcastle disease virus and most attachment proteins that lack receptor binding activity. These opposing results provide support for the existence of different mechanisms for the regulation ofmore » fusion by these two paramyxoviruses.« less

  17. Can urinary excretion rate of malondialdehyde, uric acid and protein predict the severity and impending death in perinatal asphyxia?

    PubMed

    Banupriya, C; Ratnakar; Doureradjou, P; Mondal, N; Vishnu, Bhat; Koner, B C

    2008-08-01

    Perinatal asphyxia (PA) associated with multi-organ damage is a leading cause of neonatal mortality and morbidity. We evaluated if urinary malondialdehyde:creatinine (UMDA:Cr), uric acid:creatinine (UUA:Cr) and protein:creatinine (UP:Cr) vary with the severity of PA and if these parameters can predict the impending death in PA. Study included 20 asphyxiated and 20 healthy newborn males. Hypoxic-ischemic encephalopathy (HIE) staging, APGAR (activity, pulse, grimace, appearance and respiration) score and urinary protein, uric acid, creatinine and MDA were evaluated. UMDA:Cr, UUA:Cr and UP:Cr were significantly higher and correlated with APGAR and HIE in PA. By regression analysis also, urinary parameters were found to have significant association with HIE stage and APGAR in PA. Receiver operating characteristics (ROC) curve of UP:Cr, UUA:Cr and UMDA:Cr showed area under curve of 0.896 (p=0.003), 0.859 (p=0.008) and 0.849 (p=0.010) with cut-off value of 9.04 mg, 2.34 mg and 3.49 microg/mg of creatinine respectively that can optimally predict the impending death in PA. SDS-PAGE of unconcentrated urine detected both high (73 kDa and 68 kDa) and low molecular weight proteins (52 kDa, 47 kDa, 25 kDa and 20 kDa) in PA but not in controls. Urinary excretion rate of uric acid, MDA and proteins is higher and has potential to act as biochemical markers for severity evaluation and death prediction in PA.

  18. Protein modification in the post-mating spermatophore of the signal crayfish Pacifastacus leniusculus: insight into the tyrosine phosphorylation in a non-motile spermatozoon.

    PubMed

    Niksirat, Hamid; Vancová, Marie; Andersson, Liselotte; James, Peter; Kouba, Antonín; Kozák, Pavel

    2016-09-01

    After mating, spermatophores of signal crayfish are stored on the body of the female for a period before fertilization. This study compared the post-mating protein profile and pattern of protein tyrosine phosphorylation of the signal crayfish spermatophore to that of the freshly ejaculated spermatophore and found substantial differences. Two major bands of tyrosine-phosphorylated proteins of molecular weights 10 and 50kDa were observed in the freshly ejaculated spermatophore of the signal crayfish. While the tyrosine-phosphorylated protein band with molecular weight 10kDa was formed by protein(s) of similar pH, the band with molecular weight of 50kDa consisted of proteins of varying pH. In the post-mating spermatophore, the band with molecular weight of 50kDa was not detected, and an increase in the level of protein tyrosine phosphorylation was observed in the 10kDa band. The microtubular radial arms of the spermatozoon showed a positive reaction to an anti-tyrosine antibody conjugated with gold particles in both the freshly ejaculated and post-mating spermatophores. In conclusion, the male gamete of the signal crayfish undergoes molecular modification during post-mating storage on the body of the female including changes in the level of protein expression and protein tyrosine phosphorylation. Structural similarity of the radial arms in the crayfish immotile spermatozoon with flagellum, which is the main site of protein tyrosine phosphorylation in the mammalian motile spermatozoa, raises questions regarding evolution and function of such organelles across the animal kingdom that must be addressed in the future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Intracellular and extracellular expression of the major inducible 70kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord.

    PubMed

    Awad, Hamdy; Suntres, Zacharias; Heijmans, John; Smeak, Daniel; Bergdall-Costell, Valerie; Christofi, Fievos L; Magro, Cynthia; Oglesbee, Michael

    2008-08-01

    Inflammatory responses exacerbate ischemia-reperfusion (IR) injury of spinal cord, although understanding of mediators is incomplete. The major inducible 70kDa heat shock protein (hsp70) is induced by ischemia and extracellular hsp70 (e-hsp70) can modulate inflammatory responses, but there is no published information regarding e-hsp70 levels in the cerebrospinal fluid (CSF) or serum as part of any neurological disease state save trauma. The present work addresses this deficiency by examining e-hsp70 in serum and CSF of dogs in an experimental model of spinal cord IR injury. IR injury of spinal cord caused hind limb paraplegia within 2-3 h that was correlated to lumbosacral poliomalacia with T cell infiltrates at 3 d post-ischemia. In this context, we showed a 5.2-fold elevation of e-hsp70 in CSF that was induced by ischemia and was sustained for the following 3 d observation interval. Plasma e-hsp70 levels were unaffected by IR injury, indicating e-hsp70 release from within the central nervous system. A putative source of this e-hsp70 was ependymal cells in the ischemic penumbra, based upon elevated i-hsp70 levels detected within these cells. Results warrant further investigation of e-hsp70's potential to modulate spinal cord IR injury.

  20. Sequential recognition of the pre-mRNA branch point by U2AF65 and a novel spliceosome-associated 28-kDa protein.

    PubMed Central

    Gaur, R K; Valcárcel, J; Green, M R

    1995-01-01

    Splicing of pre-mRNAs occurs via a lariat intermediate in which an intronic adenosine, embedded within a branch point sequence, forms a 2',5'-phosphodiester bond (RNA branch) with the 5' end of the intron. How the branch point is recognized and activated remains largely unknown. Using site-specific photochemical cross-linking, we have identified two proteins that specifically interact with the branch point during the splicing reaction. U2AF65, an essential splicing factor that binds to the adjacent polypyrimidine tract, crosslinks to the branch point at the earliest stage of spliceosome formation in an ATP-independent manner. A novel 28-kDa protein, which is a constituent of the mature spliceosome, contacts the branch point after the first catalytic step. Our results indicate that the branch point is sequentially recognized by distinct splicing factors in the course of the splicing reaction. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:7493318

  1. Protein detection by Simple Western™ analysis.

    PubMed

    Harris, Valerie M

    2015-01-01

    Protein Simple© has taken a well-known protein detection method, the western blot, and revolutionized it. The Simple Western™ system uses capillary electrophoresis to identify and quantitate a protein of interest. Protein Simple© provides multiple detection apparatuses (Wes, Sally Sue, or Peggy Sue) that are suggested to save scientists valuable time by allowing the researcher to prepare the protein sample, load it along with necessary antibodies and substrates, and walk away. Within 3-5 h the protein will be separated by size, or charge, immuno-detection of target protein will be accurately quantitated, and results will be immediately made available. Using the Peggy Sue instrument, one study recently examined changes in MAPK signaling proteins in the sex-determining stage of gonadal development. Here the methodology is described.

  2. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment.

    PubMed

    Laurie, Diane E; Splan, Rebecca K; Green, Kari; Still, Katherine M; McKown, Robert L; Laurie, Gordon W

    2012-09-12

    Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.

  3. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  4. Characterization of auxin-binding proteins from zucchini plasma membrane.

    PubMed

    Hicks, G R; Rice, M S; Lomax, T L

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  5. Proline Substitutions and Threonine Pseudophosphorylation of the SH3 Ligand of 18.5-kDa Myelin Basic Protein Decrease Its Affinity for the Fyn-SH3 Domain and Alter Process Development and Protein Localization in Oligodendrocytes

    PubMed Central

    Smith, Graham S.T.; De Avila, Miguel; Paez, Pablo M.; Spreuer, Vilma; Wills, Melanie K.B.; Jones, Nina; Boggs, Joan M.; Harauz, George

    2012-01-01

    The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92–99 (murine sequence –T92PRTPPPS99–) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP’s SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca2+ influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein–protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP’s SH3 ligand domain. These results suggest that MBP’s SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that

  6. Monoclonal Antibodies as Probes for the Detection of Porcine Blood-Derived Food Ingredients.

    PubMed

    Ofori, Jack A; Hsieh, Yun-Hwa P

    2016-05-11

    The lack of effective methods to monitor the use of porcine blood-derived food ingredients (PBFIs) is a concern for the billions of individuals who avoid consuming blood. We therefore sought to develop a panel of porcine blood-specific monoclonal antibodies (mAbs) for use as probes in immunoassays for the detection of PBFIs. Ten selected mAbs were identified that react with either a 60 or 90 kDa protein in the plasma fraction or a 12 kDa protein in the red blood cell fraction of porcine blood. Western blot analysis of commercially produced PBFIs revealed that these antigenic proteins are not affected by various manufacturing processes. The utility of these mAbs was demonstrated in a prototype sandwich ELISA developed for this study using mAbs 19C5-E10 and 16F9-C11. The new assay is porcine blood-specific and capable of detecting ≤0.03% (v/v) of PBFIs in cooked (100 °C for 15 min) ground meats or fish.

  7. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  8. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    PubMed

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  9. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    PubMed Central

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes. Images PMID:2682656

  10. The 53-kDa proteolytic product of precursor starch-hydrolyzing enzyme of Aspergillus niger has Taka-amylase-like activity.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2007-04-01

    The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions.

  11. Protein quantitation using Ru-NHS ester tagging and isotope dilution high-pressure liquid chromatography-inductively coupled plasma mass spectrometry determination.

    PubMed

    Liu, Rui; Lv, Yi; Hou, Xiandeng; Yang, Lu; Mester, Zoltan

    2012-03-20

    An accurate, simple, and sensitive method for the direct determination of proteins by nonspecies specific isotope dilution and external calibration high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) is described. The labeling of myoglobin (17 kDa), transferrin (77 kDa), and thyroglobulin (670 kDa) proteins was accomplished in a single-step reaction with a commercially available bis(2,2'-bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-bis(hexafluorophosphate) (Ru-NHS ester). Using excess amounts of Ru-NHS ester compared to the protein concentration at optimized labeling conditions, constant ratios for Ru to proteins were obtained. Bioconjugate solutions containing both labeled and unlabeled proteins as well as excess Ru-NHS ester reagent were injected onto a size exclusion HPLC column for separation and ICPMS detection without any further treatment. A (99)Ru enriched spike was used for nonspecies specific ID calibration. The accuracy of the method was confirmed at various concentration levels. An average recovery of 100% ± 3% (1 standard deviation (SD), n = 9) was obtained with a typical precision of better than 5% RSD at 100 μg mL(-1) for nonspecies specific ID. Detection limits (3SD) of 1.6, 3.2, and 7.0 fmol estimated from three procedure blanks were obtained for myoglobin, transferrin, and thyroglobulin, respectively. These detection limits are suitable for the direct determination of intact proteins at trace levels. For simplicity, external calibration was also tested. Good linear correlation coefficients, 0.9901, 0.9921, and 0.9980 for myoglobin, transferrin, and thyroglobulin, respectively, were obtained. The measured concentrations of proteins in a solution were in good agreement with their volumetrically prepared values. To the best of our knowledge, this is the first application of nonspecies specific ID for the accurate and direct determination of proteins using a Ru-NHS ester

  12. Purification of a 6.5 kDa protease inhibitor from Amazon Inga umbratica seeds effective against serine proteases of the boll weevil Anthonomus grandis.

    PubMed

    Calderon, L A; Teles, R C L; Leite, J R S A; Franco, O L; Grossi-de-Sá, M F; Medrano, F J; Bloch, C; Freitas, S M

    2005-08-01

    A 6.5 kDa serine protease inhibitor was purified by anion-exchange chromatography from the crude extract of the Inga umbratica seeds, containing inhibitor isoforms ranging from 6.3 to 6.7 kDa and protease inhibitors of approximately 19 kDa. The purified protein was characterized as a potent inhibitor against trypsin and chymotrypsin and it was named I. umbratica trypsin and chymotrypsin inhibitor (IUTCI). MALDI-TOF spectra of the IUTCI, in the presence of DTT, showed six disulfide bonds content, suggesting that this inhibitor belongs to Bowman-Birk family. The circular dichroism spectroscopy indicates that IUTCI is predominantly formed by unordered and beta-sheet secondary structure. It was also characterized, by fluorescence spectroscopy, as a stable protein at range of pH from 5.0 to 7.0. Moreover, this inhibitor at concentration of 75 microM presented a remarkable inhibitory activity (60%) against digestive serine proteases from boll weevil Anthonomus grandis, an important economical cotton pest.

  13. The 70 kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus

    PubMed Central

    Koštál, Vladimír; Tollarová-Borovanská, Michaela

    2009-01-01

    Background The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. Principal Findings The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. Conclusion Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus. PMID:19229329

  14. Two forms of Vibrio cholerae O1 El Tor hemolysin derived from identical precursor protein.

    PubMed

    Ikigai, H; Ono, T; Nakae, T; Otsuru, H; Shimamura, T

    1999-01-08

    Vibrio cholerae O1 grown in heart infusion broth produces two forms of El Tor hemolysin (ETH) monomers of 65 and 50 kDa. These monomers form several different sizes of mixed oligomers ranging from 180 to 280 kDa in the liposomal membranes. We found that the N-terminal amino acid sequences, NH2-Trp-Pro-Ala-Pro-Ala-Asn-Ser-Glu, of both the 65- and 50-kDa toxins were identical. We assumed, therefore, that the 65- and 50-kDa toxins were derivatives of the identical precursor protein and the 50-kDa protein was a truncated derivative of 65-kDa ETH. To substantiate this assumption, we treated the 260-kDa oligomer with trypsin and obtained a 190-kDa oligomer. This 190-kDa oligomer consisted of only the 50-kDa subunits. Both 260- and 190-kDa oligomers formed ion channels indistinguishable from each other in planar lipid bilayers. These results suggest that the essential part of the ETH in forming the membrane-damaging aggregate is a 50-kDa protein.

  15. Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins.

    PubMed

    Rebière-Huët, J; Guérillon, J; Pimenta, A L; Di Martino, P; Orange, N; Hulen, C

    2002-09-24

    Bacterial adherence is a complex phenomenon involving specific interactions between receptors, including matricial fibronectin, and bacterial ligands. We show here that fibronectin and outer membrane proteins of Pseudomonas fluorescens were able to inhibit adherence of P. fluorescens to fibronectin-coated wells. We identified at least six fibronectin-binding proteins with molecular masses of 70, 55, 44, 37, 32 and 28 kDa. The presence of native (32 kDa) and heat-modified forms (37 kDa) of OprF was revealed by immuno-analysis and the 44-kDa band was composed of three proteins, their N-terminal sequences showing homologies with Pseudomonas aeruginosa porins (OprD, OprE1 and OprE3).

  16. Detection and analysis of protein ISGylation.

    PubMed

    Takeuchi, Tomoharu; Yokosawa, Hideyoshi

    2008-01-01

    ISG15 is a ubiquitin-like modifi er that is conjugated to target proteins by a sequential reaction catalyzed by E1/E2/E3 enzymes (protein ISGylation). ISG15 and protein ISGylation are upregulated by interferon stimuli. ISG15 functions as an antiviral protein against Sindbis virus and HIV-1, but the molecular mechanism remains unknown. Here we describe in detail methods for detecting and analyzing protein ISGylation. The methods consist of plasmid transfection and affi nity purifi cation of ISGylated proteins. In addition, we describe a method for detecting ISGylation of a target protein, Ubc13.

  17. Bacterial Heat Shock Protein GroEL (Hsp64) Exerts Immunoregulatory Effects on T Cells by Utilizing Apoptosis

    PubMed Central

    Nalbant, Ayten; Kant, Melis

    2016-01-01

    Aggregatibacter actinomycetemcomitans (Aa) expresses a 64-kDa GroEL protein belonging to the heat shock family of proteins. This protein has been shown to influence human host cells, but the apoptotic capacity of the GroEL protein regarding T cells is not yet known. The purpose of this study was to investigate the ability of A. actinomycetemcomitans GroEL (AaGroEL) protein to induce human peripheral blood T-cell apoptosis. Endogenous, purified AaGroEL protein was used as an antigen. In AaGroEL-treated T cells, the data indicated that phosphatidylserine exposure, an early apoptotic event, was dose- and time-dependent. The AaGroEL-treated T cells were also positive for active caspase-3 in a dose-dependent manner. The rate of AaGroEL-induced apoptosis was suppressed by the addition of the general caspase inhibitor Z-VAD-FMK. Furthermore, cleaved caspase-8 bands (40/36 kDa and 23 kDa) were identified in cells responding to AaGroEL. DNA fragmentation was also detected in the AaGroEL-treated T cells. Overall, we demonstrated that the endogenous GroEL from A. actinomycetemcomitans has the capacity to induce T-cell apoptosis. PMID:27736933

  18. Detection of Prosecretory Mitogen Lacritin in Nonprimate Tears Primarily as a C-Terminal-Like Fragment

    PubMed Central

    Laurie, Diane E.; Splan, Rebecca K.; Green, Kari; Still, Katherine M.; McKown, Robert L.; Laurie, Gordon W.

    2012-01-01

    Purpose. Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Methods. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Results. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal–reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Conclusions. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair. PMID:22871838

  19. Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein.

    PubMed

    Pan, Jingxi; Han, Jun; Borchers, Christoph H; Konermann, Lars

    2009-09-09

    Amide H/D exchange (HDX) mass spectrometry (MS) is widely used for protein structural studies. Traditionally, this technique involves protein labeling in D(2)O, followed by acid quenching, proteolytic digestion, and analysis of peptide deuteration levels by HPLC/MS. There is great interest in the development of alternative HDX approaches involving the top-down fragmentation of electrosprayed protein ions, instead of relying on enzymatic cleavage and solution-phase separations. A number of recent studies have demonstrated that electron capture dissociation (ECD) results in fragmentation of gaseous protein ions with little or no H/D scrambling. However, the successful application of this approach for in-depth protein conformational studies has not yet been demonstrated. The current work uses horse myoglobin as a model system for assessing the suitability of HDX-MS with top-down ECD for experiments of this kind. It is found that ECD can pinpoint the locations of protected amides with an average resolution of less than two residues for this 17 kDa protein. Native holo-myoglobin (hMb) shows considerable protection from exchange in all of its helices, whereas loops are extensively deuterated. Fraying is observable at some helix termini. Removal of the prosthetic heme group from hMb produces apo-myoglobin (aMb). Both hMb and aMb share virtually the same HDX protection pattern in helices A-E, whereas helix F is unfolded in aMb. In addition, destabilization is evident for some residues close to the beginning of helix G, the end of helix H, and the C-terminus of the protein. The structural changes reported herein are largely consistent with earlier NMR data for sperm whale myoglobin, although small differences between the two systems are evident. Our findings demonstrate that the level of structural information obtainable with top-down ECD for small to medium-sized proteins considerably surpasses that of traditional HDX-MS experiments, while at the same time greatly reducing

  20. Composition, Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients.

    PubMed

    Alonso-Miravalles, Loreto; O'Mahony, James A

    2018-05-07

    The objectives of this study were to investigate the nutrient composition, protein profile, morphology, and pasting properties of protein-rich pseudocereal ingredients (quinoa, amaranth, and buckwheat) and compare them to the more common rice and maize flours. Literature concerning protein-rich pseudocereal ingredients is very limited, mainly to protein profiling. The concentrations of macronutrients (i.e., ash, fat, and protein, as well as soluble, insoluble and total dietary fibre) were significantly higher for the protein-rich variants of pseudocereal-based flours than their regular protein content variants and the rice and maize flours. On profiling the protein component using sodium dodecyl sulfate⁻polyacrylamide gel electrophoresis (SDS-PAGE), all samples showed common bands at ~50 kDa and low molecular weight bands corresponding to the globulin fraction (~50 kDa) and albumin fraction (~10 kDa), respectively; except rice, in which the main protein was glutelin. The morphology of the starch granules was studied using scanning electron microscopy with quinoa and amaranth showing the smallest sized granules, while buckwheat, rice, and maize had the largest starch granules. The pasting properties of the ingredients were generally similar, except for buckwheat and amaranth, which showed the highest and lowest final viscosity, respectively. The results obtained in this study can be used to better understand the functionality and food applications of protein-rich pseudocereal ingredients.

  1. An endogenously produced fragment of cardiac myosin-binding protein C is pathogenic and can lead to heart failure.

    PubMed

    Razzaque, Md Abdur; Gupta, Manish; Osinska, Hanna; Gulick, James; Blaxall, Burns C; Robbins, Jeffrey

    2013-08-16

    A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored. To understand the potential pathogenicity of the 40-kDa fragment in vivo and to investigate the molecular pathways that could be targeted for potential therapeutic intervention. We generated cardiac myocyte-specific transgenic mice using a Tet-Off inducible system to permit controlled expression of the 40-kDa fragment in cardiomyocytes. When expression of the 40-kDa protein is induced by crossing the responder animals with tetracycline transactivator mice under conditions in which substantial quantities approximating those observed in diseased hearts are reached, the double-transgenic mice subsequently experience development of sarcomere dysgenesis and altered cardiac geometry, and the heart fails between 12 and 17 weeks of age. The induced double-transgenic mice had development of cardiac hypertrophy with myofibrillar disarray and fibrosis, in addition to activation of pathogenic MEK-ERK pathways. Inhibition of MEK-ERK signaling was achieved by injection of the mitogen-activated protein kinase (MAPK)/ERK inhibitor U0126. The drug effectively improved cardiac function, normalized heart size, and increased probability of survival. These results suggest that the 40-kDa cardiac myosin-binding protein C fragment, which is produced at elevated levels during human cardiac disease, is a pathogenic fragment that is sufficient to cause hypertrophic cardiomyopathy and heart failure.

  2. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs

    PubMed Central

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H.; Gutiérrez, Andrés H.; Rueda, Luis D.; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H.; Sheen, Patricia

    2011-01-01

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection. PMID:22119017

  3. Molecular and Structural Characterization of the Tegumental 20.6-kDa Protein in Clonorchis sinensis as a Potential Druggable Target.

    PubMed

    Kim, Yu-Jung; Yoo, Won Gi; Lee, Myoung-Ro; Kang, Jung-Mi; Na, Byoung-Kuk; Cho, Shin-Hyeong; Park, Mi-Yeoun; Ju, Jung-Won

    2017-03-04

    The tegument, representing the membrane-bound outer surface of platyhelminth parasites, plays an important role for the regulation of the host immune response and parasite survival. A comprehensive understanding of tegumental proteins can provide drug candidates for use against helminth-associated diseases, such as clonorchiasis caused by the liver fluke Clonorchis sinensis . However, little is known regarding the physicochemical properties of C. sinensis teguments. In this study, a novel 20.6-kDa tegumental protein of the C. sinensis adult worm (CsTegu20.6) was identified and characterized by molecular and in silico methods. The complete coding sequence of 525 bp was derived from cDNA clones and encodes a protein of 175 amino acids. Homology search using BLASTX showed CsTegu20.6 identity ranging from 29% to 39% with previously-known tegumental proteins in C. sinensis . Domain analysis indicated the presence of a calcium-binding EF-hand domain containing a basic helix-loop-helix structure and a dynein light chain domain exhibiting a ferredoxin fold. We used a modified method to obtain the accurate tertiary structure of the CsTegu20.6 protein because of the unavailability of appropriate templates. The CsTegu20.6 protein sequence was split into two domains based on the disordered region, and then, the structure of each domain was modeled using I-TASSER. A final full-length structure was obtained by combining two structures and refining the whole structure. A refined CsTegu20.6 structure was used to identify a potential CsTegu20.6 inhibitor based on protein structure-compound interaction analysis. The recombinant proteins were expressed in Escherichia coli and purified by nickel-nitrilotriacetic acid affinity chromatography. In C. sinensis , CsTegu20.6 mRNAs were abundant in adult and metacercariae, but not in the egg. Immunohistochemistry revealed that CsTegu20.6 localized to the surface of the tegument in the adult fluke. Collectively, our results contribute to a

  4. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana.

    PubMed

    Hancock, C Nathan; Kent, Lia; McClure, Bruce A

    2005-09-01

    S-RNase participates in at least three mechanisms of pollen rejection. It functions in S-specific pollen rejection (self-incompatibility) and in at least two distinct interspecific mechanisms of pollen rejection in Nicotiana. S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia also require additional stylar proteins. Transmitting-tract-specific (TTS) protein, 120 kDa glycoprotein (120K) and pistil extensin-like protein III (PELP III) are stylar glycoproteins that bind S-RNase in vitro and are also known to interact with pollen. Here we tested whether these glycoproteins have a direct role in pollen rejection. 120K shows the most polymorphism in size between Nicotiana species. Larger 120K-like proteins are often correlated with S-specific pollen rejection. Sequencing results suggest that the polymorphism primarily reflects differences in glycosylation, although indels also occur in the predicted polypeptides. Using RNA interference (RNAi), we suppressed expression of 120K to determine if it is required for S-specific pollen rejection. Transgenic SC N. plumbaginifolia x SI Nicotiana alata (S105S105 or SC10SC10) hybrids with no detectable 120K were unable to perform S-specific pollen rejection. Thus, 120K has a direct role in S-specific pollen rejection. However, suppression of 120K had no effect on rejection of N. plumbaginifolia pollen. In contrast, suppression of HT-B, a factor previously implicated in S-specific pollen rejection, disrupts rejection of N. plumbaginifolia pollen. Thus, S-specific pollen rejection and rejection of N. plumbaginifolia pollen are mechanistically distinct, because they require different non-S-RNase factors.

  5. Detection of Human Toxoplasma-Specific Immunoglobulins A, M, and G with a Recombinant Toxoplasma gondii Rop2 Protein

    PubMed Central

    Martin, Valentina; Arcavi, Miriam; Santillan, Graciela; Amendoeira, Maria Regina R.; De Souza Neves, Elizabeth; Griemberg, Gloria; Guarnera, Eduardo; Garberi, Juan C.; Angel, Sergio O.

    1998-01-01

    The Toxoplasma gondii rhoptry protein Rop2 was expressed in Escherichia coli as a fusion protein containing 44 kDa of the 55-kDa mature Rop2, supplied with six histidyl residues at the N-terminal end (Rop2196–561). Humoral response during Toxoplasma infection of humans was analyzed by immunoglobulin G (IgG), IgA, and IgM enzyme-linked immunosorbent assay with Rop2196–561 as the antigen substrate. The analyzed sera were divided according to T. gondii-specific serological tests (IgG, IgA, or IgM indirect immunofluorescence and IgA or IgM immunosorbent agglutination assay) as group A (IgG+ IgA− IgM−; n = 35), group B (IgG+ IgA+ IgM+; n = 21), group C (IgG+ IgA+ IgM−; n = 5), and group D (IgG+ IgA− IgM+; n = 16). Twenty-six T. gondii-seronegative sera from individuals with other infections were also included (group E). Anti-Rop2 IgG antibodies were detected in 82.8% of group A sera and in 97.6% of the sera with acute-phase marker immunoglobulins (groups B, C, and D). The percentage of IgA antibody reactivity against Rop2196–561 was 17.1% in group A, 50% in group D, and 80.8% in groups B and C. The percentage of IgM antibody reactivity was 0% in groups A and C and 62% in groups B and D. Sera from group E failed to show IgA, IgM, or IgG antibody reactivity. Since T. gondii Rop2 elicits a strong humoral response from an early stage of infection, it is suggested that recombinant Rop2196–561 would be suitable for use in diagnostic systems, in combination with other T. gondii antigens, to detect specific IgG, IgA, and IgM antibodies. PMID:9729528

  6. A period (per)-like protein exhibits daily rhythmicity in the suprachiasmatic nuclei of the rat.

    PubMed

    Rosewell, K L; Siwicki, K K; Wise, P M

    1994-10-03

    The period (per) gene of Drosophila melanogaster is considered an important biological clock gene, since it regulates multiple behavioral rhythms. Per mRNA and protein exhibit circadian rhythms in the fruitfly brain and these rhythms appear to influence each other through a feedback loop. More recently, using the same antibody as was used in the Drosophila studies, PER-like proteins were detected in the suprachiasmatic nuclei (SCN) of male rats. This region of the brain is considered to be a major neural circadian pacemaker in mammals. The purpose of this study was to confirm that PER-like proteins are detectable in the SCN of female rats and to determine whether PER-like proteins exhibit a circadian rhythm. Female rats were killed at several times of day under both light/dark and constant conditions. Using the same anti-PER antibody in Western blots with Enhanced Chemiluminescence (Western-ECL) detection, the levels of the PER-like proteins were quantified in the SCN and cerebral cortex. The antibody identified a doublet band of approximately 170-160 kDa and a single band at 115 kDa. Of the three PER-like proteins only the largest exhibited a daily rhythm in the SCN, which peaked in the middle of the dark and attained its nadir around lights off; levels during the light were intermediate with a tendency towards a second drop around lights on. This rhythm did not persist under constant dim red light.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Regulation of post-translational protein arginine methylation during HeLa cell cycle.

    PubMed

    Kim, Chongtae; Lim, Yongchul; Yoo, Byong Chul; Won, Nam Hee; Kim, Sangduk; Kim, Gieun

    2010-09-01

    Post-translational arginine methylation which modifies protein-arginyl residues by protein arginine methyltransferase (PRMT) was investigated during synchronized HeLa cell cycle. The lysates of cells synchronized at each stage were subjected to one and/or two dimensional electrophoresis followed by Western immunoblot using against anti-asymmetric-dimethyl-arginine (ASYM24), anti-symmetric-dimethyl-arginine (SYM10), and subclasses of PRMTs, including PRMT1, PRMT3, PRMT4 (CARM1), PRMT5, PRMT6, and PRMT7 antibodies. Proteins with approximate molecular masses of 80 kDa, 68 kDa, and 64 kDa, containing asymmetric-dimethyl-arginine (aDMA) were increased at G0/G1 to G1, which lasted until S phase. In addition, 25 kDa protein of symmetric-dimethyl-arginine (sDMA) was also markedly up-regulated from G0/G1 to G1. The levels of PRMT3, PRMT6 and PRMT7 were concurrently increased during the cell cycle. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS was identified as aDMA-80 kDa and aDMA-68 kDa proteins as heterogeneous nuclear ribonucleoprotein R (hnRNPR), aDMA-64 kDa proteins as cleavage stimulation factor 64 kDa subunit (CstF-64), and sDMA-25 kDa protein as triosephosphate isomerase (TPI). The levels of increased aDMA of hnRNPR were reduced, when HeLa cells were transfected with siRNA for PRMT1, and the aDMA of CstF-64 with siRNA for PRMT3, while depletion of PRMT5 down-regulated sDMA of TPI. Protein arginine dimethylations of hnRNPR, CstF-64, and TPI were regulated during HeLa cell cycle by respective PRMTs. These results suggest that regulation of arginine dimethylation of hnRNPR, CstF-64, and TPI at G0/G1 to G1 are most likely to modulate the cellular growth and proliferation in HeLa cell cycle. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus)

    PubMed Central

    Sheng, Xiuzhen; Wu, Ronghua; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin

    2015-01-01

    The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder and turbot (Scophthalmus maximus). Indirect immunofluorescence assay (IIFA) and immunohistochemistry showed that 27.8R was widely expressed in tested tissues of healthy turbot. The indirect enzyme-linked immunosorbent assay indicated that 27.8R expression was relatively higher in stomach, gill, heart, and intestine, followed by skin, head kidney, spleen, blood cells, kidney and liver, and lower in ovary and brain in healthy turbot, and it was significantly up-regulated after LCDV infection. Meanwhile, real-time quantitative PCR demonstrated that LCDV was detected in heart, peripheral blood cells, and head kidney at 3 h post infection (p.i.), and then in other tested tissues at 12 h p.i. LCDV copies increased in a time-dependent manner, and were generally higher in the tissues with higher 27.8R expression. Additionally, IIFA showed that 27.8R and LCDV were detected at 3 h p.i. in some leukocytes. These results suggested that 27.8R also served as a receptor in turbot, and LCDV can infect some leukocytes which might result in LCDV spreading to different tissues in turbot. PMID:26556346

  9. Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus).

    PubMed

    Sheng, Xiuzhen; Wu, Ronghua; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin

    2015-11-05

    The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder and turbot (Scophthalmus maximus). Indirect immunofluorescence assay (IIFA) and immunohistochemistry showed that 27.8R was widely expressed in tested tissues of healthy turbot. The indirect enzyme-linked immunosorbent assay indicated that 27.8R expression was relatively higher in stomach, gill, heart, and intestine, followed by skin, head kidney, spleen, blood cells, kidney and liver, and lower in ovary and brain in healthy turbot, and it was significantly up-regulated after LCDV infection. Meanwhile, real-time quantitative PCR demonstrated that LCDV was detected in heart, peripheral blood cells, and head kidney at 3 h post infection (p.i.), and then in other tested tissues at 12 h p.i. LCDV copies increased in a time-dependent manner, and were generally higher in the tissues with higher 27.8R expression. Additionally, IIFA showed that 27.8R and LCDV were detected at 3 h p.i. in some leukocytes. These results suggested that 27.8R also served as a receptor in turbot, and LCDV can infect some leukocytes which might result in LCDV spreading to different tissues in turbot.

  10. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  11. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  12. Combined use of epithelial membrane antigen and nuclear matrix protein 52 as sensitive biomarkers for detection of bladder cancer.

    PubMed

    Attallah, Abdelfattah M; El-Far, Mohamed; Abdallah, Sanaa O; El-Waseef, Ahmed M; Omran, Mohamed M; Abdelrazek, Mohamed A; Attallah, Ahmed A; Saadh, Mohamed J; Radwan, Mohamed; El-waffaey, Kholoud A; Abol-Enei, Hassan

    2015-11-11

    The advent of noninvasive urine-based markers as well as other novel modalities has yielded improved diagnostic accuracy. However, the new markers failed to reach higher sensitivity and specificity. We therefore evaluated the potential role of epithelial membrane antigen (EMA) and nuclear matrix protein 52 (NMP-52) singly and combined as noninvasive biomarkers for the detection of bladder cancer (BC). A total of 160 individuals including 66 patients with BC, 54 patients with benign urologic disorders and 40 healthy volunteers were investigated. Urinary EMA at 130 kDa and NMP at 52 kDa were identified, purified and quantified by Western blot, electroelution and enzyme-linked immunosorbent assay (ELISA). The diagnostic performance of each biomarker and their combination were compared using area under receiver operating characteristic curves (AUC). Mean urinary EMA, 2.42 µg/mL, and NMP-52, 17.85 µg/mL, were significantly elevated in patients with BC compared to controls, 1.18 and 3.44 µg/mL, respectively (p<0.0001). The combined use of these markers yielded values which were increased 4.4- and 13.7-fold in the benign and malignant disease groups, respectively, with respect to the normal group. The values of EMA and NMP-52 were significantly higher in patients with higher-grade tumors than those with lower-grade tumors (p<0.0001). Moreover, this combination could predict all BC stages and grades with 0.91 AUC, 94% sensitivity and 80% specificity. EMA and NMP-52 in combination could be promising noninvasive biomarkers for BC detection.

  13. Isolation and characterization of a 66-kDa protein from rat liver plasma membrane with RhoA-stimulated phospholipase D activity.

    PubMed

    Dunkirk, Shawn G; Wallert, Mark A; Baumgartner, Matt L; Provost, Joseph J

    2002-02-01

    A 66-kDa molecular weight protein with phospholipase D activity was solubilized and partially purified from rat liver plasma membrane. The activity and regulation of this phospholipase D have been characterized. Immunoblot analyses indicated that the enzyme was distinct from hPLD1 and PLD2, but was recognized by an antibody to the 12 terminal amino acids of PLD1. PLD activity was stimulated by 1-100 microM Ca(2+) and Mg(2+) and displayed a pH optimum of 7.5. Activity was inhibited by both saturated and unsaturated fatty acids. This PLD was activated in an ATP-independent manner by the PKC isozymes alpha and betaII but not activated by other PKC isozymes. It was also stimulated by the small G-proteins RhoA and ARF. RhoA stimulated the greatest activation, followed by ARF and PKC(alpha). This enzyme was further activated in a synergistic manner when combinations of PKC(alpha) and RhoA or ARF were used. This enzyme displayed a greater response activation by RhoA than to activation by ARF. While a potential breakdown product of PLD1, activation by RhoA indicates that the PLD characterized here is distinct from the other PLDs cloned or isolated to date. Copyright 2002 Elsevier Science (USA).

  14. [Serological and cellular reactivity to mycobacterial proteins in Hansen's disease].

    PubMed

    Rada, Elsa; Aranzazu, Nacarid; Rodríguez, Vestalia; Borges, Rafael; Convit, Jacinto

    2010-09-01

    The study was designed for evaluating immunological reactivity to various mycobacterial protein preparations using serological and cell-mediated immunological tests in patients with clinical leprosy signs, predominantly, with the multibacillary forms. All patients were adults with ages between 20 and 30 years. Fifty eight (n = 81) percent corresponded to Lepromatous Leprosy (LL), 29% (n = 41) to Borderline Lepromatous Leprosy (BL) and 10% (n = 41) to Borderline Borderline Leprosy (BB); only 3% were Borderline Tuberculoid (BT) patients: 74% males and 26% females. The most frequent reactional phenomenon was of the Erythema Nodosum (ENL) type. The mycobacterial proteins tested were: total crude Mycobacterium leprae antigens (MISA); Mycobacterium bovis (MbSA and excretion MbSA); partially purified excretion protein antigen, with a 30 kDa relative movility (Ml30); and recombinant M. leprae proteins (Mt70, Mb 65, Ml 36, 28, 18 and 10 kDa). Two of the recombinant proteins (Ml10 and Ml 36 kDa) presented a statiscally significant higher serological reactivity, directly related with a larger bacillary load (p = 0.0051 and 0.050 respectively). The 30 kDa protein was predominantly recognized by antibodies from multibacillary patients. Results show that mean antibody values were higher in non reactional patients when tested against complete proteins (MbSA and ex MbSA) when compared with the group of patients who presented reactional phenomena (p = 0.000567 and 0.000061, respectively). Comparing reactional with non reactional patients, it was seen that mean antibody values against complete proteins (MbSA and ex MbSA) were higher in non reactional individuals (p = 0.000567 and 0.000061, respectively). This same behavior occurred towards individual mycobacterial proteins (30, 10 and 36 kDa). The T lymphocyte prolypherative response in reactional and non reactional patients towards mycobacterial proteins (MlSA, Ml 10 kDa, MbSA, ex MbSA) was negative.

  15. Ovulation-inducing factor: a protein component of llama seminal plasma

    PubMed Central

    2010-01-01

    Background Previously, we documented the presence of ovulation-inducing factor (OIF) in the seminal plasma of llamas and alpacas. The purpose of the study was to define the biochemical characteristics of the molecule(s) in seminal plasma responsible for inducing ovulation. Methods In Experiment 1, llama seminal plasma was centrifuged using filtration devices with nominal molecular mass cut-offs of 30, 10 and 5 kDa. Female llamas (n = 9 per group) were treated i.m. with whole seminal plasma (positive control), phosphate-buffered saline (negative control), or the fraction of seminal plasma equal or higher than 30 kDa, 10 to 30 kDa, 5 to 10 kDa, or < 5 kDa. In Experiment 2, female llamas (n = 7 per group) were given an i.m. dose of seminal plasma treated previously by: 1) enzymatic digestion with proteinase-K, 2) incubation with charcoal-dextran, 3) heating to 65°C, or 4) untreated (control). In Experiment 3, female llamas (n = 10 per group) were given an i.m. dose of pronase-treated or non-treated (control) seminal plasma. In all experiments, llamas were examined by transrectal ultrasonography to detect ovulation and CL formation. Ovulation rate was compared among groups by Fisher's exact test and follicle and CL diameters were compared among groups by analyses of variance or student's t-tests. Results In Experiment 1, all llamas in the equal or higher than 30 kDa and positive control groups ovulated (9/9 in each), but none ovulated in the other groups (P < 0.001). In Experiment 2, ovulations were detected in all llamas in each treatment group; i.e., respective treatments of seminal plasma failed to inactivate the ovulation-inducing factor. In Experiment 3, ovulations were detected in 0/10 llamas given pronase-treated seminal plasma and in 9/10 controls (P < 0.01). Conclusions We conclude that ovulation-inducing factor (OIF) in llama seminal plasma is a protein molecule that is resistant to heat and enzymatic digestion with proteinase K, and has a molecular mass of

  16. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    PubMed

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  17. [Detection of protein-protein interactions by FRET and BRET methods].

    PubMed

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  18. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    PubMed

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  19. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.

    PubMed

    Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A

    2006-04-15

    SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.

  20. Redox changes accompanying storage protein mobilization in moist chilled and warm incubated walnut kernels prior to germination.

    PubMed

    Shahmoradi, Zeynab; Tamaskani, Fatemeh; Sadeghipour, Hamid Reza; Abdolzadeh, Ahmad

    2013-01-01

    Alterations in the redox state of storage proteins and the associated proteolytic processes were investigated in moist-chilled and warm-incubated walnut (Juglans regia L.) kernels prior to germination. The kernel total protein labeling with a thiol-specific fluorochrome i.e. monobromobimane (mBBr) revealed more reduction of 29-32 kDa putative glutelins, while in the soluble proteins, both putative glutelins and 41, 55 and 58 kDa globulins contained reduced disulfide bonds during mobilization. Thus, the in vivo more reduced disulfide bonds of storage proteins corresponds to greater solubility. After the in vitro reduction of walnut kernel proteins pre-treated by N-ethyl maleimide (NEM) with dithioerythrethiol (DTT) and bacterial thioredoxin, the 58 kDa putative globulin and a 6 kDa putative albumin were identified as disulfide proteins. Thioredoxin stimulated the reduction of the H(2)O(2)-oxidized 6 kDa polypeptide, but not the 58 kDa polypeptide by DTT. The solubility of 6 kDa putative albumin, 58 and 19-24 kDa putative globulins and glutelins, respectively, were increased by DTT. The in vitro specific mobilization of the 58 kDa polypeptide that occurred at pH 5.0 by the kernel endogenous protease was sensitive to the serine-protease inhibitor phenylmethylsulfonyl fluoride (PMSF) and stimulated by DTT. The specific degradation of the 58 kDa polypeptide might be achieved through thioredoxin-mediated activation of a serine protease and/or reductive unfolding of its 58 kDa polypeptide substrate. As redox changes in storage proteins occurred equally in both moist chilled and warm incubated walnut kernels, the regulatory functions of thioredoxins in promoting seed germination may be due to other germination related processes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Interaction of human platelets with laminin and identification of the 67 kDa laminin receptor on platelets.

    PubMed Central

    Tandon, N N; Holland, E A; Kralisz, U; Kleinman, H K; Robey, F A; Jamieson, G A

    1991-01-01

    A microtitre adhesion assay has been developed to define parameters affecting the adherence of washed platelets to laminin. Adherence was optimally supported by Mg2+ and was inhibited by Ca2+ and by anti-laminin Fab fragments, but significant adhesion (75-90% of control) was found both in heparinized plasma containing physiological levels of bivalent cations and in plasma anti-coagulated with EGTA. Adherence was unaffected by platelet activation with ADP but was decreased by 50% by treatment with alpha-thrombin (1 unit/ml, 5 min). Adherence was unaffected by monospecific polyclonal antibodies to glycoprotein (GP) Ib and GPIV, and was normal with platelets from two patients with Glanzmann's thrombasthaenia, indicating that GPIb, the GPIIb/IIIa complex and GPIV are not involved in platelet-laminin interaction. Affinity chromatography of Triton-solubilized membranes on laminin-Sepharose followed by elution with 0.2 M-glycine/HCl (pH 2.85) identified a major band with a molecular mass of 67 kDa in the reduced and of 53 kDa in the unreduced form. This protein gave a positive reaction on Western blotting with a monospecific polyclonal antibody raised against the high-affinity laminin receptor isolated from human breast carcinoma tissue. The adhesion of platelets to laminin was inhibited by two monoclonal IgM antibodies specific to the LR-1 domain of the 67 kDa receptor. The binding protein was surface-oriented, as shown by flow cytofluorimetry and by the fact that it could be iodinated in intact platelets, but it was not labelled by the periodate-borotritide procedure, suggesting that it did not contain terminal sialic acid. The laminin-derived peptides Tyr-Ile-Gly-Ser-Arg and Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg-NH2, which constitute a complementary binding domain in laminin for the 67 kDa receptor, themselves supported platelet adhesion, bound to the receptor and inhibited the adhesion of platelets to laminin. In addition, Fab fragments of anti

  2. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense.

    PubMed

    Harashima, Ai; Guettouche, Toumy; Barber, Glen N

    2010-12-01

    Here, we describe a new mechanism of host defense that involves the nuclear factors associated with dsRNA (NFAR1 [90 kDa] and NFAR2 [110 kDa]), which constitute part of the shuttling ribonuclear protein (RNP) complex. Activation of the dsRNA-activated protein kinase PKR by viral RNA enabled phosphorylation of NFAR1 and NFAR2 on Thr 188 and Thr 315, an event found to be evolutionarily conserved in Xenopus. Phosphorylated NFAR1 and NFAR2 became dissociated from nuclear factor 45 (NF45), which was requisite for NFAR reshuttling, causing the NFARs to be retained on ribosomes, associate with viral transcripts, and impede viral replication. Cre-loxP animals with depletion of the NFARs in the thymus were exquisitely sensitive to the cytoplasmic replicating virus VSV (vesicular stomatitis virus). Thus, the NFARs constitute a novel, conserved mechanism of host defense used by the cell to detect and impede aberrant translation events.

  3. Antibodies against recombinant heat shock proteins of 60 kDa from enterobacteria in the sera and synovial fluid of HLA-B27 positive ankylosing spondylitis patients.

    PubMed

    Domínguez-López, M L; Ortega-Ortega, Y; Manríquez-Raya, J C; Burgos-Vargas, R; Vega-López, A; García-Latorre, E

    2009-01-01

    To study the association of HLA-B27 with IgG antibodies to different enterobacterial HSP60s in patients with ankylosing spondylitis (AS). IgG antibodies to 60 kDa enterobacterial HSPs were determined by ELISA in paired samples of sera and synovial fluid from 21 HLA-B27+ ankylosing spondylitis (AS) patients; and in sera from 32 HLA-B27+ AS patients, 35 HLA-B27+ healthy relatives of AS patients, and 60 HLA-B27- healthy individuals with no family members with AS. HLA-B27+ patients and healthy individuals showed significantly higher IgG antibody levels to recombinant enterobacterial HSP60s than HLA-B27- healthy controls. The levels of anti-HSP60Sf and anti-HSP60Ec antibodies correlated with disease activity and anti-HSP60Ec antibodies with male gender. No association between enterobacterial HSP60 antibody levels and disease duration was observed. All groups had lower levels of IgG antibodies to rHSP60 from Streptococcus pyogenes (rHSP60 Spy). In paired samples of sera and synovial fluid from B27+ patients, IgG antibodies to enterobacterial HSP60s were detected, but in significantly higher levels in sera than in synovial fluid. The anti-rHSPSpy IgG response in these samples was lower and similar in the three groups. A correlation was found between HLA-B27 and the response to recombinat enterobacterial HSP60s. This response could be associated with disease activitir and gender in some proteins and the presence eof IgG antibodies to these proteins in synovial fluid could be associated with the inflammatory process and initiation of AS.

  4. Marek's disease virus protein kinase gene identified within the short unique region of the viral genome is not essential for viral replication in cell culture and vaccine-induced immunity in chickens.

    PubMed

    Sakaguchi, M; Urakawa, T; Hirayama, Y; Miki, N; Yamamoto, M; Zhu, G S; Hirai, K

    1993-07-01

    The open reading frame (ORF) of 1206 bp within the short unique region (Us) of Marek's disease virus type 1 (MDV1) shows significant homology with the herpes simplex virus type 1 US3 gene encoding protein kinase (PK). The lacZ gene of Escherichia coli was inserted within the ORF, designated MDV1-US3, of MDV1 K544 strain DNA by homologous recombination. The plaque-purified recombinant MDV1 stably expressed the beta-galactosidase encoded by the inserted lacZ gene in infected cells and replicated well as the parental K544 strain. Antibodies against both MDV1 antigen and beta-galactosidase were detected in the sera of chickens immunized with recombinant MDV1. Chickens vaccinated with the recombinant MDV1 were protected from challenge with virulent MDV1. The MDV1 US3 gene expressed by a baculovirus vector encoded a 44-kDa protein. Mouse antisera against the 44-kDa protein reacted with two proteins of 44 and 45 kDa in extracts of cells infected with MDV1 but not with MDV types 2 or 3. The PK activity was detected in immune complexes of the anti-44-kDa sera with extracts of cells infected with MDV1 but not with the recombinant MDV1. Thus, PK encoded from the MDV1-US3 is not essential for virus replication in cell culture and vaccine-induced immunity.

  5. Plasma proteins of rainbow trout (Oncorhynchus mykiss) isolated by binding to lipopolysaccharide from Aeromonas salmonicida.

    PubMed

    Hoover, G J; el-Mowafi, A; Simko, E; Kocal, T E; Ferguson, H W; Hayes, M A

    1998-07-01

    In an attempt to find plasma proteins that might be involved in the constitutive resistance of rainbow trout to furunculosis, a disease caused by Aeromonas salmonicida (AS), we purified serum and plasma proteins based on their calcium- and carbohydrate-dependent affinity for A. salmonicida lipopolysaccharide (LPS) coupled to an epoxy-activated synthetic matrix (Toyopearl AF Epoxy 650M). A multimeric family of high molecular weight (96 to 200-kDa) LPS-binding proteins exhibiting both calcium and mannose dependent binding was isolated. Upon reduction the multimers collapsed to subunits of approximately 16-kDa as estimated by 1D-PAGE and exhibited pI values of 5.30 and 5.75 as estimated from 2D-PAGE. Their N-terminal sequences were related to rainbow trout ladderlectin (RT-LL), a Sepharose-binding protein. Polyclonal antibodies to the LPS-purified 16-kDa subunits recognized both the reduced 16-kDa subunits and the non-reduced multimeric forms. A calcium- and N-acetylglucosamine (GlcNAc)-dependent LPS-binding multimeric protein (approximately 207-kDa) composed of 34.5-kDa subunits was purified and found to be identical to trout serum amyloid P (SAP) by N-terminal sequence (DLQDLSGKVFV). A protein of 24-kDa, in reduced and non-reduced conditions, was isolated and had N-terminal sequence identity with a known C-reactive protein (CRP) homologue, C-polysaccharide-binding protein 2 (TCBP2) of rainbow trout. A novel calcium-dependent LPS-binding protein was purified and termed rainbow trout lectin 37 (RT-L37). This protein, composed of dimers, tetramers and pentamers of 37 kDa subunits (pI 5.50-6.10) with N-terminal sequence (IQE(D/N)GHAEAPGATTVLNEILR) showed no close homology to proteins known or predicted from cDNA sequences. These findings demonstrate that rainbow trout have several blood proteins with lectin properties for the LPS of A. salmonicida; the biological functions of these proteins in resistance to furunculosis are still unknown.

  6. 70-kDa Heat Shock Cognate Protein hsc70 Mediates Calmodulin-dependent Nuclear Import of the Sex-determining Factor SRY*

    PubMed Central

    Kaur, Gurpreet; Lieu, Kim G.; Jans, David A.

    2013-01-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca2+. Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  7. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean.

    PubMed

    Kim, Kee-Young; Park, Seong-Whan; Chung, Young-Soo; Chung, Chung-Han; Kim, Jung-In; Lee, Jai-Heon

    2004-05-01

    Three ribosomal protein genes induced by low-temperature treatment were isolated from soybean. GmRPS13 (742 bp) encodes a 17.1 kDa protein which has 95% identity with the 40S ribosomal protein S13 of Panax ginseng (AB043974). GmRPS6 (925 bp) encodes a 28.1 kDa protein which has 94% identity with the 40S ribosomal protein S6 of Asparagus officinalis (AJ277533). GmRPL37 (494 bp) encodes a 10.7 kDa protein which has 85% identity with the 60S ribosomal protein L37 of Arabidopsis thaliana (AF370216). The expression of these ribosomal protein genes started to increase 3 d after low-temperature treatment, whereas the cold-stress protein src1 was highly induced from the first day. Such late response of these ribosomal protein genes may be due to secondary signals during cold adaptation. The induction of ribosomal protein genes might enhance the translation process or help proper ribosome functioning under low-temperature conditions.

  8. Prostatic origin of a zinc binding high molecular weight protein complex in human seminal plasma.

    PubMed

    Siciliano, L; De Stefano, C; Petroni, M F; Vivacqua, A; Rago, V; Carpino, A

    2000-03-01

    The profile of the zinc ligand high molecular weight proteins was investigated in the seminal plasma of 55 normozoospermic subjects by size exclusion high performance liquid chromatography (HPLC). The proteins were recovered from Sephadex G-75 gel filtration of seminal plasma in three zinc-containing fractions which were then submitted to HPLC analysis. The results were, that in all the samples, the protein profiles showed two peaks with apparent molecular weight of approximately 660 and approximately 250 kDa. Dialysis experiments revealed that both approximately 660 and approximately 250 kDa proteins were able to uptake zinc against gradient indicating their zinc binding capacity. The HPLC analysis of the whole seminal plasma evidenced only the approximately 660 kDa protein complex as a single well quantifying peak, furthermore a positive correlation between its peak area and the seminal zinc values (P < 0.001) was observed. This suggested a prostatic origin of the approximately 660 kDa protein complex which was then confirmed by the seminal plasma HPLC analysis of a subject with agenesis of the Wolffian ducts. Finally the study demonstrated the presence of two zinc binding proteins, approximately 660 and approximately 250 kDa respectively, in human seminal plasma and the prostatic origin of the approximately 660 kDa.

  9. Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.

    PubMed

    Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi

    2002-09-25

    The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.

  10. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    NASA Astrophysics Data System (ADS)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  11. Protein Stains to Detect Antigen on Membranes.

    PubMed

    Dsouza, Anil; Scofield, R Hal

    2015-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after western blotting. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. "Detection" is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  12. Protein stains to detect antigen on membranes.

    PubMed

    D'souza, Anil; Scofield, R Hal

    2009-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after electrophoresis. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. Detection is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  13. Characterization of a novel wheat endosperm protein belonging to the prolamin superfamily

    USDA-ARS?s Scientific Manuscript database

    Starch granule surface-associated proteins were separated by HPLC and identified by direct protein sequencing. Among the proteins identified was one that consisted of two polypeptide chains of 11 kDa and 19 kDa linked by disulfide bonds. Sequencing of tryptic peptides from each of the polypeptide ch...

  14. [Effects of noopept and cortexin on the behavior of matured rats treated with corticoliberin or 70-kDa heat shock proteins in early ontogeny].

    PubMed

    Shabanov, P D; Lebedev, A A; Stetsenko, V P; Lavrov, N V; Sablina, G V; Gudasheva, T A; Ostrovaskaia, R U

    2007-01-01

    Young Wistar rats aged 4 days were injected intraperitoneally with corticotropin releasing hormone (CRH), which is an agent activating the stress system, or 70-kDa heat shock proteins (HSP-70)--intracellular shaperons, possessing antistress properties. In grown adult rats aged 90-100 days, the effects of nootropic drugs noopept and cortexin (1 mg/kg, i.p.) were assessed. The activation of stress or antistress systems with CRH or HSP-70 significantly altered the drug action. The effects were different in males and females and depended on animal gender. The spectrum of pharmacological activity of noopept and cortexin changed: noopept demonstrated preferable psychoactivating and antiaggressive effects, whereas cortexin showed mild anxiolytic and antidepressant activity. It is suggested that the behavioral effects of nootropes depend on the conditions of the stress system formation in early ontogeny.

  15. A Proteomic Approach to Characterize Protein Shedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahram, Mamoun; Adkins, Joshua N.; Auberry, Deanna L.

    2005-01-01

    Shedding (i.e., proteolysis of ectodomains of membrane proteins) plays an important pathophysiological role. In order to study the feasibility of identifying shed proteins, we analyzed serum-free media of human mammary epithelial cells by mass spectrometry following induction of shedding by the phorbol ester, 4β-phorbol 12-myristate 13-acetate (PMA). Different means of sample preparation, including biotinylation of cell surface proteins, isolation of glycosylated proteins, and preparation of crude protein fraction, were carried out to develop the optimal method of sample processing. The collected proteins were digested with trypsin and analyzed by reversed-phase capillary liquid chromatography interfaced to an ion-trap mass spectrometer. Themore » resulting peptide spectra were interpreted using the program SEQUEST. Analyzing the sample containing the crude protein mixture without chemical modification or separation resulted in the greatest number of identifications, including putatively shed proteins. Overall, 93 membrane-associated proteins were identified including 57 that contain at least one transmembrane domain and 36 that indirectly associate with the extracellular surface of the plasma membrane. Of the 57 transmembrane proteins, 43 were identified by extracellular peptides providing strong evidence for them originating from regulated proteolysis or shedding processes. We combined results from the different experiments and used a peptide count method to estimate changes in protein abundance. Using this approach, we identified 2 proteins, syndecan-4 and hepatoma-derived growth factor, whose abundances increased in media of cells treated with PMA. We also detected proteins whose abundances decreased after PMA treatment such as 78-kDa glucose-regulated protein and calreticulin. Further analysis using immunoblotting validated the abundance changes for syndecan-4 and 78-kDa glucose-regulated protein as a result of PMA treatment. These results demonstrate that

  16. Variation of expression defects in cell surface 190-kDa protein antigen of Streptococcus mutans.

    PubMed

    Lapirattanakul, Jinthana; Nomura, Ryota; Matsumoto-Nakano, Michiyo; Srisatjaluk, Ratchapin; Ooshima, Takashi; Nakano, Kazuhiko

    2015-05-01

    Streptococcus mutans, which consists of four serotypes, c, e, f, and k, possesses a 190-kDa cell surface protein antigen (PA) for initial tooth adhesion. We used Western blot analysis to determine PA expression in 750 S. mutans isolates from 150 subjects and found a significantly higher prevalence of the isolates with PA expression defects in serotypes f and k compared to serotypes c and e. Moreover, the defect patterns could be classified into three types; no PA expression on whole bacterial cells and in their supernatant samples (Type N1), PA expression mainly seen in supernatant samples (Type N2), and only low expression of PA in the samples of whole bacterial cells (Type W). The underlying reasons for the defects were mutations in the gene encoding PA as well as in the transcriptional processing of this gene for Type N1, defects in the sortase gene for Type N2, and low mRNA expression of PA for Type W. Since cellular hydrophobicity and phagocytosis susceptibility of the PA-defective isolates were significantly lower than those of the normal expression isolates, the potential implication of such defective isolates in systemic diseases involving bacteremia other than dental caries was suggested. Additionally, multilocus sequence typing was utilized to characterize S. mutans clones that represented a proportion of isolates with PA defects of 65-100%. Therefore, we described the molecular basis for variation defects in PA expression of S. mutans. Furthermore, we also emphasized the strong association between PA expression defects and serotypes f and k as well as the clonal relationships among these isolates. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast).

    PubMed

    Yamaguchi, K; von Knoblauch, K; Subramanian, A R

    2000-09-15

    Identification of all the protein components of a plastid (chloroplast) ribosomal 30 S subunit has been achieved, using two-dimensional gel electropholesis, high performance liquid chromatography purification, N-terminal sequencing, polymerase chain reaction-based screening of cDNA library, nucleotide sequencing, and mass spectrometry (electrospray ionization, matrix-assisted laser desorption/ionization time-of-flight, and reversed-phase HPLC coupled with electrospray ionization mass spectrometry). 25 proteins were identified, of which 21 are orthologues of all Escherichia coli 30 S ribosomal proteins (S1-S21), and 4 are plastid-specific ribosomal proteins (PSRPs) that have no homologues in the mitochondrial, archaebacterial, or cytosolic ribosomal protein sequences in data bases. 12 of the 25 plastid 30 S ribosomal proteins (PRPs) are encoded in the plastid genome, whereas the remaining 13 are encoded by the nuclear genome. Post-translational transit peptide cleavage sites for the maturation of the 13 cytosolically synthesized PRPs, and post-translational N-terminal processing in the maturation of the 12 plastid synthesized PRPs are described. Post-translational modifications in several PRPs were observed: alpha-N-acetylation of S9, N-terminal processings leading to five mature forms of S6 and two mature forms of S10, C-terminal and/or internal modifications in S1, S14, S18, and S19, leading to two distinct forms differing in mass and/or charge (the corresponding modifications are not observed in E. coli). The four PSRPs in spinach plastid 30 S ribosomal subunit (PSRP-1, 26.8 kDa, pI 6.2; PSRP-2, 21.7 kDa, pI 5.0; PSRP-3, 13.8 kDa, pI 4.9; PSRP-4, 5.2 kDa, pI 11.8) comprise 16% (67.6 kDa) of the total protein mass of the 30 S subunit (429.3 kDa). PSRP-1 and PSRP-3 show sequence similarities with hypothetical photosynthetic bacterial proteins, indicating their possible origins in photosynthetic bacteria. We propose the hypothesis that PSRPs form a "plastid

  18. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.

    PubMed

    Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina

    2015-05-01

    Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Purification and partial characterization of analogous 26-kDa rat submandibular and parotid gland integral membrane phosphoproteins that may have a role in exocytosis.

    PubMed

    Quissell, D O; Deisher, L M

    1992-04-01

    Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.

  20. The oviducal protein, heat-shock 70-kDa protein 8, improves the long-term survival of ram spermatozoa during storage at 17°C in a commercial extender.

    PubMed

    Lloyd, R E; Fazeli, A; Watson, P F; Holt, W V

    2012-01-01

    Poor fertility rates are often observed when fresh ram semen stored in conventional extenders is used for cervical artificial insemination (AI). Heat-shock 70-kDa protein 8 (HSPA8), found within the oviduct, prolongs boar, ram and bull sperm survival at body temperatures in vitro. Here, we aimed to determine whether supplementing extenders (INRA-96 and RSD-1) with HSPA8 (4 µg mL⁻¹) would improve their performance in maintaining freshly collected ram sperm viability and sperm nuclear DNA integrity during storage over 48 h at 17°C. Sperm function was assessed at 1, 6, 24 and 48h and this experiment was repeated using 25 × 10⁶ and 800 × 10⁶ spermatozoa mL⁻¹. INRA96 supplemented with HSPA8 maintained sperm viability significantly better than INRA96 alone at both sperm concentrations. However, sperm nuclear DNA fragmentation (DF) increased significantly during storage using the higher sperm concentration, irrespective of the extender and the protein treatment used. Increasing levels of sperm nuclear DF over time could explain why poor fertility rates are often observed following cervical AI using stored ram semen. However, further research is required to ascertain whether supplementing the commercially available INRA96 extender with HSPA8 will improve fertility rates following cervical AI using stored ram semen.

  1. Effectivity of immunostimulant from Zoothamnium penaei protein membrane for decreasing the mortality rate of white shrimp (Litopenaeus vannamei) in traditional plus pond

    NASA Astrophysics Data System (ADS)

    Mahasri, G.; Kusdarwati, R.; Kismiyati; Rozi; Gustrifandi, H.

    2018-04-01

    The purpose of this research was to analys immunogenic membrane protein as immunostimulant development material to control the mortality of white shrimp in traditional plus pond. This research was designed to use explorative experiment and experimental laboratory methods which used completed random sampling design. Collected data was analyzed with analysis of variance for examination of survival rate (SR), total haemocyte count (THC) and differensial haemocyte Count (DHC). The research divided into 2 part of riset: (1) Identification, cultivation Zoothamnium penaei, analysed of membrane protein by SDS-PAGE, (2) Field test protein membran on Survival Rate level, immune response (THC and/or DHC level) and infestation of Zoothamnium penaei in traditional plus pond. The result showed that there were seven bands membrane protein of Zoothamnium penaei with molecular weight 38 kDa, 48 kDa, 67 kDa, 71 kDa, 77 kDa, 98 kDa dan 104 kDa by using SDS-PAGE. Immunogenicity tested decrease by using ELISA and western blotting there are only found three bands with molecular weight 38 kDa, 48 kDa dan 67 kDa. The membrane protein could increase the immun respons and decrease the mortality, by subsequenly, it could increase the survival rate from 17% until 68% and pressured the parasite infestation of white shrimp.

  2. Growth hormone in sports: detecting the doped or duped.

    PubMed

    Ho, Ken K Y; Nelson, Anne E

    2011-01-01

    Doping with growth hormone (GH) is banned; however, there is anecdotal evidence that it is widely abused. GH is reportedly often used in combination with anabolic steroids at high doses for several months. Development of a robust test for detecting GH has been challenging since recombinant human 22-kDa GH used in doping is indistinguishable analytically from endogenous GH and there are wide physiological fluctuations in circulating GH concentrations. One approach to GH testing is based on measurement of different circulating GH isoforms using immunoassays that differentiate between 22-kDa and other GH isoforms. Administration of 22-kDa GH results in a change in its abundance relative to other endogenous pituitary GH isoforms. The differential isoform method is, however, limited by its short time window of detection. A second approach that extends the time window of detection is based on detection of increased levels of circulating GH-responsive proteins, such as the insulin-like growth factor (IGF) axis and collagen peptides. As age and gender are the major determinants of variability for IGF-I and the collagen markers, a test based on these markers must take these factors into account. Extensive data now validate the GH-responsive marker approach, and implementation is largely dependent on establishing an assured supply of standardized assays. Robust tests are available to detect GH and enforce the ban on its abuse in sports. Novel approaches that include gene expression and proteomic profiling must continue to be pursued to expand the repertoire of testing approaches available and to maintain deterrence of GH doping. Copyright © 2011 S. Karger AG, Basel.

  3. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates.

    PubMed Central

    Wilusz, J; Shenk, T; Takagaki, Y; Manley, J L

    1990-01-01

    A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA. Images PMID:2304466

  4. The 46 kDa dimeric protein from Variovorax paradoxus shows faster methotrexate degrading activity in its nanoform compare to the native enzyme.

    PubMed

    Bayineni, Venkata Krishna; Venkatesh, Krishna; Sahu, Chandan Kumar; Kadeppagari, Ravi-Kumar

    2016-04-01

    Methotrexate degrading enzymes are required to overcome the toxicity of the methotrexate while treating the cancer. The enzyme from Variovorax paradoxus converts the methotrexate in to non toxic products. Methotrexate degrading enzyme from V. paradoxus is a dimeric protein with a molecular mass of 46 kDa and it acts on casein and gelatin. This enzyme is optimally active at pH 7.5 and 40°C and nanoparticles of this enzyme were prepared by desolvation-crosslinking method. Enzyme nanoparticles could degrade methotrexate faster than the native enzyme and they show lower Km compare to the native enzyme. Enzyme nanoparticles show better thermostability and they were stable for much longer time in the serum compare to the native enzyme. Enzyme nanoparticles show better functionality than the native enzyme while clearing the methotrexate added to the serum suggesting their advantage over the native enzyme for the therapeutic and biotechnological applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Differential expressed protein in developing stages of Nepenthes gracilis Korth. pitcher.

    PubMed

    Pinthong, Krit; Chaveerach, Arunrat; Tanee, Tawatchai; Sudmoon, Runglawan; Mokkamul, Piya

    2009-03-15

    Nepenthes gracilis Korth. is a member of carnivorous plants in family Nepenthaceae. The plants have beautiful and economically important pitchers. It is interesting to study the protein(s) correlated with the pitcher. Crude proteins were extracted from leaf, leaf with developing pitcher and developed pitcher of the same plant and analyzed by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Two protein bands with molecular weights of 42.7 and 38 kDa were obtained from young leaf and leaf with developing pitcher, respectively. The 42.7 kDa protein was identified as phosphoglycerate kinase (PGK) by Liquid Chromatography Mass Spectrometry (LC-MS/MS), but the 38 kDa band is an unknown protein. Both proteins were differentially expressed in each developing stage of the pitcher, thus may be powerful candidates play role in development pathway of leaf and pitcher.

  6. Characterization of vitellogenin and its derived yolk proteins in cloudy catshark (Scyliorhinus torazame).

    PubMed

    Yamane, Kodai; Yagai, Tomoki; Nishimiya, Osamu; Sugawara, Rieko; Amano, Haruna; Fujita, Toshiaki; Hiramatsu, Naoshi; Todo, Takashi; Matsubara, Takahiro; Hara, Akihiko

    2013-04-01

    Elasmobranchs (sharks and rays) exhibit unique reproductive characteristics and, in contrast to the situation in teleosts, very little is known about the identity, structure and physical characteristics of their egg yolk proteins. The aims of this study were to (1) detect and purify the vitellogenin (Vtg; egg yolk precursor) and yolk proteins (YPs) of the cloudy catshark (Scyliorhinus torazame), (2) examine the relationships between Vtg and YPs and (3) characterize and classify the deduced primary structure of the Vtg transcript (vtg). The apparent molecular weights of purified Vtg and putative Vtg-related YPs (lipovitellin: Lv, phosvitin: Pv) were determined by gel filtration and were ~560, >669 and ~58 kDa, respectively. Following SDS-PAGE, these purified products (i.e., Vtg, Lv and Pv) appeared as bands of ~210, ~110 and ~22 kDa, respectively. On Western blots, antisera against purified Vtg, Lv and Pv recognized the ~210 kDa Vtg band. Catshark Pv, in contrast to teleost Pvs, had a very low serine content. The catshark Vtg cDNA sequence (vtg) appeared to contain an open-reading frame consisting of domains encoding Lv, Pv and β'-component (β'-c). A phylogenetic analysis, with a consideration of genome duplication events, placed catshark vtg into the 'vtgAB type.' It is concluded that at least a single major type of Vtg protein, which is transcribed and translated from catshark vtgAB gene, is the precursor of three egg yolk proteins (Lv, Pv and β'-c) in catshark.

  7. Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells.

    PubMed

    Yokota, Etsuo; Vidali, Luis; Tominaga, Motoki; Tahara, Hiroshi; Orii, Hidefumi; Morizane, Yosuke; Hepler, Peter K; Shimmen, Teruo

    2003-10-01

    In many cases, actin filaments are arranged into bundles and serve as tracks for cytoplasmic streaming in plant cells. We have isolated an actin-filament bundling protein, which is composed of 115-kDa polypeptide (P-115-ABP), from the germinating pollen of lily, Lilium longiflorum [Nakayasu et al. (1998) BIOCHEM: Biophys. Res. Commun. 249: 61]. P-115-ABP shared similar antigenicity with a plant 135-kDa actin-filament bundling protein (P-135-ABP), a plant homologue of villin. A full-length cDNA clone (ABP115; accession no. AB097407) was isolated from an expression cDNA library of lily pollen by immuno-screening using antisera against P-115-ABP and P-135-ABP. The amino acid sequence of P-115-ABP deduced from this clone showed high homology with those of P-135-ABP and four villin isoforms of Arabidopsis thaliana (AtVLN1, AtVLN2, AtVLN3 and AtVLN4), especially AtVLN4, indicating that P-115-ABP can also be classified as a plant villin. The P-115-ABP isolated biochemically from the germinating lily pollen was able to arrange F-actin filaments with uniform polarity into bundles and this bundling activity was suppressed by Ca2+-calmodulin (CaM), similar to the actin-filament bundling properties of P-135-ABP. The P-115-ABP type of plant villin was widely distributed in plant cells, from algae to land plants. In root hair cells of Hydrocharis dubia, this type of plant villin was co-localized with actin-filament bundles in the transvacuolar strands and the sub-cortical regions. Microinjection of the antiserum against P-115-ABP into living root hair cells caused the disappearance of transvaculor strands and alteration of the route of cytoplasmic streaming. In internodal cells of Chara corallina in which the P-135-ABP type of plant villin is lacking, the P-115-ABP type showed co-localization with actin-filament cables anchored on the intracellular surface of chloroplasts. These results indicated that plant villins are widely distributed and involved in the organization of actin

  8. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants.

    PubMed

    Soni, Sangeeta; Tyagi, Chetna; Grover, Abhinav; Goswami, Shyamal K

    2014-07-11

    SG2NA is a member of the striatin sub-family of WD-40 repeat proteins. Striatin family members have been associated with diverse physiological functions. SG2NA has also been shown to have roles in cell cycle progression, signal transduction etc. They have been known to interact with a number of proteins including Caveolin and Calmodulin and also propagate the formation of a multimeric protein unit called striatin-interacting phosphatase and kinase. As a pre-requisite for such interaction ability, these proteins are known to be unstable and primarily disordered in their arrangement. Earlier we had identified that it has multiple isoforms (namely 35, 78, 87 kDa based on its molecular weight) which are generated by alternative splicing. However, detailed structural information of SG2NA is still eluding the researchers. This study was aimed towards three-dimensional molecular modeling and characterization of SG2NA protein and its isoforms. One structure out of five was selected for each variant having the least value for C score. Out of these, m35 kDa with a C score value of -3.21 was the most poorly determined structure in comparison to m78 kDa and m87 kDa variants with C scores of -1.16 and -1.97 respectively. Further evaluation resulted in about 61.6% residues of m35 kDa, 76.6% residues of m78 kDa and 72.1% residues of m87 kDa falling in the favorable regions of Ramchandran Plot. Molecular dynamics simulations were also carried out to obtain biologically relevant structural models and compared with previous atomic coordinates. N-terminal region of all variants was found to be highly disordered. This study provides first-hand detailed information to understand the structural conformation of SG2NA protein variants (m35 kDa, m78 kDa and m87 kDa). The WD-40 repeat domain was found to constitute antiparallel strands of β-sheets arranged circularly. This study elucidates the crucial structural features of SG2NA proteins which are involved in various protein-protein

  9. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  10. Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling.

    PubMed

    Singh, Manoj; Metwal, Mamta; Kumar, Vandana A; Kumar, Anil

    2016-01-30

    Attempts were made to identify and characterize the calcium binding proteins (CaBPs) in grain filling stages of finger millet using proteomics, bioinformatics and molecular approaches. A distinctly observed blue color band of 48 kDa stained by Stains-all was eluted and analyzed as calreticulin (CRT) using nano liquid chromatography-tandem mass spectrometry (nano LC-MS). Based on the top hits of peptide mass fingerprinting results, conserved primers were designed for isolation of the CRT gene from finger millet using calreticulin sequences of different cereals. The deduced nucleotide sequence analysis of 600 bp amplicon showed up to 91% similarity with CRT gene(s) of rice and other plant species and designated as EcCRT1. Transcript profiling of EcCRT1 showed different levels of relative expression at different stages of developing spikes. The higher expression of EcCRT1 transcripts and protein were observed in later stages of developing spikes which might be due to greater translational synthesis of EcCRT1 protein during seed maturation in finger millet. Preferentially higher synthesis of this CaBP during later stages of grain filling may be responsible for the sequestration of calcium in endoplasmic reticulum of finger millet grains. © 2015 Society of Chemical Industry.

  11. Sequential Extraction Results in Improved Proteome Profiling of Medicinal Plant Pinellia ternata Tubers, Which Contain Large Amounts of High-Abundance Proteins

    PubMed Central

    An, SuFang; Gong, FangPing; Wang, Wei

    2012-01-01

    Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae. PMID:23185632

  12. Sequential extraction results in improved proteome profiling of medicinal plant Pinellia ternata tubers, which contain large amounts of high-abundance proteins.

    PubMed

    Wu, Xiaolin; Xiong, Erhui; An, Sufang; Gong, Fangping; Wang, Wei

    2012-01-01

    Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae.

  13. Influence of Culture Conditions on Expression of the 40-Kilodalton Porin Protein of Vibrio anguillarum Serotype O2

    PubMed Central

    Davey, Michelle L.; Hancock, Robert E. W.; Mutharia, Lucy M.

    1998-01-01

    Vibrio anguillarum serotype O2 strains express a 40-kDa outer membrane porin protein. Immunoblot analysis revealed that antigenic determinants of the V. anguillarum O2 40-kDa porin were conserved within bacterial species of the genus Vibrio. The relative amounts of the V. anguillarum O2 40-kDa porin were enhanced by growth of V. anguillarum O2 in CM9 medium containing 5 to 10% sucrose or 0.1 to 0.5 M NaCl. In contrast, the levels of the porin were significantly reduced when cells were grown at 37°C, and a novel 60-kDa protein was also observed. However, the osmolarity or ionic concentration of the growth medium did not influence expression of the 60-kDa protein. Growth in medium containing greater than 0.6 mM EDTA reduced production of the V. anguillarum O2 40-kDa porin and enhanced levels of a novel 19-kDa protein. Thus, expression of the V. anguillarum O2 40-kDa porin was osmoregulated and possibly coregulated by temperature. The N-terminal amino acid sequence of the V. anguillarum O2 40-kDa protein and the effect of environmental factors on the cellular levels of the porin suggested that the V. anguillarum O2 40-kDa porin was functionally similar to the OmpC porin of Escherichia coli. However, pore conductance assays revealed that the V. anguillarum O2 40-kDa porin was a general diffusion porin with a pore size in the range of that of the OmpF porin of E. coli. PMID:9435071

  14. Molecular characterization of a 40 kDa OmpC-like porin from Serratia marcescens.

    PubMed

    Hutsul, J A; Worobec, E

    1994-02-01

    An oligonucleotide that encodes the N-terminal portion of a 41 kDa porin of Serratia marcescens was used to probe S. marcescens UOC-51 genomic DNA. An 11 kb EcoRI fragment which hybridized with the oligonucleotide was subcloned into Escherichia coli, examined for expression, and sequenced. The product expressed by the cloned gene was 40 kDa. The nucleotide sequence has an ORF of 1.13 kb. When the deduced amino acid sequence was aligned and compared to other enterobacterial porins the cloned S. marcescens porin most closely resembled E. coli OmpC. Although we did not detect osmoregulation or thermoregulation of any porins in S. marcescens UOC-51, sequences analogous to the E. coli osmoregulator OmpR-binding regions are seen upstream to the cloned gene. We examined the regulation of the S. marcescens porin in E. coli and found that its expression increased in a high salt environment. A micF gene, whose transcriptional product functions to inhibit synthesis of OmpF by hybridizing with the ompF transcript, was also seen upstream of the S. marcescens ompC. An alignment with the E. coli micF gene revealed that the functional region of the S. marcescens micF gene is conserved. Based on the results obtained we have determined that S. marcescens UOC-51 produces a 40 kDa porin similar to the E. coli OmpC porin.

  15. Analysis of bax protein in sphingosine-induced apoptosis in the human leukemic cell line TF1 and its bcl-2 transfectants.

    PubMed

    Isogai, C; Murate, T; Tamiya-Koizumi, K; Yoshida, S; Ito, T; Nagai, H; Kinoshita, T; Kagami, Y; Hotta, T; Hamaguchi, M; Saito, H

    1998-11-01

    Sphingosine, a sphingolipid breakdown product, has been proposed as an apoptosis-inducing agent. In this study, we examined the effect of sphingosine in bcl-2-overexpressing cells compared with cells that do not express the bcl-2 gene. The human erythroleukemic cell line TF1, which lacks bcl-2 expression, was easily induced to undergo apoptotic cell death by a variety of stimuli, including depletion of granulocyte-macrophage colony-stimulating factor (GM-CSF) or exposure to methylmethane sulfonate (MMS) (100 microg/mL), ultraviolet light (15 J/m2), X-ray irradiation (20 Gy), or sphingosine, a sphingolipid breakdown product (5 microM). In contrast, bcl-2 transfectants of TF1 (TF1-bcl2), which we established, were resistant to most of these treatments but remained sensitive to sphingosine. Neither C2- nor C6-ceramide (short-chain ceramide) induced apoptosis in TF1-mock and TF1-bcl2 cells. Sphingosine-induced apoptosis could not be inhibited by fumonisin B1, which can prevent conversion of sphingosine to ceramide, suggesting that sphingosine itself, not ceramide, possesses apoptosis-inducing capability. Western blotting, which revealed a 21-kDa bax protein in untreated cells, revealed the presence of an additional 18-kDa protein in GM-CSF-depleted and MMS- or sphingosine-treated TF1-mock cells. In TF1-bcl2 cells, this protein was not detected after GM-CSF depletion or MMS treatment, but was observed after sphingosine treatment. Immunoprecipitation with anti-bcl2 antibody, followed by immunoblotting with anti-bax antibody, showed that both the 21-kDa bax protein and the 18-kDa protein heterodimerized with bcl-2 protein. These results suggest that sphingosine is a unique reagent for apoptosis and that it can overcome bcl-2 gene expression. Furthermore, induction of 18-kDa bax-related protein may play an important role in apoptosis. Sphingosine, but not ceramide, may prove applicable as a reagent for future cytotoxic drugs used to treat intractable tumors overexpressing

  16. Analysis of Cry8Ka5-binding proteins from Anthonomus grandis (Coleoptera: Curculionidae) midgut.

    PubMed

    Nakasu, Erich Y T; Firmino, Alexandre A P; Dias, Simoni C; Rocha, Thales L; Ramos, Hudson B; Oliveira, Gustavo R; Lucena, Wagner; Carlini, Célia R; Grossi-de-Sá, Maria Fátima

    2010-07-01

    Biotech crops expressing Bacillus thuringiensis Cry toxins present a valuable approach for insect control. Cry8Ka5, which is highly toxic to the cotton boll weevil (Anthonomus grandis), was used as a model to study toxin-ligand interactions. Three Cry-binding proteins were detected after toxin overlay assays. Following de novo sequencing, a heat-shock cognate protein and a V-ATPase were identified, whilst a approximately 120 kDa protein remained unknown. Additional Cry8Ka5-binding proteins were visualized by two-dimensional gel electrophoresis ligand blots. (c) 2010 Elsevier Inc. All rights reserved.

  17. A universal method for detection of amyloidogenic misfolded proteins.

    PubMed

    Yam, Alice Y; Wang, Xuemei; Gao, Carol Man; Connolly, Michael D; Zuckermann, Ronald N; Bleu, Thieu; Hall, John; Fedynyshyn, Joseph P; Allauzen, Sophie; Peretz, David; Salisbury, Cleo M

    2011-05-24

    Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.

  18. Indonesian honey protein isolation Apis dorsata dorsata and Tetragonula sp. as antibacterial and antioxidant agent

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Damayanti, Vina; Azizah, Nurul; Hakamada, Kazuaki; Yohda, Masafumi; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin

    2018-02-01

    Honey is a natural product that has many properties and been widely used for many theurapeutic purposes. Research on honey has been very rapid but not yet for Indonesia. Like local Indonesian honey Apis dorsata dorsata and Tetragonula sp. which has been widely consumed by the public but not yet known for certain efficacy of each content. The function of honey as antibacterial and antioxidant has not been specifically explained by the components contained in honey. Protein is one of the content of honey that turned out to have activity as an antibacterial and antioxidant in certain types of honey because of it antimicrobial peptide. Testing of honey activity as antibacterial and antioxidant through several stages including isolation, SDS-PAGE analysis, Bradford test, antibacterial activity test with well diffusion method and antioxidant activity test by DPPH method. Bacteria used were gram-positive bacteria Staphylococcus aureus and gram negative Escherichia coli. After some experiment finally got protein isolation method that is in the form of further concentration using Millipore membrane for honey Tetragonula sp. and membrane filtration dot blot for honey Apis dorsata dorsata. The Bradford assay showed that Apis dorsata dorsata honey contains protein <5 µg / ml, while honey Tetragonula sp. has a protein content of 97 µg / ml. The characteristic profile of molecular weight of the protein showed honey Tetragonula sp. has 3 protein bands composed of 52, 96 - 61,9 kDa, 63,35 - 65,92 kDa and 86,16 - 91,4 kDa, whereas Apis dorsata dorsata honey has 5 protein bands consisting of 45,2 - 46,6 kDa, 50,2 - 50,9 kDa, 62,5 - 62,9 kDa, 73,1 - 73,9 kDa, 83,9 - 86,9 kDa. Isolate honey protein Apis dorsata dorsata has no antioxidant and antibacterial activity (Staphylococcus aureus and Escherichia coli), whereas honey protein isolates Tetragonula sp. has antibacterial activity against Escherichia coli.

  19. Chemical and biological activities of a 64-kilodalton outer sheath protein from Treponema denticola strains.

    PubMed Central

    Weinberg, A; Holt, S C

    1991-01-01

    This study examined the distribution of the major outer sheath proteins (MOSP) in several Treponema denticola strains and reports the isolation of a 64-kDa protein from the outer sheath of human clinical isolate T. denticola GM-1. The outer sheath was isolated by freeze-thaw procedures, and the distribution of outer sheath proteins was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). T. denticola GM-1, MS25, SR-5, and three low-passage clinical isolates possessed an MOSP with a relative molecular mass of 60 to 64 kDa. This MOSP was absent in T. denticola ATCC 35404 (TD-4) and clinical isolate SR-4. The latter possessed an MOSP of 58 kDa. 125I labeling revealed both MOSP to be dissociated forms of higher-molecular-mass oligomeric units between 116 and 162 kDa. Two-dimensional SDS-PAGE confirmed the modifiability of these MOSP. Isoelectric focusing of the 64-kDa MOSP indicated a pI of 6.7. Immunoblots with antiserum to GM-1 whole cells revealed the 64-kDa protein to be immunogenic and not cross-reactive with the MOSP of TD-4 or SR-4, and monospecific antibody to the 64-kDa protein recognized common epitopes on the high-molecular-weight oligomeric protein. These antibodies did not react with any component of TD-4 whole cells in immunoblots or in immunogold electron microscopy. Fab fragments inhibited the adherence of T. denticola GM-1 to human gingival fibroblasts by 78% (1:1,600; 0.72 micrograms of protein per ml), while TD-4 adherence was not inhibited. Amino acid analysis revealed a slightly acidic protein, devoid of cysteine, with 36% hydrophobic residues. Cyanogen bromide fragmentation of the 64-kDa protein revealed that a 42-kDa fragment contained a T-L-D-L-A-L-D segment which was 100% homologous with an integrin alpha subunit of a human leukocyte adhesion glycoprotein p 150,95. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 FIG. 9 FIG. 10 FIG. 11 FIG. 12 FIG. 13 FIG. 14 PMID:1938897

  20. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    PubMed

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  1. Temporal synthesis of proteins and RNAs during human astrovirus infection of cultured cells.

    PubMed Central

    Monroe, S S; Stine, S E; Gorelkin, L; Herrmann, J E; Blacklow, N R; Glass, R I

    1991-01-01

    Astroviruses are nonenveloped particles with a distinctive star-shaped surface structure that have been detected by electron microscopy in stool samples from humans and animals with gastroenteritis. We examined the patterns of macromolecular synthesis in astrovirus-infected cells with a goal of establishing a molecular basis for taxonomic classification. Trypsin is required for continuous replication of astrovirus in cultured cells; however, during a single cycle of infection, astrovirus antigen was synthesized earlier and at higher levels when serum, rather than trypsin, was included in the growth medium. This enhanced production of antigen, as measured by enzyme immunoassay, was accompanied by the appearance of aggregates of virus particles in the cytoplasm of infected cells. During astrovirus replication in cells cultured in the presence of serum, we detected a single infection-specific protein (90 kDa) beginning at 12 h postinfection. This protein was recognized by antiastrovirus rabbit serum and was sensitive to trypsin digestion in vitro, with the concomitant appearance of three smaller immunoreactive proteins (31, 29, and 20 kDa). We also detected two dactinomycin-resistant RNAs (7.2 and 2.8 kb), both of which were polyadenylated, in the cytoplasm of astrovirus-infected cells. The larger of these two RNAs is presumably the viral genome, whereas the smaller species may be a subgenomic messenger. Comparison of the proteins and RNAs synthesized in astrovirus-infected cells with those of the recognized families of nonenveloped single-stranded RNA animal viruses suggests that astroviruses should not be classified as members of either Caliciviridae or Picornaviridae. Images PMID:1987373

  2. Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii

    PubMed Central

    Siroy, Axel; Molle, Virginie; Lemaître-Guillier, Christelle; Vallenet, David; Pestel-Caron, Martine; Cozzone, Alain J.; Jouenne, Thierry; Dé, Emmanuelle

    2005-01-01

    It has been recently shown that resistance to both imipenem and meropenem in multidrug-resistant clinical strains of Acinetobacter baumannii is associated with the loss of a heat-modifiable 25/29-kDa outer membrane protein, called CarO. This study aimed to investigate the channel-forming properties of CarO. Mass spectrometry analyses of this protein band detected another 25-kDa protein (called Omp25), together with CarO. Both proteins presented similar physicochemical parameters (Mw and pI). We overproduced and purified the two polypeptides as His-tagged recombinant proteins. Circular dichroism analyses demonstrated that the secondary structure of these proteins was mainly a β-strand conformation with spectra typical of porins. We studied the channel-forming properties of proteins by reconstitution into artificial lipid bilayers. In these conditions, CarO induced ion channels with a conductance value of 110 pS in 1 M KCl, whereas the Omp25 protein did not form any channels, despite its suggested porin function. The pores formed by CarO showed a slight cationic selectivity and no voltage closure. No specific imipenem binding site was found in CarO, and this protein would rather form unspecific monomeric channels. PMID:16304148

  3. Nectinepsin: a new extracellular matrix protein of the pexin family. Characterization of a novel cDNA encoding a protein with an RGD cell binding motif.

    PubMed

    Blancher, C; Omri, B; Bidou, L; Pessac, B; Crisanti, P

    1996-10-18

    We report the isolation and characterization of a novel cDNA from quail neuroretina encoding a putative protein named nectinepsin. The nectinepsin cDNA identifies a major 2.2-kilobase mRNA that is detected from ED 5 in neuroretina and is increasingly abundant during embryonic development. A nectinepsin mRNA is also found in quail liver, brain, and intestine and in mouse retina. The deduced nectinepsin amino acid sequence contains the RGD cell binding motif of integrin ligands. Furthermore, nectinepsin shares substantial homologies with vitronectin and structural protein similarities with most of the matricial metalloproteases. However, the presence of a specific sequence and the lack of heparin and collagen binding domains of the vitronectin indicate that nectinepsin is a new extracellular matrix protein. Furthermore, genomic Southern blot studies suggest that nectinepsin and vitronectin are encoded by different genes. Western blot analysis with an anti-human vitronectin antiserum revealed, in addition to the 65- and 70-kDa vitronectin bands, an immunoreactive protein of about 54 kDa in all tissues containing nectinepsin mRNA. It seems likely that the form of vitronectin found in chick egg yolk plasma by Nagano et al. ((1992) J. Biol. Chem. 267, 24863-24870) is the protein that corresponds to the nectinepsin cDNA. This new protein could be an important molecule involved in the early steps of the development.

  4. Similarity of a 16.5kDa tegumental protein of the human liver fluke Opisthorchis viverrini to nematode cytoplasmic motility protein.

    PubMed

    Labbunruang, Nipawan; Phadungsil, Wansika; Tesana, Smarn; Smooker, Peter M; Grams, Rudi

    2016-05-01

    Opisthorchis viverrini is the causative agent of human opisthorchiasis in Thailand and long lasting infection with the parasite has been correlated with the development of cholangiocarcinoma. In this work we have molecularly characterized the first member of a protein family carrying two DM9 repeats in this parasite (OvDM9-1). InterPro and other protein family databases describe the DM9 repeat as a protein domain of unknown function that has been first noted in Drosophila melanogaster. Two paralogous proteins have been partially characterized in the genus Fasciola, Fasciola hepatica TP16.5, a novel tegumental antigen in human fascioliasis and, recently F. gigantica DM9-1, a parenchymal protein with structural similarity to nematode cytoplasmic motility protein (MFP2). In this study, we show further evidence that this family of trematode proteins is related to MFP2 in sequence and structure. Soluble recombinant OvDM9-1 was used for structural analyses and for production of specific antisera. The native protein was detected in soluble and insoluble crude worm extracts and in seemingly various oligomeric forms in the latter. The potential for oligomerization was supported by cross-linking experiments of recombinant OvDM9-1. Structure prediction suggested a β-rich secondary structure of the protein and this was supported by a circular dichroism analysis. Molecular modeling in Phyre2 identified both MFP2 domains as distant homologs of OvDM9-1. The protein was located in tegumental type tissue and the cecal epithelium in the mature parasite. Recombinant OvDM9-1 was used as target in indirect ELISA but sera from infected hamsters showed only marginal reactivity towards it. It is proposed that OvDM9-1 and other members of this protein family have a role in cellular transport through functions on the cytoskeleton. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reverse phase protein microarrays: fluorometric and colorimetric detection.

    PubMed

    Gallagher, Rosa I; Silvestri, Alessandra; Petricoin, Emanuel F; Liotta, Lance A; Espina, Virginia

    2011-01-01

    The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.

  6. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics.

    PubMed

    Freedman, Kevin J; Bastian, Arangassery R; Chaiken, Irwin; Kim, Min Jun

    2013-03-11

    Protein conjugation provides a unique look into many biological phenomena and has been used for decades for molecular recognition purposes. In this study, the use of solid-state nanopores for the detection of gp120-associated complexes are investigated. They exhibit monovalent and multivalent binding to anti-gp120 antibody monomer and dimers. In order to investigate the feasibility of many practical applications related to nanopores, detection of specific protein complexes is attempted within a heterogeneous protein sample, and the role of voltage on complexed proteins is researched. It is found that the electric field within the pore can result in unbinding of a freely translocating protein complex within the transient event durations measured experimentally. The strong dependence of the unbinding time with voltage can be used to improve the detection capability of the nanopore system by adding an additional level of specificity that can be probed. These data provide a strong framework for future protein-specific detection schemes, which are shown to be feasible in the realm of a 'real-world' sample and an automated multidimensional method of detecting events. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Allergenicity, trypsin inhibitor activity and nutritive quality of enzymatically modified soy proteins.

    PubMed

    De La Barca, Ana María Calderón; Wall, Abraham; López-Díaz, José Alberto

    2005-05-01

    Two ultrafiltered soy flour protein fractions were evaluated; the first was obtained by hydrolysis (0.5-3 kDa, F(0.5-3)), and the second was an enzymatically methionine-enriched fraction (1-10 kDa, F(1-10)E). Amino acid profiles, protein quality, allergenicity (against soy-sensitive infant sera) and trypsin inhibitor activity were determined. Fraction F(1-10)E fulfilled amino acid requirements for infants, whereas the F(0.5-3) fraction was methionine deficient. Both fractions were similar in net protein utilization, and F(1-10)E digestibility was comparable with casein and higher (P?detected in F(0.5-3.) Residual trypsin inhibitor activity with respect to soy flour was 8.1%, 3.3% and 1% for hydrolysate, F(1-10)E and F(0.5-3), respectively. Both fractions presented high nutritive quality and reduced or null allergenicity. The trypsin inhibitor activity decreased along processing and could be a useful indicator for production of hypoallergenic proteins.

  8. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    PubMed Central

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  9. An autoclave treatment reduces the solubility and antigenicity of an allergenic protein found in buckwheat flour.

    PubMed

    Tomotake, Hiroyuki; Yamazaki, Rikio; Yamato, Masayuki

    2012-06-01

    The effects of an autoclave treatment of buckwheat flour on a 24-kDa allergenic protein were investigated by measuring reduction in solubility and antibody binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the intensity of the major bands, including that of the 24-kDa allergen, was reduced by the autoclave treatment. The protein solubility in buckwheat flour was variably decreased by the autoclave treatment. Enzyme-linked immunosorbent assay analysis using a monoclonal antibody specific for buckwheat 24-kDa protein showed that the reactivity of protein extracts (10 μg/ml) from buckwheat flour was lowered by the autoclave treatment. The autoclave treatment may reduce the major allergen content of buckwheat. Future studies will determine if autoclaving treatments affect the allergenicity of the 24-kDa buckwheat protein.

  10. Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding.

    PubMed

    Vassall, Kenrick A; Bamm, Vladimir V; Jenkins, Andrew D; Velte, Caroline J; Kattnig, Daniel R; Boggs, Joan M; Hinderberger, Dariush; Harauz, George

    2016-06-01

    Intrinsically-disordered proteins (IDPs) present a complex interplay of conformational variability and multifunctionality, modulated by environment and post-translational modifications. The 18.5-kDa myelin basic protein (MBP) is essential to the formation of the myelin sheath of the central nervous system and is exemplary in this regard. We have recently demonstrated that the unmodified MBP-C1 component undergoes co-operative global conformational changes in increasing concentrations of trifluoroethanol, emulating the decreasing dielectric environment that the protein encounters upon adsorption to the oligodendrocyte membrane [K.A. Vassall et al., Journal of Molecular Biology, 427, 1977-1992, 2015]. Here, we extended this study to the pseudo-deiminated MBP-C8 charge component, one found in greater proportion in developing myelin and in multiple sclerosis. A similar tri-conformational distribution as for MBP-C1 was observed with slight differences in Gibbs free energy. A more dramatic difference was observed by cathepsin D digestion of the protein in both aqueous and membrane environments, which showed significantly greater accessibility of the F42-F43 cut site of MBP-C8, indicative of a global conformational change. In contrast, this modification caused little change in the protein's density of packing on myelin-mimetic membranes as ascertained by double electron-electron resonance spectroscopy [D.R. Kattnig et al., Biochimica et Biophysica Acta (Biomembranes), 1818, 2636-2647, 2012], or in its affinity for Ca(2+)-CaM. Site-specific threonyl pseudo-phosphorylation at residues T92 and/or T95 did not appreciably affect any of the thermodynamic mechanisms of conformational transitions, susceptibility to cathepsin D, or affinity for Ca(2+)-CaM, despite previously having been shown to affect local structure and disposition on the membrane surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biosynthesis of small proteoglycan II (decorin) by chondrocytes and evidence for a procore protein.

    PubMed

    Sawhney, R S; Hering, T M; Sandell, L J

    1991-05-15

    We have studied the biosynthesis of cartilage dermatan sulfate proteoglycan II (DS-PGII) (decorin) using in vitro translation of mRNA to determine the size of the primary gene product and by radiolabeling the protein in the presence of tunicamycin to inhibit the addition of Asn-linked oligosaccharides. Pulse-chase experiments were performed to examine post-translational processing and secretion. Inhibitors of oligosaccharide processing were used to determine whether DS-PGII molecules containing partially processed oligosaccharides could become proteoglycans and be secreted. Cell-free translation of sucrose gradient-fractionated RNA and subsequent immunoprecipitation of the core protein confirmed that the functional translated mRNA is in the size range of the two mRNA species observed by hybridization of chondrocyte RNA with a bone PGII cloned probe and that the translation product is a single protein with an apparent molecular mass of 42 kDa. Digestion of the intact proteoglycan (average molecular mass = 103 kDa) with chondroitinase ABC or AC results in an approximately 48-49-kDa product. Chondrocytes treated with tunicamycin to inhibit Asn-linked oligosaccharide addition synthesize and secrete a glycosaminoglycan (GAG)-substituted proteoglycan (average molecular mass = 86 kDa), yielding a 42-kDa core protein after chondroitinase ABC digestion, showing that Asn-linked oligosaccharides are not required for the addition of GAG chains or secretion. Following a short pulse (10 min) of [3H]leucine, three glycosylated forms of the DS-PGII core protein were observed, one of which is likely to be the precursor form of PGII predicted by the implied protein sequence of both bovine and human cDNA clones. Following the apparent cleavage of the propeptide, GAG-substituted intracellular core protein is detectable. Susceptibility to endoglycosidase H indicates that approximately one-third of the secreted core protein contains exclusively complex-type Asn-linked oligosaccharides

  12. Protein detection using biobarcodes.

    PubMed

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  13. Purification and characterization of protein PC, a component of glycine reductase from Eubacterium acidaminophilum.

    PubMed

    Schräder, T; Andreesen, J R

    1992-05-15

    Protein PC of the glycine reductase from Eubacterium acidaminophilum was purified to homogeneity by chromatography on phenyl-Sepharose and Sepharose S. The apparent molecular mass of the native protein, which showed an associating/dissociating behaviour, was about 420 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of protein PC revealed two protein bands corresponding to 48 and 57 kDa, indicating an alpha 4 beta 4 composition. The smaller subunit was identified as an acetyl-group-transferring protein, the 57-kDa protein was hydrophobic. N-terminal amino acid sequences were determined for both subunits. Antibodies raised against the 48-kDa subunit showed cross-reactions with extracts of E. acidaminophilum grown on different substrates and with extracts from other glycine-utilizing anaerobic bacteria such as Clostridium purinolyticum, C. sticklandii, and C. sporogenes. The respective protein from the former two organisms corresponded in molecular mass. When protein PA was chemically carboxymethylated by iodo[2-14C]acetate and incubated with protein PC, acetyl phosphate was a reaction product, thus establishing it as the product of the glycine reductase reaction by using homogeneous preparations of these two proteins from E. acidaminophilum.

  14. Dot-Blot Immunoassay of Fasciola gigantica Infection using 27 kDa and Adult Worm Regurge Antigens in Egyptian Patients

    PubMed Central

    Kamel, Hanan H.; Saad, Ghada A.

    2013-01-01

    The purpose of the present study was to evaluate the potential role of the 27-Kilodalton (KDa) antigen versus Fasciola gigantica adult worm regurge antigens in a DOT-Blot assay and to assess this assay as a practical tool for diagnosis fascioliasis in Egyptian patients. Fasciola gigantica antigen of an approximate molecular mass 27-(KDa) was obtained from adult worms by a simple elution SDS-PAGE. A Dot-Blot was developed comparatively to adult worm regurge antigens for the detection of specific antibodies from patients infected with F. gigantica in Egypt. Control sera were obtained from patients with other parasitic infections and healthy volunteers to assess the test and compare between the antigens. The sensitivity, specificity, positive and negative predictive values of Dot-Blot using the adult worm regurge were 80%, 90%, 94.1%, and 69.2% respectively, while those using 27-KDa were 100% which confirms the diagnostic potential of this antigen. All patients infected with Fasciola were positive, with cross reactivity reported with Schistosoma mansoni serum samples. This 27-KDa Dot-Blot assay showed to be a promising test which can be used for serodiagnosis of fascioliasis in Egyptian patients especially, those presenting with hepatic disease. It is specific, sensitive and easy to perform method for the rapid diagnosis particularly when more complex laboratory tests are unavailable. PMID:23710084

  15. Dot-blot immunoassay of Fasciola gigantica infection using 27 kDa and adult worm regurge antigens in Egyptian patients.

    PubMed

    Kamel, Hanan H; Saad, Ghada A; Sarhan, Rania M

    2013-04-01

    The purpose of the present study was to evaluate the potential role of the 27-Kilodalton (KDa) antigen versus Fasciola gigantica adult worm regurge antigens in a DOT-Blot assay and to assess this assay as a practical tool for diagnosis fascioliasis in Egyptian patients. Fasciola gigantica antigen of an approximate molecular mass 27-(KDa) was obtained from adult worms by a simple elution SDS-PAGE. A Dot-Blot was developed comparatively to adult worm regurge antigens for the detection of specific antibodies from patients infected with F. gigantica in Egypt. Control sera were obtained from patients with other parasitic infections and healthy volunteers to assess the test and compare between the antigens. The sensitivity, specificity, positive and negative predictive values of Dot-Blot using the adult worm regurge were 80%, 90%, 94.1%, and 69.2% respectively, while those using 27-KDa were 100% which confirms the diagnostic potential of this antigen. All patients infected with Fasciola were positive, with cross reactivity reported with Schistosoma mansoni serum samples. This 27-KDa Dot-Blot assay showed to be a promising test which can be used for serodiagnosis of fascioliasis in Egyptian patients especially, those presenting with hepatic disease. It is specific, sensitive and easy to perform method for the rapid diagnosis particularly when more complex laboratory tests are unavailable.

  16. Intracellular transport and processing of the Marburg virus surface protein in vertebrate and insect cells.

    PubMed

    Becker, S; Klenk, H D; Mühlberger, E

    1996-11-01

    The surface protein (GP) of Marburg virus (MBG) is synthesized as a 90-kDa precursor protein which is cotranslationally modified by the addition of high-mannose sugars (140 kDa). This step is followed by the conversion of the N-linked sugars to endoglycosidase H (endo H)-resistant species and the addition of O-linked oliosaccharides leading to a mature protein of 170-200 kDa approximately 30 min after pulse labelling. The mature form of GP is efficiently transported to the plasma membrane. GP synthesized using the T7 polymerase-driven vaccinia virus expression system was transported with essentially the same kinetics as the authentic GP. However, the protein that is shown to appear 30 min after pulse labeling at the plasma membrane was slighly smaller (160 kDa) than GP incorporated into the virions (170 kDa). Using a recombinant baculovirus, GP was expressed at high levels in insect cells. Three different species could be identified: a 90-kDa unglycosylated GP localized in the cytoplasm and two 140-kDa glycosylated proteins. Characterization of the glycosylated GPs revealed that processing of the oligosaccharides of GP was less efficient in insect cells than in mammalian cells. The majority of GP remained endo H sensitive containing high-mannose type N-linked glycans, whereas only a small fraction became endo H resistant carrying processed N-glycans and O-glycans. Tunicamycin treatment of the GP-expressing cells demonstrated that N-glycosylation is essential for the transport of the MBG surface protein.

  17. A facile approach to the isolation of proteins in Ferula asafoetida and their enzyme stabilizing, anti-microbial and anti-oxidant activity.

    PubMed

    Chandran, Sanjana; Sakthivel, Meenakumari; Thirumavalavan, Munusamy; Thota, Jagadeshwar Reddy; Mariappanadar, Vairamani; Raman, Pachaiappan

    2017-09-01

    The objective of the present study was to identify the proteome pattern, isolate and study the functions of selective proteins from Ferula asafoetida root exudate using chromatographic techniques. The root exudate proteins were fractionated using ion-exchange and gel filtration chromatography. A range of bioactive protein fractions were then separated in sufficient quantity which is the focus of this study. Based on studies, here we report three main proteins with molecular weights 14kDa, 27kDa, and 39kDa. The biological and pharmacological activities of both purified and unpurified proteins obtained were extensively studied to understand their significance. The study revelaed that 27kDa protein interestingly stabilized trypsin activity in 24h of time and retained about 64% of the enzyme activity. Analyses confirmed 40°C and pH 8.0 are the optimum temperature and pH respectively. The 39kDa protein remarkably increased the activity of chymotrypsin and the 14kDa protein showed anti-bacterial activity against Pseudomonas aeruginosa. Invariably all of the three purified proteins showed enhanced anti-oxidant activity. In conclusion, results here obtained suggested that the primary metabolites (proteins) in asafoetida are mainly responsible for its versatile biological and pharmacological activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Formation of Hirano Bodies Induced by Expression of an Actin Cross-Linking Protein with a Gain-of-Function Mutation

    PubMed Central

    Maselli, Andrew; Furukawa, Ruth; Thomson, Susanne A. M.; Davis, Richard C.; Fechheimer, Marcus

    2003-01-01

    Hirano bodies are paracrystalline actin filament-containing structures reported to be associated with a variety of neurodegenerative diseases. However, the biological function of Hirano bodies remains poorly understood, since nearly all prior studies of these structures were done with postmortem samples of tissue. In the present study, we generated a full-length form of a Dictyostelium 34-kDa actin cross-linking protein with point mutations in the first putative EF hand, termed 34-kDa ΔEF1. The 34-kDa ΔEF1 protein binds calcium normally but has activated actin binding that is unregulated by calcium. The expression of the 34-kDa ΔEF1 protein in Dictyostelium induces the formation of Hirano bodies, as assessed by both fluorescence microscopy and transmission electron microscopy. Dictyostelium cells bearing Hirano bodies grow normally, indicating that Hirano bodies are not associated with cell death and are not deleterious to cell growth. Moreover, the expression of the 34-kDa ΔEF1 protein rescues the phenotypes of cells lacking the 34-kDa protein and cells lacking both the 34-kDa protein and α-actinin. Finally, the expression of the 34-kDa ΔEF1 protein also initiates the formation of Hirano bodies in cultured mouse fibroblasts. These results show that the failure to regulate the activity and/or affinity of an actin cross-linking protein can provide a signal for the formation of Hirano bodies. More generally, the formation of Hirano bodies is a cellular response to or a consequence of aberrant function of the actin cytoskeleton. PMID:12912897

  19. Immunofluorescence detection of pea protein in meat products.

    PubMed

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  20. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    NASA Astrophysics Data System (ADS)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  1. Negative and Translation Termination-Dependent Positive Control of FLI-1 Protein Synthesis by Conserved Overlapping 5′ Upstream Open Reading Frames in Fli-1 mRNA

    PubMed Central

    Sarrazin, Sandrine; Starck, Joëlle; Gonnet, Colette; Doubeikovski, Alexandre; Melet, Fabrice; Morle, François

    2000-01-01

    The proto-oncogene Fli-1 encodes a transcription factor of the ets family whose overexpression is associated with multiple virally induced leukemias in mouse, inhibits murine and avian erythroid cell differentiation, and induces drastic perturbations of early development in Xenopus. This study demonstrates the surprisingly sophisticated regulation of Fli-1 mRNA translation. We establish that two FLI-1 protein isoforms (of 51 and 48 kDa) detected by Western blotting in vivo are synthesized by alternative translation initiation through the use of two highly conserved in-frame initiation codons, AUG +1 and AUG +100. Furthermore, we show that the synthesis of these two FLI-1 isoforms is regulated by two short overlapping 5′ upstream open reading frames (uORF) beginning at two highly conserved upstream initiation codons, AUG −41 and GUG −37, and terminating at two highly conserved stop codons, UGA +35 and UAA +15. The mutational analysis of these two 5′ uORF revealed that each of them negatively regulates FLI-1 protein synthesis by precluding cap-dependent scanning to the 48- and 51-kDa AUG codons. Simultaneously, the translation termination of the two 5′ uORF appears to enhance 48-kDa protein synthesis, by allowing downstream reinitiation at the 48-kDa AUG codon, and 51-kDa protein synthesis, by allowing scanning ribosomes to pile up and consequently allowing upstream initiation at the 51-kDa AUG codon. To our knowledge, this is the first example of a cellular mRNA displaying overlapping 5′ uORF whose translation termination appears to be involved in the positive control of translation initiation at both downstream and upstream initiation codons. PMID:10757781

  2. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  3. Association of Guide RNA Binding Protein gBP21 with Active RNA Editing Complexes in Trypanosoma brucei

    PubMed Central

    Allen, Thomas E.; Heidmann, Stefan; Reed, RoseMary; Myler, Peter J.; Göringer, H. Ulrich; Stuart, Kenneth D.

    1998-01-01

    RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing. PMID:9742118

  4. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene

    PubMed Central

    Sukhodolets, Karen E.; Hickman, Alison B.; Agarwal, Sunita K.; Sukhodolets, Maxim V.; Obungu, Victor H.; Novotny, Elizabeth A.; Crabtree, Judy S.; Chandrasekharappa, Settara C.; Collins, Francis S.; Spiegel, Allen M.; Burns, A. Lee; Marx, Stephen J.

    2003-01-01

    Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence. PMID:12509449

  5. Expression of cytoprotective proteins, heat shock protein 70and metallothioneins, in tissues ofOstrea edulis exposed to heat andheavy metals

    PubMed Central

    Piano, Annamaria; Valbonesi, Paola; Fabbri, Elena

    2004-01-01

    Heat shock proteins (Hsps) are constitutively expressed in cells and involved in protein folding, assembly, degradation, intracellular localization, etc, acting as molecular chaperones. However, their overexpression represents a ubiquitous molecular mechanism to cope with stress. Hsps are classified into families, and among them the Hsp70 family appears to be the most evolutionary preserved and distributed in animals. In this study, the expression of Hsp70 and the related messenger ribonucleic acid (mRNA) has been studied in Ostrea edulis after exposure to heat and heavy metals; moreover, levels of metallothioneins (MTs), another class of stress-induced proteins, have contemporaneously been assessed in the same animals. Thermal stress caused the expression of a 69-kDa inducible isoform in gills of O edulis but not in the digestive gland. Northern dot blot analysis confirmed that the transcription of Hsp69-mRNA occurs within 3 hours of stress recovery after oyster exposure at 32 and 35°C. Hsp69-mRNA transcripts were not present in the gills of animals exposed to 38°C after 3 hours of poststress recovery, but they were detected after 24 hours. The expression of the 69-kDa protein in O edulis exposed to 38°C was rather low or totally absent, suggesting that the biochemical machinery at the base of the heat shock response is compromised. Together with the expected increase in MT content, the oysters exposed to Cd showed a significant enhancement of Hsp70, although there was no clear appearance of Hsp69. Interestingly, the levels of MT were significantly increased in the tissues of individuals exposed to thermal stress. Unlike oysters, heat did not provoke the expression of inducible Hsp isoforms in Mytilus galloprovincialis, Tapes philippinarum, and Scapharca inaequivalvis, although it significantly enhanced the expression of constitutive proteins of the 70-kDa family. The expression of newly synthesized Hsp70 isoforms does not seem therefore a common feature in

  6. Heat shock proteins on the human sperm surface.

    PubMed

    Naaby-Hansen, Soren; Herr, John C

    2010-01-01

    The sperm plasma membrane is known to be critical to fertilization and to be highly regionalized into domains of head, mid- and principal pieces. However, the molecular composition of the sperm plasma membrane and its alterations during genital tract passage, capacitation and the acrosome reaction remains to be fully dissected. A two-dimensional gel-based proteomic study previously identified 98 human sperm proteins which were accessible for surface labelling with both biotin and radioiodine. In this report twelve dually labelled protein spots were excised from stained gels or PDVF membranes and analysed by mass spectrometry (MS) and Edman degradation. Seven members from four different heat shock protein (HSP) families were identified including HYOU1 (ORP150), HSPC1 (HSP86), HSPA5 (Bip), HSPD1 (HSP60), and several isoforms of the two testis-specific HSP70 chaperones HSPA2 and HSPA1L. An antiserum raised against the testis-specific HSPA2 chaperone reacted with three 65kDa HSPA2 isoforms and three high molecular weight surface proteins (78-79kDa, 84kDa and 90-93kDa). These proteins, together with seven 65kDa HSP70 forms, reacted with human anti-sperm IgG antibodies that blocked in vitro fertilization in humans. Three of these surface biotinylated human sperm antigens were immunoprecipitated with a rabbit antiserum raised against a linear peptide epitope in Chlamydia trachomatis HSP70. The results indicate diverse HSP chaperones are accessible for surface labelling on human sperm. Some of these share epitopes with C. trachomatis HSP70, suggesting an association between genital tract infection, immunity to HSP70 and reproductive failure. 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Induction of heat-shock response and alterations of protein phosphorylation by a novel topoisomerase II inhibitor, withangulatin A, in 9L rat brain tumor cells.

    PubMed

    Lee, W C; Lin, K Y; Chen, C M; Chen, Z T; Liu, H J; Lai, Y K

    1991-10-01

    Withangulatin A is a newly identified in vitro topoisomerase II inhibitor isolated from the Chinese antitumor herb Physalis angulata. In vivo, it was found to be cytotoxic, capable of suppressing general protein synthesis and of inducing the synthesis of a small set of proteins including those generated by heat-shock treatment. The 70 kDa protein generated by withangulatin A was unequivocally identified as the heat-shock protein 70 (HSP70) since both proteins migrated to the same position on two-dimensional polyacrylamide gels, could be recognized by a monoclonal antibody to human HSP70, and exhibited identical peptide maps. The induction of protein synthesis by withangulatin A was regulated at the transcriptional level since it was aborted in cells pre-treated with actinomycin D. However, the initiation of this process did not require de novo protein synthesis since it was not affected by cycloheximide. Other cellular effect of withangulatin A was alterations of protein phosphorylation including an enhancement of phosphorylation of a 65 kDa protein which was also detected in the heat-shocked cells. Moreover, this process was observed within 7.5 min after the initial heat treatment which is much faster than the onset of HSP synthesis. Therefore, increased phosphorylation of the 65 kDa protein may represent one of the earliest signals generated by both heat-shock and withangluatin A and may be involved in the upstream regulation of heat-shock response in cells.

  8. Characterization of flagellar cysteine-rich sperm proteins involved in motility, by the combination of cellular fractionation, fluorescence detection, and mass spectrometry analysis.

    PubMed

    Cabrillana, María E; Monclus, María A; Sáez Lancellotti, Tania E; Boarelli, Paola V; Clementi, Marisa A; Vincenti, Amanda E; Yunes, Roberto F M; Fornés, Miguel W

    2011-09-01

    Mammalian sperm proteins undergo thiol group (SH) oxidation to form disulfides bonds (SS) as they travel through the epididymis during cell maturation. Disulfide bonds are involved in chromatin condensation and tail organelle stabilization. In this work, we used a fluorescent thiol-selective labeling agent, monobromobimane (mBBr), to study the protein thiol status of rat sperm during maturation. Fluorescence signal decrease along the epididymal trip, more evidently in the head, but also in the tail, indicates that both sub cellular regions participate in the thiol changes. The sources of the fluorescence signal are sulfhydryls sperm proteins labeled by mBBr (mBBr-spp). Initial attempts to identify the mBBr-spp labeled were detected in the initial-caput, but not in the distal cauda-segment of the epididymis in sodium dodecyl sulfate (SDS)-PAGE analysis. This phenomenon could be due to protein resistance to solubilization. For this reason, disulfide bond reduction was accomplished by sodium dodecyl sulfate plus dithiothreitol treatment to recover the mBBr signal in SDS-PAGE. Under this protocol, a major 27 kDa protein band displays a strong signal. Protein identification by mass spectrometry and sequence database searching correlated this protein with the outer dense fiber 1 (ODF1). The mBBr specifically bound to N-terminal domain cysteine of ODF1. The mBBr reduces rat sperm motility, quantitatively and qualitatively, and the effects are dose dependent, without significantly increasing the percentage of dead sperm. Thus, we found that ODF1 is highly responsible for mBBr fluorescence detection in the sperm tail, and the motility inhibition by the fluorescence marker indicates that ODF1 N-terminal domain are related to sperm motility. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  9. A High Fundamental Frequency (HFF)-based QCM Immunosensor for Tuberculosis Detection.

    PubMed

    Montoya, Angel; March, Carmen; Montagut, Yeison J; Moreno, Maria J; Manclus, Juan J; Arnau, Antonio; Jimenez, Yolanda; Jaramillo, Marisol; Marin, Paula A; Torres, Robinson A

    2017-01-01

    Tuberculosis, one of the oldest diseases affecting human beings, is still considered as a world public health problem by the World Health Organization. Therefore, there is a need for new and more powerful analytical methods for early illness diagnosis. With this idea in mind, the development of a High Fundamental Frequency (HFF) piezoelectric immunosensor for the sensitive detection of tuberculosis was undertaken. A 38 kDa protein secreted by Mycobacterium tuberculosis was first selected as the target biomarker. Then, specific monoclonal antibodies (MAbs) were obtained. Myc-31 MAb, which showed the highest affinity to the analyte, was employed to set up a reference enzyme-linked immunosorbent assay (ELISA) with a limit of detection of 14 ng mL-1 of 38 kDa antigen. For the development of the HFF piezoelectric immunosensor, 100 MHz quartz crystals were used as transducer elements. The gold electrode surface was functionalized by covalent immobilization of the target biomarker through mixed self-assembled monolayers (mSAM) of carboxylic alkane thiols. A competitive immunoassay based on Myc-31 MAb was integrated with the transducer as sensing bio-recognition event. Reliable assay signals were obtained using low concentrations of antigen for functionalization and MAb for the competitive immunoassay. Under optimized conditions, the HFF immunosensor calibration curve for 38 kDa determination showed a limit of detection as low as 11 ng mL-1 of the biomarker. The high detectability attained by this immunosensor, in the picomolar range, makes it a promising tool for the easy, direct and sensitive detection of the tuberculosis biomarker in biological fluids such as sputum. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity.

    PubMed

    Heide, Heinrich; Kalisz, Henryk M; Follmann, Hartmut

    2004-02-01

    A thioredoxin-like chloroplast protein of the fructosebisphosphatase-stimulating f-type, but with an unusually high molecular mass of 28 kDa has previously been identified and purified to homogeneity in a fractionation scheme for resolution of the acid- and heat-stable, regular-size (12kDa) thioredoxins of the unicellular green algae, Scenedesmus obliquus. An apparently analogous protein of 26 kDa was described in a cyanobacterium, Anabaena sp., but no such large thioredoxin species f exists in the thioredoxin profiles of higher plants. The structure of the 28 kDa protein, which had been envisaged to represent a precursor, or fusion product of the two more specialized, common chloroplast thioredoxins f and m has now been determined by amino acid sequencing. Although it exhibits virtually all the properties and enzyme-modulating activities of a thioredoxin proper this algal protein, surprisingly, does not belong to the thioredoxin family of small redox proteins but is identical with OEE (oxygen evolving enhancer) protein 1, an auxiliary component of the photosystem II manganese cluster. Extracts of Chlorella vulgaris and Chlamydomonas reinhardtii also contain heat-stable protein fractions of 23-26 kDa capable of specifically stimulating chloroplast fructosebisphosphatase in vitro. In contrast, OEE protein 1 from spinach is not able to modulate FbPase or NADP malate dehydrogenase from spinach chloroplasts. A dual function of the OEE protein in algal photosynthesis is envisaged.

  11. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein.

    PubMed Central

    Dransfield, D T; Bradford, A J; Smith, J; Martin, M; Roy, C; Mangeat, P H; Goldenring, J R

    1997-01-01

    cAMP-dependent protein kinase (A-kinase) anchoring proteins (AKAPs) are responsible for the subcellular sequestration of the type II A-kinase. Previously, we identified a 78 kDa AKAP which was enriched in gastric parietal cells. We have now purified the 78 kDa AKAP to homogeneity from gastric fundic mucosal supernates using type II A-kinase regulatory subunit (RII) affinity chromatography. The purified 78 kDa AKAP was recognized by monoclonal antibodies against ezrin, the canalicular actin-associated protein. Recombinant ezrin produced in either Sf9 cells or bacteria also bound RII. Recombinant radixin and moesin, ezrin-related proteins, also bound RII in blot overlay. Analysis of recombinant truncations of ezrin mapped the RII binding site to a region between amino acids 373 and 439. This region contained a 14-amino-acid amphipathic alpha-helical putative RII binding region. A synthetic peptide containing the amphipathic helical region (ezrin409-438) blocked RII binding to ezrin, but a peptide with a leucine to proline substitution at amino acid 421 failed to inhibit RII binding. In mouse fundic mucosa, RII immunoreactivity redistributed from a predominantly cytosolic location in resting parietal cells, to a canalicular pattern in mucosa from animals stimulated with gastrin. These results demonstrate that ezrin is a major AKAP in gastric parietal cells and may function to tether type II A-kinase to a region near the secretory canaliculus. PMID:9009265

  12. Bolevenine, a toxic protein from the Japanese toadstool Boletus venenatus.

    PubMed

    Matsuura, Masanori; Yamada, Mina; Saikawa, Yoko; Miyairi, Kazuo; Okuno, Toshikatsu; Konno, Katsuhiro; Uenishi, Jun'ichi; Hashimoto, Kimiko; Nakata, Masaya

    2007-03-01

    A toxic protein, called bolevenine, was isolated from the toxic mushroom Boletus venenatus based on its lethal effects on mice. On SDS-PAGE, in either the presence or absence of 2-mercaptoethanol, this protein showed a single band of approximately 12 kDa. In contrast, based on gel filtration and MALDI-TOFMS, its relative molecular mass was estimated to be approximately 30 kDa and approximately 33 kDa, respectively, indicating that the protein consists of three identical subunits. This toxin exhibited its lethal activity following injection at 10mg/kg into mice. The N-terminal amino acid sequence was determined up to 18, and found to be similar to the previously reported bolesatine, a toxic compound isolated from Boletus satanas.

  13. Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice*

    PubMed Central

    Kasaikina, Marina V.; Fomenko, Dmitri E.; Labunskyy, Vyacheslav M.; Lachke, Salil A.; Qiu, Wenya; Moncaster, Juliet A.; Zhang, Jie; Wojnarowicz, Mark W.; Natarajan, Sathish Kumar; Malinouski, Mikalai; Schweizer, Ulrich; Tsuji, Petra A.; Carlson, Bradley A.; Maas, Richard L.; Lou, Marjorie F.; Goldstein, Lee E.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency. PMID:21768092

  14. TROSY of side-chain amides in large proteins

    PubMed Central

    Liu, Aizhuo; Yao, Lishan; Li, Yue; Yan, Honggao

    2012-01-01

    By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides. PMID:17347000

  15. Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ~550 kDa polypeptide

    PubMed Central

    2010-01-01

    Background The allosteric respiratory protein hemocyanin occurs in gastropods as tubular di-, tri- and multimers of a 35 × 18 nm, ring-like decamer with a collar complex at one opening. The decamer comprises five subunit dimers. The subunit, a 400 kDa polypeptide, is a concatenation of eight paralogous functional units. Their exact topology within the quaternary structure has recently been solved by 3D electron microscopy, providing a molecular model of an entire didecamer (two conjoined decamers). Here we study keyhole limpet hemocyanin (KLH2) tridecamers to unravel the exact association mode of the third decamer. Moreover, we introduce and describe a more complex type of hemocyanin tridecamer discovered in fresh/brackish-water cerithioid snails (Leptoxis, Melanoides, Terebralia). Results The "typical" KLH2 tridecamer is partially hollow, whereas the cerithioid tridecamer is almost completely filled with material; it was therefore termed "mega-hemocyanin". In both types, the staggering angle between adjoining decamers is 36°. The cerithioid tridecamer comprises two typical decamers based on the canonical 400 kDa subunit, flanking a central "mega-decamer" composed of ten unique ~550 kDa subunits. The additional ~150 kDa per subunit substantially enlarge the internal collar complex. Preliminary oxygen binding measurements indicate a moderate hemocyanin oxygen affinity in Leptoxis (p50 ~9 mmHg), and a very high affinity in Melanoides (~3 mmHg) and Terebralia (~2 mmHg). Species-specific and individual variation in the proportions of the two subunit types was also observed, leading to differences in the oligomeric states found in the hemolymph. Conclusions In cerithioid hemocyanin tridecamers ("mega-hemocyanin") the collar complex of the central decamer is substantially enlarged and modified. The preliminary O2 binding curves indicate that there are species-specific functional differences in the cerithioid mega-hemocyanins which might reflect different physiological

  16. A recombinant 63-kDa form of Bacillus anthracis protective antigen produced in the yeast Saccharomyces cerevisiae provides protection in rabbit and primate inhalational challenge models of anthrax infection.

    PubMed

    Hepler, Robert W; Kelly, Rosemarie; McNeely, Tessie B; Fan, Hongxia; Losada, Maria C; George, Hugh A; Woods, Andrea; Cope, Leslie D; Bansal, Alka; Cook, James C; Zang, Gina; Cohen, Steven L; Wei, Xiaorong; Keller, Paul M; Leffel, Elizabeth; Joyce, Joseph G; Pitt, Louise; Schultz, Loren D; Jansen, Kathrin U; Kurtz, Myra

    2006-03-06

    Infection by Bacillus anthracis is preventable by prophylactic vaccination with several naturally derived and recombinant vaccine preparations. Existing data suggests that protection is mediated by antibodies directed against the protective antigen (PA) component of the anthrax toxin complex. PA is an 83-kDa protein cleaved in vivo to yield a biologically active 63-kDa protein. In an effort to evaluate the potential of yeast as an expression system for the production of recombinant PA, and to determine if the yeast-purified rPA63 can protect from a lethal inhalational challenge, the sequence of the 63-kDa form of PA was codon-optimized and expressed in the yeast Saccharomyces cerevisiae. Highly purified rPA63 isolated from Saccharomyces under denaturing conditions demonstrated reduced biological activity in a macrophage-killing assay compared to non-denatured rPA83 purified from Escherichia coli. Rabbits and non-human primates (NHP) immunized with rPA63 and later challenged with a lethal dose of B. anthracis spores were generally protected from infection. These results indicate that epitopes present in the 63-kDa from of PA can protect rabbits and non-human primates from a lethal spore challenge, and further suggest that a fully functional rPA63 is not required in order to provide these epitopes.

  17. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  18. Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats.

    PubMed

    Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R

    1995-08-04

    Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.

  19. Volumetric Interpretation of Protein Adsorption: Interfacial Packing of Protein Adsorbed to Hydrophobic Surfaces from Surface-Saturating Solution Concentrations

    PubMed Central

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L.; Vogler, Erwin A.

    2010-01-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square-or-hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square-or-hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. PMID:21035180

  20. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    PubMed

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010

  1. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  2. Optical Detection of Degraded Therapeutic Proteins.

    PubMed

    Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J

    2018-03-23

    The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.

  3. Different effects of 25-kDa amelogenin on the proliferation, attachment and migration of various periodontal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiting; Shu, Rong, E-mail: shurong123@hotmail.com; Liu, Dali

    Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF),more » gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 {mu}g/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.« less

  4. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells.

    PubMed

    Waller, Karena L; Nunomura, Wataru; An, Xiuli; Cooke, Brian M; Mohandas, Narla; Coppel, Ross L

    2003-09-01

    The Plasmodium falciparum mature parasite-infected erythrocyte surface antigen (MESA) is exported from the parasite to the infected red blood cell (IRBC) membrane skeleton, where it binds to protein 4.1 (4.1R) via a 19-residue MESA sequence. Using purified RBC 4.1R and recombinant 4.1R fragments, we show MESA binds the 30-kDa region of RBC 4.1R, specifically to a 51-residue region encoded by exon 10 of the 4.1R gene. The 3D structure of this region reveals that the MESA binding site overlaps the region of 4.1R involved in the p55, glycophorin C, and 4.1R ternary complex. Further binding studies using p55, 4.1R, and MESA showed competition between p55 and MESA for 4.1R, implying that MESA bound at the IRBC membrane skeleton may modulate normal 4.1R and p55 interactions in vivo. Definition of minimal binding domains involved in critical protein interactions in IRBCs may aid the development of novel therapies for falciparum malaria.

  5. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; LeWitt, Peter A

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms ("proteostasis") are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = -0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = -0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: -0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain.

  6. Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization.

    PubMed

    Alhama, José; Romero-Ruiz, Antonio; López-Barea, Juan

    2006-02-24

    In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.

  7. Membrane-Bound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound

    PubMed Central

    Nishikiori, Masaki; Dohi, Koji; Mori, Masashi; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki

    2006-01-01

    Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity. PMID:16912296

  8. Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    PubMed Central

    Schwarz, Alexandra; Helling, Stefan; Collin, Nicolas; Teixeira, Clarissa R.; Medrano-Mercado, Nora; Hume, Jen C. C.; Assumpção, Teresa C.; Marcus, Katrin; Stephan, Christian; Meyer, Helmut E.; Ribeiro, José M. C.; Billingsley, Peter F.; Valenzuela, Jesus G.; Sternberg, Jeremy M.; Schaub, Günter A.

    2009-01-01

    Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for

  9. Cloning, expression, purification, and activity assay of proteins related to D-lactic acid formation in Lactobacillus rhamnosus.

    PubMed

    Wang, Xiuwen; Zheng, Zhaojuan; Dou, Peipei; Qin, Jiayang; Wang, Xiaochen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2010-08-01

    Two proteins that might be responsible for D-lactic acid (D-LA) formation were screened from the genome database of Lactobacillus rhamnosus GG. The coding genes of the two proteins in L. rhamnosus CASL, ldhD1 and ldhD2, were cloned and expressed in Escherichia coli Rosetta with an inducible expression vector pETDuet-1 (Novagen, Darmstadt, Germany), respectively. The two purified proteins, LdhD-1 and LdhD-2, migrated as a single protein band separately, both corresponding to an apparent molecular mass between 35 kDa and 45 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The specific activities of LdhD-1 and LdhD-2 catalyzing pyruvate to LA were 0.02 U/mg and 0.21 U/mg, respectively. The configuration of LA converted from pyruvate was determined using high-performance liquid chromatography equipped with a chiral column. Only D-LA was detected when LdhD-1 and LdhD-2 were tested. In summary, the two proteins cloned and expressed in this study were most probably responsible for D-LA formation during fermentation of L. rhamnosus CASL.

  10. Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy.

    PubMed

    Miyabara, Elen H; Nascimento, Tabata L; Rodrigues, Débora C; Moriscot, Anselmo S; Davila, Wilmer F; AitMou, Younss; deTombe, Pieter P; Mestril, Ruben

    2012-04-01

    Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.

  11. Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants.

    PubMed

    Boissinot, Sylvaine; Erdinger, Monique; Monsion, Baptiste; Ziegler-Graff, Véronique; Brault, Véronique

    2014-01-01

    Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement.

  12. Both Structural and Non-Structural Forms of the Readthrough Protein of Cucurbit aphid-borne yellows virus Are Essential for Efficient Systemic Infection of Plants

    PubMed Central

    Boissinot, Sylvaine; Erdinger, Monique; Monsion, Baptiste; Ziegler-Graff, Véronique; Brault, Véronique

    2014-01-01

    Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement. PMID:24691251

  13. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis.

    PubMed

    Hernández Vera, Rodrigo; Vilahur, Gemma; Ferrer-Lorente, Raquel; Peña, Esther; Badimon, Lina

    2012-09-01

    Patients with diabetes mellitus have an increased risk of suffering atherothrombotic syndromes and are prone to clustering cardiovascular risk factors. However, despite their dysregulated glucose metabolism, intensive glycemic control has proven insufficient to reduce thrombotic complications. Therefore, we aimed to elucidate the determinants of thrombosis in a model of type 2 diabetes mellitus with cardiovascular risk factors clustering. Intravital microscopy was used to analyze thrombosis in vivo in Zucker diabetic fatty rats (ZD) and lean normoglycemic controls. Bone marrow (BM) transplants were performed to test the contribution of each compartment (blood or vessel wall) to thrombogenicity. ZD showed significantly increased thrombosis compared with lean normoglycemic controls. BM transplants demonstrated the key contribution of the hematopoietic compartment to increased thrombogenicity. Indeed, lean normoglycemic controls transplanted with ZD-BM showed increased thrombosis with normal glucose levels, whereas ZD transplanted with lean normoglycemic controls-BM showed reduced thrombosis despite presenting hyperglycemia. Significant alterations in megakaryopoiesis and platelet-endoplasmic reticulum stress proteins, protein disulfide isomerase and 78-kDa glucose-regulated protein, were detected in ZD, and increased tissue factor procoagulant activity was detected in plasma and whole blood of ZD. Our results indicate that diabetes mellitus with cardiovascular risk factor clustering favors BM production of hyperreactive platelets with altered protein disulfide isomerase and 78-kDa glucose-regulated protein expression that can contribute to increase thrombotic risk independently of blood glucose levels.

  14. Identification of an immunogenic protein of Actinobacillus seminis that is present in microvesicles

    PubMed Central

    2006-01-01

    Abstract Actinobacillus seminis is a gram-negative bacterium of the Pasteurellaceae family that is involved in ovine epididymitis. Looking for a protein specific to this species, we determined the protein profile of subcellular fractions of A. seminis (American Type Culture Collection number 15768): proteins from the outer membrane (OMPs), inner membrane (IMPs), and cytoplasm (CPs). These profiles provide the first data, to our knowledge, regarding subcellular fractions of A. seminis. In the OMP fraction, we identified a protein with a molecular mass of 75 kDa that proved to be immunogenic and apparently specific for A. seminis. This conclusion was based on the reaction of hyperimmune serum of rabbits inoculated with whole cells of A. seminis that was tested against sonicated complete cells of reference strains and field isolates of Brucella ovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. No protein of these bacteria cross-reacted with the 75-kDa protein of A. seminis. Furthermore, when each type of hyperimmune serum was tested against the sonicated cells and each of the subcellular fractions of A. seminis, it did not recognize the A. seminis 75-kDa protein. We also isolated and identified this protein in microvesicles released to the culture supernatant. The results suggest that the 75-kDa protein could be used to establish a diagnostic test specific for ovine epididymitis caused by A. seminis. PMID:16548331

  15. Identification of a Naegleria fowleri Membrane Protein Reactive with Anti-Human CD59 Antibody

    PubMed Central

    Fritzinger, Angela E.; Toney, Denise M.; MacLean, Rebecca C.; Marciano-Cabral, Francine

    2006-01-01

    Naegleria fowleri, the causative agent of primary amebic meningoencephalitis, is resistant to complement lysis. The presence of a complement regulatory protein on the surface of N. fowleri was investigated. Southern blot and Northern blot analyses demonstrated hybridization of a radiolabeled cDNA probe for CD59 to genomic DNA and RNA, respectively, from pathogenic N. fowleri. An 18-kDa immunoreactive protein was detected on the membrane of N. fowleri by Western immunoblot and immunofluorescence analyses with monoclonal antibodies for human CD59. Complement component C9 immunoprecipitated with the N. fowleri “CD59-like” protein from amebae incubated with normal human serum. In contrast, a gene or protein similar to CD59 was not detected in nonpathogenic, complement-sensitive N. gruberi amebae. Collectively, our studies suggest that a protein reactive with antibodies to human CD59 is present on the surface of N. fowleri amebae and may play a role in resistance to lysis by cytolytic proteins. PMID:16428768

  16. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies.

    PubMed

    Zhao, Luping; Chen, Yeming; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2013-10-09

    Soybean oil bodies (OBs), naturally pre-emulsified soybean oil, have been examined by many researchers owing to their great potential utilizations in food, cosmetics, pharmaceutical, and other applications requiring stable oil-in-water emulsions. This study was the first time to confirm that lectin, Gly m Bd 28K (Bd 28K, one soybean allergenic protein), Kunitz trypsin inhibitor (KTI), and Bowman-Birk inhibitor (BBI) were not contained in the extracted soybean OBs even by neutral pH aqueous extraction. It was clarified that the well-known Gly m Bd 30K (Bd 30K), another soybean allergenic protein, was strongly bound to soybean OBs through a disulfide bond with 24 kDa oleosin. One steroleosin isoform (41 kDa) and two caleosin isoforms (27 kDa, 29 kDa), the integral bioactive proteins, were confirmed for the first time in soybean OBs, and a considerable amount of calcium, necessary for the biological activities of caleosin, was strongly bound to OBs. Unexpectedly, it was found that 24 kDa and 18 kDa oleosins could be hydrolyzed by an unknown soybean endoprotease in the extracted soybean OBs, which might give some hints for improving the enzyme-assisted aqueous extraction processing of soybean free oil.

  17. Rapid detection of proteins in transgenic crops without protein reference standards by targeted proteomic mass spectrometry.

    PubMed

    Schacherer, Lindsey J; Xie, Weiping; Owens, Michaela A; Alarcon, Clara; Hu, Tiger X

    2016-09-01

    Liquid chromatography coupled with tandem mass spectrometry is increasingly used for protein detection for transgenic crops research. Currently this is achieved with protein reference standards which may take a significant time or efforts to obtain and there is a need for rapid protein detection without protein reference standards. A sensitive and specific method was developed to detect target proteins in transgenic maize leaf crude extract at concentrations as low as ∼30 ng mg(-1) dry leaf without the need of reference standards or any sample enrichment. A hybrid Q-TRAP mass spectrometer was used to monitor all potential tryptic peptides of the target proteins in both transgenic and non-transgenic samples. The multiple reaction monitoring-initiated detection and sequencing (MIDAS) approach was used for initial peptide/protein identification via Mascot database search. Further confirmation was achieved by direct comparison between transgenic and non-transgenic samples. Definitive confirmation was provided by running the same experiments of synthetic peptides or protein standards, if available. A targeted proteomic mass spectrometry method using MIDAS approach is an ideal methodology for detection of new proteins in early stages of transgenic crop research and development when neither protein reference standards nor antibodies are available. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Peculiarities of hemoglobin interaction with serum proteins of mice with Ehrlich carcinoma.

    PubMed

    Sitdikova, S M; Amandzholov, B S; Serebryakova, M V; Zhdanovich, M Yu; Kiselevskii, M V; Donenko, F V

    2006-05-01

    In male C57Bl/6 mice with transplanted Ehrlich carcinoma, hemoglobin forms a complex with serum proteins characterized by a molecular weight of about 300 kDa. The complex incorporates proteins weighing 100, 68, 65, and 15 kDa identified by MALDI-TOF mass spectrometry as haptoglobin, serum albumin, gi/26341396 nameless protein Mus musculus, and alpha-hemoglobin, respectively. This complex can possess biological activity and contribute to the control of tumor growth.

  19. Biochemical characterization of soluble proteins in pecan [Carya illinoinensis (Wangenh.) K. Koch].

    PubMed

    Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2008-09-10

    Pecans (cv. Desirable) contained approximately 10% protein on a dry weight basis. The minimum nitrogen solubility (5.9-7.5%) at 0.25-0.75 M trichloroacetic acid represented the nonprotein nitrogen. Among the solvents assessed for protein solubilization, 0.1 M NaOH was the most effective, while borate saline buffer (pH 8.45) was judged to be optimal for protein solubilization. The protein solubility was minimal in the pH range of 3-7 and significantly increased on either side of this pH range. Increasing the NaCl concentration from 0 to 4 M significantly improved ( approximately 8-fold increase) protein solubilization. Following Osborne protein fractionation, the alkali-soluble glutelin fraction (60.1%) accounted for a major portion of pecan proteins followed by globulin (31.5%), prolamin (3.4%), and albumin (1.5%), respectively. The majority of pecan polypeptides were in the molecular mass range of 12-66 kDa and in the pI range of 4.0-8.3. The pecan globulin fraction was characterized by the presence of several glycoprotein polypeptides. Lysine was the first limiting essential amino acid in the defatted flour, globulin, prolamin, and alkaline glutelin fractions. Leucine and tryptophan were the first limiting essential amino acids in albumin and acid glutelin fractions, respectively. Rabbit polyclonal antibodies detected a range of pecan polypeptides in the 12-60 kDa range, of which the globulin fraction contained the most reactive polypeptides.

  20. Antioxidant activity and oxidative stress protection of duck proteins hydrolysates in SK-N-SH cells.

    PubMed

    Guo, Yuxing; Pan, Daodong; Wu, Zhen; Zhao, Chuanchuan; Cao, Jinxuan

    2013-02-26

    Studies have found that natural antioxidants, which are free-radical scavengers, can reduce the risk of diseases caused by free radicals. This work investigated the antioxidant properties of duck proteins hydrolysates. The free-radical scavenging function of CP-1 (M(r) > 10 kDa), CP-2 (5 kDa < M(r) < 10 kDa) and CP-3 (M(r) < 5 kDa), obtained through ultrafiltration and gel filtration were evaluated. The results showed that the lower molecular weight fraction exhibited a stronger free-radical scavenging ability. The highest free-radical scavenging activity was detected in the fraction of p4 purified from CP-3 using Sephadex G-15 column chromatography. The 50% inhibitory value (IC(50)) of p4 for scavenging radicals of superoxide, hydroxyl and 1,1-diphenyl-2-pycrylhydrazyl (DPPH) were, respectively, 0.97 mg mL(-1), 0.84 mg mL(-1) and 1.84 mg mL(-1). Furthermore, the p4 fraction at a concentration of 10 μg mL(-1) increased cell viability from 84.8% to 94% under antioxidative stress in neuroblastoma SK-N-SH cells.

  1. Antigenic profile and localization of Clonorchis sinensis proteins in the course of infection

    PubMed Central

    Kim, Tae Yun; Song, Kye-Yong; Sohn, Woon-Mok; Kang, Shin-Yong

    2001-01-01

    In the course of Clonorchis sinensis infection, antigens presented to the hosts may be in a close relation to growth of the fluke. The antigenic proteins stimulating IgG antibody production were chronologically identified by immunoblot and localized by immunohistochemical staining. In the early stage of infection until 12 weeks post-infection (PI), antigens were proteins with molecular mass larger than 34 kDa which were derived from the tegument, testes and intrauterine eggs. After 20 weeks PI, antigens recognized were 29, 27 and 26 kDa proteins from the intestine, excretory bladder and reproductive organs. It is suggested that the tegumental proteins are the most potent antigens and the excretory-secretory proteins with middle molecular mass of 26-45 kDa contribute to the high level production of antibodies after 20 weeks of the C. sinensis infection. PMID:11775331

  2. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  3. Detection of Protein SUMOylation In Situ by Proximity Ligation Assays.

    PubMed

    Sahin, Umut; Jollivet, Florence; Berthier, Caroline; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2016-01-01

    Sumoylation is a posttranslational process essential for life and concerns a growing number of crucial proteins. Understanding the influence of this phenomenon on individual proteins or on cellular pathways in which they function has become an intense area of research. A critical step in studying protein sumoylation is to detect sumoylated forms of a particular protein. This has proven to be a challenging task for a number of reasons, especially in the case of endogenous proteins and in vivo studies or when studying rare cells such as stem cells. Proximity ligation assays that allow detection of closely interacting protein partners can be adapted for initial detection of endogenous sumoylation or ubiquitination in a rapid, ultrasensitive, and cheap manner. In addition, modified forms of a given protein can be detected in situ in various cellular compartments. Finally, the flexibility of this technique may allow rapid screening of drugs and stress signals that may modulate protein sumoylation.

  4. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    PubMed

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  5. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    NASA Technical Reports Server (NTRS)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  6. Nucleic Acids for Ultra-Sensitive Protein Detection

    PubMed Central

    Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen

    2013-01-01

    Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338

  7. ABA, porphyrins and plant TSPO-related protein.

    PubMed

    Guillaumot, Damien; Guillon, Stéphanie; Morsomme, Pierre; Batoko, Henri

    2009-11-01

    We have shown that, unexpectedly, AtTSPO (Arabidopsis thaliana TSPO-related protein) is an endoplasmic reticulum and Golgi-localized membrane protein in plant cells.(1) This localization contrasts with that of mammalian 18-kDa translocator protein (at least for the mostly studied isoform, 18-kDa TSPO), a mitochondrial outer membrane protein (reviewed in ref. 2). Whereas the potential functions of 18-kDa TSPO are well documented, involved mainly in mitochondrial physiology,(2) and its interest as drugs target is been explored,(3) the roles of TSPO-related proteins in plant growth and development are yet to be specified. AtTSPO is expressed in dry seeds and can be induced in vegetative tissues by osmotic and salt stress or abscisic acid (ABA) treatment. Moreover, it was shown that the ABA-dependent induction is transient, and that boosting tetrapyrroles biosynthesis through 5-aminolevulinic acid (ALA) feeding enhanced downregulation of AtTSPO, suggesting an inherent post-translational regulation mechanism also involving ABA and likely porphyrins. We present additional evidence that ABA can help stabilize constitutively expressed AtTSPO and that ALA feeding to knockout mutant seeds, induces substantial germination delay. Here we discuss the possible link between ABA and tetrapyrroles in AtTSPO expression and post-translational regulation.

  8. Proteomic analysis of the nuclear matrix in the early stages of rat liver carcinogenesis: Identification of differentially expressed and MAR-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barboro, Paola; D'Arrigo, Cristina; Repaci, Erica

    Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentiallymore » expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.« less

  9. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  10. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress

    PubMed Central

    Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.; LeWitt, Peter A.

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms (“proteostasis”) are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = –0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = –0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: –0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain. PMID:27507943

  11. Polar distribution of annexin-like proteins during phytochrome-mediated initiation and growth of rhizoids in the ferns Dryopteris and Anemia

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Turnwald, S.; Tirlapur, U. K.; Haas, C. J.; von der Mark, K.; Roux, S. J.; Scheuerlein, R.

    1995-01-01

    Although the calcium requirement of phytochrome-mediated fern spore germination and early rhizoid growth is well established, the calcium-binding proteins that serve as transducers for these responses are not known. Here we report the presence of annexin-like proteins in germinating spores of Dryopteris filix-mas (L.) Schott and Anemia phyllitidis (L.) Sw. and evidence that they may be important participants in early photomorphogenic changes in gametophytes. Immunolocalization and immunoblot assays of these proteins were carried out using polyclonal antibodies raised either against a 35-kDa annexin-like protein from pea or against anchorin CII from chicken. Western-blot analysis showed that crude protein extracts obtained from both species after red-light treatment contained two cross-reactive protein bands with molecular weights around 70 kDa. These proteins were annexin-like in that they bound to a phosphatidylserine affinity column in a calcium-dependent fashion. Using this column, two protein bands around 70 kDa, i.e. 67 and 73 kDa, were partially purified together with proteins at 36 kDa and a doublet at 54 kDa. Proteins of these latter molecular weights are suggested to be members of the annexin family, but no cross-reactivity could be found between these and the two antibodies used in our investigations. Immunodetectable levels of these proteins were observed only after light-mediated induction of spore germination. Imaging of the immuno-localization patterns observed with both antibodies showed that the annexin-like proteins are concentrated at the extreme tips of the rhizoids in D. filix-mas and A. phyllitidis during rhizoid initiation and all stages of elongation. We suggest that these proteins may play a major role in the tip-oriented exocytosis events that are critical for the initiation and growth of fern rhizoids.

  12. Polar distribution of annexin-like proteins during phytochrome-mediated initiation and growth of rhizoids in the ferns Dryopteris and Anemia.

    PubMed

    Clark, G B; Turnwald, S; Tirlapur, U K; Haas, C J; von der Mark, K; Roux, S J; Scheuerlein, R

    1995-01-01

    Although the calcium requirement of phytochrome-mediated fern spore germination and early rhizoid growth is well established, the calcium-binding proteins that serve as transducers for these responses are not known. Here we report the presence of annexin-like proteins in germinating spores of Dryopteris filix-mas (L.) Schott and Anemia phyllitidis (L.) Sw. and evidence that they may be important participants in early photomorphogenic changes in gametophytes. Immunolocalization and immunoblot assays of these proteins were carried out using polyclonal antibodies raised either against a 35-kDa annexin-like protein from pea or against anchorin CII from chicken. Western-blot analysis showed that crude protein extracts obtained from both species after red-light treatment contained two cross-reactive protein bands with molecular weights around 70 kDa. These proteins were annexin-like in that they bound to a phosphatidylserine affinity column in a calcium-dependent fashion. Using this column, two protein bands around 70 kDa, i.e. 67 and 73 kDa, were partially purified together with proteins at 36 kDa and a doublet at 54 kDa. Proteins of these latter molecular weights are suggested to be members of the annexin family, but no cross-reactivity could be found between these and the two antibodies used in our investigations. Immunodetectable levels of these proteins were observed only after light-mediated induction of spore germination. Imaging of the immuno-localization patterns observed with both antibodies showed that the annexin-like proteins are concentrated at the extreme tips of the rhizoids in D. filix-mas and A. phyllitidis during rhizoid initiation and all stages of elongation. We suggest that these proteins may play a major role in the tip-oriented exocytosis events that are critical for the initiation and growth of fern rhizoids.

  13. Protein lipoxidation: Detection strategies and challenges

    PubMed Central

    Aldini, Giancarlo; Domingues, M. Rosário; Spickett, Corinne M.; Domingues, Pedro; Altomare, Alessandra; Sánchez-Gómez, Francisco J.; Oeste, Clara L.; Pérez-Sala, Dolores

    2015-01-01

    Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets. PMID:26072467

  14. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  15. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp. strain E2.

    PubMed Central

    Steenbakkers, Peter J M; Ubhayasekera, Wimal; Goossen, Harry J A M; van Lierop, Erik M H M; van der Drift, Chris; Vogels, Godfried D; Mowbray, Sherry L; Op den Camp, Huub J M

    2002-01-01

    The cellulosome produced by Piromyces sp. strain E2 during growth on filter paper was purified by using an optimized cellulose-affinity method consisting of steps of EDTA washing of the cellulose-bound protein followed by elution with water. Three dominant proteins were identified in the cellulosome preparation, with molecular masses of 55, 80 and 90 kDa. Treatment of cellulose-bound cellulosome with a number of denaturing agents was also tested. Incubation with 0.5% (w/v) SDS or 8 M urea released most cellulosomal proteins, while leaving the greater fraction of the 80, 90 and 170 kDa components. To investigate the major 90 kDa cellulosome protein further, the corresponding gene, cel9A, was isolated, using immunoscreening and N-terminal sequencing. Inspection of the cel9A genomic organization revealed the presence of four introns, allowing the construction of a consensus for introns in anaerobic fungi. The 2800 bp cDNA clone contained an open reading frame of 2334 bp encoding a 757-residue extracellular protein. Cel9A includes a 445-residue glycoside hydrolase family 9 catalytic domain, and so is the first fungal representative of this large family. Both modelling of the catalytic domain as well as the activity measured with low level expression in Escherichia coli indicated that Cel9A is an endoglucanase. The catalytic domain is succeeded by a putative beta-sheet module of 160 amino acids with unknown function, followed by a threonine-rich linker and three fungal docking domains. Homology modelling of the Cel9A dockerins suggested that the cysteine residues present are all involved in disulphide bridges. The results presented here are used to discuss evolution of glycoside hydrolase family 9 enzymes. PMID:12071852

  16. Genetic Diversity and Natural Selection in 42 kDa Region of Plasmodium vivax Merozoite Surface Protein-1 from China-Myanmar Endemic Border.

    PubMed

    Zhou, Xia; Tambo, Ernest; Su, Jing; Fang, Qiang; Ruan, Wei; Chen, Jun-Hu; Yin, Ming-Bo; Zhou, Xiao-Nong

    2017-10-01

    Plasmodium vivax merozoite surface protein-1 (PvMSP1) gene codes for a major malaria vaccine candidate antigen. However, its polymorphic nature represents an obstacle to the design of a protective vaccine. In this study, we analyzed the genetic polymorphism and natural selection of the C-terminal 42 kDa fragment within PvMSP1 gene (Pv MSP142) from 77 P. vivax isolates, collected from imported cases of China-Myanmar border (CMB) areas in Yunnan province and the inland cases from Anhui, Yunnan, and Zhejiang province in China during 2009-2012. Totally, 41 haplotypes were identified and 30 of them were new haplotypes. The differences between the rates of non-synonymous and synonymous mutations suggest that PvMSP142 has evolved under natural selection, and a high selective pressure preferentially acted on regions identified of PvMSP133. Our results also demonstrated that PvMSP142 of P. vivax isolates collected on China-Myanmar border areas display higher genetic polymorphisms than those collected from inland of China. Such results have significant implications for understanding the dynamic of the P. vivax population and may be useful information towards China malaria elimination campaign strategies.

  17. A novel 53-kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Bradyrhizobium japonicum.

    PubMed

    Winzer, T; Bairl, A; Linder, M; Linder, D; Werner, D; Müller, P

    1999-03-01

    A nodule-specific 53-kDa protein (GmNOD53b) of the symbiosome membrane from soybean was isolated and its LysC digestion products were microsequenced. cDNA clones of this novel nodulin, obtained from cDNA library screening with an RT-PCR (reverse-transcriptase polymerase chain reaction)-generated hybridization probe exhibited no homology to proteins identified so far. The expression of GmNOD53b coincides with the onset of nitrogen fixation. Therefore, it is a late nodulin. Among other changes, the GmNOD53b is significantly reduced in nodules infected with the Bradyrhizobium japonicum mutant 184 on the protein level as well as on the level of mRNA expression, compared with the wild-type infected nodules. The reduction of GmNOD53b mRNA is related to an inactivation of the sipF gene in B. japonicum 184, coding for a functionally active signal peptidase.

  18. Maize arabinoxylan gels as protein delivery matrices.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa

    2009-04-08

    The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  19. Expression of Clara cell 10-kDa protein and trefoil factor family 1 in patients with chronic rhinosinusitis and nasal polyps

    PubMed Central

    Wang, Yuanyuan; Wang, Zong-Feng; Zhang, Zhili; Su, Yi

    2018-01-01

    The current study measured the expression of Clara cell 10-kDa protein (CC10) and trefoil factor family 1 (TFF1) in the sinus mucosa of patients exhibiting chronic rhinosinusitis (CRS) and nasal polyps (NP). CC10 and TFF1 expression in the sinus mucosa of the control group and patients with CRS and NP was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemistry. The correlation between CC10 and TFF1 expression was further analyzed using Spearman's correlation analysis. The expression of TFF1 was significantly increased in the sinus mucosa of patients with CRS and NP, whereas CC10 expression was significantly decreased compared with controls. Spearman's correlation analysis identified a negative correlation between CC10 and TFF1 expression in the sinus mucosa of patients with CRS and NP. The results of immunohistochemistry and RT-qPCR were consistent with each other. Hematoxylin and eosin staining revealed notable lesions in the mucous membranes, goblet cells and cilia of sinus mucosa samples from patients with CRS and NP. The negative correlation between CC10 and TFF1 expression during the progression of CRS and NP suggest that CC10 and TFF1 may serve important roles in its pathogenesis. PMID:29456658

  20. Hyaluronan 35kDa treatment protects mice from Citrobacter rodentium infection and induces epithelial tight junction protein ZO-1 in vivo.

    PubMed

    Kim, Yeojung; Kessler, Sean P; Obery, Dana R; Homer, Craig R; McDonald, Christine; de la Motte, Carol A

    2017-10-01

    Maintaining a healthy intestinal barrier, the primary physical barrier between intestinal microbiota and the underlying lamina propria, is critical for optimal health. Epithelial integrity is essential for the prevention of the entrance of luminal contents, such as bacteria and their products, through the large intestinal barrier. In this study, we investigated the protective functions of biosynthetic, specific sized, hyaluronan around 35kDa (HA35) on intestinal epithelium in healthy mice, as well as mice infected Citrobacter rodentium, an established model that mimics infection with a serious human pathogen, enteropathogenic E. coli (EPEC). Our results reveal that treatment with HA35 protects mice from Citrobacter infection and enhances the epithelial barrier function. In particular, we have found that HA35 induces the expression of tight junction protein zonula occludens (ZO)-1 in both healthy and Citrobacter infected mice, as demonstrated by immunoflurorescence and Western blot analyses. Furthermore, we determined that HA35 treatment enhances ZO-1 expression and reduces intestinal permeability at the early stages of dextran sulfate sodium (DSS)-induced colitis in mice. Together, our data demonstrate that the expression and functionality of tight junctions, are increased by HA35 treatment, suggesting a novel mechanism for the protection from Citrobacter infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Functionalized nanoparticle probes for protein detection

    NASA Astrophysics Data System (ADS)

    Park, Do Hyun; Lee, Jae-Seung

    2015-05-01

    In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.

  2. Microparticles prepared with 50-190kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid.

    PubMed

    Oliveira, Paula M; Matos, Breno N; Pereira, Priscilla A T; Gratieri, Taís; Faccioli, Lucia H; Cunha-Filho, Marcílio S S; Gelfuso, Guilherme M

    2017-10-15

    Chitosan biocompatibility and mucoadhesiveness make it an ideal polymer for antituberculotic drugs microcapsulation for pulmonary delivery. Yet, previous study indicated toxicity problems to J-774.1-cells treated with some medium molecular weight (190-310kDa) chitosan microparticles. As polymer molecular weight is a crucial factor to be considered, this paper describes the preparation and characterization of chitosan (50-190kDa) microparticles containing isoniazid (INH). Cytotoxicity assays were also performed on murine peritoneal (J-774.1) and alveolar (AMJ2-C11) macrophages cell lines, followed by cytokines detection from AMJ2-C11 cells. Spray-drying process produced mucoadhesive microparticles from 3.2μm to 3.9μm, entrapping more than 89% of the drug and preserving their chemical stability. Drug release behavior could be controlled by the use of cross-linked or uncross-linked chitosan, the latter leading to a rapid drug release. Mucoadhesive potential of the microparticles was characterized following in vitro and ex vivo assays. Finally, a significant reduction on toxicity against peritoneal macrophages and no toxic effect on alveolar macrophages with use of such microparticles were observed. In conclusion, 50-190kDa chitosan microparticles may act as promising non-cytotoxic carriers for pulmonary delivery of INH showing marked alveoli macrophage activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cytoskeleton in trichomonads: I. Immunological and biochemical comparative study of costal proteins in the genus Tritrichomonas.

    PubMed

    Viscogliosi, E; Brugerolle, G

    1993-05-28

    Proteins of the whole cytoskeleton fraction obtained by Triton X-100 action on several Tritrichomonas species have been analyzed by gel electrophoresis. In addition to tubulins, several major protein components with molecular weights between 100 and 150 kDa were separated and presumably represent costal proteins. The partial purification of the costae from the whole cytoskeleton fraction of Tritrichomonas foetus treated with 0.3 M KI confirmed the presence of costal proteins in the 100-150 kDa zone. Costa fibres could be solubilized in 8 M urea. These characteristics indicate that costal proteins may represent a novel class of striated root proteins. A library of 7 monoclonal antibodies (MAbs) raised in mice immunized with the whole cytoskeleton fraction of Tritrichomonas foetus labelled the costa by immunofluorescence and recognize five polypeptides at 135,127,114, 88 and 47 kDa by immunoblotting. Two of these MAbs cross-react by immunofluorescence and immunoblotting with the three other Tritrichomonas species tested, i.e. T. mobilensis, T. augusta, T. muris. However, these 7 MAbs do not show immunological cross-reactivity with other trichomonad genera indicating that the costae are not identical in their biochemical composition; this corresponds to the differences observed in their respective fine structure. Nonetheless, a polyclonal antibody produced against the 118 kDa protein of the costa of Trichomonas vaginalis also labels a 118 kDa protein and the costa by IF in Tritrichomonas species indicating common epitopes. Copyright © 1993 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  4. Role of protein kinase D in Golgi exit and lysosomal targeting of the transmembrane protein, Mcoln1

    PubMed Central

    Marks, David L.; Holicky, Eileen L.; Wheatley, Christine L.; Frumkin, Ayala; Bach, Gideon; Pagano, Richard E.

    2012-01-01

    The targeting of lysosomal transmembrane proteins from the Golgi apparatus to lysosomes is a complex process that is only beginning to be understood. Here, the lysosomal targeting of Mcoln1, the transmembrane protein defective in the autosomal recessive disease, Mucolipidosis, type IV, was studied by over-expressing full length and truncated forms of the protein in human cells, followed by detection using immunofluorescence and immunoblotting. We demonstrated that a 53 amino acid C-terminal region of Mcoln1 is required for efficient exit from the Golgi. Truncations lacking this region exhibited reduced delivery to lysosomes and decreased proteolytic cleavage of Mcoln1 into characteristic ~35 kDa fragments, suggesting that this cleavage occurs in lysosomes. In addition, we found that co-expression of full length Mcoln1 with kinase-inactive protein kinase D (PKD) 1 or 2 inhibited Mcoln1 Golgi exit and transport to lysosomes and decreased Mcoln1 cleavage. These studies suggest that PKDs play a role in the delivery of some lysosomal resident transmembrane proteins from the Golgi to the lysosomes. PMID:22268962

  5. Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response

    NASA Astrophysics Data System (ADS)

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M.

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  6. Cloning of habutobin cDNA and antithrombotic activity of recombinant protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunagawa, Masanori; Nakamura, Mariko; Kosugi, Tadayoshi

    2007-11-03

    The habutobin cDNA was cloned from total RNA extracted from venom glands of Trimeresurus flavoviridis (the habu snake). The conceptual translation of 1539 bp of habutobin cDNA consists of 236 amino acids and its molecular weight is 25.7 kDa. Histidine (His)-tagged recombinant habutobin fusion protein, pET-r-habutobin and AcNPV-r-habutobin, was purified by bacterial system and baculoviral system, respectively. After refolding pET-r-habutobin, there were two protein bands at about 32 kDa and 65 kDa, indicating that habutobin might be produced as a monomer protein and processed to form two concatenated protein. Purified AcNPV-r-habutobin dose-dependently increased fibrin forming activity and inhibited collagen-induced aggregationmore » of rabbit washed platelets. Thus, AcNPV-r-habutobin produced by baculoviral system is very useful for study on structure-function relationship, which is necessary for developing an antithrombotic drug from habutobin.« less

  7. Identification of a movement protein of Mirafiori lettuce big-vein ophiovirus.

    PubMed

    Hiraguri, Akihiro; Ueki, Shoko; Kondo, Hideki; Nomiyama, Koji; Shimizu, Takumi; Ichiki-Uehara, Tamaki; Omura, Toshihiro; Sasaki, Nobumitsu; Nyunoya, Hiroshi; Sasaya, Takahide

    2013-05-01

    Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.

  8. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  9. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel

  10. Effect of polymer molecular weight on chitosan-protein interaction.

    PubMed

    Bekale, L; Agudelo, D; Tajmir-Riahi, H A

    2015-01-01

    We present a comprehensive study of the interactions between chitosan nanoparticles (15, 100 and 200 kDa with the same degree of deacetylation 90%) and two model proteins, i.e., bovine (BSA) and human serum albumins (HSA), with the aim of correlating chitosan molecular weight (Mw) and the binding affinity of these naturally occurring polymers to protein. The effect of chitosan on the protein secondary structure and the influence of protein complexation on the shape of chitosan nanoparticles are discussed. A combination of multiple spectroscopic methods, transmission electron microscopy (TEM) and thermodynamic analysis were used to assess the polymer-protein complex formation. Results revealed that the three chitosan nanoparticles interact with BSA to form chitosan-BSA complexes, mainly through hydrophobic contacts with the affinity order: 200>100>15 kDa. However, HSA-chitosan complexation is mainly via electrostatic interactions with the stability order: 100>200>15 kDa. Furthermore, the association between polymer and protein causes a partial protein conformational change by a major reduction of α-helix from 63% (free BSA) to 57% (chitosan-BSA) and 57% (free HSA) to 51% (chitosan-HSA). Finally, TEM micrographs clearly revealed that the binding of serum albumins with chitosan nanoparticles induces a significant change in protein morphology and the shape of the polymer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their relation with semen freezability.

    PubMed

    Jobim, M I M; Trein, C; Zirkler, H; Gregory, R M; Sieme, H; Mattos, R C

    2011-09-01

    The objective was to evaluate protein profiles of equine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and to determine whether any of these proteins were related to semen freezability. Seminal plasma was collected from 10 stallions, of high and low semen freezability, housed at the State Stud of Lower Saxony, and routinely used in AI programs. Twenty-five protein spots were identified from the two-dimensional gel (12%), seven of which were present in all samples (all proteins were identified by MALDI-MS). Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used to generate ion images of samples in one or more mass-to-charge (m/z) values, providing the capability of mapping specific molecules to two-dimensional coordinates of the original sample. Of the 25 proteins identified, two spots had greater relative content (P < 0.05) in seminal plasma samples collected from stallions with high semen freezability: spot 5 (80-85 kDa, isoelectric point [pI] 7.54), identified as CRISP-3; and spot 45 (18.2 kDa, pI 5.0-5.2), identified as HSP-2. Conversely, protein content was greater (P < 0.05) in seminal plasma samples from stallions with low semen freezability: spot 7 (75.4 kDa, pI 6.9-7.4), identified as lactoferrin; spot 15 (26.7 kDa, pI 5.51), identified as kallikrein; spot 25 (25 kDa, pI 7.54), identified as CRISP-3; and spot 35 (13.9 kDa, pI 3.8-4.2), identified as HSP-1. In conclusion, there were differences in the seminal plasma protein profile from stallions with high and low semen freezability. Furthermore, CRISP-3 and HSP-2 were potential seminal plasma markers of high semen freezability. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. FRET detection of Octamer-4 on a protein nanoarray made by size-dependent self-assembly

    PubMed Central

    Tran, Phat L.; Gamboa, Jessica R.; You, David J.

    2010-01-01

    An alternative approach for fabricating a protein array at nanoscale is suggested with a capability of characterization and/or localization of multiple components on a nanoarray. Fluorescent micro- and nanobeads each conjugated with different antibodies are assembled by size-dependent self-assembly (SDSA) onto nanometer wells that were created on a polymethyl methacrylate (PMMA) substrate by electron beam lithography (EBL). Antibody-conjugated beads of different diameters are added serially and electrostatically attached to corresponding wells through electrostatic attraction between the charged beads (confirmed by zeta potential analysis) and exposed p-doped silicon substrate underneath the PMMA layer. This SDSA method is enhanced by vibrated-wire-guide manipulation of droplets on the PMMA surface containing nanometer wells. Saturation rates of antibody-conjugated beads to the nanometer patterns are up to 97% under one component and 58–70% under two components nanoarrays. High-density arrays (up to 40,000 wells) could be fabricated, which can also be multi-component. Target detection utilizes fluorescence resonance energy transfer (FRET) from fluorescent beads to fluorescent-tagged secondary antibodies to Octamer-4 (Oct4), which eliminates the need for multiple steps of rinsing. The 100 nm green beads are covalently conjugated with anti-Oct4 to capture Oct4 peptides (39 kDa); where the secondary anti-Oct4 and F(ab)2 fragment of anti-gIgG tagged with phycoerythrin are then added to function as an indicator of Oct4 detection. FRET signals are detected through confocal microscopes, and further confirmed by Fluorolog3 spectrofluorometer. The success rates of detecting Oct4 are 32% and 14% of the beads in right place under one and two component nanoarrays, respectively. Ratiometric FRET is used to quantify the amount of Oct4 peptides per each bead, which is estimated about 2 molecules per bead. PMID:20652550

  13. Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.

    PubMed

    Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H

    2017-11-01

    DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.

  14. Heat shock protein 72: release and biological significance during exercise.

    PubMed

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  15. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  16. KU135, a Novel Novobiocin-Derived C-Terminal Inhibitor of the 90-kDa Heat Shock Protein, Exerts Potent Antiproliferative Effects in Human Leukemic Cells

    PubMed Central

    Shelton, Shary N.; Shawgo, Mary E.; Matthews, Shawna B.; Lu, Yuanming; Donnelly, Alison C.; Szabla, Kristen; Tanol, Mehmet; Vielhauer, George A.; Rajewski, Roger A.; Matts, Robert L.; Blagg, Brian S. J.

    2009-01-01

    The 90-kDa heat shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Consequently, there is considerable interest in developing chemotherapeutic drugs that specifically disrupt the function of Hsp90. Here, we investigated the extent to which a novel novobiocin-derived C-terminal Hsp90 inhibitor, designated KU135, induced antiproliferative effects in Jurkat T-lymphocytes. The results indicated that KU135 bound directly to Hsp90, caused the degradation of known Hsp90 client proteins, and induced more potent antiproliferative effects than the established N-terminal Hsp90 inhibitor 17-allylamino-demethoxygeldanamycin (17-AAG). Closer examination of the cellular response to KU135 and 17-AAG revealed that only 17-AAG induced a strong up-regulation of Hsp70 and Hsp90. In addition, KU135 caused wild-type cells to undergo G2/M arrest, whereas cells treated with 17-AAG accumulated in G1. Furthermore, KU135 but not 17-AAG was found to be a potent inducer of mitochondria-mediated apoptosis as evidenced, in part, by the fact that cell death was inhibited to a similar extent by Bcl-2/Bcl-xL overexpression or the depletion of apoptotic protease-activating factor-1 (Apaf-1). Together, these data suggest that KU135 inhibits cell proliferation by regulating signaling pathways that are mechanistically different from those targeted by 17-AAG and as such represents a novel opportunity for Hsp90 inhibition. PMID:19741006

  17. Detection of significant protein coevolution.

    PubMed

    Ochoa, David; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2015-07-01

    The evolution of proteins cannot be fully understood without taking into account the coevolutionary linkages entangling them. From a practical point of view, coevolution between protein families has been used as a way of detecting protein interactions and functional relationships from genomic information. The most common approach to inferring protein coevolution involves the quantification of phylogenetic tree similarity using a family of methodologies termed mirrortree. In spite of their success, a fundamental problem of these approaches is the lack of an adequate statistical framework to assess the significance of a given coevolutionary score (tree similarity). As a consequence, a number of ad hoc filters and arbitrary thresholds are required in an attempt to obtain a final set of confident coevolutionary signals. In this work, we developed a method for associating confidence estimators (P values) to the tree-similarity scores, using a null model specifically designed for the tree comparison problem. We show how this approach largely improves the quality and coverage (number of pairs that can be evaluated) of the detected coevolution in all the stages of the mirrortree workflow, independently of the starting genomic information. This not only leads to a better understanding of protein coevolution and its biological implications, but also to obtain a highly reliable and comprehensive network of predicted interactions, as well as information on the substructure of macromolecular complexes using only genomic information. The software and datasets used in this work are freely available at: http://csbg.cnb.csic.es/pMT/. pazos@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Manganese-dependent carboanhydrase activity of photosystem II proteins.

    PubMed

    Shitov, A V; Pobeguts, O V; Smolova, T N; Allakhverdiev, S I; Klimov, V V

    2009-05-01

    Four sources of carbonic anhydrase (CA) activity in submembrane preparations of photosystem II (PS II) isolated from pea leaves were examined. Three of them belong to the hydrophilic proteins of the oxygen-evolving complex of PS II with molecular mass 33 kDa (protein PsbO), 24 kDa (protein PsbP), and 18 kDa (protein PsbQ). The fourth source of CA activity is associated with a pigment-protein complex of PS II after removing three hydrophilic proteins by salt treatment. Except for protein PsbQ, the CA activity of all these proteins depends on the presence of Mn2+: the purified protein PsbO did not show CA activity before adding Mn2+ into the medium (concentration of Mn2+ required for 50% effect, EC(50), was 670 microM); CA activity of protein mixture composed of PsbP and PsbQ increased more than 5-fold upon adding Mn2+ (EC(50) was 45 microM). CA activity of purified protein PsbP increased 2-fold in the presence of 200 microM Mn2+. As indicated for the mixture of two proteins (PsbP and PsbQ), Mg2+, Ca2+, and Zn2+, in contrast to Mn2+, suppressed CA activity (both initial and Mn2+-induced activity). Since the found sources of CA activity demonstrated properties different from ones of typical CA (need for Mn2+, insensitivity or low sensitivity to acetazolamide or ethoxyzolamide) and such CA activity was found only among PS II proteins, we cannot exclude that they belong to the type of Mn-dependent CA associated with PS II.

  19. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.

    PubMed

    Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota

    2007-08-31

    Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.

  20. Fabrication and characteristics of MOSFET protein chip for detection of ribosomal protein.

    PubMed

    Park, Keun-Yong; Kim, Min-Suk; Choi, Sie-Young

    2005-04-15

    A metal oxide silicon field effect transistor (MOSFET) protein chip for the easy detection of protein was fabricated and its characteristics were investigated. Generally, the drain current of the MOSFET is varied by the gate potential. It is expected that the formation of an antibody-antigen complex on the gate of MOSFET would lead to a detectable change in the charge distribution and thus, directly modulate the drain current of MOSFET. As such, the drain current of the MOSFET protein chip can be varied by ribosomal proteins absorbed by the self-assembled monolayer (SAM) immobilized on the gate (Au) surface, as ribosomal protein has positive charge, and these current variations then used as the response of the protein chip. The gate of MOSFET protein chip is not directly biased by an external voltage source, so called open gate or floating gate MOSFET, but rather chemically modified by immobilized molecular receptors called self-assembled monolayer (SAM). In our experiments, the current variation in the proposed protein chip was about 8% with a protein concentration of 0.7 mM. As the protein concentration increased, the drain current also gradually increased. In addition, there were some drift of the drain current in the device. It is considered that these drift might be caused by the drift from the MOSFET itself or protein absorption procedures that are relied on the facile attachment of thiol (-S) ligands to the gate (Au) surface. We verified the formation of SAM on the gold surface and the absorption of protein through the surface plasmon resonance (SPR) measurement.

  1. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities.

    PubMed

    Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard

    2015-11-01

    Zebra chip disease of potato decreases protease inhibitor levels resulting in enhanced serine-type protease activity, decreased protein content and altered protein profiles of fully mature tubers. Zebra-chip (ZC), caused by Candidatus Liberibacter solanacearum (CLso), is a relatively new disease of potato that negatively affects growth, yield, propagation potential, and fresh and process qualities of tubers. Diseased plants produce tubers with characteristic brown discoloration of vascular tissue accompanied by elevated levels of free amino acids and reducing sugars. Here we demonstrate that ZC disease induces selective protein catabolism in tubers through modulating protease inhibitor levels. Soluble protein content of tubers from CLso-infected plants was 33% lower than from non-infected plants and electrophoretic analyses revealed substantial reductions in major tuber proteins. Patatin (~40 kDa) and ser-, asp- (22 kDa) and cys-type (85 kDa) protease inhibitors were either absent or greatly reduced in ZC-afflicted tubers. In contrast to healthy (non-infected) tubers, the proteolytic activity in CLso infected tubers was high and the ability of extracts from infected tubers to inhibit trypsin (ser-type) and papain (cys-type) proteases greatly attenuated. Moreover, extracts from CLso-infected tubers rapidly catabolized proteins purified from healthy tubers (40 kDa patatin, 22 kDa protease inhibitors, 85 kDa potato multicystatin) when subjected to proteolysis individually. In contrast, crude extracts from non-infected tubers effectively inhibited the proteolytic activity from ZC-afflicted tubers. These results suggest that the altered protein profile of ZC afflicted tubers is largely due to loss of ser- and cys-type protease inhibitors. Further analysis revealed a novel PMSF-sensitive (ser) protease (ca. 80-120 kDa) in CLso infected tubers. PMSF abolished the proteolytic activities responsible for degrading patatin, the 22 kDa protease inhibitor(s) and potato

  2. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  3. Simple, rapid and sensitive detection of Orientia tsutsugamushi by loop-isothermal DNA amplification.

    PubMed

    Paris, Daniel H; Blacksell, Stuart D; Newton, Paul N; Day, Nicholas P J

    2008-12-01

    We present a loop-mediated isothermal PCR assay (LAMP) targeting the groEL gene, which encodes the 60kDa heat shock protein of Orientia tsutsugamushi. Evaluation included testing of 63 samples of contemporary in vitro isolates, buffy coats and whole blood samples from patients with fever. Detection limits for LAMP were assessed by serial dilutions and quantitation by real-time PCR assay based on the same target gene: three copies/microl for linearized plasmids, 26 copies/microl for VERO cell culture isolates, 14 copies/microl for full blood samples and 41 copies/microl for clinical buffy coats. Based on a limited sample number, the LAMP assay is comparable in sensitivity with conventional nested PCR (56kDa gene), with limits of detection well below the range of known admission bacterial loads of patients with scrub typhus. This inexpensive method requires no sophisticated equipment or sample preparation, and may prove useful as a diagnostic assay in financially poor settings; however, it requires further prospective validation in the field setting.

  4. Molecular beacons for DNA binding proteins: an emerging technology for detection of DNA binding proteins and their ligands.

    PubMed

    Dummitt, Benjamin; Chang, Yie-Hwa

    2006-06-01

    Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.

  5. Myelin management by the 18.5–kDa and 21.5–kDa classic myelin basic protein isoforms

    PubMed Central

    Harauz, George; Boggs, Joan M.

    2013-01-01

    The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP’s protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation. PMID:23398367

  6. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    USDA-ARS?s Scientific Manuscript database

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  7. Estrogen Receptor β and Its Domains Interact with Casein Kinase 2, Phosphokinase C, and N-Myristoylation Sites of Mitochondrial and Nuclear Proteins in Mouse Brain*

    PubMed Central

    Paramanik, Vijay; Thakur, Mahendra Kumar

    2012-01-01

    The localization of estrogen receptor (ER)β in mitochondria suggests ERβ-dependent regulation of genes, which is poorly understood. Here, we analyzed the ERβ interacting mitochondrial as well as nuclear proteins in mouse brain using pull-down assay and matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS). In the case of mitochondria, ERβ interacted with six proteins of 35–152 kDa, its transactivation domain (TAD) interacted with four proteins of 37–172 kDa, and ligand binding domain (LBD) interacted with six proteins of 37–161 kDa. On the other hand, in nuclei, ERβ interacted with seven proteins of 30–203 kDa, TAD with ten proteins of 31–160 kDa, and LBD with fourteen proteins of 42–179 kDa. For further identification, these proteins were cleaved by trypsin into peptides and analyzed by MALDI-MS using mascot search engine, immunoprecipitation, immunoblotting, and far-Western blotting. To find the consensus binding motifs in interacting proteins, their unique tryptic peptides were analyzed by the motif scan software. All the interacting proteins were found to contain casein kinase (CK) 2, phosphokinase (PK)C phosphorylation, and N-myristoylation sites. These were further confirmed by peptide pull-down assays using specific mutations in the interacting sites. Thus, the present findings provide evidence for the interaction of ERβ with specific mitochondrial and nuclear proteins through consensus CK2, PKC phosphorylation, and N-myristoylation sites, and may represent an essential step toward designing selective ER modulators for regulating estrogen-mediated signaling. PMID:22566700

  8. Immunodiagnosis of groundnut and watermelon bud necrosis viruses using polyclonal antiserum to recombinant nucleocapsid protein of Groundnut bud necrosis virus.

    PubMed

    Jain, R K; Pandey, Amar N; Krishnareddy, M; Mandal, Bikash

    2005-12-01

    In vitro gene expression strategy was used for the production of polyclonal antiserum to the nucleocapsid protein (NP) of Groundnut bud necrosis virus (GBNV). The GBNV NP gene from cowpea isolate was cloned into 6x His-tagged UA cloning vector and expressed in Escherichia coli [M15] cells. The fusion protein was detected in insoluble fraction and was purified by using Ni-NTA agarose resin. The purified 6x His-fusion protein ( approximately 32 kDa) was used for immunisation to produce a high titre polyclonal antiserum. The antiserum to the NP of GBNV at 1:4000 dilution detected successfully natural infection of GBNV and Watermelon bud necrosis virus in a wide range of cucurbitaceous, leguminous and solanaceous hosts from different locations.

  9. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement.

    PubMed

    Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir

    2008-02-01

    Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.

  10. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    PubMed

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods

  11. Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis

    PubMed Central

    Bel, Yolanda; Banyuls, Núria; Chakroun, Maissa; Escriche, Baltasar; Ferré, Juan

    2017-01-01

    Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed that the protoxin was only cleaved at a primary cleavage site, regardless of the amount of trypsin used. The 66 kDa and the 19 kDa peptides generated by the proteases co-eluted after gel filtration chromatography, indicating that they remain together after cleavage. The 66 kDa fragment was found to be extremely resistant to proteases. The trypsin treatment of the protoxin in the presence of SDS revealed the presence of secondary cleavage sites at S-509, and presumably at T-466 and V-372, rendering C-terminal fragments of approximately 29, 32, and 42 kDa, respectively. The fact that the predicted secondary structure of the Vip3Aa protein shows a cluster of beta sheets in the C-terminal region of the protein might be the reason behind the higher stability to proteases compared to the rest of the protein, which is mainly composed of alpha helices. PMID:28387713

  12. Molecular cloning of a murine homologue of membrane cofactor protein (CD46): preferential expression in testicular germ cells.

    PubMed Central

    Tsujimura, A; Shida, K; Kitamura, M; Nomura, M; Takeda, J; Tanaka, H; Matsumoto, M; Matsumiya, K; Okuyama, A; Nishimune, Y; Okabe, M; Seya, T

    1998-01-01

    Human membrane cofactor protein (MCP, CD46) has been suggested, although no convincing evidence has been proposed, to be a fertilization-associated protein, in addition to its primary functions as a complement regulator and a measles virus receptor. We have cloned a cDNA encoding the murine homologue of MCP. This cDNA showed 45% identity in deduced protein sequence and 62% identity in nucleotide sequence with human MCP. Its ectodomains were four short consensus repeats and a serine/threonine-rich domain, and it appeared to be a type 1 membrane protein with a 23-amino acid transmembrane domain and a short cytoplasmic tail. The protein expressed on Chinese hamster ovary cell transfectants was 47 kDa on SDS/PAGE immunoblotting, approximately 6 kDa larger than the murine testis MCP. It served as a cofactor for factor I-mediated inactivation of the complement protein C3b in a homologous system and, to a lesser extent, in a human system. Strikingly, the major message of murine MCP was 1.5 kb and was expressed predominantly in the testis. It was not detected in mice defective in spermatogenesis or with immature germ cells (until 23 days old). Thus, murine MCP may be a sperm-dominant protein the message of which is expressed selectively in spermatids during germ-cell differentiation. PMID:9461505

  13. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    PubMed

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  14. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction.

    PubMed

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-06-15

    Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Strain-specific detection of orally administered canine jejunum-dominated Lactobacillus acidophilus LAB20 in dog faeces by real-time PCR targeted to the novel surface layer protein.

    PubMed

    Tang, Y; Saris, P E J

    2013-10-01

    Lactobacillus acidophilus LAB20 has potential to be a probiotic strain because it can be present at high numbers in the jejunum of dog. To specifically detect LAB20 from dog faecal samples, a real-time PCR protocol was developed targeting the novel surface (S) layer protein gene of LAB20. The presence of S-layer protein was verified by N-terminal sequencing of the approximately 50-kDa major band from SDS-PAGE gel. The corresponding S-layer gene was amplified by inverse PCR using homology to known S-layers and sequenced. This novel S-layer protein has low sequence similarity to other S-layer proteins in the N-terminal region (32-211 aa, 7-39%). This enabled designing strain-specific PCR primers. The primer set was utilized to study intestinal persistence of LAB20 in dog that was fed with LAB20 fermented milk for 5 days. The results showed that LAB20 can be detected from dog faecal sample after 6 weeks with 10(4·53)  DNA copies g(-1) postadministration. It suggested that LAB20 could be a good candidate to study the mechanism behind its persistence and dominance in dog intestine and maybe utilize it as a probiotic for canine. A real-time PCR method was developed to detect Lactobacillus acidophilus LAB20, a strain that was previously found dominant in canine gastrointestinal (GI) tract. The quantitative detection was based on targeting to variation region of a novel S-layer protein found in LAB20, allowing to specifically enumerate LAB20 from dog faeces. The results showed that the real-time PCR method was sensitive enough to be used in later intervention studies. Interestingly, LAB20 was found to persist in dog GI tract for 6 weeks. Therefore, LAB20 could be a good candidate to study its colonization and potentially utilize as a canine probiotic. © 2013 The Society for Applied Microbiology.

  16. Gold nanoparticle based Tuberculosis immunochromatographic assay: the quantitative ESE Quanti analysis of the intensity of test and control lines.

    PubMed

    Mdluli, Phumlani; Tetyana, Phumlani; Sosibo, Ndabenhle; van der Walt, Hendriëtte; Mlambo, Mbuso; Skepu, Amanda; Tshikhudo, Robert

    2014-04-15

    A rapid dual channel lateral flow assay for the detection of Mycobacterium Tuberculosis antibodies (MTB 38 kDa monoclonal antibody) in human blood was developed. The MTB 6-14-38 kDa fusion antigen and anti-Protein A were used as the capture proteins for test and control lines respectively. Protein A labeled 40 nm gold nanoparticles were used as the detection conjugate. Whole blood and serum were spiked with MTB 38 kDa monoclonal antibody to make a positive sample model. The developed lateral flow was used to test MTB 38 kDa monoclonal antibody, and a detection limit of 5 ng/ml was used as a cut-off concentration of the analytes. The effect of the analyte concentration on the MTB lateral flow assay was studied using the variation of the intensity obtained from a ESE Quanti reader. There was a direct correlation between the analyte (MTB 38 kDa monoclonal antibody) concentration and the intensity of the test line. The intensity increased with an increase in the concentration of MTB 38 kDa monoclonal antibody, while in contrast, an increase in analyte concentration decreased the intensity of the control line. © 2013 Published by Elsevier B.V.

  17. Intentional formation of a protein corona on nanoparticles: Serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction.

    PubMed

    Gräfe, Christine; Weidner, Andreas; Lühe, Moritz V D; Bergemann, Christian; Schacher, Felix H; Clement, Joachim H; Dutz, Silvio

    2016-06-01

    The protein corona, which immediately is formed after contact of nanoparticles and biological systems, plays a crucial role for the biological fate of nanoparticles. In the here presented study we describe a strategy to control the amount of corona proteins which bind on particle surface and the impact of such a protein corona on particle-cell interactions. For corona formation, polyethyleneimine (PEI) coated magnetic nanoparticles (MNP) were incubated in a medium consisting of fetal calf serum (FCS) and cell culture medium. To modulate the amount of proteins bind to particles, the composition of the incubation medium was varied with regard to the FCS content. The protein corona mass was estimated and the size distribution of the participating proteins was determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, the zeta potential of incubated particles was measured. Human blood-brain barrier-representing cell line HBMEC was used for in vitro incubation experiments. To investigate the consequences of the FCS dependent protein corona formation on the interaction of MNP and cells flow cytometry and laser scanning microscopy were used. Zeta potential as well as SDS-PAGE clearly reveal an increase in the amount of corona proteins on MNP with increasing amount of FCS in incubation medium. For MNP incubated with lower FCS concentrations especially medium-sized proteins of molecular weights between 30kDa and 100kDa could be found within the protein corona, whereas for MNP incubated within higher FCS concentrations the fraction of corona proteins of 30kDa and less increased. The presence of the protein corona reduces the interaction of PEI-coated MNP with HBMEC cells within a 30min-incubation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    PubMed

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be

  19. CLONING AND EXPRESSION OF THE TRANSLOCATOR PROTEIN (18 KDA), VOLTAGE-DEPENDENT ANION CHANNEL, AND DIAZEPAM BINDING INHIBITOR IN THE GONAD OF LARGEMOUTH BASS (MICROPTERUS SALMOIDES) ACROSS THE REPRODUCTIVE CYCLE

    PubMed Central

    Doperalski, Nicholas J.; Martyniuk, Christopher J.; Prucha, Melinda S.; Kroll, Kevin J.; Denslow, Nancy D.; Barber, David S.

    2011-01-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. PMID:21600210

  20. Bombyx mori nucleopolyhedrovirus ORF101 encodes a budded virus envelope associated protein.

    PubMed

    Chen, Huiqing; Li, Mei; Huang, Guoping; Mai, Weijun; Chen, Keping; Zhou, Yajing

    2014-08-01

    Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, Bm101 was characterized. Transcripts of Bm101 were detected from 24 through 96 h post infection (h p.i.) by RT-PCR. The corresponding protein was also detected from 24 to 96 h p.i. in BmNPV-infected BmN cells by Western blot analysis using a polyclonal antibody against Bm101. Western blot assay of occlusion-derived virus and budded virus (BV) preparations revealed that Bm101 encodes a 28-kDa structural protein that is associated with BV and is located in the envelope fraction of budded virions. In addition, confocal analysis showed that the protein was localized in the cytosol and cytoplasmic membrane in virus-infected cells. In conclusion, the available data suggest that Bm101 is a functional ORF of BmNPV and encodes a protein expressed in the late stage of the infection cycle that is associated with the BV envelope.

  1. Analysis of the expression and antioxidant activity of 2-Cys peroxiredoxin protein in Fasciola gigantica.

    PubMed

    Sangpairoj, Kant; Changklungmoa, Narin; Vanichviriyakit, Rapeepun; Sobhon, Prasert; Chaithirayanon, Kulathida

    2014-05-01

    2-Cys peroxiredoxin (Prx) is the main antioxidant enzyme in Fasciola species for detoxifying hydrogen peroxide which is generated from the hosts' immune effector cells and the parasites' own metabolism. In this study, the recombinant Prx protein from Fasciola gigantica (rFgPrx-2) was expressed and purified in a prokaryotic expression system. This recombinant protein with molecular weight of 26 kDa was enzymatically active in reduction of hydrogen peroxide both in presence of thioredoxin and glutathione systems, and also protected the supercoiled plasmid DNA from oxidative damage in metal-catalyzed oxidation (MCO) system in a concentration-dependent manner. By immunoblotting, using antibody against rFgPrx-2 as probe, a native FgPrxs, whose MW at 25 kDa, was detected in all developmental stages of the parasite. Concentrations of native FgPrxs were increasing in all stages reaching highest level in adult stage. The antibody also showed cross reactivities with corresponding proteins in some cattle helminthes. Natural antibody to FgPrxs could be detected in the sera of mice at 3 and 4 weeks after infection with F. gigantica metacercariae. By immunofluorescence, FgPrxs was highly expressed in tegument and tegumental cells, parenchyma, moderately expressed in cecal epithelial cells in early, juvenile and adult worms. Furthermore, FgPrxs was also detected in the female reproductive organs, including eggs, ovary, vitelline cells, and testis, suggesting that FgPrxs might play an essential role in protecting parasite's tissues from free radical attack during their life cycle. Thus, FgPrxs is one potential candidate for drug therapy and vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Reflections on protein splicing: structures, functions and mechanisms

    PubMed Central

    Anraku, Yasuhiro; Satow, Yoshinori

    2009-01-01

    Twenty years ago, evidence that one gene produces two enzymes via protein splicing emerged from structural and expression studies of the VMA1 gene in Saccharomyces cerevisiae. VMA1 consists of a single open reading frame and contains two independent genetic information for Vma1p (a catalytic 70-kDa subunit of the vacuolar H+-ATPase) and VDE (a 50-kDa DNA endonuclease) as an in-frame spliced insert in the gene. Protein splicing is a posttranslational cellular process, in which an intervening polypeptide termed as the VMA1 intein is self-catalytically excised out from a nascent 120-kDa VMA1 precursor and two flanking polypeptides of the N- and C-exteins are ligated to produce the mature Vma1p. Subsequent studies have demonstrated that protein splicing is not unique to the VMA1 precursor and there are many operons in nature, which implement genetic information editing at protein level. To elucidate its structure-directed chemical mechanisms, a series of biochemical and crystal structural studies has been carried out with the use of various VMA1 recombinants. This article summarizes a VDE-mediated self-catalytic mechanism for protein splicing that is triggered and terminated solely via thiazolidine intermediates with tetrahedral configurations formed within the splicing sites where proton ingress and egress are driven by balanced protonation and deprotonation. PMID:19907126

  3. Protein Buffering in Model Systems and in Whole Human Saliva

    PubMed Central

    Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian

    2007-01-01

    The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and α-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922

  4. An effective system for detecting protein-protein interaction based on in vivo cleavage by PPV NIa protease.

    PubMed

    Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi

    2012-12-01

    Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.

  5. Protein Detection with Aptamer Biosensors

    PubMed Central

    Strehlitz, Beate; Nikolaus, Nadia; Stoltenburg, Regina

    2008-01-01

    Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors) will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers. PMID:27879936

  6. Cysteine-Rich Atrial Secretory Protein from the Snail Achatina achatina: Purification and Structural Characterization

    PubMed Central

    Shabelnikov, Sergey; Kiselev, Artem

    2015-01-01

    Despite extensive studies of cardiac bioactive peptides and their functions in molluscs, soluble proteins expressed in the heart and secreted into the circulation have not yet been reported. In this study, we describe an 18.1-kDa, cysteine-rich atrial secretory protein (CRASP) isolated from the terrestrial snail Achatina achatina that has no detectable sequence similarity to any known protein or nucleotide sequence. CRASP is an acidic, 158-residue, N-glycosylated protein composed of eight alpha-helical segments stabilized with five disulphide bonds. A combination of fold recognition algorithms and ab initio folding predicted that CRASP adopts an all-alpha, right-handed superhelical fold. CRASP is most strongly expressed in the atrium in secretory atrial granular cells, and substantial amounts of CRASP are released from the heart upon nerve stimulation. CRASP is detected in the haemolymph of intact animals at nanomolar concentrations. CRASP is the first secretory protein expressed in molluscan atrium to be reported. We propose that CRASP is an example of a taxonomically restricted gene that might be responsible for adaptations specific for terrestrial pulmonates. PMID:26444993

  7. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    DOE PAGES

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-08-15

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electronmore » microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol. Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high-resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography. Moreover, OpNS can be a high-throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.« less

  8. EFFECTS OF AZADIRACHTIN ON CUTICULAR PROTEINS OF SPODOPTERA LITURA (LEPIDOPTERA: NOCTUIDAE) VIS-A-VIS THE MODES OF APPLICATION.

    PubMed

    Yooboon, T; Pluempanupat, W; Koul, Opender; Bullangpoti, V

    2015-01-01

    Azadirachtin is a known botanical insecticide with multiple modes of action. Whether these effects have any relation with the modes of application, specifically during ecdysis process, has been the objective of the present study and accordingly the impairment, if any, among cuticular proteins of Spodoptera litura (Fab.) was determined. Azadirachtin was applied topically, via injection or oral administration. Azadirachtin administered via injection and topical applications severely impaired the ecdysis by 86.67 and 80.0%, respectively. However, this impairment via oral administration was significantly lower (73.33%). Using SDS-PAGE, the cuticular proteins were determined for treated insects under all the three modes of application. In all cases 6 protein bands (MW 9-34 kDa) were identified using markers as standard. In all treatments 3 induced proteins (MW. ~16, 20 and 23 kDa) and 1 reduced protein (~19 kDa) were observed. In case of the topical treatment a different induced protein of ~18 kDa was identified. The change in cuticular proteins, their possible role in ecdysis impairment vis-a-vis the mode of application of azadirachtin is being correlated. This will help in understanding the mode-of-action at cuticular level and also will allow developing a suitable application strategy under field conditions in insect pest management.

  9. Comparison of protein degradation, protein oxidation, and μ-calpain activation between pale, soft, and exudative and red, firm, and nonexudative pork during postmortem aging.

    PubMed

    Yin, Y; Zhang, W G; Zhou, G H; Guo, B

    2014-08-01

    The objective of this study was to investigate the differences in protein modifications between pale, soft, and exudative (PSE) and red, firm, and nonexudative (RFN) pork during postmortem (PM) aging. Longissimus dorsi (LD) including 8 PSE and 8 RFN muscles were individually removed from 16 carcasses. These 16 LD muscles were vacuum packaged at 24 h after slaughter and stored at 4°C for 1, 3, and 5 d. The centrifugation loss, drip loss, color, protein solubility, protein oxidation, protein degradation including desmin, troponin T, and integrin, and μ-calpain activation were determined. The pH of PSE samples was significantly lower than that of RFN samples at both 1 and 24 h PM (P < 0.05). The L* values of PSE pork were significantly greater than that of RFN pork at different time point during PM storage (P < 0.01). The centrifugation loss of PSE samples at d 1 was extremely greater than samples from RFN pork (P < 0.01). The cumulative drip loss for d 0 to 1, d 0 to 3, and d 0 to 5 in PSE pork were significantly greater than that from RFN pork (P < 0.05). The carbonyl content of myofibrillar proteins was not significantly different between PSE and RFN pork samples (P > 0.05). In addition, PSE pork presented a lower solubility of sarcoplasmic protein, myofibrillar protein, and total protein than RFN pork except the solubility of myofibrillar protein at d 1 (P < 0.05). The intensity of intact desmin and troponin T 2 in PSE pork at d 3 and 5 were significantly greater than that in RFN pork (P < 0.05), whereas no significant difference was detected at d 1. The intensity of intact troponin T 1 in PSE pork at d 5 was greater than that in RFN pork (P < 0.05). However, more degradation products of integrin were detected in PSE pork compared to that of RFN pork at d 1 (P < 0.05). Red, firm, and nonexudative pork presented lower intensity of intact 80 kDa calpain and greater intensity of autolyzed 76 kDa product compared to PSE pork (P < 0.01). The results indicate that the

  10. Identification and Characterization of Two Temperature-Induced Surface-Associated Proteins of Streptococcus suis with High Homologies to Members of the Arginine Deiminase System of Streptococcus pyogenes

    PubMed Central

    Winterhoff, Nora; Goethe, Ralph; Gruening, Petra; Rohde, Manfred; Kalisz, Henryk; Smith, Hilde E.; Valentin-Weigand, Peter

    2002-01-01

    The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42°C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42°C induced expression of two cell wall-associated proteins with apparent molecular masses of approximately 47 and 53 kDa. Amino-terminal sequence analysis of the two proteins indicated homologies of the 47-kDa protein with an ornithine carbamoyltransferase (OCT) from Streptococcus pyogenes and of the 53-kDa protein with the streptococcal acid glycoprotein (SAGP) from S. pyogenes, an arginine deiminase (AD) recently proposed as a putative virulence factor. Cloning and sequencing the genes encoding the putative OCT and AD of S. suis, octS and adiS, respectively, revealed that they had 81.2 (octS) and 80.2% (adiS) identity with the respective genes of S. pyogenes. Both genes belong to the AD system, also found in other bacteria. Southern hybridization analysis demonstrated the presence of the adiS gene in all 42 serotype 2 and 9 S. suis strains tested. In 9 of these 42 strains, selected randomly, we confirmed expression of the AdiS protein, homologous to SAGP, by immunoblot analysis using a specific antiserum against the SAGP of S. pyogenes. In all strains AD activity was detected. Furthermore, by immunoelectron microscopy using the anti-S. pyogenes SAGP antiserum we were able to demonstrate that the AdiS protein is expressed on the streptococcal surface in association with the capsular polysaccharides but is not coexpressed with them. PMID:12446626

  11. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity.

    PubMed

    Hu, Qiong; Wang, Qiangwei; Jiang, Cuihua; Zhang, Jian; Kong, Jinming; Zhang, Xueji

    2018-07-01

    Protein kinases play a pivotal role in cellular regulation and signal transduction, the detection of protein kinase activity and inhibition is therefore of great importance to clinical diagnosis and drug discovery. In this work, a novel electrochemical platform using the electrochemically mediated polymerization as an efficient and cost-effective signal amplification strategy is described for the highly sensitive detection of protein kinase activity. This platform involves 1) the phosphorylation of substrate peptide by protein kinase, 2) the attachment of alkyl halide to the phosphorylated sites via the carboxylate-Zr 4+ -phosphate chemistry, and 3) the in situ grafting of electroactive polymers from the phosphorylated sites through the electrochemically mediated atom transfer radical polymerization (eATRP) at a negative potential, in the presence of the surface-attached alkyl halide as the initiator and the electroactive tag-conjugated acrylate as the monomer, respectively. Due to the electrochemically mediated polymerization, a large number of electroactive tags can be linked to each phosphorylated site, thereby greatly improving the detection sensitivity. This platform has been successfully applied to detect the activity of cAMP-dependent protein kinase (PKA) with a detection limit down to 1.63 mU mL -1 . Results also demonstrate that it is highly selective and can be used for the screening of protein kinase inhibitors. The potential application of our platform for protein kinase activity detection in complex biological samples has been further verified using normal human serum and HepG2 cell lysate. Moreover, our platform is operationally simple, highly efficient and cost-effective, thus holding great potential in protein kinase detection and inhibitor screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230-180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110-85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones

  13. Protein and glycoprotein content of lymphocystis disease virus (LCDV).

    PubMed

    García-Rosado, Esther; Castro, Dolores; Cano, Irene; Alonso, M Carmen; Pérez-Prieto, Sara I; Borrego, Juan J

    2004-06-01

    The polypeptide and glycoprotein composition of eight strains of the fish-pathogenic lymphocystis disease virus (LCDV) isolated from gilt-head seabream (Sparus aurata), blackspot seabream (Pagellus bogaraveo), and sole (Solea senegalensis) were determined. The protein electrophoretic patterns of all LCDV isolates were quite similar regardless of the host fish, showing two major proteins (79.9 and 55.6 kDa) and a variable number of minor proteins. Three groups of LCDV isolates were distinguished according to the number and molecular masses of the minor proteins. Eight glycoproteins were detected inside viral particles of LCDV 2, LCDV 3 and LCDV 5 isolates, but only seven glycoproteins were found inside viral particles of LCDV 1, LCDV 4, LCDV 6, LCDV 7, and LCDV 11 isolates and the reference virus ATCC VR 342 by using five lectins. LCDV glycoproteins were mainly composed of mannose and sialic acid. These glycoproteins could be part of an external viral envelope probably derived from the host cell membrane.

  14. Identification of pheromone-carrying protein in the preorbital gland post in the endangered Indian male Blackbuck Antelope cervicapra L.

    PubMed

    Rajagopal, T; Rajkumar, R; Ponmanickam, P; Achiraman, S; Padmanabhan, P; Archunan, G

    2015-12-01

    In mammals, a low molecular mass protein (17-20 KDa) reported from the pheromone sources such as urine, saliva, glandular secretion, etc., as ligand-carrier (pheromone carrier) has been associated with chemo-communication. Since the preorbital gland post is one of the major pheromone sources in Indian Blackbuck, an endangered species, we assumed that it possibly contains low molecular mass protein for chemical communication. Hence, we investigated the preorbital gland post in territorial and non-territorial male blackbucks for such low molecular mass proteins adopting SDS-PAGE and LC-MS/MS analysis. The total content of protein was higher in the post of territorial males than non-territorial males of adult and sub-adult. In fact, the protein profiles such as 17, 21, 25, 42 and 61 kDa were noted in the gland secretion of territorial and non-territorial males. The intensity of the 17 kDa protein band was higher in territorial males than non-territorial males. In-gel trypsin digestion of the 17 kDa band was processed and subjected to LC-MS/MS and SEQUEST analyses. The results of LC-MS/MS and SEQUEST search showed the presence of α(2u)-globulin in the 17 kDa band. In addition, the identified α(2u)-globulin sequence possessed GDW residues, which are the characteristic signature for lipocalin family. Since the α(2u)-globulin has been reported from the pheromone-carrying proteins in some mammals, this protein may carry the volatiles (pheromone compounds) in male Blackbucks preorbital gland to evoke the scent marking for maintaining territoriality (home range) and attraction towards female, through the secretion of glandular protein.

  15. Protein Aggregation Formed by Recombinant cp19k Homologue of Balanus albicostatus Combined with an 18 kDa N-Terminus Encoded by pET-32a(+) Plasmid Having Adhesion Strength Comparable to Several Commercial Glues

    PubMed Central

    Liang, Chao; Li, Yunqiu; Liu, Zhiming; Wu, Wenjian; Hu, Biru

    2015-01-01

    The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials. PMID:26317205

  16. Effect of protein supplementation on expression and distribution of urea transporter-B in lambs fed low-quality forage.

    PubMed

    Ludden, P A; Stohrer, R M; Austin, K J; Atkinson, R L; Belden, E L; Harlow, H J

    2009-04-01

    Two experiments were conducted to determine the effects of ruminal protein degradability, supplementation frequency, and increasing dietary protein on the expression and distribution of urea transporter-B (UT-B) in lambs fed low-quality forage (mature crested wheatgrass hay; 4.2 to 4.7% CP). In Exp. 1, 15 Dorset wether lambs (initial BW=45.8+/-1.3 kg) were blocked by initial BW and assigned to 1 of 3 treatments within a randomized complete block design for 28 d, with supplements fed to achieve 7, 10, or 13% total dietary CP. In Exp. 2, 13 Dorset wether lambs (initial BW=34+/-4 kg) were used in a completely randomized design and given 1 of 4 isonitrogenous supplements: 1) ruminally degradable protein (RDP) fed daily (n=3), 2) RDP fed on alternate days (n=3), 3) ruminally undegradable protein (RUP) fed on alternate days (n=3), or 4) a 50:50 mixture of RDP and RUP fed on alternate days (n=4) for 18 d. Alternate-day treatments were fed at twice that of daily supplementation. On the last day of both experiments, lambs were killed and samples taken for Western blot analyses for UT-B. Immunoblotting using a rabbit polyclonal antibody to UT-B confirmed the presence of distinct 32-kDa (consistent with a nonglycosylated UT-B protein) and 47-kDa (probable N-glycosylated form of UT-B) protein bands in all 9 tissues analyzed. In both experiments, the liver, dorsal rumen, reticulum, and ventral rumen displayed strong bands at 32 kDa and lighter bands at 47 kDa, whereas the cecum, large colon, spiral colon, and parotid salivary gland displayed slight 32-kDa bands and stronger, more visible bands at 47 kDa. Both protein bands were apparent in the kidney at similar visual intensities in Exp. 1, whereas the relative intensities of the 2 UT-B bands in the kidney were variable, and appeared somewhat reciprocal among animals in Exp. 2. Although the abundance of the 47-kDa UT-B band in the ventral rumen was greater (P=0.03) in lambs fed RDP daily in Exp. 2, no other treatment

  17. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves.

    PubMed

    Xu, Shucheng

    2010-09-01

    The role of a calcium-dependent and calmodulin (CaM)-stimulated protein kinase in abscisic acid (ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays). In-gel kinase assays showed that treatments with ABA or H(2)O(2) induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly. Furthermore, we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase II (CaMK II) inhibitor KN-93 or CaM antagonist W-7. Treatments with ABA or H(2)O(2) not only induced the activation of the 52-kDa protein kinase, but also enhanced the total activities of the antioxidant enzymes, including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species (ROS) inhibitor or scavenger. Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H(2)O(2) production. Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger. These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H(2)O(2) plays a pivotal role in ABA signaling. We infer that CaMK acts both upstream and downstream of H(2)O(2), but mainly acts between ABA and H(2)O(2) in ABA-induced antioxidant-defensive signaling.

  18. Changes in NGF and NT-3 protein species in the superior cervical ganglion following axotomy of postganglionic axons.

    PubMed

    Walker, Ryan G; Foster, Andrew; Randolph, Chris L; Isaacson, Lori G

    2009-02-19

    Mature sympathetic neurons in the superior cervical ganglion (SCG) are regulated by target-derived neurotrophins such as nerve growth factor (NGF) and neurotrophin-3 (NT-3). High molecular weight NGF species and mature NT-3 are the predominant NGF and NT-3 protein isoforms in the SCG, yet it is unknown whether the presence of these species is dependent on intact connection with the target tissues. In an attempt to determine the role of peripheral targets in regulating the neurotrophin species found in the SCG, we investigated the NGF and NT-3 protein species present in the SCG following axotomy (transection) or injury of the post-ganglionic axons. Following a 7 day axotomy, the 22-24 kDa NGF species and the mature 14 kDa NT-3 species in the SCG were significantly reduced by 99% and 66% respectively, suggesting that intact connection with the target is necessary for the expression of these protein species. As expected, tyrosine hydroxylase (TH) protein in the SCG was significantly reduced by 80% at 7 days following axotomy. In order to distinguish between the effects of injury and loss of target connectivity, the SCG was examined following compression injury to the post-ganglionic nerves. Following injury, no reduction in the 22-24 kDa NGF or 14 kDa mature NT-3 species was observed in the SCG. TH protein was slightly, yet significantly, decreased in the SCG following injury. The findings of this study suggest that the presence of the 22-24 kDa NGF and mature 14 kDa NT-3 species in the SCG is dependent on connection with peripheral targets and may influence, at least in part, TH protein expression in adult sympathetic neurons.

  19. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    PubMed

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  20. T-cell epitope analysis using subtracted expression libraries (TEASEL): application to a 38-kDA autoantigen recognized by T cells from an insulin-dependent diabetic patient.

    PubMed Central

    Neophytou, P I; Roep, B O; Arden, S D; Muir, E M; Duinkerken, G; Kallan, A; de Vries, R R; Hutton, J C

    1996-01-01

    Studies on circulating T cells and antibodies in newly diagnosed type 1 diabetic patients and rodent models of autoimmune diabetes suggest that beta-cell membrane proteins of 38 kDa may be important molecular targets of autoimmune attack. Biochemical approaches to the isolation and identification of the 38-kDa autoantigen have been hampered by the restricted availability of islet tissue and the low abundance of the protein. A procedure of epitope analysis for CD4+ T cells using subtracted expression libraries (TEASEL) was developed and used to clone a 70-amino acid pancreatic beta-cell peptide incorporating an epitope recognized by a 38-kDa-reactive CD4+ T-cell clone (1C6) isolated from a human diabetic patient. The minimal epitope was mapped to a 10-amino acid synthetic peptide containing a DR1 consensus binding motif. Data base searches did not reveal the identity of the protein, though a weak homology to the bacterial superantigens SEA (Streptococcus pyogenes exotoxin A) and SEB (Staphylococcus aureus enterotoxin B) (23% identity) was evident. The TEASEL procedure might be used to identify epitopes of other autoantigens recognized by CD4+ T cells in diabetes as well as be more generally applicable to the study low-abundance autoantigens in other tissue-specific autoimmune diseases. PMID:8700877

  1. Protein separations using enhanced-fluidity liquid chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-11-10

    Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.

    PubMed

    Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula

    2017-08-01

    Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses <20kDa) was determined for breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.

    PubMed

    Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A

    1996-06-01

    Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.

  4. Selenocysteine-Containing Proteins in Anaerobic Benzoate Metabolism of Desulfococcus multivorans

    PubMed Central

    Peters, Franziska; Rother, Michael; Boll, Matthias

    2004-01-01

    The sulfate-reducing bacterium Desulfococcus multivorans uses various aromatic compounds as sources of cell carbon and energy. In this work, we studied the initial steps in the aromatic metabolism of this strictly anaerobic model organism. An ATP-dependent benzoate coenzyme A (CoA) ligase (AMP plus PPi forming) composed of a single 59-kDa subunit was purified from extracts of cells grown on benzoate. Specific activity was highest with benzoate and some benzoate derivatives, whereas aliphatic carboxylic acids were virtually unconverted. The N-terminal amino acid sequence showed high similarities with benzoate CoA ligases from Thauera aromatica and Azoarcus evansii. When cultivated on benzoate, cells strictly required selenium and molybdenum, whereas growth on nonaromatic compounds, such as cyclohexanecarboxylate or lactate, did not depend on the presence of the two trace elements. The growth rate on benzoate was half maximal with 1 nM selenite present in the growth medium. In molybdenum- and/or selenium-depleted cultures, growth on benzoate could be induced by addition of the missing trace elements. In extracts of cells grown on benzoate in the presence of [75Se]selenite, three radioactively labeled proteins with molecular masses of ∼100, 30, and 27 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 100- and 30-kDa selenoproteins were 5- to 10-fold induced in cells grown on benzoate compared to cells grown on lactate. These results suggest that the dearomatization process in D. multivorans is not catalyzed by the ATP-dependent Fe-S enzyme benzoyl-CoA reductase as in facultative anaerobes but rather involves unknown molybdenum- and selenocysteine-containing proteins. PMID:15028701

  5. The Detection of Protein via ZnO Resonant Raman Scattering Signal

    NASA Astrophysics Data System (ADS)

    Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun

    2008-03-01

    Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.

  6. A study on venom proteins of Iurus dufoureius asiaticus Birula, 1903 (Scorpiones: Iuridae).

    PubMed

    Keskin, Nurşen Alpagut; Koç, Halil

    2006-01-01

    The scorpion Iurus dufoureius asiaticus (Birula 1903) which is the largest scorpion in Europe and Turkey belongs to the family Iuridae and is endemic in Turkey. No data has been found about the venom components of I. d. asiaticus. In this study, the venom extract ob-tained from I. d. asiaticus specimens collected from Aydin were analyzed using the Tris tricine SDS-PAGE method. A total of 28 protein fractions or fraction groups were detected in the range of 6.5-205 kDa.

  7. Large-scale protein-protein interactions detection by integrating big biosensing data with computational model.

    PubMed

    You, Zhu-Hong; Li, Shuai; Gao, Xin; Luo, Xin; Ji, Zhen

    2014-01-01

    Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection.

  8. Aptamer-based microspheres for highly sensitive protein detection using fluorescently-labeled DNA nanostructures.

    PubMed

    Han, Daehoon; Hong, Jinkee; Kim, Hyun Cheol; Sung, Jong Hwan; Lee, Jong Bum

    2013-11-01

    Many highly sensitive protein detection techniques have been developed and have played an important role in the analysis of proteins. Herein, we report a novel technique that can detect proteins sensitively and effectively using aptamer-based DNA nanostructures. Thrombin was used as a target protein and aptamer was used to capture fluorescent dye-labeled DNA nanobarcodes or thrombin on a microsphere. The captured DNA nanobarcodes were replaced by a thrombin and aptamer interaction. The detection ability of this approach was confirmed by flow cytometry with different concentrations of thrombin. Our detection method has great potential for rapid and simple protein detection with a variety of aptamers.

  9. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    PubMed

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  10. The heat shock response and major heat shock proteins of Tritrichomonas mobilensis and Tritrichomonas augusta.

    PubMed

    Bozner, P

    1996-02-01

    The responses to heat shock in Tritrichomonas mobilensis, a squirrel monkey parasite and Tritrichomonas augusta, an amphibian trichomonad, were evaluated by means of metabolic labeling with [35S]methionine. Electrophoretically separated trichomonad proteins synthesized at different temperatures were visualized by autoradiography and the label incorporation quantitated by a trichloroacetic acid precipitation procedure. A considerable difference in thermotolerance between the two species was found as the protein synthesis reached a maximum at 41 C in T. mobilensis and 37 C in T. augusta. The latter tolerated temperature increases 13 C above normal cultivation temperatures as compared to only 4 C thermotolerance range above normal in T. mobilensis. Major heat shock proteins (Hsps) were expressed in both T. mobilensis (with apparent Mr 94, 72, and 58 kDa) and T. augusta (Mr 94, 70, and 56 kDa) as revealed by autoradiography. Western blot analysis with polyclonal antibody against DnaK of Escherichia coli showed the presence of antigenic Hsp70 homologs in both trichomonads. Similarly, a polyclonal antibody against Hsp60 with broad interspecies cross-reactivity detected Hsp60 homologs in both T. mobilensis and T. augusta. The anti-DnaK antibody cross-reacted with a T. mobilensis protein localized in Golgi apparatus as demonstrated by immunoelectron microscopy. Immunocytochemistry on trichomonad frozen sections revealed the presence of the Hsp60 homolog in light-microscopic granules corresponding to hydrogenosomes.

  11. A novel biomarker associated with distress in humans: calcium-binding protein, spermatid-specific 1 (CABS1)

    PubMed Central

    Ritz, Thomas; Rosenfield, David; St. Laurent, Chris D.; Trueba, Ana F.; Werchan, Chelsey A.; Vogel, Pia D.; Auchus, Richard J.; Reyes-Serratos, Eduardo

    2017-01-01

    Calcium-binding protein spermatid-specific 1 (CABS1) is expressed in the human submandibular gland and has an anti-inflammatory motif similar to that in submandibular rat 1 in rats. Here, we investigate CABS1 in human saliva and its association with psychological and physiological distress and inflammation in humans. Volunteers participated across three studies: 1) weekly baseline measures; 2) a psychosocial speech and mental arithmetic stressor under evaluative threat; and 3) during academic exam stress. Salivary samples were analyzed for CABS1 and cortisol. Additional measures included questionnaires of perceived stress and negative affect; exhaled nitric oxide; respiration and cardiac activity; lung function; and salivary and nasal inflammatory markers. We identified a CABS1 immunoreactive band at 27 kDa in all participants and additional molecular mass forms in some participants. One week temporal stability of the 27-kDa band was satisfactory (test–retest reliability estimate = 0.62–0.86). Acute stress increased intensity of 18, 27, and 55 kDa bands; 27-kDa increases were associated with more negative affect and lower heart rate, sympathetic activity, respiration rate, and minute ventilation. In both acute and academic stress, changes in 27 kDa were positively associated with salivary cortisol. The 27-kDa band was also positively associated with VEGF and salivary leukotriene B4 levels. Participants with low molecular weight CABS1 bands showed reduced habitual stress and negative affect in response to acute stress. CABS1 is readily detected in human saliva and is associated with psychological and physiological indicators of stress. The role of CABS1 in inflammatory processes, stress, and stress resilience requires careful study. PMID:28381457

  12. Sensitive detection of EML4-ALK fusion oncoprotein of lung cancer by in situ proximity ligation assay.

    PubMed

    Rho, Jin Kyung; Lee, Hyangsin; Park, Chan-Sik; Choi, Chang-Min; Lee, Jae Cheol

    2013-09-01

    EML4-ALK fusion oncogene has emerged as a novel molecular target in non-small cell lung cancer (NSCLC). Although break-apart fluorescent in situ hybridization (FISH) is the standard method for diagnosis, it is expensive, not readily available and sometimes difficult to interpret. In addition, ALK immunohistochemistry (IHC) may miss the diagnosis because of relatively low level of ALK transcription. In situ proximity ligation assay (PLA) originally developed for precise detection and quantification of proteins by dual recognition and amplification process was used for sensitive detection of EML4-ALK fusion oncoprotein in NSCLC cell lines (ALK negative cell: PC-9 and H460, ALK positive cell: H3122 and H2228). EML4-ALK oncogene and protein in lung cancer cells were confirmed by multiplex RT-PCR and Western blots. We detected 117 kDa variant 1 of EML4-ALK in H3122 and 90 kDa variant 3 of EML4-ALK in H2228. These cells were more sensitive to crizotinib, an ALK inhibitor compared with PC-9 and H460 cells without EML4-ALK rearrangement. After fixing on glass slides by cytospin centrifuge, in situ PLA test was performed. Among four cell lines, distinct, tiny spots were visible only in H3122 and H2228 cell lines with ALK rearrangement. The same results were also obtained when paraffin-embedded cell blocks were used. Highly specific and sensitive detection of EML4-ALK fusion oncoprotein is possible by in situ PLA method suggesting its clinical application.

  13. A Mechanistic and Structural Analysis of the Inhibition of the 90-kDa Heat Shock Protein by the Benzoquinone and Hydroquinone AnsamycinsS⃞

    PubMed Central

    Reigan, Philip; Siegel, David; Guo, Wenchang

    2011-01-01

    The benzoquinone ansamycins inhibit the ATPase activity of the 90-kDa heat shock protein (Hsp90), disrupting the function of numerous client proteins involved in oncogenesis. In this study, we examine the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the metabolism of trans- and cis-amide isomers of the benzoquinone ansamycins and their mechanism of Hsp90 inhibition. Inhibition of purified human Hsp90 by a series of benzoquinone ansamycins was examined in the presence and absence of NQO1, and their relative rate of NQO1-mediated reduction was determined. Computational-based molecular docking simulations indicated that the trans- but not the cis-amide isomers of the benzoquinone ansamycins could be accommodated by the NQO1 active site, and the ranking order of binding energies correlated with the relative reduction rate using purified human NQO1. The trans-cis isomerization of the benzoquinone ansamycins in Hsp90 inhibition has been disputed in recent reports. Previous computational studies have used the closed or cocrystallized Hsp90 structures in an attempt to explore this isomerization step; however, we have successfully docked both the trans- and cis-amide isomers of the benzoquinone ansamycins into the open Hsp90 structure. The results of these studies indicate that both trans- and cis-amide isomers of the hydroquinone ansamycins exhibited increased binding affinity for Hsp90 relative to their parent quinones. Our data support a mechanism in which trans- rather than cis-amide forms of benzoquinone ansamycins are metabolized by NQO1 to hydroquinone ansamycins and that Hsp90-mediated trans-cis isomerization via tautomerization plays an important role in subsequent Hsp90 inhibition. PMID:21285336

  14. Humoral immune response against lipopolysaccharide and cytoplasmic proteins of Brucella abortus in cattle vaccinated with B. abortus S19 or experimentally infected with Yersinia enterocolitica serotype 0:9.

    PubMed Central

    Baldi, P C; Giambartolomei, G H; Goldbaum, F A; Abdón, L F; Velikovsky, C A; Kittelberger, R; Fossati, C A

    1996-01-01

    The humoral immune responses against three different antigens of Brucella abortus were monitored by enzyme-linked immunosorbent assay in cattle vaccinated with B. abortus S19 or experimentally infected with Yersinia enterocolitica serotype 0:9. Immunoglobulin G (IgG) and IgM responses against (i) B. abortus lipopolysaccharide (LPS), (ii) total cytoplasmic proteins depleted of LPS (LPS-free CYT), and (iii) B. abortus 18-kDa cytoplasmic protein were measured. Vaccinated animals and Yersinia-infected animals developed high anti-LPS IgM and IgG titers, which overlapped with those obtained with sera from B. abortus 544-infected animals used as positive controls. In contrast, only a slight or negative IgG and IgM response against LPS-free CYT and the 18-kDa protein was detected in vaccinated or Yersinia-infected cattle, although its levels were always significantly lower than those of B. abortus 544-infected animals. These data indicate that cytoplasmic proteins of B. abortus could be useful for the differential diagnosis of bovine brucellosis. PMID:8807216

  15. Yolk proteins during ovary and egg development of mature female freshwater crayfish (Cherax quadricarinatus).

    PubMed

    Serrano-Pinto, Vania; Vazquez-Boucard, Celia; Villarreal-Colmenares, Humberto

    2003-01-01

    Vitellins from ovaries and eggs at different stages of development in freshwater crayfish (Cherax quadricarinatus) were examined by chromatography, PAGE and SDS-PAGE. With these methods, two forms of vitellin (Vt1 and Vt2) were observed in ovaries and eggs (stages I and V). In ovaries in secondary vitellogenesis, native molecular mass was 470 (Vt1) and 440 (Vt2) kDa. The electrophoretic pattern of the eggs proved to be more complex. The protein molecular mass depend on the development stage of the egg: stage I, 650 kDa (Vt1) and 440 kDa (Vt2); stage V, 390 kDa (Vt1) and 340 kDa (Vt2). The identified vitellins appear to be lipo-glycocarotenoprotein. A similar vitellin polypeptide composition was observed in the two forms of vitellin from ovaries and eggs in stage V. In ovaries the SDS-PAGE analysis showed four subunits with molecular weights of approximately 180, 120, 95 and 80 kDa (Vt1 and Vt2). The polypeptide composition in the two forms of vitellins in stage I and stage III eggs were different at 195, 190, 130 and 110 kDa (Vt1) and 116 and 107 kDa (Vt2). On the other hand, in stage V eggs, 110, 95, 87 and 75 kDa (Vt1 and Vt2) were identified. Two antibodies (Ab1 and Ab2) were prepared against the purified proteins of stage V eggs and their specificity was demonstrated by radial immunoprecipitation, and Western blotting analysis. Two forms of vitellins were also found in stage V eggs after chromatography on Sepharose CL-2B column and hydroxylapatite and polyacrylamide gel electrophoresis.

  16. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein.

    PubMed

    Bleiziffer, Isabelle; Eikmeier, Julian; Pohlentz, Gottfried; McAulay, Kathryn; Xia, Guoqing; Hussain, Muzaffar; Peschel, Andreas; Foster, Simon; Peters, Georg; Heilmann, Christine

    2017-01-01

    Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl

  17. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  18. A Novel Helicase-Type Protein in the Nucleolus: Protein NOH61

    PubMed Central

    Zirwes, Rudolf F.; Eilbracht, Jens; Kneissel, Sandra; Schmidt-Zachmann, Marion S.

    2000-01-01

    We report the identification, cDNA cloning, and molecular characterization of a novel, constitutive nucleolar protein. The cDNA-deduced amino acid sequence of the human protein defines a polypeptide of a calculated mass of 61.5 kDa and an isoelectric point of 9.9. Inspection of the primary sequence disclosed that the protein is a member of the family of “DEAD-box” proteins, representing a subgroup of putative ATP-dependent RNA helicases. ATPase activity of the recombinant protein is evident and stimulated by a variety of polynucleotides tested. Immunolocalization studies revealed that protein NOH61 (nucleolar helicase of 61 kDa) is highly conserved during evolution and shows a strong accumulation in nucleoli. Biochemical experiments have shown that protein NOH61 synthesized in vitro sediments with ∼11.5 S, i.e., apparently as homo-oligomeric structures. By contrast, sucrose gradient centrifugation analysis of cellular extracts obtained with buffers of elevated ionic strength (600 mM NaCl) revealed that the solubilized native protein sediments with ∼4 S, suggestive of the monomeric form. Interestingly, protein NOH61 has also been identified as a specific constituent of free nucleoplasmic 65S preribosomal particles but is absent from cytoplasmic ribosomes. Treatment of cultured cells with 1) the transcription inhibitor actinomycin D and 2) RNase A results in a complete dissociation of NOH61 from nucleolar structures. The specific intracellular localization and its striking sequence homology to other known RNA helicases lead to the hypothesis that protein NOH61 might be involved in ribosome synthesis, most likely during the assembly process of the large (60S) ribosomal subunit. PMID:10749921

  19. Effect of processing on the detectability of peanut protein by ELISA.

    PubMed

    Iqbal, Amjad; Ateeq, Nadia

    2013-12-01

    Chicken IgY was used for the detection and quantification of peanut proteins by indirect competitive ELISA. The method was optimized by using a checker board approach to determine the optimal concentration of coating antigen, primary antibody and secondary antibody. Peanut protein could be detected in foods down to levels of 10 ppm. The effect of physical (heat treatment at 80 °C and 100 °C) and chemical (acid, alkali and reducing sugar) treatments on the IgY binding of peanut proteins was investigated. The optimized assay was relatively sensitive for the roasted peanut proteins. However, the binding ability of chicken IgYs to peanut proteins was found to be significantly altered by denaturation and hydrolysis of proteins. It was also observed that the effect of Millard chemistry on the detectability of peanut protein was less pronounced at high temperatures than at low temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Identification of three proteins in the eye of Aplysia, whose synthesis is altered by serotonin (5-HT). Possible involvement of these proteins in the ocular circadian system.

    PubMed

    Koumenis, C; Nunez-Regueiro, M; Raju, U; Cook, R; Eskin, A

    1995-06-16

    Previous results using translation inhibitors in the ocular circadian system of Aplysia suggest that protein synthesis may be involved in the light and serotonin (5-HT) entrainment pathways or perhaps in the circadian oscillator. Proteins have been previously identified whose synthesis was altered by treatments of light capable of perturbing the phase of the circadian rhythm in the eye of Aplysia. We extended these studies by investigating the effects of other treatments that perturb the ocular circadian rhythm on protein synthesis. 5-HT altered the synthesis of nine proteins. Interestingly, five of the proteins affected by treatments with 5-HT were previously shown to be affected by treatments with light. Four of the proteins affected by treatments with 5-HT were also affected by treatments with analogs of cAMP, a treatment which mimics the effects of 5-HT on the ocular circadian rhythm. To identify the cellular function of some of these proteins, we obtained their partial amino acid sequences. Based on these sequences and additional characterizations, a 78-kDa, pI 5.6 Aplysia protein appears to be glucose-regulated protein 78/binding protein, and a 36-kDa, pI 5.7 Aplysia protein appears to be porin/voltage-dependent anion channel. Heat shock experiments on Aplysia eyes revealed that yet another one of the Aplysia proteins (70 kDa) affected by 5-HT appears to be a heat-inducible member (heat shock protein 70) of the family of heat shock proteins. These findings suggest that these three identified proteins, together or individually, may be involved in some way in the regulation of the timing of the circadian oscillator in the eye of Aplysia.

  1. The subcommissural organ of the rat secretes Reissner's fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments

    PubMed Central

    Vio, Karin; Rodríguez, Sara; Yulis, Carlos R; Oliver, Cristian; Rodríguez, Esteban M

    2008-01-01

    precursor and/or partially processed forms. Two other compounds (200, 63 kDa) were present in SCO, RF and CSF and may be processed forms. The presence of these proteins in both, RF and CSF suggests a steady-state RF/CSF equilibrium for these compounds. Eight AFRU-immunoreactive bands were consistently found in CSF samples from rats at E18, E20 and PN1. Only four of these compounds were detected in the cisternal CSF of PN30 rats. The 200 kDa compound appears to be a key compound in rats since it was consistently found in all samples of SCO, RF and embryonic and juvenile CSF. Conclusion It is concluded that (i) during the late embryonic life, the rat SCO secretes compounds that remain soluble in the CSF and reach the subarachnoid space; (ii) during postnatal life, there is a reduction in the number and concentration of CSF-soluble proteins secreted by the SCO. The molecular structure and functional significance of these proteins remain to be elucidated. The possibility they are involved in brain development has been discussed. PMID:18218138

  2. Adenylyl cyclase and G-proteins in Phytomonas.

    PubMed

    Farber, M D; Montagna, A E; Paveto, C; Dollet, M; Sanchex-Moreno, M; Osuna, A; Torres, H N; Flawia, M M

    1995-01-01

    Phytomonas sp. membranes have an adenylyl cyclase activity which is greater in the presence of Mn2+ than with Mg2+. The Mg2+ and Mn2+ activity ratio varies from one membrane preparation to another, suggesting that the adenylyl cyclase has a variable activation state. A[35S]GTP-gamma-S-binding activity with a Kd of 171 nM was detected in Phytomonas membranes. Incubation of these membranes with activated cholera or pertussis toxin and [adenylate 23P]NAD+ led to incorporation of radioactivity into bands of about 40-44 kDa. Crude membranes were electrophoresed on SDS-polyacrylamide gels and analyzed, by Western blotting, with the 9188 anti-alpha[s] antibody and the AS/7 antibody (anti-alpha[i], anti-alpha[i1], and anti-alpha[i2]. These procedures resulted in the identification of polypeptides of approximately 40-44 kDa. Phytomonas adenylyl cyclase could be activated by treatment of membrane preparations with cholera toxin, in the presence of NAD+, while similar treatment with pertussis toxin did not affect this enzyme activity. These studies indicate that in Phytomonas, adenylyl cyclase activity is coupled to an unknown receptor entity through G alpha[s] proteins.

  3. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins.

    PubMed

    Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Zhao, Na; Yang, Qiangzhen; Li, Sisi; Li, Xinhong

    2016-08-01

    Cadmium (Cd) has been reported to impair male fertility, primarily by disrupting sperm motility, but the underlying molecular mechanism remains unclear. Here we investigated the effects of Cd on sperm motility, tyrosine phosphorylation, AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and ATP levels in vitro. Our results demonstrated that Cd inhibited sperm motility, GAPDH activity, AMPK activity and ATP production, and induced tyrosine phosphorylation of 55-57KDa proteins. Importantly, all the parameters affected by Cd were restored to normal levels when incubated with 10μM Cd in the presence of 30μM ethylene diamine tetraacetic acid (EDTA). Interestingly, changes of tyrosine phosphorylation levels of 55-57KDa proteins are completely contrary to that of other parameters. These results suggest that Cd-induced tyrosine phosphorylation of 55-57KDa proteins might act as an engine to block intracellular energy metabolism and thus decrease sperm motility. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ultrastructural and biochemical evidence for the presence of mature steroidogenic acute regulatory protein (StAR) in the cytoplasm of human luteal cells.

    PubMed

    Sierralta, Walter D; Kohen, Paulina; Castro, Olga; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2005-10-20

    The distribution of the steroidogenic acute regulatory protein (StAR) inside thecal and granulosa-lutein cells of human corpus luteum (CL) was assessed by immunoelectron microscopy. We found greater levels of StAR immunolabeling in steroidogenic cells from early- and mid-than in late luteal phase CL and lower levels in cells from women treated with a GnRH antagonist in the mid-luteal phase. Immunoelectron microscopy revealed significant levels of StAR antigen in the mitochondria and in the cytoplasm of luteal cells. The 30 kDa mature StAR protein was present in both mitochondria and cytosol (post-mitochondrial) fractions from homogenates of CL at different ages, whereas cytochrome c and mitochondrial HSP70 were detected only in the mitochondrial fraction. Therefore, we hypothesized that either appreciable processing of StAR 37 kDa pre-protein occurs outside the mitochondria, or mature StAR protein is selectively released into the cytoplasm after mitochondrial processing. The presence of mature StAR in the cytoplasm is consonant with the notion that StAR acts on the outer mitochondrial membrane to effect sterol import, and that StAR may interact with other cytoplasmic proteins involved in cholesterol metabolism, including hormone sensitive lipase.

  5. Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry.

    PubMed

    Jin, Ya; Manabe, Takashi

    2005-07-01

    A method to analyze human plasma proteins without fractionation, directly applying a plasma-matrix mixture on the target plate of a matrix-assisted laser desorption/ionization-time of flight-mass spectrometer (MALDI-TOF-MS), has been described. Peaks of ionized plasma proteins could not be detected applying a mixture of an undiluted plasma sample and a matrix solution, but they appeared when the plasma was diluted before mixing with the matrix. Tenfold diluted plasma provided well-resolved protein peaks in the m/z range from 4000 to 30,000. The addition of a simple post-crystallization washing procedure performed on the target plate further improved the quality of mass spectra. We numbered 58 peaks in the range of 4-160 kDa and 32 out of which were assigned to the plasma protein species which have been reported. Especially high sensitivity and resolution were obtained in the region < 30 kDa, where multiple isoforms of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein C-I, apolipoprotein C-II, apolipoprotein C-III, and transthyretin could be assigned. Various post-translational modifications are involved in the isoforms, e.g., proteolytic cleavage, glycosylation and chemical modifications. This method will become complementary with the present electrophoretic techniques, especially for the analysis of low-molecular-mass proteins.

  6. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    PubMed

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    PubMed Central

    2014-01-01

    Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490

  8. Studies of the viral binding proteins of shrimp BP53, a receptor of white spot syndrome virus.

    PubMed

    Li, Chen; Gao, Xiao-Xiao; Huang, Jie; Liang, Yan

    2016-02-01

    The specific binding between viral attachment proteins (VAPs) of a virus and its cellular receptors on host cells mediates virus entry into host cells, which triggers subsequent viral infections. Previous studies indicate that F1 ATP synthase β subunit (named BP53), is found on the surface of shrimp cells and involved in white spot syndrome virus (WSSV) infection by functioning as a potential viral receptor. Herein, in a far-western blotting assay, three WSSV proteins with molecular weights of 28 kDa, 37 kDa, and >50 kDa were found to interact with BP53. The 28 kDa and 37 kDa proteins were identified as the envelope protein VP28 and VP37 of WSSV respectively, which could be recognized by the polyclonal antibodies. Enzyme-linked immunosorbent binding assays revealed that VP37 contributed to almost 80% of the binding capability for BP53 compared with the same amount of total WSSV protein. The relationship between BP53 and its complementary interacting protein, VP37, was visualized using a co-localization assay. Bound VP37 on the cell surface co-localized with BP53 and shared a similar subcellular location on the outer surface of shrimp cells. Pearson's correlation coefficients reached to 0.67 ± 0.05 and the Mander's overlap coefficients reached 0.70 ± 0.05, which indicated a strong relationship between the localization of BP53 and bound rVP37. This provides evidence for an interaction between BP53 and VP37 obtained at the molecular and cellular levels, supporting the hypothesis that BP53 serves as a receptor for WSSV by binding to VP37. The identification of the viral binding proteins of shrimp BP53 is helpful for better understanding the pathogenic mechanisms of WSSV to infect shrimp at the cellular level. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc04821a

    PubMed Central

    Gerecht, Karola; Figueiredo, Angelo Miguel

    2017-01-01

    Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised. PMID:28840203

  10. Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene.

    PubMed Central

    Rosemblat, S; Durham-Pierre, D; Gardner, J M; Nakatsu, Y; Brilliant, M H; Orlow, S J

    1994-01-01

    The pink-eyed dilution (p) locus in the mouse is critical to melanogenesis; mutations in the homologous locus in humans, P, are a cause of type II oculocutaneous albinism. Although a cDNA encoded by the p gene has recently been identified, nothing is known about the protein product of this gene. To characterize the protein encoded by the p gene, we performed immunoblot analysis of extracts of melanocytes cultured from wild-type mice with an antiserum from rabbits immunized with a peptide corresponding to amino acids 285-298 of the predicted protein product of the murine p gene. This antiserum recognized a 110-kDa protein. The protein was absent from extracts of melanocytes cultured from mice with two mutations (pcp and p) in which transcripts of the p gene are absent or greatly reduced. Introduction of the cDNA for the p gene into pcp melanocytes by electroporation resulted in expression of the 3.3-kb mRNA and the 110-kDa protein. Upon subcellular fractionation of cultured melanocytes, the 110-kDa protein was found to be present in melanosomes but absent from the vesicular fraction; phase separation performed with the nonionic detergent Triton X-114 confirmed the predicted hydrophobic nature of the protein. These results demonstrate that the p gene encodes a 110-kDa integral melanosomal membrane protein and establish a framework by which mutations at this locus, which diminish pigmentation, can be analyzed at the cellular and biochemical levels. Images PMID:7991586

  11. Differentiation of the epidermis in turtle: an immunocytochemical, autoradiographic and electrophoretic analysis.

    PubMed

    Alibardi, Lorenzo; Spisni, Enzo; Toni, Mattia

    2004-01-01

    Proteins involved in the process of cornification of turtle epidermis are not well known. The present immunocytochemical, electrophoretic and autoradiographic study reports on the localization patterns and molecular weights of keratins, which are cornification proteins, and of tritiated histidine in turtle epidermis. Alpha-keratins with a molecular weight of 40-62 kDa are present in the epidermis. Beta-keratin is mainly detectable in the stratum corneum of the carapace and plastron, but is rarely present or even absent in the corneous layer of limb, tail and neck epidermis. After electrophoresis and immunoblotting with an antibody against chicken scale beta-keratin, bands at 15-17, 22-24, and 36-38 kDa appeared. This antibody recognized weaker bands at 38-40 and 58-60 kDa in the soft epidermis. After reduction and carboxymethylation of proteins extracted from carapace and plastron, but not of proteins from the soft epidermis, protein bands at 15-17 and 35-37 kDa were found when using the anti-beta 1-keratin antibody. Loricrin-, filaggrin-, sciellin-, and transglutaminase-like immunostaining was detectable only in the transitional and lowermost corneous layers of the soft epidermis. Vesicular bodies in the transitional layer were immunolabeled by the anti-loricrin antibody, and weakly by the anti-filaggrin and anti-transglutaminase antibodies. In immunoblots, the anti-loricrin antibody reacted with a major band at 50-54 kDa in both carapace-plastron and soft epidermis. The anti-sciellin antibody detected major bands at 38-40 and 50 kDa in hard epidermis, and at 50 and 54-56 kDa in soft epidermis. Filaggrin-like immunostained bands were observed at 50-55 and 62-64 kDa. This immunostaining was probably due to a common epitope in filaggrin and some keratins. Histidine was evenly incorporated in the epidermis, and the ultrastructural study showed random labeling, often associated with keratin bundles of alpha and beta-keratinocytes. Histidine-labeled protein bands were

  12. [Cloning, sequencing and prokaryotic expression of cDNAs for the antifreeze protein family from the beetle Tenebrio molitor].

    PubMed

    Liu, Zhong-Yuan; Wang, Yun; Lü, Guo-Dong; Wang, Xian-Lei; Zhang, Fu-Chun; Ma, Ji

    2006-12-01

    The partial cDNA sequence coding for the antifreeze proteins in the Tenebrio molitor was obtained by RT-PCR. Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze proteins. The recombinant pGEX-4T-1-tmafp-XJ430 was introduced into E. coli BL21 to induce a GST fusion protein by IPTG. SDS-PAGE of the fusion protein demonstrated that the antifreeze protein migrated at a size of 38 kDa. The immunization was performed by intra-muscular injection of pCDNA3-tmafp-XJ430, and then antiserum was detected by ELISA. The titer of the antibody was 1:2,000. Western blotting analysis showed the antiserum was specific against the antifreeze protein. This finding could lead to further investigation of the properties and function of antifreeze proteins.

  13. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2014-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 ns to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 42 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect. PMID:21748265

  14. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Lippens, Jennifer L.; Nshanian, Michael; Spahr, Chris; Egea, Pascal F.; Loo, Joseph A.; Campuzano, Iain D. G.

    2018-01-01

    Membrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions. This 97 kDa membrane protein complex can be readily liberated from the octylglucoside (OG) detergent micelle under a range of instrument conditions on both MS platforms. Increasing the applied collision energy of the FT-ICR collision cell yielded varying degrees of tetramer (97 kDa) liberation from the OG micelles, as well as dissociation into the trimeric (72 kDa) and monomeric (24 kDa) substituents. Tandem-MS on the Q-ToF yielded higher intensity tetramer signal and, depending on the m/z region selected, the observed monomer signal varied in intensity. Precursor ion selection of an m/z range above the expected protein signal distribution, followed by mild collisional activation, is able to efficiently liberate AqpZ with a high S/N ratio. The tetrameric charge state distribution obtained on both instruments demonstrated superpositioning of multiple proteoforms due to varying degrees of N-terminal formylation. [Figure not available: see fulltext.

  15. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction.

    PubMed

    Bessonov, Kyrylo; Vassall, Kenrick A; Harauz, George

    2017-07-01

    The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich"-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys.

    PubMed

    Ramón-Sierra, Jesús Manuel; Ruiz-Ruiz, Jorge Carlos; de la Luz Ortiz-Vázquez, Elizabeth

    2015-09-15

    Increasing production of stingless-bee honey and the prospect of broader marker for natural and organic products indicate the need to establish parameters to determinate the entomological origin and authenticity of honey. In this research, honeys of Apis mellifera, Melipona beecheii and Trigona spp. were collected in Yucatan, Mexico. Stingless-bee honeys contained more water and less total sugars and reducing sugars. SDS-PAGE patterns show distinctive bands for each kind of honey. The SDS-PAGE pattern of A. mellifera proteins honey showed three bands with molecular weights between 10.2 and 74.8kDa, there were five proteins bands in M. beecheii honey with molecular weights between 6.1 and 97.0kDa and nine for Trigona spp. proteins between 9.3 and 86.7kDa. Conventional physicochemical parameters along with electrophoresis profiles of stingless-bee honeys proteins could be an alternative for determination of entomological origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A New Look on Protein-Polyphenol Complexation during Honey Storage: Is This a Random or Organized Event with the Help of Dirigent-Like Proteins?

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS –PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230–180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110–85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, “protein-type” complexes were formed by protein cross-linking, while in the smaller, “polyphenol-type” complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  18. Myelin basic protein is a glial microtubule-associated protein -- characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment.

    PubMed

    Zienowicz, Agata; Bamm, Vladimir V; Vassall, Kenrick A; Harauz, George

    2015-05-22

    The 18.5-kDa splice isoform of myelin basic protein (MBP) predominates in the adult brain, adhering the cytoplasmic leaflets of the oligodendrocyte membrane together, but also assembling the cytoskeleton at leading edges of membrane processes. Here, we characterized MBP's role as a microtubule-assembly protein (MAP). Using light scattering and sedimentation assays we found that pseudo-phosphorylation of Ser54 (murine 18.5-kDa sequence) significantly enhanced the rate but not the final degree of polymerization. This residue lies within a short KPGSG motif identical to one in tau, a ubiquitous MAP important in neuronal microtubule assembly. Using polypeptide constructs, each comprising one of three major amphipathic α-helical molecular recognition fragments of 18.5-kDa MBP, we identified the N-terminal α1-peptide as sufficient to cause microtubule polymerization, the rate of which was significantly enhanced in the presence of dodecylphosphocholine (DPC) micelles to mimic a lipidic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    PubMed

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  20. High-Throughput Protein Expression Using a Combination of Ligation-Independent Cloning (LIC) and Infrared Fluorescent Protein (IFP) Detection

    PubMed Central

    Dortay, Hakan; Akula, Usha Madhuri; Westphal, Christin; Sittig, Marie; Mueller-Roeber, Bernd

    2011-01-01

    Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. PMID:21541323

  1. The aqueous phase of Alzheimer's disease brain contains assemblies built from ∼4 and ∼7 kDa Aβ species.

    PubMed

    Mc Donald, Jessica M; O'Malley, Tiernan T; Liu, Wen; Mably, Alexandra J; Brinkmalm, Gunnar; Portelius, Erik; Wittbold, William M; Frosch, Matthew P; Walsh, Dominic M

    2015-11-01

    Much knowledge about amyloid β (Aβ) aggregation and toxicity has been acquired using synthetic peptides and mouse models, whereas less is known about soluble Aβ in human brain. We analyzed aqueous extracts from multiple AD brains using an array of techniques. Brains can contain at least four different Aβ assembly forms including: (i) monomers, (ii) a ∼7 kDa Aβ species, and larger species (iii) from ∼30-150 kDa, and (iv) >160 kDa. High molecular weight species are by far the most prevalent and appear to be built from ∼7 kDa Aβ species. The ∼7 kDa Aβ species resist denaturation by chaotropic agents and have a higher Aβ42/Aβ40 ratio than monomers, and are unreactive with antibodies to Asp1 of Ab or APP residues N-terminal of Asp1. Further analysis of brain-derived ∼7 kDa Aβ species, the mechanism by which they assemble and the structures they form should reveal therapeutic and diagnostic opportunities. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  2. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity.

    PubMed

    Kanematsu, T; Yoshimura, K; Hidaka, K; Takeuchi, H; Katan, M; Hirata, M

    2000-05-01

    The 130-kDa protein (p130) was isolated as a novel inositol 1,4, 5-trisphosphate [Ins(1,4,5)P3]-binding protein similar to phospholipase C-delta1 (PLC-delta1), but lacking catalytic activity [Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S. & Hirata, M. (1992) J. Biol. Chem. 267, 6518-6525; Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y. & Hirata, M. (1996) Biochem. J. 313, 319-325]. To test experimentally the domain organization of p130 and structural basis for lack of PLC activity, we subjected p130 to limited proteolysis and also constructed a number of chimeras with PLC-delta1. Trypsin treatment of p130 produced four major polypeptides with molecular masses of 86 kDa, 55 kDa, 33 kDa and 25 kDa. Two polypeptides of 86 kDa and 55 kDa started at Lys93 and were calculated to end at Arg851 and Arg568, respectively. Using the same approach, it has been found that the polypeptides of 33 kDa and 25 kDa are likely to correspond to regions between Val569 and Arg851 and Lys869 and Leu1096, respectively. All the proteolytic sites were in interconnecting regions between the predicted domains, therefore supporting domain organization based on sequence similarity to PLC-delta1 and demonstrating that all domains of p130, including the unique region at the C-terminus, are stable, tightly folded structures. p130 truncated at either or both the N-terminus (94 amino acids) and C-terminus (851-1096 amino acids) expressed in COS-1 cells showed no catalytic activity, indicating that p130 has intrinsically no PLC activity. A number of chimeric molecules between p130 and PLC-delta1 were constructed and assayed for PLC activity. It was shown that structural differences in interdomain interactions exist between the two proteins, as only some domains of p130 could replace the corresponding structures in PLC-delta1 to form a functional enzyme. These results suggest that p130 and the related proteins could

  3. Cloning and expression of the translocator protein (18 kDa), voltage-dependent anion channel, and diazepam binding inhibitor in the gonad of largemouth bass (Micropterus salmoides) across the reproductive cycle.

    PubMed

    Doperalski, Nicholas J; Martyniuk, Christopher J; Prucha, Melinda S; Kroll, Kevin J; Denslow, Nancy D; Barber, David S

    2011-08-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients.

    PubMed

    Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K

    2017-10-01

    Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.

  5. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    PubMed Central

    Hahm, Jong-in

    2011-01-01

    The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered. PMID:21691441

  6. Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments.

    PubMed

    Albright, Vurtice C; Hellmich, Richard L; Coats, Joel R

    2016-12-01

    The continuing use of transgenic crops has led to an increased interest in the fate of insecticidal crystalline (Cry) proteins in the environment. Enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an overestimation of the concentration of these proteins in the environment. Five model systems were used to generate fragments of the Cry1Ab protein, which were then analyzed by ELISAs and bioassays. Fragments from 4 of the model systems were not detectable by ELISA and did not retain bioactivity. Fragments from the proteinase K model system were detectable by ELISA and retained bioactivity. In most cases, ELISAs appear to provide an accurate estimation of the amount of Cry proteins in the environment, as detectable fragments retained bioactivity and nondetectable fragments did not retain bioactivity. Environ Toxicol Chem 2016;35:3101-3112. © 2016 SETAC. © 2016 SETAC.

  7. Direct protein detection with a nano-interdigitated array gate MOSFET.

    PubMed

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  8. Antibodies Biotinylated Using a Synthetic Z-domain from Protein A Provide Stringent In Situ Protein Detection

    PubMed Central

    Konrad, Anna; Ashok, Nikhil; Pontén, Fredrik; Hober, Sophia; Asplund, Anna

    2013-01-01

    Antibody-based protein profiling on a global scale using immunohistochemistry constitutes an emerging strategy for mapping of the human proteome, which is crucial for an increased understanding of biological processes in the cell. Immunohistochemistry is often performed indirectly using secondary antibodies for detection, with the benefit of signal amplification. Direct immunohistochemistry instead brings the advantage of multiplexing; however, it requires labeling of the primary antibody. Many antibody-labeling kits do not specifically target IgG and may therefore cause labeling of stabilizing proteins present in the antibody solution. A new conjugation method has been developed that utilizes a modified Z-domain of protein A (ZBPA) to specifically target the Fc part of antibodies. The aim of the present study was to compare the ZBPA conjugation method and a commercially available labeling kit, Lightning-Link, for in situ protein detection. Fourteen antibodies were biotinylated with each method and stained using immunohistochemistry. For all antibodies tested, ZBPA biotinylation resulted in distinct immunoreactivity without off-target staining, regardless of the presence of stabilizing proteins in the buffer, whereas the majority of the Lightning-Link biotinylated antibodies displayed a characteristic pattern of nonspecific staining. We conclude that biotinylated ZBPA domain provides a stringent method for antibody biotinylation, advantageous for in situ protein detection in tissues. PMID:23920108

  9. Protective ability against oxidative stress of brewers' spent grain protein hydrolysates.

    PubMed

    Vieira, Elsa F; da Silva, Diana Dias; Carmo, Helena; Ferreira, Isabel M P L V O

    2017-08-01

    The protein fraction of Brewers' spent grain (BSG) was used as substrate to obtain hydrolysates with antioxidant activity. Three enzymatic approaches were applied: brewer's spent yeast (BSY) proteases, Neutrase® and Alcalase®, at the same proteolytic activity (1U/mL), using an enzyme/substrate ratio of 10:100 (v/v), at 50°C, 4h. Total Phenolic Content (TPC) and Ferric Ion Reducing Antioxidant Power (FRAP) of hydrolysates and fractions <10kDa and <3kDa were assayed. Additionally, the protective ability of <10kDa fractions against oxidative stress on Caco-2 and HepG2 cells was investigated. Alcalase® hydrolysate presented significantly (p<0.05) higher TPC and FRAP (0.083mgGAE/mgdw; 0.101mgTE/mgdw, respectively) than Neutrase® and BSY hydrolysates. The three BSG protein hydrolysates (fraction <10kDa) exerted protective effect against free-radical induced cytotoxicity in Caco-2 and HepG2 cell lines, but the strongest effect was observed for BSY hydrolysates, therefore, it presents greater potential as functional ingredient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Immunofluorescence detection of nitrogenase proteins in whole cells.

    PubMed

    Rennie, R J

    1976-12-01

    Fluorescent antibodies (FA) prepared against the Mo-Fe and Fe proteins of nitrogenase from Klebsiella pneumoniae M5aI were used to detect these protein components in toluene-treated whole cells that were actively reducing acetylene. The FA were highly specific, staining only nitrogenase component proteins originating from Klebsiella. Cross-reactions between the FA and purified nitrogenase proteins from other dinitrogen-fixing micro-organisms did not occur, except in the case of Bacillus polymyxa. The tests rapidly and accurately assayed the component proteins in Klebsiella mutants and derivatives to which Klebsiella nif genes had been transferred either by plasmid or by other means. Cross-reactions also indicated the degree of relatedness between nitrogenase proteins from dinitrogen-fixing micro-organisms of various origins.

  11. Identification of the heat shock protein 70 (HLHsp70) in Haemaphysalis longicornis.

    PubMed

    Tian, Zhancheng; Liu, Guangyuan; Zhang, Liyan; Yin, Hong; Wang, Hui; Xie, Junren; Zhang, Ping; Luo, Jin

    2011-09-27

    A Haemaphysalis longicornis heat shock protein 70 (HLHsp70) was identified from a cDNA library synthesized from tick eggs. The HLHsp70 cDNA is 2311 bp in length and encodes 661 amino acid residues with the predicted molecular weight of 72.5 kDa and an isoelectronic point (pI) of 5.2. It also contains the highly conserved functional motifs of the Hsp70 family and a specific endoplasmic reticulum (ER) retention signal "KDEL" that is common among ER-localized proteins. The HLHsp70 exhibits 90% amino acid identity to the putative Hsp70 of Ixodes scapularis, and 85% to Gallus gallus 78 kDa glucose-regulated protein precursor. Real time RT-PCR analysis showed that the expression levels of the Hsp70 in ovaries and salivary glands were significantly higher than in other tested tissues in partially fed females. Although the expression level of the HLHsp70 was constantly low in unfed ticks, it was significantly induced by blood-feeding. Further, the expression was positively correlated to the temperature (4-37°C, tested). Western blot analysis showed that the rabbit antiserum against the recombinant HLHsp70 protein (rHLHSP70) recognized bands of approximately 100, 72, and 28 kDa from egg lysates, as well as a 72kDa fragment in protein extracts from partially fed larvae. Immunization of rabbits with the rHLHSP70 did not result in a statistically significant reduction of female tick engorgement and oviposition. These results suggest that although HLHSP70 plays a role in the physiological activities of ticks, as a constitutive protein it was not suitable for selection as a candidate vaccine antigen against ticks. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Ross, P.; Weinhouse, H.

    1991-06-15

    To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- andmore » 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.« less

  13. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    PubMed

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  14. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells

    PubMed Central

    Clark, Barbara J.; Hudson, Elizabeth A.

    2015-01-01

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition. PMID:25749137

  15. Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis.

    PubMed

    Chong, B E; Hamler, R L; Lubman, D M; Ethier, S P; Rosenspire, A J; Miller, F R

    2001-03-15

    Nonporous (NPS) RP-HPLC has been used to rapidly separate proteins from whole cell lysates of human breast cell lines. The nonporous separation involves the use of hard-sphere silica beads of 1.5-microm diameter coated with C18, which can be used to separate proteins ranging from 5 to 90 kDa. Using only 30-40 microg of total protein, the protein molecular weights are detectable on-line using an ESI-oaTOF MS. Of hundreds of proteins detected in this mass range, approxinately 75-80 are more highly expressed. The molecular weight profiles can be displayed as a mass map analogous to a virtual "1-D gel" and differentially expressed proteins can be compared by image analysis. The separated proteins can also be detected by UV absorption and differentially expressed proteins quantified. The eluting proteins can be collected in the liquid phase and the molecular weight and peptide maps determined by MALDI-TOF MS for identification. It is demonstrated that the expressed protein profiles change during neoplastic progression and that many oncoproteins are readily detected. It is also shown that the response of premalignant cancer cells to estradiol can be rapidly screened by this method, demonstrating significant changes in response to an external agent. Ultimately, the proteins can be studied by peptide mapping to search for posttranslational modifications of the oncoproteins accompanying progression.

  16. A water-soluble conjugated polymer for protein identification and denaturation detection.

    PubMed

    Xu, Qingling; Wu, Chunxian; Zhu, Chunlei; Duan, Xinrui; Liu, Libing; Han, Yuchun; Wang, Yilin; Wang, Shu

    2010-12-03

    Rapid and sensitive methods to detect proteins and protein denaturation have become increasingly needful in the field of proteomics, medical diagnostics, and biology. In this paper, we have reported the synthesis of a new cationic water-soluble conjugated polymer that contains fluorene and diene moieties in the backbone (PFDE) for protein identification by sensing an array of PFDE solutions in different ionic strengths using the linear discriminant analysis technique (LDA). The PFDE can form complexes with proteins by electrostatic and/or hydrophobic interactions and exhibits different fluorescence response. Three main factors contribute to the fluorescence response of PFDE, namely, the net charge density on the protein surface, the hydrophobic nature of the protein, and the metalloprotein characteristics. The denaturation of proteins can also be detected using PFDE as a fluorescent probe. The interactions between PFDE and proteins were also studied by dynamic light scattering (DLS) and isothermal titration microcalorimetry (ITC) techniques. In contrast to other methods based on conjugated polymers, the synthesis of a series of quencher or dye-labeled acceptors or protein substrates has been avoided in our method, which significantly reduces the cost and the synthetic complexity. Our method provides promising applications on protein identification and denaturation detection in a simple, fast, and label-free manner based on non-specific interaction-induced perturbation of PFDE fluorescence response.

  17. HPTLC-aptastaining - Innovative protein detection system for high-performance thin-layer chromatography

    NASA Astrophysics Data System (ADS)

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-05-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.

  18. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    PubMed

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding.

    PubMed

    Gottschalk, Maren; Dolgener, Elmar; Xoconostle-Cázares, Beatriz; Lucas, William J; Komor, Ewald; Schobert, Christian

    2008-09-01

    The phloem translocation stream of the angiosperms contains a special population of proteins and RNA molecules which appear to be produced in the companion cells prior to being transported into the sieve tube system through the interconnecting plasmodesmata. During this process, these non-cell-autonomous proteins are thought to undergo partial unfolding. Recent mass spectroscopy studies identified peptidyl-prolyl cis-trans isomerase (PPIases) as potential molecular chaperones functioning in the phloem translocation stream (Giavalisco et al. 2006). In the present study, we describe the cloning and characterisation of a castor bean phloem cyclophilin, RcCYP1 that has high peptidyl-prolyl cis-trans isomerase activity. Equivalent enzymatic activity was detected with phloem sap or purified recombinant (His)(6)-tagged RcCYP1. Mass spectrometry analysis of proteolytic peptides, derived from a 22 kDa band in HPLC-fractionated phloem sap, immunolocalisation studies and Western analysis of proteins extracted from castor bean tissues/organs indicated that RcCYP1 is an abundant protein in the companion cell-sieve element complex. Microinjection experiments established that purified recombinant (His)(6)-RcCYP1 can interact with plasmodesmata to both induce an increase in size exclusion limit and mediate its own cell-to-cell trafficking. Collectively, these findings support the hypothesis that RcCYP1 plays a role in the refolding of non-cell-autonomous proteins after their entry into the phloem translocation stream.

  20. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand.

    PubMed

    Ferry, D R; Goll, A; Glossmann, H

    1987-04-01

    The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.

  1. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    PubMed

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  3. Serum detection of IgG antibodies against Demodex canis by western blot in healthy dogs and dogs with juvenile generalized demodicosis.

    PubMed

    Ravera, Ivan; Ferreira, Diana; Gallego, Laia Solano; Bardagí, Mar; Ferrer, Lluís

    2015-08-01

    The aim of this study was to investigate the presence of canine immunoglobulins (Ig) G against Demodex proteins in the sera of healthy dogs and of dogs with juvenile generalized demodicosis (CanJGD) with or without secondary pyoderma. Demodex mites were collected from dogs with CanJGD. Protein concentration was measured and a western blot technique was performed. Pooled sera from healthy dogs reacted mainly with antigen bands ranging from 55 to 72 kDa. Pooled sera from dogs with CanJGD without secondary pyoderma reacted either with 10 kDa antigen band or 55 to 72 kDa bands. Pooled sera from dogs with CanJGD with secondary pyoderma reacted only with a 10 kDa antigen band. The results of this study suggest that both healthy dogs and dogs with CanJGD develop a humoral response against different proteins of Demodex canis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    PubMed

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  5. Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous α-glucosidase with potential for prebiotics production.

    PubMed

    Gutiérrez-Alonso, Patricia; Gimeno-Pérez, María; Ramírez-Escudero, Mercedes; Plou, Francisco J; Sanz-Aparicio, Julia; Fernández-Lobato, María

    2016-04-01

    Basidiomycetous yeast Xanthophyllomyces dendrorhous expresses an α-glucosidase with strong transglycosylation activity producing prebiotic sugars such as panose and an unusual tetrasaccharides mixture including α-(1-6) bonds as major products, which makes it of biotechnological interest. Initial analysis pointed to a homodimeric protein of 60 kDa subunit as responsible for this activity. In this study, the gene Xd-AlphaGlu was characterized. The 4131-bp-long gene is interrupted by 13 short introns and encodes a protein of 990 amino acids (Xd-AlphaGlu). The N-terminal sequence of the previously detected 60 kDa protein resides in this larger protein at residues 583-602. Functionality of the gene was proved in Saccharomyces cerevisiae, which produced a protein of about 130 kDa containing Xd-AlphaGlu sequences. All properties of the heterologously expressed protein, including thermal and pH profiles, activity on different substrates, and ability to produce prebiotic sugars were similar to that of the α-glucosidase produced in X. dendrorhous. No activity was detected in S. cerevisiae containing exclusively the 1256-bp from gene Xd-AlphaGlu that would encode synthesis of the 60 kDa protein previously detected. Data were compatible with an active monomeric α-glucosidase of 990 amino acids and an inactive hydrolysis product of 60 kDa. Protein Xd-AlphaGlu contained most of the elements characteristic of α-glucosidases included in the glycoside hydrolases family GH31 and its structural model based on the homologous human maltase-glucoamylase was obtained. Remarkably, the Xd-AlphaGlu C-terminal domain presents an unusually long 115-residue insertion that could be involved in this enzyme's activity against long-size substrates such as maltoheptaose and soluble starch.

  6. A brief review of other notable protein detection methods on acrylamide gels.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2012-01-01

    Several methods have been described to stain proteins analyzed on acrylamide gels. These include ultrasensitive protein detection in one-dimensional and two-dimensional gel electrophoresis using a fluorescent product from the fungus Epicoccum nigrum; a fluorescence-based Coomassie Blue protein staining; visualization of proteins in acrylamide gels using ultraviolet illumination; fluorescence visualization of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution; and increasing the sensitivity four- to sixfold for detecting trace proteins in dye or silver stained polyacrylamide gels using polyethylene glycol 6000. All these methods are reviewed briefly in this chapter.

  7. Detection and Immunolabeling of Peroxisomal Proteins.

    PubMed

    Schrader, Tina A; Islinger, Markus; Schrader, Michael

    2017-01-01

    Peroxisomes are essential organelles in mammals which contribute to cellular lipid metabolism and redox homeostasis. The spectrum of their functions in human health and disease is far from being complete, and unexpected and novel roles of peroxisomes are being discovered. To date, those include novel biological roles in antiviral defence, as intracellular signaling platforms and as protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex network of interacting subcellular compartments which involves metabolic cooperation, cross-talk and membrane contacts. As potentially novel peroxisomal proteins are continuously discovered, there is great interest in the verification of their peroxisomal localization. Here, we present protocols used successfully in our laboratory for the detection and immunolabeling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and fluorescence-based techniques as well as reagents to determine peroxisome-specific targeting and localization of candidate proteins.

  8. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  9. Ultrastructural identification of peripheral myelin proteins by a pre-embedding immunogold labeling method.

    PubMed

    Canron, Marie-Hélène; Bouillot, Sandrine; Favereaux, Alexandre; Petry, Klaus G; Vital, Anne

    2003-03-01

    Ultrastructural immunolabeling of peripheral nervous system components is an important tool to study the relation between structure and function. Owing to the scarcity of certain antigens and the dense structure of the peripheral nerve, a pre-embedding technique is likely appropriate. After several investigations on procedures for pre-embedding immunolabeling, we propose a method that offers a good compromise between detection of antigenic sites and preservation of morphology at the ultrastructural level, and that is easy to use and suitable for investigations on peripheral nerve biopsies from humans. Pre-fixation by immersion in paraformaldehyde/glutaraldehyde is necessary to stabilize the ultrastructure. Then, ultrasmall gold particles with silver enhancement are advised. Antibodies against myelin protein zero and myelin basic protein were chosen for demonstration. The same technique was applied to localize a 35 kDa myelin protein.

  10. Evaluation and comparison of native and recombinant LipL21 protein-based ELISAs for diagnosis of bovine leptospirosis.

    PubMed

    Joseph, Siju; Thomas, Naicy; Thangapandian, E; Singh, Vijendra P; Verma, Rishendra; Srivastava, S K

    2012-03-01

    A 21-kDa leptospiral lipoprotein (LipL21) was evaluated for its diagnostic potential to detect bovine leptospirosis by ELISA. Both native LipL21 (nLipL21) and recombinant LipL21 (rLipL21) proteins were tested and compared regarding diagnostic efficiency, and no statistically significant difference was observed. The sensitivity of rLipL21 ELISA for 62 microscopic agglutination test (MAT) positive sera was 100% and the specificity with 378 MAT negative sera was 97.09%. Thus, rLipL21 protein-based ELISA could be used as an alternative to MAT for the diagnosis of bovine leptospirosis.

  11. Packaging of the virion host shutoff (Vhs) protein of herpes simplex virus: two forms of the Vhs polypeptide are associated with intranuclear B and C capsids, but only one is associated with enveloped virions.

    PubMed

    Read, G Sullivan; Patterson, Mary

    2007-02-01

    The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.

  12. Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana.

    PubMed

    Rigano, M M; Alvarez, M L; Pinkhasov, J; Jin, Y; Sala, F; Arntzen, C J; Walmsley, A M

    2004-02-01

    Transgenic plants are potentially safe and inexpensive vehicles to produce and mucosally deliver protective antigens. However, the application of this technology is limited by the poor response of the immune system to non-particulate, subunit vaccines. Co-delivery of therapeutic proteins with carrier proteins could increase the effectiveness of the antigen. This paper reports the ability of transgenic Arabidopsis thaliana plants to produce a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin and a 6 kDa tuberculosis antigen, the early secretory antigenic target ESAT-6. Both components of the fusion protein were detected using GM1-ganglioside-dependent enzyme-linked immunosorbant assay. This suggested the fusion protein retained both its native antigenicity and the ability to form pentamers.

  13. [A case of an allergic reaction due to Anisakis simplex possibly after the ingestion of squid--successful detection of four A. simplex allergens, Ani s 1, Ani s 2, Ani s 12 and troponin C-like protein].

    PubMed

    Iijima, Shigeruko; Moriyama, Tatsuya; Ichikawa, Hidetaka; Kobayashi, Yukihiro; Shiomi, Kazuo

    2012-08-01

    A 62-year-old man ingested dressed salmon and its roe (ikura) and grilled mackerel and one hour later further ingested raw tuna and squid as an evening meal at a bar. Soon after the ingestion of raw seafood, he showed wheals, loss of consciousness and low blood pressure. Specific serum IgE to the nematode Anisakis simplex was positive but those to some seafoods were negative. Moreover, a skin prick test using the crude extract was positive for A. simplex but negative for the seafoods, which he ingested on the day of the above episode. When the A. simplex extract was analyzed by IgE-binding immunoblot analysis using the patient serum, two highly intense protein bands were recognized at 18 and 17 kDa, one intense band at 35 kDa and two weak bands at 28 and 26 kDa. ELISA with 11 natural or recombinant A. simplex allergens (Ani s 1-6, 8, 9, 11 and 12 and troponin C-like protein) showed that the patient serum strongly reacted to Ani s 1 and Ani s 12 and weakly to Ani s 2 and troponin C-like protein. Based on these results, he was diagnosed as IgE-mediated A. simplex allergy due to four allergens (Ani s 1, Ani s 2, Ani s 12 and troponin C-like protein), possibly infested in the raw squid which he had ingested just before manifestation of allergic reactions.

  14. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    PubMed Central

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248

  15. Top-Down Protein Identification of Proteasome Proteins with nanoLC FT-ICR MS Employing Data-Independent Fragmentation Methods

    PubMed Central

    Lakshmanan, Rajeswari; Wolff, Jeremy J.; Alvarado, Rudy; Loo, Joseph A.

    2014-01-01

    A comparison of different data-independent fragmentation methods combined with liquid chromatography (LC) coupled to high resolution Fourier-transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS) is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complex and their post-translational modifications were identified using a 15-Tesla FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty cycle measurements that better suit on-line LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (Continuous Accumulation of Selected Ions)-CAD. The N-terminus for 9 out of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass measurement accuracy with the LC-FT-ICR system for the 20–30 kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100 kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact protein fragmentation and is an effective addition to the growing inventory of dissociation methods which are compatible with on-line protein separation coupled to FT-ICR MS. PMID:24478249

  16. Serologic reactivity to purified recombinant and native 29-kilodalton peripheral membrane protein of pathogenic Entamoeba histolytica.

    PubMed Central

    Flores, B M; Reed, S L; Ravdin, J I; Torian, B E

    1993-01-01

    The 29-kDa peripheral membrane protein of Entamoeba histolytica has recently been demonstrated to have epitopes on pathogenic clinical isolates which were not detected by monoclonal antibodies on nonpathogenic isolates. To analyze the serological response to this protein, we tested 93 serum specimens (from 33 patients with amebic liver abscess, 7 patients with colitis, 2 patients with ameboma, 18 individuals harboring a nonpathogenic zymodeme strain, 10 healthy Mexican migrant workers, and 23 healthy controls) by enzyme-linked immunosorbent assay (ELISA) using immunoaffinity-purified native or recombinant protein. When tested by ELISA with the native antigen, 79% (26 of 33) of the serum specimens from patients with amebic liver abscess, 4 of 9 serum specimens from symptomatic patients with colitis or ameboma, and serum from one migrant worker were positive. None of the 18 subjects harboring a nonpathogenic strain or 23 control individuals were seropositive to the native antigen (sensitivity, 71%; specificity, 98%). Of 30 serum specimens from patients with amebic liver abscess tested with recombinant antigen, 27 were seropositive (90%). In addition, six patients with colitis or ameboma and two individuals who harbored a nonpathogenic strain were seropositive to the recombinant antigen. One healthy Mexican migrant worker tested positive by both ELISAs (sensitivity, 87%; specificity, 94%). Immunoblotting of 51 serum specimens to sodium dodecyl sulfate-denatured native 29-kDa protein was less sensitive (65%) than ELISA in detecting serum antibodies to the antigen. These results suggest a similar antibody response to native and recombinant antigens (r = 0.86) and support the potential utility of a quantitative assay with defined recombinant antigen for the serodiagnosis of invasive amebiasis in nonendemic areas in conjunction with other diagnostic tools. Images PMID:8314979

  17. Protein detection through different platforms of immuno-loop-mediated isothermal amplification

    NASA Astrophysics Data System (ADS)

    Pourhassan-Moghaddam, Mohammad; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Daraee, Hadis; Nejati-Koshki, Kazem; Hanifehpour, Younes; Joo, Sang Woo

    2013-11-01

    Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins. Here we propose a new method nominated as `immuno-loop-mediated isothermal amplification' or `iLAMP'. This new method is free from the problems of the previous methods and has significant advantages over them. In this paper we also offer various configurations in order to improve the applicability of this method in real-world sample analyses. Important potential applications of this method are stated as well.

  18. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein.

    PubMed

    Tsyrendorzhiev, D D; Orlovskaya, I A; Sennikov, S V; Tregubchak, T V; Gileva, I P; Tsyrendorzhieva, M D; Shchelkunov, S N

    2014-06-01

    The biological characteristics of a 17-kDa protein synthesized in bacterial cells, a TNF-binding domain (VARV-TNF-BP) of a 47-kDa variola virus CrmB protein (VARV-CrmB) consisting of TNF-binding and chemokine-binding domains, were studied. Removal of the C-terminal chemokine-binding domain from VARV-CrmB protein was inessential for the efficiency of its inhibition of TNF cytotoxicity towards L929 mouse fibroblast culture and for TNF-induced oxidative metabolic activity of mouse blood leukocytes. The results of this study could form the basis for further studies of VARV-TNF-BP mechanisms of activity for prospective use in practical medicine.

  19. Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier.

    PubMed

    Im, Jungkyun; Das, Sanket; Jeong, Dongjun; Kim, Chang-Jin; Lim, Hyun-Suk; Kim, Ki Hean; Chung, Sung-Kee

    2017-08-07

    The impermeability of the cell plasma membrane is one of the major barriers for protein transduction into mammalian cells, and it also limits the use of proteins as therapeutic agents. Protein transduction has usually been achieved based on certain invasive processes or cell penetrating peptides (CPP). Herein we report our study in which a synthetic guanidine-rich molecular carrier is used as a delivery vector for intracellular and transdermal delivery of proteins. First a sorbitol-based molecular carrier having 8 guanidine units (Sor-G8) was synthesized, and then was simply mixed with a cargo protein of varying sizes to form the non-covalent complex of carrier-cargo proteins. These ionic complexes were shown to have efficient cellular uptake properties. The optimum conditions including the molar ratio between cargo protein and carrier, and the treatment time have been defined. Several protein cargoes were successfully examined with differing sizes and molecular weights: green fluorescent protein (MW 27kDa), albumin (66kDa), concanavalin A (102kDa), and immunoglobulin G (150kDa). These non-covalent complexes were also found to have excellent transdermal penetration ability into the mouse skin. The skin penetration depth was studied histologically by light microscopy as well as two-photon microscopy thus generating a depth profile. These complexes were largely found in the epidermis and dermis layers, i.e. down to ca. 100μm depth of the mouse skin. Our synthetic Sor-G8 carrier was found to be substantially more efficient that Arg8 in both the intracellular transduction and the transdermal delivery of proteins. The mechanism of the cellular uptake of the complex was briefly studied, and the results suggested macropinocytosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus.

    PubMed Central

    Harwood, V J; Gordon, A S

    1994-01-01

    Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076