Sample records for keck foundation biotechnology

  1. The Challenge of Governance. Teacher's Guide [and Student Text]. W.M. Keck Foundation Series.

    ERIC Educational Resources Information Center

    Croddy, Marshall; Degelman, Charles; Hayes, Bill

    This teacher's guide and student text is the fourth volume in the W. M. Keck Foundation Series. The guide, which is designed to provide instructional support for classroom use of "The Challenge of Governance," gives teachers an opportunity to review content from the National Standards for Civics and Government for High School with…

  2. The Keck Cosmic Web Imager (KCWI): A Powerful New Integral Field Spectrograph for the Keck Observatory

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick; KCWI Team

    2013-01-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  3. Biotechnology in the Treatment of Sensorineural Hearing Loss: Foundations and Future of Hair Cell Regeneration

    ERIC Educational Resources Information Center

    Parker, Mark A.

    2011-01-01

    Purpose: To provide an overview of the methodologies involved in the field of hair cell regeneration. First, the author provides a tutorial on the biotechnological foundations of this field to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, the author presents a review of stem…

  4. Blue camera of the Keck cosmic web imager, fabrication and testing

    NASA Astrophysics Data System (ADS)

    Rockosi, Constance; Cowley, David; Cabak, Jerry; Hilyard, David; Pfister, Terry

    2016-08-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20" x 33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces). The optical design of the blue camera for the Keck Cosmic Web Imager (KCWI) by Harland Epps of the University of California, Santa Cruz is a lens assembly consisting of eight spherical optical elements. Half the elements are calcium fluoride and all elements are air spaced. The design of the camera barrel is unique in that all the optics are secured in their respective cells with an RTV annulus without additional hardware

  5. The Keck Task Library (KTL)

    NASA Technical Reports Server (NTRS)

    Lupton, W. F.; Conrad, A. R.

    1992-01-01

    KTL is a set of routines which eases the job of writing applications which must interact with a variety of underlying sub-systems (known as services). A typical application is an X Window user interface coordinating telescope and instruments. In order to connect to a service, application code specifies a service name--typically an instrument name--and a style, which defines the way in which the application will interact with the service. Two styles are currently supported: keyword, where the application reads and writes named keywords and the resulting inter-task message traffic is hidden; and message, where the application deals directly with messages. The keyword style is intended mainly for user interfaces, and the message style is intended mainly for lower-level applications. KTL applications are event driven: a typical application first connects to all its desired services, then expresses interest in specified events. The application then enters an event dispatch loop in which it waits for events and calls the appropriate service's event-handling routine. Each event is associated with a call-back routine which is invoked when the event occurs. Call-back routines may (and typically do) interact with other sub-systems and KTL provides the means of doing so without blocking the application (vital for X Window user interfaces). This approach is a marriage of ideas culled from the X window, ADAM, Keck instrument, and Keck telescope control systems. A novel feature of KTL is that it knows nothing about any services or styles. Instead it defines a generic set of routines which must be implemented by all services and styles (essentially open(), ioctl(), read(), write(), event(), and close()) and activates sharable libraries at run-time. Services have been implemented (in both keyword and message styles) for HIRES (the Keck high resolution echelle spectrograph built by Lick Observatory), LWS (the Keck long wavelength spectrometer built by UC San Diego), and the Keck

  6. Keck adaptive optics: control subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less

  7. bicep2/ KECK ARRAY . IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Barkats, D.

    2015-06-18

    bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS P. A. R. Ade1, R. W. Aikin2, D. Barkats3, S. J. Benton4, C. A. Bischoff5, J. J. Bock2,6, K. J. Bradford5, J. A. Brevik2, I. Buder5, E. Bullock7Show full author list Published 2015 June 18 • © 2015. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 806, Number 2 Article PDF Figures Tables References Citations 273 Total downloads Cited by 6 articles Turn on MathJax Share this article Get permission to re-use this article Article information Abstract bicep2 and the Keck Array aremore » polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  8. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  9. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  10. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  11. Biotechnology Works!

    ERIC Educational Resources Information Center

    Cohen, Libby G.; Spenciner, Loraine

    There have been few initiatives addressing the improvement of science education for students with disabilities. Funded by the National Science Foundation, Biotechnology Works is a summer institute in immunology and genetics for students with disabilities, high school science teachers, and high school counselors. During the 1998 summer session,…

  12. Keck/HIRES Spectroscopy of V838 Monocerotis in October 2005

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Schmidt, M.; Tylenda, R.; Konacki, M.; Gromadzki, M.

    2009-05-01

    V838 Monocerotis (V838 Mon) erupted at the beginning of 2002 becoming an extremely luminous star with L sime 106 L sun. Among various scenarios proposed to explain the nature of the outburst, the most promising is a stellar merger event. In this paper, we investigate the observational properties of the star and its surroundings in the post outburst phase. We have obtained a high-resolution optical spectrum of V838 Mon in 2005 October using the Keck I telescope. We have identified numerous atomic features and molecular bands present in the spectrum and provided an atlas of those features. In order to improve the spectrum interpretation, we have performed simple modeling of the molecular bands. Our analysis indicates that the spectrum is dominated by molecular absorption features arising in photospheric regions with temperatures of ~2400 K and in colder outer layers, where the temperature decreases to ~500 K. A number of resonance lines of neutral alkali metals are observed to show P Cygni profiles. Particularly interesting are numerous prominent emission lines of [Fe II]. All of them show practically the same profile, which can be well described by a Lorentzian profile. In the blue part of the spectrum, photospheric signatures of the B-type companion are easily seen. We have fitted the observed spectrum with a synthetic one and the obtained parameters are consistent with the B3V type. We have also estimated radial and rotational velocities of the companion. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Undergraduate Biotechnology Students' Views of Science Communication

    ERIC Educational Resources Information Center

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  14. Biotechnology in the Treatment of Sensorineural Hearing Loss: Foundations and Future of Hair Cell Regeneration

    PubMed Central

    Parker, Mark A.

    2011-01-01

    Purpose To provide an overview of the methodologies involved in the field of hair cell regeneration. First, a tutorial on the biotechnological foundations of this field will be provided in order to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, a review of stem cell and gene therapy will be presented and a critical appraisal of their application to hair cell regeneration will be provided. The methodologies used in these approaches will be highlighted. Method Narrative review of the fields of cellular, molecular, and developmental biology, tissue engineering, and stem cell and gene therapy using the PubMed database. Results The use of biotechnological approaches to the treatment of hearing loss, such as stem cell and gene therapy, has led to new methods of regenerating cochlear hair cells in mammals. Conclusions There have been incredible strides made in assembling important pieces of the puzzle that comprise hair cell regeneration. However, mammalian hair cell regeneration using stem cell and gene therapy are years if not decades away from being clinically feasible. If the goals of the biological approaches are met, these therapies may represent the future treatments for hearing loss. PMID:21386039

  15. VizieR Online Data Catalog: Keck+Magellan survey for LLSs. III. (Prochaska+, 2015)

    NASA Astrophysics Data System (ADS)

    Prochaska, J. X.; O'Meara, J. M.; Fumagalli, M.; Bernstein, R. A.; Burles, S. M.

    2016-01-01

    The sample presented in this manuscript is intended to be a nearly all-inclusive set of Lyman Limit Systems (LLSs) discovered in the high-dispersion (echelle or echellette; R>5000) spectra that we have gathered at the Keck and Magellan telescopes. Regarding Keck, we have examined all of the data obtained by Principal Investigators (PIs) A. M. Wolfe and J. X. Prochaska at the W. M. Keck Observatory through 2012 April, and from PIs Burles, O'Meara, Bernstein, and Fumagalli at Magellan through 2012 July. We also include the Keck spectra analyzed by Penprase et al. (2010, J/ApJ/721/1). We present data obtained at the W. M. Keck and Las Campanas Observatories using the twin 10m Keck I and Keck II telescopes and the twin 6.5m Baade and Clay telescopes. Altogether, we used four spectrometers: (1) the High Resolution Echelle Spectrometer (HIRES); (2) the Echellette Spectrograph and Imager (ESI); (3) the Magellan Inamori Kyocera Echelle (MIKE); and (4) the Magellan Echellette Spectrograph (MagE). Observing logs for the HIRES and MIKE spectra are provided in Tables 1 and 2. (5 data files).

  16. [Biotechnology's macroeconomic impact].

    PubMed

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  17. Improving Undergraduate Research Experiences With An Intentional Mentoring Program: Lessons Learned Through Assessment of Keck Geology Consortium Programs

    NASA Astrophysics Data System (ADS)

    Wirth, K. R.; Garver, J. I.; Greer, L.; Pollock, M.; Varga, R. J.; Davidson, C. M.; Frey, H. M.; Hubbard, D. K.; Peck, W. H.; Wobus, R. A.

    2015-12-01

    The Keck Geology Consortium, with support from the National Science Foundation (REU Program) and ExxonMobil, is a collaborative effort by 18 colleges to improve geoscience education through high-quality research experiences. Since its inception in 1987 more than 1350 undergraduate students and 145 faculty have been involved in 189 yearlong research projects. This non-traditional REU model offers exceptional opportunities for students to address research questions at a deep level, to learn and utilize sophisticated analytical methods, and to engage in authentic collaborative research that culminates in an undergraduate research symposium and published abstracts volume. The large numbers of student and faculty participants in Keck projects also affords a unique opportunity to study the impacts of program design on undergraduate research experiences in the geosciences. Students who participate in Keck projects generally report significant gains in personal and professional dimensions, as well as in clarification of educational and career goals. Survey data from student participants, project directors, and campus advisors identify mentoring as one of the most critical and challenging elements of successful undergraduate research experiences. Additional challenges arise from the distributed nature of Keck projects (i.e., participants, project directors, advisors, and other collaborators are at different institutions) and across the span of yearlong projects. In an endeavor to improve student learning about the nature and process of science, and to make mentoring practices more intentional, the Consortium has developed workshops and materials to support both project directors and campus research advisors (e.g., best practices for mentoring, teaching ethical professional conduct, benchmarks for progress, activities to support students during research process). The Consortium continues to evolve its practices to better support students from underrepresented groups.

  18. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  19. Nulling at the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.

    2006-01-01

    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.

  20. Remote observing with the Keck Telescopes from the U.S. mainland

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Allen, Steve L.; Conrad, Albert

    2000-06-01

    We describe the current status of efforts to establish a high-bandwidth network from the U.S. mainland to Mauna Kea and a facility in California to support Keck remote observing and engineering via the Internet. The California facility will be an extension of the existing Keck remote operations facility located in Waimea, Hawaii. It will be targeted towards short-duration observing runs which now comprise roughly half of all scheduled science runs on the Keck Telescope. Keck technical staff in Hawaii will support remote observers on the mainland via video conferencing and collaborative software tools. Advantages and disadvantages of remote operation from California versus Hawaii are explored, and costs of alternative communication paths examined. We describe a plan for a backup communications path to protect against failure of the primary network. Alternative software models for remote operation are explored, and recent operational results described.

  1. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  2. The impact of plant biotechnology on food allergy.

    PubMed

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Undergraduate Biotechnology Students' Views of Science Communication

    NASA Astrophysics Data System (ADS)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  4. Are Students Prepared to Communicate? A Case Study of an Australian Degree Course in Biotechnology

    ERIC Educational Resources Information Center

    Edmondston, Joanne; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Public concerns about biotechnology have resulted in greater attention being paid to the mechanisms by which biotechnology is communicated with non-scientists, including the provision of science communication training. As undergraduate and postgraduate courses form the foundation of the biotechnology sector by providing a pipeline of university…

  5. University of Maryland MRSEC - Facilities: Keck Laboratory

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » Keck Laboratory Shared Experimental educational institutions for non-profit administrative or educational purposes if proper credit is given to

  6. Performance of the Keck Observatory adaptive-optics system.

    PubMed

    van Dam, Marcos A; Le Mignant, David; Macintosh, Bruce A

    2004-10-10

    The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.

  7. Photon-Weighted Midpoint Exposure Meter for Keck/HIRES Extrasolar Planet Research

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Grant was received for research involving the construction of a photon-weighting midpoint exposure meter for the Keck HIRES spectrometer, and for support of our NASA/Keck-based planet research with this instrumentation. The research funds were also to be used to make our iodine cell calibration system and exposure meter available to the NASA Keck observing community. Progress this past year, the second of the 3-year granting period, involved work in 4 areas: 1) Further construction of the midpoint exposure meter. 2) Assisting observers with use of the Iodine system. 3) Acquisition of precision radial velocity data on our program star sample with continued monitoring to proceed in subsequent years as available telescope time permits. 4) Reduction and analysis of incoming precision radial velocity data to reject problematic and uninteresting program stars, and to identify promising planet candidates.

  8. The application of biotechnology in medicinal plants breeding research in China.

    PubMed

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  9. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  10. Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-forming Galaxies at Redshifts z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2005-12-01

    We introduce a very deep, Rlim~27, multicolor imaging survey of very faint star-forming galaxies at z~4, 3, 2.2, and 1.7. This survey, carried out on the Keck I telescope, uses the very same UnGRI filter system that is employed by the Steidel team to select galaxies at these redshifts and thus allows us to construct identically selected but much fainter samples. However, our survey reaches ~1.5 mag deeper than the work of Steidel and his group, letting us probe substantially below the characteristic luminosity L* and thus study the properties and redshift evolution of the faint component of the high-z galaxy population. The survey covers 169 arcmin2 in three spatially independent patches on the sky and-to R<=27-contains 427 GRI-selected z~4 Lyman break galaxies, 1481 UnGR-selected z~3 Lyman break galaxies, 2417 UnGR-selected z~2.2 star-forming galaxies, and 2043 UnGR-selected z~1.7 star-forming galaxies. In this paper, the first in a series, we introduce the survey, describe our observing and data reduction strategies, and outline the selection of our z~4, 3, 2.2, and 1.7 samples. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-05-01

    California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  12. KPF: Keck Planet Finder

    NASA Astrophysics Data System (ADS)

    Gibson, Steven R.; Howard, Andrew W.; Marcy, Geoffrey W.; Edelstein, Jerry; Wishnow, Edward H.; Poppett, Claire L.

    2016-08-01

    KPF is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. The instrument is designed to characterize exoplanets via Doppler spectroscopy with a single measurement precision of 0.5ms-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. KPF will have a 200mm collimated beam diameter and a resolving power of >80,000. The design includes a green channel (440nm to 590 nm) and red channel (590nm to 850 nm). A novel design aspect of KPF is the use of a Zerodur optical bench, and Zerodur optics with integral mounts, to provide stability against thermal expansion and contraction effects.

  13. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less

  14. Wavefront control system for the Keck telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  15. Keck Observations of the Gas Dynamics at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Campbell, Randall; Ciurlo, Anna; Morris, Mark; Sitarski, Breann N.; Ghez, Andrea M.; Do, Tuan

    2018-06-01

    In the central parsec of the Milky Way Galaxy the environment of the super-massive black hole (SMBH) presents a complicated mixture of stars, gas, and dust. These inner few tens of arcseconds of the GC have been observed at high resolution with Keck for 20 years with the primary goal of monitoring stars orbiting the SMBH. However, the gas features and their dynamics can also be closely examined using this unique baseline of data. In particular, observations with the Keck OSIRIS integral field spectrometer allow us to examine of the dynamical properties of the gas and to possibly identify new “G-type” objects, or dusty stellar objects. We present a study of morphology and orbital dynamics of sub-parsec scale gas features in the central region.

  16. The Keck keyword layer

    NASA Technical Reports Server (NTRS)

    Conrad, A. R.; Lupton, W. F.

    1992-01-01

    Each Keck instrument presents a consistent software view to the user interface programmer. The view consists of a small library of functions, which are identical for all instruments, and a large set of keywords, that vary from instrument to instrument. All knowledge of the underlying task structure is hidden from the application programmer by the keyword layer. Image capture software uses the same function library to collect data for the image header. Because the image capture software and the instrument control software are built on top of the same keyword layer, a given observation can be 'replayed' by extracting keyword-value pairs from the image header and passing them back to the control system. The keyword layer features non-blocking as well as blocking I/O. A non-blocking keyword write operation (such as setting a filter position) specifies a callback to be invoked when the operation is complete. A non-blocking keyword read operation specifies a callback to be invoked whenever the keyword changes state. The keyword-callback style meshes well with the widget-callback style commonly used in X window programs. The first keyword library was built for the two Keck optical instruments. More recently, keyword libraries have been developed for the infrared instruments and for telescope control. Although the underlying mechanisms used for inter-process communication by each of these systems vary widely (Lick MUSIC, Sun RPC, and direct socket I/O, respectively), a basic user interface has been written that can be used with any of these systems. Since the keyword libraries are bound to user interface programs dynamically at run time, only a single set of user interface executables is needed. For example, the same program, 'xshow', can be used to display continuously the telescope's position, the time left in an instrument's exposure, or both values simultaneously. Less generic tools that operate on specific keywords, for example an X display that controls optical

  17. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    . Keck Foundation.

  18. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  19. Spectroscopic Classification of SN 2018gv with Keck I/LRIS

    NASA Astrophysics Data System (ADS)

    Siebert, M. R.; Dimitriadis, G.; Foley, R. J.

    2018-01-01

    We obtained spectroscopic observations of SN 2018gv with the LRIS spectrograph on the 10-m Keck I telescope on 2018 Jan 16 UT. The spectrum indicates that SN 2018gv is a very young, normal Type Ia supernova.

  20. Long Baseline Nulling Interferometry with the Keck Telescopes: A Progress Report

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Colavita, M. M.; Crawford, S.; Creech-Eakman, M. J.; Dahl, W.; Fanson, J.; hide

    2005-01-01

    The Keck Interferometer Nuller (KIN) is one of the major scientific and technical precursors to the Terrestrial Planet Finder Interferometer (TPF-I) mission. KIN's primary objective is to measure the level of exo-zodiacal mid-infrared emission around nearby main sequence stars, which requires deep broad-band nulling of astronomical sources of a few Janskys at 10 microns. A number of new capabilities are needed in order to reach that goal with the Keck telescopes: mid-infrared coherent recombination, interferometric operation in 'split pupil' mode, N-band optical path stabilization using K-band fringe tracking and internal metrology, and eventually, active atmospheric dispersion correction. We report here on the progress made implementing these new functionalities, and discuss the initial levels of extinction achieved on the sky.

  1. Spectroscopic Classifications of Optical Transients with Keck I/LRIS

    NASA Astrophysics Data System (ADS)

    Foley, R. J.; Rojas-Bravo, C.

    2018-05-01

    We report the following classifications of optical transients from spectroscopic observations with LRIS on the Keck I 10-m telescope. Targets were supplied by the ASAS-SN and PSH. All observations were made on 2018 May 10 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).

  2. Editorial: Biotechnology Journal brings more than biotechnology.

    PubMed

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Observations of Rosetta Target (21) Lutetia with Keck and Gemini Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Conrad, A. R.; Merline, W. J.; Drummond, J.; Carry, B.; Tamblyn, P. M.; Chapman, C. R.; Dumas, C.; Weaver, H. A.

    2009-12-01

    In support of the NASA/ESA Rosetta mission’s plans to observe asteroid (21) Lutetia during a 2010 July flyby, and in conjunction with a larger ground-based plus HST campaign to support this mission, we observed Lutetia from Keck and Gemini-North during several nights spanning 2008 Oct through 2009 Jan. Observations were made using adaptive optics in the near-IR, primarily at K-band (2.1 micron), and were timed to coincide with the asteroid's most recent opposition at a distance of about 1.4 AU. From these data, we determined Lutetia’s triaxial size and shape to be 132 x 101 x 76 km, with maximum expected uncertainties of 4 x 3 x 31 km. The spin pole is found to be at (RA, Dec) = (48, +9) deg or ecliptic (long, lat) = (49,-8) deg, with a formal uncertainty radius (not including systematics) of 3 deg. We have calibrated our technique of deriving dimensions of asteroids from AO images against Pluto and 4 satellites of Saturn with accurate diameters, and we expect that our systematics (included in the size uncertainties above) are no more than 3%. We also searched for satellites and our preliminary results indicate no detection of a satellite larger than about 1 km over a significant fraction of the Hill sphere (10-240 asteroid radii). Improved limits are expected from a more refined analysis. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of this dataset. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of these observations and for observing time granted at Gemini under NOAO time allocation. Plane-of-sky short and long axes of (21) Lutetia taken from Keck AO images on 2008 Dec 2.

  4. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tran, H. D.; Goodrich, R.; Berriman, G. B.; Gelino, C. R.; KOA Team

    2014-05-01

    By the end of 2013, the Keck Observatory Archive (KOA) will serve data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions, which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the 200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  5. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Holt, J.; Goodrich, R. W.; Lyke, J. E.; Gelino, C. R.; Berriman, G. B.; KOA Team

    2014-01-01

    Since the end of 2013, the Keck Observatory Archive (KOA) has served data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the adaptive optics (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the ~200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  6. Latest Results from the Multi-Object Keck Exoplanet Tracker

    NASA Astrophysics Data System (ADS)

    Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.

    2006-12-01

    The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.

  7. Biotechnology essay competition: biotechnology and sustainable food practices.

    PubMed

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Two Decades (almost) of Keck Observations of Io

    NASA Astrophysics Data System (ADS)

    De Pater, I.; Davies, A. G.; de Kleer, K.

    2015-12-01

    We have regularly observed Io with the 10-m Keck Telescope since 1998, initially using the speckle imaging technique, and switching to Adaptive Optics techniques when this became available in 2001. In this talk we will discuss several eruptions that we witnessed, and present 20-30 year timelines of thermal emission from Pele, Pillan, Janus Patera, Kanehekili Fluctus, and Loki Patera, updating timelines in recent publications [1, 2] with additional Keck adaptive optics data obtained between 2002 and 2015. These new timelines are the most comprehensive plots ever produced of the volcanic thermal emission variability for these or any other locations on Io, utilizing data from multiple ground- and space-based assets. Our continuing multi-decadal observing program forms the basis for charting the variability of Io's volcanic activity, of great importance for understanding the evolution of the Galilean satellite system, and with the expectation of new missions to the jovian system in the next decade. Acknowledgements: This research is in part supported by NSF grant AST-1313485 to UC Berkeley. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies et al. (2012) Icarus, 221, 466-470. [2] Rathbun and Spencer (2010) Icarus, 209, 625-630.

  9. The evolution of biotechnology and its impact on health care.

    PubMed

    Evens, Ronald; Kaitin, Kenneth

    2015-02-01

    For more than three decades the field of biotechnology has had an extraordinary impact on science, health care, law, the regulatory environment, and business. During this time more than 260 novel biotechnology products were approved for over 230 indications. Global sales of these products exceeded $175 billion in 2013 and have helped sustain a vibrant life sciences sector that includes more than 4,600 biotech companies worldwide. In this article we examine the evolution of biotechnology during the past three decades and the profound impact that it has had on health care through four interrelated and interdependent tracks: innovations in science, government activity, business development, and patient care. The future impact of biotechnology is promising, as long as the public and private sectors continue to foster policies and provide funds that lead to scientific breakthroughs; governments continue to offer incentives for private-sector biotech innovation; industry develops business models for cost-effective research and development; and all stakeholders establish policies to ensure that the therapeutic advances that mitigate or cure medical conditions that currently have inadequate or no available therapies are accessible to the public at a reasonable cost. Project HOPE—The People-to-People Health Foundation, Inc.

  10. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    PubMed Central

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  11. BICEP2 / Keck Array V: Measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array

    DOE PAGES

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; ...

    2015-09-29

    Here, the Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectralmore » difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg 2 for an equivalent survey weight of 250,000 μK –2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less

  12. BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.

    2015-10-01

    The Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral differencemore » tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg{sup 2} for an equivalent survey weight of 250,000 μK{sup −2}. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less

  13. Evaluation of Brazilian biotechnology patent activity from 1975 to 2010.

    PubMed

    Dias, F; Delfim, F; Drummond, I; Carmo, A O; Barroca, T M; Horta, C C; Kalapothakis, E

    2012-08-01

    Foundation), which filed 69 biotechnology patents within the period analyzed. The first biotechnology patent applications via PCT were submitted by Brazilians in 1997, with 3 from UFMG (university), 2 from individuals, and 1 from EMBRAPA (research institute).

  14. Volcanic activity of Io observed in December 2001 with the Keck AO system: 2-5μ m sunlit and eclipse observations

    NASA Astrophysics Data System (ADS)

    Marchis, F.; de Pater, I.; Le Mignant, D.; Roe, H.; Fusco, T.; Graham, J. R.; Prange, R.; Macintosh, B.; Keck Science Team

    2002-09-01

    Volcanically active Io remains a mysterious and intriguing moon, despite numerous spacecraft flybys. Groundbased monitoring programs help characterize the time evolution of Io's volcanic activity, such as the frequency, spatial distribution and temperature of hot spots and outbursts. The satellite was observed intensively in December 2001 with the Keck II Adaptive Optics (AO) system and its recently installed near-infrared camera NIRC2. The spatial resolution after applying the MISTRAL myopic deconvolution method (130 km in K band and 200 km in L band) is better than that of the global images from the Galileo/NIMS instrument. A movie produced from 12 pictures taken every 30o in Ionian longitude provides a complete survey of Io's surface during one full rotation. A total of 26 active hot spots were detected in L band (3.8μ m), and approximatively three times more in M band (4.7μ m). One active hot spot is seen in K band (2.2μ m) in the Pele area. While Io is in Jupiter's shadow, it is invisible to the wavefront sensor, but its hot spots are easily visible in the near-infrared. We imaged Io during the 18 Dec. 2001 eclipse using Ganymede (30" from Io, moving relative to Io at 0.5"/min) as a reference source. Although isoplanatic effects limited AO performance, numerous spots are detected at both K' and L'. We will show the results of detailed studies (temperature, emission area, nature) for several of the hot spots. Keck Science team is composed of S. Kwok, P. Amico, R. Campbell, F. Chaffee, A. Conrad, A. Contos, B. Goodrich, G. Hill, D. Sprayberry, P. Stomski, P. Wizinowich (W.M. Keck Observatory). This work has been supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783.

  15. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    PubMed

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    PubMed

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Design and Implementation of Data Reduction Pipelines for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Gelino, C. R.; Berriman, G. B.; Kong, M.; Laity, A. C.; Swain, M. A.; Campbell, R.; Goodrich, R. W.; Holt, J.; Lyke, J.; Mader, J. A.; Tran, H. D.; Barlow, T.

    2015-09-01

    The Keck Observatory Archive (KOA), a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all active and inactive instruments from the twin Keck Telescopes located near the summit of Mauna Kea, Hawaii. In addition to the raw data, we produce and provide quick look reduced data for four instruments (HIRES, LWS, NIRC2, and OSIRIS) so that KOA users can more easily assess the scientific content and the quality of the data, which can often be difficult with raw data. The reduced products derive from both publicly available data reduction packages (when available) and KOA-created reduction scripts. The automation of publicly available data reduction packages has the benefit of providing a good quality product without the additional time and expense of creating a new reduction package, and is easily applied to bulk processing needs. The downside is that the pipeline is not always able to create an ideal product, particularly for spectra, because the processing options for one type of target (eg., point sources) may not be appropriate for other types of targets (eg., extended galaxies and nebulae). In this poster we present the design and implementation for the current pipelines used at KOA and discuss our strategies for handling data for which the nature of the targets and the observers' scientific goals and data taking procedures are unknown. We also discuss our plans for implementing automated pipelines for the remaining six instruments.

  18. Establishing a Taxonometric Structure for the Study of Biotechnology in Secondary School Technology Education.

    ERIC Educational Resources Information Center

    Wells, John G.

    1994-01-01

    A Delphi panel of 19 experts identified 8 main knowledge areas of biotechnology: bioprocessing, foundations, genetic engineering, agriculture, biochemistry, medicine, environment, and bioethics. Round 2 elicited 84 subdivisions and round 3 adjusted the ratings. The resulting classification suggests a different context and focus for technology…

  19. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    ERIC Educational Resources Information Center

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  20. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    PubMed

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  1. Twenty Years of Precise Radial Velocities at Keck and Lick Observatories

    NASA Astrophysics Data System (ADS)

    Wright, J. T.

    2015-10-01

    The precise radial velocity survey at Keck Observatory began over 20 years ago. Its survey of thousands of stars now has the time baseline to be sensitive to planets with decade-long orbits, including Jupiter analogs. I present several newly-finished orbital solutions for long-period giant planets. Although hot Jupiters are generally ``lonely'' (i.e. they are not part of multiplanet systems), those that are not appear to often have giant companions at 5 AU or beyond. I present two of the highest period-ratios among planets in a two-planet system, and some of the longest orbital periods ever measured for exoplanets. In many cases, combining Keck radial velocities from those from other long-term surveys at Lick Observatory, McDonald Observatory, HARPS, and, of course, OHP spectrographs, produces superior orbital fits, constraining both period and eccentricity better than could be possible with any single set alone. Stellar magnetic activity cycles can masquerade as long-period planets. In most cases this effect is very small, but a loud minority of stars, including, apparently, HD 154345, show very strong RV-activity correlations.

  2. Construction Biotechnology: a new area of biotechnological research and applications.

    PubMed

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  3. Biotechnology.

    ERIC Educational Resources Information Center

    Van Vranken, Nancy S., Ed.

    1987-01-01

    The field of biotechnology, and specifically recombinant DNA technology, is transforming the way that many feel about the nature and purposes of biology. This newsletter annual supplement contains several articles addressing the topic of biotechnology and the importance that the topic should be given in science classes. James D. Watson's article,…

  4. VizieR Online Data Catalog: Keck/MOSFIRE spectroscopy of ZFOURGE galaxies (Tran+, 2017)

    NASA Astrophysics Data System (ADS)

    Tran, K.-V. H.; Alcorn, L. Y.; Kacprzak, G. G.; Nanayakkara, T.; Straatman, C.; Yuan, T.; Cowley, M.; Dave, R.; Glazebrook, K.; Kewley, L. J.; Labbe, I.; Martizzi, D.; Papovich, C.; Quadri, R.; Spitler, L. R.; Tomczak, A.

    2017-06-01

    Here we combine Hα emission from our ZFIRE survey (Nanayakkara+ 2016, J/ApJ/828/21) with galaxy properties from the ZFOURGE survey (Straatman+ 2016, J/ApJ/830/51) and IR luminosities from Spitzer to track how galaxies grow at z~2. ZFIRE is a near-IR spectroscopic survey with MOSFIRE on Keck I where targets are selected from ZFOURGE, an imaging survey that combines deep near-IR observations taken with the FourStar Imager at the Magellan Observatory with public multi-wavelength observations, e.g., Hubble Space Telescope (HST) imaging from CANDELS (Grogin+ 2011ApJS..197...35G). The Keck/MOSFIRE spectroscopy was obtained on observing runs in 2013 December and 2014 February. A total of eight slit masks were observed in the K-band (1.93-2.38um). We also observed two masks in the H-band covering 1.46-1.81um. (1 data file).

  5. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    PubMed

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p < 0.001) and most students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p < 0.001) despite studying AB or not. However, there is no significant difference between students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Next generation industrial biotechnology based on extremophilic bacteria.

    PubMed

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2018-04-01

    Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure. NGIB also requires less capital investment and reduces demand on highly trained engineers. The foundation for the simplified NGIB is microorganisms that resist contaminations by other microbes, one of the examples is rapid growing halophilic bacteria inoculated under high salt concentration and alkali pH. They have been engineered to produce multiple products in various scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Ibata, R. A.; Chapman, S. C.; Irwin, M.; Lewis, G. F.

    2007-09-01

    potential extratidal stars are required to rule out the possibility that these systems have not been significantly heated by tidal interaction. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. E-mail: martin@mpia-hd.mpg.de ‡ Canadian Space Agency Fellow.

  8. VizieR Online Data Catalog: Team Keck Redshift Survey 2 (TKRS2) (Wirth+, 2015)

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Trump, J. R.; Barro, G.; Guo, Y.; Koo, D. C.; Liu, F.; Kassis, M.; Lyke, J.; Rizzi, L.; Campbell, R.; Goodrich, R. W.; Faber, S. M.

    2016-04-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a spectroscopic survey of 97 distant galaxies exploiting the capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck I telescope at the W. M. Keck Observatory. MOSFIRE features a 2048*2048 pixel HAWAII-2RG HgCdTe detector array from Teledyne Imaging Sensors that couples high quantum efficiency with low noise and low dark current. The operating range of 0.97-2.41μm covers the YJHK infrared passbands, with wavelength coverage of 0.97-1.12μm in Y, 1.15-1.35μm in J, 1.47-1.80μm in H, and 1.95-2.40μm in K. The resolving power for the default slit width of 0.7" is R=3380 in Y, 3310 in J, 3660 in H, and 3620 in K, corresponding to full-width-half-maximum (FWHM) spectral resolutions of 3.1Å in Y, 3.7Å in J, 4.4Å in H, and 6.0Å in K. Our survey targets the south-central region of the GOODS-North survey field (Giavalisco et al. 2004, cat. II/261). We employed MOSFIRE to acquire spectra in the GOODS-North field over a series of partial nights spanning the period from 2012 November to 2013 May. We present the results of our survey in Table3 and on the website (http://arcoiris.ucsc.edu/TKRS2/) devoted to the survey. (1 data file).

  9. Biotechnology for Non-biology Majors: An Activity Using a Commercial Biotechnology Laboratory.

    ERIC Educational Resources Information Center

    Wray, Francis P.; Fox, Mary C.; Huether, Carl A.; Schurdak, Eric R.

    2001-01-01

    Presents an inexpensive activity to stimulate student interest in biotechnology that was developed in partnership with a biotechnology company. Focuses on the use of DNA by a commercial laboratory; describing the analysis procedure; important uses of DNA technology in modern society; and ethical, social, and legal issues related to biotechnology.…

  10. Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Amiri, M.

    We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less

  11. Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER

    DOE PAGES

    Ade, P. A. R.; Aikin, R. W.; Amiri, M.; ...

    2015-10-20

    We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less

  12. Healthcare biotechnology in India.

    PubMed

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  13. Fungal biodiversity to biotechnology.

    PubMed

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  14. Infusing Authentic Inquiry into Biotechnology

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  15. Crop Biotechnology. Where Now?

    PubMed Central

    Miflin, B. J.

    2000-01-01

    Abstract Nature Biotechnology organized a conference in London on Agbiotech 99: Biotechnology and World Agriculture (November 14-16, 1999). The conference focused entirely on crop biotechnology and covered both societal and scientific aspects. Below is an account of the more important issues raised by the speakers and the audience. PMID:10806221

  16. Biotechnology: from university to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, M.F.

    1984-01-01

    This study examines the birth of the biotechnology industry in the US. It is argued that biotechnology may have important implications for the future of American capitalism. The study is contextualized theoretically through the use of the idea of the capitalism experiences waves of innovations at certain historical periods. Finally, the idea of a new regime of accumulation based on information technologies is explored and biotechnology's potential position in the information society is explored. The first section of the study examines the role of the university in biotechnology. The various objectives of administrators and professors are explored as is themore » role of corporate gift giving in transforming the university into an institution more useful for capitalist accumulation. The second section examines the corporate role in biotechnology: both from the viewpoint of the small venture capital-financed biotechnology firms and the large multinational oil, chemical, and pharmaceutical companies that have made a number of important investments in biotechnology. The last chapter describes the unique effects that biotechnology will have upon the US agricultural sector.« less

  17. Traditional Chinese Biotechnology

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  18. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  19. Spatially Resolved Emission of a z~3 Damped Lyman Alpha Galaxy with Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Jorgenson, Regina

    2017-01-01

    The damped Lyman alpha (DLA) class of galaxies contains most of the neutral hydrogen gas over cosmic time. Few DLAs have been detected directly, which limits our knowledge of fundamental properties like size and mass. We present Keck/OSIRIS infrared integral field spectroscopy (IFU) observations of a DLA that was first detected in absorption toward a background quasar. Our observations use the Keck Laser Guide Star Adaptive Optics system to reduce the point-spread function of the quasar, making it possible to spatially resolve the DLA emission. We map this emission in O[III] 5007 Å. At redshift z~3, this DLA represents one of the highest redshift DLAs mapped with IFU spectroscopy. We present measurements of the star formation rate, metallicity, and gas mass of the galaxy.This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  20. Biotechnology in Turkey: an overview.

    PubMed

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  1. Teaching biotechnology in NSW schools

    NASA Astrophysics Data System (ADS)

    Steele, Frances A.

    Agriculture, industry and medicine are being altered by new biological technologies. Today's students are the citizens who will make decisions about associated ethical issues. They need to have the knowledge that will enable them to make informed choices. Hence biotechnology has an important place in science education. The aims of the research were to: 1. describe the state of biotechnology teaching in NSW; 2. determine whether teachers in NSW do not teach biotechnology because they do not have the necessary knowledge and experience; 3. identify other reasons why NSW teachers choose not to teach biotechnology; 4. describe problems encountered in teaching biotechnology in NSW; 5. suggest ways in which the problems encountered in the teaching of biotechnology can be overcome. Quantitative and qualitative methods were used in a complementary way to investigate these aims. In a sample of teachers surveyed, many reported that they chose not to teach biotechnology because they did not have adequate knowledge and experience. Other obstacles were identified. These were: 1. the difficulty of the subject matter; 2. the lack of practical work; 3. lack of a program for biotechnology in junior science. The results of this trial suggested that a biotechnology unit should be developed in collaboration with the teacher and that time needs to be made available for school based program development.

  2. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…

  3. Biotechnology and Education.

    ERIC Educational Resources Information Center

    Journal of Biological Education, 1982

    1982-01-01

    Summarizes a Royal Society report on the educational implications of the growth of biotechnology (application of biological organisms, systems, or processes to manufacturing and service industries). Eighteen recommendations are made including the inclusion of biotechnological content into science curricula. (Author/JN)

  4. The Operation and Architecture of the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Gelino, C. R.; Laity, A.; Kong, M.; Swain, M.; Holt, J.; Goodrich, R.; Mader, J.; Tran, H. D.

    2014-05-01

    The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck Observatory (WMKO) are collaborating to build an archive for the twin 10-m Keck Telescopes, located near the summit of Mauna Kea. The Keck Observatory Archive (KOA) takes advantage of IPAC's long experience with managing and archiving large and complex data sets from active missions and serving them to the community; and of the Observatory's knowledge of the operation of its sophisticated instrumentation and the organization of the data products. By the end of 2013, KOA will contain data from all eight active observatory instruments, with an anticipated volume of 28 TB. The data include raw science and observations, quick look products, weather information, and, for some instruments, reduced and calibrated products. The goal of including data from all instruments is the cumulation of a rapid expansion of the archive's holdings, and already data from four new instruments have been added since October 2012. One more active instrument, the integral field spectrograph OSIRIS, is scheduled for ingestion in December 2013. After preparation for ingestion into the archive, the data are transmitted electronically from WMKO to IPAC for curation in the physical archive. This process includes validation of the science and content of the data and verification that data were not corrupted in transmission. The archived data include both newly-acquired observations and all previously acquired observations. The older data extends back to the date of instrument commissioning; for some instruments, such as HIRES, these data can extend as far back as 1994. KOA will continue to ingest all newly obtained observations, at an anticipated volume of 4 TB per year, and plans to ingest data from two decommissioned instruments. Access to these data is governed by a data use policy that guarantees Principal Investigators (PI) exclusive access to their data for at least 18 months, and allows for extensions as granted by

  5. The Rhetorical Helix of the Biotechnology and Pharmaceutical Industries: Strategies of Transformation through Definition, Description and Ingratiation

    ERIC Educational Resources Information Center

    Gretton, Linda Burak

    2009-01-01

    The current pharmaceutical industry, whose origins date from the early 20th century, and the biotechnology industry, which emerged in the 1980s both have foundations built on the modern scientific method and share a mission to develop new drugs for humans and animals. At the same time, they are also made distinct by size (small biotechs versus…

  6. Turkish University Students' Knowledge of Biotechnology and Attitudes toward Biotechnological Applications

    ERIC Educational Resources Information Center

    Öztürk-Akar, Ebru

    2017-01-01

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology…

  7. CHANDRA, KECK, and VLA Observations of the Crab Nebula During the 2011-April Gamma-Ray Flare

    DOE PAGES

    Weisskopf, Martin C.; Tennant, Allyn F.; Arons, Jonathan; ...

    2013-02-15

    In this paper, we present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the γ-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the "inner knot," i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. Lastly, we also discuss theoretical implications of the γ-ray flaresmore » and suggest that the most dramatic γ-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.« less

  8. The Challenge in Teaching Biotechnology

    NASA Astrophysics Data System (ADS)

    Steele, F.; Aubusson, P.

    2004-08-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because todays students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South Wales (NSW). In NSW few students were electing to answer examination questions related to biotechnology, suggesting that few students were studying the topic. This study looks at why electives relating to biotechnology are chosen or not chosen by students and teachers, with the intention of developing a greater understanding of the requirements for provision of a successful unit of study in this subject. Data was obtained through a survey of secondary science teachers, interviews with teachers and two case studies of the teaching of a biotechnology unit. Teachers reported a range of obstacles to the teaching of biotechnology including the difficulty of the subject matter and a lack of practical work that was suited to the content of the teaching unit. If biotechnology is worth learning in school science, then further research is needed to identify ways to promote the effective teaching of this topic, which teachers regard as important for, and interesting to, students but which most teachers choose not to teach.

  9. New Developments in Biotechnology: U.S. Investment in Biotechnology. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  10. Public perceptions of biotechnology.

    PubMed

    McHughen, Alan

    2007-09-01

    The very term 'Biotechnology' elicits a range of emotions, from wonder and awe to downright fear and hostility. This is especially true among non-scientists, particularly in respect of agricultural and food biotechnology. These emotions indicate just how poorly understood agricultural biotechnology is and the need for accurate, dispassionate information in the public sphere to allow a rational public debate on the actual, as opposed to the perceived, risks and benefits of agricultural biotechnology. This review considers first the current state of public knowledge on agricultural biotechnology, and then explores some of the popular misperceptions and logical inconsistencies in both Europe and North America. I then consider the problem of widespread scientific illiteracy, and the role of the popular media in instilling and perpetuating misperceptions. The impact of inappropriate efforts to provide 'balance' in a news story, and of belief systems and faith also impinges on public scientific illiteracy. Getting away from the abstract, we explore a more concrete example of the contrasting approach to agricultural biotechnology adoption between Europe and North America, in considering divergent approaches to enabling coexistence in farming practices. I then question who benefits from agricultural biotechnology. Is it only the big companies, or is it society at large--and the environment--also deriving some benefit? Finally, a crucial aspect in such a technologically complex issue, ordinary and intelligent non-scientifically trained consumers cannot be expected to learn the intricacies of the technology to enable a personal choice to support or reject biotechnology products. The only reasonable and pragmatic alternative is to place trust in someone to provide honest advice. But who, working in the public interest, is best suited to provide informed and accessible, but objective, advice to wary consumers?

  11. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  12. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  13. The rise (and decline?) of biotechnology.

    PubMed

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Polarization Angle Calibration and B-Mode Characterization with the BICEP and Keck Array CMB Telescopes

    NASA Astrophysics Data System (ADS)

    Bullock, Eric

    Since its discovery in 1964, the Cosmic Microwave Background (CMB) has led to widespread acceptance of the Big Bang cosmological paradigm as an explanation for the evolution of the Universe. However, this paradigm does not explain the origin of the initial conditions, leading to such issues as the "horizon problem" and "flatness problem." In the early 1980's, the inflationary paradigm was introduced as a possible source for the initial conditions. This theory postulates that the Universe underwent a period of exponential expansion within a tiny fraction of a second after the beginning. Such an expansion is predicted to inject a stochastic background of gravitational waves that could imprint a detectable B-mode (curl-like) signal in the polarization of the CMB. It is this signal that the family of telescopes used by the B ICEP1, BICEP2, and Keck Array collaborations were designed to detect. These telescopes are small aperture, on-axis, refracting telescopes. We have used the data from these telescopes, particularly BICEP2 and the Keck Array, to place the tightest constraints, as of March 2016, on the tensor-to-scalar ratio of the CMB of r 0.05 < 0.07. In this dissertation, we provide an overview of the Keck Array telescopes and analysis of the data. We also investigate, as the main focus of this dissertation, a device we call the Dielectric Sheet Calibrator (DSC) that is used to measure the polarization angles of our detectors as projected on the sky. With these measurements, we gain the potential to separate the polarization rotation effects of parity-violating physics, such as cosmic birefringence, from a systematic uncertainty on our detectors' polarization angles. Current calibration techniques for polarization sensitive CMB detectors claim an accuracy of +/-0.5°, which sets a limit for determining the usefulness of the DSC. Through a series of consistency tests on a single Keck Array receiver, we demonstrate a statistical uncertainty on the DSC measurements of

  15. The Challenge in Teaching Biotechnology

    ERIC Educational Resources Information Center

    Steele, F.; Aubusson, P.

    2004-01-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because today's students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South…

  16. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    PubMed

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  17. Space and biotechnology: An industry profile

    NASA Technical Reports Server (NTRS)

    Johnston, Richard S.; Norton, David J.; Tom, Baldwin H.

    1988-01-01

    The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry.

  18. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    ERIC Educational Resources Information Center

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  19. Current state of biotechnology in Turkey.

    PubMed

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Operating a wide-area high-availability collaborative remote observing system for classically-scheduled observations at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Wirth, Gregory D.; Allen, Steven L.; Deich, William T. S.; Goodrich, Robert W.; Lanclos, Kyle; Lyke, James E.

    2011-03-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 9 years, WMKO remote observing has expanded to allow observing teams at dedicated sites located across California to observe via the Internet either in collaboration with colleagues in Waimea or entirely from California; this capability was extended to Swinburne University in Melbourne, Australia in 2010 and to Yale University in New Haven, Connecticut in early 2011. All Keck facility science instruments are currently supported. Observers distributed between as many as four sites can collaborate in the interactive operation of each instrument by means of shared VNC desktops and multipoint video and/or telephone conferencing. Automated routers at primary remote observing sites ensure continued connectivity during Internet outages. Each Keck remote observing facility is similarly equipped and configured so observers have the same operating environment. This architecture provides observers the flexibility to conduct observations from the location best suited to their needs and to adapt to last-minute changes. It also enhances the ability of off-site technical staff to provide remote support.

  1. Addressing chronic operational issues at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Nordin, Tom; Matsuda, Richard

    2016-07-01

    The W. M. Keck Observatory (WMKO) has a good track record at addressing large critical faults which impact observing. Our performance tracking and correcting chronic minor faults has been mixed, yet this class of problems has a significant negative impact on scientific productivity and staff effectiveness. We have taken steps to address this shortcoming. This paper outlines the creation of a program to identify, categorize and rank these chronic operational issues, track them over time, and develop management options for their resolution. The success of the program at identifying these chronic operational issues and the advantages of dedicating observatory resources to this endeavor are presented.

  2. New Developments in Biotechnology: U.S. Investment in Biotechnology. [Special Report.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  3. The Ohio Science Workbook: Biotechnology.

    ERIC Educational Resources Information Center

    Reames, Spencer E., Comp.

    Because of the daily impact of biotechnology, it is important that students have some knowledge and experience with biotechnology in order to enable them to deal with the issues that arise as a result of its implementation. The purpose of this workbook is to assist in the efforts to expose students to the concepts of biotechnology through hands-on…

  4. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  5. [Biotechnology in perspective].

    PubMed

    Brand, A

    1990-06-15

    Biotechnology is a collective term for a large number of manipulations of biological material. Fields of importance in stock-keeping include: (1) manipulation of reproductive processes; (2) genetic manipulation of macro-(farm) animals and micro-organisms and (3) manipulation of metabolism. Fitting in biotechnological findings in breeding-stock farming has repercussions in several fields such as the relationship between producers and the ancillary and processing industries, service industries, consumers and society as a whole. The use of biotechnical findings will also require further automation and adaptation of farm management. Biotechnology opens up a new area and new prospects for farm animal husbandry. These can only be regarded as positive when they take a permanent development of the entire section into account.

  6. Keck and VLT Observations of Super-Damped Lyman-Alpha Absorbers at z 2- 2.5: Constraints on Chemical Compositions and Physical Conditions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-01

    obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  7. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    NASA Astrophysics Data System (ADS)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  8. After Dolly--ethical limits to the use of biotechnology on farm animals.

    PubMed

    Lassen, Jesper; Gjerris, Mickey; Sandøe, Peter

    2006-03-15

    The cloning of Dolly the sheep gave rise to a widespread call for limits on interference with life. Until recently, the main limits were technical: what it is possible to do. Now scientists are faced with ethical limits as well: what it is acceptable to do. In this context, we take ethics to involve systematic and rational reflection on moral issues raised in the public sphere. The concerns of the general public are not necessarily valid, but they are the best point of departure if the discussion is to lead to a socially robust framework for setting limits to the use of animal biotechnology. To assess public understanding, we examine two sources of data: Eurobarometer surveys from 1991 to 2002 and a qualitative interview study carried out in Denmark in 2000. Based on these sources, we formulate, and then discuss closely, the following concerns: dangers to human health and the environment, animal welfare, animal integrity, and usefulness. In the final part of the article, it is proposed that a principle of proportionality should be the foundation for socially robust applications of animal biotechnology. Only in cases where the usefulness of the technology can be said to outweigh countervailing moral concerns, as in biomedical research, will applications of animal biotechnology stand up to scrutiny in the public sphere.

  9. Near Infrared Imaging of the Hubble Deep Field with Keck Telescope

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Neugebauer, G.; Armus, Lee; Matthews, K.; Pahre, Michael A.; Soifer, B. T.; Weinberger, A. J.

    1997-01-01

    Two deep K-band (2.2 micrometer) images, with point-source detection limits of K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V(sub 606)- I(sub 814) and I(sub 814)-K colors are measured. By stacking visually selected objects, mean I(sub 814)-K colors can be measured to very faint levels, the mean I(sub 814)-K color is constant with apparent magnitude down to V(sub 606)=28 mag.

  10. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars — A Keck Geology Consortium Undergraduate Research Project

    NASA Astrophysics Data System (ADS)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-03-01

    This Keck Geology Consortium project, involving four undergrad geology students, mapped and analyzed sinuous channel features on Ascraeus Mons, Mars, to better understand the role of volcanic and fluvial processes in the geological evolution of Mars.

  11. Joint analysis of BICEP2/keck array and Planck Data.

    PubMed

    Ade, P A R; Aghanim, N; Ahmed, Z; Aikin, R W; Alexander, K D; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barkats, D; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Benton, S J; Bernard, J-P; Bersanelli, M; Bielewicz, P; Bischoff, C A; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Brevik, J A; Bucher, M; Buder, I; Bullock, E; Burigana, C; Butler, R C; Buza, V; Calabrese, E; Cardoso, J-F; Catalano, A; Challinor, A; Chary, R-R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Connors, J; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J-M; Désert, F-X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dowell, C D; Duband, L; Ducout, A; Dunkley, J; Dupac, X; Dvorkin, C; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Filippini, J P; Finelli, F; Fliescher, S; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; Golwala, S R; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Halpern, M; Hansen, F K; Hanson, D; Harrison, D L; Hasselfield, M; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hilton, G C; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hristov, V V; Huffenberger, K M; Hui, H; Hurier, G; Irwin, K D; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Karakci, A; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Keihänen, E; Kernasovskiy, S A; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kovac, J M; Krachmalnicoff, N; Kunz, M; Kuo, C L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J-M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leitch, E M; Leonardi, R; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Lueker, M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Mason, P; Matarrese, S; Megerian, K G; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M-A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nguyen, H T; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Brient, R; Ogburn, R W; Orlando, A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Pryke, C; Puget, J-L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Richter, S; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schwarz, R; Scott, D; Seiffert, M D; Sheehy, C D; Spencer, L D; Staniszewski, Z K; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A-S; Sygnet, J-F; Tauber, J A; Teply, G P; Terenzi, L; Thompson, K L; Toffolatti, L; Tolan, J E; Tomasi, M; Tristram, M; Tucci, M; Turner, A D; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Vieregg, A G; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Weber, A C; Wehus, I K; White, M; White, S D M; Willmert, J; Wong, C L; Yoon, K W; Yvon, D; Zacchei, A; Zonca, A

    2015-03-13

    We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2  μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150  GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.

  12. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  13. Ohio Biotechnology Competency Profile.

    ERIC Educational Resources Information Center

    Miller, Lavonna; Bowermeister, Bob; Boudreau, Joyce

    This document, which lists the biotechnology competencies identified by representatives from biotechnology businesses and industries as well as secondary and post-secondary educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through…

  14. Laying the foundations for a bio-economy

    PubMed Central

    2008-01-01

    Biological technologies are becoming an important part of the economy. Biotechnology already contributes at least 1% of US GDP, with revenues growing as much as 20% annually. The introduction of composable biological parts will enable an engineering discipline similar to the ones that resulted in modern aviation and information technology. As the sophistication of biological engineering increases, it will provide new goods and services at lower costs and higher efficiencies. Broad access to foundational engineering technologies is seen by some as a threat to physical and economic security. However, regulation of access will serve to suppress the innovation required to produce new vaccines and other countermeasures as well as limiting general economic growth. PMID:19003445

  15. THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Gregory D.; Kassis, Marc; Lyke, Jim

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band.more » We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra.« less

  16. Impact of Biotechnology on Pharmacy Practice.

    ERIC Educational Resources Information Center

    Black, Curtis D.; And Others

    1990-01-01

    Discussed is the role of schools of pharmacy in (1) preparing future practitioners to assimilate and shape the impact of biotechnology; (2) establish graduate and research programs to enhance and apply products of biotechnology; and (3) identify manpower needs to fully realize potential advances caused by biotechnology. (DB)

  17. World Biotechnology Leaders to Gather for Conference

    Science.gov Websites

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  18. Books on biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The books selected for this review could serve to establish or strengthen the background of the chemical engineer who seeks to enter the field of biotechnology, which is described as a field linking three different branches of science - microbiology, biochemistry and engineering. Nineteen books on biotechnology under the headings Science, Genetic Engineering, Biochemical Engineering, Biomass Energy, Directories and sourcebook are reviewed and titles of five other books received too late for comment given.

  19. Early convergence research and education supported by the National Science Foundation.

    PubMed

    Bainbridge, William Sims

    2004-05-01

    The following pages describe research grants awarded by the National Science Foundation that illustrate how different fields of science and technology can converge in order to increase human potential. Technological convergence involves the unification of the sciences of Nanotechnology, Biotechnology, Information Technology, and new technologies based on Cognitive Science (NBIC). Because it supports research across all major branches of science and technology, including the social and behavioral sciences, the NSF has been a focus of discussions about converging technologies to enhance human capabilities and serve human needs.

  20. Creation of an instrument maintenance program at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.

  1. Projector Center. What Is Biotechnology?

    ERIC Educational Resources Information Center

    Belzer, Bill; Case, Christine L.

    1990-01-01

    Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described. (CW)

  2. Biotechnology and human rights.

    PubMed

    Feuillet-Le Mintier, B

    2001-12-01

    Biotechnology permits our world to progress. It's a tool to better apprehend the human being, but as well to let him go ahead. Applied to the living, biotechnologies present the same finality. But since their matter concerns effectively the living, they are the sources of specific dangers and particularly of that one to use the improvements obtained on the human to modify the human species. The right of the persons has to find its place to avoid that the fundamental rights of the human personality shall undergo harm. This mission assigned to the right of the persons is as so much invaluable that the economical stakes are particularly important in the domain of the biotechnologies.

  3. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  4. Current status of biotechnology in Slovakia.

    PubMed

    Stuchlík, Stanislav; Turna, Ján

    2013-07-01

    The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Progress towards the 'Golden Age' of biotechnology.

    PubMed

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  6. The costly benefits of opposing agricultural biotechnology.

    PubMed

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Biotechnology Education. Engaging the Learner: Embedding Information Literacy Skills into a Biotechnology Degree

    ERIC Educational Resources Information Center

    Ward, Helena; Hockey, Julie

    2007-01-01

    One of the challenges of the Biotechnology industry is keeping up to date with the rapid pace of change and that much of the information, which students learn in their undergraduate studies, will be out of date in a few years. It is therefore crucial that Biotechnology students have the skills to access the relevant information for their studies…

  8. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  9. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We hav processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture gas shown the introduction of transgenic crops with pesticidal ...

  10. Biotechnology Outlines for Classroom Use.

    ERIC Educational Resources Information Center

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  11. Avian Biotechnology.

    PubMed

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  12. The Atmosphere of Uranus as Imaged with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Hammel, H. B.; de Pater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K.

    2004-12-01

    Adaptive optics imaging of Uranus was obtained with NIRC2 on the Keck II 10-meter telescope in October 2003 and July 2004 through J, H, and K' filters. Dozens of discrete features were detected in the atmosphere of Uranus. We report the first measurements of winds northward of +43 deg, the first direct measurement of equatorial winds, and the highest wind velocity seen yet on Uranus. At northern mid-latitudes, the winds may have accelerated when compared to earlier HST and Keck observations; southern wind speeds have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, with diffuse patches roughly every 30 degs in longitude. There is no sign of a northern "polar collar" as is seen in the south, but a number of discrete features seen at the "expected" latitudes may signal its early stages of development. The largest cloud features on Uranus show complex structure extending over tens of degrees. On 4 July 2004, we detected a southern hemispheric cloud feature on Uranus at K', the first detection of a southern feature at or longward of 2 microns. H images showed an extended structure whose condensed core was co-located with the K'-bright feature. The core exhibited marked brightness variation, fading within just a few days. The initial brightness at K' indicates that the core's scattering particles reached altitudes above the 1-bar level, with the extended H feature residing below 1.1 bars. The core's rapid disappearance at K' indicates dynamical processes in the local vertical aerosol structure. HBH acknowledges support from NASA grants NAG5-11961 and NAG5-10451. IdP acknowledges support from NSF and the Technology Center for Adaptive Optics, managed by UCSC under cooperative agreement No. AST-9876783. SGG's work was performed under the auspices of the U.S. DoE National Nuclear Security Administration by the UC, LLNL under contract No. W-7405-Eng-48.

  13. An Overview on Indian Patents on Biotechnology.

    PubMed

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  14. Re-Framing Biotechnology Regulation.

    PubMed

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  15. State responses to biotechnology.

    PubMed

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  16. A HIRES/Keck Spectroscopic Investigation of the Measurement of Sodium in the Atmosphere of HD 209458b

    NASA Astrophysics Data System (ADS)

    Langland-Shula, Laura E.; Vogt, Steven S.; Charbonneau, David; Butler, Paul; Marcy, Geoff

    2009-05-01

    We present high-resolution High Resolution Echelle Spectrometer (HIRES)/Keck spectra of HD 209458, and a Monte Carlo variation on the basic method used by other workers, to look for the excess in-transit absorption in the NaD doublet at 5893 Å due to the extrasolar planet. The HIRES data, binned by bandpass, allow a direct comparison with previous results. We find >3σ results in most test bandpasses around the NaD doublet, including relative absorption of (-108.8 ± 25.7) × 10-5 in the "narrow" bandpass used by other workers. This is ≈4.7 times larger than the "narrow" results reported by Charbonneau et al. for HD 209458b. However, >2σ absorption is detected in some weak Fe I and Ni I lines that were tested for comparison, raising concern about the uncertainties introduced by continuum-fitting and terrestrial atmosphere subtraction. Based on data obtained with the W. M. Keck Observatory, which is operated by a partnership consisting of the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  17. Relevance of chemistry to white biotechnology

    PubMed Central

    Gupta, Munishwar N; Raghava, Smita

    2007-01-01

    White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up. PMID:17880746

  18. Preface: Biocatalysis and Agricultural Biotechnology

    USDA-ARS?s Scientific Manuscript database

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  19. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to be very large (Rdisk>~80 kpc) and/or warped. More likely, these four stars represent a metal-rich debris trail from a past accretion event in the halo. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. New Directions in Biotechnology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  1. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. On Teaching Biotechnology in Kentucky.

    ERIC Educational Resources Information Center

    Brown, Dan C.; Kemp, Michael C.; Hall, Jennifer

    1998-01-01

    One study surveyed 187 Kentucky teachers (36% agriculture, 32% science, 32% technology education); they rated importance of content organizers, topics, transferable skills, and delivery methods for biotechnology. A second study received responses from 70 of 150 teachers; 45 thought science teachers or an integrated team should teach biotechnology;…

  3. Next Generation Virgo Survey Photometry and Keck/DEIMOS Spectroscopy of Globular Cluster Satellites of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration

    2015-01-01

    We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the

  4. Cancer Biotechnology | Center for Cancer Research

    Cancer.gov

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will be presented. Clinical and postdoctoral fellows who want to learn about new biotechnology advances are encouraged to attend this course.

  5. Western Australian school students' understanding of biotechnology

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum

  6. [The past 30 years of Chinese Journal of Biotechnology].

    PubMed

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  7. A Sourcebook of Biotechnology Activities.

    ERIC Educational Resources Information Center

    Rasmussen, Alison M., Ed.; Matheson, Robert H., III, Ed.

    This book contains 22 lessons using hands-on activities designed to present some aspect of biotechnology in a usable form that teachers can adapt for their classrooms. The introductory section serves as a resource that introduces the teacher and student to the history of biotechnology. The activities are divided into five units that group lessons…

  8. Teachers' Concerns about Biotechnology Education

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  9. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    PubMed

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  10. A Case for Teaching Biotechnology

    ERIC Educational Resources Information Center

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  11. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndIX, AndXI, AndXII and AndXIII†

    NASA Astrophysics Data System (ADS)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M. J.; Martin, N. F.; Ibata, R. A.; Zucker, D. B.; Blain, A.; Ferguson, A. M. N.; Lewis, G. F.; McConnachie, A. W.; Peñarrubia, J.

    2010-10-01

    combined with the findings of McConnachie & Irwin, which reveal that the M31 satellites are twice as extended (in terms of both half-light and tidal radii) as their Milky Way counterparts, these results suggest that the satellite population of the Andromeda system could inhabit haloes that with regard to their central densities are significantly different from those of the Milky Way. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. ‡ E-mail: mlmc2@ast.cam.ac.uk

  12. VizieR Online Data Catalog: LCES HIRES/Keck radial velocity Exoplanet Survey (Butler+, 2017)

    NASA Astrophysics Data System (ADS)

    Butler, R. P.; Vogt, S. S.; Laughlin, G.; Burt, J. A.; Rivera, E. J.; Tuomi, M.; Teske, J.; Arriagada, P.; Diaz, M.; Holden, B.; Keiser, S.

    2017-08-01

    We present 60949 precision radial velocities of 1624 stars obtained over the past 20 years from the Lick-Carnegie Exoplanet Survey Team (LCES) survey with the HIgh-Resolution Echelle Spectrometer (HIRES) spectrometer on the Keck I telescope. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. For this survey, the HIRES spectrometer was configured to operate at a nominal spectral resolving power of R~60000 and wavelength range of 3700-8000Å. (4 data files).

  13. Frontiers in biomedical engineering and biotechnology.

    PubMed

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  14. White biotechnology: ready to partner and invest in.

    PubMed

    Kircher, Manfred

    2006-01-01

    It needs three factors to build an industry: market demand, product vision and capital. White biotechnology already produces high volume products such as feed additive amino acids and specialty products like enzymes for enantioselective biocatalysis. It serves large and diverse markets in the nutrition, wellness, pharmaceutical, agricultural and chemical industry. The total volume adds up to $ 50 billion worldwide. In spite of its proven track record, white biotechnology so far did not attract as much capital as red and even green biotechnology. However, the latest finance indicators confirm the continuously growing attractiveness of investment opportunities in white biotechnology. This article discusses white biotechnology's position and potential in the finance market and success factors.

  15. Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-09-01

    We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  17. Water Vapor Measurement and Compensation in the Near and Mid-infrared with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Koresko, Chris D.; Colavita, Mark M.; Serabyn, Eugene; Booth, Andrew; Garcia, Jean I.

    2006-01-01

    A viewgraph presentation describing the methods, motivation and methods for water vapor measurement with the Keck interferometer near and mid infrared radiation band is shown. The topics include: 1) Motivation: Why measure H2O?; 2) Method: How do we measure H2O?; 3) Data: Phase and Group Delays for the K and N Bands; 4) Predicted and Actual Nband Phase and Dispersion; and 5) Validation of Atmospheric Turbulence Models with KI Data.

  18. Termites as targets and models for biotechnology.

    PubMed

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  19. Synthetic microbial ecosystems for biotechnology.

    PubMed

    Pandhal, Jagroop; Noirel, Josselin

    2014-06-01

    Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.

  20. The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C E; Canalizo, G; Macintosh, B A

    2004-06-28

    We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern subnucleus is more highly reddened. Based upon the nuclear separation measured at 5more » GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H{sub 2} 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H{sub 2} emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent star clusters formed in the course of the merger.« less

  1. The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C E; Canalizo, G; Macintosh, B A

    2004-11-19

    We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern subnucleus is more highly reddened. Based upon the nuclear separation measured at 5more » GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H{sub 2} 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H{sub 2} emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many any point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.« less

  2. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    ERIC Educational Resources Information Center

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  3. Medical biotechnology trends and achievements in iran.

    PubMed

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-10-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers' role, human resource developing system and industry development in medical biotechnology.

  4. Medical Biotechnology Trends and Achievements in Iran

    PubMed Central

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  5. Developments in biotechnological research in Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicek, C.P.

    1996-12-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. 234 refs.

  6. Life sciences today and tomorrow: emerging biotechnologies.

    PubMed

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  7. Realizing the promises of marine biotechnology.

    PubMed

    Luiten, Esther E M; Akkerman, Ida; Koulman, Albert; Kamermans, Pauline; Reith, Hans; Barbosa, Maria J; Sipkema, Detmer; Wijffels, René H

    2003-07-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals, nutritional supplements, (feed-)products for aquaculture and bioremediation solutions) is not the only factor to realise the commercial applications of marine biotechnology. What else is needed to exploit the promising potential of marine biotechnology and to create new industrial possibilities? In the study project 'Ocean Farming-Sustainable exploitation of marine organisms', we explore the possibilities of marine organisms to fulfill needs, such as safe and healthy food, industrial (raw) materials and renewable energy in a sustainable way. One of the three design groups is envisioning the future of strong land-based 'marine' market chains. Marine biotechnology is one of the foci of attention in this design group. This article provides a model of future-oriented thinking in which a variety of experts actively participate.

  8. Mechatronics design principles for biotechnology product development.

    PubMed

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  10. Editorial: Latest methods and advances in biotechnology.

    PubMed

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Approaches to education of pharmaceutical biotechnology in faculties of pharmacy.

    PubMed

    Calis, S; Oner, F; Kas, S; Hincal, A A

    2001-06-01

    Pharmaceutical biotechnology is developing rapidly both in academic institutions and in the biopharmaceutical industry. For this reason, FIP Special Interest Group of Pharmaceutical Biotechnology decided to develop a questionnaire concerning pharmaceutical biotechnology education. After preliminary studies were completed, questionnaires were sent to the leading scientists in academia and research directors or senior managers of various Pharmaceutical Biotechnology Companies in order to gather their views about how to create a satisfactory program. The objectives of this study were as follows: -To review all of the graduate and undergraduate courses which are presently available worldwide on pharmaceutical biotechnology in Faculties of Pharmacy. -To review all of the text books, references and scientific sources available worldwide in the area of pharmaceutical biotechnology. When replying to the questionnaires, the respondents were asked to consider the present status of pharmaceutical biotechnology education in academia and future learning needs in collaboration with the biotechnology industry. The data from various pharmacy faculties and biotechnology industry representatives from Asia, Europe and America were evaluated and the outcome of the survey showed that educational efforts in training qualified staff in the rapidly growing field of pharmaceutical biotechnology is promising. Part of the results of this questionnaire study have already been presented at the 57th International Congress of FIP Vancouver, Canada in 1997.

  12. Modernizing the Regulatory System for Biotechnology Products

    EPA Pesticide Factsheets

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  13. Biotechnology in Food Production and Processing

    NASA Astrophysics Data System (ADS)

    Knorr, Dietrich; Sinskey, Anthony J.

    1985-09-01

    The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.

  14. Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M

    DOE PAGES

    Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...

    2015-08-07

    We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less

  15. Biotechnology and Consumer Decision-Making.

    PubMed

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  16. Social Science Research on Biotechnology and Agriculture: A Critique.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.

    1989-01-01

    Examines trends in social science research on biotechnology and agriculture. Discusses role of private industry's biotechnology "hype" in defining social science research policy in universities. Suggests that widespread promotion of biotechnology as "revolutionary" contributed to lack of academic scrutiny. Examines social…

  17. A Study of the λ10830 He I Line Among Red Giants in Messier 13

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Dupree, Andrea K.; Strader, Jay

    2014-10-01

    Not Available The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    PubMed

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  19. Biotechnology's foreign policy.

    PubMed

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  20. [Trends of microalgal biotechnology: a view from bibliometrics].

    PubMed

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  1. Perspectives on biotechnological applications of archaea.

    PubMed

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-09-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest.

  2. Discovery of a Highly Unequal-mass Binary T Dwarf with Keck Laser Guide Star Adaptive Optics: A Coevality Test of Substellar Theoretical Models and Effective Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K.

    2010-10-01

    stringent application of the isochrone test. Finally, the binary nature of this object reduces its utility as the primary T3 near-IR spectral typing standard; we suggest SDSS J1206+2813 as a replacement. Most of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  4. Exploitation of biotechnology in a large company.

    PubMed

    Dart, E C

    1989-08-31

    Almost from the outset, most large companies saw the 'new biotechnology' not as a new business but as a set of very powerful techniques that, in time, would radically improve the understanding of biological systems. This new knowledge was generally seen by them as enhancing the process of invention and not as a substitute for tried and tested ways of meeting clearly identified targets. As the knowledge base grows, so the big-company response to biotechnology becomes more positive. Within ICI, biotechnology is now integrated into five bio-businesses (Pharmaceuticals, Agrochemicals, Seeds, Diagnostics and Biological Products). Within the Central Toxicology Laboratory it also contributes to the understanding of the mechanisms of toxic action of chemicals as part of assessing risk. ICI has entered two of these businesses (Seeds and Diagnostics) because it sees biotechnology making a major contribution to the profitability of each.

  5. Biotechnology in the Middle School Curriculum

    ERIC Educational Resources Information Center

    Campbell, De Ann

    2007-01-01

    Biotechnology is a fairly new concept for middle school students as well as teachers. If the latest craze of TV shows focused on crime scene investigation events were not so popular, the term and concept might be even obscure to the public. There is an increased presence of biotechnology in our daily surroundings that makes it practical and…

  6. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  7. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  8. Green biotechnology and European competitiveness.

    PubMed

    Enriquez, J

    2001-04-01

    Europe has led many aspects of gene research and yet it has been unable to translate these discoveries into a globally dominant industrial sector. There are valid societal, political and financial reasons for its reluctance to deploy agricultural biotechnology but this reluctance might have unintended consequences. It will be hard to de-commoditize agriculture and improve farmer's lives. Research in medical biotechnology and the global environment might suffer. Europe could damage its overall economy and its global competitive standing.

  9. Library Services for a Digital Future

    ERIC Educational Resources Information Center

    Aldrich, Duncan M.; Stefanelli, Greggory

    2006-01-01

    The University of Nevada, Reno (UNR) Libraries initiated its spin on digital libraries as a partner in a W. M. Keck Foundation grant awarded to the university in 1997. The overall grant ($2,250,000) supported a variety of earth science-related projects at UNR. The UNR Libraries's portion ($450,000) funded establishment of the W. M. Keck Earth…

  10. Current biotechnological developments in Belgium.

    PubMed

    Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D

    1989-01-01

    In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.

  11. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    ERIC Educational Resources Information Center

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  12. Biotechnology: Education.

    ERIC Educational Resources Information Center

    Airozo, Diana; Warmbrodt, Robert D.

    Biotechnology is the latest in a series of technological innovations that have revolutionized the fields of agriculture and the health sciences; however, there are concerns with this technology. This document is designed to help foster dialogue with emphasis on education and the development of a public understanding of the principals involved in…

  13. Commercialization, patents and moral assessment of biotechnology products.

    PubMed

    Hoedemaekers, R

    2001-06-01

    The biotechnology patent debates have revealed deep moral concerns about basic genetics research, R&D and specific biotechnological products, concerns that are seldom taken into consideration in Technology Assessment. In this paper important moral concerns are examined which appear at the various stages of development of a specific genetic product: a predictive genetic test. The purpose is to illustrate the need for a more contextual approach in technology assessment, which integrates the various forms of interaction between bio-technology and society or societal segments. Such an approach will generate greater insight in the moral issues at all stages of a product's life-cycle and this will facilitate decision-making on the 'morality' of a specific biotechnological product.

  14. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  15. Cancer Biotechnology | Center for Cancer Research

    Cancer.gov

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  16. Perspectives on biotechnological applications of archaea

    PubMed Central

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  17. Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Carry, B.; Merline, W. J.; Dumas, C.; Hammel, H.; Erard, S.; Conrad, A.; Tamblyn, P.; Chapman, C. R.

    2014-07-01

    The dwarf planet (1) Ceres, the largest object between Mars and Jupiter, is the target of the NASA Dawn mission, and we seek a comprehensive description of the spin-axis orientation and dimensions of Ceres in order to support the early science operations at the rendezvous in 2015. We have obtained high-angular resolution images using adaptive optics cameras at the W.M. Keck Observatory and the ESO VLT over ten dates between 2001 and 2010, confirming that the shape of Ceres is well described by an oblate spheroid. We derive equatorial and polar diameters of 967 ± 10 km and 892 ± 10 km, respectively, for a model that includes fading of brightness towards the terminator, presumably linked to limb darkening. These dimensions lie between values derived from a previous analysis of a subset of these images obtained at Keck by Carry et al. (Carry et al. [2008]. Astron. Astrophys. 478 (4), 235-244) and a study of Hubble Space Telescope observations (Thomas et al. [2005]. Nature 437, 224-226). Although the dimensions are 1-2% smaller than those found from the HST, the oblateness is similar. We find the spin-vector coordinates of Ceres to lie at (287°, +64°) in equatorial EQJ2000 reference frame (346°, +82° in ecliptic ECJ2000 coordinates), yielding a small obliquity of 3°. While this is in agreement with the aforementioned studies, we have improved the accuracy of the pole determination, which we set at a 3° radius.

  18. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Angelle; White, Russel; Bailey, John

    2012-11-15

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s{sup -1} for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s{sup -1}. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface ofmore » M dwarfs, we can place upper limits of <40 M{sub J} sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s{sup -1} at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 {mu}m to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.« less

  19. The Discovery of a Companion to the Very Cool Dwarf Gliese 569B with the Keck Adaptive Optics Facility.

    PubMed

    Martín; Koresko; Kulkarni; Lane; Wizinowich

    2000-01-20

    We report observations obtained with the Keck adaptive optics facility of the nearby (d=9.8 pc) binary Gl 569. The system was known to be composed of a cool primary (dM2) and a very cool secondary (dM8.5) with a separation of 5&arcsec; (49 AU). We have found that Gl 569B is itself double with a separation of only 0&farcs;101+/-0&farcs;002 (1 AU). This detection demonstrates the superb spatial resolution that can be achieved with adaptive optics at Keck. The difference in brightness between Gl 569B and the companion is approximately 0.5 mag in the J, H, and K&arcmin; bands. Thus, both objects have similarly red colors and very likely constitute a very low mass binary system. For reasonable assumptions about the age (0.12-1.0 Gyr) and total mass of the system (0.09-0.15 M middle dot in circle), we estimate that the orbital period is approximately 3 yr. Follow-up observations will allow us to obtain an astrometric orbit solution and will yield direct dynamical masses that can constrain evolutionary models of very low mass stars and brown dwarfs.

  20. Direct Detection and Orbit Analysis of the Exoplanets HR 8799 bcd from Archival 2005 Keck/NIRC2 Data

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Fukagawa, Misato; Thalmann, Christian; Matsumura, Soko; Plavchan, Peter

    2012-01-01

    We present previously unpublished July 2005 H-band coronagraphic data of the young, planet-hosting star HR 8799 from the newly-released Keck/NIRC2 archive. Despite poor observing conditions, we detect three of the planets (HR 8799 bcd), two of them (HR 8799 bc) without advanced image processing. Comparing these data with previously published 1998-2011 astrometry and that from re-reduced October 2010 Keck data constrains the orbits of the planets. Analyzing the planets' astrometry separately, HR 8799 d's orbit is likely inclined at least 25 deg from face-on and the others may be on in inclined orbits. For semimajor axis ratios consistent with a 4:2:1 mean-motion resonance our analysis yields precise values for HR 8799 bcd's orbital parameters and strictly constrains the planets' eccentricities to be less than 0.18-0.3. However, we find no acceptable orbital solutions with this resonance that place the planets in face-on orbits; HR 8799 d shows the largest deviation from such orbits. Moreover, few orbits make HR 8799 d coplanar with b and c, whereas dynamical stability analyses used to constrain the planets' masses typically assume coplanar and/or fare.on orbits. This paper illustrates the significant science gain enabled with the release of the NIRC2 archive.

  1. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  2. BIOTECHNOLOGY RESEARCH PROGRAM

    EPA Science Inventory

    In accordance with EPA's mission to minimize risks to human health and to safeguard ecological integrity, the EPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) is committed to assessing and mitigating any risk posed by biotechnology-derived crops. Consequently, ...

  3. New master program in management in biophotonics and biotechnologies

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Tuchin, V. V.

    2006-08-01

    We develop new graduate educational highly interdisciplinary program that will be useful for addressing problems in worldwide biotechnologies and related biomedical industries. This Master program called Management in Biophotonics and Biotechnologies provides students with the necessary training, education and problem-solving skills to produce managers who are better equipped to handle the challenges of modern business in modern biotechnologies. Administered jointly by Cranfield University (UK) and Saratov State University, Russia) graduates possess a blend of engineering, biotechnologies, business and interpersonal skills necessary for success in industry. The Master courses combine a regular year program in biophotonics & biotechnologies disciplines with the core requirements of a Master degree. A major advantage of the program is that it will provide skills not currently available to graduates in any other program, and it will give the graduates an extra competitive edge for getting a job then.

  4. Electron shuttles in biotechnology.

    PubMed

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  5. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  6. Relevance of microbial coculture fermentations in biotechnology.

    PubMed

    Bader, J; Mast-Gerlach, E; Popović, M K; Bajpai, R; Stahl, U

    2010-08-01

    The purpose of this article is to review coculture fermentations in industrial biotechnology. Examples for the advantageous utilization of cocultures instead of single cultivations include the production of bulk chemicals, enzymes, food additives, antimicrobial substances and microbial fuel cells. Coculture fermentations may result in increased yield, improved control of product qualities and the possibility of utilizing cheaper substrates. Cocultivation of different micro-organisms may also help to identify and develop new biotechnological substances. The relevance of coculture fermentations and the potential of improving existing processes as well as the production of new chemical compounds in industrial biotechnology are pointed out here by means of more than 35 examples.

  7. The command of biotechnology and merciful conquest in military opposition.

    PubMed

    Guo, Ji-Wei

    2009-01-01

    Biotechnology has an increasingly extensive use for military purposes. With the upcoming age of biotechnology, military operations are depending more on biotechnical methods. Judging from the evolving law of the theory of command, the command of biotechnology is feasible and inevitable. The report discusses some basic characteristics of modern theories of command, as well as the mature possibility of the command theory of military biotechnology. The evolution of the command theory is closely associated with the development of military medicine. This theory is expected to achieve successes in wars in an ultramicro, nonlethal, reversible, and merciful way and will play an important role in biotechnological identification and orientation, defense and attack, and the maintenance of fighting powers and biological monitoring. The command of military biotechnology has not become a part of the virtual military power yet, but it is an exigent strategic task to construct and perfect this theory.

  8. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov Websites

    laboratories. Biotechnology-related research in the labs of over 15 faculty members in the Biological 60,000 square feet for biotechnology-related engineering research. This centralization and consolidation wider array of equipment and facilities available in other MIT labs and Centers. Some examples include

  9. Biotechnology Education and the Internet. ERIC Digest.

    ERIC Educational Resources Information Center

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  10. Biotechnology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program quide presents the biotechnology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and lists of…

  11. The roots--a short history of industrial microbiology and biotechnology.

    PubMed

    Buchholz, Klaus; Collins, John

    2013-05-01

    sciences and at the same time unified them considerably by the study of genes and their relatedness throughout the evolutionary process. The scope of accessible products and services expanded significantly. Economic input accelerated research and development, by encouraging and financing the development of new methods, tools, machines and the foundation of new companies. The discipline of 'New Biotechnology' became one of the lead sciences. Although biotechnology has historical roots, it continues to influence diverse industrial fields of activity, including food, feed and other commodities, for example polymer manufacture, biofuels and energy production, providing services such as environmental protection, and the development and production of many of the most effective drugs. The understanding of biology down to the molecular level opens the way to create novel products and efficient environmentally acceptable methods for their production.

  12. Health-related biotechnology transfer to Africa: principal-agency relationship issues.

    PubMed

    Kirigia, J M; Muthuri, L K; Kirigia, D G

    2007-01-01

    The aim of this paper is to stimulate debate on the agency (principal-agent) in health-related biotechnology research. It attempts to answer the following questions: What is health-related biotechnology and biotechnology research? What is an agency? What factors are likely to undermine the principal's capacity to exercise informed consent? When might the principal-agency problem arise? How could the agency in biotechnology transfer be strengthened in Sub-Saharan Africa (SSA)? The transfer of health-related biotechnology to SSA ought to be preceded by research to ascertain the effectiveness of such technologies on population health. In that process, the national ethical review committee (REC), as an agent of every human research subject (principal), ought to ensure that international principles (e.g. beneficence, non-malfeasance, autonomy, justice, dignity, truthfulness and honesty) for human experimentation are observed by biotechnology researchers in order to satisfy moral, ethical and legal requirements. The key factors that undermine principals' sovereignty in exercising their right to informed consent to participate in biotechnology trials are discussed. The paper ends with a list of activities that can strengthen the agency, e.g. legislative requirement that all health-related biotechnology transfer should be preceded by rigorous evaluation; continuous update of the agents knowledge of the contents of the international ethical guidelines; and education of potential and actual principals on their human rights; among others.

  13. Fossil energy biotechnology: A research needs assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less

  14. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    PubMed

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Matching Society Values: Students' Views of Biotechnology

    ERIC Educational Resources Information Center

    Saez, Maria J.; Nino, Angela Gomez; Carretero, Antonio

    2008-01-01

    The rapid growth of biotechnology knowledge during the past decades has made it necessary to rethink the contents of the school curriculum and has provoked a consideration of the ethical and social issues related to the use of biotechnological applications. With the financial assistance of the European Union, the European Initiative for…

  16. [Health risks in the biotechnological industry].

    PubMed

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Fueling industrial biotechnology growth with bioethanol.

    PubMed

    Otero, José Manuel; Panagiotou, Gianni; Olsson, Lisbeth

    2007-01-01

    Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol - that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate

  18. The relationship of knowledge, attitudes and perceptions regarding biotechnology in college students

    NASA Astrophysics Data System (ADS)

    Sohan, Donna Elizabeth

    Biotechnology is the latest in a series of technological innovations that have revolutionized such fields as agriculture and the health sciences. However, along with the benefits of biotechnology are concerns. For biotechnology's potential to be realized, it must be accepted on public and governmental levels. Although many studies focus on adult consumer attitudes, it will be the students of today who will be the consumers and leaders of tomorrow. Therefore, this study focused on the knowledge, attitudes, and perceptions of college students regarding biotechnology. More than 3,000 undergraduate students were surveyed from a variety of undergraduate courses at Texas A&M University in College Station, Texas during the 1997-1998 academic year. Information sought included students' knowledge regarding recent applications of biotechnology, demographic information, and their agreement or disagreement with statements regarding different aspects and applications of biotechnology. This study found that despite a low awareness or knowledge of biotechnology, students were accepting of specific applications or products of biotechnology. Those applications or products viewed as beneficial without involving animals had the highest acceptance levels. A majority of the students identified mass media as their major source of biotechnology while also indicating a high level of distrust of the media. Students also indicated that biotechnology information is needed and that such information is appropriate for high school students. Relationships between knowledge and attitudes were also investigated. A greater knowledge level correlated with a more favorable view of biotechnology. In addition, relationships between demographic variables such as gender and race were investigated. Individuals who identified themselves as scientists were found more accepting of biotechnology while females in general were found less accepting. Females majoring in education were found to be the least

  19. How can developing countries harness biotechnology to improve health?

    PubMed Central

    Daar, Abdallah S; Berndtson, Kathryn; Persad, Deepa L; Singer, Peter A

    2007-01-01

    Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology - Develop policies outlining

  20. How can developing countries harness biotechnology to improve health?

    PubMed

    Daar, Abdallah S; Berndtson, Kathryn; Persad, Deepa L; Singer, Peter A

    2007-12-03

    The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. The Courses' recommendations can be summarized across the four categories listed above: SCIENCE: - Collaborate through national, regional, and international networks- Survey and build capacity based on proven models through education, training, and needs assessments FINANCE: - Develop regulatory and intellectual property frameworks for commercialization of biotechnology- Enhance funding and affordability of biotechnology- Improve the academic-industry interface and the role of small and medium enterprise ETHICS, SOCIETY, CULTURE: - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology- Develop capacity to address ethical, social and cultural issues- Improve accessibility and equity POLITICS: - Strengthen understanding, leadership and support at the political level for biotechnology- Develop policies outlining national biotechnology strategy

  1. Biotechnology for the extractive metals industries

    NASA Astrophysics Data System (ADS)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  2. Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Lowenthal, James D.; Koo, David C.; Guzmán, Rafael; Gallego, Jesús; Phillips, Andrew C.; Faber, S. M.; Vogt, Nicole P.; Illingworth, Garth D.; Gronwall, Caryl

    1997-05-01

    We have obtained spectra with the 10 m Keck telescope of a sample of 24 galaxies having colors consistent with star-forming galaxies at redshifts 2 <~ z <~ 4.5 in the Hubble deep field (HDF). Eleven of these galaxies are confirmed to be at high redshift (zmed = 3.0), one is at z = 0.5, and the other 12 have uncertain redshifts but have spectra consistent with their being at z > 2. The spectra of the confirmed high-redshift galaxies show a diversity of features, including weak Lyα emission, strong Lyα breaks or damped Lyα absorption profiles, and the stellar and interstellar rest-UV absorption lines common to local starburst galaxies and high-redshift star-forming galaxies reported recently by others. The narrow profiles and low equivalent widths of C IV, Si IV, and N V absorption lines may imply low stellar metallicities. Combined with the five high-redshift galaxies in the HDF previously confirmed with Keck spectra by Steidel et al. (1996a), the 16 confirmed sources yield a comoving volume density of n >= 2.4 × 10-4 h350 Mpc-3 for q0 = 0.05, or n >= 1.1 × 10-3 h350 Mpc-3 for q0 = 0.5. These densities are 3-4 times higher than the recent estimates of Steidel et al. (1996b) based on ground-based photometry with slightly brighter limits and are comparable to estimates of the local volume density of galaxies brighter than L*. The high-redshift density measurement is only a lower limit and could be almost 3 times higher still if all 29 of the unconfirmed candidates in our original sample, including those not observed, are indeed also at high redshift. The galaxies are small but luminous, with half-light radii 1.8 < r1/2 < 6.5 h-150 kpc and absolute magnitudes -21.5 > MB > -23. The HST images show a wide range of morphologies, including several with very close, small knots of emission embedded in wispy extended structures. Using rest-frame UV continuum fluxes with no dust correction, we calculate star formation rates in the range 7-24 or 3-9 h-250 Msolar yr-1 for q

  3. Sex, gender, and health biotechnology: points to consider

    PubMed Central

    2009-01-01

    Background Reproductive technologies have been extensively debated in the literature. As well, feminist economists, environmentalists, and agriculturalists have generated substantial debate and literature on gender. However, the implications for women of health biotechnologies have received relatively less attention. Surprisingly, while gender based frameworks have been proposed in the context of public health policy, practice, health research, and epidemiological research, we could identify no systematic framework for gender analysis of health biotechnology in the developing world. Discussion We propose sex and gender considerations at five critical stages of health biotechnology research and development: priority setting; technology design; clinical trials; commercialization, and health services delivery. Summary Applying a systematic sex and gender framework to five key process stages of health biotechnology research and development could be a first step towards unlocking the opportunities of this promising science for women in the developing world. PMID:19622163

  4. BICEP2/Keck Array VIII: Measurement of Gravitational Lensing from Large-scale B-mode Polarization

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Grayson, J.; Halpern, M.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2016-12-01

    We present measurements of polarization lensing using the 150 GHz maps, which include all data taken by the BICEP2 and Keck Array Cosmic Microwave Background polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (˜ 0.5°), the excellent sensitivity (˜3μK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales ({ℓ}≤700). From the auto-spectrum of the reconstructed potential, we measure an amplitude of the spectrum to be ALφ φ=1.15+/- 0.36 (Planck ΛCDM prediction corresponds to ALφ φ =1) and reject the no-lensing hypothesis at 5.8σ , which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields ALφ φ =1.13+/- 0.20. These direct measurements of ALφ φ are consistent with the ΛCDM cosmology and with that derived from the previously reported BK14 B-mode auto-spectrum (AL{BB}=1.20+/- 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B modes previously reported by BICEP/Keck at intermediate angular scales (150≲ ℓ ≲ 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B modes at these angular scales.

  5. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    NASA Astrophysics Data System (ADS)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  6. Microbial biotechnology and circular economy in wastewater treatment.

    PubMed

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Yeast biotechnology: teaching the old dog new tricks.

    PubMed

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  8. White House Announcement on the Regulation of Biotechnology

    EPA Pesticide Factsheets

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  9. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  10. Opportunities in biotechnology.

    PubMed

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  11. Remeasurement of the H I Gunn-Peterson Effect toward QSO PKS 1937-101 with Keck Observations

    NASA Astrophysics Data System (ADS)

    Fang, Yihu; Fan, Xiaoming; Tytler, David; Crotts, Arlin P. S.

    1998-04-01

    We present the first measurement of the H I Gunn-Peterson effect using the Keck 10 m telescope, observing the high-redshift QSO PKS 1937-101 (z = 3.787). The high-resolution echelle (HIRES) spectra, with FWHM ~15 km s-1 and a signal-to-noise ratio (S/N) ~50 per spectral resolution element, allows us to resolve many weak lines down to NH I = 1012 cm-2, thus reducing the line-blanketing problem compared with previous data. Based on intensity-distribution analysis, we find that a maximum likelihood best fit yields a Gunn-Peterson type of opacity τGP = 0.113 +/- 0.020 in addition to a power-law Lyα absorption-line population with β of 1.7 down to NH I = 1012 cm-2. There remains systematic uncertainty in this result because of problems extrapolating the spectral continuum from the red side of the Lyα emission line. This is consistent with the previous study of the same QSO in low S/N data using weighted intensity function analysis (Fang & Crotts 1995). It indicates that this previous method succeeds in measuring the Lyα forest continuum level at low S/N, which is essential in extending the technique to possible fainter QSOs with minimum emission-line contamination for reliable continuum extrapolation. We further discuss problems of severe line blanketing, even in Keck spectra for QSOs at z >= 4.5, and show the effectiveness of the weighted intensity function method in measuring continuum levels in extremely crowded Lyα absorption spectra for redshifts as high as z > 5.

  12. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  13. A Chemical Strategy to Trap and Identify Proteins That May Regulate Promoter Hypermethylation in Breast Cancer

    DTIC Science & Technology

    2007-07-01

    This research was supported by W. M. Keck Foundation, the Arnold and Mabel Beckman Foundation, the Camille & Henry Dreyfus Foundation, the...Pegg, Cancer Res. 1990, 50, 6119-6129; b) E. M. Duguid, P. A. Rice , C. He, J. Mol. Biol. 2005, 350, 657-666; c) D. S. Daniels, T. T. Woo, K. X. Luu

  14. Ethical limitations in patenting biotechnological inventions.

    PubMed

    Lugagnani, V

    1999-01-01

    In order to connect ethical considerations with practical limits to patentability, the moral judgement should possibly move from the exploitation of the invention to the nature and/or objectives of Research and Development (R&D) projects which have produced it: in other words, it appears quite reasonable and logical that Society is not rewarding unethical R&D activities by granting intellectual property rights. As far as biotechnology R&D is concerned, ethical guidance can be derived from the 1996 Council of EuropeOs OConvention for the protection of human rights and dignity of the human being with regard to the application of biology and medicineO, whose Chapter V - Scientific research - provides guidelines on: i. protection of persons undergoing research (e.g. informed consent); ii. protection of persons not able to consent to research; iii. research on embryos in vitro. As far as the specific point of patenting biotechnology inventions is concerned, the four exclusions prescribed by Directive 98/44/EC (i.e. human cloning, human germ-line gene therapy, use of human embryos for commercial purposes, unjustified animal suffering for medical purposes) are all we have in Europe in terms of ethical guidance to patentability. In Italy, in particular, we certainly need far more comprehensive legislation, expressing SocietyOs demand to provide ethical control of modern biotechnology. However it is quite difficult to claim that ethical concerns are being raised by currently awarded biotechnology patents related to living organisms and material thereof; they largely deal with the results of genomic R&D, purposely and usefully oriented toward improving health-care and agri-food processes, products and services. ONo patents on lifeOO can be an appealing slogan of militants against modern biotechnology, but it is far too much of an over-simplified abstraction to become the Eleventh Commandment our Society.

  15. Evaluation of an In-service Course on Biotechnology.

    ERIC Educational Resources Information Center

    Lock, Roger; Dunkerton, John

    1989-01-01

    Described is the evaluation of an inservice course on biotechnology. Evaluated were the influence that the course had on teacher knowledge, use of practical work, problem solving investigations and theoretical aspects of biotechnology. A practical model of inservice evaluation is provided. (Author/CW)

  16. Keck Observations of the UV-Bright Star Barnard 29 in the Globular Cluster M13 (NGC 6205)

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke; Chayer, Pierre; Reid, Iain N.

    2016-06-01

    In color-magnitude diagrams of globular clusters, stars brighter than the horizontal branch and bluer than the red-giant branch are known as UV-bright stars. Most are evolving from the asymptotic giant branch (AGB) to the tip of the white-dwarf cooling curve. To better understand this important phase of stellar evolution, we have analyzed a Keck HIRES echelle spectrum of the UV-bright star Barnard 29 in M13. We begin by fitting the star's H I (Hα, Hβ, and Hγ) and He I lines with a grid of synthetic spectra generated from non-LTE H-He models computed using the TLUSTY code. We find that the shape of the star's Hα profile is not well reproduced with these models. Upgrading from version 200 to version 204M of TLUSTY solves this problem: the Hα profile is now well reproduced. TLUSTY version 204 includes improved calculations for the Stark broadening of hydrogen line profiles. Using these models, we derive stellar parameters of Teff = 21,100 K, log g = 3.05, and log (He/H) = -0.87, values consistent with those of previous authors. The star's Keck spectrum shows photospheric absorption from N II, O II, Mg II, Al III, Si II, Si III, S II, Ar II, and Fe III. The abundances of these species are consistent with published values for the red-giant stars in M13, suggesting that the star's chemistry has changed little since it left the AGB.

  17. BIOFAC-An investment in space infrastructure for biotechnology

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.

    2000-01-01

    During the last half century, biotechnology has contributed to the development of many important new and useful products that have improved our quality of life. To a large extent, these contributions are attributable to advances in cellular and molecular biology that can be traced to the discovery of DNA. What began as a science involved with manipulations of whole organisms has transcended into an ability to influence organisms at the cellular and molecular levels with greater speed, flexibility and precision than ever before. This has produced significantly improved pharmaceutical, textile, diagnostic, and environmental products, to name just a few. Early in this new century, biotechnology research is expected to literally explode with exciting new and promising opportunities. More importantly, biotechnology research in the low gravity environment of space is expected to play a significant part in this biotechnology revolution by expediting the discovery of important new medical, agricultural and environmental products. .

  18. Neutral Hydrogen Optical Depth near Star-forming Galaxies at z ≈ 2.4 in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    the halos. On the other hand, on scales of 1.4-2.0 Mpc the absorption is compressed along the line of sight (with >3σ significance), an effect that we attribute to large-scale infall (i.e., the Kaiser effect). Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  20. Yeast biotechnology: teaching the old dog new tricks

    PubMed Central

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  1. Patho-biotechnology: using bad bugs to do good things.

    PubMed

    Sleator, Roy D; Hill, Colin

    2006-04-01

    Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, to interact with the immune system and to interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology, medicine and food. This approach shows promise for the development of novel vaccine and drug delivery systems, as well as for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. The genetic tractability of Listeria monocytogenes, the availability of the complete genome sequence of this intracellular pathogen, its ability to cope with stress, and its ability to traverse the gastrointestinal tract and induce a strong cellular immune response make L. monocytogenes an ideal model organism for demonstrating the patho-biotechnology concept.

  2. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  3. Biotechnology--Biotechnical Systems.

    ERIC Educational Resources Information Center

    Ruggles, Stanford

    1990-01-01

    The perspective of biotechnology and its development in the K-12 technology education curriculum are described. The content curriculum development and implications for activities are discussed. The difference between a curriculum focused on the activities of industry compared to one that addresses technology as it pervades all human endeavors is…

  4. [Biotechnological aspects in "loco" larvae].

    PubMed

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  5. A case study in adaptable and reusable infrastructure at the Keck Observatory Archive: VO interfaces, moving targets, and more

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Cohen, Richard W.; Colson, Andrew; Gelino, Christopher R.; Good, John C.; Kong, Mihseh; Laity, Anastasia C.; Mader, Jeffrey A.; Swain, Melanie A.; Tran, Hien D.; Wang, Shin-Ywan

    2016-08-01

    The Keck Observatory Archive (KOA) (https://koa.ipac.caltech.edu) curates all observations acquired at the W. M. Keck Observatory (WMKO) since it began operations in 1994, including data from eight active instruments and two decommissioned instruments. The archive is a collaboration between WMKO and the NASA Exoplanet Science Institute (NExScI). Since its inception in 2004, the science information system used at KOA has adopted an architectural approach that emphasizes software re-use and adaptability. This paper describes how KOA is currently leveraging and extending open source software components to develop new services and to support delivery of a complete set of instrument metadata, which will enable more sophisticated and extensive queries than currently possible. In August 2015, KOA deployed a program interface to discover public data from all instruments equipped with an imaging mode. The interface complies with version 2 of the Simple Imaging Access Protocol (SIAP), under development by the International Virtual Observatory Alliance (IVOA), which defines a standard mechanism for discovering images through spatial queries. The heart of the KOA service is an R-tree-based, database-indexing mechanism prototyped by the Virtual Astronomical Observatory (VAO) and further developed by the Montage Image Mosaic project, designed to provide fast access to large imaging data sets as a first step in creating wide-area image mosaics (such as mosaics of subsets of the 4.7 million images of the SDSS DR9 release). The KOA service uses the results of the spatial R-tree search to create an SQLite data database for further relational filtering. The service uses a JSON configuration file to describe the association between instrument parameters and the service query parameters, and to make it applicable beyond the Keck instruments. The images generated at the Keck telescope usually do not encode the image footprints as WCS fields in the FITS file headers. Because SIAP

  6. Dendritic platforms for biomimicry and biotechnological applications.

    PubMed

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  7. Organisation of biotechnological information into knowledge.

    PubMed

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  8. Applications of Protein Hydrolysates in Biotechnology

    NASA Astrophysics Data System (ADS)

    Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.

    By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.

  9. Biotechnological uses of enzymes from psychrophiles

    PubMed Central

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  10. Management in biophotonics and biotechnologies

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Tuchin, V. V.

    2005-10-01

    Biophotonics, one of the most exciting and rapidly growing areas, offers vast potential for changing traditional approaches to meeting many critical needs in medicine, biology, pharmacy, food, health care and cosmetic industries. Follow the market trends we developed new MSc course Management in Biophotonics and Biotechnologies (MBB) that provide students of technical disciplines with the necessary training, education and problem-solving skills to produce professionals and managers who are better equipped to handle the challenges of modern science and business in biophotonics and biotechnology. A major advantage of the course is that it provides skills not currently available to graduates in other Master programs.

  11. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  12. The Language of Biotechnology: A Dictionary of Terms.

    ERIC Educational Resources Information Center

    Walker, John M.; Cox, Michael

    This dictionary attempts to define routinely used specialized language in the various areas of biotechnology, and remain suitable for use by scientists involved in unrelated disciplines. Viewing biotechnology as the practical application of biological systems to the manufacturing and service industries, and to the management of the environment,…

  13. Technology Teachers' Beliefs about Biotechnology and Its Instruction in South Korea

    ERIC Educational Resources Information Center

    Kwon, Hyuksoo; Chang, Mido

    2009-01-01

    The increased public awareness of the significance and necessity of biotechnology has encouraged educators to implement biotechnology instruction in various educational settings. One example is the great effort made by educational researchers and practitioners internationally to integrate biotechnology in technology education. Despite the gains in…

  14. C3R2 - Complete Calibration of the Color-Redshift Relation: Keck spectroscopy to train photometric redshifts for Euclid and WFIRST

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; C3R2 Team

    2017-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field, but to do so requires robust distances to billions of galaxies. I will report on a multi-semester program, expected to total approximately 40 nights with Keck over the next two years. This program, supporting both the NASA PCOS and COR science goals, will obtain the necessary galaxy spectroscopy to calibrate the color-redshift relation for the Euclid mission, and make significant progress towards the WFIRST requirements. The program, called C3R2 or Complete Calibration of the Color-Redshift Relation, already encompasses 10 allocated nights of NASA Keck Key Strategic Mission Support (PI D. Stern), 12 allocated nights from Caltech (PI J. Cohen), 3 allocated nights from the University of Hawaii (PI D. Sanders), and 1.5 allocated nights from UC-Riverside (PI B. Mobasher). We are also pursuing opportunities at additional 8- to 10-meter class telescopes, including Magellan, VLT and GCT. I will present the motivation for this program, the plans, and current results.

  15. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  16. Plant biotechnology for food security and bioeconomy.

    PubMed

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  17. Space Biotechnology and Commercial Applications University of Florida

    NASA Technical Reports Server (NTRS)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  18. Advanced health biotechnologies in Thailand: redefining policy directions.

    PubMed

    Velasco, Román Pérez; Chaikledkaew, Usa; Myint, Chaw Yin; Khampang, Roongnapa; Tantivess, Sripen; Teerawattananon, Yot

    2013-01-02

    Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these-such as diabetes, cancer, and inherited inborn metabolic diseases-have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D), and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E). The establishment of a specialised institution to fill the gaps in this area is warranted. The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.

  19. Advanced health biotechnologies in Thailand: redefining policy directions

    PubMed Central

    2013-01-01

    Background Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these—such as diabetes, cancer, and inherited inborn metabolic diseases—have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Methods Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Results Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D), and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E). The establishment of a specialised institution to fill the gaps in this area is warranted. Conclusion The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended. PMID:23281771

  20. HSC Foundation

    MedlinePlus

    ... and social components. The Foundation works with a dynamic network of partners from across the country who ... Foundation Foundation Programs Publications Foundation Partners About the System Calendar of Events News Social Media Copyright © 2016 ...

  1. Biotechnological approaches for improvement and conservation of prunus species

    USDA-ARS?s Scientific Manuscript database

    Biotechnology has contributed to improvement and conservation of Prunus species. Biotechnological approaches involving in vitro tissue culture, genetic transformation, molecular marker development and cryopreservation were applied to various Prunus species. This report provides an overview of biotec...

  2. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active

  3. Rational selection of alternative, environmentally compatible surfactants for biotechnological production of pharmaceuticals--a step toward green biotechnology.

    PubMed

    Straub, Jürg Oliver; Shearer, Russel; Studer, Martin

    2014-09-01

    The biotechnological production of pharmaceutical active substances needs ancillary substances. Surfactants are used at the end of the cell culture as a protection against potential viral or bacterial contamination and to lyse the producing cells for isolation and purification of the products. To find a replacement for a surfactant that had raised environmental concern, environmentally relevant data for potential alternatives were searched for in the literature. Significant data gaps were filled with additional tests: biodegradability, algal growth inhibition, acute daphnid immobilization and chronic daphnid reproduction toxicity, acute fish toxicity, and activated sludge respiration inhibition. The results were used to model removal in the wastewater treatment plants (WWTPs) serving 3 biotechnological production sites in the Roche Group. Predicted environmental concentrations (PECs) were calculated using realistic amounts of surfactants and site-specific wastewater fluxes, modeled removals for the WWTPs and dilution factors by the respective receiving waters. Predicted no-effect concentrations (PNECs) were derived for WWTPs and for both fresh and marine receiving waters as the treated wastewater of 1 production site is discharged into a coastal water. This resulted in a spreadsheet showing PECs, PNECs, and PEC ÷ PNEC risk characterization ratios for the WWTPs and receiving waters for all investigated surfactants and all 3 sites. This spreadsheet now serves as a selection support for the biotechnological developers. This risk-based prioritization of surfactants is a step toward green biotechnological production. © 2014 SETAC.

  4. Biotechnology awareness study, Part 2: Meeting the information needs of biotechnologists.

    PubMed Central

    Cunningham, D; Grefsheim, S; Simon, M; Lansing, P S

    1991-01-01

    The second part of the biotechnology awareness study focused on health sciences libraries and how well they are meeting the needs of biotechnologists working in the study's nine medical centers. A survey was conducted over a three-month period to assess the demand for biotechnology-related reference services at nine libraries and the sources the librarians used to answer the questions. Data on monographic and current serial holdings were also collected. At the end of the survey period, librarians were asked for their perceptions about biotechnology research at their institutions and in their geographic areas. Their responses were compared to the responses the scientists at the nine schools gave to the same or similar questions. Results showed few biotechnology-related reference questions were asked of the librarians. The recorded questions dealt with a range of biotechnology subjects. MEDLINE was used to answer 77% of the questions received during the survey period. More detailed notes in MeSH and a guide to online searching for biotechnology topics were suggested by the librarians as ways to improve reference service to this group of researchers. Journal collections were generally strong, with libraries owning from 50% to 87% of the titles on a core list of biotechnology journals compiled for this study. All libraries subscribed to the five titles most often cited by the scientists surveyed. Generally, librarians were unaware of the biotechnology-related research being done on their campuses or in their geographic areas. PMID:1998819

  5. Biotechnology Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  6. Biotechnological Applications of Microbial (Per)chlorate Reduction.

    PubMed

    Wang, Ouwei; Coates, John D

    2017-11-24

    While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.

  7. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host

    PubMed Central

    Scaife, Mark A; Nguyen, Ginnie TDT; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-01-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. Significance Statement Chlamydomonas reinhardtii offers potential as a host for the production of high value compounds for industrial biotechnology. Synthetic biology provides a mechanism to generate generic, well characterised tools for application in the rational genetic manipulation of organisms: if synthetic biology principles were adopted for manipulation of C. reinhardtii, development of this microalga as an industrial biotechnology platform would be expedited. PMID:25641561

  8. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  9. [The role of biotechnology in pharmaceutical drug design].

    PubMed

    Gaisser, Sibylle; Nusser, Michael

    2010-01-01

    Biotechnological methods have become an important tool in pharmaceutical drug research and development. Today approximately 15 % of drug revenues are derived from biopharmaceuticals. The most relevant indications are oncology, metabolic disorders and disorders of the musculoskeletal system. For the future it can be expected that the relevance of biopharmaceuticals will further increase. Currently, the share of substances in preclinical testing that rely on biotechnology is more than 25 % of all substances in preclinical testing. Products for the treatment of cancer, metabolic disorders and infectious diseases are most important. New therapeutic approaches such as RNA interference only play a minor role in current commercial drug research and development with 1.5 % of all biological preclinical substances. Investments in sustainable high technology such as biotechnology are of vital importance for a highly developed country like Germany because of its lack of raw materials. Biotechnology helps the pharmaceutical industry to develop new products, new processes, methods and services and to improve existing ones. Thus, international competitiveness can be strengthened, new jobs can be created and existing jobs preserved.

  10. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    ERIC Educational Resources Information Center

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  11. Of Apples and Animals: An Introduction to Biotechnology.

    ERIC Educational Resources Information Center

    Mourad, Teresa M.; And Others

    This guide is designed to foster an understanding of the basic concepts underlying biotechnology through simple activities that are fun and creative for students in grades 3-5. It contains four units that will lead young students to an appreciation of how biotechnology is possible and some of its applications. The process of learning is intended…

  12. TSCA Biotechnology Notifications Status

    EPA Pesticide Factsheets

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  13. Biotechnology regulation: is policy transfer an appropriate answer?

    PubMed

    Cárdenas-Gómez, Olga Carolina; Létourneau, Lyne

    2010-01-01

    In the world of biotechnology regulation, one often encounters the suggestion that the legislation of other countries should be consulted. Known as "policy transfer" in the field of public policy analysis, the purpose of such a recommendation is for policymakers to use the experiences of other States as a basis for developing appropriate regulatory frameworks in a timely manner. This paper examines whether policy transfer is relevant as an instrument for biotechnology regulation, and if it is, to what extent. Our analysis uses the example of Assisted Reproductive Technologies (ART), and unfolds according to the following argumentative steps. We will begin by discussing policy transfer as a recognized feature of policymaking in the literature pertaining to public policy analysis. We will then introduce a distinction between the technical dimension of policymaking and its political component. We will refer to "morality policy" as an illustration of policymaking directed toward its political component. We will show that, in the case of morality policy, States have moved away from a policy transfer approach. We will then establish that ART qualifies as morality policy, suggesting that policy transfer is most likely not the optimal policymaking tool for dealing with biotechnology regulation. Moving beyond the issue of ART in order to expand our reasoning to biotechnology regulation as a whole, we will conclude that, although the experiences of other States may be useful, policy transfer does not suffice in terms of informing policymaking in the case of biotechnology advances.

  14. New biotechnological applications for Ashbya gossypii: Challenges and perspectives

    PubMed Central

    2017-01-01

    ABSTRACT The filamentous fungus Ashbya gossypii has long been considered a paradigm of the White Biotechnology in what concerns riboflavin production. Its industrial relevance led to the development of a significant molecular and in silico modeling toolbox for its manipulation. This, together with the increasing knowledge of its genome and metabolism has helped designing effective metabolic engineering strategies for optimizing riboflavin production, but also for developing new A. gossypii strains for novel biotechnological applications, such as production of recombinant proteins, single cell oils (SCOs), and flavour compounds. With the recent availability of its genome-scale metabolic model, the exploration of the full biotechnological potential of A. gossypii is now in the spotlight. Here, we will discuss some of the challenges that these emerging A. gossypii applications still need to overcome to become economically attractive and will present future perspectives for these and other possible biotechnological applications for A. gossypii. PMID:27791453

  15. Recovery of biotechnological products using aqueous two phase systems.

    PubMed

    Phong, Win Nee; Show, Pau Loke; Chow, Yin Hui; Ling, Tau Chuan

    2018-04-16

    Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  17. Biotechnology

    NASA Image and Video Library

    2003-05-05

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  18. Outer Limits of Biotechnologies: A Jewish Perspective

    PubMed Central

    Loike, John D.; Kadish, Alan

    2018-01-01

    A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies. PMID:29406847

  19. Atmospheric turbulence characterization with the Keck adaptive optics systems. I. Open-loop data.

    PubMed

    Schöck, Matthias; Le Mignant, David; Chanan, Gary A; Wizinowich, Peter L; van Dam, Marcos A

    2003-07-01

    We present a detailed investigation of different methods of the characterization of atmospheric turbulence with the adaptive optics systems of the W. M. Keck Observatory. The main problems of such a characterization are the separation of instrumental and atmospheric effects and the accurate calibration of the devices involved. Therefore we mostly describe the practical issues of the analysis. We show that two methods, the analysis of differential image motion structure functions and the Zernike decomposition of the wave-front phase, produce values of the atmospheric coherence length r0 that are in excellent agreement with results from long-exposure images. The main error source is the calibration of the wave-front sensor. Values determined for the outer scale L0 are consistent between the methods and with typical L0 values found at other sites, that is, of the order of tens of meters.

  20. An Overview of NASA Biotechnology

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  1. Advances in biomedical engineering and biotechnology during 2013-2014.

    PubMed

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  2. Biotechnology in weed control

    USDA-ARS?s Scientific Manuscript database

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  3. Biotechnology/materials: The growing interface

    NASA Astrophysics Data System (ADS)

    Decker, Raymond F.

    1986-01-01

    The biotechnology/materials interaction dates back 3.5 billion years, yet today offers novel challenges for human creativity. The materials cycle practiced by microorganisms is compared to that recently practiced by humans. The processes of the biotechnology materials cycle are biogenesis, bioleaching, biofouling, biocorrosion, biodeterioration, and bioaccumulation. Each process is examined for mechanisms, scale of effect, and opportunity for creative human intervention or utilization. More than 50 of our metallic elements are bio-processed in nature. A like number of biogenic materials have been identified, with some at production rates of trillions of kg per annum (p.a.). Microorganisms can substitute for energy, capital, and labor. Over the eons, microorganisms have gained special attributes that now offer creative humans a new era of partnership in materials processing.

  4. Controversial medical and agri-food biotechnology: a cultivation analysis.

    PubMed

    Bauer, Martin W

    2002-04-01

    Whether biotechnology is one or several developments is not clear. Once distinctions are required, the question is: Which one prevails? When the good, the bad, and the ugly settle, where do they fall? Evaluation implies distinction, and representation drives attitude. The controversies over biotechnology are fertile ground on which to study these issues. The imports of genetically modified (GM) soya into Europe in 1996-97 and the cloning of Dolly the sheep from adult cells in 1997 changed the symbolic environment for genetic engineering. The ensuing public controversies came to focus mainly on field trials of GM crops and food labeling. This paper will explore the relationship between quality press coverage and public perception, in particular the cultivation of the contrast between "desirable" biomedical (RED) and "undesirable" agri-food (GREEN) biotechnology in Britain. The argument draws on a systematic analysis of the British press coverage of biotechnology from 1973 to 1999 and analysis of public perceptions in 1996 and 1999. The paper concludes that the debate over GM crops and food ingredients fostered the RED-GREEN contrast among the newspaper-reading public, thereby shielding RED biotechnology from public controversy, and ushered in a realignment of the regulatory framework in 2000.

  5. [Importance of reproductive biotechnology in cattle in Europe].

    PubMed

    Wrenzycki, C; Stinshoff, H

    2015-01-01

    Reproductive biotechnology has manifold applications and includes a great innovation potential in livestock. Due to the global changes the new findings and techniques can aid to meet the future challenges. The use of biotechnology in animal production can guarantee enough high quality food for the whole population. Genetic resources of animals can be preserved via sperm and embryo banking. Early diagnosis of hereditary defects, generation of offspring with predetermined sex and the avoidance of animal transports for breeding employing shipment of frozen embryos will improve animal welfare. A special application is the use of animal models for human assisted reproductive technologies. Therefore, not only in Germany research related to the methodologies in reproductive biotechnology and their improvement need to be supported.

  6. Enhance beef cattle improvement by embryo biotechnologies.

    PubMed

    Wu, B; Zan, L

    2012-10-01

    Embryo biotechnology has become one of the prominent high businesses worldwide. This technology has evolved through three major changes, that is, traditional embryo transfer (in vivo embryo production by donor superovulation), in vitro embryo production by ovum pick up with in vitro fertilization and notably current cloning technique by somatic cell nuclear transfer and transgenic animal production. Embryo biotechnology has widely been used in dairy and beef cattle industry and commercial bovine embryo transfer has become a large international business. Currently, many developed biotechnologies during the period from early oocyte stage to pre-implantation embryos can be used to create new animal breeds and accelerate genetic progression. Based on recent advances in embryo biotechnologies and authors current studies, this review will focus on a description of the application of this technology to beef cattle improvement and discuss how to use this technology to accelerate beef cattle breeding and production. The main topics of this presentation include the following: (i) how to increase calf production numbers from gametes including sperm and oocyte; (ii) multiple ovulation and embryo transfer breeding schemes; (iii) in vitro fertilization and intracytoplasm sperm injection in bovine; (iv) pronuclear development and transgenic animals; (v) sex selection from sperm and embryos; (vi) cloning and androgenesis; (vii) blastocyst development and embryonic stem cells; (viii) preservation of beef cattle genetic resources; and (ix) conclusions. © 2011 Blackwell Verlag GmbH.

  7. Biotechnology: the language of multiple views in Māori communities.

    PubMed

    Te Momo, O H Fiona

    2007-09-01

    In Aotearoa (New Zealand), the government funded studies on communicating biotechnology to different sectors in the community from 2003 to 2006. Subsequently, a researcher covering the Māori sector performed a content analysis of data gathered in the community. Qualitative analysis methods included examining text from participant interviews, focus groups, government documents, newspapers, Internet sites, and current literature. Content was coded by identifying common themes in the English and the Māori language. Words like genetic modification (GM), genetic engineering (GE), and biotechnology were explained to provide a basic understanding between the communities and researcher. The terminology applied in the research was essential to achieve communication between the researcher and the community. The resultant themes represented seven views to interpret the communities association with biotechnology: purist Māori, religious Māori, anti Māori, pro Māori, no Māori, uncertain Māori, and middle Māori views. The themes are taken from the analysis of data compiled after 3 years of completing different stages of a research project. The views indicate that a common understanding can be achieved in the diverse range of Māori tribal communities providing those communicating biotechnology can identify the view and interpretations communities associate with biotechnology. This knowledge is essential for government agencies, researchers, community practitioners, scientist, and businesses that desire to dialogue with Māori communities in the language of biotechnology.

  8. Teaching a Biotechnology Unit in High School General Biology.

    ERIC Educational Resources Information Center

    Hays, Lana

    1994-01-01

    Describes a unit in biotechnology for average and below average high school students. Students developed productive team membership, used math and communication skills to solve problems, and used the scientific method to learn about biotechnology. Students separated DNA, transformed bacterial cells, interpreted DNA fingerprints, completed creative…

  9. Modeling the Internal Kinematics (Rotation and Dispersion) of Distant Galaxies (z ~ 1.0) Using Multi-PA Keck DEIMOS Slit Spectra

    NASA Astrophysics Data System (ADS)

    Miao, Connie; Chen, Jerry; Torres Hernandez, Jose; Guhathakurta, Puragra; Jang, Hyerin

    2017-01-01

    The stark difference between the chaotic internal motion of distant galaxies and the ordered rotation of typical local spiral galaxies suggests that disordered galaxies at high redshifts (i.e., early times in the Universe's history) gradually settle into well ordered disk morphologies with ordered rotation. We have used slit spectra obtained with Keck DEIMOS at four different position angles for 133 distant objects (z ~ 1.0) in the GOODS-N field. The emission lines in the 2D spectra of the galaxies were used to calculate the redshift/velocity at each spatial location. For each slit row, the distribution of flux over velocity was modeled as a Gaussian curve from which we obtained the radial velocity and spread of radial velocity. Rotation curves and velocity dispersions for each galaxy at each slit angle were plotted at these values. We qualitatively classified galaxies as regularly rotating, merging, face-on, or unable to be determined by examining overlays of the rotation curves from the four slit angles. We found that regular rotating galaxies tended to have peak velocity dispersion at the center while mergers had fairly constant velocity dispersions. Face-on galaxies had chaotic and inconsistent velocity dispersions between different slit angles. Regularly rotation galaxies represented 45% of our sample and mergers represented 27%. The relative percentage of galaxies that were either regularly rotating or mergers roughly matched those of the literature. This research was supported by NASA and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  10. Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument

    NASA Astrophysics Data System (ADS)

    Femenía Castellá, Bruno; Serabyn, Eugene; Mawet, Dimitri; Absil, Olivier; Wizinowich, Peter; Matthews, Keith; Huby, Elsa; Bottom, Michael; Campbell, Randy; Chan, Dwight; Carlomagno, Brunella; Cetre, Sylvain; Defrère, Denis; Delacroix, Christian; Gomez Gonzalez, Carlos; Jolivet, Aïssa; Karlsson, Mikael; Lanclos, Kyle; Lilley, Scott; Milner, Steven; Ngo, Henry; Reggiani, Maddalena; Simmons, Julia; Tran, Hien; Vargas Catalan, Ernesto; Wertz, Olivier

    2016-07-01

    On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.

  11. Biotechnology of trees: Chestnut

    Treesearch

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  12. Past, Present, and Future Industrial Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  13. Past, present, and future industrial biotechnology in China.

    PubMed

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  14. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    ERIC Educational Resources Information Center

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  15. Thirty years of European biotechnology programmes: from biomolecular engineering to the bioeconomy.

    PubMed

    Aguilar, Alfredo; Magnien, Etienne; Thomas, Daniel

    2013-06-25

    This article traces back thirty years of biotechnology research sponsored by the European Union (EU). It outlines the crucial role played by De Nettancourt, Goffeau and Van Hoeck to promote and prepare the first European programme on biotechnology (1982-1986) run by the European Commission. Following this first biotechnology programme, others followed until the current one, part of the seventh Framework Programme for Research, Technological Development and Demonstration (2007-2013) (FP7). Particular attention is given to the statutory role of the European institutions in the design and orientation of the successive biotechnology programmes, compared to the more informal-yet visionary-role of key individuals upstream to any legislative decision. Examples of success stories and of the role of the biotechnology programmes in addressing societal issues and industrial competitiveness are also presented. Finally, an outline of Horizon 2020, the successor of FP7, is described, together with the role of biotechnology in building the bioeconomy. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    ERIC Educational Resources Information Center

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  17. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  18. The Challenge of Ecophysiological Biodiversity for Biotechnological Applications of Marine Microalgae

    PubMed Central

    Barra, Lucia; Chandrasekaran, Raghu; Corato, Federico; Brunet, Christophe

    2014-01-01

    In this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, functional and ecophysiological biodiversity of these organisms, and investigate how these properties could better serve the biotechnological field. Lastly, we propose new approaches to enhancing microalgal growth, photosynthesis, and synthesis of valuable products used in biotechnological fields, mainly focusing on culture conditions, especially light manipulations and genetic modifications. PMID:24663117

  19. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  20. Dwarfing the Social? Nanotechnology Lessons from the Biotechnology Front

    ERIC Educational Resources Information Center

    Einsiedel, Edna F.; Goldenberg, Linda

    2004-01-01

    Biotechnology and nanotechnology are both strategic technologies, and the former provides several lessons that could contribute to more successful embedding and integration processes for the latter. This article identifies some of the key questions emerging from the biotechnology experience and summarizes several lessons learned in the context of…

  1. The Impact of Biotechnology upon Chemistry in Pharmacy Schools.

    ERIC Educational Resources Information Center

    Henkel, James G.; And Others

    1990-01-01

    Applications of biotechnology to the pharmaceutical industry are examined, and its impact on the research and practical domains of medicinal and natural products chemistry is discussed. Specific curricular implications for undergraduate and graduate study in pharmacy are outlined, and suggestions for faculty development in biotechnology are made.…

  2. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    ERIC Educational Resources Information Center

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  3. Western Australian High School Students' Attitudes towards Biotechnology Processes

    ERIC Educational Resources Information Center

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    This study reports on the attitudes towards biotechnology of 905, 15-16 year-old students from 11 Western Australian schools. Students were asked to read 15 statements about biotechnology processes and to draw a line to separate what they considered "acceptable" statements from those they considered "unacceptable". Overall, the…

  4. Considerations for conducting research in agricultural biotechnology.

    PubMed

    Shelton, Anthony M

    2003-06-01

    Science has shown its increased vulnerability because of two recent high-profile articles published in major journals on corn produced through biotechnology: a laboratory report suggesting profound consequences to monarch butterfly populations due to Bt corn pollen and a report suggesting transgenic introgression into Mexican maize. While both studies have been widely regarded as having flawed methodology, publishing these studies has created great consternation in the scientific community, regulatory agencies and the general public. There are roles and responsibilities of scientists, scientific journals, the public media, public agencies, and those who oppose or advocate a specific technology, and serious consequences when those roles and responsibilities go awry. Modern communication may exacerbate the flow of misinformation and easily lead to a decline in public confidence about biotechnology and science. However, common sense tells us that scientific inquiry and the publication and reporting of results should be performed with high standards of ethical behavior, regardless of one's personal perspective on agricultural biotechnology.

  5. Independent Biotechnology: The Innovation-Regulation Dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P.; Prosnitz, D.; Velsko, S.

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, ormore » social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.« less

  6. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    ERIC Educational Resources Information Center

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  7. Microbial ecology to manage processes in environmental biotechnology.

    PubMed

    Rittmann, Bruce E

    2006-06-01

    Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.

  8. Estimating economic gains for landowners due to time-dependent changes in biotechnology

    Treesearch

    John E. Wagner; Thomas P. Holmes

    1998-01-01

    This paper presents a model for examining the economic value of biotechnological research given time-dependent changes in biotechnology. Previous papers examined this issue assuming a time-neutral change in biotechnology. However, when analyzing the genetic improvements of increasing a tree's resistance to a pathogen, this assumption is untenable. The authors...

  9. Microfluidic tools toward industrial biotechnology.

    PubMed

    Oliveira, Aline F; Pessoa, Amanda C S N; Bastos, Reinaldo G; de la Torre, Lucimara G

    2016-11-01

    Microfluidics is a technology that operates with small amounts of fluids and makes possible the investigation of cells, enzymes, and biomolecules and encapsulation of biocatalysts in a greater variety of conditions than permitted using conventional methods. This review discusses technological possibilities that can be applied in the field of industrial biotechnology, presenting the principal definitions and fundamental aspects of microfluidic parameters to better understand advanced approaches. Specifically, concentration gradient generators, droplet-based microfluidics, and microbioreactors are explored as useful tools that can contribute to industrial biotechnology. These tools present potential applications, inclusive as commercial platforms to optimizing in bioprocesses development as screening cells, encapsulating biocatalysts, and determining critical kinetic parameters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1372-1389, 2016. © 2016 American Institute of Chemical Engineers.

  10. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    EPA Pesticide Factsheets

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  11. The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Butler, R. Paul; Vogt, Steven S.; Laughlin, Gregory; Burt, Jennifer A.; Rivera, Eugenio J.; Tuomi, Mikko; Teske, Johanna; Arriagada, Pamela; Diaz, Matias; Holden, Brad; Keiser, Sandy

    2017-05-01

    We describe a 20 year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1624 stars contained in that survey. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. These signals are thus strongly suggestive of barycentric reflex motion of the star induced by one or more candidate exoplanets in Keplerian motion about the host star. Of these signals, 225 have already been published as planet claims, 60 are classified as significant unpublished planet candidates that await photometric follow-up to rule out activity-related causes, and 54 are also unpublished, but are classified as “significant” signals that require confirmation by additional data before rising to classification as planet candidates. Of particular interest is our detection of a candidate planet with M\\sin (I)=3.8 {M}\\oplus , and P = 9.9 days orbiting Lalande 21185, the fourth-closest main-sequence star to the Sun. For each of our exoplanetary candidate signals, we provide the period and semi-amplitude of the Keplerian orbital fit, and a likelihood ratio estimate of its statistical significance. We also tabulate 18 Keplerian-like signals that we classify as likely arising from stellar activity.

  12. Microbial biotechnology addressing the plastic waste disaster.

    PubMed

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. 75 FR 1749 - Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ...] Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for Determination of... Health Inspection Service has received a petition from Syngenta Biotechnology, Inc., seeking a....gov ). FOR FURTHER INFORMATION CONTACT: Dr. Subray Hegde, Biotechnology Regulatory Services, APHIS...

  14. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    PubMed

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  15. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    PubMed

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Australian Undergraduate Biotechnology Student Attitudes towards the Teaching of Ethics

    NASA Astrophysics Data System (ADS)

    Lysaght, Tamra; Rosenberger, Philip J., III; Kerridge, Ian

    2006-08-01

    In recent years, ethics has become part of most tertiary biotechnology curricula. There is, however, considerable variation in the extent and manner of ethics education provided to students in different institutions. In addition, the perceived need that students and employers have regarding ethics education, and the aims and expected outcomes of ethics education, are rarely made clear. This research reports the findings of a questionnaire administered to 375 undergraduate biotechnology students from 19 Australian universities to determine their attitudes towards the teaching of ethics. The results suggest that undergraduate biotechnology students generally regard ethics education to be important and that ethics should be included in undergraduate biotechnology curricula. Students tended, however, to emphasize the professional and industrial side of ethics and not to recognize the personal effects of morals and behaviour. We provide suggestions for rethinking how ethics should be taught.

  17. Knowledge and Attitudes Towards Biotechnology of Elementary Education Preservice Teachers: The first Spanish experience

    NASA Astrophysics Data System (ADS)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-11-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.

  18. Connecting learners: The role of biotechnology programme in preparing students for the industry.

    PubMed

    Mohd Saruan, Nadiah; Sagran, Avinash; Fadzil, Kamal Solhaimi; Razali, Zuliana; Ow Phui San, Rebecca; Somasundram, Chandran

    2015-01-01

    The recent growth of biotechnology requires a wide range of expertise within the industry. Education is the primary platform for students to gain information and knowledge on biotechnology. In Malaysia where biotechnology is relatively new, education programs and courses must be tailored to meet the demands of the industry. A combination of theoretical knowledge as well as practical and industrial training is essential to ensure graduates are prepared for their career in the fields of biotechnology. Results from this study show that university students lack literacy on biotechnology information and access to facilities provided by the universities. This may be a significant contributing factor to the lack of knowledge and information amongst graduates. Furthermore comparative analysis on the biotechnology program in Malaysian universities with that of other countries show the need to restructure the program by offering more specialized courses as well as soft skills and business subjects. This is to meet the demands of the related professionals as well as the various branches that exist in the biotechnology industry. © 2015 The International Union of Biochemistry and Molecular Biology.

  19. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  20. The biotechnology and bioeconomy landscape in Malaysia.

    PubMed

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. How Japanese students reason about agricultural biotechnology.

    PubMed

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  2. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  3. Editorial: Biotechnology Journal highlights from 2012 - AFOB and more.

    PubMed

    Peng, Judy

    2013-01-01

    Biotechnology Journal welcomed the Asian Federation of Biotechnology (AFOB) in 2012. Together with our existing affiliates, the European Biosafety Association (EBSA) and the EFB Section on Biochmical Engineering (ESBES), the Journal will provide unique bridge between Asian and Europen biotechnologists and bioengineers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microgravity: New opportunities to facilitate biotechnology development

    NASA Astrophysics Data System (ADS)

    Johnson, Terry; Todd, Paul; Stodieck, Louis S.

    1996-03-01

    New opportunities exist to use the microgravity environment to facilitate biotechnology development. BioServe Space Technologies Center for the Commercial Development of Space offers access to microgravity environments for companies who wish to perform research or develop products in three specific life-science fields: Biomedical and Pharmaceutical Research, Biotechnology and Bioprocessing Research, and Agricultural and Environmental Research. Examples of each include physiological testing of new pharmaceutical countermeasures against symptoms that are exaggerated in space flight, crystallization and testing of novel, precompetitive biopharmaceutical substances in a convection-free environment, and closed life-support system product development.

  5. Biotechnology: Economic and Behavioral Considerations.

    ERIC Educational Resources Information Center

    McGhan, William F.; Beardsley, Robert S.

    1990-01-01

    The paper reviews factors related to effects of biotechnology on the discipline of pharmacy administration including needs assessment, diffusion of technology, cost benefit analysis, marketing, cost containment, patient education and compliance, ethics, and health professions training. (DB)

  6. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ...] Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System Program AGENCY... participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management..., audit-based compliance assistance program known as the Biotechnology Quality Management System Program...

  7. 75 FR 20560 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by Syngenta Biotechnology, Inc... Biotechnology, Inc., in its petition for a determination of nonregulated status, our analysis of other...

  8. Biotechnology in the southern research station: a problem analysis

    Treesearch

    F.E. Bridgwater; C.D. Nelson

    2006-01-01

    We provide an analysis of opportunities and challenges for biotechnology in forest research in the southern United States. Four major areas of biotechnology were identified and described and then rated for priority among three groups of researchers—private sector, public sector, and the USDA Forest Service, Southern Research Station (SRS). The four areas of...

  9. Selenium biomineralization for biotechnological applications.

    PubMed

    Nancharaiah, Yarlagadda V; Lens, Piet N L

    2015-06-01

    Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New challenges in microalgae biotechnology.

    PubMed

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio

    2016-08-01

    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Biotechnologies for the management of genetic resources for food and agriculture.

    PubMed

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  12. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  13. 78 FR 7387 - Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Biotechnology and 21st Century Agriculture; Renewal AGENCY: Agricultural Research Service, USDA. ACTION: Advisory Committee on Biotechnology and 21st Century Agriculture Renewal. SUMMARY: Notice is hereby given... agricultural biotechnology. The AC21 has been established to provide information and advice to the Secretary of...

  14. A cross-sectional study of biotechnology awareness and teaching in European high schools.

    PubMed

    Vanderschuren, Hervé; Heinzmann, Dominik; Faso, Carmen; Stupak, Martin; Arga, Kazim Yalçin; Hoerzer, Helen; Laizet, Yech'an; Leduchowska, Paulina; Silva, Nádia; Simková, Klára

    2010-12-31

    Undoubtedly, biotechnology has a tremendous impact on our daily lives. As a result of this and in parallel to the advancement of knowledge in this field of applied research, consumer awareness of the potential benefits and risks of this technology has steadily increased, leading to a thorough investigation of the public perception of biotechnology in the past years. Indeed, it has become clear that it is in the general interest of science and especially of applied research to inform the public of its advances. A promising next step is to strengthen biotechnology communication in scholastic institutions. In this paper, we investigate the perception of biotechnology in a specific target group, namely high-school students in the 16-20-year-old age range. We conducted a questionnaire-based survey on a total of 1410 students in six European countries to investigate students' perception, concern, scientific knowledge, and awareness. Our data revealed some unexpected patterns of acceptance and concern about biotechnology. Knowledge analysis indicated that pupils lack specific knowledge about biotechnological applications and their interest in biotechnology appeared to be linked to knowledge. Analysis of specific questions about teaching practices at schools suggests that a better targeted choice in media as vehicles for information together with selected speakers could be instrumental in increasing students' interest in science and more specifically in biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    ERIC Educational Resources Information Center

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  16. Biotechnologies and Human Dignity

    ERIC Educational Resources Information Center

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  17. Patho-biotechnology; using bad bugs to make good bugs better.

    PubMed

    Sleator, Roy D; Hill, Colin

    2007-01-01

    Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology and biomedicine. This approach shows promise for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications as well as the development of novel vaccine and drug delivery platforms.

  18. Biotechnology touches the forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powledge, J.M.

    1984-09-01

    Both the United States and New Zealand are doing research in forest biotechnology and much of the interest is in speedy propagation from seed to mature tree. A number of propagation techniques are discussed, such as tissue culture, the culture of tissue from mature trees and somatic embryo genesis. Much of the tissue culture work has been done on radiata pine. Field testing results are considered. The aims and the advantages of forest biotechnology are discussed under the following headings. 1) Disease resistance: research is being carried out on a loblolly pine which would be resistant to fusiform rust. 2)more » Animal feed: some trees have been discovered to have lower lignin content and similar cellulose and hemicellulose to alfalfa. 3) Specialty chemicals: terpenes, in the tree resin, could be turned into hormones, drugs and other chemicals: the genetic system for the overall biosynthesis of terpenes has been studied. 4) Herbicide resistance. The resistance to glyphosate in poplars is being studied. In conclusion, further research into forest species, using molecular biology is considered essential.« less

  19. CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawet, Dimitri; Bottom, Michael; Matthews, Keith

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L ′ band (3.8 μ m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the innermore » working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q , N , and 8.6 μ m PAH emission reported earlier. We also see an outward progression in dust location from the L ′ band to the H band (Very Large Telescope/SPHERE image) to the visible ( Hubble Space Telescope ( HST )/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L ′-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.« less

  20. Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex Coronagraphy

    NASA Astrophysics Data System (ADS)

    Mawet, Dimitri; Choquet, Élodie; Absil, Olivier; Huby, Elsa; Bottom, Michael; Serabyn, Eugene; Femenia, Bruno; Lebreton, Jérémy; Matthews, Keith; Gomez Gonzalez, Carlos A.; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Forsberg, Pontus; Habraken, Serge; Jolivet, Aissa; Karlsson, Mikael; Milli, Julien; Pinte, Christophe; Piron, Pierre; Reggiani, Maddalena; Surdej, Jean; Vargas Catalan, Ernesto

    2017-01-01

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L‧ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L‧ band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L‧-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.

  1. Biotechnology Patenting in the BRICS Countries: Strategies and Dynamics.

    PubMed

    Streltsova, Ekaterina; Linton, Jonathan D

    2018-01-05

    The BRICS countries (Brazil, Russia, India, China, South Africa) account for 25% of global biotechnology patents. To understand the current and future landscape of the domain, it is important to better understand the capacity of these contributors. Here, we consider the thematic priorities, strategies, and key players of the BRICS countries in biotechnology patenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Development and Validation of an Instrument to Measure University Students' Biotechnology Attitude

    NASA Astrophysics Data System (ADS)

    Erdogan, Mehmet; Özel, Murat; Uşak, Muhammet; Prokop, Pavol

    2009-06-01

    The impact of biotechnologies on peoples' everyday lives continuously increases. Measuring young peoples' attitudes toward biotechnologies is therefore very important and its results are useful not only for science curriculum developers and policy makers, but also for producers and distributors of genetically modified products. Despite of substantial number of instruments which focused on measuring student attitudes toward biotechnology, a majority of them were not rigorously validated. This study deals with the development and validation of an attitude questionnaire toward biotechnology. Detailed information on development and validation process of the instrument is provided. Data gathered from 326 university students provided evidence for the validity and reliability of the new instrument which consists of 28 attitude items on a five point likert type scale. It is believed that the instrument will serve as a valuable tool for both instructors and researchers in science education to assess students' biotechnology attitudes.

  3. Utilization of protein-rich residues in biotechnological processes.

    PubMed

    Pleissner, Daniel; Venus, Joachim

    2016-03-01

    A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.

  4. Careers and people

    NASA Astrophysics Data System (ADS)

    2017-12-01

    Anne Kinney, currently chief scientist of the Keck Observatory in Hawaii, has been chosen by the National Science Foundation (NSF) in the US to lead its Mathematical and Physical Sciences (MPS) Directorate.

  5. The Keck "Mars 2000" Project: Using Mars Orbiter Laser Altimeter Data to Assess Geological Processes and Regional Stratigraphy Near Orcus Patera and Marte Vallis on Mars

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.

    2001-01-01

    During the Keck 'Mars 2000' summer project 10 undergraduates (rising juniors) used Mars Orbiter Laser Altimeter (MOLA) data to study a 19x14 degree region they identified as a potential Mars 2003 landing site. Here we introduce the project science and organization. Additional information is contained in the original extended abstract.

  6. Understanding public perceptions of biotechnology through the "Integrative Worldview Framework".

    PubMed

    De Witt, Annick; Osseweijer, Patricia; Pierce, Robin

    2015-07-03

    Biotechnological innovations prompt a range of societal responses that demand understanding. Research has shown such responses are shaped by individuals' cultural worldviews. We aim to demonstrate how the Integrative Worldview Framework (IWF) can be used for analyzing perceptions of biotechnology, by reviewing (1) research on public perceptions of biotechnology and (2) analyses of the stakeholder-debate on the bio-based economy, using the Integrative Worldview Framework (IWF) as analytical lens. This framework operationalizes the concept of worldview and distinguishes between traditional, modern, and postmodern worldviews, among others. Applied to these literatures, this framework illuminates how these worldviews underlie major societal responses, thereby providing a unifying understanding of the literature on perceptions of biotechnology. We conclude the IWF has relevance for informing research on perceptions of socio-technical changes, generating insight into the paradigmatic gaps in social science, and facilitating reflexive and inclusive policy-making and debates on these timely issues. © The Author(s) 2015.

  7. A European Competence Framework for Industrial Pharmacy Practice in Biotechnology.

    PubMed

    Atkinson, Jeffrey; Crowley, Pat; De Paepe, Kristien; Gennery, Brian; Koster, Andries; Martini, Luigi; Moffat, Vivien; Nicholson, Jane; Pauwels, Gunther; Ronsisvalle, Giuseppe; Sousa, Vitor; van Schravendijk, Chris; Wilson, Keith

    2015-07-29

    The PHAR-IN (" Competences for industrial pharmacy practice in biotechnology ") looked at whether there is a difference in how industrial employees and academics rank competences for practice in the biotechnological industry. A small expert panel consisting of the authors of this paper produced a biotechnology competence framework by drawing up an initial list of competences then ranking them in importance using a three-stage Delphi process. The framework was next evaluated and validated by a large expert panel of academics ( n = 37) and industrial employees ( n = 154). Results show that priorities for industrial employees and academics were similar. The competences for biotechnology practice that received the highest scores were mainly in: "Research and Development", '"Upstream" and "Downstream" Processing', "Product development and formulation", "Aseptic processing", "Analytical methodology", "Product stability", and "Regulation". The main area of disagreement was in the category "Ethics and drug safety" where academics ranked competences higher than did industrial employees.

  8. Biotechnology, Ethics and Education

    ERIC Educational Resources Information Center

    Fitzsimons, Peter John

    2007-01-01

    Fundamental differences between current and past knowledge in the field of biotechnology mean that we now have at our disposal the means to irreversibly change what is meant by "human nature". This paper explores some of the ethical issues that accompany the (as yet tentative) attempt to increase scientific control over the human genetic code in…

  9. Development of a State Machine Sequencer for the Keck Interferometer: Evolution, Development and Lessons Learned using a CASE Tool Approach

    NASA Technical Reports Server (NTRS)

    Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee

    2004-01-01

    This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  10. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    NASA Astrophysics Data System (ADS)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  11. Extremophiles and biotechnology: current uses and prospects

    PubMed Central

    Coker, James A.

    2016-01-01

    Biotechnology has almost unlimited potential to change our lives in very exciting ways. Many of the chemical reactions that produce these products can be fully optimized by performing them at extremes of temperature, pressure, salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are many organisms (extremophiles) that thrive in extreme environments found in nature and offer an excellent source of replacement enzymes in lieu of mesophilic ones currently used in these processes. In this review, I discuss the current uses and some potential new applications of extremophiles and their products, including enzymes, in biotechnology. PMID:27019700

  12. Biotechnology and Open University Science.

    ERIC Educational Resources Information Center

    Grobstein, Clifford

    1985-01-01

    Discusses whether biotechnology commercial application will significantly inhibit the free flow of information traditional in academic environments. Background factors, crux of the concern, assessment, and current options are given. Although little evidence that industry-university collaboration has impaired academic molecular genetics exists,…

  13. High School and University Students' Knowledge and Attitudes regarding Biotechnology: A Turkish Experience

    ERIC Educational Resources Information Center

    Usak, Muhammet; Erdogan, Mehmet; Prokop, Pavol; Ozel, Murat

    2009-01-01

    Biotechnology has a considerable importance in Turkish biology curriculum. This study was designed to explore or indicate Turkish high school and university students' knowledge and attitudes toward biotechnology. A total number of 352 high school and 276 university students were invited to the study. The Biotechnology Knowledge Questionnaire (BKQ)…

  14. Studying Biotechnological Methods Using Animations: The Teacher's Role

    NASA Astrophysics Data System (ADS)

    Yarden, Hagit; Yarden, Anat

    2011-12-01

    Animation has great potential for improving the way people learn. A number of studies in different scientific disciplines have shown that instruction involving computer animations can facilitate the understanding of processes at the molecular level. However, using animation alone does not ensure learning. Students sometimes miss essential features when they watch only animations, mainly due to the cognitive load involved. Moreover, students seem to attribute a great deal of authority to the computer and may develop misconceptions by taking animations of abstract concepts too literally. In this study, we attempted to explore teachers' perceptions concerning the use of animations in the classroom while studying biotechnological methods, as well as the teachers' contribution to the enactment of animations in class. Thirty high-school biotechnology teachers participated in a professional development workshop, aimed at investigating how teachers plan for and support learning with animation while studying biotechnological methods in class. From that sample, two teachers agreed to participate in two case studies aimed at characterizing teachers' contribution to the enactment of animations in class while studying biotechnological methods. Our findings reveal marked teacher contribution in the following three aspects: establishing the "hands-on" point of view, helping students deal with the cognitive load that accompanies the use of animation, and implementing constructivist aspects of knowledge construction while studying using animations.

  15. Review of computational fluid dynamics applications in biotechnology processes.

    PubMed

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  16. Biotechnology developments in the livestock sector in developing countries.

    PubMed

    Onteru, Suneel; Ampaire, Agatha; Rothschild, Max

    2010-01-01

    Global meat and milk consumption is exponentially increasing due to population growth, urbanization and changes in lifestyle in the developing world. This is an excellent opportunity for developing countries to improve the livestock sector by using technological advances. Biotechnology is one of the avenues for improved production in the "Livestock revolution". Biotechnology developments applied to livestock health, nutrition, breeding and reproduction are improving with a reasonable pace in developing countries. Simple bio-techniques such as artificial insemination have been well implemented in many parts of the developing world. However, advanced technologies including transgenic plant vaccines, marker assisted selection, solid state fermentation for the production of fibrolytic enzymes, transgenic fodders, embryo transfer and animal cloning are confined largely to research organizations. Some developing countries such as Taiwan, China and Brazil have considered the commercialization of biotechnology in the livestock sector. Organized livestock production systems, proper record management, capacity building, objective oriented research to improve farmer's income, collaborations with the developed world, knowledge of the sociology of an area and research on new methods to educate farmers and policy makers need to be improved for the creation and implementation of biotechnology advances in the livestock sector in the developing world.

  17. Automatic Image Processing Workflow for the Keck/NIRC2 Vortex Coronagraph

    NASA Astrophysics Data System (ADS)

    Xuan, Wenhao; Cook, Therese; Ngo, Henry; Zawol, Zoe; Ruane, Garreth; Mawet, Dimitri

    2018-01-01

    The Keck/NIRC2 camera, equipped with the vortex coronagraph, is an instrument targeted at the high contrast imaging of extrasolar planets. To uncover a faint planet signal from the overwhelming starlight, we utilize the Vortex Image Processing (VIP) library, which carries out principal component analysis to model and remove the stellar point spread function. To bridge the gap between data acquisition and data reduction, we implement a workflow that 1) downloads, sorts, and processes data with VIP, 2) stores the analysis products into a database, and 3) displays the reduced images, contrast curves, and auxiliary information on a web interface. Both angular differential imaging and reference star differential imaging are implemented in the analysis module. A real-time version of the workflow runs during observations, allowing observers to make educated decisions about time distribution on different targets, hence optimizing science yield. The post-night version performs a standardized reduction after the observation, building up a valuable database that not only helps uncover new discoveries, but also enables a statistical study of the instrument itself. We present the workflow, and an examination of the contrast performance of the NIRC2 vortex with respect to factors including target star properties and observing conditions.

  18. Connecting Learners: The Role of Biotechnology Programme in Preparing Students for the Industry

    ERIC Educational Resources Information Center

    Mohd Saruan, Nadiah; Sagran, Avinash; Fadzil, Kamal Solhaimi; Razali, Zuliana; Ow Phui San, Rebecca; Somasundram, Chandran

    2015-01-01

    The recent growth of biotechnology requires a wide range of expertise within the industry. Education is the primary platform for students to gain information and knowledge on biotechnology. In Malaysia where biotechnology is relatively new, education programs and courses must be tailored to meet the demands of the industry. A combination of…

  19. Crossing boundaries: the importance of cellular membranes in industrial biotechnology.

    PubMed

    Jezierska, Sylwia; Van Bogaert, Inge N A

    2017-05-01

    How small molecules cross cellular membranes is an often overlooked issue in an industrial microbiology and biotechnology context. This is to a large extent governed by the technical difficulties to study these transport systems or by the lack of knowledge on suitable efflux pumps. This review emphasizes the importance of microbial cellular membranes in industrial biotechnology by highlighting successful strategies of membrane engineering towards more resistant and hence better performing microorganisms, as well as transporter and other engineering strategies for increased efflux of primary and secondary metabolites. Furthermore, the benefits and limitations of eukaryotic subcellular compartmentalization are discussed, as well as the biotechnological potential of membrane vesicles.

  20. Innovative approaches to exoplanet detection and characterization: Notes from the Nov 10-13 Keck Institute for Space Studies workshop

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Traub, Wesley; Unwin, Stephen; Stapelfeldt, Karl

    2010-05-01

    A four-day workshop was convened on November 10-13, 2009 by the Keck Institute for Space Studies and JPL to consider innovative approaches to detecting and characterizing exoplanets and planetary systems. The program and many of the presentations can be found online: . We present some of the observational strategies discussed in this workshop and summarize some of the issues associated with them. In particular, we will highlight some of the advantages and shortcomings of suborbital and orbital (e.g., ESPA rings) observing platforms in the context of exoplanet detection and characterization.

  1. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    ERIC Educational Resources Information Center

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  2. Biotechnology Facility (BTF) for ISS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  3. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  4. Popular misconceptions: agricultural biotechnology.

    PubMed

    McHughen, Alan; Wager, Robert

    2010-12-31

    Agricultural biotechnology, especially genetic engineering or genetic modification (GM), is a topic of considerable controversy worldwide. The public debate is fraught with polarized views and opinions, some are held with religious zeal. Unfortunately, it is also marked with much ignorance and misinformation. Here we explore some popular misconceptions encountered in the public debate. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  6. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by the Syngenta Biotechnology... evaluation of data submitted by Syngenta Biotechnology, Inc., in its petition for a determination of...

  7. The emerging international regulatory framework for biotechnology.

    PubMed

    Komen, John

    2012-01-01

    Debate about the potential risks of genetically modified organisms (GMOs) to the environment or human health spurred attention to biosafety. Biosafety is associated with the safe use of GMOs and, more generally, with the introduction of non-indigenous species into natural or managed ecosystems. Biosafety regulation--the policies and procedures adopted to ensure the environmentally safe application of modern biotechnology--has been extensively discussed at various national and international forums. Much of the discussion has focused on developing guidelines, appropriate legal frameworks and, at the international level, a legally binding international biosafety protocol--the Cartagena Protocol on Biosafety. The Protocol is one among various international instruments and treaties that regulate specific aspects relevant to agricultural biotechnology. The present article presents the main international instruments relevant to biosafety regulation, and their key provisions. While international agreements and standards provide important guidance, they leave significant room for interpretation, and flexibility for countries implementing them. Implementation of biosafety at the national level has proven to be a major challenge, particularly in developing countries, and consequently the actual functioning of the international regulatory framework for biotechnology is still in a state of flux.

  8. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  9. Close Companions to Nearby Young Stars from Adaptive Optics Imaging on VLT and Keck

    NASA Astrophysics Data System (ADS)

    Haisch, Karl E.; Jayawardhana, Ray; Brandeker, Alexis; Mardones, Diego

    We report the results of VLT and Keck adaptive optics surveys of known members of the η Chamaeleontis, MBM 12, and TW Hydrae (TWA) associations to search for close companions. The multiplicity statistics of η Cha, MBM 12, and TWA are quite high compared with other clusters and associations, although our errors are large due to small number statistics. We have resolved S18 in MBM 12 and RECX 9 in η Cha into triples for the first time. The tight binary TWA 5Aab in the TWA offers the prospect of measuring the dynamical masses of both components as well as an independent distance to the system within a few years. The AO detection of the close companion to the nearby young star χ1 Orionis, previously inferred from radial velocity and astrometric observations, has already made it possible to derive the dynamical masses of that system without any astrophysical assumption.

  10. The Development of Plant Biotechnology.

    ERIC Educational Resources Information Center

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  11. Biotechnology Gains Brighten Resource Outlook.

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1979-01-01

    This report details recent advances in fermentation biotechnology as presented by speakers at the 27th International Union of Pure and Applied Chemistry (IUPAC) Congress. Discussion centered around the use of bacteria, yeasts, and fungi as future sources of essential materials as food, fuel, and medicine. (BT)

  12. 51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.

    2009-10-01

    We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less

  13. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    ERIC Educational Resources Information Center

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  14. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    PubMed

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  15. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea

    PubMed Central

    Charlesworth, James C.; Burns, Brendan P.

    2015-01-01

    Archaea are an understudied domain of life often found in “extreme” environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications. PMID:26504428

  16. 75 FR 69091 - Office of the Director, Office of Biotechnology Activities; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ..., Office of Biotechnology Activities; Notice of Meeting There will be a workshop entitled ``Retroviral and.... Time: 8 a.m. to 1 p.m. Agenda: The Office of Biotechnology Activities (OBA), NIH Recombinant DNA... Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda, MD 20892...

  17. High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.

    2007-01-01

    We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power

  18. Promotion of Biotechnology amongst Students by University Departments in South Africa

    ERIC Educational Resources Information Center

    Boshoff, N.; Treptow, R. F.

    2011-01-01

    University departments (including schools and centres) with a direct or indirect link to biotechnology were identified. Representatives at these entities were surveyed to establish what measures South African universities are undertaking to promote biotechnology amongst students. Of the 168 departments identified, 55 submitted usable…

  19. Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment

    DTIC Science & Technology

    2015-03-01

    UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment...wounds might be treatable using advanced biotechnologies to control haemorrhaging and reduce blood-loss until medical evacuation can be completed. This...APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application

  20. Knowledge and Attitudes towards Biotechnology of Elementary Education Preservice Teachers: The First Spanish Experience

    ERIC Educational Resources Information Center

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-01-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is…

  1. Educational awareness of biotechnology issues among undergraduate students at the United Arab Emirates University.

    PubMed

    AbuQamar, Synan; Alshannag, Qasim; Sartawi, Abdelaziz; Iratni, Rabah

    2015-01-01

    Due to its valuable benefits and potential risks, there is a progressing debate among opponents and proponents of biotechnology in recent decades. Previous studies have shown that lack of knowledge about biotechnology remains the concern about genetically modified organisms/food (GMO/GMF). This study assessed levels of educational awareness perceptions and attitudes of United Arab Emirates University (UAEU) students towards biotechnology. An electronic survey including literacy, environmental, social, and economic domains associated with biotechnology was administered to obtain data from undergraduate students in different colleges of the university. Responses from students (n = 1,104) were gathered and statistically analyzed. Results indicated that educational awareness in biotechnology literacy and environmental domains were significantly different according to the enrolled college and the academic achievement of the student. In general, a poor overall performance of our students' understanding was concluded. Aware groups most likely accepted accurate biotechnology information delivered by reliable sources from internet or lectures; they grasped their knowledge from surrounding people as a secondary source. Since UAEU students have several concept misunderstandings of biotechnology and its ethics, our results suggest that awareness plays a crucial role in forming a "clear-cut" opinion about this technology. Because education can shape public attitudes toward biotechnology, priorities on university curricula and teaching strategies should be extensively given, and therefore, improve in respect to this topic. Ultimately, this promotes the students' perception in understanding the new technology. © 2015 The International Union of Biochemistry and Molecular Biology.

  2. Engaging the learner: Embedding information literacy skills into a biotechnology degree.

    PubMed

    Ward, Helena; Hockey, Julie

    2007-09-01

    One of the challenges of the Biotechnology industry is keeping up to date with the rapid pace of change and that much of the information, which students learn in their undergraduate studies, will be out of date in a few years. It is therefore crucial that Biotechnology students have the skills to access the relevant information for their studies and critically evaluate the vast volume of information and its sources. By developing information literacy skills, which are part of lifelong learning, Biotechnology graduates are better prepared for their careers. Students also need to understand the issues related to the use of information such as social, political, ethical, and legal implications. This paper will outline the embedding of information literacy skills within the Biotechnology degree at the University of South Australia. Examples of specific activities and their link to assessment will be discussed. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.

  3. Putting concerns about nature in context: the case of agricultural biotechnology.

    PubMed

    Kaebnick, Gregory E

    2007-01-01

    Concerns about nature are playing increasingly prominent roles in a variety of social debates, including medical biotechnology, environmental protection, and agricultural biotechnology. These concerns are often simply rejected as incoherent: critics argue that there is no good account for how natural states of affairs can have moral value, and that the concept of "nature" is too multifarious and vague to be deployed in moral argument anyway. When these concerns are defended, they are frequently formulated as strong claims that make implausible ontological commitments and that ignore the linkages between these different debates. Agricultural biotechnology provides an especially challenging case study for evaluating concerns about nature. I offer a qualified defense that recognizes these concerns as conceptually linked, attends to social context at appropriate points, and overcomes the charges of incoherence. This defense supports a restrained treatment of concerns about nature in public policy: public policy can neither endorse nor dismiss them. In the case of agricultural biotechnology, this stance probably mandates some form of labeling.

  4. Reengineering the retail/ambulatory pharmacy for provision of biotechnology pharmaceutical services.

    PubMed

    Schneider, P J

    1998-07-01

    Biotechnology products offer both problems and opportunities for pharmacists. On one hand, they are expensive to purchase and keep on inventory. Typical compensation for outpatient prescriptions does not offset the cost of maintaining the inventory, or providing the education and training that patients often need to use biotechnology products properly. On the other hand, there are issues related to proper storage, preparation, and administration for which pharmacists are well prepared to address. Pharmacists are also convenient, trusted, and provide service at relatively low cost. Examples of special services that pharmacists can provide to improve the use of biotechnology products include patient education, injection clinics, provision of medical supplies, and predrawing syringes for patients. Patients are often sent to many providers for these services, resulting in inconvenience and fragmentation of care. If new compensation methods can be established to support more comprehensive pharmacy services, the use of biotechnology products by patients will improve.

  5. The Role of the Foundation Board. Foundation Relations. Board Basics.

    ERIC Educational Resources Information Center

    Simic, Curtis R.

    1998-01-01

    This booklet for trustees of institutions of higher education addresses the role of boards of related non-profit fund-raising foundations. The booklet begins with an explanation of four advantages of such foundations to host institutions, such as separating gift funds from public funds. Suggestions for making foundation boards more effective…

  6. Biotechnological and industrial significance of cyanobacterial secondary metabolites.

    PubMed

    Rastogi, Rajesh P; Sinha, Rajeshwar P

    2009-01-01

    Cyanobacteria are considered to be a rich source of novel metabolites of a great importance from a biotechnological and industrial point of view. Some cyanobacterial secondary metabolites (CSMs), exhibit toxic effects on living organisms. A diverse range of these cyanotoxins may have ecological roles as allelochemicals, and could be employed for the commercial development of compounds with applications such as algaecides, herbicides and insecticides. Recently, cyanobacteria have become an attractive source of innovative classes of pharmacologically active compounds showing interesting and exciting biological activities ranging from antibiotics, immunosuppressant, and anticancer, antiviral, antiinflammatory to proteinase-inhibiting agents. A different but not less interesting property of these microorganisms is their capacity of overcoming the toxicity of ultraviolet radiation (UVR) by means of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. These last two compounds are true 'multipurpose' secondary metabolites and considered to be natural photoprotectants. In this sense, they may be biotechnologically exploited by the cosmetic industry. Overall CSMs are striking targets in biotechnology and biomedical research, because of their potential applications in agriculture, industry, and especially in pharmaceuticals.

  7. Overview on the biotechnological production of L-DOPA.

    PubMed

    Min, Kyoungseon; Park, Kyungmoon; Park, Don-Hee; Yoo, Young Je

    2015-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) has been widely used as a drug for Parkinson's disease caused by deficiency of the neurotransmitter dopamine. Since Monsanto developed the commercial process for L-DOPA synthesis for the first time, most of currently supplied L-DOPA has been produced by the asymmetric method, especially asymmetric hydrogenation. However, the asymmetric synthesis shows critical limitations such as a poor conversion rate and a low enantioselectivity. Accordingly, alternative biotechnological approaches have been researched for overcoming the shortcomings: microbial fermentation using microorganisms with tyrosinase, tyrosine phenol-lyase, or p-hydroxyphenylacetate 3-hydroxylase activity and enzymatic conversion by immobilized tyrosinase. Actually, Ajinomoto Co. Ltd commercialized Erwinia herbicola fermentation to produce L-DOPA from catechol. In addition, the electroenzymatic conversion system was recently introduced as a newly emerging scheme. In this review, we aim to not only overview the biotechnological L-DOPA production methods, but also to briefly compare and analyze their advantages and drawbacks. Furthermore, we suggest the future potential of biotechnological L-DOPA production as an industrial process.

  8. Biosafety legislation and biotechnology development gains momentum in Africa.

    PubMed

    Wafula, David; Waithaka, Michael; Komen, John; Karembu, Margaret

    2012-01-01

    Opinion in Africa over the use of genetically modified crops for food has been divided, honed by more than a decade of arguments in Europe and elsewhere. Fortunately, the perceived image of a passive Africa in this game is changing rapidly with clear positions on how to harness modern biotechnology. This article examines the status of biosafety regulation across Africa, pertinent challenges and the extent to which regulation fosters or constrains the development of agricultural biotechnology.

  9. Biotechnology software in the digital age: are you winning?

    PubMed

    Scheitz, Cornelia Johanna Franziska; Peck, Lawrence J; Groban, Eli S

    2018-01-16

    There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.

  10. Search and Discovery Strategies for Biotechnology: the Paradigm Shift

    PubMed Central

    Bull, Alan T.; Ward, Alan C.; Goodfellow, Michael

    2000-01-01

    Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial

  11. 75 FR 61413 - Notice of Availability of Biotechnology Quality Management System Audit Standard and Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ...] Notice of Availability of Biotechnology Quality Management System Audit Standard and Evaluation of... Biotechnology Quality Management System Program (BQMS Program) to assist regulated entities in achieving and... customized biotechnology quality management system (BQMS) to improve their management of domestic research...

  12. Cacao biotechnology: current status and future prospects.

    PubMed

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Biotechnological production of hyperforin for pharmaceutical formulation.

    PubMed

    Gaid, Mariam; Biedermann, Eline; Füller, Jendrik; Haas, Paul; Behrends, Sönke; Krull, Rainer; Scholl, Stephan; Wittstock, Ute; Müller-Goymann, Christel; Beerhues, Ludger

    2018-05-01

    Hyperforin is a major active constituent of Hypericum perforatum (St. John's wort). It has amazing pharmacological activities, such as antidepressant properties, but it is labile and difficult to synthesize. Its sensitivity and lipophilicity are challenges for processing and formulation. Its chemical complexity provokes approaches of biotechnological production and modification. Dedifferentiated H. perforatum cell cultures lack appropriate storage sites and hence appreciable hyperforin levels. Shoot cultures are capable of forming hyperforin but less suitable for biomass up-scaling in bioreactors. Roots commonly lack hyperforin but a recently established adventitious root line has been demonstrated to produce hyperforin and derivatives at promising levels. The roots also contained lupulones, the typical constituents of hop (Humulus lupulus). Although shear-sensitive, these root cultures provide a potential production platform for both individual compounds and extracts with novel combinations of constituents and pharmacological activities. Besides in vitro cultivation techniques, the reconstruction of hyperforin biosynthesis in microorganisms is a promising alternative for biotechnological production. The biosynthetic pathway is under study, with omics-technologies being increasingly implemented. These biotechnological approaches may not only yield hyperforin at reasonable productivity but also allow for modifications of its chemical structure and pharmacological profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Current estate of biotechnology in Costa Rica].

    PubMed

    Valdez, Marta; López, Rebeca; Jiménez, Luis

    2004-09-01

    A study was carried out on the construction of indicators in biotechnology in Costa Rica as part of the project "SYMBIOSIS, Cooperative Program for the Construction of Indicators in Biotechnology adapted to Latin American and Caribbean countries, to motivate the application and transference of industrial technologies". The study focused on two units: researchers and research projects developed in Costa Rica, between 1998 and 2002. For researchers, information was collected about indicators related to sex, age, teaching activities, number of projects, academic degree, area of speciality and number of publications. For research projects we obtained information about: speciality, sector of application, duration of projects and number of researchers per project. Very interesting results include the high participation of the women in this area of investigation (54%); the low participation of young researchers (13% younger than 30), and a high proportion of the investigators that are responsible for 4 or more projects (42%). With relation to the specialities of the projects, the majority are in the category Bio-Agro (39%) whereas in Acuaculture only 1% was found. The sectors of application with the most number of projects are: Agriculture and Livestock (37%) and Human Health (35%). The main strengthts and limitatations for the development of biotechnology in Costa Rica are discussed.

  15. The Developing Country Reactions to Biomedical Techniques and Plant Biotechnology: The Tunisian Experience

    PubMed Central

    Tebourski, Fethi

    2004-01-01

    In the present study we present the conditions offered to biotechnology development in Tunisia and we compare three main biotechnology applications which raise ethical and health problems: organ transplant, assisted reproductive techniques, and genetically modified organisms. We try to identify factors that have allowed success of the first two applications and failure of the latter. Conditions offered to biotechnology in other African countries are also discussed. PMID:15292577

  16. Essential Features of Responsible Governance of Agricultural Biotechnology

    PubMed Central

    Hartley, Sarah; Wickson, Fern

    2016-01-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge. PMID:27144921

  17. Essential Features of Responsible Governance of Agricultural Biotechnology.

    PubMed

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  18. Location, Location, Location: Positioning Biotechnology Education for the 21st Century

    ERIC Educational Resources Information Center

    France, Bev

    2007-01-01

    The first section of this article examines a range of definitions of biotechnology. This analysis demonstrates that teachers' choices will determine their view of biotechnology, as positioned along a traditional-modern, axis, and provides examples of the tensions that these differing positions create. A further section argues that in order for…

  19. Alienation from the Objectives of the Patent System: How to Remedy the Situation of Biotechnology Patent.

    PubMed

    Jiang, Li

    2018-03-12

    Some fundamental biotechnologies hold unprecedented potential to eradicate many incurable diseases. However, in absence of regulations, the power of patent makes the future use of some important biotechnology in few institution's hands. The excessive patents restrict researcher access to the fundamental technologies. It generates concerns and complaints of deteriorating the public health and social welfare. Furthermore, intellectual curiosities, funding, respect among colleagues etc., rather than patents, are the real motivations driving a major ground-breaking discoveries in biotechnology. These phenomena reveal that some biotechnology patents are alienated from the purpose of patent system. Therefore, it is necessary to take some approaches to stop over-patenting these fundamental biotechnology inventions. This article proposes a model regulatory framework for controlling biotechnology patent alienating from the purpose of patent system.

  20. Biotechnology stock prices before public announcements: evidence of insider trading?

    PubMed

    Overgaard, C B; van den Broek, R A; Kim, J H; Detsky, A S

    2000-03-01

    Unique financial challenges faced by biotechnology companies developing therapeutics have contributed to the creation of a highly sensitive market, where stock prices are capable of great fluctuation. The potential for significant financial reward and the nature of the scientific review process make this industry susceptible to illegal share trading on nonpublic information. We examined stock prices of biotechnology products before and after announcement of Phase III clinical trial and Food and Drug Administration (FDA) Advisory Panel results for indirect evidence of insider trading. Biotechnology stock prices were recorded for 98 products undergoing Phase III clinical trials and 49 products undergoing FDA Advisory Panel review between 1990 and 1998. Prices were recorded for 120 consecutive trading days before and after public announcement of these two events. We compared the average change in stock price of successful products ('winners') with unsuccessful products ('losers') before the public announcement of results for both critical events. The difference between average stock price change from 120 to 3 days before public announcement of results of Phase III clinical trial winners (+27%) and losers (-4%) was highly significant (P = 0.0007). A similar but non-significant difference was observed between the average stock price of winning (+27%) and losing products (+13%) before FDA Advisory Panel review announcements (P = 0.25). Our results provide indirect evidence that insider trading may be common in the biotechnology industry. Clinical investigators may wish to consider this issue before participating in any equity position in the biotechnology industry, especially if they are going to perform research for those companies.

  1. Mathematical Modelling of Continuous Biotechnological Processes

    ERIC Educational Resources Information Center

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  2. Pharma Success in Product Development—Does Biotechnology Change the Paradigm in Product Development and Attrition.

    PubMed

    Evens, Ronald P

    2016-01-01

    The biotechnology segment of the overall biopharma industry has existed for only about 40–45 years, as a driver of new product development. This driving force was initiated with the FDA approval of recombinant human insulin in 1982, originating from the Genentech company. The pharma industry in the early years of 1970s and 1980s engaged with biotechnology companies only to a small extent with their in-licensing of a few recombinant molecules, led by Roche, Eli Lilly, and Johnson and Johnson. However, subsequently and dramatically over the last 25 years, biotechnology has become a primary driver of product and technology innovation and has become a cornerstone in new product development by all biopharma companies. This review demonstrates these evolutionary changes regarding approved products, product pipelines, novelty of the products, FDA approval rates, product sales, financial R&D investments in biotechnology, partnerships, mergers and acquisitions, and patent issues. We now have about 300 biotechnology products approved in USA covering 16 medical disciplines and about 250 indications, with the engagement of 25 pharma companies, along with their biotechnology company innovators and partners. The biotechnology pipeline involves over 1000 molecules in clinical trials, including over 300 molecules associated with the top 10 pharma companies. Product approval rates by the FDA for biotechnology products are over double the rate for drugs. Yes, the R&D paradigm has changed with biotechnology now as one of the major focuses for new product development with novel molecules by the whole biopharma industry.

  3. Biotechnology

    NASA Image and Video Library

    2003-05-05

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, a TCM is shown after mixing protocols, and bubbles of various sizes can be seen.

  4. Biotechnology

    NASA Image and Video Library

    2003-05-05

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, beads are trapped in the injection port, with bubbles forming shortly after injection.

  5. The integrated web service and genome database for agricultural plants with biotechnology information.

    PubMed

    Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.

  6. The integrated web service and genome database for agricultural plants with biotechnology information

    PubMed Central

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  7. 76 FR 3599 - Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Service Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture AGENCY: Office of... of Agriculture intends to renew the Advisory Committee on Biotechnology and 21st Century Agriculture... responsible development and application of biotechnology within the global food and agricultural system...

  8. Bioanalysis-related highlights from the 2011 AAPS National Biotechnology Conference.

    PubMed

    Crisino, Rebecca M; Dulanto, Beatriz

    2011-08-01

    The American Association of Pharmaceutical Scientists is a dynamic international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, conducted and organized by the American Association of Pharmaceutical Scientists, is a forum dedicated to advancements in science and technology related to discovery, development and manufacture of medical biotechnology products. The 2011 National Biotechnology Conference meeting convened in San Francisco, CA, USA on 16-18 May. Over 300 abstracts were submitted and approximately 50 sessions examined topics pertaining to advances in drug development, emerging analytical technologies, bioanalysis-related issues, biosimilar therapies, updates on global regulatory documents and expectations, and other topics. The focus of this article is to highlight key developments relevant to immunogenicity and pharmacokinetic drug concentration bioanalysis.

  9. Biotechnological production of alpha-keto acids: Current status and perspectives.

    PubMed

    Song, Yang; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-11-01

    Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis. Copyright © 2016. Published by Elsevier Ltd.

  10. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Yersinia pestis has been submitted to the NIH Office of Biotechnology Activities (OBA) by the Institutional... Biotechnology Activities, National Institutes of Health. [FR Doc. 2010-12453 Filed 5-21-10; 8:45 am] BILLING...

  11. Infusing Authentic Inquiry into Biotechnology

    ERIC Educational Resources Information Center

    Hanegan, Nikki L.; Bigler, Amber

    2009-01-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in "World J Microbiol Biotechnol" 12:439-443, 1996; Dawson and Cowan in "Int J Sci Educ" 25(1):57-69, 2003; Schiller in "Business Review: Federal Reserve Bank of Philadelphia" (Fourth Quarter), 2002; Smith and Emmeluth in "Am Biol Teach" 64(2):93-99, 2002). A…

  12. Electromagnetic Biostimulation of Living Cultures for Biotechnology, Biofuel and Bioenergy Applications

    PubMed Central

    Hunt, Ryan W.; Zavalin, Andrey; Bhatnagar, Ashish; Chinnasamy, Senthil; Das, Keshav C.

    2009-01-01

    The surge of interest in bioenergy has been marked with increasing efforts in research and development to identify new sources of biomass and to incorporate cutting-edge biotechnology to improve efficiency and increase yields. It is evident that various microorganisms will play an integral role in the development of this newly emerging industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. However, it appears that microalgae have become the most promising prospect for biomass production due to their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. In an attempt to better understand and manipulate microorganisms for optimum production capacity, many researchers have investigated alternative methods for stimulating their growth and metabolic behavior. One such novel approach is the use of electromagnetic fields for the stimulation of growth and metabolic cascades and controlling biochemical pathways. An effort has been made in this review to consolidate the information on the current status of biostimulation research to enhance microbial growth and metabolism using electromagnetic fields. It summarizes information on the biostimulatory effects on growth and other biological processes to obtain insight regarding factors and dosages that lead to the stimulation and also what kind of processes have been reportedly affected. Diverse mechanistic theories and explanations for biological effects of electromagnetic fields on intra and extracellular environment have been discussed. The foundations of biophysical interactions such as bioelectromagnetic and biophotonic communication and organization within living systems are expounded with special consideration for spatiotemporal aspects of electromagnetic topology, leading to the

  13. Elementary education preservice teachers' understanding of biotechnology and its related processes.

    PubMed

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-07-01

    This study examined preservice teachers' understanding of biotechnology and its related processes. A sample comprised 88 elementary education preservice teachers at a large university in the Midwest of the USA. A total of 60 and 28 of the participants were enrolled in introductory and advanced science methods courses, respectively. Most participants had taken two integrated science courses at the college level. Data were collected using a questionnaire, which had open-ended items and which required participants to write the definitions and examples of the following terms: biotechnology, genetic engineering, cloning and genetically modified foods. The results indicate that preservice teachers had limited understanding of biotechnology and its related processes. The majority of the preservice teachers provided poor definitions, explanations, and examples of biotechnology, genetic engineering and genetically modified foods. Surprisingly, however, a moderate number of preservice teachers correctly defined cloning and provided correct examples of cloning. Implications for science teacher education, science curriculum, as well as recommendations for further research are discussed. Copyright © 2011 Wiley Periodicals, Inc.

  14. Regulation of animal biotechnology: research needs.

    PubMed

    Rexroad, C E; Green, R D; Wall, R J

    2007-09-01

    Livestock that result from biotechnology have been a part of agricultural science for over 30 years but have not entered the market place as food or fiber. Two biotechnologies are at the forefront as challenges to the world's systems for regulating the market place: animal clones and transgenic animals. Both technologies have come before the Food and Drug Administration in the United States and it appears that action is imminent for clones. The FDA has asserted principles for evaluation of clones and asserts that "... remaining hazard(s) from cloning are likely to be subtle in nature." The science-based principles recognize that in some areas related to developmental biology and gene expression in clones, additional scientific information would be useful. The role of science then is to use the genomic tools that we have available to answer questions about epigenetic regulation of development and reprogramming of genes to the state found in germ cells. Transgenics pose additional challenges to regulators. If the transgenics are produced using cloning from modified cells then the additional scientific information needed will be related to the effects of insertion and expression of the transgenes. Other approaches such as retrovirally vectored transgenesis will elicit additional questions. These questions will be challenging because the science will have to be related to the expression and function of each gene or class of genes. For the promises of animal biotechnology to be fulfilled, scientists will have to resolve many questions for regulators and the public but tools to answer those questions are rapidly becoming available.

  15. Biotechnology entrepreneurship and ethics: principles, paradigms, and products.

    PubMed

    Kuszler, Patricia C

    2006-09-01

    Biotechnology, whether in the context of new drugs derived from DNA and genetic technology, genetically modified food, or biologics making use of living cells, raises ethical concerns at a variety of different levels. At the research level, there is concern that the very nature of research is being subverted, rather than enhanced, by entrepreneurship. This area of ethical concern has intensified in the United States as a result of the conflicts of interests resulting from the growing alliance between University academia and private industry in the research enterprise. As we travel down the research path into development of a drug or technology, ethical questions arise with respect to protecting human subjects and society from danger and exploitation by researchers. As development gives way to marketing and dissemination of a new product, government regulators are pressed to get drugs and biologics through the regulatory pipeline into the market faster, walking an ethical tightrope between speed and safety. As new biotechnology products enter the market place, doctors and patients traverse yet another tightrope, that between unknown risk and the promise of benefit. And finally, patent protection is increasingly viewed as a unethical culprit in keeping prices high and depriving the global poor from lifesaving drugs and biologics. Bioethics has, to date, been largely a creation of Western research and medicine. As such it is wholly inadequate to respond to the cascade of ethical issues that flow from a vibrant biotechnology industry. And if biotechnology is in its infancy, as most believe, it is crucial that scientists, entrepreneurs and governments engage in dialogue about the ethical and societal questions raised on the road of scientific progress.

  16. Plant biotechnology patents: applications in agriculture and medicine.

    PubMed

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  17. Cooperation in microbial communities and their biotechnological applications

    PubMed Central

    Cavaliere, Matteo; Feng, Song; Soyer, Orkun S.

    2017-01-01

    Summary Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross‐feeding, which can be understood in the general framework of ecological and evolutionary (eco‐evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of ‘cheating’ cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications. PMID:28447371

  18. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.; hide

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  19. Sugarcane Improvement Through Breeding and Biotechnology

    USDA-ARS?s Scientific Manuscript database

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  20. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  1. [Biodiesel-fuel: content, production, producers, contemporary biotechnology (review)].

    PubMed

    Feofilova, E P; Sergeeva, Ia E; Ivashechkin, A A

    2010-01-01

    The necessity of expanding studies on producing renewable biofuel is reviewed. Special attention is given to biodiesel, the history of its creation, and its advantages and disadvantages in comparison with diesel-fuel. The main part of the review is devoted to an analysis of diesel biofuel on the basis of bacterial lipids, filamentous fungi, yeasts, plants, photo- and heterotrophic algae. Biodiesel on the basis of filamentous fungi is studied in detail and the possibility of creation of the most perspective biotechnology using these producers is grounded. The contemporary state of biotechnology in Russia is discussed in connection with the development of energetics based on renewable biofuels.

  2. Biotechnology

    NASA Image and Video Library

    2003-05-07

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light

  3. Biotechnology and the developing world. Finding ways to bridge the agricultural technology gap.

    PubMed

    Platais, K W; Collinson, M P

    1992-03-01

    Biotechnology is a controversial subject that involves a range of scientific principles from basic tissue culture to genetic manipulation. Proponents include private sector capitalists, public sector researchers, and developing nation governments. Opponents include environmental organizations and social organizations involved in protecting the rights of developing nations. Biotechnology is being presented as the next step after the Green Revolution and the only way that the people of the developing world will be able to feed themselves in the next half century. Research by industrialized nations world wide total an estimated $11 billion with 66% being contributed by the private sector. Biotechnology represents somewhat of a dilemma. Since the majority of the work is being done by the private sector the interests of shareholders and profit are greater done by the private sector the interests of shareholders and profit are greater than that of public welfare or safety. The Consultative Group on International Agricultural Research (CGIAR) is one public sector group that is concerned about this problem. The countries of the developing world fall into 2 categories in relation to use of biotechnology: (1) those that have the potential to adapt imported biotechnologies to local conditions; (2) those that have little or no applied research capacity to effectively use biotechnologies. Currently only Brazil, China, India, and Thailand belong in the 1st category, all other developing countries fall into the 2nd. CGIAR believes it can help in 2 ways: (1) it can provide a bridge for needed information and germplasm between developed and developing countries; (2) it can help to ensure that the agricultural needs of developing countries are not lost. In 1990 CGIAR's plant and animal biotechnology research totaled $14.5 million which was less than 5% of the total CGIAR budget. Networking and institutions building are areas that CGIAR focuses on in an attempt to increase its affect

  4. Development and Validation of an Instrument to Measure University Students' Biotechnology Attitude

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Ozel, Murat; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The impact of biotechnologies on peoples' everyday lives continuously increases. Measuring young peoples' attitudes toward biotechnologies is therefore very important and its results are useful not only for science curriculum developers and policy makers, but also for producers and distributors of genetically modified products. Despite of…

  5. Making a Case for Epistemological Access in Biotechnology Education in Southern Africa

    ERIC Educational Resources Information Center

    Mollett, Jean; Cameron, Ann

    2016-01-01

    In southern Africa, biotechnology is increasingly important with regard to food security and the development of the pharmaceutical industry. Universities are tasked with providing the relevant capacity development through tertiary-level courses to meet these development needs. However, the knowledge and practices of biotechnology may be…

  6. The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B

    NASA Astrophysics Data System (ADS)

    Serabyn, E.; Huby, E.; Matthews, K.; Mawet, D.; Absil, O.; Femenia, B.; Wizinowich, P.; Karlsson, M.; Bottom, M.; Campbell, R.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Forsberg, P.; Gomez Gonzalez, C.; Habraken, S.; Jolivet, A.; Liewer, K.; Lilley, S.; Piron, P.; Reggiani, M.; Surdej, J.; Tran, H.; Vargas Catalán, E.; Wertz, O.

    2017-01-01

    An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L‧-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP 79124, which had previously been detected by means of interferometry. With HIP 79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L‧ band versus H band, this new coronagraphic capability will enable high-contrast, small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.

  7. [Mass spectrometry in medicine and biotechnology].

    PubMed

    Polunina, T A; Kireev, M N; Khramchenkova, T A; Spitsyn, A N; Grigor'eva, G V

    2013-01-01

    History of development and improvement of tandem mass spectrometry, possibilities of its application at the contemporary stage in various fields of medicine and biotechnology including production of novel medicinal preparations, identification of biologically active substances, pathogenic microorganisms and causative agents of especially dangerous infections is given.

  8. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    PubMed

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  9. Comparative genomics of biotechnologically important yeasts

    PubMed Central

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H.; Lopes, Mariana R.; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A.; Wisecaver, Jennifer H.; Long, Tanya M.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y.; Deshpande, Shweta; Douglass, Alexander P.; Hanson, Sara J.; Klenk, Hans-Peter; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Meier-Kolthoff, Jan P.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Rosa, Carlos A.; Scheuner, Carmen; Sibirny, Andriy A.; Slot, Jason C.; Stielow, J. Benjamin; Sun, Hui; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor V.

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  10. Mannan biotechnology: from biofuels to health.

    PubMed

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  11. The rise of health biotechnology research in Latin America: A scientometric analysis of health biotechnology production and impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico

    PubMed Central

    2018-01-01

    This paper analyzes the patterns of health biotechnology publications in six Latin American countries from 2001 to 2015. The countries studied were Argentina, Brazil, Chile, Colombia, Cuba and Mexico. Before our study, there were no data available on HBT development in half of the Latin-American countries we studied, i.e., Argentina, Colombia and Chile. To include these countries in a scientometric analysis of HBT provides fuller coverage of HBT development in Latin America. The scientometric study used the Web of Science database to identify health biotechnology publications. The total amount of health biotechnology production in the world during the period studied was about 400,000 papers. A total of 1.2% of these papers, were authored by the six Latin American countries in this study. The results show a significant growth in health biotechnology publications in Latin America despite some of the countries having social and political instability, fluctuations in their gross domestic expenditure in research and development or a trade embargo that limits opportunities for scientific development. The growth in the field of some of the Latin American countries studied was larger than the growth of most industrialized nations. Still, the visibility of the Latin American research (measured in the number of citations) did not reach the world average, with the exception of Colombia. The main producers of health biotechnology papers in Latin America were universities, except in Cuba were governmental institutions were the most frequent producers. The countries studied were active in international research collaboration with Colombia being the most active (64% of papers co-authored internationally), whereas Brazil was the least active (35% of papers). Still, the domestic collaboration was even more prevalent, with Chile being the most active in such collaboration (85% of papers co-authored domestically) and Argentina the least active (49% of papers). We conclude that the

  12. The rise of health biotechnology research in Latin America: A scientometric analysis of health biotechnology production and impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico.

    PubMed

    León-de la O, Dante Israel; Thorsteinsdóttir, Halla; Calderón-Salinas, José Víctor

    2018-01-01

    This paper analyzes the patterns of health biotechnology publications in six Latin American countries from 2001 to 2015. The countries studied were Argentina, Brazil, Chile, Colombia, Cuba and Mexico. Before our study, there were no data available on HBT development in half of the Latin-American countries we studied, i.e., Argentina, Colombia and Chile. To include these countries in a scientometric analysis of HBT provides fuller coverage of HBT development in Latin America. The scientometric study used the Web of Science database to identify health biotechnology publications. The total amount of health biotechnology production in the world during the period studied was about 400,000 papers. A total of 1.2% of these papers, were authored by the six Latin American countries in this study. The results show a significant growth in health biotechnology publications in Latin America despite some of the countries having social and political instability, fluctuations in their gross domestic expenditure in research and development or a trade embargo that limits opportunities for scientific development. The growth in the field of some of the Latin American countries studied was larger than the growth of most industrialized nations. Still, the visibility of the Latin American research (measured in the number of citations) did not reach the world average, with the exception of Colombia. The main producers of health biotechnology papers in Latin America were universities, except in Cuba were governmental institutions were the most frequent producers. The countries studied were active in international research collaboration with Colombia being the most active (64% of papers co-authored internationally), whereas Brazil was the least active (35% of papers). Still, the domestic collaboration was even more prevalent, with Chile being the most active in such collaboration (85% of papers co-authored domestically) and Argentina the least active (49% of papers). We conclude that the

  13. Environmental protection: applying the precautionary principle and proactive regulation to biotechnology.

    PubMed

    Richmond, Robert H

    2008-08-01

    Biotechnology is a broad field encompassing diverse disciplines from agriculture to zoology. Advances in research are occurring at a rapid pace, and applications that have broad implications socially, economically, ecologically and politically are emerging. Along with notable benefits, environmental consequences that affect core quality-of-life issues for present and future generations are materializing. The precautionary principle should be applied to biotechnology research, activities and products, and a strengthened, enforceable and proactive regulatory framework is needed. The environmental impacts of agriculture, aquaculture, genetically modified organisms (GMOs) and even pharmaceuticals are raising public concerns and demonstrate the need for guidance from a variety of social, economic and scientific disciplines to insure the benefits of biotechnology are enjoyed without unacceptable and irreversible environmental costs.

  14. Biotechnology: Education and Training. Special Reference Briefs Series No. SRB 96-08.

    ERIC Educational Resources Information Center

    Dobert, Raymond

    This document, prepared by The Biotechnology Information Center at the National Agricultural Library, contains sources of information that can provide a starting point for teachers, university faculty, extension agents, and other education leaders who have an interest in biotechnology education and training. Sections include a bibliography of the…

  15. Is Judgement of Biotechnological Ethical Aspects Related to High School Students' Knowledge?

    ERIC Educational Resources Information Center

    Crne-Hladnik, Helena; Hladnik, Ales; Javornik, Branka; Kosmelj, Katarina; Peklaj, Cirila

    2012-01-01

    Quantitative and qualitative studies of various aspects of the perception of biotechnology were conducted among 469 Slovenian high school students of average age 17 years. Our research aimed to explore relationships among students' pre-knowledge of molecular and human genetics, and their attitudes to four specific biotechnological applications.…

  16. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    PubMed Central

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  17. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics.

    PubMed

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-07-21

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics.

  18. Short and Long-Term Impacts of Biotechnology Education on Professionals Who Communicate Science to the Public

    ERIC Educational Resources Information Center

    Fritz, Susan M.; Ward, Sarah M.; Byrne, Pat F.; Namuth, Deana M.; Egger, Valerie A.

    2004-01-01

    Consumer acceptance or rejection of biotechnology is often shaped by information prepared by communicators with varying levels of scientific knowledge, awareness, and acceptance. This study compared the prior, post-workshop, and sustained (1 year) biotechnology awareness, acceptance, and attitudes of professionals who communicate biotechnology to…

  19. Biotechnology Education: A Multiple Instructional Strategies Approach.

    ERIC Educational Resources Information Center

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  20. Biotechnology and the bioeconomy-Towards inclusive and sustainable industrial development.

    PubMed

    Lokko, Yvonne; Heijde, Marc; Schebesta, Karl; Scholtès, Philippe; Van Montagu, Marc; Giacca, Mauro

    2018-01-25

    To transform developing and least developing countries into industrialised ones, biotechnology could be deployed along the value chain, to provide support to the development of the bio-based industries in such a way to ensure sustainability of the sector and to reduce negative environmental impacts that might otherwise occur. In agribusiness development, for instance, interventions could start from inputs and agricultural mechanization, modern processing technologies, packaging of perishable products, the promotion of food safety in the processing and regulatory environment; and interventions to improve competitiveness and productivity. Worth over USD 300 billion in revenue, the role of the biotechnology goes beyond industrial growth, since it provides opportunities for progress towards many of the UN sustainable development goals (SDGs). This paper reviews the status of industrial biotechnology as it relates to inclusive and sustainable industrial development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. How to access and exploit natural resources sustainably: petroleum biotechnology.

    PubMed

    Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M

    2017-09-01

    As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications.

    PubMed

    Martin, Marjolaine; Portetelle, Daniel; Michel, Gurvan; Vandenbol, Micheline

    2014-04-01

    Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.

  3. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    PubMed

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The first GCC Marine Biotechnology Symposium: Emerging Opportunities and Future Perspectives.

    PubMed

    Goddard, Stephen; Delghandi, Madjid; Dobretsov, Sergey; Al-Oufi, Hamed; Al-Habsi, Saoud; Burgess, J Grant

    2015-06-01

    With its diverse, living marine resources and rapidly growing educational and research infrastructure, the Sultanate of Oman is well-positioned to take advantage of the commercial opportunities presented by marine biotechnology. In recognition of potential development, an international symposium, Marine Biotechnology-Emerging Opportunities and Future Perspectives, was held in Muscat, November 12-13, 2013. Three keynote addresses were given, 23 oral presentations made, and a poster exhibition held. The final session reviewed national and regional issues, and the delegates agreed informally on a number of future actions. The potential for future development of marine biotechnology was recognized by all delegates, and following the symposium, they were surveyed for their views on how best to sustain and develop new activities. One hundred percent of respondents found the meeting useful and would support future symposia in the region. Fifty-one percent of Omani respondents recognized major organizational challenges and obstacles to the development of marine biotechnology compared with 23 % of overseas respondents. The need for greater collaboration between research institutions within the GCC region was recognized by 98 % of all respondents. The presentations and survey outcomes are reviewed in this paper.

  5. An updated view on horseradish peroxidases: recombinant production and biotechnological applications.

    PubMed

    Krainer, Florian W; Glieder, Anton

    2015-02-01

    Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.

  6. 75 FR 25282 - Office of the Director, Office of Biotechnology Activities; Notice of a Safety Symposium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ..., Office of Biotechnology Activities; Notice of a Safety Symposium There will be a safety symposium... concerning this meeting contact Ms. Chezelle George, Administrative Assistant, Office of Biotechnology... Committee. Date: June 15, 2010. Time: 8 a.m. to 5:30 p.m. Agenda: The Office of Biotechnology Activities...

  7. Vibration Based Wind Turbine Tower Foundation Design Utilizing Soil-Foundation-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Al Satari, P. E. Mohamed; Hussain, S. E. Saif

    2008-07-01

    Wind turbines have been used to generate electricity as an alternative energy source to conventional fossil fuels. This case study is for multiple wind towers located at different villages in Alaska where severe arctic weather conditions exist. The towers are supported by two different types of foundations; large mat or deep piles foundations. Initially, a Reinforced Concrete (RC) mat foundation was utilized to provide the system with vertical and lateral support. Where soil conditions required it, a pile foundation solution was devised utilizing a 30″ thick RC mat containing an embedded steel grillage of W18 beams supported by 20″-24″ grouted or un-grouted piles. The mixing and casting of concrete in-situ has become the major source of cost and difficulty of construction at these remote Alaska sites. An all-steel foundation was proposed for faster installation and lower cost, but was found to impact the natural frequencies of the structural system by significantly softening the foundation system. The tower-foundation support structure thus became near-resonant with the operational frequencies of the wind turbine leading to a likelihood of structural instability or even collapse. A detailed 3D Finite-Element model of the original tower-foundation-pile system with RC foundation was created using SAP2000. Soil springs were included in the model based on soil properties obtained from the geotechnical consultant. The natural frequency from the model was verified against the tower manufacturer analytical and the experimental values. Where piles were used, numerous iterations were carried out to eliminate the need for the RC and optimize the design. An optimized design was achieved with enough separation between the natural and operational frequencies to prevent damage to the structural system eliminating the need for any RC encasement to the steel foundation or grouting to the piles.

  8. Synthetic biology: regulating industry uses of new biotechnologies.

    PubMed

    Erickson, Brent; Singh, Rina; Winters, Paul

    2011-09-02

    In our view, synthetic biology is an extension of the continuum of genetic science that has been used safely for more than 40 years by the biotechnology industry in the development of commercial products. Examples of synthetic biology use by biotechnology companies illustrate the potential to substantially reduce research and development time and to increase speed to market. Improvements in the speed and cost of DNA synthesis are enabling scientists to design modified bacterial chromosomes that can be used in the production of renewable chemicals, biofuels, bioproducts, renewable specialty chemicals, pharmaceutical intermediates, fine chemicals, food ingredients, and health care products. Regulatory options should support innovation and commercial development of new products while protecting the public from potential harms.

  9. Biotechnology awareness study, Part 1: Where scientists get their information.

    PubMed Central

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  10. Creating a Successful Affiliated Foundation. Foundation Relations. Board Basics.

    ERIC Educational Resources Information Center

    Hedgepeth, Royster C.

    1999-01-01

    This booklet for trustees of institutions of higher education offers guidelines for the creation of effective affiliated foundations. An introductory section notes the increased use of such foundations by public colleges and universities for institutional fund-raising and management of property and endowments. The booklet finds that successful…

  11. Keck/LRIS Spectroscopy of the Distant Cluster Cl0016+16

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Koo, David C.

    1994-12-01

    The rich galaxy cluster Cl0016+16 at z=0.55 initially achieved visibility (Koo 1981) for being the original ``anti Butcher-Oemler effect'' cluster: its galaxy population was found to be almost entirely red, indistinguishable in rest-frame color from local E/S0 galaxies, despite the expectation that higher redshift clusters should have a greater proportion of blue galaxies (Butcher & Oemler 1978, 1984). Interest in this cluster has heightened over the last decade as: X-ray observations found it to be among the most luminous clusters known (Henry et al. 1992); radio observations showed it to be among only a handful of clusters exhibiting a Sunyaev-Zel'dovich microwave decrement, useful for measuring the Hubble Constant (Lasenby 1992); optical spectroscopy revealed a significant population of ``E+A'' galaxies, enigmatic objects with spectra suggesting a recently-concluded episode of star formation (Dressler & Gunn 1992). Further observations by ROSAT, ASCA, and HST have established Cl0016+16 as among the best-studied clusters beyond Coma. The red nature of its galaxy population makes Cl0016+16 a prime candidate for the study of cluster galaxy evolution. As part of an ongoing effort to study the early-type galaxies in this cluster, we recently used the Keck Telescope and Low-Resolution Imaging Spectrograph to obtain high quality spectra of 19 cluster members at 6 Angstroms (FWHM) resolution. This poster describes the preliminary results from these data, which will allow us to investigate galaxy age and metallicity at lookback times nearly halfway to the Big Bang, probe the internal kinematics of galaxies at z=0.55, and thus perhaps trace the evolution of the ``fundamental plane'' for E/S0 galaxies.

  12. Remote Observing with the Keck Telescope Using the ACTS Satellite

    NASA Technical Reports Server (NTRS)

    Cohen, Judy; Shopbell, Patrick; Bergman, Larry

    1998-01-01

    As a technical demonstration project for the NASA Advanced Communications Technology Satellite (ACTS), we have implemented remote observing on the 10-meter Keck II telescope on Mauna Kea in Hawaii from the California Institute of Technology campus in Pasadena. The data connection consists of optical fiber networks in Hawaii and California, connecting the end-points to high data rate (HDR) ACTS satellite antennae at JPL in Pasadena and at the Tripler Army Medical Center in Honolulu. The terrestrial fiber networks run the asynchronous transfer mode (ATM) protocol at DS-3 (45 Mbit/sec) speeds, providing ample bandwidth to enable remote observing with a software environment identical to that used for on-site observing in Hawaii. This experiment has explored the data requirements of remote observing with a modern research telescope and large-format detector arrays. While the maximum burst data rates are lower than those required for many other applications (e.g., HDTV), the network reliability and data integrity requirements are critical. As we show in this report, the former issue particularly may be the greatest challenge for satellite networks for this class of application. We have also experimented with the portability of standard TCP/IP applications to satellite networks, demonstrating the need for alternative TCP congestion algorithms and minimization of bit error rates (BER). Reliability issues aside, we have demonstrated that true remote observing over high-speed networks provides several important advantages over standard observing paradigms. Technical advantages of the high-speed network access include more rapid download of data to a user's home institution and the opportunity for alternative communication facilities between members of an observing team, such as audio- and videoconferencing.

  13. Biotechnology Education in India: An Overview

    ERIC Educational Resources Information Center

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  14. Bridging the gap between fluxomics and industrial biotechnology.

    PubMed

    Feng, Xueyang; Page, Lawrence; Rubens, Jacob; Chircus, Lauren; Colletti, Peter; Pakrasi, Himadri B; Tang, Yinjie J

    2010-01-01

    Metabolic flux analysis is a vital tool used to determine the ultimate output of cellular metabolism and thus detect biotechnologically relevant bottlenecks in productivity. ¹³C-based metabolic flux analysis (¹³C-MFA) and flux balance analysis (FBA) have many potential applications in biotechnology. However, noteworthy hurdles in fluxomics study are still present. First, several technical difficulties in both ¹³C-MFA and FBA severely limit the scope of fluxomics findings and the applicability of obtained metabolic information. Second, the complexity of metabolic regulation poses a great challenge for precise prediction and analysis of metabolic networks, as there are gaps between fluxomics results and other omics studies. Third, despite identified metabolic bottlenecks or sources of host stress from product synthesis, it remains difficult to overcome inherent metabolic robustness or to efficiently import and express nonnative pathways. Fourth, product yields often decrease as the number of enzymatic steps increases. Such decrease in yield may not be caused by rate-limiting enzymes, but rather is accumulated through each enzymatic reaction. Fifth, a high-throughput fluxomics tool hasnot been developed for characterizing nonmodel microorganisms and maximizing their application in industrial biotechnology. Refining fluxomics tools and understanding these obstacles will improve our ability to engineer highly efficient metabolic pathways in microbial hosts.

  15. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    PubMed

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  16. Biotechnology of temperate fruit trees and grapevines.

    PubMed

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  17. Improving value assessment of high-risk, high-reward biotechnology research: the role of 'thick tails'.

    PubMed

    Casault, Sébastien; Groen, Aard J; Linton, Jonathan D

    2014-03-25

    This paper presents work toward improving the efficacy of financial models that describe the unique nature of biotechnology firms. We show that using a 'thick tailed' power law distribution to describe the behavior of the value of biotechnology R&D used in a Real Options Pricing model is significantly more accurate than the traditionally used Gaussian approach. A study of 287 North-American biotechnology firms gives insights into common problems faced by investors, managers and other stakeholders when using traditional techniques to calculate the commercial value of R&D. This is important because specific quantitative tools to assess the value of high-risk, high-reward R&D do not currently exist. This often leads to an undervaluation of biotechnology R&D and R&D intensive biotechnology firms. For example, the widely used Net Present Value (NPV) method assumes a fixed risk ignoring management flexibility and the changing environment. However, Real Options Pricing models assume that commercial returns from R&D investments are described by a normal random walk. A normal random walk model eliminates the possibility of drastic changes to the marketplace resulting from the introduction of revolutionary products and/or services. It is possible to better understand and manage biotechnology research projects and portfolios using a model that more accurately considers large non-Gaussian price fluctuations with thick tails, which recognize the unusually large risks and opportunities associated with Biotechnology R&D. Our empirical data show that opportunity overcompensates for the downside risk making biotechnology R&D statistically more valuable than other Gaussian options investments, which may otherwise appear to offer a similar combination of risk and return. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. W. M. Keck Observatory primary mirror segment repair project: overview and status

    NASA Astrophysics Data System (ADS)

    Meeks, Robert L.; Doyle, Steve; Higginson, Jamie; Hudek, John S.; Irace, William; McBride, Dennis; Pollard, Mike; Tai, Kuochou; Von Boeckmann, Tod; Wold, Leslie; Wold, Truman

    2016-07-01

    The W. M. Keck Observatory Segment Repair Project is repairing stress-induced fractures near the support points in the primary mirror segments. The cracks are believed to result from deficiencies in the original design and implementation of the adhesive joints connecting the Invar support components to the ZERODUR mirror. Stresses caused by temperature cycling over 20 years of service drove cracks that developed at the glass-metal interfaces. Over the last few years the extent and cause of the cracks have been studied, and new supports have been designed. Repair of the damaged glass required development of specialized tools and procedures for: (1) transport of the segments; (2) pre-repair metrology to establish the initial condition; (3) removal of support hardware assemblies; (4) removal of the original supports; (5) grinding and re-surfacing the damaged glass areas; (6) etching to remove sub-surface damage; (7) bonding new supports; (8) re-installation of support assemblies; and (9) post-repair metrology. Repair of the first segment demonstrated the new tools and processes. On-sky measurements before and after repair verified compliance with the requirements. This paper summarizes the repair process, on-sky results, and transportation system, and also provides an update on the project status and schedule for repairing all 84 mirror segments. Strategies for maintaining quality and ensuring that repairs are done consistently are also presented.

  19. Joint observations of Titan's North Pole by Cassini/VIMS and Keck/NIRSPEC

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Griffith, C. A.; Fitzpatrick, R.; Lawrence, K. J.

    2017-12-01

    One of many Titan's characteristics is the presence of hydrocarbon seas and lakes in the Northern hemisphere, which represent one reservoir involved in the methane cycle that controls Titan's meteorology. During Titan's spring, the North Pole is illuminated and evaporation of methane should happen. Observations of the non-saturated absorption bands in the 1.6 micron atmospheric window by the NIRSPEC (Near Infrared Spectrometer) instrument on the Keck telescope should allow us to retrieve this critical information to understand the methane cycle on Titan. Such observations were performed during the night of July 9, 2017. Simultaneously, images of Titan's North pole were taken by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during non-targeted flybys between 7:00 am and 8:45 am UT on July 10, 2017. As observed during recent non-targeted flybys, cloud activity at high northern latitudes is increasing as Titan gets closer to summer solstice. During Rev 283, elongated clouds form a circle along latitude 60 N (green arrow) with an apparent higher activity around 90W (blue arrow). There is also a bright patch at the North Pole (red arrow) that is visible at 2.1 micron and not at 2.0 micron, which also suggests cloud activity. Analysis of the 1.6 micron atmospheric window will be presented while the processing of the NIRSPEC data are ongoing.

  20. Biotechnology as the engine for the Knowledge-Based Bio-Economy.

    PubMed

    Aguilar, Alfredo; Bochereau, Laurent; Matthiessen, Line

    2010-01-01

    The European Commission has defined the Knowledge-Based Bio-Economy (KBBE) as the process of transforming life science knowledge into new, sustainable, eco-efficient and competitive products. The term "Bio-Economy" encompasses all industries and economic sectors that produce, manage and otherwise exploit biological resources and related services. Over the last decades biotechnologies have led to innovations in many agricultural, industrial, medical sectors and societal activities. Biotechnology will continue to be a major contributor to the Bio-Economy, playing an essential role in support of economic growth, employment, energy supply and a new generation of bio-products, and to maintain the standard of living. The paper reviews some of the main biotechnology-related research activities at European level. Beyond the 7th Framework Program for Research and Technological Development (FP7), several initiatives have been launched to better integrate FP7 with European national research activities, promote public-private partnerships and create better market and regulatory environments for stimulating innovation.

  1. A European Competence Framework for Industrial Pharmacy Practice in Biotechnology

    PubMed Central

    Atkinson, Jeffrey; Crowley, Pat; De Paepe, Kristien; Gennery, Brian; Koster, Andries; Martini, Luigi; Moffat, Vivien; Nicholson, Jane; Pauwels, Gunther; Ronsisvalle, Giuseppe; Sousa, Vitor; van Schravendijk, Chris; Wilson, Keith

    2015-01-01

    The PHAR-IN (“Competences for industrial pharmacy practice in biotechnology”) looked at whether there is a difference in how industrial employees and academics rank competences for practice in the biotechnological industry. A small expert panel consisting of the authors of this paper produced a biotechnology competence framework by drawing up an initial list of competences then ranking them in importance using a three-stage Delphi process. The framework was next evaluated and validated by a large expert panel of academics (n = 37) and industrial employees (n = 154). Results show that priorities for industrial employees and academics were similar. The competences for biotechnology practice that received the highest scores were mainly in: “Research and Development”,‘“Upstream” and “Downstream” Processing’, “Product development and formulation”,“Aseptic processing”, “Analytical methodology”, “Product stability”, and “Regulation”. The main area of disagreement was in the category “Ethics and drug safety” where academics ranked competences higher than did industrial employees. PMID:28975907

  2. Biotechnology in the High School Classroom.

    ERIC Educational Resources Information Center

    Ahmed, Maryam

    1996-01-01

    Describes a project that introduces students to the field of biotechnology and provides them with an understanding of the basic principles and techniques as well as an opportunity to participate in experimental methodology. Presents specific science projects that deal with polymorphism in the lipase gene and the genetic engineering of a lipase…

  3. Use of reinforced soil foundation (RSF) to support shallow foundation.

    DOT National Transportation Integrated Search

    2008-11-01

    This research study aims at investigating the potential benefits of using reinforced soil foundations to improve the bearing capacity and reduce the settlement of shallow foundations on soils. To implement this objective, a total of 117 tests, includ...

  4. Use of reinforced soil foundation (RSF) to support shallow foundation.

    DOT National Transportation Integrated Search

    2008-11-01

    The main objective of this research study is to investigate potential benefits of using the reinforced soil foundations to improve the bearing capacity and to reduce the settlement of shallow foundations on soils. This includes examining influences o...

  5. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine.

    PubMed

    Cui, Jian Dong

    2015-01-01

    Cordyceps militaris is a potential harborer of biometabolites for herbal drugs. For a long time, C. militaris has gained considerable significance in several clinical and biotechnological applications. Much knowledge has been gathered with regard to the C. militaris's importance in the genetic resources, nutritional and environmental requirements, mating behavior and biochemical pharmacological properties. The complete genome of C. militaris has recently been sequenced. This fungus has been the subject of many reviews, but few have focused on its biotechnological production of bioactive constituents. This mini-review focuses on the recent advances in the biotechnological production of bioactive compositions of C. militaris and the latest advances on novel applications from this laboratory and many others.

  6. Disease resistance: Molecular mechanisms and biotechnological applications

    USDA-ARS?s Scientific Manuscript database

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  7. The Impact of Biotechnology upon Pharmacy Education.

    ERIC Educational Resources Information Center

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  8. Perspectives of Science Communication Training Held by Lecturers of Biotechnology and Science Communication

    ERIC Educational Resources Information Center

    Edmondston, Joanne; Dawson, Vaille

    2014-01-01

    Science communication training for undergraduate science students has been recommended to improve future scientists' ability to constructively engage with the public. This study examined biotechnology lecturers' and science communication lecturers' views of science communication training and its possible inclusion in a biotechnology degree course…

  9. Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PI: Lily Y. Young

    2009-06-04

    Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical

  10. Biotechnology, Industry Study, Spring 2009

    DTIC Science & Technology

    2009-01-01

    roots to zymotechnology ( fermentation ), practiced by the Sumerians and Babylonians as early as 6,000 B.C.3 This core technology expanded to other...applications, including using yeast to make bread, bacteria to derive yogurt , and molds to make cheeses.4 Early biotechnology endeavors included...alcohol or ethanol. This first generation process uses the fermentation of sugars or starches to produce ethanol but is dependent upon corn, a

  11. Financing development stage biotechnology companies: RMs vs. IPOs.

    PubMed

    Ahn, Mark J; Couch, Robert B; Wu, Wei

    2011-01-01

    We examine reverse mergers (RMs) in the biotechnology industry and find that, when compared to initial public offerings (IPOs), RMs are smaller, have significantly lower market valuations relative to size, and generally invest less. We also find that RMs exhibit positive abnormal returns on the announcement date and throughout the first year after the RM event. In looking at liquidity measures, we find that RMs tend to be less liquid than IPOs and that illiquidity is greater during the six-month lock-up period following the RM event. Thus, RMs may be an appropriate alternative financing vehicle in capital intensive, high-risk biotechnology companies which require accessing deeper and larger pools of investors in public capital markets across multiple milestone periods in a "pay for progress" environment.

  12. Characterizing site specific considerations for protecting aircraft during LGS operations at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J., Jr.; Campbell, Randy; McCann, Kevin; Shimko, Steve

    2010-07-01

    W. M. Keck Observatory (WMKO) routinely operates laser guide star (LGS) Adaptive Optics (AO) systems at the telescope facility on the Big Island of Hawaii. One of the operational requirements for the LGS system is that a safety system to prevent nearby aircraft from being adversely affected by the laser must be provided. We will support operations in the near term with human aircraft spotters until we can successfully develop and get the appropriate approvals needed for an Automated, Integrated and Reliable System for an Aircraft Friendly Environment (AIRSAFE). This report describes some of the preliminary requirements development work at WMKO in support of the future development of AIRSAFE. We discuss the results of recent work to characterize site specific considerations that impact requirements development. The site specific considerations include the proximity of WMKO laser operations to nearby commercial airports, the implications of military operations in the area and the character of the air traffic volume and flight patterns over the telescope facility. Finally, we discuss how the design and implementation of AIRSAFE will be impacted by these site specific considerations.

  13. The Brave New World of Biotechnology

    ERIC Educational Resources Information Center

    Reese, Susan

    2004-01-01

    Is it the science that will save the world from starvation, or will it mean the end of the world as it is known? While some people fear genetically altered "Frankenfoods" and DNA experiments with pathogenic microorganisms that could result in worldwide epidemics, others view biotechnology as using biological organisms to make products that benefit…

  14. Photo-biotechnology as a tool to improve agronomic traits in crops.

    PubMed

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The Future of Foundations

    ERIC Educational Resources Information Center

    Kramer, Lawrence

    1974-01-01

    On account of the Tax Reform Act of 1969 (taxing income of a foundation) foundations have developed more rationale grant-making philosophies, longer term grants, more evaluation of grantees, and greater responsibility on the part of the foundations for grantee survival. (Author/PG)

  16. The Impact of Biotechnology on the Practice of Pharmacy in the Year 2000.

    ERIC Educational Resources Information Center

    Montague, Michael J.

    1989-01-01

    The biotechnology revolution is making contributions to the improvement of health care. Some of the biotechnology-based pharmaceuticals in the marketplace include human hormones, enzymes, enzyme inhibitors, vaccines, immunomodulators, growth factors, and monoclonal antibodies. Many new diagnostics will appear and be used by patients in their own…

  17. VizieR Online Data Catalog: Brown dwarf surface gravities with Keck/NIRSPEC (Martin , 2017)

    NASA Astrophysics Data System (ADS)

    Martin, E. C.; Mace, G. N.; McLean, I. S.; Logsdon, S. E.; Rice, E. L.; Kirkpatrick, J. D.; Burgasser, A. J.; McGovern, M. R.; Prato, L.

    2017-10-01

    In this paper, we follow up on prior NIR spectroscopy by our group and use a modified Allers & Liu (A13, 2013ApJ...772...79A) method to determine surface gravities for 228 M, L, and T dwarfs. We present medium-resolution (R~20000) J-band spectra of 85 M dwarfs, 92 L dwarfs, and 51 T dwarfs obtained as part of the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS). Ninety-seven spectra were published previously in McLean+ (2003ApJ...596..561M), Burgasser+ (2003ApJ...592.1186B), McGovern+ (2004ApJ...600.1020M), Rice+ (2010ApJS..186...63R), Kirkpatrick+ (2010, J/ApJS/190/100), Luhman (2012ARA&A..50...65L), Thompson+ (2013PASP..125..809T), Mace+ (2013, J/ApJS/205/6), Mace+ (2013ApJ...777...36M), and Kirkpatrick+ (2014, J/ApJ/783/122), and the remaining 131 are presented here for the first time. Observation information (spanning 1999 Apr to 2015 Mar) for all of the targets in our sample is listed in Table 1. (4 data files).

  18. Halophiles, coming stars for industrial biotechnology.

    PubMed

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. How-to-Do-It: Biotechnology in Three Days.

    ERIC Educational Resources Information Center

    Gardner, Alan M.

    1988-01-01

    Outlines a three-day unit for presenting biotechnology. States that the approach surveys the processes of enzyme restriction, ligation, transformations of recombinant plasmids, and gel electrophoresis. Diagrams accompany the article. (RT)

  20. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.

    PubMed

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Peng, Zhiwei; Zeng, Guangming; Xu, Piao; Cheng, Min; Wang, Rongzhong; Wan, Jia

    2018-05-01

    Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.

  1. Herbicide-resistant crop biotechnology: potential and pitfalls

    USDA-ARS?s Scientific Manuscript database

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  2. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  3. Integrating ecology into biotechnology.

    PubMed

    McMahon, Katherine D; Martin, Hector Garcia; Hugenholtz, Philip

    2007-06-01

    New high-throughput culture-independent molecular tools are allowing the scientific community to characterize and understand the microbial communities underpinning environmental biotechnology processes in unprecedented ways. By creatively leveraging these new data sources, microbial ecology has the potential to transition from a purely descriptive to a predictive framework, in which ecological principles are integrated and exploited to engineer systems that are biologically optimized for the desired goal. But to achieve this goal, ecology, engineering and microbiology curricula need to be changed from the very root to better promote interdisciplinarity.

  4. Plant biotechnology in China.

    PubMed

    Huang, Jikun; Rozelle, Scott; Pray, Carl; Wang, Qinfang

    2002-01-25

    A survey of China's plant biotechnologists shows that China is developing the largest plant biotechnology capacity outside of North America. The list of genetically modified plant technologies in trials, including rice, wheat, potatoes, and peanuts, is impressive and differs from those being worked on in other countries. Poor farmers in China are cultivating more area of genetically modified plants than are small farmers in any other developing country. A survey of agricultural producers in China demonstrates that Bacillus thuringiensis cotton adoption increases production efficiency and improves farmer health.

  5. Biotechnology for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  6. Immunological and Hematopoietic Biotechnology Studies

    NASA Technical Reports Server (NTRS)

    Fernandez-Botran, Rafael; Sonnenfeld, Gerald

    1996-01-01

    The purpose of the work carried under this interchanges was to support the development of space flight biotechnology experiments in the areas of immunology and hematopoiesis to facilitate the commercial development of space. The studies involved the interaction and development of experiments with biotechnology companies for necessary ground-based studies to allow the development of flight studies. The thrust of the work was to develop experiments with the Chiron Corporation and Bioserve involving the use of interleukin-2 to modulate the effects of spaceflight on immune responses. Spaceflight has been shown to have multiple effects on immune responses (1). lnterleukin-2 is an immuno-regulator that could have potential to counter some of the alterations induced in immune responses by spaceflight (1). To test this possibility before flight, rats were suspended antiorthostatically (2) and treated with interleukin-2. Antiorthostatic suspension is a model for some of the effects of spaceflight on immune responses (2). The interleukin-2 was given to see if it could alter some of the effects of suspension. This was achieved. As a result of these studies, two flight experiments were developed and flown with the Chiron Corp. And Bioserve to determine if use of interleukin-2 could prevent or attenuate the effects of space flight on immune responses.

  7. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    PubMed

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare ('Red'). An important consideration was the decline in partnerships between the EU and developing countries because of the original public antipathy to some green biotechnologies, particularly genetically modified organisms (GMOs) and food from GM crops in Europe. The study focus reported here was West Africa (Ghana, Senegal, Mali and Burkina Faso). The overall conclusion was that whereas high-quality research was proceeding in the countries visited, funding is not sustained and there is little evidence of practical application of biotechnology and benefit to farmers and the wider community. Research and development that was being carried out on genetically modified crop varieties was concentrating on improving food security and therefore unlikely to have significant impact on EU markets and consumers. However, there is much non-controversial green biotechnology such as molecular diagnostics for plant and animal disease and marker-assisted selection for breeding that has great potential application. Regarding white biotechnology, it is currently occupying only a very small industrial niche in West Africa, basically in the sole sector of the production of liquid biofuels (i.e., bio-ethanol) from indigenous and locally planted biomass (very often non-food crops). The presence of diffused small-scale fish production is the basis to develop and apply new (Blue) aquaculture technologies and, where the research conditions and the production sector can permit, to increase this type of

  8. Biotechnology at the Cutting Edge - Keasling

    ScienceCinema

    Keasling, Jay

    2018-05-11

    Jay Keasling, Berkeley Lab ALD for Biosciences and CEO of the Joint BioEnergy Institute, appears in a video on biotechnology at the Smithsonian's National Museum of American History. The video is part of en exhibit titled "Science in American Life," which examines the relationship between science, technology, progress and culture through artifacts, historical photographs and multimedia technology.

  9. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    PubMed

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biotechnology in Switzerland: high on the public agenda, but only moderate support.

    PubMed

    Bonfadelli, Heinz; Dahinden, Urs; Leonarz, Martina

    2002-04-01

    In Switzerland, there have been intensive public debates about biotechnology because of the specific Swiss political system of direct democracy that led, in 1992 and 1998, to two national referenda on biotechnology regulation. As a result, the Swiss population is well informed but skeptical about this technology. These findings contrast with the deficit model of public understanding of science, which predicts a positive correlation between knowledge of, and support for, a specific technology. What role did the media play in the development of public opinion? This question is discussed because of a content analysis (time series) of national newspapers. In addition, representative surveys and focus groups yield insights into the public perception of biotechnology and the influence of mass communication for opinion formation.

  11. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    PubMed

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  12. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting ACTION: Notice of cancellation of... information. Dated: May 26, 2010. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology...

  13. [Aerobic methylobacteria as promising objects of modern biotechnology].

    PubMed

    Doronina, N V; Toronskava, L; Fedorov, D N; Trotsenko, Yu A

    2015-01-01

    The experimental data of the past decade concerning the metabolic peculiarities of aerobic meth ylobacteria and the prospects for their use in different fields of modern biotechnology, including genetic engineering techniques, have been summarized.

  14. Biotechnology of siderophores in high-impact scientific fields.

    PubMed

    De Serrano, Luis O

    2017-09-26

    Different aspects of bacterial and fungal siderophore biotechnological applications will be discussed. Areas of application presented include, but are not limited to agriculture, medicine, pharmacology, bioremediation, biodegradation and food industry. In agriculture-related applications, siderophores could be employed to enhance plant growth due to their uptake by rhizobia. Siderophores hindered the presence of plant pathogens in biocontrol strategies. Bioremediation studies on siderophores discuss mostly the mobilization of heavy metals and radionuclides; the emulsifying effects of siderophore-producing microorganisms in oil-contaminated environments are also presented. The different applications found in literature based in medicine and pharmacological approaches range from iron overload to drug delivery systems and, more recently, vaccines. Additional research should be done in siderophore production and their metabolic relevance to have a deeper understanding for future biotechnological advances.

  15. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. © 2012 The Authors; Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Cultivating Foundation Support for Education.

    ERIC Educational Resources Information Center

    Murphy, Mary Kay, Ed.

    The process of acquiring financial support from private foundations is discussed in 26 essays, divided into five categories (Targeting the Foundation Market; Getting Started: Tools of the Trade; The Process of Foundation Fund Raising; The Grant Maker's Perspective; and Focused Programs and Foundation Support). A prologue, "Ethics and Foundation…

  17. Is Judgement of Biotechnological Ethical Aspects Related to High School Students' Knowledge?

    NASA Astrophysics Data System (ADS)

    Črne-Hladnik, Helena; Hladnik, Aleš; Javornik, Branka; Košmelj, Katarina; Peklaj, Cirila

    2012-05-01

    Quantitative and qualitative studies of various aspects of the perception of biotechnology were conducted among 469 Slovenian high school students of average age 17 years. Our research aimed to explore relationships among students' pre-knowledge of molecular and human genetics, and their attitudes to four specific biotechnological applications. These applications-Bt corn, genetically modified (GM) salmon, somatic and germ line gene therapy (GT)-were investigated from the viewpoints of usefulness, moral acceptance and risk perception. In addition, patterns and quality of moral reasoning related to the biotechnological applications from the aspect of moral acceptability were examined. Clear gender differences were found regarding the relationship between our students' pre-knowledge of genetics and their attitudes to biotechnological applications. While females with a better genetics background expressed a higher risk perception in the case of GM salmon, their similarly well-educated male colleagues emphasized the risk associated with the use of germ line GT. With all four biotechnological applications, patterns of both rationalistic-deontological and teleological-and intuitive moral reasoning were identified. Students with poorer genetics pre-knowledge applied an intuitive pattern of moral reasoning more frequently than their peers with better pre-knowledge. A pattern of emotive reasoning was detected only in the case of GM salmon. A relatively low quality of students' moral reasoning, as demonstrated by their brief and small number of supporting justifications (explanations), show that there is a strong need for practising skills of argumentation about socio-scientific issues in Slovenian high schools on a much larger scale. The implications for future research and classroom applications are discussed.

  18. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry

    PubMed Central

    Gonçalves, F. A. G.; Colen, G.; Takahashi, J. A.

    2014-01-01

    Yarrowia lipolytica is a nonpathogenic dimorphic aerobic yeast that stands out due to its ability to grow in hydrophobic environments. This property allowed this yeast to develop an ability to metabolize triglycerides and fatty acids as carbon sources. This feature enables using this species in the bioremediation of environments contaminated with oil spill. In addition, Y. lipolytica has been calling the interest of researchers due to its huge biotechnological potential, associated with the production of several types of metabolites, such as bio-surfactants, γ-decalactone, citric acid, and intracellular lipids and lipase. The production of a metabolite rather than another is influenced by the growing conditions to which Y. lipolytica is subjected. The choice of carbon and nitrogen sources to be used, as well as their concentrations in the growth medium, and the careful determination of fermentation parameters, pH, temperature, and agitation (oxygenation), are essential for efficient metabolites production. This review discusses the biotechnological potential of Y. lipolytica and the best growing conditions for production of some metabolites of biotechnological interest. PMID:24715814

  19. Novel gene expression tools for rice biotechnology

    USDA-ARS?s Scientific Manuscript database

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  20. The Initial-Final Mass Relationship: Spectroscopy of White Dwarfs in NGC 2099 (M37)

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot Singh; Richer, Harvey B.; Reitzel, David; Hansen, Brad M. S.; Rich, R. Michael; Fahlman, Gregory G.; Gibson, Brad K.; von Hippel, Ted

    2005-01-01

    We present new observations of very faint white dwarfs (WDs) in the rich open star cluster NGC 2099 (M37). Following deep, wide-field imaging of the cluster using the Canada-France-Hawaii Telescope, we have now obtained spectroscopic observations of candidate WDs using both the Gemini Multi-Object Spectrograph on Gemini North and the Low-Resolution Imaging Spectrometer on Keck. Of our 24 WD candidates (all fainter than V=22.4), 21 are spectroscopically confirmed to be bona fide WDs, four or five of which are most likely field objects. Fitting 18 of the 21 WD spectra with model atmospheres, we find that most WDs in this cluster are quite massive (0.7-0.9 Msolar), as expected given the cluster's young age (650 Myr) and, hence, high turnoff mass (~2.4 Msolar). We determine a new initial-final mass relationship and almost double the number of existing data points from previous studies. The results indicate that stars with initial masses between 2.8 and 3.4 Msolar lose 70%-75% of their mass through stellar evolution. For the first time, we find some evidence of a metallicity dependence on the initial-final mass relationship. Based on observations with Gemini (run ID GN-2002B-Q-11) and Keck. Gemini is an international partnership managed by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation. The W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, was made possible by the generous financial support of the W. M. Keck Foundation.