Sample records for keck spectroscopic survey

  1. Spectroscopic Classification of SN 2018gv with Keck I/LRIS

    NASA Astrophysics Data System (ADS)

    Siebert, M. R.; Dimitriadis, G.; Foley, R. J.

    2018-01-01

    We obtained spectroscopic observations of SN 2018gv with the LRIS spectrograph on the 10-m Keck I telescope on 2018 Jan 16 UT. The spectrum indicates that SN 2018gv is a very young, normal Type Ia supernova.

  2. Spectroscopic Classifications of Optical Transients with Keck I/LRIS

    NASA Astrophysics Data System (ADS)

    Foley, R. J.; Rojas-Bravo, C.

    2018-05-01

    We report the following classifications of optical transients from spectroscopic observations with LRIS on the Keck I 10-m telescope. Targets were supplied by the ASAS-SN and PSH. All observations were made on 2018 May 10 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).

  3. VizieR Online Data Catalog: Team Keck Redshift Survey 2 (TKRS2) (Wirth+, 2015)

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Trump, J. R.; Barro, G.; Guo, Y.; Koo, D. C.; Liu, F.; Kassis, M.; Lyke, J.; Rizzi, L.; Campbell, R.; Goodrich, R. W.; Faber, S. M.

    2016-04-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a spectroscopic survey of 97 distant galaxies exploiting the capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck I telescope at the W. M. Keck Observatory. MOSFIRE features a 2048*2048 pixel HAWAII-2RG HgCdTe detector array from Teledyne Imaging Sensors that couples high quantum efficiency with low noise and low dark current. The operating range of 0.97-2.41μm covers the YJHK infrared passbands, with wavelength coverage of 0.97-1.12μm in Y, 1.15-1.35μm in J, 1.47-1.80μm in H, and 1.95-2.40μm in K. The resolving power for the default slit width of 0.7" is R=3380 in Y, 3310 in J, 3660 in H, and 3620 in K, corresponding to full-width-half-maximum (FWHM) spectral resolutions of 3.1Å in Y, 3.7Å in J, 4.4Å in H, and 6.0Å in K. Our survey targets the south-central region of the GOODS-North survey field (Giavalisco et al. 2004, cat. II/261). We employed MOSFIRE to acquire spectra in the GOODS-North field over a series of partial nights spanning the period from 2012 November to 2013 May. We present the results of our survey in Table3 and on the website (http://arcoiris.ucsc.edu/TKRS2/) devoted to the survey. (1 data file).

  4. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are

  5. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Ibata, R. A.; Chapman, S. C.; Irwin, M.; Lewis, G. F.

    2007-09-01

    We present the results of a spectroscopic survey of the recently discovered faint Milky Way satellites Boötes, Ursa Major I, Ursa Major II and Willman 1 (Wil1). Using the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, we have obtained samples that contain from ~15 to ~85 probable members of these satellites for which we derive radial velocities precise to a few kms-1 down to i ~ 21-22. About half of these stars are observed with a high enough signal-to-noise ratio to estimate their metallicity to within +/-0.2 dex. The characteristics of all the observed stars are made available, along with those of the Canes Venatici I dwarf galaxy that have been analysed in a companion paper. From this data set, we show that Ursa Major II is the only object that does not show a clear radial velocity peak. However, the measured systemic radial velocity (vr = 115 +/- 5kms-1) is in good agreement with simulations in which this object is the progenitor of the recently discovered Orphan Stream. The three other satellites show velocity dispersions that make them highly dark matter dominated systems (under the usual assumptions of symmetry and virial equilibrium). In particular, we show that despite its small size and faintness, the Wil1 object is not a globular cluster given its metallicity scatter over -2.0 <~ [Fe/H] <~ -1.0 and is therefore almost certainly a dwarf galaxy or dwarf galaxy remnant. We measure a radial velocity dispersion of only 4.3+2.3-1.3kms-1 around a systemic velocity of -12.3 +/- 2.3kms-1 which implies a mass-to-light ratio of ~700 and a total mass of ~5 × 105Msolar for this satellite, making it the least massive satellite galaxy known to date. Such a low mass could mean that the 107Msolar limit that had until now never been crossed for Milky Way and Andromeda satellite galaxies may only be an observational limit and that fainter, less massive systems exist within the Local Group. However, more modelling and an extended search for

  6. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndIX, AndXI, AndXII and AndXIII†

    NASA Astrophysics Data System (ADS)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M. J.; Martin, N. F.; Ibata, R. A.; Zucker, D. B.; Blain, A.; Ferguson, A. M. N.; Lewis, G. F.; McConnachie, A. W.; Peñarrubia, J.

    2010-10-01

    We present the first spectroscopic analysis of the faint M31 satellite galaxies, AndXI and AndXIII, as well as a re-analysis of existing spectroscopic data for two further faint companions, AndIX (correcting for an error in earlier geometric modelling that caused a misclassification of member stars in previous work) and AndXII. By combining data obtained using the Deep Imaging Multi-Object Spectrograph (DEIMOS) mounted on the Keck II telescope with deep photometry from the Suprime-Cam instrument on Subaru, we have identified the most probable members for each of the satellites based on their radial velocities (precise to several down to i ~ 22), distance from the centre of the dwarf spheroidal galaxies (dSphs) and their photometric [Fe/H]. Using both the photometric and spectroscopic data, we have also calculated global properties for the dwarfs, such as systemic velocities, metallicities and half-light radii. We find each dwarf to be very metal poor ([Fe/H] ~ -2 both photometrically and spectroscopically, from their stacked spectrum), and as such, they continue to follow the luminosity-metallicity relationship established with brighter dwarfs. We are unable to resolve dispersion for AndXI due to small sample size and low signal-to-noise ratio, but we set a 1σ upper limit of σv < 4.5kms-1. For AndIX, AndXII and AndXIII we resolve velocity dispersions of σv = 4.5+3.6-3.4, 2.6+5.1-2.6 and 9.7+8.9-4.5kms-1, though we note that the dispersion for AndXIII is based on just three stars. We derive masses within the half-light radii for these galaxies of 6.2+5.3-5.1 × 106, 2.4+6.5-2.4 × 106 and 1.1+1.4-0.7 × 107Msolar, respectively. We discuss each satellite in the context of the Mateo relations for dSphs, and in reference to the universal halo profiles established for Milky Way dwarfs. Both AndIX and AndXII fall below the universal halo profiles of Walker et al., indicating that they are less massive than would be expected for objects of their half-light radius. When

  7. VizieR Online Data Catalog: Keck/MOSFIRE spectroscopy of ZFOURGE galaxies (Tran+, 2017)

    NASA Astrophysics Data System (ADS)

    Tran, K.-V. H.; Alcorn, L. Y.; Kacprzak, G. G.; Nanayakkara, T.; Straatman, C.; Yuan, T.; Cowley, M.; Dave, R.; Glazebrook, K.; Kewley, L. J.; Labbe, I.; Martizzi, D.; Papovich, C.; Quadri, R.; Spitler, L. R.; Tomczak, A.

    2017-06-01

    Here we combine Hα emission from our ZFIRE survey (Nanayakkara+ 2016, J/ApJ/828/21) with galaxy properties from the ZFOURGE survey (Straatman+ 2016, J/ApJ/830/51) and IR luminosities from Spitzer to track how galaxies grow at z~2. ZFIRE is a near-IR spectroscopic survey with MOSFIRE on Keck I where targets are selected from ZFOURGE, an imaging survey that combines deep near-IR observations taken with the FourStar Imager at the Magellan Observatory with public multi-wavelength observations, e.g., Hubble Space Telescope (HST) imaging from CANDELS (Grogin+ 2011ApJS..197...35G). The Keck/MOSFIRE spectroscopy was obtained on observing runs in 2013 December and 2014 February. A total of eight slit masks were observed in the K-band (1.93-2.38um). We also observed two masks in the H-band covering 1.46-1.81um. (1 data file).

  8. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M

  9. A spectroscopic survey of EC4, an extended cluster in Andromeda's halo

    NASA Astrophysics Data System (ADS)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M.; Ibata, R.; Martin, N. F.; Ferguson, A. M. N.; Huxor, A.; Lewis, G. F.; Mackey, A. D.; McConnachie, A. W.; Tanvir, N.

    2009-07-01

    We present a spectroscopic survey of candidate red giant branch stars in the extended star cluster, EC4, discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey, overlapping the tidal streams, Streams`Cp' and `Cr'. These observations used the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope to obtain spectra around the CaII triplet region with ~1.3 Å resolution. Six stars lying on the red giant branch within two core radii of the centre of EC4 are found to have an average vr = -287.9+1.9-2.4kms-1 and σv,corr = 2.7+4.2-2.7kms-1, taking instrumental errors into account. The resulting mass-to-light ratio for EC4 is M/L = 6.7+15-6.7Msolar/Lsolar, a value that is consistent with a globular cluster within the 1σ errors we derive. From the summed spectra of our member stars, we find EC4 to be metal-poor, with [Fe/H] = -1.6 +/- 0.15. We discuss several formation and evolution scenarios which could account for our kinematic and metallicity constraints on EC4, and conclude that EC4 is most comparable with an extended globular cluster. We also compare the kinematics and metallicity of EC4 with Streams `Cp' and`Cr', and find that EC4 bears a striking resemblance to Stream`Cp' in terms of velocity, and that the two structures are identical in terms of both their spectroscopic and photometric metallicities. From this, we conclude that EC4 is likely related to Stream`Cp'. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. E-mail: mlmc2@ast.cam.ac.uk

  10. KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, Ronald O.

    2010-11-01

    Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background.more » From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is {approx}100% for objects expected to be members and better than {approx}90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors {approx}0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster

  11. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  12. The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Hasinger, G.; Capak, P.; Salvato, M.; Barger, A. J.; Cowie, L. L.; Faisst, A.; Hemmati, S.; Kakazu, Y.; Kartaltepe, J.; Masters, D.; Mobasher, B.; Nayyeri, H.; Sanders, D.; Scoville, N. Z.; Suh, H.; Steinhardt, C.; Yang, Fengwei

    2018-05-01

    We present a catalog of 10,718 objects in the COSMOS field, observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ∼5500–9800 Å. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects, we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I AB ∼ 23 and K AB ∼ 21, with a secondary peak at K AB ∼ 24. We sample a broad redshift distribution in the range 0 < z < 6, with one peak at z ∼ 1, and another one around z ∼ 4. We have identified 13 redshift spikes at z > 0.65 with chance probabilities < 4 × 10‑4, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Lyα background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the

  13. VizieR Online Data Catalog: LCES HIRES/Keck radial velocity Exoplanet Survey (Butler+, 2017)

    NASA Astrophysics Data System (ADS)

    Butler, R. P.; Vogt, S. S.; Laughlin, G.; Burt, J. A.; Rivera, E. J.; Tuomi, M.; Teske, J.; Arriagada, P.; Diaz, M.; Holden, B.; Keiser, S.

    2017-08-01

    We present 60949 precision radial velocities of 1624 stars obtained over the past 20 years from the Lick-Carnegie Exoplanet Survey Team (LCES) survey with the HIgh-Resolution Echelle Spectrometer (HIRES) spectrometer on the Keck I telescope. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. For this survey, the HIRES spectrometer was configured to operate at a nominal spectral resolving power of R~60000 and wavelength range of 3700-8000Å. (4 data files).

  14. VizieR Online Data Catalog: Keck+Magellan survey for LLSs. III. (Prochaska+, 2015)

    NASA Astrophysics Data System (ADS)

    Prochaska, J. X.; O'Meara, J. M.; Fumagalli, M.; Bernstein, R. A.; Burles, S. M.

    2016-01-01

    The sample presented in this manuscript is intended to be a nearly all-inclusive set of Lyman Limit Systems (LLSs) discovered in the high-dispersion (echelle or echellette; R>5000) spectra that we have gathered at the Keck and Magellan telescopes. Regarding Keck, we have examined all of the data obtained by Principal Investigators (PIs) A. M. Wolfe and J. X. Prochaska at the W. M. Keck Observatory through 2012 April, and from PIs Burles, O'Meara, Bernstein, and Fumagalli at Magellan through 2012 July. We also include the Keck spectra analyzed by Penprase et al. (2010, J/ApJ/721/1). We present data obtained at the W. M. Keck and Las Campanas Observatories using the twin 10m Keck I and Keck II telescopes and the twin 6.5m Baade and Clay telescopes. Altogether, we used four spectrometers: (1) the High Resolution Echelle Spectrometer (HIRES); (2) the Echellette Spectrograph and Imager (ESI); (3) the Magellan Inamori Kyocera Echelle (MIKE); and (4) the Magellan Echellette Spectrograph (MagE). Observing logs for the HIRES and MIKE spectra are provided in Tables 1 and 2. (5 data files).

  15. A Spectroscopic Survey of Lensed Dwarf Galaxies at 1

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian; gburek, Timothy; Richard, Johan; Teplitz, Harry; Rafelski, Marc; Stark, Daniel P.; Anahita Alavi

    2018-01-01

    High-redshift dwarf galaxies (M<109 M⊙) are one of the primary targets of the James Web Space Telescope. Recent studies have suggested that these galaxies are different than their bright counterparts, as they follow a divergent evolutionary history of star formation. In our previous study, utilizing the magnification from massive clusters of galaxies (Hubble Frontier Fields), we found a large sample of dwarf star-forming galaxies at the peak epoch of star formation (1spectroscopic survey of these lensed faint galaxies using the Multi-Object Near-IR Spectrograph (MOSFIRE) at the Keck observatory. In this talk, I will present their nebular dust attenuation measurements using the ratio of Balmer lines (i.e., Balmer decrement) and compare with their stellar dust attenuation (i.e., from UV spectral slopes). I will also show that these faint galaxies follow a steep dust extinction curve (i.e., SMC like).

  16. THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Gregory D.; Kassis, Marc; Lyke, Jim

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band.more » We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra.« less

  17. The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Butler, R. Paul; Vogt, Steven S.; Laughlin, Gregory; Burt, Jennifer A.; Rivera, Eugenio J.; Tuomi, Mikko; Teske, Johanna; Arriagada, Pamela; Diaz, Matias; Holden, Brad; Keiser, Sandy

    2017-05-01

    We describe a 20 year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1624 stars contained in that survey. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. These signals are thus strongly suggestive of barycentric reflex motion of the star induced by one or more candidate exoplanets in Keplerian motion about the host star. Of these signals, 225 have already been published as planet claims, 60 are classified as significant unpublished planet candidates that await photometric follow-up to rule out activity-related causes, and 54 are also unpublished, but are classified as “significant” signals that require confirmation by additional data before rising to classification as planet candidates. Of particular interest is our detection of a candidate planet with M\\sin (I)=3.8 {M}\\oplus , and P = 9.9 days orbiting Lalande 21185, the fourth-closest main-sequence star to the Sun. For each of our exoplanetary candidate signals, we provide the period and semi-amplitude of the Keplerian orbital fit, and a likelihood ratio estimate of its statistical significance. We also tabulate 18 Keplerian-like signals that we classify as likely arising from stellar activity.

  18. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa

    2017-03-01

    We combine 131 new medium-resolution (R ˜ 2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6-L7 objects in our sample by measuring the equivalent widths (EW) of the K I lines at 1.1692, 1.1778, and 1.2529 μm, and the 1.2 μm FeH J absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak—at ˜L5 and T5—in K I EW as a function of spectral type. We analyze the K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  19. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  20. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Angelle; White, Russel; Bailey, John

    2012-11-15

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s{sup -1} for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s{sup -1}. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface ofmore » M dwarfs, we can place upper limits of <40 M{sub J} sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s{sup -1} at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 {mu}m to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.« less

  1. Star formation history and chemical enrichment in the early Universe: clues from the rest-optical and rest-UV spectra of z~2-3 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Strom, Allison L.

    2017-01-01

    Galaxies at the peak of cosmic star formation (z~2-3) exhibit significantly higher star formation rates and gas fractions at fixed stellar mass than nearby galaxies. These z~2-3 galaxies are also distinct in terms of their nebular spectra, reflecting important differences not only in the physical conditions of their interstellar medium (e.g., electron density and gas-phase metallicity), but also in the details of their massive stellar populations, especially their ionizing radiation fields. Jointly observing galaxies' HII regions, at rest-UV and rest-optical wavelengths, and massive stars, at rest-UV wavelengths, is central to constructing a framework for understanding the differences between z~2-3 and z~0 star-forming galaxies and for self-consistently explaining the trends observed in the high-redshift population. My thesis is based on data from the Keck Baryonic Structure Survey (KBSS), which uniquely combines observations of individual galaxies in these two bandpasses. In total, the near-infrared component of the KBSS includes spectra of >700 z~2-3 galaxies obtained with Keck/MOSFIRE. I will present these results along with a detailed analysis of the full rest-optical (3600-7000 Ang) nebular spectra of ~400 galaxies, showing that high-redshift galaxies exhibit uniformly high degrees of ionization and excitation with respect to most z~0 galaxies. Combined with observations of the same galaxies' rest-UV spectra (obtained with Keck/LRIS) and photoionization model predictions, these results suggest that the disparity arises from differences in the shape of the ionizing radiation field at fixed gas-phase oxygen abundance, most likely due to the effects of Fe-poor massive binary stars. My comprehensive spectroscopic study of an unprecedentedly large sample of z~2-3 galaxies offers compelling evidence that the distinct chemical abundance patterns observed in these galaxies are the result of systematic differences in their star formation histories.

  2. The SPLASH Survey: A Spectroscopic Analysis of the Metal-Poor, Low-Luminosity M31 dSph Satellite Andromeda X

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason S.; Zucker, Daniel B.; Guhathakurta, Puragra; Geha, Marla; Kniazev, Alexei Y.; Martínez-Delgado, David; Bell, Eric F.; Grebel, Eva K.; Gilbert, Karoline M.

    2009-11-01

    Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for ~100 stars with a median accuracy of σ v ~ 3 km s-1. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity "spike" consisting of 22 stars belonging to And X with v rad = -163.8 ± 1.2 km s-1. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just σ v = 3.9 ± 1.2 km s-1 for And X, which for its size, implies a minimum mass-to-light ratio of M/LV = 37+26 -19 assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 ± 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, σ([Fe/H]phot) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (MV = -8.1 ± 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with MV < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest that And X is less massive by a factor of 4 when compared to Milky Way dSphs of comparable luminosity

  3. Dwarfs Cooler Than M: The Definition of Spectral Type L Using Discoveries from the 2-Micron All-Sky Survey (2MASS)

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J.; Reid, I.; Liebert, J.; Cutri, R.; Nelson, B.; Beichman, C.; Dahn, C.; Monet, D.; Gizis, J.; Skrutskie, M.

    1998-01-01

    Before the 2-Micron All-Sky Survey (2MASS) began, only six objects were known with spectral types later than M9.5 V. In the first 371 sq. deg. of actual 2MASS survey data, we have identified another twenty such objects spectroscopically confirmed using the Low Resolution Imaging Spectrograph (LRIS) at the W.M. Keck Observatory.

  4. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  5. Twenty Years of Precise Radial Velocities at Keck and Lick Observatories

    NASA Astrophysics Data System (ADS)

    Wright, J. T.

    2015-10-01

    The precise radial velocity survey at Keck Observatory began over 20 years ago. Its survey of thousands of stars now has the time baseline to be sensitive to planets with decade-long orbits, including Jupiter analogs. I present several newly-finished orbital solutions for long-period giant planets. Although hot Jupiters are generally ``lonely'' (i.e. they are not part of multiplanet systems), those that are not appear to often have giant companions at 5 AU or beyond. I present two of the highest period-ratios among planets in a two-planet system, and some of the longest orbital periods ever measured for exoplanets. In many cases, combining Keck radial velocities from those from other long-term surveys at Lick Observatory, McDonald Observatory, HARPS, and, of course, OHP spectrographs, produces superior orbital fits, constraining both period and eccentricity better than could be possible with any single set alone. Stellar magnetic activity cycles can masquerade as long-period planets. In most cases this effect is very small, but a loud minority of stars, including, apparently, HD 154345, show very strong RV-activity correlations.

  6. Optimization of spectroscopic surveys for testing non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raccanelli, Alvise; Doré, Olivier; Dalal, Neal, E-mail: alvise@caltech.edu, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: dalaln@illinois.edu

    We investigate optimization strategies to measure primordial non-Gaussianity with future spectroscopic surveys. We forecast measurements coming from the 3D galaxy power spectrum and compute constraints on primordial non-Gaussianity parameters f{sub NL} and n{sub NG}. After studying the dependence on those parameters upon survey specifications such as redshift range, area, number density, we assume a reference mock survey and investigate the trade-off between number density and area surveyed. We then define the observational requirements to reach the detection of f{sub NL} of order 1. Our results show that power spectrum constraints on non-Gaussianity from future spectroscopic surveys can improve on currentmore » CMB limits, but the multi-tracer technique and higher order correlations will be needed in order to reach an even better precision in the measurements of the non-Gaussianity parameter f{sub NL}.« less

  7. The Keck Task Library (KTL)

    NASA Technical Reports Server (NTRS)

    Lupton, W. F.; Conrad, A. R.

    1992-01-01

    KTL is a set of routines which eases the job of writing applications which must interact with a variety of underlying sub-systems (known as services). A typical application is an X Window user interface coordinating telescope and instruments. In order to connect to a service, application code specifies a service name--typically an instrument name--and a style, which defines the way in which the application will interact with the service. Two styles are currently supported: keyword, where the application reads and writes named keywords and the resulting inter-task message traffic is hidden; and message, where the application deals directly with messages. The keyword style is intended mainly for user interfaces, and the message style is intended mainly for lower-level applications. KTL applications are event driven: a typical application first connects to all its desired services, then expresses interest in specified events. The application then enters an event dispatch loop in which it waits for events and calls the appropriate service's event-handling routine. Each event is associated with a call-back routine which is invoked when the event occurs. Call-back routines may (and typically do) interact with other sub-systems and KTL provides the means of doing so without blocking the application (vital for X Window user interfaces). This approach is a marriage of ideas culled from the X window, ADAM, Keck instrument, and Keck telescope control systems. A novel feature of KTL is that it knows nothing about any services or styles. Instead it defines a generic set of routines which must be implemented by all services and styles (essentially open(), ioctl(), read(), write(), event(), and close()) and activates sharable libraries at run-time. Services have been implemented (in both keyword and message styles) for HIRES (the Keck high resolution echelle spectrograph built by Lick Observatory), LWS (the Keck long wavelength spectrometer built by UC San Diego), and the Keck

  8. Keck adaptive optics: control subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less

  9. bicep2/ KECK ARRAY . IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Barkats, D.

    2015-06-18

    bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS P. A. R. Ade1, R. W. Aikin2, D. Barkats3, S. J. Benton4, C. A. Bischoff5, J. J. Bock2,6, K. J. Bradford5, J. A. Brevik2, I. Buder5, E. Bullock7Show full author list Published 2015 June 18 • © 2015. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 806, Number 2 Article PDF Figures Tables References Citations 273 Total downloads Cited by 6 articles Turn on MathJax Share this article Get permission to re-use this article Article information Abstract bicep2 and the Keck Array aremore » polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  10. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  11. A HIRES/Keck Spectroscopic Investigation of the Measurement of Sodium in the Atmosphere of HD 209458b

    NASA Astrophysics Data System (ADS)

    Langland-Shula, Laura E.; Vogt, Steven S.; Charbonneau, David; Butler, Paul; Marcy, Geoff

    2009-05-01

    We present high-resolution High Resolution Echelle Spectrometer (HIRES)/Keck spectra of HD 209458, and a Monte Carlo variation on the basic method used by other workers, to look for the excess in-transit absorption in the NaD doublet at 5893 Å due to the extrasolar planet. The HIRES data, binned by bandpass, allow a direct comparison with previous results. We find >3σ results in most test bandpasses around the NaD doublet, including relative absorption of (-108.8 ± 25.7) × 10-5 in the "narrow" bandpass used by other workers. This is ≈4.7 times larger than the "narrow" results reported by Charbonneau et al. for HD 209458b. However, >2σ absorption is detected in some weak Fe I and Ni I lines that were tested for comparison, raising concern about the uncertainties introduced by continuum-fitting and terrestrial atmosphere subtraction. Based on data obtained with the W. M. Keck Observatory, which is operated by a partnership consisting of the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  12. The Keck Cosmic Web Imager (KCWI): A Powerful New Integral Field Spectrograph for the Keck Observatory

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick; KCWI Team

    2013-01-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  13. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  14. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  15. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  16. VizieR Online Data Catalog: Brown dwarf surface gravities with Keck/NIRSPEC (Martin , 2017)

    NASA Astrophysics Data System (ADS)

    Martin, E. C.; Mace, G. N.; McLean, I. S.; Logsdon, S. E.; Rice, E. L.; Kirkpatrick, J. D.; Burgasser, A. J.; McGovern, M. R.; Prato, L.

    2017-10-01

    In this paper, we follow up on prior NIR spectroscopy by our group and use a modified Allers & Liu (A13, 2013ApJ...772...79A) method to determine surface gravities for 228 M, L, and T dwarfs. We present medium-resolution (R~20000) J-band spectra of 85 M dwarfs, 92 L dwarfs, and 51 T dwarfs obtained as part of the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS). Ninety-seven spectra were published previously in McLean+ (2003ApJ...596..561M), Burgasser+ (2003ApJ...592.1186B), McGovern+ (2004ApJ...600.1020M), Rice+ (2010ApJS..186...63R), Kirkpatrick+ (2010, J/ApJS/190/100), Luhman (2012ARA&A..50...65L), Thompson+ (2013PASP..125..809T), Mace+ (2013, J/ApJS/205/6), Mace+ (2013ApJ...777...36M), and Kirkpatrick+ (2014, J/ApJ/783/122), and the remaining 131 are presented here for the first time. Observation information (spanning 1999 Apr to 2015 Mar) for all of the targets in our sample is listed in Table 1. (4 data files).

  17. The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.

    2018-01-01

    As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.

  18. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    NASA Astrophysics Data System (ADS)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  19. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less

  20. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  1. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  2. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  3. SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys

    DOE PAGES

    Nord, B.; Amara, A.; Refregier, A.; ...

    2016-03-03

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  4. BICEP2 / Keck Array V: Measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck Array

    DOE PAGES

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; ...

    2015-09-29

    Here, the Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectralmore » difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg 2 for an equivalent survey weight of 250,000 μK –2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less

  5. BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.

    2015-10-01

    The Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral differencemore » tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg{sup 2} for an equivalent survey weight of 250,000 μK{sup −2}. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.« less

  6. Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M

    DOE PAGES

    Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...

    2015-08-07

    We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less

  7. The California-Kepler Survey. I. High-resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets

    NASA Astrophysics Data System (ADS)

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Isaacson, Howard; Cargile, Phillip A.; Hebb, Leslie; Fulton, Benjamin J.; Weiss, Lauren M.; Morton, Timothy D.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.; Crossfield, Ian J. M.

    2017-09-01

    The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA’s Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited ({Kp}< 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60 K in {T}{eff}, 0.10 dex in {log}g, 0.04 dex in [{Fe}/{{H}}], and 1.0 {km} {{{s}}}-1 in V\\sin I. In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.

  8. Latest Results from the Multi-Object Keck Exoplanet Tracker

    NASA Astrophysics Data System (ADS)

    Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.

    2006-12-01

    The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.

  9. THE SPLASH SURVEY: A SPECTROSCOPIC PORTRAIT OF ANDROMEDA'S GIANT SOUTHERN STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Kollipara, Priya

    2009-11-10

    The giant southern stream (GSS) is the most prominent tidal debris feature in M31's stellar halo and covers a significant fraction of its southern quadrant. The GSS is a complex structure composed of a relatively metal-rich, high-surface-brightness 'core' and a lower metallicity, lower-surface-brightness 'envelope'. We present spectroscopy of red giant stars in six fields in the vicinity of M31's GSS (including four new fields and improved spectroscopic reductions for two previously published fields) and one field on stream C, an arc-like feature seen in star-count maps on M31's southeast minor axis at R approx 60 kpc. These data are partmore » of our ongoing Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey of M31 using the DEIMOS instrument on the Keck II 10 m telescope. Several GSS-related findings and measurements are presented here. We present the innermost kinematical detection of the GSS core to date (R = 17 kpc). This field also contains the inner continuation of a second kinematically cold component that was originally seen in a GSS core field at R approx 21 kpc. The velocity gradients of the GSS and the second component in the combined data set are parallel over a range of DELTAR = 7 kpc, suggesting that this may represent a bifurcation in the line-of-sight velocities of GSS stars. We present the first kinematical detection of substructure in the GSS envelope (S quadrant, R approx 58 kpc). Using kinematically identified samples, we show that the envelope debris has a approx0.7 dex lower mean photometric metallicity and possibly higher intrinsic velocity dispersion than the GSS core. The GSS is also identified in the field of the M31 dwarf spheroidal satellite And I; the GSS in this field has a metallicity distribution identical to that of the GSS core. We confirm the previous finding of two kinematically cold components in stream C, and measure intrinsic velocity dispersions of approx10 and approx4 km s{sup -1}. This compilation

  10. Kinematic, Photometric, and Spectroscopic Properties of Faint White Dwarf Stars Discovered in the HALO7D Survey of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Harris, Madison; Cunningham, Emily; Guhathakurta, Puragra; Cheshire, Ishani; Gupta, Nandita

    2018-01-01

    White dwarf (WD) stars represent the final phase in the life of solar-mass stars. The extreme low luminosity of WDs means that most detailed measurements of such stars are limited to samples in the immediate neighborhood of the Sun in the thin disk of the Milky Way galaxy. We present spectra, line-of-sight (LOS) velocities, and proper motions (PMs) of a sample of faint (m_V ~ 19.0–24.5) white dwarfs (WDs) from the HALO7D survey. HALO7D is a Keck II/DEIMOS spectroscopic survey of unprecedented depth (8–24 hour integrations) in the CANDELS fields of main sequence turnoff stars in the Milky Way's outer halo. Faint WD stars are rare but useful by-products of this survey. We identify the sample of WDs based on their characteristic broad spectral Balmer absorption features, and present a Bayesian method for measuring their LOS velocities. Using their broadband colors, LOS velocities and PMs measured with the Hubble Space Telescope, we identify candidate halo members among the WDs based on the predicted velocity distributions from the Besançon numerical model of stellar populations in the Milky Way galaxy. The WDs found in the HALO7D survey will yield new insights on the old stellar population associated with the Milky Way's thick disk and halo. Funding for this research was provided by the National Science Foundation and NASA/STScI. NG and IC's participation in this research was under the auspices of the Science Internship Program at the University of California Santa Cruz.

  11. A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Mendez, R. A.; Tokovinin, A.; Horch, E.

    2018-01-01

    We present a speckle survey of Hipparcos visual doubles and spectroscopic binary stars identified by the Geneva-Copenhagen spectroscopic survey with the SOAR 4m telescope + HRCam. These systems represent our best chance to take advantage of Gaia parallaxes for the purpose of stellar mass determinations. Many of these systems already have mass fractions (although generally no spectroscopic orbit - an astrometric orbit will determine individual masses), metallicity information, and Hipparcos distances. They will be used to improve our knowledge of the mass-luminosity relation, particularly for lower-metallicity stars. Our survey will create the first all-sky, volume-limited, speckle archive for the two primary samples, complementing a similar effort that has been recently been completed at the WIYN 3.5-m telescope in the Northern Hemisphere. This extension to the Southern Hemisphere will fill out the picture for a wider metallicity range.

  12. The Complete Calibration of the Color-Redshift Relation (C3R2) survey for Euclid

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Masters, Daniel; C3R2 Team

    2018-06-01

    The complete calibration of the color-redshift relation (C3R2) survey is a multi-institution, mutli-instrument survey with the Keck telescopes that aims to map out the empirical galaxy color-redshift relation in preparation for the Stage IV dark energy missions Euclid and WFIRST. A key challenge for weak lensing cosmology with these missions will be measuring highly accurate redshift distributions for billions of faint galaxies using only broad-band photometric observations. Well-calibrated photometric redshifts will thus be critical to their success. C3R2 uses an innovative technique that maps the color distribution of galaxies in the high-dimensional color space (u-g, ..., J-H) expected for Euclid and WFIRST, allowng us to focus spectroscopic effort on those regions of galaxy color space which are currently unexplored. C3R2 is a joint effort involving all of the Keck partners, with 44.5 nights allocated thus far. DR1 is published (Masters, Stern, Cohen et al, ApJ, 841, 111), and DR2, with > 3000 new redshifts, will be submitted in mid 2018.

  13. Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill

    2009-07-01

    We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and

  14. Pre-phase A: Development of a far-ultraviolet photometric- and spectroscopic-survey small-explorer experiment

    NASA Technical Reports Server (NTRS)

    Martin, Christopher

    1993-01-01

    We propose to perform a far ultraviolet photometric and spectroscopic survey covering the lambda lambda 1300-2000 band with a sensitivity comparable to that of the Palomar Sky Survey. This survey will proceed in three phases: an all-sky survey in three bands to 18-19.5(sup m), deep surveys of selected targets of interest in the same bands to 21-22(sup m), and a spectroscopic survey of 2 percent of the sky to 18(sup m) with a resolution of 3-20A. This mission, the Joint Ultraviolet Nightsky Observer (JUNO), can be performed by a Small-Explorer-class satellite.

  15. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  16. A Spectroscopic Survey and Analysis of Bright, Hydrogen-rich White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Bergeron, P.; Ruiz, M. T.

    2011-12-01

    We have conducted a spectroscopic survey of over 1300 bright (V <= 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 078.D-0824(A).

  17. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.

    2017-03-20

    We combine 131 new medium-resolution ( R ∼ 2000) J -band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the K i lines at 1.1692, 1.1778, and 1.2529 μ m, and the 1.2 μ m FeH{sub J} absorption index. Our resultsmore » are consistent with previous surface gravity measurements, showing a distinct double peak—at ∼L5 and T5—in K i EW as a function of spectral type. We analyze the K i EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6–L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate.« less

  18. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  19. Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-forming Galaxies at Redshifts z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2005-12-01

    We introduce a very deep, Rlim~27, multicolor imaging survey of very faint star-forming galaxies at z~4, 3, 2.2, and 1.7. This survey, carried out on the Keck I telescope, uses the very same UnGRI filter system that is employed by the Steidel team to select galaxies at these redshifts and thus allows us to construct identically selected but much fainter samples. However, our survey reaches ~1.5 mag deeper than the work of Steidel and his group, letting us probe substantially below the characteristic luminosity L* and thus study the properties and redshift evolution of the faint component of the high-z galaxy population. The survey covers 169 arcmin2 in three spatially independent patches on the sky and-to R<=27-contains 427 GRI-selected z~4 Lyman break galaxies, 1481 UnGR-selected z~3 Lyman break galaxies, 2417 UnGR-selected z~2.2 star-forming galaxies, and 2043 UnGR-selected z~1.7 star-forming galaxies. In this paper, the first in a series, we introduce the survey, describe our observing and data reduction strategies, and outline the selection of our z~4, 3, 2.2, and 1.7 samples. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. Nulling at the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.

    2006-01-01

    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.

  1. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  2. Remote observing with the Keck Telescopes from the U.S. mainland

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Allen, Steve L.; Conrad, Albert

    2000-06-01

    We describe the current status of efforts to establish a high-bandwidth network from the U.S. mainland to Mauna Kea and a facility in California to support Keck remote observing and engineering via the Internet. The California facility will be an extension of the existing Keck remote operations facility located in Waimea, Hawaii. It will be targeted towards short-duration observing runs which now comprise roughly half of all scheduled science runs on the Keck Telescope. Keck technical staff in Hawaii will support remote observers on the mainland via video conferencing and collaborative software tools. Advantages and disadvantages of remote operation from California versus Hawaii are explored, and costs of alternative communication paths examined. We describe a plan for a backup communications path to protect against failure of the primary network. Alternative software models for remote operation are explored, and recent operational results described.

  3. Spectroscopic observation of ASASSN-17he by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Kostrzewa-Rutkowska, Z.; Benetti, S.; Dong, S.; Stritzinger, M.; Stanek, K.; Brimacombe, J.; Sagues, A.; Galindo, P.; Losada, I. Rivero

    2017-10-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of ASASSN-17he. The candidate was discovered by by the All-Sky Automated Survey for Supernovae.

  4. Spectroscopic and Photometric Survey of Northern Sky for the ESA PLATO space mission

    NASA Astrophysics Data System (ADS)

    Ženovienė, Renata; Bagdonas, Vilius; Drazdauskas, Arnas; Janulis, Rimvydas; Klebonas, Lukas; Mikolaitis, Šarūnas; Pakštienė, Erika; Tautvaišienė, Gražina

    2018-04-01

    The ESA-PLATO 2.0 mission will perform an in-depth analysis of the large part of the sky-sphere searching for extraterrestrial telluric-like planets. At the Molėtai Astronomical Observatory of Vilnius University, we started a spectroscopic and photometric survey of the northern sky fields that potentially will be targeted by the PLATO mission. We aim to contribute in developing the PLATO input catalogue by delivering a long-duration stellar variability information and a full spectroscopic characterization of brightest targets. First results of this survey are overviewed.

  5. Spectroscopic Survey of Circumstellar Disks in Orion

    NASA Astrophysics Data System (ADS)

    Contreras, Maria; Hernandez, Jesus; Olguin, Lorenzo; Briceno, Cesar

    2013-07-01

    As a second stage of a project focused on characterizing candidate stars bearing a circumstellar disk in Orion, we present a spectroscopic follow-up of a set of about 170 bright stars. The present set of stars was selected by their optical (UBVRI) and infrared behavior in different color-color and color-magnitude diagrams. Observations were carried out at the Observatorio Astronomico Nacional located at the Sierra San Pedro Martir in B.C., Mexico and at the Observatorio Guillermo Haro in Cananea, Sonora, Mexico. Low-resolution spectra were obtained for all candidates in the sample. Using the SPTCLASS code, we have obtained spectral types and equivalent widths of the Li I 6707 and Halpha lines for each one of the stars. This project is a cornerstone of a large scale survey aimed to obtain stellar parameters in a homogeneous way using spectroscopic data. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  6. Thirty New Low-mass Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew

    2010-06-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada

  7. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    NASA Astrophysics Data System (ADS)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  8. Small main-belt asteroid spectroscopic survey: Initial results

    NASA Technical Reports Server (NTRS)

    Xu, Shui; Binzel, Richard P.; Burbine, Thomas H.; Bus, Schelte J.

    1995-01-01

    The spectral characterization of small asteroids is important for understanding the evolution of their compositional and mineralogical properties. We report the results of a CCD spectroscopic survey of small main-belt asteroids which we call the Small Main-belt Asteroid Spectroscopic Survey (SMASS). Spectra of 316 asteroids were obtained, with wavelength coverage ranging from 4000 to 10000 A (0.4 to 1 micrometers). More than half of the objects in our survey have diameters less than 20 km. Survey results include the identification of the first object resembling ordinary chondrite meteorites among the main-belt asteroids (Binzel, R. P., et al, 1993) and observations of more than 20 asteroids showing basaltic achondrite spectral absorption features that strongly link Vesta as the parent body for the basaltic achondrite meteorites (Binzel, R. P., and S. Xu 1993). A potential Mars-crossing asteroid analog to ordinary chondrite meteorites (H chondrites), 2078 Nanking, is reported here. Through a principal component analysis, we have assigned classifications to the members of our sample. The majority of the small main-belt asteroids belong to S and C classes, similar to large asteroids. Our analysis shows that two new classes are justified which we label as J and O. Small asteroids display more diversity in spectral absorption features than the larger ones, which may indicate a greater variation of compositions in the small asteroid population. We found a few candidates for olivine-rich asteroids within the S class. Although the total number of olivine-rich candidates is relatively small, we present evidence suggesting that such objects are more prevalent at smaller sizes.

  9. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  10. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-07-15

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we findmore » that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.« less

  11. University of Maryland MRSEC - Facilities: Keck Laboratory

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » Keck Laboratory Shared Experimental educational institutions for non-profit administrative or educational purposes if proper credit is given to

  12. THE SPLASH SURVEY: A SPECTROSCOPIC ANALYSIS OF THE METAL-POOR, LOW-LUMINOSITY M31 dSph SATELLITE ANDROMEDA X ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalirai, Jason S.; Zucker, Daniel B.; Kniazev, Alexei Y.

    2009-11-01

    Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for approx100 stars with a median accuracy of sigma {sub v} approx 3 kmmore » s{sup -1}. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity 'spike' consisting of 22 stars belonging to And X with v {sub rad} = -163.8 +- 1.2 km s{sup -1}. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just sigma {sub v} = 3.9 +- 1.2 km s{sup -1} for And X, which for its size, implies a minimum mass-to-light ratio of M/L{sub V} = 37{sup +26} {sub -19} assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 +- 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, sigma([Fe/H]{sub phot}) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (M{sub V} = -8.1 +- 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with M{sub V} < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest

  13. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  14. The Galactic O-Star Spectroscopic Survey (GOSSS): new results from the southern stars

    NASA Astrophysics Data System (ADS)

    Sota, A.; Maíz Apellániz, J.; Barbá, R. H.; Walborn, N. R.; Alfaro, E. J.; Gamen, R. C.; Morrell, N. I.; Arias, J. I.; Penadés Ordaz, M.

    2013-05-01

    The Galactic O-Star Spectroscopic Survey (GOSSS) is a project that will observe all known Galactic O stars with B < 14 in the blue-violet part of the spectrum with R ˜ 3000. It is based on v2.0 of the the most complete Galactic O star catalog with accurate spectral types (Maíz Apellániz et al. 2004, ApJS, 151, 103; Sota et al. 2008, RevMexAA Conf. Series, 33, 55) that we have recently compiled. We have completed the first part of the main project and recently published the first articles (Walborn et al. 2010, ApJ, 711, 143; Walborn et al. 2011, AJ, 142, 150; Sota et al. 2011, ApJS, 193, 24). GOSSS is part of a bigger project with the next companion surveys: High resolution spectroscopic surveys: OWN, IACOB, IACOB-sweG, NoMaDS, CAFÉ-BEANS High resolution imaging surveys: Astralux, Astralux Sur.

  15. Performance of the Keck Observatory adaptive-optics system.

    PubMed

    van Dam, Marcos A; Le Mignant, David; Macintosh, Bruce A

    2004-10-10

    The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.

  16. Detection of spectroscopic binaries: lessons from the Gaia-ESO survey

    NASA Astrophysics Data System (ADS)

    van der Swaelmen, Mathieu; Merle, Thibault; van Eck, Sophie; Jorissen, Alain; Zwitter, Tomaž

    2018-04-01

    The Gaia-ESO survey (GES; Gilmore et al. (2012), Randich et al. (2013)) is a spectroscopic survey complementing the Gaia mission to bring accurate radial velocities and chemical abundances for 105 stars. Merle et al. (submitted to A&A see also this volume) developped a tool (DOE) to detect multiple peaks in the cross-correlation functions (CCFs) of GES spectra. Using the GIRAFFE HR10 and HR21 settings, we were able to compare the efficiency of our SB detection tool depending on the wavelength range and resolution. We show that a careful design of CCF masks can improve the detection rate in the HR21 settings. HR21 spectra are similar to the ones produced by the RVS spectrograph of the Gaia mission, though the lower resolution of RVS spectra may result in a lower detection efficiency than the case of HR21. Analysis of RVS spectra in the context of spectroscopic binaries can take advantage of the lessons learnt from the GES to maximize the detection rate.

  17. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  18. Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Liu, X.-W.; Chen, B.-Q.

    We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurementsmore » accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.« less

  19. Photon-Weighted Midpoint Exposure Meter for Keck/HIRES Extrasolar Planet Research

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Grant was received for research involving the construction of a photon-weighting midpoint exposure meter for the Keck HIRES spectrometer, and for support of our NASA/Keck-based planet research with this instrumentation. The research funds were also to be used to make our iodine cell calibration system and exposure meter available to the NASA Keck observing community. Progress this past year, the second of the 3-year granting period, involved work in 4 areas: 1) Further construction of the midpoint exposure meter. 2) Assisting observers with use of the Iodine system. 3) Acquisition of precision radial velocity data on our program star sample with continued monitoring to proceed in subsequent years as available telescope time permits. 4) Reduction and analysis of incoming precision radial velocity data to reject problematic and uninteresting program stars, and to identify promising planet candidates.

  20. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  1. VizieR Online Data Catalog: Redshift survey of ALMA-identified SMGs in ECDFS (Danielson+, 2017)

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, I.; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; De Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiss, A.; van der Werf, P.

    2017-11-01

    The 870um LESS survey (Weiss+ 2009, J/ApJ/707/1201) was undertaken using the LABOCA camera on APEX, covering an area of 0.5°x0.5° centered on the ECDFS. Follow-up observations of the LESS sources were carried out with ALMA (Hodge+ 2013, J/ApJ/768/91). In summary, observations for each source were taken between 2011 October and November in the Cycle 0 Project #2011.1.00294.S. To search for spectroscopic redshifts, we initiated an observing campaign using the the FOcal Reducer and low dispersion Spectrograph (FORS2) and VIsible MultiObject Spectrograph (VIMOS) on VLT (program 183.A-0666), but to supplement these observations, we also obtained observations with XSHOOTER on VLT (program 090.A-0927(A) from 2012 December 7-10), the Gemini Near-Infrared Spectrograph (GNIRS; program GN-2012B-Q-90) and the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) on the Keck I telescope (2012B_H251M, 2013BU039M, and 2013BN114M), all of which cover the near-infrared. As part of a spectroscopic campaign targeting Herschel-selected galaxies in the ECDFS, ALESS submillimeter galaxies (SMGs) were included on DEep Imaging Multi-Object Spectrograph (DEIMOS) slit masks on Keck II (program 2012B_H251). In total, we observed 109 out of the 131 ALESS SMGs in the combined main and supp samples. Spectroscopic redshifts for two of our SMGs, ALESS61.1 and ALESS65.1, were determined from serendipitous detections of the [CII]λ158um line in the ALMA band. See section 2.7. (2 data files).

  2. Spectroscopic observation of SN2017gkk by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Onori, F.; Benetti, S.; Cappellaro, E.; Losada, Illa R.; Gafton, E.; NUTS Collaboration

    2017-09-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of supernova SN2017gkk (=MASTER OT J091344.71762842.5) in host galaxy NGC 2748.

  3. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  4. Spectroscopic and Photometric Properties of Carbon Stars in the Disk of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Toloba, E.; Guha, S.; Rushing, C.; Dorman, C.; PHAT Collaboration; SPLASH Collaboration

    2013-01-01

    We explore the spectroscopic properties of a couple hundred carbon stars discovered in the disk of the Andromeda galaxy (M31) in the course of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. The spectra were obtained using the DEIMOS spectrograph on the Keck II 10-meter telescope. About 5000 stars were targeted for spectroscopy during observing runs in 2010 and 2011 using DEIMOS's 1200 lines/mm grating with a spectral resolving power of R ~ 5000 to 6000 and spectral coverage from 6500-9000 Angstrom. In September 2012, another 5000 stars were observed this time with the 600 lines/mm grating and R ~ 2500 and spectral coverage from 4500-9000 Angstrom. For both types of spectroscopic observations, targets were selected from the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle treasury program with the Hubble Space Telescope. Six-filter photometry in the ultraviolet (F275W, F336W), optical (F439W, F814W), and near infrared (F110W, F160W) is available for most targets. These carbon star samples are used to constrain the intermediage-age population in M31's disk. They are also compared to spectra of previously known carbon samples in the dwarf elliptical satellites of M31, NGC 147, NGC 185, and NGC 205. The authors thank the National Science Foundation, NASA/STScI, and UCSC's Summer Internship Program for support.

  5. The BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Koss, Michael

    2017-08-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at z<0.2. Starting from an all-sky catalog of AGN detected based on their 14-195 keV flux from the 70-month Swift/BAT catalog, we analyze a total of 1279 optical spectra, taken from twelve different telescopes, for a total of 642 spectra of unique AGN. We present the absorption and emission line measurements as well as black hole masses and accretion rates for the majority of obscured and un-obscured AGN (473), representing more than a factor of 10 increase from past studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics.

  6. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos

    2012-11-19

    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperaturemore » estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.« less

  7. Spectroscopic classification of Gaia18adv by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Gall, C.; Benetti, S.; Wyrzykowski, L.; Stritzinger, M.; Holmbo, S.; Dong, S.; Siltala, Lauri; NUTS Collaboration

    2018-01-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of Gaia18adv (SN2018hh) near the host galaxy SDSS J121341.37+282640.0.

  8. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel C.; Stern, Daniel K.; Rhodes, Jason D.

    A key goal of the Stage IV dark energy experiments Euclid , LSST, and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo- z ) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color–Redshift Relation (C3R2) survey, which is designed specifically to calibratemore » the empirical galaxy color–redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST . The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies that are most important for the redshift calibration. We focus spectroscopic efforts on undersampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color–redshift relation to the required accuracy. We present the C3R2 survey strategy and initial results, including the 1283 high-confidence redshifts obtained in the 2016A semester and released as Data Release 1.« less

  9. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  10. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power tomore » measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.« less

  11. A NEARLY VOLUME-COMPLETE SPECTROSCOPIC SURVEY OF THE CLOSESTMID-TO-LATE M DWARFS

    NASA Astrophysics Data System (ADS)

    Winters, Jennifer; Irwin, Jonathan; Newton, Elisabeth; Charbonneau, David; Latham, David W.; Mink, Jessica; Esquerdo, Gil; Berlind, Perry; Calkins, Mike

    2018-01-01

    Recent results from Kepler estimate that M dwarfs harbor 2.5 planets per star. Yet, we will understand our exoplanet discoveries only as well as we understand their host stars, and much remains unknown about our low-mass stellar neighbors, such as their kinematics, ages, and multiplicity. A nearly volume-complete sample of M dwarfs lies within 15 pc of the Sun, and it is only for planets orbiting these nearest and smallest stars that thorough follow-up work for characterization will be possible. Unfortunately, more than half of this sample have only low-resolution (R < 19,000) spectroscopic measurements available from the literature, while ten percent have no published spectrum at all.We have undertaken a multi-epoch, high-resolution (R ~ 44,000) spectroscopic survey of the mid-to-late M dwarfs that lie within 15 pc via acurate trigonometric parallaxes. Observations with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5m telescope at the Fred Lawrence Whipple Observatory (FLWO) on Mt. Hopkins, AZ, are currently underway. We will shortly begin the southern part of this survey with CHIRON at the Cerro Tololo Inter-American Observatory / Small and Moderate Aperture Research Telescope System (CTIO/SMARTS) 1.5m. We present here results from year one of our TRES survey. We have measured radial velocities, rotational broadening, and H-alpha equivalent widths for 305 mid-to-late M dwarfs. We have discovered five new spectroscopic binaries, one of which is a rare M dwarf - (likely) brown dwarf binary within 10 pc, for which we have determined the orbit.Our survey more than doubles the number of mid-M dwarfs within 15 pc with complete high-resolution spectroscopic and trigonometric characterization. We hope to provide a legacy dataset for the use of future generations of astronomers.This work is being supported by grants from the National Science Foundation and the John Templeton Foundation.

  12. Improving Undergraduate Research Experiences With An Intentional Mentoring Program: Lessons Learned Through Assessment of Keck Geology Consortium Programs

    NASA Astrophysics Data System (ADS)

    Wirth, K. R.; Garver, J. I.; Greer, L.; Pollock, M.; Varga, R. J.; Davidson, C. M.; Frey, H. M.; Hubbard, D. K.; Peck, W. H.; Wobus, R. A.

    2015-12-01

    The Keck Geology Consortium, with support from the National Science Foundation (REU Program) and ExxonMobil, is a collaborative effort by 18 colleges to improve geoscience education through high-quality research experiences. Since its inception in 1987 more than 1350 undergraduate students and 145 faculty have been involved in 189 yearlong research projects. This non-traditional REU model offers exceptional opportunities for students to address research questions at a deep level, to learn and utilize sophisticated analytical methods, and to engage in authentic collaborative research that culminates in an undergraduate research symposium and published abstracts volume. The large numbers of student and faculty participants in Keck projects also affords a unique opportunity to study the impacts of program design on undergraduate research experiences in the geosciences. Students who participate in Keck projects generally report significant gains in personal and professional dimensions, as well as in clarification of educational and career goals. Survey data from student participants, project directors, and campus advisors identify mentoring as one of the most critical and challenging elements of successful undergraduate research experiences. Additional challenges arise from the distributed nature of Keck projects (i.e., participants, project directors, advisors, and other collaborators are at different institutions) and across the span of yearlong projects. In an endeavor to improve student learning about the nature and process of science, and to make mentoring practices more intentional, the Consortium has developed workshops and materials to support both project directors and campus research advisors (e.g., best practices for mentoring, teaching ethical professional conduct, benchmarks for progress, activities to support students during research process). The Consortium continues to evolve its practices to better support students from underrepresented groups.

  13. Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands

    NASA Astrophysics Data System (ADS)

    Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Wada, T.; Armus, L.; Baes, M.; Charmandaris, V.; Czerny, B.; Efstathiou, A.; Fernández-Ontiveros, J. A.; Ferrara, A.; González-Alfonso, E.; Griffin, M.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Kohno, K.; Kwon, J.; Nakagawa, T.; Onaka, T.; Pozzi, F.; Scott, D.; Smith, J.-D. T.; Spinoglio, L.; Suzuki, T.; van der Tak, F.; Vaccari, M.; Vignali, C.; Wang, L.

    2017-11-01

    The mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.

  14. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  15. A Luminous Lyα-emitting Galaxy at Redshift z = 6.535: Discovery and Spectroscopic Confirmation

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Xu, Chun; Dawson, Steve; Dey, Arjun; Malhotra, Sangeeta; Wang, JunXian; Jannuzi, Buell T.; Spinrad, Hyron; Stern, Daniel

    2004-08-01

    We present a redshift z=6.535 galaxy discovered by its Lyα emission in a 9180 Å narrowband image from the Large Area Lyman Alpha survey. The Lyα line luminosity (1.1×1043 ergs s-1) is among the largest known for star-forming galaxies at z~6.5. The line shows the distinct asymmetry that is characteristic of high-redshift Lyα. The 2 σ lower bound on the observer-frame equivalent width is greater than 530 Å. This is hard to reconcile with a neutral intergalactic medium (IGM) unless the Lyα line is intrinsically strong and is emitted from its host galaxy with an intrinsic Doppler shift of several hundred km s-1. If the IGM is ionized, it corresponds to a rest-frame equivalent width greater than 40 Å after correcting for Lyα forest absorption. We also present a complete spectroscopic follow-up of the remaining candidates with line flux greater than 2×10-17 ergs cm-2 s-1 in our 1200 arcmin2 narrowband image. These include another galaxy with a strong emission line at 9136 Å and no detected continuum flux, which, however, is most likely an [O III] λ5007 source at z=0.824, on the basis of a weak detection of the [O III] λ4959 line. The data presented in this paper were obtained at the Kitt Peak National Observatory, the Gemini Observatory, and the W. M. Keck Observatory. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation (NSF). The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council, CNPq (Brazil), and CONICET (Argentina). The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the

  16. Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey.

    PubMed

    Marchis, F; Kaasalainen, M; Hom, E F Y; Berthier, J; Enriquez, J; Hestroffer, D; Le Mignant, D; de Pater, I

    2006-11-01

    This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × R(Hill) (1/4 × R(Hill)) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to

  17. Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey

    PubMed Central

    Marchis, F.; Kaasalainen, M.; Hom, E.F.Y.; Berthier, J.; Enriquez, J.; Hestroffer, D.; Le Mignant, D.; de Pater, I.

    2008-01-01

    This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × RHill (1/4 × RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6–8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450–464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to

  18. Neutral Hydrogen Optical Depth near Star-forming Galaxies at z ≈ 2.4 in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z ≈ 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Lyα forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Lyα pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Lyα optical depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3σ level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over ±165 km s-1, the covering fraction of gas with Lyα optical depth greater than unity is 100+0 - 32% (66% ± 16%). Absorbers with τLyα > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with τLyα ~ 1 reside in regions where the galaxy number density is close to the cosmic mean on scales >=0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s-1, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This "finger of God" effect may be due to redshift errors, but is probably dominated by gas motions within or very close to

  19. A HIRES/KECK SPECTROSCOPIC INVESTIGATION OF THE MEASUREMENT OF SODIUM IN THE ATMOSPHERE OF HD 209458b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland-Shula, Laura E.; Vogt, Steven S.; Charbonneau, David

    We present high-resolution High Resolution Echelle Spectrometer (HIRES)/Keck spectra of HD 209458, and a Monte Carlo variation on the basic method used by other workers, to look for the excess in-transit absorption in the NaD doublet at 5893 A due to the extrasolar planet. The HIRES data, binned by bandpass, allow a direct comparison with previous results. We find >3{sigma} results in most test bandpasses around the NaD doublet, including relative absorption of (-108.8 {+-} 25.7) x 10{sup -5} in the 'narrow' bandpass used by other workers. This is {approx}4.7 times larger than the 'narrow' results reported by Charbonneau etmore » al. for HD 209458b. However, >2{sigma} absorption is detected in some weak Fe I and Ni I lines that were tested for comparison, raising concern about the uncertainties introduced by continuum-fitting and terrestrial atmosphere subtraction.« less

  20. The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates

    NASA Astrophysics Data System (ADS)

    Merle, T.; Van Eck, S.; Jorissen, A.; Van der Swaelmen, M.; Masseron, T.; Zwitter, T.; Hatzidimitriou, D.; Klutsch, A.; Pourbaix, D.; Blomme, R.; Worley, C. C.; Sacco, G.; Lewis, J.; Abia, C.; Traven, G.; Sordo, R.; Bragaglia, A.; Smiljanic, R.; Pancino, E.; Damiani, F.; Hourihane, A.; Gilmore, G.; Randich, S.; Koposov, S.; Casey, A.; Morbidelli, L.; Franciosini, E.; Magrini, L.; Jofre, P.; Costado, M. T.; Jeffries, R. D.; Bergemann, M.; Lanzafame, A. C.; Bayo, A.; Carraro, G.; Flaccomio, E.; Monaco, L.; Zaggia, S.

    2017-12-01

    Context. The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. Aims: Our aim is to detect binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. Methods: We developed a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. The DOE code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n ≥ 2). Results: We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3, and even one SB4), including only nine SBs known in the literature. This implies that about 98% of these SBn candidates are new because of their faint visual magnitude that can reach V = 19. Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among the SB2 candidates, an orbital solution could be computed for two previously unknown binaries: CNAME 06404608+0949173 (known as V642 Mon) in NGC 2264 and CNAME 19013257-0027338 in Berkeley 81 (Be 81). A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that CNAME 08414659-5303449 (HD 74438) in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We suggest that atmospheric parameters should not be used for these system components; SB-specific pipelines should be used instead. Conclusions: Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed the

  1. Complete Calibration of the Color-Redshift Relation (C3R2): A Critical Foundation for Weak Lensing Cosmology with Euclid and WFIRST

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; Stern, Daniel; Cohen, Judy; Capak, Peter

    2018-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field. Doing so will require accurate redshifts to the billions of galaxies that comprise the weak lensing samples of these surveys; achieving the required accuracy is a “tall pole” challenge for both missions. Here we present the ongoing Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to Euclid depth. C3R2 is an ambitious Keck spectroscopy program, with a survey design based on a machine learning technique that allows us to optimally select the most important galaxies to sample the full range of galaxy colors. C3R2 is a multi-center program with time from all the primary Keck partners (Caltech, UC, Hawaii, and NASA), with a total of 34.5 Keck nights allocated to this project. Data Release 1, including 1283 high-confidence spectroscopic redshifts, is published as Masters, Stern, Cohen, Capak, et al. (2017), and we are currently completing Data Release 2, which will include >2000 additional high-confidence spectroscopic redshifts (Masters et al., in prep.). We will discuss current results and prospects for the survey going forward.

  2. Cosmological constraints from multiple tracers in spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Alarcon, Alex; Eriksen, Martin; Gaztanaga, Enrique

    2018-01-01

    We use the Fisher matrix formalism to study the expansion and growth history of the Universe using galaxy clustering with 2D angular cross-correlation tomography in spectroscopic or high-resolution photometric redshift surveys. The radial information is contained in the cross-correlations between narrow redshift bins. We show how multiple tracers with redshift space distortions cancel sample variance and arbitrarily improve the constraints on the dark energy equation of state ω(z) and the growth parameter γ in the noiseless limit. The improvement for multiple tracers quickly increases with the bias difference between the tracers, up to a factor ∼4 in FoMγω. We model a magnitude limited survey with realistic density and bias using a conditional luminosity function, finding a factor 1.3-9.0 improvement in FoMγω - depending on global density - with a split in a halo mass proxy. Partly overlapping redshift bins improve the constraints in multiple tracer surveys a factor ∼1.3 in FoMγω. This finding also applies to photometric surveys, where the effect of using multiple tracers is magnified. We also show large improvement on the FoM with increasing density, which could be used as a trade-off to compensate some possible loss with radial resolution.

  3. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  4. A Systematic Survey of Protoclusters at z ~ 3-6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3-4 with spectroscopic confirmation in the Canada-France-Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3-6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3-4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5-6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  5. PESSTO: The Public ESO Spectroscopic Survey of Transient Objects

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Pastorello, A.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.

    2013-12-01

    PESSTO, which began in April 2012 as one of two ESO public spectroscopic surveys, uses the EFOSC2 and SOFI instruments on the New Technology Telescope during ten nights a month for nine months of the year. Transients for PESSTO follow-up are provided by dedicated large-field 1-2-metre telescope imaging surveys. In its first year PESSTO classified 263 optical transients, publicly released the reduced spectra within 12 hours of the end of the night and identified 33 supernovae (SNe) for dedicated follow-up campaigns. Nine papers have been published or submitted on the topics of supernova progenitors, the origins of type ia SNe, the uncertain nature of faint optical transients and superluminous supernovae, and a definitive public dataset on a most intriguing supernova, the infamous SN2009ip.

  6. Spectroscopic Surveys with the ELT: A Gigantic Step into the Deep Universe

    NASA Astrophysics Data System (ADS)

    Evans, C.; Puech, M.; Hammer, F.; Gallego, J.; Sánchez, A.; García, L.; Iglesias, J.

    2018-03-01

    The Phase A design of MOSAIC, a powerful multi-object spectrograph intended for ESO's Extremely Large Telescope, concluded in late 2017. With the design complete, a three-day workshop was held last October in Toledo to discuss the breakthrough spectroscopic surveys that MOSAIC can deliver across a broad range of contemporary astronomy.

  7. MASYS: The AKARI Spectroscopic Survey of Symbiotic Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Ciroi, S.; Marigo, P.; Contini, M.; Di Mille, F.; Rafanelli, P.

    2009-12-01

    MASYS is the AKARI spectroscopic survey of Symbiotic Stars in the Magellanic Clouds, and one of the European Open Time Observing Programmes approved for the AKARI (Post-Helium) Phase-3. It is providing the first ever near-IR spectra of extragalactic symbiotic stars. The observations are scheduled to be completed in July 2009.

  8. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. II. SPECTROSCOPIC CONFIRMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T., E-mail: mkpresco@physics.ucsb.edu

    2013-01-01

    Using a systematic broadband search technique, we have carried out a survey for large Ly{alpha} nebulae (or Ly{alpha} {sup b}lobs{sup )} at 2 {approx}< z {approx}< 3 within 8.5 deg{sup 2} of the NOAO Deep Wide-Field Survey Booetes field, corresponding to a total survey comoving volume of Almost-Equal-To 10{sup 8} h {sup -3} {sub 70} Mpc{sup 3}. Here, we present our spectroscopic observations of candidate giant Ly{alpha} nebulae. Of 26 candidates targeted, 5 were confirmed to have Ly{alpha} emission at 1.7 {approx}< z {approx}< 2.7, 4 of which were new discoveries. The confirmed Ly{alpha} nebulae span a range of Ly{alpha}more » equivalent widths, colors, sizes, and line ratios, and most show spatially extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Ly{alpha} nebulae lying within the redshift desert (i.e., 1.2 {approx}< z {approx}< 1.6). Our spectroscopic follow-up confirms the power of using deep broadband imaging to search for the bright end of the Ly{alpha} nebula population across enormous comoving volumes.« less

  9. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE PAGES

    Kyle S. Dawson

    2016-02-04

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density

  10. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle S. Dawson

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density

  11. VizieR Online Data Catalog: California-Kepler Survey (CKS). II. Properties (Johnson+, 2017)

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Petigura, E. A.; Fulton, B. J.; Marcy, G. W.; Howard, A. W.; Isaacson, H.; Hebb, L.; Cargile, P. A.; Morton, T. D.; Weiss, L. M.; Winn, J. N.; Rogers, L. A.; Sinukoff, E.; Hirsch, L. A.

    2017-11-01

    The California-Kepler Survey (CKS) project and goals are described in detail in Paper I (Petigura et al. 2017, Cat. J/AJ/154/107) of this series. In brief, between 2012 and 2015, we obtained high-resolution (R~50000) spectra of 1305 stars identified as Kepler Objects of Interest (KOIs) with Keck/HIRES. We used an exposure meter to achieve a uniform signal-to-noise ratio ~45 per HIRES pixel on blaze near 5500Å. Using these spectra, we derived effective temperature (Teff), surface gravity (logg), metallicity ([Fe/H]), and projected stellar rotation velocity (vsini). In this work, we convert the observed spectroscopic properties of Paper I (Petigura et al. 2017, Cat. J/AJ/154/107) into physical stellar and planetary properties. (2 data files).

  12. Spectroscopic classification of supernovae SN 2018aei and SN 2018aej by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Cannizzaro, G.; Kuncarayakti, H.; Fraser, M.; Hamanowicz, A.; Jonker, P.; Kankare, E.; Kostrzewa-Rutkowska, Z.; Onori, F.; Wevers, T.; Wyrzykowski, L.; Galbany, L.

    2018-03-01

    The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernovae SN 2018aei and SN 2018aej, discovered by PanSTARSS Survey for Transients (ATel #11408).

  13. VizieR Online Data Catalog: NuSTAR serendipitous survey: the 40-month catalog (Lansbury+, 2017)

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Balokovic, M.; Del Moro, A.; Gandhi, P.; Ajello, M.; Annuar, A.; Ballantyne, D. R.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Forster, K.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Jiang, B.; Jun, H. D.; Koss, M.; Marchesi, S.; Melo, A. D.; Mullaney, J. R.; Noirot, G.; Schulze, S.; Walton, D. J.; Zappacosta, L.; Zhang, W. W.

    2017-09-01

    Over the period from 2012 July to 2015 November, which is the focus of the current study, there are 510 individual NuSTAR exposures that have been incorporated into the serendipitous survey. These exposures were performed over 331 unique fields (i.e., 331 individual sky regions, each with contiguous coverage composed of one or more NuSTAR exposures), yielding a total sky area coverage of 13deg2. Table 1 lists the fields chronologically. The fields have a cumulative exposure time of 20.4Ms. We have undertaken a campaign of dedicated spectroscopic follow-up in the optical-IR bands, obtaining spectroscopic identifications for a large fraction (56%) of the total sample. Since NuSTAR performs science pointings across the whole sky, a successful ground-based follow-up campaign requires the use of observatories at a range of geographic latitudes, and preferably across a range of dates throughout the sidereal year. This has been achieved through observing programs with, primarily, the following telescopes over a multiyear period (2012 Oct 10 to 2016 Jul 10): the Hale Telescope at Palomar Observatory (5.1m; PIs F. A. Harrison and D. Stern); Keck I and II at the W. M. Keck Observatory (10m; PIs F. A. Harrison and D. Stern); the New Technology Telescope (NTT) at La Silla Observatory (3.6m; PI G. B. Lansbury); the Magellan I (Baade) and Magellan II (Clay) Telescopes at Las Campanas Observatory (6.5m; PIs E. Treister and F. E. Bauer); and the Gemini-South observatory (8.1m; PI E. Treister). (5 data files).

  14. Blue camera of the Keck cosmic web imager, fabrication and testing

    NASA Astrophysics Data System (ADS)

    Rockosi, Constance; Cowley, David; Cabak, Jerry; Hilyard, David; Pfister, Terry

    2016-08-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20" x 33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces). The optical design of the blue camera for the Keck Cosmic Web Imager (KCWI) by Harland Epps of the University of California, Santa Cruz is a lens assembly consisting of eight spherical optical elements. Half the elements are calcium fluoride and all elements are air spaced. The design of the camera barrel is unique in that all the optics are secured in their respective cells with an RTV annulus without additional hardware

  15. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.

  16. The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-01-01

    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).

  17. ORBITAL SOLUTIONS FOR TWO YOUNG, LOW-MASS SPECTROSCOPIC BINARIES IN OPHIUCHUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, V.; Prato, L.; Wasserman, L. H.

    2011-01-15

    We report the orbital parameters for ROXR1 14 and RX J1622.7-2325Nw, two young, low-mass, and double-lined spectroscopic binaries recently discovered in the Ophiuchus star-forming region. Accurate orbital solutions were determined from over a dozen high-resolution spectra taken with the Keck II and Gemini South telescopes. These objects are T Tauri stars with mass ratios close to unity and periods of {approx}5 and {approx}3 days, respectively. In particular, RX J1622.7-2325Nw shows a non-circularized orbit with an eccentricity of 0.30, higher than any other short-period pre-main-sequence (PMS) spectroscopic binary known to date. We speculate that the orbit of RX J1622.7-2325Nw has notmore » yet circularized because of the perturbing action of a {approx}1'' companion, itself a close visual pair. A comparison of known young spectroscopic binaries (SBs) and main-sequence (MS) SBs in the eccentricity-period plane shows an indistinguishable distribution of the two populations, implying that orbital circularization occurs in the first 1 Myr of a star's lifetime. With the results presented in this paper we increase by {approx}4% the small sample of PMS spectroscopic binary stars with known orbital elements.« less

  18. VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)

    NASA Astrophysics Data System (ADS)

    Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.

    2017-11-01

    We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).

  19. The BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Berney, Simon; Schawinski, Kevin; Balokovic, Mislav; Baronchelli, Linda; Gehrels, Neil; Stern, Daniel; Mushotzky, Richard; Veilleux, Sylvain; Ueda, Yoshihiro; Crenshaw, D. Michael; Harrison, Fiona; Fischer, Travis C.; Treister, Ezequiel; BASS Team; Swift BAT Team

    2017-01-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at z<0.2. Starting from an all-sky catalog of AGN detected based on their 14-195 keV flux from the 70-month Swift/BAT catalog, we analyze a total of 1279 optical spectra, taken from twelve dierent telescopes, for a total of 642 spectra of unique AGN. We present the absorption and emission line measurements as well as black hole masses and accretion rates for the majority of obscured and un-obscured AGN (473), representing more than a factor of 10 increase from past studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics. Additionally, we discuss follow-on efforts to study the variation of [OIII] to Xray measurements, a new method to measure accretion rates from using line ratios, a sample of 100 AGN observed with NIR spectroscopy, and an effort to measure the accretion rates and obscuration with merger stage in a subsample of mergers.

  20. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.; Anderson, J. P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Bauer, F. E.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M. T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T.-W.; Childress, M. J.; Clocchiatti, A.; Contreras, C.; Dall'Ora, M.; Danziger, J.; de Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias-Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; Gonzalez-Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L. L.; Hachinger, S.; Hadjiyska, E.; Hage, P. E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E. Y.; James, P. A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J. D.; Hook, I. M.; Maguire, K.; Manulis, I.; Margheim, S. J.; Mattila, S.; Maund, J. R.; Mazzali, P. A.; McCrum, M.; McKinnon, R.; Moreno-Raya, M. E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, G.; Phillips, M. M.; Polshaw, J.; Pumo, M. L.; Rabinowitz, D.; Reilly, E.; Romero-Cañizales, C.; Scalzo, R.; Schmidt, B.; Schulze, S.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N. A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.

    2015-07-01

    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims: We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods: PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results: This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of

  1. KPF: Keck Planet Finder

    NASA Astrophysics Data System (ADS)

    Gibson, Steven R.; Howard, Andrew W.; Marcy, Geoffrey W.; Edelstein, Jerry; Wishnow, Edward H.; Poppett, Claire L.

    2016-08-01

    KPF is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. The instrument is designed to characterize exoplanets via Doppler spectroscopy with a single measurement precision of 0.5ms-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. KPF will have a 200mm collimated beam diameter and a resolving power of >80,000. The design includes a green channel (440nm to 590 nm) and red channel (590nm to 850 nm). A novel design aspect of KPF is the use of a Zerodur optical bench, and Zerodur optics with integral mounts, to provide stability against thermal expansion and contraction effects.

  2. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less

  3. J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using NIRSPEC on Keck II.

    PubMed

    McLean; Wilcox; Becklin; Figer; Gilbert; Graham; Larkin; Levenson; Teplitz; Kirkpatrick

    2000-04-10

    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.

  4. Star Formation in a Complete Spectroscopic Survey of Galaxies

    NASA Astrophysics Data System (ADS)

    Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.

    2001-10-01

    The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400 Å for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(Hα). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2 σ. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use Hβ, [O III], Hα, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The unclassified 12% may include a ``hybrid'' population of galaxies with both star formation and AGN activity. The AGN fraction increases steeply with luminosity; the fraction of star-forming galaxies decreases. We use the EW(Hα+[N II]) to estimate the Scalo birthrate parameter, b, the ratio of the current star formation rate to the time averaged star formation rate. The median birthrate parameter is inversely correlated with luminosity in agreement with the conclusions based on smaller samples (Kennicutt, Tamblyn, & Congdon). Because our survey is large, we identify 33 vigorously star-forming galaxies with b>3. We confirm the conclusion of Jansen, Franx, & Fabricant that EW([O II]) must be used with caution as a measure of current star formation. Finally, we examine the way galaxies of different spectroscopic type trace the large-scale galaxy distribution. As expected the absorption-line fraction decreases and the star-forming emission-line fraction increases as the galaxy density decreases. The AGN fraction is insensitive to the surrounding galaxy density; the unclassified fraction declines slowly as the density increases. For the star-forming galaxies, the EW(Hα) increases very slowly as the galaxy number

  5. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Kyle S.; Bautista, Julian E.; Kneib, Jean-Paul

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for

  6. Wavefront control system for the Keck telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  7. Keck Observations of the Gas Dynamics at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Campbell, Randall; Ciurlo, Anna; Morris, Mark; Sitarski, Breann N.; Ghez, Andrea M.; Do, Tuan

    2018-06-01

    In the central parsec of the Milky Way Galaxy the environment of the super-massive black hole (SMBH) presents a complicated mixture of stars, gas, and dust. These inner few tens of arcseconds of the GC have been observed at high resolution with Keck for 20 years with the primary goal of monitoring stars orbiting the SMBH. However, the gas features and their dynamics can also be closely examined using this unique baseline of data. In particular, observations with the Keck OSIRIS integral field spectrometer allow us to examine of the dynamical properties of the gas and to possibly identify new “G-type” objects, or dusty stellar objects. We present a study of morphology and orbital dynamics of sub-parsec scale gas features in the central region.

  8. The Keck keyword layer

    NASA Technical Reports Server (NTRS)

    Conrad, A. R.; Lupton, W. F.

    1992-01-01

    Each Keck instrument presents a consistent software view to the user interface programmer. The view consists of a small library of functions, which are identical for all instruments, and a large set of keywords, that vary from instrument to instrument. All knowledge of the underlying task structure is hidden from the application programmer by the keyword layer. Image capture software uses the same function library to collect data for the image header. Because the image capture software and the instrument control software are built on top of the same keyword layer, a given observation can be 'replayed' by extracting keyword-value pairs from the image header and passing them back to the control system. The keyword layer features non-blocking as well as blocking I/O. A non-blocking keyword write operation (such as setting a filter position) specifies a callback to be invoked when the operation is complete. A non-blocking keyword read operation specifies a callback to be invoked whenever the keyword changes state. The keyword-callback style meshes well with the widget-callback style commonly used in X window programs. The first keyword library was built for the two Keck optical instruments. More recently, keyword libraries have been developed for the infrared instruments and for telescope control. Although the underlying mechanisms used for inter-process communication by each of these systems vary widely (Lick MUSIC, Sun RPC, and direct socket I/O, respectively), a basic user interface has been written that can be used with any of these systems. Since the keyword libraries are bound to user interface programs dynamically at run time, only a single set of user interface executables is needed. For example, the same program, 'xshow', can be used to display continuously the telescope's position, the time left in an instrument's exposure, or both values simultaneously. Less generic tools that operate on specific keywords, for example an X display that controls optical

  9. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  10. VizieR Online Data Catalog: PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017)

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Leloudas, G.; Gal-Yam, A.; De Cia, A.; Perley, D. A.; Quimby, R. M.; Waldman, R.; Sullivan, M.; Yan, L.; Ofek, E. O.; Fremling, C.; Taddia, F.; Sollerman, J.; Valenti, S.; Arcavi, I.; Howell, D. A.; Filippenko, A. V.; Cenko, S. B.; Yaron, O.; Kasliwal, M. M.; Cao, Y.; Ben-Ami, S.; Horesh, A.; Rubin, A.; Lunnan, R.; Nugent, P. E.; Laher, R.; Rebbapragada, U. D.; Wozniak, P.; Kulkarni, S. R.

    2017-08-01

    Spectroscopic follow-up observations of PTF 12dam were performed with the Kast Spectrograph at the Lick 3m Shane telescope, and the Low Resolution Imaging Spectrograph (LRIS) at the Keck-I 10m telescope (on Mauna Kea, Hawaii) on 2012 May 20, 21, and 22. The full spectroscopic sequence of PTF 12dam will be presented by R. M. Quimby et al. (2016, in preparation). PTF 12dam was imaged with the Palomar Oschin 48 inch (P48) (i)PTF survey telescope in the Mould R filter, the Palomar 60 inch (P60) and CCD camera in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the Las Cumbres Observatory Global Telescope Network (LCOGT) in SDSS r, and LRIS mounted on the 10m Keck-I telescope in Rs. iPTF 13dcc has not had any exposure in the literature yet. It was flagged as a transient source on 2013 August 29. Spectroscopic follow-up observations spanning 2013 Nov 26 to 2014 Jan 16 were performed with the Double Spectrograph (DBSP) at the Palomar 200 inch (P200), LRIS at Keck-I, and the Inamori-Magellan Areal Camera & Spectrograph (IMACS) at the Magellan Baade telescope, showing iPTF 13dcc to be an SLSN at z=0.4305. iPTF 13dcc was imaged with the P48 Oschin (i)PTF survey telescope in the Mould R filter, the P60 in SDSS gri, the 4.3m Discovery Channel Telescope (DCT, at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS ri, and finally with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide-Field Camera using filter F625W (under program GO-13858; P.I. A. De Cia). (3 data files).

  11. Next Generation Virgo Survey Photometry and Keck/DEIMOS Spectroscopy of Globular Cluster Satellites of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration

    2015-01-01

    We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the

  12. Long Baseline Nulling Interferometry with the Keck Telescopes: A Progress Report

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Colavita, M. M.; Crawford, S.; Creech-Eakman, M. J.; Dahl, W.; Fanson, J.; hide

    2005-01-01

    The Keck Interferometer Nuller (KIN) is one of the major scientific and technical precursors to the Terrestrial Planet Finder Interferometer (TPF-I) mission. KIN's primary objective is to measure the level of exo-zodiacal mid-infrared emission around nearby main sequence stars, which requires deep broad-band nulling of astronomical sources of a few Janskys at 10 microns. A number of new capabilities are needed in order to reach that goal with the Keck telescopes: mid-infrared coherent recombination, interferometric operation in 'split pupil' mode, N-band optical path stabilization using K-band fringe tracking and internal metrology, and eventually, active atmospheric dispersion correction. We report here on the progress made implementing these new functionalities, and discuss the initial levels of extinction achieved on the sky.

  13. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION

    DOE PAGES

    Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; ...

    2015-12-01

    As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg 2 . First, a "CORE" quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ~70 deg -2 quasars at redshifts 0.9 < z < 2.2 and ~7 deg -2more » z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 deg -2 z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.« less

  14. The SDSS-IV extended baryon oscillation spectroscopic survey: Luminous red galaxy target selection

    DOE PAGES

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; ...

    2016-06-08

    Here, we describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71).more » We also demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ~89% of the target sample yields secure redshift measurements. Finally, we present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  15. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (medianmore » redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  16. Detection of spectroscopic binaries in the Gaia-ESO Survey

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Merle, T.; Van Eck, S.; Jorissen, A.

    2017-12-01

    The Gaia-ESO survey (GES) is a ground-based spectroscopic survey, complementing the Gaia mission, in order to obtain high accuracy radial velocities and chemical abundances for 10^5 stars. Thanks to the numerous spectra collected by the GES, the detection of spectroscopic multiple system candidates (SBn, n ≥ 2) is one of the science case that can be tackled. We developed at IAA (Institut d'Astronomie et d'Astrophysique) a novative automatic method to detect multiple components from the cross-correlation function (CCF) of spectra and applied it to the CCFs provided by the GES. Since the bulk of the Milky Way field targets has been observed in both HR10 and HR21 GIRAFFE settings, we are also able to compare the efficiency of our SB detection tool depending on the wavelength range. In particular, we show that HR21 leads to a less efficient detection compared to HR10. The presence of strong and/or saturated lines (Ca II triplet, Mg I line, Paschen lines) in the wavelength domain covered by HR21 hampers the computation of CCFs, which tend to be broadened compared to their HR10 counterpart. The main drawback is that the minimal detectable radial velocity difference is ˜ \\SI{60}km/s for HR21 while it is ˜ \\SI{25}km/s for HR10. A careful design of CCF masks (especially masking Ca triplet lines) can substantially improve the detectability rate of HR21. Since HR21 spectra are quite similar to the one produced by the RVS spectrograph of the Gaia mission, analysis of RVS spectra in the context of spectroscpic binaries can take adavantage of the lessons learned from the GES to maximize the detection rate.

  17. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  18. Observations of Rosetta Target (21) Lutetia with Keck and Gemini Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Conrad, A. R.; Merline, W. J.; Drummond, J.; Carry, B.; Tamblyn, P. M.; Chapman, C. R.; Dumas, C.; Weaver, H. A.

    2009-12-01

    In support of the NASA/ESA Rosetta mission’s plans to observe asteroid (21) Lutetia during a 2010 July flyby, and in conjunction with a larger ground-based plus HST campaign to support this mission, we observed Lutetia from Keck and Gemini-North during several nights spanning 2008 Oct through 2009 Jan. Observations were made using adaptive optics in the near-IR, primarily at K-band (2.1 micron), and were timed to coincide with the asteroid's most recent opposition at a distance of about 1.4 AU. From these data, we determined Lutetia’s triaxial size and shape to be 132 x 101 x 76 km, with maximum expected uncertainties of 4 x 3 x 31 km. The spin pole is found to be at (RA, Dec) = (48, +9) deg or ecliptic (long, lat) = (49,-8) deg, with a formal uncertainty radius (not including systematics) of 3 deg. We have calibrated our technique of deriving dimensions of asteroids from AO images against Pluto and 4 satellites of Saturn with accurate diameters, and we expect that our systematics (included in the size uncertainties above) are no more than 3%. We also searched for satellites and our preliminary results indicate no detection of a satellite larger than about 1 km over a significant fraction of the Hill sphere (10-240 asteroid radii). Improved limits are expected from a more refined analysis. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of this dataset. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of these observations and for observing time granted at Gemini under NOAO time allocation. Plane-of-sky short and long axes of (21) Lutetia taken from Keck AO images on 2008 Dec 2.

  19. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tran, H. D.; Goodrich, R.; Berriman, G. B.; Gelino, C. R.; KOA Team

    2014-05-01

    By the end of 2013, the Keck Observatory Archive (KOA) will serve data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions, which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the 200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  20. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Holt, J.; Goodrich, R. W.; Lyke, J. E.; Gelino, C. R.; Berriman, G. B.; KOA Team

    2014-01-01

    Since the end of 2013, the Keck Observatory Archive (KOA) has served data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the adaptive optics (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the ~200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  1. The selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre

    NASA Astrophysics Data System (ADS)

    Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Xiang, M.-S.; Huang, Y.; Wang, C.; Zhang, H.-W.; Tian, Z.-J.

    2018-05-01

    We present a detailed analysis of the selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). LSS-GAC was designed to obtain low-resolution optical spectra for a sample of more than 3 million stars in the Galactic anti-centre. The second release of value-added catalogues of the LSS-GAC (LSS-GAC DR2) contains stellar parameters, including radial velocity, atmospheric parameters, elemental abundances, and absolute magnitudes deduced from 1.8 million spectra of 1.4 million unique stars targeted by the LSS-GAC between 2011 and 2014. For many studies using this data base, such as those investigating the chemodynamical structure of the Milky Way, a detailed understanding of the selection function of the survey is indispensable. In this paper, we describe how the selection function of the LSS-GAC can be evaluated to sufficient detail and provide selection function corrections for all spectroscopic measurements with reliable parameters released in LSS-GAC DR2. The results, to be released as new entries in the LSS-GAC value-added catalogues, can be used to correct the selection effects of the catalogue for scientific studies of various purposes.

  2. Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan

    2016-09-01

    We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  3. Two Decades (almost) of Keck Observations of Io

    NASA Astrophysics Data System (ADS)

    De Pater, I.; Davies, A. G.; de Kleer, K.

    2015-12-01

    We have regularly observed Io with the 10-m Keck Telescope since 1998, initially using the speckle imaging technique, and switching to Adaptive Optics techniques when this became available in 2001. In this talk we will discuss several eruptions that we witnessed, and present 20-30 year timelines of thermal emission from Pele, Pillan, Janus Patera, Kanehekili Fluctus, and Loki Patera, updating timelines in recent publications [1, 2] with additional Keck adaptive optics data obtained between 2002 and 2015. These new timelines are the most comprehensive plots ever produced of the volcanic thermal emission variability for these or any other locations on Io, utilizing data from multiple ground- and space-based assets. Our continuing multi-decadal observing program forms the basis for charting the variability of Io's volcanic activity, of great importance for understanding the evolution of the Galilean satellite system, and with the expectation of new missions to the jovian system in the next decade. Acknowledgements: This research is in part supported by NSF grant AST-1313485 to UC Berkeley. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies et al. (2012) Icarus, 221, 466-470. [2] Rathbun and Spencer (2010) Icarus, 209, 625-630.

  4. VizieR Online Data Catalog: GCs in 27 nearby ETGs from the SLUGGS survey (Forbes+, 2017)

    NASA Astrophysics Data System (ADS)

    Forbes, D. A.; Alabi, A.; Brodie, J. P.; Romanowsky, A. J.; Strader, J.; Foster, C.; Usher, C.; Spitler, L.; Bellstedt, S.; Pastorello, N.; Villaume, A.; Wasserman, A.; Pota, V.

    2018-04-01

    Our sample consists of GC systems associated with 25 early-type galaxies from the SLUGGS survey (Brodie et al. 2014ApJ...796...52B) plus two of the three bonus galaxies (NGC 3607 and NGC 5866) that were observed with the same setup. We have obtained wide-field multi-filter imaging of the SLUGGS galaxies using the Subaru telescope under =<1 arcsec seeing conditions. This is supplemented by HST and CFHT imaging. Spectroscopic observations of GC candidates were obtained over the last decade using the DEIMOS spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck II 10 m telescope. The DEIMOS instrument is used in multi-slit mode, with each slit mask covering an area of ~16x5 arcmin2. (5 data files).

  5. A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshikawa, Jun; Kashikawa, Nobunari; Furusawa, Hisanori

    2016-08-01

    We present the discovery of three protoclusters at z ∼ 3–4 with spectroscopic confirmation in the Canada–France–Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ∼ 3–6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4 σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 10{sup 14} M {sub ⊙} at z = 0. We perform follow-up spectroscopy for eight of the candidatesmore » using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3–4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ∼ 5–6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (∼1.0 physical Mpc). The Ly α equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ∼ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ∼ 6.« less

  6. Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Franzetti, Paolo; Garilli, Bianca; Zamorani, Giovanni; Cimatti, Andrea; Rossetti, Emanuel

    2012-02-01

    We investigate the prospects of extending observations of high-redshift quasi-stellar objects (QSOs) from the current z˜ 7 to z > 8 by means of a very wide-area near-infrared slitless spectroscopic survey, considering as an example the planned survey with the European Space Agency's Euclid telescope (scheduled for a 2019 launch). For any QSOs at z > 8.06, the strong Lyman α line will enter the wavelength range of the Euclid Near-Infrared Spectometer and Imaging Photometer (NISP). We perform a detailed simulation of near infrared spectrometer and imaging photometer (Euclid) NISP slitless spectroscopy (with the parameters of the wide survey) in an artificial field containing QSO spectra at all redshifts up to z= 12 and to a faint limit H= 22.5. QSO spectra are represented with a template based on a Sloan Digital Sky Survey composite spectrum, with the added effects of absorption from neutral hydrogen in the intergalactic medium. The spectra extracted from the simulation are analysed with an automated redshift finder, and a detection rate estimated as a function of H magnitude and redshift (defined as the proportion of spectra with both correct redshift measurements and classifications). We show that, as expected, spectroscopic identification of QSOs would reach deeper limits for the redshift ranges where either ? (0.67 < z < 2.05) or Lyman α (z > 8.06) is visible. Furthermore, if photometrically selected z > 8 spectra can be re-examined and refitted to minimize the effects of spectral contamination, the QSO detection rate in the Lyman α window will be increased by an estimated ˜60 per cent and will then be better here than at any other redshift, with an effective limit H≃ 21.5. With an extrapolated rate of QSO evolution, we predict that the Euclid wide (15 000 ?) spectroscopic survey will identify and measure spectroscopic redshifts for a total of 20-35 QSOs at z > 8.06 (reduced slightly to 19-33 if we apply a small correction for missed weak-lined QSOs

  7. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  8. The Spectroscopic Properties of Lyα-Emitters at z ˜2.7: Escaping Gas and Photons from Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Trainor, Ryan F.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.

    2015-08-01

    We present a spectroscopic survey of 318 faint ({R}˜ 27, L˜ 0.1{L}*), Lyα-emission-selected galaxies (LAEs) in regions centered on the positions of hyperluminous QSOs (HLQSOs) at 2.5\\lt z\\lt 3. A sample of 32 LAEs with rest-frame optical emission line spectra from Keck/Multi-Object Spectrometer For InfraRed Exploration (MOSFIRE) are used to interpret the LAE spectra in the context of their systemic redshifts. The fields are part of the Keck Baryonic Structure Survey, which includes substantial ancillary multi-wavelength imaging from both the ground and space. From a quantitative analysis of the diverse Lyα spectral morphologies, including line widths, asymmetries, and multi-peaked profiles, we find that peak widths and separations are typically smaller than among samples of more luminous continuum-selected galaxies (Lyman-break galaxies and their analogs; LBGs) at similar redshifts. We find tentative evidence for an association between Lyα spectral morphology and external illumination by the nearby HLQSO. Using the MOSFIRE subsample, we find that the peak of the resolved (R ≈ 1300) Lyα line is shifted by +200 km s-1 with respect to systemic across a diverse set of galaxies including both LAEs and LBGs. We also find a small number of objects with significantly blueshifted Lyα emission, a potential indicator of accreting gas. The Lyα-to-Hα line ratios measured for the MOSFIRE subset suggest that the LAEs in this sample have Lyα escape fractions {f}{esc,{Ly}α } ≈ 30%, significantly higher than typical LBG samples. Using redshifts calibrated by our MOSFIRE sample, we construct composite LAE spectra, finding the first evidence for metal-enriched outflows in such intrinsically faint high-redshift galaxies. These outflows have smaller continuum covering fractions ({f}{{c}}≈ 0.3) and velocities ({v}{ave} ≈ 100-200 km s-1, {v}{max} ≈ 500 km s-1) than those associated with typical LBGs, suggesting that the gas covering fraction is a likely driver of

  9. Luminous Obscured AGN Unveiled in the Stripe 82 X-ray Survey

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie; Glikman, Eilat; Brusa, Marcella; Rigby, Jane; Tasnim Ananna, Tonima; Stern, Daniel; Lira, Paulina; Urry, Meg; Salvato, Mara; Alexandroff, Rachael; Allevato, Viola; Cardamone, Carolin; Civano, Francesca Maria; Coppi, Paolo; Farrah, Duncan; Komossa, S.; Lanzuisi, Giorgio; Marchesi, Stefano; Richards, Gordon; Trakhtenbrot, Benny; Treister, Ezequiel

    2018-01-01

    Stripe 82X is a wide-area (30 deg2) X-ray survey overlapping the legacy Sloan Digital Sky Survey (SDSS) Stripe 82 field, designed to uncover rare, high luminosity active galactic nuclei (AGN). We report on the results of an on-going near-infrared (NIR) spectroscopic campaign to follow-up reddened AGN candidates with Palomar TripleSpec, Keck NIRSPEC, and Gemini GNIRS. We identified 8 AGN in our bright NIR sample (K < 16, Vega), selected to have red R-K colors (> 4, Vega); four of these sources had existing optical spectra in SDSS. We targeted four out of 34 obscured AGN candidates in our faint NIR sample (K > 17, Vega), all of which are undetected in the single-epoch SDSS imaging, making them the best candidates for the most obscured and/or the most distant reddend AGN in Stripe 82X. All twelve sources are Type 1 AGN, with the FWHM of at least one permitted emission line exceeding 1300 km/s. We find that our nearly complete bright NIR sample (12/13 obscured AGN candidates have spectroscopic redshifts) is more distant (z > 0.5) than a matched sample of blue Type 1 AGN from Stripe 82X; these AGN tend to be more luminous than their blue, unobscured counterparts. Results from our pilot program of faint NIR-selected obscured AGN candidates demonstrate that our selection recovers reddened quasars missed by SDSS.

  10. First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kimihiko; Ouchi, Masami; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Lee, Janice C.

    2013-05-01

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Lyα emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect Hα emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q_{ion}=2.5^{+1.7}_{-0.8} \\times 10^8 cm s-1) and a low oxygen abundance (12+log (O/H)=7.84^{+0.24}_{-0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q_{ion}=8^{+10}_{-4} \\times 10^7 cm s-1) and a low oxygen abundance (12+log (O/H)=8.18^{+0.28}_{-0.28}). Both LAEs appear to fall below the mass-metallicity relation of z ~ 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/Hα index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only ~0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density ~100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q ion galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to cosmic reionization at z > 6. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is

  11. Spectroscopic observation of SN 2017jzp and SN 2018bf by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Wyrzykowski, L.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.

    2018-01-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of SNe 2017jzp and 2018bf in host galaxies KUG 1326+679 and SDSS J225746.53+253833.5, respectively.

  12. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGES

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  13. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  14. Spectroscopic classification of supernova SN 2018Z by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Pastorello, A.; Benetti, S.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.

    2018-01-01

    The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernova SN 2018Z in host galaxy SDSS J231809.76+212553.5 The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2018-01-09.9 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes PS18ao | SN 2018Z | 2018-01-01.2 | 19.96 | 2018-01-09.9 | 0.102 | Ia | post-maximum? | (1) (1) Redshift was derived from the SN and host absorption features.

  15. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.

    2012-03-01

    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithmmore » for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations

  16. Keck/HIRES Spectroscopy of V838 Monocerotis in October 2005

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Schmidt, M.; Tylenda, R.; Konacki, M.; Gromadzki, M.

    2009-05-01

    V838 Monocerotis (V838 Mon) erupted at the beginning of 2002 becoming an extremely luminous star with L sime 106 L sun. Among various scenarios proposed to explain the nature of the outburst, the most promising is a stellar merger event. In this paper, we investigate the observational properties of the star and its surroundings in the post outburst phase. We have obtained a high-resolution optical spectrum of V838 Mon in 2005 October using the Keck I telescope. We have identified numerous atomic features and molecular bands present in the spectrum and provided an atlas of those features. In order to improve the spectrum interpretation, we have performed simple modeling of the molecular bands. Our analysis indicates that the spectrum is dominated by molecular absorption features arising in photospheric regions with temperatures of ~2400 K and in colder outer layers, where the temperature decreases to ~500 K. A number of resonance lines of neutral alkali metals are observed to show P Cygni profiles. Particularly interesting are numerous prominent emission lines of [Fe II]. All of them show practically the same profile, which can be well described by a Lorentzian profile. In the blue part of the spectrum, photospheric signatures of the B-type companion are easily seen. We have fitted the observed spectrum with a synthetic one and the obtained parameters are consistent with the B3V type. We have also estimated radial and rotational velocities of the companion. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.

    2008-08-01

    We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA <= 0.06 and aBsin iB <= 0.30 AU. A subsequent search of the SuperWASP photometric database revealed that the K7 + K7 binary is eclipsing with a period of 2.21 days and at an inclination angle of 85°. Within uncertainties of 5%, the masses and radii of both components appear to be equal (0.59 M⊙, 0.61 R⊙). These two tightly orbiting stars (a = 0.035 AU) are in synchronous rotation, causing the observed excess Ca II, Hα, X-ray, and UV emission. The fact that the system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB <= 6.1 AU. As this tight configuration is difficult to reproduce with current formation models of multiple systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University

  18. A wide-field survey for high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Kakazu, Yuko K. M.

    2008-02-01

    The present thesis reports the results from the Hawaii Quasar and T dwarf survey (HQT survey), which is a wide-field optical imaging survey conducted with Subaru/Suprime-Cam. The HQT survey was designed to search for low- luminosity quasars ( M 1450 < -22.5) at high-redshift ( z > 5.7) as well as T dwarfs, both of which are selected by their very red optical I -- z ' colors. We developed a new color selection technique using a narrowband NB 816 filter in order to break a well-known color degeneracy between quasars and foreground M and L dwarfs. The follow-up Keck/DEIMOS spectroscopy and near-IR imaging with various instruments on Mauna Kea have demonstrated the effectiveness of our technique, and have successfully revealed six faint T dwarfs ( J < 20). These dwarfs are among the most distant spectroscopically known (60 - 170 pc) and they provide an indirect support for the high binary fraction at L/ T transition. The non-detection of z > 5.7 quasars in our survey is consistent with the present picture of the cosmic reionization in which quasars are negligible contributor to the cosmic reionization. With our survey area coverage (9.3 deg 2 ) and depths ( Z AB < 23.3), we were able to set strong constraints on the faint-end slope of the quasar luminosity function. Majority of our candidate quasars turned out to be strong emission line galaxies at z < 1, whose large equivalent widths and low metal contents suggest they are very young systems which have just undergone starbursts within a few Myrs. In order to systematically search for these Ultra-Strong Emission Line galaxies (USELs), we used narrowband selected samples from Hu's ultra-deep multiwavelength data. The followup Keck/DEIMOS spectra have revealed their high star formation density (5-10% of UV measurements at z = 0-1), which is a significant contribution at a epoch when cosmic star formation is in its peak. Many of the USELs show [OIII]l4363 auroral lines and about a dozen satisfy the criteria for e

  19. Spectroscopic observation of ASASSN-17nb and CSS170922:172546+342249 by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Harmanen, J.; Mattila, S.; Kuncarayakti, H.; Reynolds, T.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.; Dong, S.; Pastorello, A.; Pursimo, T.; NUTS Collaboration

    2017-10-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of ASASSN-17nb in MCG+06-17-007 and CSS170922:172546+342249 in an unknown host galaxy.

  20. BAT AGN Spectroscopic Survey. I. Spectral Measurements, Derived Quantities, and AGN Demographics

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Berney, Simon; Schawinski, Kevin; Baloković, Mislav; Baronchelli, Linda; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Hogg, Drew; Ichikawa, Kohei; Masetti, Nicola; Mushotzky, Richard; Sartori, Lia; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2017-11-01

    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey. We analyze optical spectra of the majority of the detected AGNs (77%, 642/836)based on their 14-195 keV emission in the 70-month Swift-BAT all-sky catalog. This includes redshift determination, absorption and emission-line measurements, and black hole mass and accretion rate estimates for the majority of obscured and unobscured AGNs (74%, 473/642), with 340 measured for the first time. With ˜90% of sources at z< 0.2, the survey represents a significant advance in the census of hard X-ray-selected AGNs in the local universe. In this first catalog paper, we describe the spectroscopic observations and data sets, and our initial spectral analysis. The FWHMs of the emission lines show broad agreement with the X-ray obscuration (˜94%), such that Sy 1-1.8 have {N}{{H}}< {10}21.9 cm-2, and Seyfert 2 have {N}{{H}}> {10}21.9 cm-2. Seyfert 1.9, however, show a range of column densities. Compared to narrow-line AGNs in the SDSS, the X-ray-selected AGNs have a larger fraction of dusty host galaxies ({{H}}α /{{H}}β > 5), suggesting that these types of AGN are missed in optical surveys. Using the [O III] λ5007/Hβ and [N II] λ6583/Hα emission-line diagnostic, about half of the sources are classified as Seyferts; ˜15% reside in dusty galaxies that lack an Hβ detection, but for which the upper limits on line emission imply either a Seyfert or LINER, ˜ 15 % are in galaxies with weak or no emission lines despite high-quality spectra, and a few percent each are LINERS, composite galaxies, H II regions, or in known beamed AGNs.

  1. Design and Implementation of Data Reduction Pipelines for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Gelino, C. R.; Berriman, G. B.; Kong, M.; Laity, A. C.; Swain, M. A.; Campbell, R.; Goodrich, R. W.; Holt, J.; Lyke, J.; Mader, J. A.; Tran, H. D.; Barlow, T.

    2015-09-01

    The Keck Observatory Archive (KOA), a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all active and inactive instruments from the twin Keck Telescopes located near the summit of Mauna Kea, Hawaii. In addition to the raw data, we produce and provide quick look reduced data for four instruments (HIRES, LWS, NIRC2, and OSIRIS) so that KOA users can more easily assess the scientific content and the quality of the data, which can often be difficult with raw data. The reduced products derive from both publicly available data reduction packages (when available) and KOA-created reduction scripts. The automation of publicly available data reduction packages has the benefit of providing a good quality product without the additional time and expense of creating a new reduction package, and is easily applied to bulk processing needs. The downside is that the pipeline is not always able to create an ideal product, particularly for spectra, because the processing options for one type of target (eg., point sources) may not be appropriate for other types of targets (eg., extended galaxies and nebulae). In this poster we present the design and implementation for the current pipelines used at KOA and discuss our strategies for handling data for which the nature of the targets and the observers' scientific goals and data taking procedures are unknown. We also discuss our plans for implementing automated pipelines for the remaining six instruments.

  2. Spectroscopic observation of Gaia17dht and Gaia17diu by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Dyrbye, S.; Cappella, E.

    2017-12-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of Gaia17dht/SN2017izz and Gaia17diu/SN2017jdb (in host galaxies SDSS J145121.24+283521.6 and LEDA 2753585 respectively).

  3. Spectroscopic survey of southern hemisphere white dwarfs. II. Spectroscopic data for forty-one southern white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegner, G.

    New spectroscopic data on 41 southern white dwarfs are presented. Most of these stars have not teen previously observed spectroscopically. Spectral types, as well as equivalent widths and line profiles for a few selected lines, are given. (auth)

  4. Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data

    NASA Astrophysics Data System (ADS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo

    2011-11-01

    We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 < z < 0.9 in a search for luminous compact blue galaxies (LCBGs). Unlike traditional studies of galaxy clusters, we preferentially targeted blue cluster members identified via multi-band photometric pre-selection based on imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we determined secure spectroscopic redshifts for 848 sources, yielding a total success rate of 66%. Our redshift measurements are in good agreement with those previously reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28< z< 1.08. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  6. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Anders, Friedrich; Anderson, Scott; Andrews, Brett H.; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barbuy, Beatriz; Barger, Kat; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Basu, Sarbani; Bates, Dominic; Battaglia, Giuseppina; Baumgarten, Falk; Baur, Julien; Bautista, Julian; Beers, Timothy C.; Belfiore, Francesco; Bershady, Matthew; Bertran de Lis, Sara; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Borissova, J.; Bovy, Jo; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burtin, Etienne; Busca, Nicolás G.; Orlando Camacho Chavez, Hugo; Cano Díaz, M.; Cappellari, Michele; Carrera, Ricardo; Chen, Yanping; Cherinka, Brian; Cheung, Edmond; Chiappini, Cristina; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert; Cunha, Katia; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; Da Costa, Luiz; Da Silva Ilha, Gabriele; Deconto Machado, Alice; Delubac, Timothée; De Lee, Nathan; De la Macorra, Axel; De la Torre, Sylvain; Diamond-Stanic, Aleksandar M.; Donor, John; Downes, Juan Jose; Drory, Niv; Du, Cheng; Du Mas des Bourboux, Hélion; Dwelly, Tom; Ebelke, Garrett; Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Escoffier, Stephanie; Evans, Michael L.; Falcón-Barroso, Jesús; Fan, Xiaohui; Favole, Ginevra; Fernandez-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gao, Yang; Garcia, Rafael A.; Garcia-Dias, R.; Garcia-Hernández, D. A.; Garcia Pérez, Ana E.; Gaulme, Patrick; Ge, Junqiang; Geisler, Douglas; Gillespie, Bruce; Gil Marin, Hector; Girardi, Léo; Goddard, Daniel; Gomez Maqueo Chew, Yilen; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul; Grier, Catherine J.; Grier, Thomas; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Matt; Harding, Paul; Harley, R. E.; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez Toledo, Hector; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Hu, Jian; Huber, Daniel; Hutchinson, Timothy Alan; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; Ivans, Inese I.; Ivory, KeShawn; Jaehnig, Kurt; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jullo, Eric; Kallinger, T.; Kinemuchi, Karen; Kirkby, David; Klaene, Mark; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Laurent, Pierre; Law, David R.; Leauthaud, Alexie; Le Goff, Jean-Marc; Li, Chen; Li, Cheng; Li, Niu; Li, Ran; Liang, Fu-Heng; Liang, Yu; Lima, Marcos; Lin, Lihwai; Lin, Lin; Lin, Yen-Ting; Liu, Chao; Long, Dan; Lucatello, Sara; MacDonald, Nicholas; MacLeod, Chelsea L.; Mackereth, J. Ted; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Olena; Malanushenko, Viktor; Dullius Mallmann, Nícolas; Manchado, Arturo; Maraston, Claudia; Marques-Chaves, Rui; Martinez Valpuesta, Inma; Masters, Karen L.; Mathur, Savita; McGreer, Ian D.; Merloni, Andrea; Merrifield, Michael R.; Meszáros, Szabolcs; Meza, Andres; Miglio, Andrea; Minchev, Ivan; Molaverdikhani, Karan; Montero-Dorta, Antonio D.; Mosser, Benoit; Muna, Demitri; Myers, Adam; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; O’Connell, Julia; Oravetz, Audrey; Oravetz, Daniel J.; Pace, Zachary; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Park, Changbom; Peacock, John A.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Percival, Jeffrey W.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew; Pinsonneault, Marc H.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Price-Jones, Natalie; Raddick, M. Jordan; Rahman, Mubdi; Raichoor, Anand; Barboza Rembold, Sandro; Reyna, A. M.; Rich, James; Richstein, Hannah; Ridl, Jethro; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Rodrigues, Thaíse S.; Roe, Natalie; Lopes, A. Roman; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Runnoe, Jessie C.; Salazar-Albornoz, Salvador; Salvato, Mara; Sanchez, Sebastian F.; Sanchez, Ariel G.; Sanchez-Gallego, José R.; Santiago, Basílio Xavier; Schiavon, Ricardo; Schimoia, Jaderson S.; Schlafly, Eddie; Schlegel, David J.; Schneider, Donald P.; Schönrich, Ralph; Schultheis, Mathias; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Sesar, Branimir; Shao, Zhengyi; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Victor; Skrutskie, M. F.; Slosar, Anže; Smith, Michael; Smith, Verne V.; Sobeck, Jennifer; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Storchi Bergmann, Thaisa; Strauss, Michael A.; Streblyanska, Alina; Stringfellow, Guy S.; Suarez, Genaro; Sun, Jing; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas; Trump, Jonathan R.; Unda-Sanzana, Eduardo; Valenzuela, O.; Van den Bosch, Remco; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Wang, Enci; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yeche, Christophe; Yuan, Fang-Ting; Zakamska, Nadia; Zamora, Olga; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2017-12-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV.

  7. Blind Spectroscopic Galaxy Surveys Using an Ultra-Wide-Band Imaging Spectrograph on AtLAST and LST

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2018-01-01

    A novel approach to elucidation of cosmic star formation history is a blind search for CO and [CII] emissions using a ultra-wide-band imaging spectrograph on the future large submm telescopes like AtLAST and LST. In particular, searching for [CII] emitters in the appropriate frequency range allows us to sample those sources very efficiently for a redshift range of 3.5 to 9 (190 to 420 GHz), reaching the star-formation in the EoR. Further, spectroscopic analysis of CO in the lower frequency bands will constrain the evolution of CO luminosity functions across cosmic time. We conducted a feasibility study of ``CO/[CII] tomography'' based on a mock galaxy catalog containing 1.4 million objects drawn from the S(3) -SAX (Obreschkow et al. 2009). We find that a blind spectroscopic survey using a 50-m telescope equipped with a 100-pixel imaging spectrograph, which covers 70-370 GHz simultaneously, will be promising indeed. A survey of 2 deg(2) in 1,000 hr (on-source) will uncover > 10^5 line-emitting galaxies in total, including 10^3 [CII] emitters in the EoR (Tamura et al., in prep.). Wider surveys (10 deg^2 or wider) will also be discussed for RSD science cases.

  8. Results from the Splash Survey: Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; SPLASH Collaboration

    2009-01-01

    Detailed studies of nearby galaxies provide vital clues about their formation and evolutionary history. This "fossil record" approach is complementary to direct look-back studies of distant galaxies. Our Galaxy and the Andromeda spiral galaxy (M31) have long been cornerstones in the former category. M31 provides an external perspective on a large galaxy similar to our own and yet is close enough to allow detailed studies of individual stars. In my talk, I will present results from the SPLASH collaboration: Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo. The collective data set from this large international team includes thousands of Keck/DEIMOS spectra of individual red giant branch stars, ground-based deep wide-field imaging and photometry with KPNO/Mosaic, CFHT/MegaCam, and Subaru/Suprime-Cam, and ultra-deep pencil-beam probes with HST/ACS imaging reaching below the main-sequence turnoff. Our recent discovery of an extended stellar halo in M31 (R > 150 kpc) shows that most previous studies of its spheroid have been sampling its inner bulge-like spheroidal component, not its halo. In my talk I will touch upon several related topics related to the general theme of hierarchical galaxy formation including: M31's global structure and subcomponents (halo, bulge/central bar, and disk), stellar dynamics, statistical properties of substructure, detailed chemical abundance measurements, detailed forensic reconstruction of recent collision events, dwarf satellites as tracers and building blocks of larger galaxies, and empirical constraints on the tangential motion of the M31 system. I will also discuss recent results on the chemical abundance of the lowest luminosity Galactic satellites (recently discovered by SDSS) and implications for the formation of the Milky Way halo. This research was supported by funds from the National Science Foundation, NASA, and the Institute for Geophysics and Planetary Physics.

  9. Rejecting Astrophysical False Positives from the TrES Transiting Planet Survey: The Example of GSC 03885-00829

    NASA Astrophysics Data System (ADS)

    O'Donovan, Francis T.; Charbonneau, David; Torres, Guillermo; Mandushev, Georgi; Dunham, Edward W.; Latham, David W.; Alonso, Roi; Brown, Timothy M.; Esquerdo, Gilbert A.; Everett, Mark E.; Creevey, Orlagh L.

    2006-06-01

    Ground-based wide-field surveys for nearby transiting gas giants are yielding far fewer true planets than astrophysical false positives, some of which are difficult to reject. Recent experience has highlighted the need for careful analysis to eliminate astronomical systems in which light from a faint eclipsing binary is blended with that from a bright star. During the course of the Transatlantic Exoplanet Survey, we identified a system presenting a transit-like periodic signal. We obtained the proper motion and infrared color of this target (GSC 03885-00829) from publicly available catalogs, which suggested this star is an F dwarf, supporting our transit hypothesis. This spectral classification was confirmed using spectroscopic observations from which we determined the stellar radial velocity. The star did not exhibit any signs of a stellar mass companion. However, subsequent multicolor photometry displayed a color-dependent transit depth, indicating that a blend was the likely source of the eclipse. We successfully modeled our initial photometric observations of GSC 03885-00829 as the light from a K dwarf binary system superimposed on the light from a late F dwarf star. High-dispersion spectroscopy confirmed the presence of light from a cool stellar photosphere in the spectrum of this system. With this candidate, we demonstrate both the difficulty in identifying certain types of false positives in a list of candidate transiting planets and our procedure for rejecting these imposters, which may be useful to other groups performing wide-field transit surveys. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  10. Non-Gaussian shape discrimination with spectroscopic galaxy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Joyce; Bean, Rachel, E-mail: byun@astro.cornell.edu, E-mail: rbean@astro.cornell.edu

    2015-03-01

    We consider how galaxy clustering data, from Mpc to Gpc scales, from upcoming large scale structure surveys, such as Euclid and DESI, can provide discriminating information about the bispectrum shape arising from a variety of inflationary scenarios. Through exploring in detail the weighting of shape properties in the calculation of the halo bias and halo mass function we show how they probe a broad range of configurations, beyond those in the squeezed limit, that can help distinguish between shapes with similar large scale bias behaviors. We assess the impact, on constraints for a diverse set of non-Gaussian shapes, of galaxymore » clustering information in the mildly non-linear regime, and surveys that span multiple redshifts and employ different galactic tracers of the dark matter distribution. Fisher forecasts are presented for a Euclid-like spectroscopic survey of Hα-selected emission line galaxies (ELGs), and a DESI-like survey, of luminous red galaxies (LRGs) and [O-II] doublet-selected ELGs, in combination with Planck-like CMB temperature and polarization data.While ELG samples provide better probes of shapes that are divergent in the squeezed limit, LRG constraints, centered below z<1, yield stronger constraints on shapes with scale-independent large-scale halo biases, such as the equilateral template. The ELG and LRG samples provide complementary degeneracy directions for distinguishing between different shapes. For Hα-selected galaxies, we note that recent revisions of the expected Hα luminosity function reduce the halo bias constraints on the local shape, relative to the CMB. For galaxy clustering constraints to be comparable to those from the CMB, additional information about the Gaussian galaxy bias is needed, such as can be determined from the galaxy clustering bispectrum or probing the halo power spectrum directly through weak lensing. If the Gaussian galaxy bias is constrained to better than a percent level then the LSS and CMB data could

  11. A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Mendez, R. A.; Tokovinin, A.; Horch, E.

    2017-07-01

    The prospect of exquisite-precision parallaxes that will be enabled by the Gaia satellite dramatically changes the landscape of observational stellar astrophysics: If one considers the Hipparcos double stars that lie within 250 pc of the Solar system, a parallax determined by Gaia would yield an uncertainty under 1% for all these objects. In this volume, there are 591 Hipparcos double star discoveries and 160 spectroscopic binaries from the Geneva-Copenhagen spectroscopic survey in the declination range of -20° to -90°. These two samples are important as a source of new binaries from which we will derive masses, component luminosities, and effective temperatures in the coming years. The northern hemisphere counterpart of these objects have been systematically observed at the WIYN Telescope by Horch and collaborators (Horch, E. P., van Altena, W. F., Howell, S. B., Sherry, W. H., & Ciardi, D. R. 2011, AJ, 141, 180). On the other hand, Tokovinin has shown the ability of HRCam at the CTIO/SOAR 4m telescope for binary star research. In 2014 we started a speckle survey with SOAR+HRCam that will complement and significantly extend those previous efforts, allowing us to compile a unique all-sky, volume-limited speckle survey of these two primary samples. So far 12 nights (spread over 3 semesters) have been granted through the Chilean reserved time, with lots of binaries confirmed, many new binaries found, and with several multiple systems discovered (Tokovinin et al., 2015, AJ, 150, 50 and 2016, AJ, 151, 153). Our survey, when complete, will open the door to many sensitive tests of stellar evolution theory, and a large number of new points on the MLR. With this we will truly be able to investigate effects such as metallicity and age on the MLR for the first time. In cases where one component has evolved off the main sequence, age determinations will also be possible.

  12. The Dark Energy Spectroscopic Instrument (DESI)

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna; Bebek, Chris

    2014-07-01

    The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).

  13. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE PAGES

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; ...

    2017-03-07

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  14. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  15. Global Properties of M31’s Stellar Halo from the SPLASH Survey. III. Measuring the Stellar Velocity Dispersion Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Tollerud, Erik; Beaton, Rachael L.; Guhathakurta, Puragra; Bullock, James S.; Chiba, Masashi; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Tanaka, Mikito

    2018-01-01

    We present the velocity dispersion of red giant branch stars in M31’s halo, derived by modeling the line-of-sight velocity distribution of over 5000 stars in 50 fields spread throughout M31’s stellar halo. The data set was obtained as part of the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) Survey, and covers projected radii of 9 to 175 kpc from M31’s center. All major structural components along the line of sight in both the Milky Way (MW) and M31 are incorporated in a Gaussian Mixture Model, including all previously identified M31 tidal debris features in the observed fields. The probability that an individual star is a constituent of M31 or the MW, based on a set of empirical photometric and spectroscopic diagnostics, is included as a prior probability in the mixture model. The velocity dispersion of stars in M31’s halo is found to decrease only mildly with projected radius, from 108 km s‑1 in the innermost radial bin (8.2 to 14.1 kpc) to ∼80 to 90 km s‑1 at projected radii of ∼40–130 kpc, and can be parameterized with a power law of slope ‑0.12 ± 0.05. The quoted uncertainty on the power-law slope reflects only the precision of the method, although other sources of uncertainty we consider contribute negligibly to the overall error budget. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  16. Recalculating the quasar luminosity function of the extended Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Caditz, David M.

    2017-12-01

    Aims: The extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey provides a uniform sample of over 13 000 variability selected quasi-stellar objects (QSOs) in the redshift range 0.68 survey may be in error because the k-correction has apparently been misapplied, which results in underestimating the intrinsic brightness of roughly half of the eBOSS sources. This work provides new estimates of the QLF based on a corrected eBOSS dataset. Methods: Intrinsic luminosities were recalculated using the appropriate g-band k-correction function. The QLF was determined for the corrected dataset using a model-weighted estimator, and parametric models were refit to the corrected luminosity function. Projected number counts based on the corrected models are also provided. Results: At redshifts higher than the "pivot" redshift, zp = 2.2, the original and recalculated results differ significantly; in particular, the new results show stronger high-redshift evolution in the best-fit models than the original eBOSS analysis. A new seven-parameter QLF model is provided that fits the corrected eBOSS dataset.

  17. The SAGES Legacy Unifying Globulars and Galaxies survey (SLUGGS): sample definition, methods, and initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Jean P.; Romanowsky, Aaron J.; Jennings, Zachary G.

    2014-11-20

    We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin{sup 2} field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ∼8 R {sub e}, and to ∼15 R {sub e} in some cases. New techniquesmore » to extract integrated stellar kinematics and metallicities to large radii (∼2-3 R {sub e}) are used in concert with GC data to create two-dimensional (2D) velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in situ formation modes at high redshifts for metal-poor and metal-rich GCs.« less

  18. The Snapshot A-Star SurveY (SASSY)

    NASA Astrophysics Data System (ADS)

    Garani, Jasmine; Nielsen, Eric L.; Marchis, Franck; Liu, Michael C.; Macintosh, Bruce; Rajan, Abhijith; De Rosa, Robert J.; Wang, Jason; Esposito, Thomas; Best, William M. J.; Bowler, Brendan P.; Dupuy, Trent J.; Ruffio, Jean-Baptise

    2017-01-01

    We present the Snapshot A-Star SurveY (SASSY), an adaptive optics survey conducted using NIRC2 on the Keck II telescope to search for young, self-luminious planets and brown dwarfs (M > 5MJup) around high mass stars (M > 1.5 M⊙). We describe a custom data-reduction pipeline developed for the coronagraphic observations of our 200 target stars. Our data analysis method includes basic near infrared data processing (flat-field correction, bad pixel removal, distortion correction) as well as performing PSF subtraction through a Reference Differential Imaging algorithm based on a library of PSFs derived from the observations using the pyKLIP routine. We present early results from the survey including planet and brown dwarf candidates and the status of ongoing follow-up observations. Utilizing the high contrast of Keck NIRC2 coronagraphic observations, SASSY reaches sensitivity to brown dwarfs and planetary mass companions at separations between 0.6'' and 4''. With over 200 stars observed we are tripling the number of high-mass stars imaged at these contrasts and sensitivities compared to previous surveys. This work was supported by the NSF REU program at the SETI Institute and NASA grant NNX14AJ80G.

  19. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Allende Prieto, Carlos; Anderson, Scott F.; Arns, James A.; Aubourg, Éric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.; Bosman, Casey T.; Bovy, Jo; Brandt, W. N.; Breslauer, Ben; Brewington, Howard J.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burger, Dan; Busca, Nicolas G.; Campbell, Heather; Cargile, Phillip A.; Carithers, William C.; Carlberg, Joleen K.; Carr, Michael A.; Chang, Liang; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Cortes, Marina; Croft, Rupert A. C.; Cunha, Katia; da Costa, Luiz N.; Davenport, James R. A.; Dawson, Kyle; De Lee, Nathan; Porto de Mello, Gustavo F.; de Simoni, Fernando; Dean, Janice; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eiting, Jacob M.; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Femenía Castellá, Bruno; Dutra Ferreira, Leticia; Fitzgerald, Greg; Fleming, Scott W.; Font-Ribera, Andreu; Ford, Eric B.; Frinchaboy, Peter M.; García Pérez, Ana Elia; Gaudi, B. Scott; Ge, Jian; Ghezzi, Luan; Gillespie, Bruce A.; Gilmore, G.; Girardi, Léo; Gott, J. Richard; Gould, Andrew; Grebel, Eva K.; Gunn, James E.; Hamilton, Jean-Christophe; Harding, Paul; Harris, David W.; Hawley, Suzanne L.; Hearty, Frederick R.; Hennawi, Joseph F.; González Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holtzman, Jon A.; Honscheid, Klaus; Inada, Naohisa; Ivans, Inese I.; Jiang, Linhua; Jiang, Peng; Johnson, Jennifer A.; Jordan, Cathy; Jordan, Wendell P.; Kauffmann, Guinevere; Kazin, Eyal; Kirkby, David; Klaene, Mark A.; Knapp, G. R.; Kneib, Jean-Paul; Kochanek, C. S.; Koesterke, Lars; Kollmeier, Juna A.; Kron, Richard G.; Lampeitl, Hubert; Lang, Dustin; Lawler, James E.; Le Goff, Jean-Marc; Lee, Brian L.; Lee, Young Sun; Leisenring, Jarron M.; Lin, Yen-Ting; Liu, Jian; Long, Daniel C.; Loomis, Craig P.; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mack, Claude; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Maraston, Claudia; Margala, Daniel; Maseman, Paul; Masters, Karen L.; McBride, Cameron K.; McDonald, Patrick; McGreer, Ian D.; McMahon, Richard G.; Mena Requejo, Olga; Ménard, Brice; Miralda-Escudé, Jordi; Morrison, Heather L.; Mullally, Fergal; Muna, Demitri; Murayama, Hitoshi; Myers, Adam D.; Naugle, Tracy; Neto, Angelo Fausti; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; O'Connell, Robert W.; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Daniel J.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pandey, Parul; Parejko, John K.; Pâris, Isabelle; Pellegrini, Paulo; Pepper, Joshua; Percival, Will J.; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Phleps, Stefanie; Pichon, Christophe; Pieri, Matthew M.; Prada, Francisco; Price-Whelan, Adrian M.; Raddick, M. Jordan; Ramos, Beatriz H. F.; Reid, I. Neill; Reyle, Celine; Rich, James; Richards, Gordon T.; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Robin, Annie C.; Rocha-Pinto, Helio J.; Rockosi, Constance M.; Roe, Natalie A.; Rollinde, Emmanuel; Ross, Ashley J.; Ross, Nicholas P.; Rossetto, Bruno; Sánchez, Ariel G.; Santiago, Basilio; Sayres, Conor; Schiavon, Ricardo; Schlegel, David J.; Schlesinger, Katharine J.; Schmidt, Sarah J.; Schneider, Donald P.; Sellgren, Kris; Shelden, Alaina; Sheldon, Erin; Shetrone, Matthew; Shu, Yiping; Silverman, John D.; Simmerer, Jennifer; Simmons, Audrey E.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smee, Stephen; Smith, Verne V.; Snedden, Stephanie A.; Stassun, Keivan G.; Steele, Oliver; Steinmetz, Matthias; Stockett, Mark H.; Stollberg, Todd; Strauss, Michael A.; Szalay, Alexander S.; Tanaka, Masayuki; Thakar, Aniruddha R.; Thomas, Daniel; Tinker, Jeremy L.; Tofflemire, Benjamin M.; Tojeiro, Rita; Tremonti, Christy A.; Vargas Magaña, Mariana; Verde, Licia; Vogt, Nicole P.; Wake, David A.; Wan, Xiaoke; Wang, Ji; Weaver, Benjamin A.; White, Martin; White, Simon D. M.; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. Michael; Yanny, Brian; Yasuda, Naoki; Yèche, Christophe; York, Donald G.; Young, Erick; Zasowski, Gail; Zehavi, Idit; Zhao, Bo

    2011-09-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z ≈ 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R ≈ 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 μm < λ < 1.70 μm) spectra of 105 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet

  20. Close Companions to Nearby Young Stars from Adaptive Optics Imaging on VLT and Keck

    NASA Astrophysics Data System (ADS)

    Haisch, Karl E.; Jayawardhana, Ray; Brandeker, Alexis; Mardones, Diego

    We report the results of VLT and Keck adaptive optics surveys of known members of the η Chamaeleontis, MBM 12, and TW Hydrae (TWA) associations to search for close companions. The multiplicity statistics of η Cha, MBM 12, and TWA are quite high compared with other clusters and associations, although our errors are large due to small number statistics. We have resolved S18 in MBM 12 and RECX 9 in η Cha into triples for the first time. The tight binary TWA 5Aab in the TWA offers the prospect of measuring the dynamical masses of both components as well as an independent distance to the system within a few years. The AO detection of the close companion to the nearby young star χ1 Orionis, previously inferred from radial velocity and astrometric observations, has already made it possible to derive the dynamical masses of that system without any astrophysical assumption.

  1. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  2. The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Wang, Yuting; Ross, Ashley J.; Shandera, Sarah; Percival, Will J.; Dawson, Kyle S.; Kneib, Jean-Paul; Myers, Adam D.; Brownstein, Joel R.; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K.; Meza, Andrés; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu

    2016-04-01

    We present a science forecast for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) survey. Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the fNL parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Lyman α forest to constrain the total neutrino mass. We find that eBOSS luminous red galaxies, emission line galaxies and clustering quasars can achieve a precision of 1, 2.2 and 1.6 per cent, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on fσ8 is expected to be 2.5, 3.3 and 2.8 per cent, respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of σ(fNL) ˜ 10-15. eBOSS can at most improve the dark energy figure of merit by a factor of 3 for the Chevallier-Polarski-Linder parametrization, and can well constrain three eigenmodes for the general equation-of-state parameter. eBOSS can also significantly improve constraints on modified gravity parameters by providing the RSD information, which is highly complementary to constraints obtained from weak lensing measurements. A principal component analysis shows that eBOSS can measure the eigenmodes of the effective Newton's constant to 2 per cent precision; this is a factor of 10 improvement over that achievable without eBOSS. Finally, we derive the eBOSS constraint (combined with Planck, Dark Energy Survey and BOSS) on the total neutrino mass, σ(Σmν) = 0.03 eV (68 per cent CL), which in principle makes it possible to distinguish between the two scenarios of neutrino mass hierarchies.

  3. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi

    2012-11-01

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  4. The BAT AGN Spectroscopic Survey (BASS) DR1-Spectral Measurements, Derived Quantities, and AGN Demographics

    NASA Astrophysics Data System (ADS)

    Koss, Michael; BASS Team

    2018-01-01

    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey (BASS). We analyze optical spectra of the majority of AGN (77%, 641/836) detected based on their 14-195 keV emission in the 70-month Swift BAT all-sky catalog. This includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and un-obscured AGN (74%, 473/641) with 340 measured for the first time. With ~90% of sources at z<0.2, the survey represents a significant census of hard-X-ray selected AGN in the local universe. In this first catalog paper, we describe the spectroscopic observations and datasets, and our initial spectral analysis. The FWHM of the emission lines show broad agreement with the X-ray obscuration (~94%), such that Sy 1-1.8 have NH<10^21.9 cm^-2, and Seyfert 2, have NH>10^21.9 cm^-2. Seyfert 1.9 show a range of column densities. Compared to narrow line AGN in the SDSS, the X-ray selected AGN have a larger fraction of dusty host galaxies suggesting these types of AGN are missed in optical surveys. Using the most sensitive [OIII]/Hbeta and [NII]/Halpha emission line diagnostic, about half of the sources are classified as Seyferts, ~15% reside in dusty galaxies that lack an Hbeta detection, but for which the line upper limits imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high quality spectra, and a few percent each are LINERS, composite galaxies, HII regions, or in known beamed AGN.

  5. Spectroscopic Classification of Two Supernovae

    NASA Astrophysics Data System (ADS)

    Gomez, S.; Blanchard, P.; Nicholl, M.; Berger, E.

    2018-02-01

    We obtained optical spectroscopic observations of 2 transients reported to the Transient Name Server by the ATLAS survey (Tonry et al. 2011, PASP, 123, 58; Tonry et al., ATel #8680) and the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153; http://star.pst.qub.ac.uk/ps1threepi/).

  6. Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Amiri, M.

    We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less

  7. Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER

    DOE PAGES

    Ade, P. A. R.; Aikin, R. W.; Amiri, M.; ...

    2015-10-20

    We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less

  8. The Planets Around Low-Mass Stars (PALMS) Direct Imaging Survey

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, M. C.; Shkolnik, E.; Mann, A.; Tamura, M.

    2013-01-01

    Direct imaging is the only method to study the outer architecture (>10 AU) of extrasolar planetary systems in a targeted fashion. Previous imaging surveys have primarily focused on intermediate- and high-mass stars because of the relative dearth of known nearby young M dwarfs. As a result, even though M dwarfs make up 70% of stars in our galaxy, there are few constraints on the population of giant planets at moderate separations (10-100 AU) in this stellar mass regime. We present results from an ongoing high-contrast adaptive optics imaging survey targeting newly identified nearby (<35 pc) young (<300 Myr) M dwarfs with Keck-2/NIRC2 and Subaru/HiCIAO. We have already discovered four young brown dwarf companions with masses between 30-70 Mjup; two of these are members of the ~120 Myr AB Dor moving group, and another one will yield a dynamical mass in the near future. Follow-up optical and near-infrared spectroscopy of these companions reveal spectral types of late-M to early-L and spectroscopic indicators of youth such as angular H-band morphologies, weak J-band alkali lines, and Li absorption and Halpha emission in one target. Altogether our survey is sensitive to planet masses a few times that of Jupiter at separations down to ~10 AU. With a sample size of roughly 80 single M dwarfs, this program represents the deepest and most extensive imaging search for planets around young low-mass stars to date.

  9. Spectroscopic observations of ASASSN-17io and ATLAS17hpt (SN 2017faf) by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Pastorello, Andrea; Benetti, Stefano; Cappellaro, Enrico; Terreran, Giacomo; Tomasella, Lina; Fedorets, Grigori; NUTS Collaboration

    2017-07-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of ASASSN-17io in the galaxy CGCG 316-010, along with the re classification of ATLAS17hpt (SN 2017faf), which was previously classified as a SLSN-I (ATel #10549).

  10. Volcanic activity of Io observed in December 2001 with the Keck AO system: 2-5μ m sunlit and eclipse observations

    NASA Astrophysics Data System (ADS)

    Marchis, F.; de Pater, I.; Le Mignant, D.; Roe, H.; Fusco, T.; Graham, J. R.; Prange, R.; Macintosh, B.; Keck Science Team

    2002-09-01

    Volcanically active Io remains a mysterious and intriguing moon, despite numerous spacecraft flybys. Groundbased monitoring programs help characterize the time evolution of Io's volcanic activity, such as the frequency, spatial distribution and temperature of hot spots and outbursts. The satellite was observed intensively in December 2001 with the Keck II Adaptive Optics (AO) system and its recently installed near-infrared camera NIRC2. The spatial resolution after applying the MISTRAL myopic deconvolution method (130 km in K band and 200 km in L band) is better than that of the global images from the Galileo/NIMS instrument. A movie produced from 12 pictures taken every 30o in Ionian longitude provides a complete survey of Io's surface during one full rotation. A total of 26 active hot spots were detected in L band (3.8μ m), and approximatively three times more in M band (4.7μ m). One active hot spot is seen in K band (2.2μ m) in the Pele area. While Io is in Jupiter's shadow, it is invisible to the wavefront sensor, but its hot spots are easily visible in the near-infrared. We imaged Io during the 18 Dec. 2001 eclipse using Ganymede (30" from Io, moving relative to Io at 0.5"/min) as a reference source. Although isoplanatic effects limited AO performance, numerous spots are detected at both K' and L'. We will show the results of detailed studies (temperature, emission area, nature) for several of the hot spots. Keck Science team is composed of S. Kwok, P. Amico, R. Campbell, F. Chaffee, A. Conrad, A. Contos, B. Goodrich, G. Hill, D. Sprayberry, P. Stomski, P. Wizinowich (W.M. Keck Observatory). This work has been supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783.

  11. Spectroscopic Confirmation of a Massive Red-sequence Selected Galaxy Cluster at Z=1.34 in the SpARCS-South Cluster Survey

    NASA Technical Reports Server (NTRS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H.K.C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.

  12. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  13. The MOSDEF Survey: First Measurement of Nebular Oxygen Abundance at z > 4

    NASA Astrophysics Data System (ADS)

    Shapley, Alice E.; Sanders, Ryan L.; Reddy, Naveen A.; Kriek, Mariska; Freeman, William R.; Mobasher, Bahram; Siana, Brian; Coil, Alison L.; Leung, Gene C. K.; deGroot, Laura; Shivaei, Irene; Price, Sedona H.; Azadi, Mojegan; Aird, James

    2017-09-01

    We present the first spectroscopic measurement of multiple rest-frame optical emission lines at z > 4. During the MOSFIRE Deep Evolution Field survey, we observed the galaxy GOODSN-17940 with the Keck I/MOSFIRE spectrograph. The K-band spectrum of GOODSN-17940 includes significant detections of the [O II]λλ3726,3729, [Ne III]λ3869, and Hγ emission lines and a tentative detection of Hδ, indicating z spec = 4.4121. GOODSN-17940 is an actively star-forming z > 4 galaxy based on its K-band spectrum and broadband spectral energy distribution. A significant excess relative to the surrounding continuum is present in the Spitzer/IRAC channel 1 photometry of GOODSN-17940, due primarily to strong Hα emission with a rest-frame equivalent width of EW(Hα) = 1200 Å. Based on the assumption of 0.5 Z ⊙ models and the Calzetti attenuation curve, GOODSN-17940 is characterized by {M}* ={5.0}-0.2+4.3× {10}9 {M}⊙ . The Balmer decrement inferred from Hα/Hγ is used to dust correct the Hα emission, yielding {{SFR(H}}α )={320}-140+190 {M}⊙ {{{yr}}}-1. These M * and star formation rate (SFR) values place GOODSN-17940 an order of magnitude in SFR above the z ˜ 4 star-forming “main sequence.” Finally, we use the observed ratio of [Ne III]/[O II] to estimate the nebular oxygen abundance in GOODSN-17940, finding O/H ˜ 0.2 (O/H)⊙. Combining our new [Ne III]/[O II] measurement with those from stacked spectra at z ˜ 0, 2, and 3, we show that GOODSN-17940 represents an extension to z > 4 of the evolution toward higher [Ne III]/[O II] (I.e., lower O/H) at fixed stellar mass. It will be possible to perform the measurements presented here out to z ˜ 10 using the James Webb Space Telescope. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of

  14. Spatially Resolved Emission of a z~3 Damped Lyman Alpha Galaxy with Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Jorgenson, Regina

    2017-01-01

    The damped Lyman alpha (DLA) class of galaxies contains most of the neutral hydrogen gas over cosmic time. Few DLAs have been detected directly, which limits our knowledge of fundamental properties like size and mass. We present Keck/OSIRIS infrared integral field spectroscopy (IFU) observations of a DLA that was first detected in absorption toward a background quasar. Our observations use the Keck Laser Guide Star Adaptive Optics system to reduce the point-spread function of the quasar, making it possible to spatially resolve the DLA emission. We map this emission in O[III] 5007 Å. At redshift z~3, this DLA represents one of the highest redshift DLAs mapped with IFU spectroscopy. We present measurements of the star formation rate, metallicity, and gas mass of the galaxy.This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  15. The Operation and Architecture of the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Gelino, C. R.; Laity, A.; Kong, M.; Swain, M.; Holt, J.; Goodrich, R.; Mader, J.; Tran, H. D.

    2014-05-01

    The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck Observatory (WMKO) are collaborating to build an archive for the twin 10-m Keck Telescopes, located near the summit of Mauna Kea. The Keck Observatory Archive (KOA) takes advantage of IPAC's long experience with managing and archiving large and complex data sets from active missions and serving them to the community; and of the Observatory's knowledge of the operation of its sophisticated instrumentation and the organization of the data products. By the end of 2013, KOA will contain data from all eight active observatory instruments, with an anticipated volume of 28 TB. The data include raw science and observations, quick look products, weather information, and, for some instruments, reduced and calibrated products. The goal of including data from all instruments is the cumulation of a rapid expansion of the archive's holdings, and already data from four new instruments have been added since October 2012. One more active instrument, the integral field spectrograph OSIRIS, is scheduled for ingestion in December 2013. After preparation for ingestion into the archive, the data are transmitted electronically from WMKO to IPAC for curation in the physical archive. This process includes validation of the science and content of the data and verification that data were not corrupted in transmission. The archived data include both newly-acquired observations and all previously acquired observations. The older data extends back to the date of instrument commissioning; for some instruments, such as HIRES, these data can extend as far back as 1994. KOA will continue to ingest all newly obtained observations, at an anticipated volume of 4 TB per year, and plans to ingest data from two decommissioned instruments. Access to these data is governed by a data use policy that guarantees Principal Investigators (PI) exclusive access to their data for at least 18 months, and allows for extensions as granted by

  16. The Challenge of Governance. Teacher's Guide [and Student Text]. W.M. Keck Foundation Series.

    ERIC Educational Resources Information Center

    Croddy, Marshall; Degelman, Charles; Hayes, Bill

    This teacher's guide and student text is the fourth volume in the W. M. Keck Foundation Series. The guide, which is designed to provide instructional support for classroom use of "The Challenge of Governance," gives teachers an opportunity to review content from the National Standards for Civics and Government for High School with…

  17. The Galactic O-Star Spectroscopic Survey. I. Classification System and Bright Northern Stars in the Blue-violet at R ~ 2500

    NASA Astrophysics Data System (ADS)

    Sota, A.; Maíz Apellániz, J.; Walborn, N. R.; Alfaro, E. J.; Barbá, R. H.; Morrell, N. I.; Gamen, R. C.; Arias, J. I.

    2011-04-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R ~ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of Maíz Apellániz et al. and Sota et al. The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B = 8 and north of δ = -20° and includes all of the northern objects in Maíz Apellániz et al. that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future, we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in Maíz Apellániz et al. The spectroscopic data in this article were gathered with three facilities: the 1.5 m telescope at the Observatorio de Sierra Nevada (OSN), the 3.5 m telescope at Calar Alto Observatory (CAHA), and the du Pont 2.5 m telescope at Las Campanas Observatory (LCO). Some of the supporting imaging data were obtained with the 2.2 m telescope at CAHA and the NASA/ESA Hubble Space Telescope (HST). The rest were retrieved from the DSS2 and Two Micron All Sky Survey (2MASS) surveys. The HST data were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  18. Spectroscopic Classification of Seven Supernovae

    NASA Astrophysics Data System (ADS)

    Blanchard, P.; Gomez, S.; Nicholl, M.; Berger, E.

    2018-01-01

    We obtained optical spectroscopic observations of 7 transients reported to the Transient Name Server by the ATLAS survey (Tonry et al. 2011, PASP, 123, 58; Tonry et al., ATel #8680), the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153; http://star.pst.qub.ac.uk/ps1threepi/), DPAC and the ESA Gaia Photometric Science Alerts Team (http://gsaweb.ast.cam.ac.uk/alerts), and the Tsinghua University-National Astronomical Observatories of China Transient Survey (TNTS).

  19. CHANDRA, KECK, and VLA Observations of the Crab Nebula During the 2011-April Gamma-Ray Flare

    DOE PAGES

    Weisskopf, Martin C.; Tennant, Allyn F.; Arons, Jonathan; ...

    2013-02-15

    In this paper, we present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the γ-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the "inner knot," i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. Lastly, we also discuss theoretical implications of the γ-ray flaresmore » and suggest that the most dramatic γ-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.« less

  20. The Type Ia Supernova Rate at z~0.5 from the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Neill, J. D.; Sullivan, M.; Balam, D.; Pritchet, C. J.; Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Gonçalves, A. C.; Hardin, D.; Kowalski, M.; Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.

    2006-09-01

    We present a measurement of the distant Type Ia supernova (SN Ia) rate derived from the first 2 yr of the Canada-France-Hawaii Telescope Supernova Legacy Survey. We observed four 1deg×1deg fields with a typical temporal frequency of <Δt>~4 observer-frame days over time spans of 158-211 days per season for each field, with breaks during the full Moon. We used 8-10 m class telescopes for spectroscopic follow-up to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified SNe Ia in the redshift range 0.2=0.47)=[0.42+0.13-0.09(syst.)+/-0.06(stat.)×10-4 yr-1 Mpc3, assuming h=0.7, Ωm=0.3, and a flat cosmology. Using recently published galaxy luminosity functions derived in our redshift range, we derive a SN Ia rate per unit luminosity of rL(=0.47)=0.154+0.048-0.033(syst.)+0.039-0.031(stat.) SN units. Using our rate alone, we place an upper limit on the component of SN Ia production that tracks the cosmic star formation history of 1 SN Ia per 103 Msolar of stars formed. Our rate and other rates from surveys using spectroscopic sample confirmation display only a modest evolution out to z=0.55. Based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This work is also based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Program 171.A-0486), and on observations (programs GN-2004A-Q-19, GS-2004A-Q-11

  1. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  2. First Spectroscopic Confirmations of z ∼ 7.0 Ly α Emitting Galaxies in the LAGER Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weida; Wang, Junxian; Kang, Wenyong

    Narrowband imaging is a highly successful approach for finding large numbers of high-redshift Ly α emitting galaxies (LAEs) up to z ∼ 6.6. However, at z ≳ 7 there are as of yet only three narrowband selected LAEs with spectroscopic confirmations (two at z ∼ 6.9–7.0, one at z ∼ 7.3), which hinders extensive studies on cosmic reionization and galaxy evolution at this key epoch. We have selected 23 candidate z ∼ 6.9 LAEs in COSMOS field with the large area narrowband survey Lyman-Alpha Galaxies at the End of Reionization (LAGER). In this work, we present spectroscopic follow-up observations ofmore » 12 candidates using the Inamori Magellan Areal Camera and Spectrograph on Magellan. For nine of these, the observations are sufficiently deep to detect the expected lines. Ly α emission lines are identified in six sources (yielding a success rate of 2/3), including three luminous LAEs with Ly α luminosities of L {sub Lyα} ∼ 10{sup 43.5} erg s{sup −1}, the highest among known spectroscopically confirmed galaxies at ≳7.0. This triples the sample size of spectroscopically confirmed narrowband selected LAEs at z ≳ 7, and confirms the bright-end bump in the Ly α luminosity function we previously derived based on the photometric sample, supporting a patchy reionization scenario. Two luminous LAEs appear physically linked with a projected distance of 1.1 pMpc and velocity difference of ∼170 km s{sup −1}. They likely sit in a common ionized bubble produced by themselves or with close neighbors, which reduces the intergalactic medium attenuation of Ly α . A tentative narrow N v λ 1240 line is seen in one source, hinting at activity of a central massive black hole with metal-rich line-emitting gas.« less

  3. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  4. Mechanical Design of NESSI: New Mexico Tech Extrasolar Spectroscopic Survey Instrument

    NASA Technical Reports Server (NTRS)

    Santoro, Fernando G.; Olivares, Andres M.; Salcido, Christopher D.; Jimenez, Stephen R.; Jurgenson, Colby A.; Hrynevych, Michael A.; Creech-Eakman, Michelle J.; Boston, Penny J.; Schmidt, Luke M.; Bloemhard, Heather; hide

    2011-01-01

    NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the Magdalena Ridge Observatory (MRO) 2.4-meter Telescope sited in the Magdalena Mountains, about 48 km west of Socorro-NM. NESSI operates stationary to the telescope fork so as not to produce differential flexure between internal opto-mechanical components during or between observations. An appropriate mechanical design allows the instrument alignment to be highly repeatable and stable for both short and long observation timescales, within a wide-range of temperature variation. NESSI is optically composed of a field lens, a field de-rotator, re-imaging optics, an auto-guider and a Dewar spectrograph that operates at LN2 temperature. In this paper we report on NESSI's detailed mechanical and opto-mechanical design, and the planning for mechanical construction, assembly, integration and verification.

  5. KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.

    2012-01-10

    Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Ly{alpha}) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Lowmore » Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5{sigma} sensitivity of <50 A for the rest-frame equivalent width (EW) of Ly{alpha} emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Ly{alpha} fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Ly{alpha} EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more

  6. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity

    NASA Astrophysics Data System (ADS)

    Mueller, Eva-Maria; Percival, Will; Linder, Eric; Alam, Shadab; Zhao, Gong-Bo; Sánchez, Ariel G.; Beutler, Florian; Brinkmann, Jon

    2018-04-01

    We use baryon acoustic oscillation and redshift space distortion from the completed Baryon Oscillation Spectroscopic Survey, corresponding to Data Release 12 of the Sloan Digital Sky Survey, combined sample analysis in combination with cosmic microwave background, supernova, and redshift space distortion measurements from additional spectroscopic surveys to test deviations from general relativity. We present constraints on several phenomenological models of modified gravity: First, we parametrize the growth of structure using the growth index γ, finding γ = 0.566 ± 0.058 (68 per cent C.L.). Secondly, we modify the relation of the two Newtonian potentials by introducing two additional parameters, GM and GL. In this approach, GM refers to modifications of the growth of structure whereas GL to modification of the lensing potential. We consider a power law to model the redshift dependence of GM and GL as well as binning in redshift space, introducing four additional degrees of freedom, GM(z < 0.5), GM(z > 0.5), GL(z < 0.5), and GL(z > 0.5). At 68 per cent C.L., we measure GM = 0.980 ± 0.096 and GL = 1.082 ± 0.060 for a linear model, GM = 1.01 ± 0.36 and GL = 1.31 ± 0.19 for a cubic model as well as GM(z < 0.5) = 1.26 ± 0.32, GM(z > 0.5) = 0.986 ± 0.022, GL(z < 0.5) = 1.067 ± 0.058, and GL(z > 0.5) = 1.037 ± 0.029. Thirdly, we investigate general scalar tensor theories of gravity, finding the model to be mostly unconstrained by current data. Assuming a one-parameter f(R) model, we can constrain B0 < 7.7 × 10-5 (95 per cent C.L). For all models we considered, we find good agreement with general relativity.

  7. The Large Sky Area Multi-object Fiber Spectroscopic Telescope Quasar Survey: Quasar Properties from the First Data Release

    NASA Astrophysics Data System (ADS)

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Zuo, Wenwen; Dong, Xiaoyi; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, Jianguo; Dong, Xiaobo; Yang, M.; -Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.

    2016-02-01

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical-infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.

  8. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  9. Polarization Angle Calibration and B-Mode Characterization with the BICEP and Keck Array CMB Telescopes

    NASA Astrophysics Data System (ADS)

    Bullock, Eric

    Since its discovery in 1964, the Cosmic Microwave Background (CMB) has led to widespread acceptance of the Big Bang cosmological paradigm as an explanation for the evolution of the Universe. However, this paradigm does not explain the origin of the initial conditions, leading to such issues as the "horizon problem" and "flatness problem." In the early 1980's, the inflationary paradigm was introduced as a possible source for the initial conditions. This theory postulates that the Universe underwent a period of exponential expansion within a tiny fraction of a second after the beginning. Such an expansion is predicted to inject a stochastic background of gravitational waves that could imprint a detectable B-mode (curl-like) signal in the polarization of the CMB. It is this signal that the family of telescopes used by the B ICEP1, BICEP2, and Keck Array collaborations were designed to detect. These telescopes are small aperture, on-axis, refracting telescopes. We have used the data from these telescopes, particularly BICEP2 and the Keck Array, to place the tightest constraints, as of March 2016, on the tensor-to-scalar ratio of the CMB of r 0.05 < 0.07. In this dissertation, we provide an overview of the Keck Array telescopes and analysis of the data. We also investigate, as the main focus of this dissertation, a device we call the Dielectric Sheet Calibrator (DSC) that is used to measure the polarization angles of our detectors as projected on the sky. With these measurements, we gain the potential to separate the polarization rotation effects of parity-violating physics, such as cosmic birefringence, from a systematic uncertainty on our detectors' polarization angles. Current calibration techniques for polarization sensitive CMB detectors claim an accuracy of +/-0.5°, which sets a limit for determining the usefulness of the DSC. Through a series of consistency tests on a single Keck Array receiver, we demonstrate a statistical uncertainty on the DSC measurements of

  10. VizieR Online Data Catalog: ESSENCE 6yr spectroscopic follow-up (Narayan+, 2016)

    NASA Astrophysics Data System (ADS)

    Narayan, G.; Rest, A.; Tucker, B. E.; Foley, R. J.; Wood-Vasey, W. M.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Aguilera, C.; Becker, A. C.; Blondin, S.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T. M.; Filippenko, A. V.; Ganeshalingam, M.; Garg, A.; Garnavich, P. M.; Hicken, M.; Jha, S. W.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Prieto, J. L.; Riess, A. G.; Schmidt, B. P.; Silverman, J. M.; Smith, R. C.; Sollerman, J.; Spyromilio, J.; Suntzeff, N. B.; Tonry, J. L.; Zenteno, A.

    2016-10-01

    The SN Ia search was carried out on the CTIO 4m Blanco telescope over 197 half-nights in dark and graytime between September and January from 2002 to 2008. Science images were obtained using the MOSAIC II camera through two primary filters (denoted R and I) similar to Cousins RC and IC. The field of view of the system is 0.36deg2 on the sky. See section 2 for further details and subdirectory "lcs" available on the FTP. We obtained spectroscopic follow up for the selected ESSENCE objects using a range of facilities including the Blue Channel spectrograph on the MMT; IMACS on Baade and LDSS2 and LDSS3 on Clay at the Las Campanas Observatory; GMOS on Gemini North and South; FORS1 on the 8m Very Large Telescope (VLT); and LRIS, ESI and DEIMOS at the W. M. Keck Observatory. (2 data files).

  11. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Kilpatrick, C. D.; Siebert, M. R.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-08-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST) and the All-Sky Automated Survey for Supernovae (ASAS-SN).

  12. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-06-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST), All-Sky Automated Survey for Supernovae (ASAS-SN) and MASTER.

  13. The Metal Abundances across Cosmic Time (MACT) Survey. I. Optical Spectroscopy in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.

    2016-09-01

    Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ˜3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1-1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O III]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass-gas metallicity relation at z ≲ 1 using the sample with [O III]λ4363 measurements.

  14. KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Ly{alpha} SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penprase, Bryan E.; Toro-Martinez, Irene; Beeler, Daniel J.

    2010-09-20

    We present the first results from a survey of SDSS quasars selected for strong H I damped Ly{alpha} (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II {lambda}1334 and Si II {lambda}1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities.more » We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b {<=} 5 km s{sup -1}) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s{sup -1}, we have measured low-metallicity DLA gas with [X/H] <-2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] <-2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z {approx} 3 drops exponentially at [X/H] {approx}<-3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < -4.0 are extremely rare, and could comprise only 8 x 10{sup -7} of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars

  15. Measuring Low Mass Galaxies In The WFC3 Infrared Spectroscopic Parallels Survey

    NASA Astrophysics Data System (ADS)

    Colbert, James; Teplitz, Harry; Scarlata, Claudia; Siana, Brian; Malkan, Matt; McCarthy, Patrick; Henry, Alaina; Atek, Hakim; Fosbury, Robert; Ross, Nathanial; Hathi, Nimish; Bridge, Carrie; Bunker, Andrew; Dressler, Alan; Shim, Hyunjin; Bedregal, Alejandro; Dominguez, Alberto; Rafelski, Marc; Masters, Dan; Martin, Crystal; Dai, Sophia

    2015-10-01

    The WFC3 Infrared Spectroscopic Parallel (WISP) Survey uses over 1800 HST orbits to study galaxy evolution over a majority of cosmic history. Its slitless grism spectroscopy over a wide, continuous spectral range (0.8-1.7 micron) provides an unbiased selection of thousands of emission line galaxies over 0.5 < z < 2.5. Hundreds of these galaxies are detected in multiple emission lines, allowing for important diagnostics of metallicity and dust extinction. We propose deep 3.6 micron imaging (5 sigma, 0.9 micro-Jy) of 60 of the deepest WISP fields observed with the combination of G102+G141 grisms, in order to detect emission-line galaxies down to 0.1 L* and masses below 10^8 Mo. Combined with our HST optical and near-IR photometry, these IRAC data will be critical to determining accurate stellar masses for both passive and active galaxies in our survey. We will determine the evolution of the faint end slope of the stellar mass function and the mass-metallicity relation down to low-mass galaxies. The addition of the IRAC photometry will also provide much stronger constraints on dust extinction and star formation history, especially when combined with information available from the emission lines themselves.

  16. Spectroscopic observations of ATLAS17lcs (SN 2017guv) and ASASSN-17mq (AT 2017gvo) by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Bose, Subhash; Stritzinger, M.; Holmbo, S.; Fraser, M.; Fedorets, G.

    2017-10-01

    The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of ATLAS17lcs (SN 2017guv) and ASASSN-17mq (AT 2017gvo) in host galaxies 2MASX J19132225-1648031 and CGCG 225-050, respectively.

  17. Operating a wide-area high-availability collaborative remote observing system for classically-scheduled observations at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Wirth, Gregory D.; Allen, Steven L.; Deich, William T. S.; Goodrich, Robert W.; Lanclos, Kyle; Lyke, James E.

    2011-03-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 9 years, WMKO remote observing has expanded to allow observing teams at dedicated sites located across California to observe via the Internet either in collaboration with colleagues in Waimea or entirely from California; this capability was extended to Swinburne University in Melbourne, Australia in 2010 and to Yale University in New Haven, Connecticut in early 2011. All Keck facility science instruments are currently supported. Observers distributed between as many as four sites can collaborate in the interactive operation of each instrument by means of shared VNC desktops and multipoint video and/or telephone conferencing. Automated routers at primary remote observing sites ensure continued connectivity during Internet outages. Each Keck remote observing facility is similarly equipped and configured so observers have the same operating environment. This architecture provides observers the flexibility to conduct observations from the location best suited to their needs and to adapt to last-minute changes. It also enhances the ability of off-site technical staff to provide remote support.

  18. Addressing chronic operational issues at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Nordin, Tom; Matsuda, Richard

    2016-07-01

    The W. M. Keck Observatory (WMKO) has a good track record at addressing large critical faults which impact observing. Our performance tracking and correcting chronic minor faults has been mixed, yet this class of problems has a significant negative impact on scientific productivity and staff effectiveness. We have taken steps to address this shortcoming. This paper outlines the creation of a program to identify, categorize and rank these chronic operational issues, track them over time, and develop management options for their resolution. The success of the program at identifying these chronic operational issues and the advantages of dedicating observatory resources to this endeavor are presented.

  19. Molecular Gas Content of an Extremely Star-forming Herschel Observed Lensed Dusty Galaxy at z=2.685

    NASA Astrophysics Data System (ADS)

    Nayyeri, Hooshang; Cooray, Asantha R.; H-ATLAS

    2017-01-01

    We present the results of combined deep near-infrared, far infrared and millimeter observations of an extremely star forming lensed dusty star-forming galaxy (DSFG) identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The high redshift DSFG is gravitationally lensed by a massive WISE identified cluster at z~1 (spectroscopically confirmed with Keck/DEIMOS and Gemini/GMOS) producing multiply lensed images and arcs observed in the optical. The DSFG is spectroscopically confirmed at z=2.685 from CO(1-0) observations by GBT and separately from CO(3-2) observations by CARMA. We use the combined spectroscopic and imaging observations to construct a detailed lens model of the background DSFG which allowed us to study the sources plane properties of the target. Multi-band data from Keck/NIRC2, HST/WFC3 and Herschel yields star formation rate and stellar mass well above the main sequence. Observations of the dust continuum by the Sub-millimeter Array yields an observed total ISM mass of 6.5E+11 M* which is responsible for the intense observed star formation rates. Comparing the measured SFR with molecular gas measurements from CO(1-0) observations reveals that this system has relatively short gas depletion time scale which is consistent with the starburst phase observed in high redshift sub-millimeter galaxies.

  20. Discovery of Remote Globular Cluster Satellites of M87

    NASA Astrophysics Data System (ADS)

    Sparkman, Lea; Guo, Rachel; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Ferrarese, Laura; Cote, Patrick; NGVS Collaboration

    2016-01-01

    We present the discovery of several tens of globular clusters (GCs) in the outer regions of the giant elliptical M87, the brightest galaxy in the Virgo Cluster. These M87 GC satellites were discovered in the course of Keck/DEIMOS spectroscopic follow up of GC candidates that were identified in the Next Generation Virgo cluster Survey (NGVS). Specifically, the primary targets of this Keck spectroscopic campaign were GC satellites of early-type dwarf (dE) galaxies. However, we found that our sample contained a subset of GCs for which M87 is the most likely host. This subset is consistent with having an r^-1 power-law surface density distribution and a radial velocity distribution both centered on M87. The remote M87 GC satellites span the radial range 140 to 900 kpc, out to about a third of the Virgo Cluster's virial radius (for comparison, M87's effective radius is only 8 kpc). These M87 GC satellites are probably former satellites of other Virgo Cluster galaxies that have subsequently been cannibalized by M87.This research was supported by the National Science Foundation and the UC Santa Cruz Science Internship Program.

  1. A spectroscopic survey of Orion KL between 41.5 and 50 GHz.

    PubMed

    Rizzo, J R; Tercero, B; Cernicharo, J

    2017-09-01

    The nearby massive star-forming region Orion KL is one of the richest molecular reservoirs known in our Galaxy. The region hosts newly formed protostars, and the strong interaction between their radiation and their outflows with the environment results in a series of complex chemical processes leading to a high diversity of interstellar tracers. The region is therefore one of the most frequently observed sources, and the site where many molecular species have been discovered for the first time. With the availability of powerful wideband backends, it is nowadays possible to complete spectral surveys in the entire mm-range to obtain a spectroscopically unbiased chemical picture of the region. In this paper we present a sensitive spectral survey of Orion KL, made with one of the 34 m antennas of the Madrid Deep Space Communications Complex in Robledo de Chavela, Spain. The spectral range surveyed is from 41.5 to 50 GHz, with a frequency spacing of 180 kHz (equivalent to ≈ 1.2 km s -1 , depending on the exact frequency). The rms achieved ranges from 8 to 12 mK. The spectrum is dominated by the J = 1 → 0 SiO maser lines and by radio recombination lines (RRLs), which were detected up to Δ n = 11. Above a 3 σ level, we identified 66 RRLs and 161 molecular lines corresponding to 39 isotopologues from 20 molecules; a total of 18 lines remain unidentified, two of them above a 5 σ level. Results of radiative modelling of the detected molecular lines (excluding masers) are presented. At this frequency range, this is the most sensitive survey and also the one with the widest band. Although some complex molecules like CH 3 CH 2 CN and CH 2 CHCN arise from the hot core, most of the detected molecules originate from the low temperature components in Orion KL.

  2. A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)

    NASA Technical Reports Server (NTRS)

    Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.

    2007-01-01

    We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function < 6.6. We find no significant evidence for Ly(alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.

  3. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Downing, S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-01-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), Catalina Real-Time Transient Survey (CRTS) and the CBAT Transient Object Followup Reports.

  4. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  5. THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi

    2016-02-15

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra inmore » DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.« less

  6. Near Infrared Imaging of the Hubble Deep Field with Keck Telescope

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Neugebauer, G.; Armus, Lee; Matthews, K.; Pahre, Michael A.; Soifer, B. T.; Weinberger, A. J.

    1997-01-01

    Two deep K-band (2.2 micrometer) images, with point-source detection limits of K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V(sub 606)- I(sub 814) and I(sub 814)-K colors are measured. By stacking visually selected objects, mean I(sub 814)-K colors can be measured to very faint levels, the mean I(sub 814)-K color is constant with apparent magnitude down to V(sub 606)=28 mag.

  7. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars — A Keck Geology Consortium Undergraduate Research Project

    NASA Astrophysics Data System (ADS)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-03-01

    This Keck Geology Consortium project, involving four undergrad geology students, mapped and analyzed sinuous channel features on Ascraeus Mons, Mars, to better understand the role of volcanic and fluvial processes in the geological evolution of Mars.

  8. The "small" NEA population: results of a spectroscopic survey in the framework of the NEOShield-2 project

    NASA Astrophysics Data System (ADS)

    Perna, D.

    2017-09-01

    One of the main aims of the NEOShield-2 project, financed in 2015-2017 by the European Commission in the framework of the H2020 program, is to undertake a comprehensive investigation of the physical properties of the "small" near-Earth asteroid (NEA) population. Here we report the results of a visible spectroscopic survey of 137 small (H>20) NEAs, performed in the framework of NEOShield-2. These data significantly increase the available literature in this size range, and show a peculiar distribution of spectral types for such small NEAs.

  9. Joint analysis of BICEP2/keck array and Planck Data.

    PubMed

    Ade, P A R; Aghanim, N; Ahmed, Z; Aikin, R W; Alexander, K D; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barkats, D; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Benton, S J; Bernard, J-P; Bersanelli, M; Bielewicz, P; Bischoff, C A; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Brevik, J A; Bucher, M; Buder, I; Bullock, E; Burigana, C; Butler, R C; Buza, V; Calabrese, E; Cardoso, J-F; Catalano, A; Challinor, A; Chary, R-R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Connors, J; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J-M; Désert, F-X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dowell, C D; Duband, L; Ducout, A; Dunkley, J; Dupac, X; Dvorkin, C; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Filippini, J P; Finelli, F; Fliescher, S; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; Golwala, S R; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Halpern, M; Hansen, F K; Hanson, D; Harrison, D L; Hasselfield, M; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hilton, G C; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hristov, V V; Huffenberger, K M; Hui, H; Hurier, G; Irwin, K D; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Karakci, A; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Keihänen, E; Kernasovskiy, S A; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kovac, J M; Krachmalnicoff, N; Kunz, M; Kuo, C L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J-M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leitch, E M; Leonardi, R; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Lueker, M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Mason, P; Matarrese, S; Megerian, K G; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M-A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nguyen, H T; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Brient, R; Ogburn, R W; Orlando, A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Pryke, C; Puget, J-L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Richter, S; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schwarz, R; Scott, D; Seiffert, M D; Sheehy, C D; Spencer, L D; Staniszewski, Z K; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A-S; Sygnet, J-F; Tauber, J A; Teply, G P; Terenzi, L; Thompson, K L; Toffolatti, L; Tolan, J E; Tomasi, M; Tristram, M; Tucci, M; Turner, A D; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Vieregg, A G; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Weber, A C; Wehus, I K; White, M; White, S D M; Willmert, J; Wong, C L; Yoon, K W; Yvon, D; Zacchei, A; Zonca, A

    2015-03-13

    We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2  μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150  GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.

  10. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2017-02-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), the ATLAS project (ATel #8680), and the Pan-STARRS Survey for Transients (PSST).

  11. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less

  12. The Fornax Cluster VLT Spectroscopic Survey II - Planetary Nebulae kinematics within 200 kpc of the cluster core

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Napolitano, N. R.; Arnaboldi, M.; Tortora, C.; Coccato, L.; Capaccioli, M.; Gerhard, O.; Iodice, E.; Spavone, M.; Cantiello, M.; Peletier, R.; Paolillo, M.; Schipani, P.

    2018-06-01

    We present the largest and most spatially extended planetary nebulae (PNe) catalogue ever obtained for the Fornax cluster. We measured velocities of 1452 PNe out to 200 kpc in the cluster core using a counter-dispersed slitless spectroscopic technique with data from FORS2 on the Very Large Telescope (VLT). With such an extended spatial coverage, we can study separately the stellar haloes of some of the cluster main galaxies and the intracluster light. In this second paper of the Fornax Cluster VLT Spectroscopic Survey, we identify and classify the emission-line sources, describe the method to select PNe, and calculate their coordinates and velocities from the dispersed slitless images. From the PN 2D velocity map, we identify stellar streams that are possibly tracing the gravitational interaction of NGC 1399 with NGC 1404 and NGC 1387. We also present the velocity dispersion profile out to ˜200 kpc radii, which shows signatures of a superposition of the bright central galaxy and the cluster potential, with the latter clearly dominating the regions outside R ˜ 1000 arcsec (˜100 kpc).

  13. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  14. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  15. Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with APOGEE stars

    NASA Astrophysics Data System (ADS)

    Reis, Itamar; Poznanski, Dovi; Baron, Dalya; Zasowski, Gail; Shahaf, Sahar

    2018-05-01

    In this work, we apply and expand on a recently introduced outlier detection algorithm that is based on an unsupervised random forest. We use the algorithm to calculate a similarity measure for stellar spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We show that the similarity measure traces non-trivial physical properties and contains information about complex structures in the data. We use it for visualization and clustering of the data set, and discuss its ability to find groups of highly similar objects, including spectroscopic twins. Using the similarity matrix to search the data set for objects allows us to find objects that are impossible to find using their best-fitting model parameters. This includes extreme objects for which the models fail, and rare objects that are outside the scope of the model. We use the similarity measure to detect outliers in the data set, and find a number of previously unknown Be-type stars, spectroscopic binaries, carbon rich stars, young stars, and a few that we cannot interpret. Our work further demonstrates the potential for scientific discovery when combining machine learning methods with modern survey data.

  16. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    NASA Astrophysics Data System (ADS)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5spectroscopic observations. The selection function we constructed for our survey takes into account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 1040 ergs s -1, corresponding to a star formation rate of 0.01 Msolar yr-1. Our cumulative z~=5 Lyα luminosity function is consistent with a power-law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. Spectroscopic Confirmation of Two Massive Red-sequence-selected Galaxy Clusters at Z Approximately Equal to 1.2 in the Sparcs-North Cluster Survey

    NASA Technical Reports Server (NTRS)

    Muzzin, Adam; Wilson, Gillian; Yee, H.K.C.; Hoekstra, Henk; Gilbank, David; Surace, Jason; Lacy, Mark; Blindert, Kris; Majumdar, Subhabrata; Demarco, Ricardo; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1.

  18. Investigation of a transiting planet candidate in Trumpler 37: An astrophysical false positive eclipsing spectroscopic binary star

    NASA Astrophysics Data System (ADS)

    Errmann, R.; Torres, G.; Schmidt, T. O. B.; Seeliger, M.; Howard, A. W.; Maciejewski, G.; Neuhäuser, R.; Meibom, S.; Kellerer, A.; Dimitrov, D. P.; Dincel, B.; Marka, C.; Mugrauer, M.; Ginski, Ch.; Adam, Ch.; Raetz, St.; Schmidt, J. G.; Hohle, M. M.; Berndt, A.; Kitze, M.; Trepl, L.; Moualla, M.; Eisenbeiß, T.; Fiedler, S.; Dathe, A.; Graefe, Ch.; Pawellek, N.; Schreyer, K.; Kjurkchieva, D. P.; Radeva, V. S.; Yotov, V.; Chen, W. P.; Hu, S. C.-L.; Wu, Z.-Y.; Zhou, X.; Pribulla, T.; Budaj, J.; Vaňko, M.; Kundra, E.; Hambálek, Ľ.; Krushevska, V.; Bukowiecki, Ł.; Nowak, G.; Marschall, L.; Terada, H.; Tomono, D.; Fernandez, M.; Sota, A.; Takahashi, H.; Oasa, Y.; Briceño, C.; Chini, R.; Broeg, C. H.

    We report our investigation of the first transiting planet candidate from the YETI project in the young (˜4 Myr old) open cluster Trumpler 37. The transit-like signal detected in the lightcurve of F8V star 2M21385603+5711345 repeats every 1.364894±0.000015 days, and has a depth of 54.5±0.8 mmag in R. Membership in the cluster is supported by its mean radial velocity and location in the color-magnitude diagram, while the Li diagnostic and proper motion are inconclusive in this regard. Follow-up photometric monitoring and adaptive optics imaging allow us to rule out many possible blend scenarios, but our radial-velocity measurements show it to be an eclipsing single-lined spectroscopic binary with a late-type (mid-M) stellar companion, rather than one of planetary nature. The estimated mass of the companion is 0.15-0.44 M⊙. The search for planets around very young stars such as those targeted by the YETI survey remains of critical importance to understand the early stages of planet formation and evolution. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (Proposal ID H215Hr). The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC, Proposal IDs H10-3.5-015 and H10-2.2-004). Some of the observations reported here were obtained at

  19. H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.

    Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H 0 from the time-delay technique. We present the results of a systematic spectroscopic identi cation of the galaxies in the field of view of the lensed quasar HE0435-1223 using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the direct vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 30more » from the lens. We complement our catalog with literature data to gather redshifts up to 150 from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We con rm that the lens is a member of a small group that includes at least 12 galaxies, and nd 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 1200 of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.« less

  20. H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223

    DOE PAGES

    Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.; ...

    2017-06-15

    Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H 0 from the time-delay technique. We present the results of a systematic spectroscopic identi cation of the galaxies in the field of view of the lensed quasar HE0435-1223 using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the direct vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 30more » from the lens. We complement our catalog with literature data to gather redshifts up to 150 from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We con rm that the lens is a member of a small group that includes at least 12 galaxies, and nd 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 1200 of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.« less

  1. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  2. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-09-01

    We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.

  3. Creation of an instrument maintenance program at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.

  4. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Miller, J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-04-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).

  5. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Narayan, G.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2015-04-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).

  6. The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Abolfathi, Bela; Aguado, D. S.; Aguilar, Gabriela; Allende Prieto, Carlos; Almeida, Andres; Tasnim Ananna, Tonima; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Ata, Metin; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Balland, Christophe; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bastien, Fabienne; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Andres Bradna Diaz, Christian; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cañas, Caleb I.; Cano-Díaz, Mariana; Cappellari, Michele; Carrera, Ricardo; Casey, Andrew R.; Cervantes Sodi, Bernardo; Chen, Yanping; Cherinka, Brian; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Cruz-Gonzalez, Irene; Cunha, Katia; da Silva Ilha, Gabriele; Damke, Guillermo J.; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; de Icaza Lizaola, Miguel Angel C.; de la Macorra, Axel; de la Torre, Sylvain; De Lee, Nathan; de Sainte Agathe, Victoria; Deconto Machado, Alice; Dell’Agli, Flavia; Delubac, Timothée; Diamond-Stanic, Aleksandar M.; Donor, John; José Downes, Juan; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Davis Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Erfanianfar, Ghazaleh; Escoffier, Stephanie; Fan, Xiaohui; Fernández Alvar, Emma; Fernandez-Trincado, J. G.; Cirolini, Rafael Fernando; Feuillet, Diane; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gómez Maqueo Chew, Yilen; Galbany, Lluís; García Pérez, Ana E.; Garcia-Dias, R.; García-Hernández, D. A.; Garma Oehmichen, Luis Alberto; Gaulme, Patrick; Gelfand, Joseph; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; González Hernández, Jonay I.; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gueguen, Alain; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Patrick; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez, Jesus; Hernandez Toledo, Hector; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Hou, Jiamin; Hsieh, Bau-Ching; Hunt, Jason A. S.; Hutchinson, Timothy A.; Hwang, Ho Seong; Jimenez Angel, Camilo Eduardo; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Sakil Khan, Fahim; Kinemuchi, Karen; Kirkby, David; Kirkpatrick, Charles C., IV; Kitaura, Francisco-Shu; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Le Goff, Jean-Marc; Lee, Young-Bae; Li, Hongyu; Li, Cheng; Lian, Jianhui; Liang, Yu; Lima, Marcos; Lin, Lihwai; Long, Dan; Lucatello, Sara; Lundgren, Britt; Mackereth, J. Ted; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Majewski, Steven; Manchado, Arturo; Maraston, Claudia; Mariappan, Vivek; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McDermid, Richard M.; McGreer, Ian D.; Melendez, Matthew; Meneses-Goytia, Sofia; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Mueller, Eva-Maria; Muller-Sanchez, Francisco; Muna, Demitri; Muñoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Noterdaeme, Pasquier; O’Connell, Julia; Oelkers, Ryan James; Oravetz, Audrey; Oravetz, Daniel; Aquino Ortíz, Erik; Osorio, Yeisson; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Hsi-An; Pan, Kaike; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rodríguez Torres, Sergio; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Ruiz, Jose; Salvato, Mara; Sánchez, Ariel G.; Sánchez, Sebastián F.; Sanchez Almeida, Jorge; Sánchez-Gallego, José R.; Santana Rojas, Felipe Antonio; Santiago, Basílio Xavier; Schiavon, Ricardo P.; Schimoia, Jaderson S.; Schlafly, Edward; Schlegel, David; Schneider, Donald P.; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Shen, Shiyin; Shen, Yue; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Víctor; Simon, Joshua D.; Skrutskie, Mike; Slosar, Anže; Smethurst, Rebecca; Smith, Verne; Sobeck, Jennifer; Somers, Garrett; Souter, Barbara J.; Souto, Diogo; Spindler, Ashley; Stark, David V.; Stassun, Keivan; Steinmetz, Matthias; Stello, Dennis; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Talbot, Michael S.; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Tissera, Patricia; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas W.; Urry, Meg; Valenzuela, O.; van den Bosch, Remco; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vogt, Nicole; Wake, David; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2018-04-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as “The Cannon” and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

  7. Kiso Multi-Fiber Spectroscope Project (C)

    NASA Astrophysics Data System (ADS)

    Yadoumaru, Yasushi; Itoh, Nobunari; Nakada, Yoshikazu; Tarusawa, Ken'ichi; Soyano, Takao; Mito, Hiroyuki

    A Multi-FIBER Spectroscope at Kiso Observatory is under consideration as our next instrument. In this paper we report an overview of our instrument and a scientific target of our survey project. We are going to attach multi-fiber system at the prime focus of Kiso 105cm Schmidt telescope. This telescope has some advantages for our project. First, the efficiency in survey for the object, which number density is 0.1 to 10 degree2, is higher than other multi object system due to the wide field of view (6 degree x 6 degree). Second, an optics of telescope is well-matched to fiber numerical aperture (NA) at an input end of fiber. Moreover, taking a focal ratio degradation (FRD) and scrambling property into account, since the light from object dose not move at the entrance slit of spectroscope, we could get spectroscopic data stably with this system. We select a fiber with 100 micron meter core which is correspond to 6 arcsec on focal plane, that is matched with a typical seeing (about 3 arcsec) of Kiso Observatory and set 150 fibers to one field. For efficient observations, it is necessary to arrange fibers accurately within an accuracy of +/- 25 micron meter on the curved focal plane during a typical exposure time (1 hour). Therefore we examine a particular positioner specialized for curved surface. We also develop a spectroscope that is suited for a fast focal ratio and proceed with making its design. One of our main key projects with this system is a non-biased metallicity survey for solar neighbor stars. We are now establishing a new metallicity determination method that easily and reliably measures a metallicity from low-dispersion spectra. (see Itoh et al.). As we consider our main target as Galactic objects and low resolution (R is around 1000), we could observe a star with 17 mag at V-band (1 hour exposure).

  8. Asiago spectroscopic classification of ASASSN-18io

    NASA Astrophysics Data System (ADS)

    Granata, V.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Turatto, M.

    2018-04-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18io, discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014).

  9. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-12-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.

  10. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7

    NASA Astrophysics Data System (ADS)

    Barris, Brian J.; Tonry, John L.; Blondin, Stéphane; Challis, Peter; Chornock, Ryan; Clocchiatti, Alejandro; Filippenko, Alexei V.; Garnavich, Peter; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Miknaitis, Gajus; Riess, Adam G.; Schmidt, Brian P.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Aussel, Hervé; Chambers, K. C.; Connelley, M. S.; Donovan, D.; Henry, J. Patrick; Kaiser, Nick; Liu, Michael C.; Martín, Eduardo L.; Wainscoat, Richard J.

    2004-02-01

    We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z=0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m~25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z>=0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that Ωtotal=1.0, we obtain best-fit values of (Ωm,ΩΛ)=(0.33,0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ΩΛ>0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground. CFHT: Based in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter-American Observatory. Keck: Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership

  11. Spectroscopic observation of 5 SN candidates

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.; Pursimo, T.; Korhonen, H.; Pastorello, A.; Derlopa, the NEON school PhD students S.; Marian, V.; Scognamiglio, D.; Szigeti, L.; Cabezas, M.; Fernandes, C. S.; McWhirter, P. R.; Zervas, K.

    2017-09-01

    We report the spectroscopic classification of SNe 2017gla, 2017glz, 2017gop, and 2017gqq, and the verification of SN2017gmr. The targets were supplied by the following surveys: ATLAS survey, see Tonry et al. (2011, PASP, 123, 58) and Tonry et al. (ATel #8680); Pan-STARRS Survey for Transients (Chambers et al. 2016, arXiv:1612.05560, and http://pswww.ifa.hawaii.edu ), the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/ ); and the D The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.4 nm FWHM).

  12. Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David; Spekkens, Kristine; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa

    2018-01-01

    I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): the resolved stellar halos of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) are investigated out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey pushes the limits of near-field cosmology beyond the Local Group, by characterizing the stellar content (ages, metallicities, gradients) of extended halos and their substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. PISCeS has to date led to the discovery of 11 confirmed satellites as faint as M_V=-8 (including Ultra Diffuse Galaxies), streams and tidal substructures with surface brigthness limits as low as ~32 mag/arcsec^2, and hundreds of globular cluster/ultra-compact dwarf candidates. The unique strength of PISCeS is the exquisite synergy between the wide-field, ground-based survey and its extensive imaging and spectroscopic follow-up (HST, Keck, VLT, Magellan, AAT), which constitute the first accurate characterization of the past and ongoing accretion processes shaping the halos of these nearby galaxies. Our observational campaign will not only provide crucial constraints to quantitatively inform theoretical models of galaxy formation and evolution, but it also represents a necessary testbed in preparation for future very large datasets stemming from the next generation of ground-based (LSST, TMT, GMT) as well as space-borne (JWST, WFIRST) telescopes.

  13. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vastmore » majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.« less

  14. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  15. The Atmosphere of Uranus as Imaged with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Hammel, H. B.; de Pater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K.

    2004-12-01

    Adaptive optics imaging of Uranus was obtained with NIRC2 on the Keck II 10-meter telescope in October 2003 and July 2004 through J, H, and K' filters. Dozens of discrete features were detected in the atmosphere of Uranus. We report the first measurements of winds northward of +43 deg, the first direct measurement of equatorial winds, and the highest wind velocity seen yet on Uranus. At northern mid-latitudes, the winds may have accelerated when compared to earlier HST and Keck observations; southern wind speeds have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, with diffuse patches roughly every 30 degs in longitude. There is no sign of a northern "polar collar" as is seen in the south, but a number of discrete features seen at the "expected" latitudes may signal its early stages of development. The largest cloud features on Uranus show complex structure extending over tens of degrees. On 4 July 2004, we detected a southern hemispheric cloud feature on Uranus at K', the first detection of a southern feature at or longward of 2 microns. H images showed an extended structure whose condensed core was co-located with the K'-bright feature. The core exhibited marked brightness variation, fading within just a few days. The initial brightness at K' indicates that the core's scattering particles reached altitudes above the 1-bar level, with the extended H feature residing below 1.1 bars. The core's rapid disappearance at K' indicates dynamical processes in the local vertical aerosol structure. HBH acknowledges support from NASA grants NAG5-11961 and NAG5-10451. IdP acknowledges support from NSF and the Technology Center for Adaptive Optics, managed by UCSC under cooperative agreement No. AST-9876783. SGG's work was performed under the auspices of the U.S. DoE National Nuclear Security Administration by the UC, LLNL under contract No. W-7405-Eng-48.

  16. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Coulter, D. A.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.

    2017-06-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST) and Gaia.

  17. A Survey for Hα Emission from Late L Dwarfs and T Dwarfs

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg; Kirkpatrick, J. Davy; Cotter, Garret; Kao, Melodie M.; Mooley, Kunal

    2016-07-01

    Recently, studies of brown dwarfs have demonstrated that they possess strong magnetic fields and have the potential to produce radio and optical auroral emissions powered by magnetospheric currents. This emission provides the only window on magnetic fields in the coolest brown dwarfs and identifying additional benchmark objects is key to constraining dynamo theory in this regime. To this end, we conducted a new red optical (6300-9700 Å) survey with the Keck telescopes looking for Hα emission from a sample of late L dwarfs and T dwarfs. Our survey gathered optical spectra for 29 targets, 18 of which did not have previous optical spectra in the literature, greatly expanding the number of moderate-resolution (R ˜ 2000) spectra available at these spectral types. Combining our sample with previous surveys, we confirm an Hα detection rate of 9.2±{}2.13.5% for L and T dwarfs in the optical spectral range of L4-T8. This detection rate is consistent with the recently measured detection rate for auroral radio emission from Kao et al., suggesting that geometrical selection effects due to the beaming of the radio emission are small or absent. We also provide the first detection of Hα emission from 2MASS 0036+1821, previously notable as the only electron cyclotron maser radio source without a confirmed detection of Hα emission. Finally, we also establish optical standards for spectral types T3 and T4, filling in the previous gap between T2 and T5. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    DOE PAGES

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg 2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~10 14–10 15 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precisemore » (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less

  19. The Maunakea Spectroscopic ExplorerStatus and System overview

    NASA Astrophysics Data System (ADS)

    Mignot, S.; Murowinski, R.; Szeto, K.; Blin, A.; Caillier, P.

    2017-12-01

    The Maunakea Spectroscopic Explorer (MSE) project explores the possibility of upgrading the existing CFHT telescope and collaboration to turn it into the most powerful spectroscopic facility available in the years 2020s. Its 10 meter aperture and its 1.5°² hexagonal field of view will allow both large and deep surveys, as complements to current (Gaia, eRosita, LOFAR) and future imaging (Euclid, WFIRST, SKA, LSST) surveys, but also to provide tentative targets to the TMT or the E-ELT. In perfect agreement with INSU's 2015-2020 prospective, besides being well represented in MSE's science team (23/105 members), France is also a major contributor to the Conceptual Design studies with CRAL developing a concept for the low and moderate spectrographs, DT INSU for the prime focus environment and GEPI for systems engineering.

  20. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  1. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)

  2. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    NASA Astrophysics Data System (ADS)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  3. Monsters and babies from the first/IRAS survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bruegel, W J M

    Radio continuum emission at cm wavelengths is relatively little affected by extinction. When combined with far-infrared (FIR) surveys this provides for a convenient and unbiased method to select (radio-loud) AGN and starbursts deeply embedded in gas and dust-rich galaxies. Such radio-selected FIR samples are useful for detailed investigations of the complex relationships between (radio) galaxy and starburst activity, and to determine whether ULIRGs are powered by hidden quasars (monsters) or young stars (babies). We present the results of a large program to obtain identifications and spectra of radio-sleected, optically faint IRAS/FSC objects using the FIRST/VLA 20 cm survey (Becker, Whitemore » and Helfand 1995). These objects are all radio-'quiet' in the sense that their radio power/FIR luminosities follow the well-known radio/FIR relationship for star forming galaxies. We compare these results to a previous study by our group of a sample of radio-'loud' IRAS/FSC ULIRGs selected from the Texas 365 MHz survey (Douglas et al. 1996). Many of these objects also show evidence for dominant, A-type stellar populations, as well as high ionization lines usually associated with AGN. These radio-loud ULIRGs have properties intermediate between those of starbursts and quasars, suggesting a possibile evolutionary connection. Deep Keck spectroscopic observations of three ULIRGs from these samples are presented, including high signal-to-noise spectropolarimetry. The polarimetry observations failed to show evidence of a hidden quasar in polarized (scattered) light in the two systems in which the stellar light was dominated by A-type stars. Although observations of a larger sample would be needed to allow a general conclusion, our current data suggest that a large fraction of ULIRGs may be powered by luminous starbursts, not by hidden, luminous AGN (quasars). While we used radio-selected FIR sources to search for evidence of a causal AGN/starburst connection, we conclude our

  4. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space

  5. The SPLASH Survey: Spectroscopy of 15 M31 Dwarf Spheroidal Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik J.; Beaton, Rachael L.; Geha, Marla C.; Bullock, James S.; Guhathakurta, Puragra; Kalirai, Jason S.; Majewski, Steve R.; Kirby, Evan N.; Gilbert, Karoline M.; Yniguez, Basilio; Patterson, Richard J.; Ostheimer, James C.; Cooke, Jeff; Dorman, Claire E.; Choudhury, Abrar; Cooper, Michael C.

    2012-06-01

    We present a resolved star spectroscopic survey of 15 dwarf spheroidal (dSph) satellites of the Andromeda galaxy (M31). We filter foreground contamination from Milky Way (MW) stars, noting that MW substructure is evident in this contaminant sample. We also filter M31 halo field giant stars and identify the remainder as probable dSph members. We then use these members to determine the kinematical properties of the dSphs. For the first time, we confirm that And XVIII, XXI, and XXII show kinematics consistent with bound, dark-matter-dominated galaxies. From the velocity dispersions for the full sample of dSphs we determine masses, which we combine with the size and luminosity of the galaxies to produce mass-size-luminosity scaling relations. With these scalings we determine that the M31 dSphs are fully consistent with the MW dSphs, suggesting that the well-studied MW satellite population provides a fair sample for broader conclusions. We also estimate dark matter halo masses of the satellites and find that there is no sign that the luminosity of these galaxies depends on their dark halo mass, a result consistent with what is seen for MW dwarfs. Two of the M31 dSphs (And XV, XVI) have estimated maximum circular velocities smaller than 12 km s-1 (to 1σ), which likely places them within the lowest-mass dark matter halos known to host stars (along with Boötes I of the MW). Finally, we use the systemic velocities of the M31 satellites to estimate the mass of the M31 halo, obtaining a virial mass consistent with previous results. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  6. The ΓX-L/LEdd relation in BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Ricci, Claudio; Koss, Michael; Schawinski, Kevin; Mushotzky, Richard; Ueda, Yoshihiro; Veilleux, Sylvain; Lamperti, Isabella; Oh, Kyuseok; Treister, Ezequiel; Stern, Daniel; Harrison, Fiona; Balokovic, Mislav

    2018-01-01

    We present a study of the relation between accretion rate (in terms of L/LEdd) and shape of the hard X-ray spectral energy distribution (namely the photon index Γx) for a large sample of over 200 hard X-ray-selected, low-redshift active galactic nuclei (AGNs), drawn from the Swift/BAT AGN Spectroscopic Survey (BASS). This includes 30 AGNs for which black hole mass (and therefore L/LEdd) is measured directly through masers, spatially resolved gas or stellar dynamics, or reverberation mapping. The high-quality and broad energy coverage of the data provided through BASS allow us to examine several alternative determinations of both Γx and L/LEdd. We find very weak correlation between Γx and L/LEdd for the BASS sample as a whole, with best-fitting relations that are considerably shallower than those reported in previous studies. Moreover, we find no corresponding correlations among the subsets of AGN with different MBH determination methodology, and in particular those AGN with direct or single-epoch MBH estimates. This latter finding is in contrast to several previous studies which focused on z > 0.5 broad-line AGN. We conclude that this tension can be partially accounted for if one adopts a simplified, power-law X-ray spectral model, combined with L/LEdd estimates that are based on the continuum emission and on single-epoch broad-line spectroscopy in the optical regime. Given these findings, we highlight the limitations of using Γx as a probe of supermassive black hole evolution in deep extragalactic X-ray surveys.

  7. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-05-01

    We use very deep UnGRI multifield imaging obtained at the Keck telescope to study the evolution of the rest-frame 1700 Å galaxy luminosity function as the universe doubles its age from z~4 to ~2. We use exactly the same filters and color-color selection as those used by the Steidel team but probe significantly fainter limits, well below L*. The depth of our imaging allows us to constrain the faint end of the luminosity function, reaching M1700~-18.5 at z~3 (equivalent to ~1 Msolar yr-1), accounting for both N1/2 uncertainty in the number of galaxies and cosmic variance. We carefully examine many potential sources of systematic bias in our LF measurements before drawing the following conclusions. We find that the luminosity function of Lyman break galaxies evolves with time and that this evolution is differential with luminosity. The result is best constrained between the epochs at z~4 and ~3, where we find that the number density of sub-L* galaxies increases with time by at least a factor of 2.3 (11 σ statistical confidence); while the faint end of the LF evolves, the bright end appears to remain virtually unchanged, indicating that there may be differential, luminosity-dependent evolution (98.5% statistical probability). Potential systematic biases restrict our ability to draw strong conclusions about continued evolution of the luminosity function to lower redshifts, z~2.2 and ~1.7, but, nevertheless, it appears certain that the number density of z~2.2 galaxies at all luminosities we studied, -22>M1700>-18, is at least as high as that of their counterparts at z~3. While it is not yet clear what mechanism underlies the observed evolution, the fact that this evolution is differential with luminosity opens up new avenues of improving our understanding of how galaxies form and evolve at high redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of

  8. Spectroscopic observation of Lyα emitters at z ∼ 7.7 and implications on re-ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faisst, A. L.; Carollo, C. M.; Capak, P.

    2014-06-10

    We present spectroscopic follow-up observations on two bright Lyα emitter (LAE) candidates originally found by Krug et al. at a redshift of z ∼ 7.7 using the Multi-Object Spectrometer for Infra-Red Exploration at Keck. We rule out any line emission at the >5σ level for both objects, putting on solid ground a previous null result for one of the objects. The limits inferred from the non-detections rule out the previous claim of no or even reversed evolution between 5.7 < z < 7.7 in the Lyα luminosity function (LF) and suggest a drop in the Lyα LF consistent with thatmore » seen in Lyman break galaxy (LBG) samples. We model the redshift evolution of the LAE LF using the LBG UV-continuum LF and the observed rest-frame equivalent width distribution. From the comparison of our empirical model with the observed LAE distribution, we estimate lower limits of the neutral hydrogen fraction to be 50%-70% at z ∼ 7.7. Together with this, we find a strong evolution in the Lyα optical depth characterized by (1 + z){sup 2.2} {sup ±} {sup 0.5} beyond z = 6, indicative of a strong evolution of the intergalactic medium. Finally, we extrapolate the LAE LF to z ∼ 9 using our model and show that it is unlikely that large area surveys, like UltraVISTA or Euclid, pick up LAEs at this redshift assuming the current depths and area.« less

  9. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  10. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2017-01-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN) and the ATLAS project (ATel #8680).

  11. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M {sub ⊙}, which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of themore » sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.« less

  12. A VLT/FORS2 spectroscopic survey of individual stars in a transforming dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Kacharov, N.; Rejkuba, M.

    2017-03-01

    Understanding the properties of dwarf galaxies is important not only to put them in their proper cosmological context, but also to understand the formation and evolution of the most common type of galaxies. Dwarf galaxies are divided into two main classes, dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs), which differ from each other mainly because the former are gas-rich objects currently forming stars, while the latter are gas-deficient with no on-going star formation. Transition types (dT) are thought to represent dIs in the process of losing their gas, and can therefore shed light into the possible process of dwarf irregulars (dIrrs) becoming gas-deficient, passively evolving galaxies. Here we present preliminary results from our wide-area VLT/FORS2 MXU spectroscopic survey of the Phoenix dT, from which we obtained line-of-sight velocities and metallicities from the nIR Ca II triplet lines for a large sample of individual Red Giant Branch stars.

  13. ATel 7534: Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.; Downing, S.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2015-05-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST). ...

  14. Exploring Relations Between BCG & Cluster Properties in the SPectroscopic IDentification of eROSITA Sources Survey from 0.05 < z < 0.3

    NASA Astrophysics Data System (ADS)

    Furnell, Kate E.; Collins, Chris A.; Kelvin, Lee S.; Clerc, Nicolas; Baldry, Ivan K.; Finoguenov, Alexis; Erfanianfar, Ghazaleh; Comparat, Johan; Schneider, Donald P.

    2018-04-01

    We present a sample of 329 low to intermediate redshift (0.05 < z < 0.3) brightest cluster galaxies (BCGs) in X-ray selected clusters from the SPectroscopic IDentification of eRosita Sources (SPIDERS) survey, a spectroscopic survey within Sloan Digital Sky Survey-IV (SDSS-IV). We define our BCGs by simultaneous consideration of legacy X-ray data from ROSAT, maximum likelihood outputs from an optical cluster-finder algorithm and visual inspection. Using SDSS imaging data, we fit Sérsic profiles to our BCGs in three bands (g, r, i) with SIGMA, a GALFIT-based software wrapper. We examine the reliability of our fits by running our pipeline on ˜104 psf-convolved model profiles injected into 8 random cluster fields; we then use the results of this analysis to create a robust subsample of 198 BCGs. We outline three cluster properties of interest: overall cluster X-ray luminosity (LX), cluster richness as estimated by REDMAPPER (λ) and cluster halo mass (M200), which is estimated via velocity dispersion. In general, there are significant correlations with BCG stellar mass between all three environmental properties, but no significant trends arise with either Sérsic index or effective radius. There is no major environmental dependence on the strength of the relation between effective radius and BCG stellar mass. Stellar mass therefore arises as the most important factor governing BCG morphology. Our results indicate that our sample consists of a large number of relaxed, mature clusters containing broadly homogeneous BCGs up to z ˜ 0.3, suggesting that there is little evidence for much ongoing structural evolution for BCGs in these systems.

  15. VizieR Online Data Catalog: MUSCLES Treasury Survey. IV. M dwarf UV fluxes (Youngblood+, 2017)

    NASA Astrophysics Data System (ADS)

    Youngblood, A.; France, K.; Loyd, R. O. P.; Brown, A.; Mason, J. P.; Schneider, P. C.; Tilley, M. A.; Berta-Thompson, Z. K.; Buccino, A.; Froning, C. S.; Hawley, S. L.; Linsky, J.; Mauas, P. J. D.; Redfield, S.; Kowalski, A.; Miguel, Y.; Newton, E. R.; Rugheimer, S.; Segura, A.; Roberge, A.; Vieytes, M.

    2018-02-01

    We selected stars with HST UV spectra and ground-based optical spectra either obtained directly by us or available in the VLT/XSHOOTER or Keck/HIRES public archives. Several targets have spectroscopic data obtained with the Dual Imaging Spectrograph (DIS) on the ARC 3.5m telescope at Apache Point Observatory (APO), R~2500, or the REOSC echelle spectrograph on the 2.15m telescope at Complejo Astronomico El Leoncito (CASLEO), R~12000, within a day or two of the HST observations. We also gathered spectra of GJ1132, GJ1214, and Proxima Cen on the nights of 2016 March 7-9 using the MIKE echelle spectrograph on the Magellan Clay telescope. (2 data files).

  16. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Siebert, M. R.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.

    2017-07-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Asteroid Terrestrial-impact Last Alert System (ATLAS; ATel #8680), the Pan-STARRS Survey for Transients (PSST) and Gaia.

  17. Water Vapor Measurement and Compensation in the Near and Mid-infrared with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Koresko, Chris D.; Colavita, Mark M.; Serabyn, Eugene; Booth, Andrew; Garcia, Jean I.

    2006-01-01

    A viewgraph presentation describing the methods, motivation and methods for water vapor measurement with the Keck interferometer near and mid infrared radiation band is shown. The topics include: 1) Motivation: Why measure H2O?; 2) Method: How do we measure H2O?; 3) Data: Phase and Group Delays for the K and N Bands; 4) Predicted and Actual Nband Phase and Dispersion; and 5) Validation of Atmospheric Turbulence Models with KI Data.

  18. Spectroscopic Classifications of AT2016esx with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Siebert, M. R.; Coulter, D. A.; Foley, R. J.; Pan, Y.-C.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-08-01

    We report a classification of ASASSN-16io = AT2016esx from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN).

  19. Asiago spectroscopic classification of 5 ASASSN SNe

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.

    2018-04-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18ii,ASASSN-18it, ASASSN-18iv, ASASN-18iw, ASASSN-18iu discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) (Atel #11178).

  20. The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C E; Canalizo, G; Macintosh, B A

    2004-06-28

    We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern subnucleus is more highly reddened. Based upon the nuclear separation measured at 5more » GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H{sub 2} 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H{sub 2} emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent star clusters formed in the course of the merger.« less

  1. The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C E; Canalizo, G; Macintosh, B A

    2004-11-19

    We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern subnucleus is more highly reddened. Based upon the nuclear separation measured at 5more » GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H{sub 2} 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H{sub 2} emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many any point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.« less

  2. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  3. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    NASA Astrophysics Data System (ADS)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  4. Asiago spectroscopic classification of ASAS-SN18ao

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.

    2018-01-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASAS-SN18ao (aka AT2018gm, Atel #11178) discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014).

  5. ePESSTO spectroscopic classification of the candidate TDE XMMSL2 J140446.9-251135

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Floers, A.; Vogl, C.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Anderson, J.; Gromadzki, M.; Onori, F.; Kostrzewa-Rutkowska, Z.; Jonker, P.; Leloudas, G.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Yaron, O.; Young, D.

    2018-03-01

    ePESSTO, the extended Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40; http://www.pessto.org ), reports the following spectroscopic observation of the new X-ray source XMMSL2 J140446.9-251135 in the galaxy 2MASX 14044671-2511433 (ATel #11394).

  6. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  7. Automated reliability assessment for spectroscopic redshift measurements

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  8. SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-06-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  9. BAT AGN Spectroscopic Survey (BASS) - VI. The ΓX-L/LEdd relation

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Ricci, Claudio; Koss, Michael J.; Schawinski, Kevin; Mushotzky, Richard; Ueda, Yoshihiro; Veilleux, Sylvain; Lamperti, Isabella; Oh, Kyuseok; Treister, Ezequiel; Stern, Daniel; Harrison, Fiona; Baloković, Mislav; Gehrels, Neil

    2017-09-01

    We study the relation between accretion rate (in terms of L/LEdd) and shape of the hard X-ray spectral energy distribution (namely the photon index Γx) for a large sample of 228 hard X-ray-selected, low-redshift active galactic nuclei (AGNs), drawn from the Swift/BAT AGN Spectroscopic Survey (BASS). This includes 30 AGNs for which black hole mass (and therefore L/LEdd) is measured directly through masers, spatially resolved gas or stellar dynamics, or reverberation mapping. The high-quality and broad energy coverage of the data provided through BASS allow us to examine several alternative determinations of both Γx and L/LEdd. For the BASS sample as a whole, we find a statistically significant, albeit very weak correlation between Γx and L/LEdd. The best-fitting relations we find, Γx ≃ 0.15 log L/LEdd + const., are considerably shallower than those reported in previous studies. Moreover, we find no corresponding correlations among the subsets of AGN with different MBH determination methodology. In particular, we find no robust evidence for a correlation when considering only those AGN with direct or single-epoch MBH estimates. This latter finding is in contrast to several previous studies which focused on z > 0.5 broad-line AGN. We discuss this tension and conclude that it can be partially accounted for if one adopts a simplified, power-law X-ray spectral model, combined with L/LEdd estimates that are based on the continuum emission and on single-epoch broad-line spectroscopy in the optical regime. We finally highlight the limitations on using Γx as a probe of supermassive black hole evolution in deep extragalactic X-ray surveys.

  10. Asiago spectroscopic classification of three SNe

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.; Cappellaro, E.; Benetti, S.; Tomasella, L.; Ochner, P.; Pastorello, A.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2015-09-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of three SNe. Informations on these transients are also available from the "Bright Supernova" website (http://www.rochesterastronomy.org/snimages/), the CBAT Transient Object Followup Reports (http://www.cbat.eps.harvard.edu/index.html) and All-Sky Automated Survey for Supernovae (http://www.astronomy.ohio-state.edu/~assassin/index.shtml).

  11. A spectroscopic survey of WISE-selected obscured quasars with the southern african large telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainline, Kevin N.; Hickox, Ryan C.; Carroll, Christopher M.

    2014-11-10

    We present the results of an optical spectroscopic survey of a sample of 40 candidate obscured quasars identified on the basis of their mid-infrared emission detected by the Wide-Field Infrared Survey Explorer (WISE). Optical spectra for this survey were obtained using the Robert Stobie Spectrograph on the Southern African Large Telescope. Our sample was selected with WISE colors characteristic of active galactic nuclei (AGNs), as well as red optical to mid-IR colors indicating that the optical/UV AGN continuum is obscured by dust. We obtain secure redshifts for the majority of the objects that comprise our sample (35/40), and find thatmore » sources that are bright in the WISE W4 (22 μm) band are typically at moderate redshift ((z) = 0.35) while sources fainter in W4 are at higher redshifts ((z) = 0.73). The majority of the sources have narrow emission lines with optical colors and emission line ratios of our WISE-selected sources that are consistent with the locus of AGN on the rest-frame g – z color versus [Ne III] λ3869/[O II] λλ3726+3729 line ratio diagnostic diagram. We also use empirical AGN and galaxy templates to model the spectral energy distributions (SEDs) for the objects in our sample, and find that while there is significant variation in the observed SEDs for these objects, the majority require a strong AGN component. Finally, we use the results from our analysis of the optical spectra and the SEDs to compare our selection criteria to alternate criteria presented in the literature. These results verify the efficacy of selecting luminous obscured AGNs based on their WISE colors.« less

  12. The massive stellar population of W49: A spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea

    2016-05-01

    Context. Massive stars form on different scales that range from large, dispersed OB associations to compact, dense starburst clusters. The complex structure of regions of massive star formation and the involved short timescales provide a challenge for our understanding of their birth and early evolution. As one of the most massive and luminous star-forming region in our Galaxy, W49 is the ideal place to study the formation of the most massive stars. Aims: By classifying the massive young stars that are deeply embedded in the molecular cloud of W49, we aim to investigate and trace the star formation history of this region. Methods: We analyse near-infrared K-band spectroscopic observations of W49 from LBT/LUCI combined with JHK images obtained with NTT/SOFI and LBT/LUCI. Based on JHK-band photometry and K-band spectroscopy, the massive stars are placed in a Hertzsprung Russell diagram. By comparison with evolutionary models, their age and hence the star formation history of W49 can be investigated. Results: Fourteen O-type stars, as well as two young stellar objects (YSOs), are identified by our spectroscopic survey. Eleven O stars are main sequence stars with subtypes ranging from O3 to O9.5 and masses ranging from ~20 M⊙ to ~120 M⊙. Three of the O stars show strong wind features and are considered to be Of-type supergiants with masses beyond 100 M⊙. The two YSOs show CO emission, which is indicative of the presence of circumstellar disks in the central region of the massive cluster. The age of the cluster is estimated as ~1.5 Myr, with star formation continuing in different parts of the region. The ionising photons from the central massive stars have not yet cleared the molecular cocoon surrounding the cluster. W49 is comparable to extragalactic star-forming regions, and it provides us with a unique chance to study a starburst in detail. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among

  13. A Catalog of Quasar Properties from the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Pan, Da-Sheng; Pang, Ting-Ting; Huang, Yong

    2018-01-01

    Using the quasars with z em < 0.9 from the Baryon Oscillation Spectroscopic Survey, we measure the spectral characteristics, including continuum and emission lines, around the Hβ and Hα spectral regions, which are lacking in Quasar Data Release 12 (DR12Q). We estimate the virial black hole mass from broad Hα and/or Hβ, and infer quasar redshifts from [O III] λ5007 emission lines. All the measurements and derived quantities are publicly available. A comparison between [O III] λ5007 redshifts and the visual inspection redshifts included in DR12Q indicates that the visual inspection redshifts are robust. We find that the full widths at half maximum of the broad Hα are consistent with those of the broad Hβ, while both the equivalent widths and line luminosities of the broad Hα are obviously larger than the corresponding quantities of the broad Hβ. We also find that there is an obviously systematic offset between the Hβ and Hα based mass if they are inferred from the empirical relationships in the literature. Using our large quasar sample, we have improved the Hβ and Hα based mass estimators by minimizing the difference between the Hβ- and Hα-based masses. For the black hole mass estimator (Equation (1)), we find that the coefficients (a, b) = (7.00, 0.50) for Hα and (a, b) = (6.96, 0.50) for Hβ are the best choices.

  14. Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.

    2017-10-01

    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.

  15. Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg^2 SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Khullar, Gourav; Bleem, Lindsey; Bayliss, Matthew; Gladders, Michael; South Pole Telescope (SPT) Collaboration

    2018-06-01

    We present spectroscopic confirmation of 5 galaxy clusters at 1.25 < z < 1.5, discovered in the 2500 deg2 South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey. These clusters, taken from a nearly redshift-independent mass-limited sample of clusters, have multi-wavelength follow-up imaging data from the X-ray to the near-IR, and currently form the most homogenous massive high-redshift cluster sample in existence. We briefly describe the analysis pipeline used on the low S/N spectra of these faint galaxies, and describing the multiple techniques used to extract robust redshifts from a combination of absorption-line (Ca II H&K doublet - λλ3934,3968Å) and emission-line ([OII] λλ3727,3729Å) spectral features. We present several ensemble analyses of cluster member galaxies that demonstrate the reliability of the measured redshifts. We also identify modest [OII] emission and pronounced CN and Hδ absorption in a composite stacked spectrum of 28 low S/N passive galaxy spectra with redshifts derived primarily from Ca II H&K features. This work increases the number of spectroscopically-confirmed SPT-SZ galaxy clusters at z > 1.25 from 2 to 7, further demonstrating the efficacy of SZ selection for the highest redshift massive clusters, and enabling further detailed study of these confirmed systems.

  16. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9

  17. Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Carry, B.; Merline, W. J.; Dumas, C.; Hammel, H.; Erard, S.; Conrad, A.; Tamblyn, P.; Chapman, C. R.

    2014-07-01

    The dwarf planet (1) Ceres, the largest object between Mars and Jupiter, is the target of the NASA Dawn mission, and we seek a comprehensive description of the spin-axis orientation and dimensions of Ceres in order to support the early science operations at the rendezvous in 2015. We have obtained high-angular resolution images using adaptive optics cameras at the W.M. Keck Observatory and the ESO VLT over ten dates between 2001 and 2010, confirming that the shape of Ceres is well described by an oblate spheroid. We derive equatorial and polar diameters of 967 ± 10 km and 892 ± 10 km, respectively, for a model that includes fading of brightness towards the terminator, presumably linked to limb darkening. These dimensions lie between values derived from a previous analysis of a subset of these images obtained at Keck by Carry et al. (Carry et al. [2008]. Astron. Astrophys. 478 (4), 235-244) and a study of Hubble Space Telescope observations (Thomas et al. [2005]. Nature 437, 224-226). Although the dimensions are 1-2% smaller than those found from the HST, the oblateness is similar. We find the spin-vector coordinates of Ceres to lie at (287°, +64°) in equatorial EQJ2000 reference frame (346°, +82° in ecliptic ECJ2000 coordinates), yielding a small obliquity of 3°. While this is in agreement with the aforementioned studies, we have improved the accuracy of the pole determination, which we set at a 3° radius.

  18. The Discovery of a Companion to the Very Cool Dwarf Gliese 569B with the Keck Adaptive Optics Facility.

    PubMed

    Martín; Koresko; Kulkarni; Lane; Wizinowich

    2000-01-20

    We report observations obtained with the Keck adaptive optics facility of the nearby (d=9.8 pc) binary Gl 569. The system was known to be composed of a cool primary (dM2) and a very cool secondary (dM8.5) with a separation of 5&arcsec; (49 AU). We have found that Gl 569B is itself double with a separation of only 0&farcs;101+/-0&farcs;002 (1 AU). This detection demonstrates the superb spatial resolution that can be achieved with adaptive optics at Keck. The difference in brightness between Gl 569B and the companion is approximately 0.5 mag in the J, H, and K&arcmin; bands. Thus, both objects have similarly red colors and very likely constitute a very low mass binary system. For reasonable assumptions about the age (0.12-1.0 Gyr) and total mass of the system (0.09-0.15 M middle dot in circle), we estimate that the orbital period is approximately 3 yr. Follow-up observations will allow us to obtain an astrometric orbit solution and will yield direct dynamical masses that can constrain evolutionary models of very low mass stars and brown dwarfs.

  19. Direct Detection and Orbit Analysis of the Exoplanets HR 8799 bcd from Archival 2005 Keck/NIRC2 Data

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Fukagawa, Misato; Thalmann, Christian; Matsumura, Soko; Plavchan, Peter

    2012-01-01

    We present previously unpublished July 2005 H-band coronagraphic data of the young, planet-hosting star HR 8799 from the newly-released Keck/NIRC2 archive. Despite poor observing conditions, we detect three of the planets (HR 8799 bcd), two of them (HR 8799 bc) without advanced image processing. Comparing these data with previously published 1998-2011 astrometry and that from re-reduced October 2010 Keck data constrains the orbits of the planets. Analyzing the planets' astrometry separately, HR 8799 d's orbit is likely inclined at least 25 deg from face-on and the others may be on in inclined orbits. For semimajor axis ratios consistent with a 4:2:1 mean-motion resonance our analysis yields precise values for HR 8799 bcd's orbital parameters and strictly constrains the planets' eccentricities to be less than 0.18-0.3. However, we find no acceptable orbital solutions with this resonance that place the planets in face-on orbits; HR 8799 d shows the largest deviation from such orbits. Moreover, few orbits make HR 8799 d coplanar with b and c, whereas dynamical stability analyses used to constrain the planets' masses typically assume coplanar and/or fare.on orbits. This paper illustrates the significant science gain enabled with the release of the NIRC2 archive.

  20. Mapping the tidally disrupting Andromeda XXVII and its stellar stream

    NASA Astrophysics Data System (ADS)

    Preston, Janet; Collins, Michelle; Bonaca, Ana; Ibata, Rodrigo; Tollerud, Erik; Geha, Marla; PAndAS Collaboration

    2017-03-01

    Andromeda XXVII is a dwarf spheroidal galaxy in the outskirts of the Andromeda galaxy (M31). It appears to be dissolving in to the Northern arc of M31, and could be the remnant of a strong tidal disruption. In the upcoming months, our spectroscopic program, which has measured velocities for multiple stars within both the dwarf galaxy progenitor and its stream (using the Keck II DEIMOS telescope, as part of the PAndAS survey), will determine velocity dispersions, scale radii and metallicities of both the dwarf and the stream. This in turn may enable us to ascertain the progenitor mass profile and determine whether it is cusped or cored.

  1. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow

  2. The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey: Quasar Properties from Data Release Two and Three

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.

    2018-05-01

    This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.

  3. Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z = 1.416

    NASA Astrophysics Data System (ADS)

    Galametz, A.; Stern, D.; Stanford, S. A.; De Breuck, C.; Vernet, J.; Griffith, R. L.; Harrison, F. A.

    2010-06-01

    We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 ± 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets <2 Mpc relative to the radio galaxy position and have velocity offsets <1000 km s-1 relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z ~ 1.437, forming a sub-group offset by Δv ~ 3000 km s-1 and approximately 1.'5 east of the radio galaxy.

  4. Constraining the relative velocity effect using the Baryon Oscillation Spectroscopic Survey

    DOE PAGES

    Beutler, Florian; Seljak, Uroš; Vlah, Zvonimir

    2017-05-16

    Here, we analyse the power spectrum of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 to constrain the relative velocity effect, which represents a potential systematic for measurements of the baryon acoustic oscillation (BAO) scale. The relative velocity effect is sourced by the different evolution of baryon and cold dark matter perturbations before decoupling. Our power spectrum model includes all one-loop redshift-space terms corresponding to vbc parametrized by the bias parameter bmore » $$2\\atop{v}$$ . We also include the linear terms proportional to the relative density, δbc, and relative velocity dispersion, θbc, which we parametrize with the bias parameters b$$bc\\atop{δ}$$ and b$$bc\\atop{θ}$$. This data does not support a detection of the relative velocity effect in any of these parameters. Combining the low- and high-redshift bins of BOSS, we find limits of b$$2\\atop{v}$$=0.012±0.015(±0.031) , b$$bc\\atop{δ}$$=-1.0±2.5(±6.2) and b$$bc\\atop{θ}$$=-114±55(±175) with 68 percent (95 percent) confidence levels. These constraints restrict the potential systematic shift in D A(z), H(z) and fσ8, due to the relative velocity, to 1 percent, 0.8 percent and 2 percent, respectively. Given the current uncertainties on the BAO measurements of BOSS, these shifts correspond to 0.53σ, 0.5σ and 0.22σ for DA(z), H(z) and fσ8, respectively.« less

  5. Constraining the relative velocity effect using the Baryon Oscillation Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beutler, Florian; Seljak, Uroš; Vlah, Zvonimir

    Here, we analyse the power spectrum of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 to constrain the relative velocity effect, which represents a potential systematic for measurements of the baryon acoustic oscillation (BAO) scale. The relative velocity effect is sourced by the different evolution of baryon and cold dark matter perturbations before decoupling. Our power spectrum model includes all one-loop redshift-space terms corresponding to vbc parametrized by the bias parameter bmore » $$2\\atop{v}$$ . We also include the linear terms proportional to the relative density, δbc, and relative velocity dispersion, θbc, which we parametrize with the bias parameters b$$bc\\atop{δ}$$ and b$$bc\\atop{θ}$$. This data does not support a detection of the relative velocity effect in any of these parameters. Combining the low- and high-redshift bins of BOSS, we find limits of b$$2\\atop{v}$$=0.012±0.015(±0.031) , b$$bc\\atop{δ}$$=-1.0±2.5(±6.2) and b$$bc\\atop{θ}$$=-114±55(±175) with 68 percent (95 percent) confidence levels. These constraints restrict the potential systematic shift in D A(z), H(z) and fσ8, due to the relative velocity, to 1 percent, 0.8 percent and 2 percent, respectively. Given the current uncertainties on the BAO measurements of BOSS, these shifts correspond to 0.53σ, 0.5σ and 0.22σ for DA(z), H(z) and fσ8, respectively.« less

  6. SPECTROSCOPIC ORBITAL PERIODS FOR 29 CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorstensen, John R.; Taylor, Cynthia J.; Peters, Christopher S.

    2015-04-15

    We report follow-up spectroscopy of 29 cataclysmic variables from the Sloan Digital Sky Survey (SDSS), 22 of which were discovered by SDSS and seven of which are previously known systems that were recovered in SDSS. The periods for 16 of these objects were included in the tabulation by Gänsicke et al. While most of the systems have periods less than 2 hr, only one has a period in the 80–86 minutes “spike” found by Gänsicke et al., and 11 have periods longer than 3 hr, indicating that the present sample is skewed toward longer-period, higher-luminosity objects. Seven of the objectsmore » have spectra resembling dwarf novae, but have apparently never been observed in outburst, suggesting that many cataclysmics with relatively low variability amplitude remain to be discovered. Some of the objects are notable. SDSS J07568+0858 and SDSS J08129+1911 were previously known to have deep eclipses; in addition to spectroscopy, we use archival data from the Catalina Real Time Transient Survey to refine their periods. We give a parallax-based distance of 195 (+54, −39) pc for LV Cnc (SDSS J09197+0857), which at P{sub orb} = 81 m has the shortest orbital period in our sample. SDSS J08091+3814 shows both the spectroscopic phase offset and phase-dependent absorption found in SW Sextantis stars. The average spectra of SDSS J08055+0720 and SDSS J16191+1351 show contributions from K-type secondaries, and SDSS J080440+0239 shows a contribution from an early M star. We use these to constrain the distances. SDSS J09459+2922 has characteristics typical of a magnetic system. SDSS11324+6249 may be a novalike variable, and if so, its orbital period (99 minutes) is unusually short for that subclass.« less

  7. Hubble and Keck team up to find farthest known galaxy in the Universe

    NASA Astrophysics Data System (ADS)

    2004-02-01

    -angle image spans 0.4 by 0.4 degrees and was taken by the 12k camera on Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, United States. The image is composited by three exposures through blue (B), red (R), and infrared (I) filters. The primeval galaxy was identified by combining the power of the NASA/ESA Hubble Space Telescope and CARA's W. M. Keck Telescopes on Mauna Kea in Hawaii. These great observatories got a boost from the added magnification of a natural ‘cosmic gravitational lens’ in space that further amplifies the brightness of the distant object. The newly discovered galaxy is likely to be a young galaxy shining during the end of the so-called "Dark Ages" - the period in cosmic history which ended with the first galaxies and quasars transforming opaque, molecular hydrogen into the transparent, ionized Universe we see today. The new galaxy was detected in a long exposure of the nearby cluster of galaxies Abell 2218, taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. This cluster is so massive that the light of distant objects passing through the cluster actually bends and is amplified, much as a magnifying glass bends and magnifies objects seen through it. Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. The extremely faint galaxy is so far away its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. "As we were searching for distant galaxies magnified by Abell 2218, we detected a pair of strikingly similar images whose arrangement and colour indicate a very distant object," said astronomer Jean-Paul Kneib (Observatoire Midi-Pyrénées and California Institute of Technology), who is lead author reporting the discovery in a forthcoming article in the Astrophysical Journal. Analysis of a sequence of Hubble images indicate the object lies between a redshift of 6.6 and 7.1, making it the

  8. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges

    NASA Astrophysics Data System (ADS)

    Sánchez, Ariel G.; Scoccimarro, Román; Crocce, Martín; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Zhao, Gong-Bo

    2017-01-01

    We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales s ≳ 20 h-1 Mpc. We combined the information from Baryon Oscillation Spectroscopic Survey (BOSS) with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the Λ cold dark matter (ΛCDM) cosmological model. In particular, these data sets can constrain the dark energy equation-of-state parameter to wDE = -0.996 ± 0.042 when to be assumed time independent, the curvature of the Universe to Ωk = -0.0007 ± 0.0030 and the sum of the neutrino masses to ∑mν < 0.25 eV at 95 per cent confidence levels. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.609 ± 0.079, in good agreement with the predictions of general relativity of γ = 0.55. We compress the information of our clustering measurements into constraints on the parameter combinations DV(z)/rd, FAP(z) and fσ8(z) at zeff = 0.38, 0.51 and 0.61 with their respective covariance matrices and find good agreement with the predictions for these parameters obtained from the best-fitting ΛCDM model to the CMB data from the Planck satellite. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others by Alam et al. to produce the final cosmological constraints from BOSS.

  9. A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68

    NASA Astrophysics Data System (ADS)

    Richard, Johan; Kneib, Jean-Paul; Jullo, Eric; Covone, Giovanni; Limousin, Marceau; Ellis, Richard; Stark, Daniel; Bundy, Kevin; Czoske, Oliver; Ebeling, Harald; Soucail, Geneviève

    2007-06-01

    We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4. Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of 5.3×1014 Msolar within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyα emitters at 1.7<~z<~5.5, whose unlensed luminosities of ~=1041 ergs s-1 are fainter than similar objects found in blank fields. Of particular interest is an extended Lyα emission region surrounding a highly magnified source at z=2.6, detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z~5.6 emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z~2-5 Lyα luminosity function in a manner that is complementary to blank-field narrowband surveys. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope

  10. VizieR Online Data Catalog: Spectroscopically Identified Hot Subdwarf Stars (Kilkenny+ 1988)

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Heber, U.; Drilling, J. S.

    1996-05-01

    Prior to 1986 there were around 200 spectroscopically classified hot subdwarf stars. The Palomar-Green survey (Green et al., 1986ApJS...61..305G) detected over 900 hot subdwarfs, mostly in the North Galactic Cap and mostly previously unknown objects; the Kitt-Peak_Downes survey found another 60 near the Galactic Plane (Downes, 1986ApJS...61..569D). These form the basis of the present catalog but new subdwarfs are continually being found by spectroscopic surveys of photographically discovered faint blue star samples; examples are the work of Wegner and his co-workers on the Kiso survey (Wegner et al., 1985AJ.....90.1511W, 1986AJ.....91..139W, 1987AJ.....94.1271W) and of Kilkenny and Muller (1987) on southern discoveries by Luyten and collaborators (e.g. Haro and Luyten, 1962, Cat. III/74; Luyten and Anderson, 1958, 1959, 1967, "A Search for Faint Blue Stars"). Only stars for which a spectroscopic classification exists have been included. There is a significant probability that stars with only photometric classifications can be normal high-latitude B stars, white dwarfs or cataclysmic variable, for example. Hot subdwarfs in binary systems have been included but not planetary nebulae nuclei classified 'sd' since the latter have been catalogued elsewhere. Although there is not a universally accepted classification scheme for hot subdwarfs, it is fairly clear that the main criterion is a surface gravity higher than that of hot main sequence stars but less than that of hot white dwarfs. Also, hot subdwarf stars typically show helium abundance anomalies. (3 data files).

  11. Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Lowenthal, James D.; Koo, David C.; Guzmán, Rafael; Gallego, Jesús; Phillips, Andrew C.; Faber, S. M.; Vogt, Nicole P.; Illingworth, Garth D.; Gronwall, Caryl

    1997-05-01

    We have obtained spectra with the 10 m Keck telescope of a sample of 24 galaxies having colors consistent with star-forming galaxies at redshifts 2 <~ z <~ 4.5 in the Hubble deep field (HDF). Eleven of these galaxies are confirmed to be at high redshift (zmed = 3.0), one is at z = 0.5, and the other 12 have uncertain redshifts but have spectra consistent with their being at z > 2. The spectra of the confirmed high-redshift galaxies show a diversity of features, including weak Lyα emission, strong Lyα breaks or damped Lyα absorption profiles, and the stellar and interstellar rest-UV absorption lines common to local starburst galaxies and high-redshift star-forming galaxies reported recently by others. The narrow profiles and low equivalent widths of C IV, Si IV, and N V absorption lines may imply low stellar metallicities. Combined with the five high-redshift galaxies in the HDF previously confirmed with Keck spectra by Steidel et al. (1996a), the 16 confirmed sources yield a comoving volume density of n >= 2.4 × 10-4 h350 Mpc-3 for q0 = 0.05, or n >= 1.1 × 10-3 h350 Mpc-3 for q0 = 0.5. These densities are 3-4 times higher than the recent estimates of Steidel et al. (1996b) based on ground-based photometry with slightly brighter limits and are comparable to estimates of the local volume density of galaxies brighter than L*. The high-redshift density measurement is only a lower limit and could be almost 3 times higher still if all 29 of the unconfirmed candidates in our original sample, including those not observed, are indeed also at high redshift. The galaxies are small but luminous, with half-light radii 1.8 < r1/2 < 6.5 h-150 kpc and absolute magnitudes -21.5 > MB > -23. The HST images show a wide range of morphologies, including several with very close, small knots of emission embedded in wispy extended structures. Using rest-frame UV continuum fluxes with no dust correction, we calculate star formation rates in the range 7-24 or 3-9 h-250 Msolar yr-1 for q

  12. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    DOE PAGES

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; ...

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock cataloguesmore » of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.« less

  13. BICEP2/Keck Array VIII: Measurement of Gravitational Lensing from Large-scale B-mode Polarization

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Grayson, J.; Halpern, M.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2016-12-01

    We present measurements of polarization lensing using the 150 GHz maps, which include all data taken by the BICEP2 and Keck Array Cosmic Microwave Background polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (˜ 0.5°), the excellent sensitivity (˜3μK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales ({ℓ}≤700). From the auto-spectrum of the reconstructed potential, we measure an amplitude of the spectrum to be ALφ φ=1.15+/- 0.36 (Planck ΛCDM prediction corresponds to ALφ φ =1) and reject the no-lensing hypothesis at 5.8σ , which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields ALφ φ =1.13+/- 0.20. These direct measurements of ALφ φ are consistent with the ΛCDM cosmology and with that derived from the previously reported BK14 B-mode auto-spectrum (AL{BB}=1.20+/- 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B modes previously reported by BICEP/Keck at intermediate angular scales (150≲ ℓ ≲ 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B modes at these angular scales.

  14. The Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Maunakea Spectroscopic Explorer (MSE) is an ambitious project to transform the Canada-France-Hawaii 3.6-metre telescope into an 11.25-metre facility dedicated to wide field multi-object spectroscopy. Following a successful conceptual design review of ten subsystems and the systems-level review in January 2018, MSE is preparing to move into the Preliminary Design Phase. MSE will simultaneously deploy over 3000 fibers that feed low/medium resolution spectrometers and 1000 fibers that feed high-resolution (R~40,000) spectrometers. This design is expected to revolutionize astrophysical studies requiring large spectroscopic datasets: i.e., reconstructing the Milky Way's formation history through the chemical tagging of stars, searches for the effects of dark matter on stellar streams, determination of environmental influences on galaxy formation since cosmic noon, measuring black hole masses through repeat spectroscopy of quasars, follow-up of large samples identified in other surveys (Gaia, LSST, SKA, etc.), and more. MSE will reuse a large fraction of CFHT’s existing facilities while tripling the diameter of the telescope’s primary mirror and increasing the height of the enclosure by only 10%. I will discuss the progress to date and opportunities for partnerships.

  15. Remeasurement of the H I Gunn-Peterson Effect toward QSO PKS 1937-101 with Keck Observations

    NASA Astrophysics Data System (ADS)

    Fang, Yihu; Fan, Xiaoming; Tytler, David; Crotts, Arlin P. S.

    1998-04-01

    We present the first measurement of the H I Gunn-Peterson effect using the Keck 10 m telescope, observing the high-redshift QSO PKS 1937-101 (z = 3.787). The high-resolution echelle (HIRES) spectra, with FWHM ~15 km s-1 and a signal-to-noise ratio (S/N) ~50 per spectral resolution element, allows us to resolve many weak lines down to NH I = 1012 cm-2, thus reducing the line-blanketing problem compared with previous data. Based on intensity-distribution analysis, we find that a maximum likelihood best fit yields a Gunn-Peterson type of opacity τGP = 0.113 +/- 0.020 in addition to a power-law Lyα absorption-line population with β of 1.7 down to NH I = 1012 cm-2. There remains systematic uncertainty in this result because of problems extrapolating the spectral continuum from the red side of the Lyα emission line. This is consistent with the previous study of the same QSO in low S/N data using weighted intensity function analysis (Fang & Crotts 1995). It indicates that this previous method succeeds in measuring the Lyα forest continuum level at low S/N, which is essential in extending the technique to possible fainter QSOs with minimum emission-line contamination for reliable continuum extrapolation. We further discuss problems of severe line blanketing, even in Keck spectra for QSOs at z >= 4.5, and show the effectiveness of the weighted intensity function method in measuring continuum levels in extremely crowded Lyα absorption spectra for redshifts as high as z > 5.

  16. Asiago spectroscopic classification of ASASSN-18fw and ASASSN-18ga

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Turatto, M.; Stanek, K. Z.

    2018-03-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18fw and ASASSN-18ga, discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014).

  17. The WFIRST Galaxy Survey Exposure Time Calculator

    NASA Technical Reports Server (NTRS)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  18. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extrememore » cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.« less

  19. The Gaia-ESO Survey Astrophysical Calibration

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Gaia-ESO Survey Consortium

    2016-05-01

    The Gaia-ESO Survey is a wide field spectroscopic survey recently started with the FLAMES@VLT in Cerro Paranal, Chile. It will produce radial velocities more accurate than Gaia's for faint stars (down to V ≃ 18), and astrophysical parameters and abundances for approximately 100 000 stars, belonging to all Galactic populations. 300 nights were assigned in 5 years (with the last year subject to approval after a detailed report). In particular, to connect with other ongoing and planned spectroscopic surveys, a detailed calibration program — for the astrophysical parameters derivation — is planned, including well known clusters, Gaia benchmark stars, and special equatorial calibration fields designed for wide field/multifiber spectrographs.

  20. Keck Observations of the UV-Bright Star Barnard 29 in the Globular Cluster M13 (NGC 6205)

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke; Chayer, Pierre; Reid, Iain N.

    2016-06-01

    In color-magnitude diagrams of globular clusters, stars brighter than the horizontal branch and bluer than the red-giant branch are known as UV-bright stars. Most are evolving from the asymptotic giant branch (AGB) to the tip of the white-dwarf cooling curve. To better understand this important phase of stellar evolution, we have analyzed a Keck HIRES echelle spectrum of the UV-bright star Barnard 29 in M13. We begin by fitting the star's H I (Hα, Hβ, and Hγ) and He I lines with a grid of synthetic spectra generated from non-LTE H-He models computed using the TLUSTY code. We find that the shape of the star's Hα profile is not well reproduced with these models. Upgrading from version 200 to version 204M of TLUSTY solves this problem: the Hα profile is now well reproduced. TLUSTY version 204 includes improved calculations for the Stark broadening of hydrogen line profiles. Using these models, we derive stellar parameters of Teff = 21,100 K, log g = 3.05, and log (He/H) = -0.87, values consistent with those of previous authors. The star's Keck spectrum shows photospheric absorption from N II, O II, Mg II, Al III, Si II, Si III, S II, Ar II, and Fe III. The abundances of these species are consistent with published values for the red-giant stars in M13, suggesting that the star's chemistry has changed little since it left the AGB.

  1. BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda

    2018-04-01

    We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

  2. Keck Adaptive Optics Imaging of Nearby Young Stars: Detection of Close Multiple Systems

    NASA Astrophysics Data System (ADS)

    Brandeker, Alexis; Jayawardhana, Ray; Najita, Joan

    2003-10-01

    Using adaptive optics on the Keck II 10 m telescope on Mauna Kea, we have surveyed 24 of the nearest young stars known in search of close companions. Our sample includes members of the MBM 12 and TW Hydrae young associations and the classical T Tauri binary UY Aurigae in the Taurus star-forming region. We present relative photometry and accurate astrometry for 10 close multiple systems. The multiplicity frequency in the TW Hydrae and MBM 12 groups are high in comparison to other young regions, although the significance of this result is low because of the small number statistics. We resolve S18 into a triple system, including a tight 63 mas (projected separation of 17 AU at a distance of 275 pc) binary, for the first time, with a hierarchical configuration reminiscent of VW Chamaeleontis and T Tauri. Another tight binary in our sample-TWA 5Aab (54 mas or 3 AU at 55 pc)-offers the prospect of dynamical mass measurement using astrometric observations within a few years and thus could be important for testing pre-main-sequence evolutionary models. Our observations confirm with 9 σ confidence that the brown dwarf TWA 5B is bound to TWA 5A. We find that the flux ratio of UY Aur has changed dramatically, by more than a magnitude in the H band, possibly as a result of variable extinction. With the smaller flux difference, the system may once again become detectable as an optical binary, as it was at the time of its discovery in 1944. Taken together, our results demonstrate that adaptive optics on large telescopes is a powerful tool for detecting tight companions and thus exploring the frequency and configurations of close multiple systems.

  3. VizieR Online Data Catalog: The M87 globular cluster system (Strader+, 2011)

    NASA Astrophysics Data System (ADS)

    Strader, J.; Romanowsky, A. J.; Brodie, J. P.; Spitler, L. R.; Beasley, M. A.; Arnold, J. A.; Tamura, N.; Sharples, R. M.; Arimoto, N.

    2012-01-01

    We selected GC candidates from the Subaru/Suprime-Cam imaging study of Tamura et al. (2006MNRAS.373..588T). Spectroscopic data were obtained from Keck/DEIMOS in 2007 Mar 20 and 21 and in 2010 Mar 12, from Keck/Low Resolution Spectrometer (LRIS) in 2010 Apr 8-11 and from Multiple Mirror Telescope (MMT)/Hectospec in 2010 Feb 17. We chose to use for our default GC photometry the new gri CFHT/Megacam imaging of M87 published in Harris (2009ApJ...703..939H). (9 data files).

  4. Gravitational lensing in the supernova legacy survey (SNLS)

    NASA Astrophysics Data System (ADS)

    Kronborg, T.; Hardin, D.; Guy, J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Jönsson, J.; Pain, R.; Pedersen, K.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.

    2010-05-01

    Aims: The observed brightness of type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. Methods: We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. Results: We find evidence of a lensing signal with a 2.3σ significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing the scatter in the mass luminosity relations have little effect. We show that for the full SuperNova Legacy Survey sample (~400 spectroscopically confirmed type Ia SNe and ~200 photometrically identified type Ia SNe), there is an 80% probability of detecting the lensing signal with a 3σ significance. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on

  5. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  6. A case study in adaptable and reusable infrastructure at the Keck Observatory Archive: VO interfaces, moving targets, and more

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Cohen, Richard W.; Colson, Andrew; Gelino, Christopher R.; Good, John C.; Kong, Mihseh; Laity, Anastasia C.; Mader, Jeffrey A.; Swain, Melanie A.; Tran, Hien D.; Wang, Shin-Ywan

    2016-08-01

    The Keck Observatory Archive (KOA) (https://koa.ipac.caltech.edu) curates all observations acquired at the W. M. Keck Observatory (WMKO) since it began operations in 1994, including data from eight active instruments and two decommissioned instruments. The archive is a collaboration between WMKO and the NASA Exoplanet Science Institute (NExScI). Since its inception in 2004, the science information system used at KOA has adopted an architectural approach that emphasizes software re-use and adaptability. This paper describes how KOA is currently leveraging and extending open source software components to develop new services and to support delivery of a complete set of instrument metadata, which will enable more sophisticated and extensive queries than currently possible. In August 2015, KOA deployed a program interface to discover public data from all instruments equipped with an imaging mode. The interface complies with version 2 of the Simple Imaging Access Protocol (SIAP), under development by the International Virtual Observatory Alliance (IVOA), which defines a standard mechanism for discovering images through spatial queries. The heart of the KOA service is an R-tree-based, database-indexing mechanism prototyped by the Virtual Astronomical Observatory (VAO) and further developed by the Montage Image Mosaic project, designed to provide fast access to large imaging data sets as a first step in creating wide-area image mosaics (such as mosaics of subsets of the 4.7 million images of the SDSS DR9 release). The KOA service uses the results of the spatial R-tree search to create an SQLite data database for further relational filtering. The service uses a JSON configuration file to describe the association between instrument parameters and the service query parameters, and to make it applicable beyond the Keck instruments. The images generated at the Keck telescope usually do not encode the image footprints as WCS fields in the FITS file headers. Because SIAP

  7. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Sako, Masao; Bassett, Bruce; Becker, Andrew C.; Brown, Peter J.; Campbell, Heather; Wolf, Rachel; Cinabro, David; D’Andrea, Chris B.; Dawson, Kyle S.; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Filippenko, Alexei V.; Fischer, John A.; Foley, Ryan J.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Goobar, Ariel; Gupta, Ravi R.; Hill, Gary J.; Hayden, Brian T.; Hlozek, Renée; Holtzman, Jon A.; Hopp, Ulrich; Jha, Saurabh W.; Kessler, Richard; Kollatschny, Wolfram; Leloudas, Giorgos; Marriner, John; Marshall, Jennifer L.; Miquel, Ramon; Morokuma, Tomoki; Mosher, Jennifer; Nichol, Robert C.; Nordin, Jakob; Olmstead, Matthew D.; Östman, Linda; Prieto, Jose L.; Richmond, Michael; Romani, Roger W.; Sollerman, Jesper; Stritzinger, Max; Schneider, Donald P.; Smith, Mathew; Wheeler, J. Craig; Yasuda, Naoki; Zheng, Chen

    2018-06-01

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r ≃ 22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically, using host galaxy redshift information when available. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1364 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 624 purely photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat ΛCDM cosmology, we determine Ω M = 0.315 ± 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7σ.

  8. MALS–NOT: Identifying Radio-bright Quasars for the MeerKAT Absorption Line Survey

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Gupta, N.; Noterdaeme, P.; Ranjan, A.; Fynbo, J. P. U.; Srianand, R.; Petitjean, P.; Combes, F.; Mahabal, A.

    2018-03-01

    We present a preparatory spectroscopic survey to identify radio-bright, high-redshift quasars for the MeerKAT Absorption Line Survey. The candidates have been selected on the basis of a single flux density limit at 1.4 GHz (>200 mJy), together with mid-infrared color criteria from the Wide-field Infrared Survey Explorer. Through spectroscopic observations using the Nordic Optical Telescope, we identify 72 quasars out of 99 candidates targeted. We measure the spectroscopic redshifts based on characteristic, broad emission lines present in the spectra. Of these 72 quasars, 64 and 48 objects are at sufficiently high redshift (z > 0.6 and z > 1.4) to be used for the L-band and UHF-band spectroscopic follow-up with the Square Kilometre Array precursor in South Africa: the MeerKAT.

  9. C3R2 - Complete Calibration of the Color-Redshift Relation: Keck spectroscopy to train photometric redshifts for Euclid and WFIRST

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; C3R2 Team

    2017-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field, but to do so requires robust distances to billions of galaxies. I will report on a multi-semester program, expected to total approximately 40 nights with Keck over the next two years. This program, supporting both the NASA PCOS and COR science goals, will obtain the necessary galaxy spectroscopy to calibrate the color-redshift relation for the Euclid mission, and make significant progress towards the WFIRST requirements. The program, called C3R2 or Complete Calibration of the Color-Redshift Relation, already encompasses 10 allocated nights of NASA Keck Key Strategic Mission Support (PI D. Stern), 12 allocated nights from Caltech (PI J. Cohen), 3 allocated nights from the University of Hawaii (PI D. Sanders), and 1.5 allocated nights from UC-Riverside (PI B. Mobasher). We are also pursuing opportunities at additional 8- to 10-meter class telescopes, including Magellan, VLT and GCT. I will present the motivation for this program, the plans, and current results.

  10. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  11. New neighbours. III. 21 new companions to nearby dwarfs, discovered with adaptive optics

    NASA Astrophysics Data System (ADS)

    Beuzit, J.-L.; Ségransan, D.; Forveille, T.; Udry, S.; Delfosse, X.; Mayor, M.; Perrier, C.; Hainaut, M.-C.; Roddier, C.; Roddier, F.; Martín, E. L.

    2004-10-01

    We present some results of a CFHT adaptive optics search for companions to nearby dwarfs. We identify 21 new components in solar neighbourhood systems, of which 13 were found while surveying a volume-limited sample of M dwarfs within 12 pc. We are obtaining complete observations for this subsample, to derive unbiased multiplicity statistics for the very-low-mass disk population. Additionally, we resolve for the first time 6 known spectroscopic or astrometric binaries, for a total of 27 newly resolved companions. A significant fraction of the new binaries has favourable parameters for accurate mass determinations. The newly resolved companion of Gl 120.1C was thought to have a spectroscopic minimum mass in the brown-dwarf range (Duquennoy & Mayor \\cite{duquennoy91}), and it contributed to the statistical evidence that a few percent of solar-type stars might have close-in brown-dwarf companions. We find that Gl 120.1C actually is an unrecognised double-lined spectroscopic pair. Its radial-velocity amplitude had therefore been strongly underestimated by Duquennoy & Mayor (\\cite{duquennoy91}), and it does not truly belong to their sample of single-lined systems with minimum spectroscopic mass below the substellar limit. We also present the first direct detection of Gl 494B, an astrometric brown-dwarf candidate. Its luminosity straddles the substellar limit, and it is a brown dwarf if its age is less than ˜300 Myr. A few more years of observations will ascertain its mass and status from first principles. Based on observations made at Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The

  12. VizieR Online Data Catalog: Spectroscopic redshifts of galaxies in MACS (Ebeling+, 2014)

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Ma, C.-J.; Barrett, E.

    2014-04-01

    MACSJ0416.1-2403 was observed by us on January 20, 2001 with the multi-object spectrograph (MOS) on the Canada-Hawaii-France Telescope (CFHT) on Mauna Kea, Hawaii (effective resolution of 12.5Å). MACSJ0717.5+3745 and MACSJ1149.5+2223 are part of the subsample of MACS clusters at z>0.5 (Ebeling et al. 2007ApJ...661L..33E), and were observed extensively by us, primarily in the context of a study of the impact of environment on spectral and morphological properties of the cluster galaxy population (Ma et al. 2008ApJ...684..160M; Ma & Ebeling 2011MNRAS.410.2593M). MACSJ0717.5+3745 was observed with Keck-II/DEIMOS on nine date between 2003 Dec 23 and 2008 Jan 7, with Keck-I/LRIS on 2000 Nov 20/21 and 2002 Nov 29 and with Gemini/GMOS on 2004 Mar 12 and 17. MACSJ1149.5+2223 was observed with Gemini/GMOS on 2003 May 1 and 2004 Mar 16 and with Keck-II/DEIMOS on 2005 Feb 12, 2006 Apr 30 and 2009 Feb 26. (3 data files).

  13. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, E.; Watson, M. G.; Elvis, M.

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of thismore » sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.« less

  14. A Survey of z ~ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Fan, Xiaohui; Annis, James; Becker, Robert H.; White, Richard L.; Chiu, Kuenley; Lin, Huan; Lupton, Robert H.; Richards, Gordon T.; Strauss, Michael A.; Jester, Sebastian; Schneider, Donald P.

    2008-03-01

    We present the discovery of five quasars at z ~ 6 selected from 260 deg2 of the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The five quasars with 20 < zAB < 21 are 1-2 magnitudes fainter than the luminous z ~ 6 quasars discovered in the SDSS main survey. One of them was independently discovered by the UKIRT Infrared Deep Sky Survey. These quasars, combined with another z ~ 6 quasar known in this region, make a complete flux-limited quasar sample at zAB < 21. The sample spans the redshift range 5.85 <= z <= 6.12 and the luminosity range -26.5 <= M 1450 <= -25.4 (H 0 = 70 km s-1 Mpc-1, Ω m = 0.3, and ΩΛ = 0.7). We use the 1/Va method to determine that the comoving quasar spatial density at langzrang = 6.0 and langM 1450rang = -25.8 is (5.0 ± 2.1) × 10-9 Mpc-3 mag-1. We model the bright-end quasar luminosity function (QLF) at z ~ 6 as a power law Φ(L 1450) vprop L β 1450. The slope β calculated from a combination of our sample and the luminous SDSS quasar sample is -3.1 ± 0.4, significantly steeper than the slope of the QLF at z ~ 4. Based on the derived QLF, we find that the quasar/active galactic nucleus (AGN) population cannot provide enough photons to ionize the intergalactic medium (IGM) at z ~ 6 unless the IGM is very homogeneous and the luminosity (L*1450) at which the QLF power law breaks is very low. Based on observations obtained with the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium; the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by the generous financial

  15. A spectroscopic survey of the WNL stars in the Large Magellanic Cloud: General properties and binary status

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier

    2008-09-01

    This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such

  16. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  17. Exploring the relationship between black hole accretion and star formation with blind mid-/far-infrared spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Negrello, M.; Cai, Z.-Y.; De Zotti, G.; Bressan, A.; Lapi, A.; Pozzi, F.; Gruppioni, C.; Danese, L.

    2014-11-01

    We present new estimates of redshift-dependent luminosity functions of IR lines detectable by SPICA/SAFARI (SPace InfraRed telescope for Cosmology and Astrophysics/SpicA FAR infrared Instrument) and excited both by star formation and by AGN activity. The new estimates improve over previous work by using updated evolutionary models and dealing in a self-consistent way with emission of galaxies as a whole, including both the starburst and the AGN component. New relationships between line and AGN bolometric luminosity have been derived and those between line and IR luminosities of the starburst component have been updated. These ingredients were used to work out predictions for the source counts in 11 mid-/far-IR emission lines partially or entirely excited by AGN activity. We find that the statistics of the emission line detection of galaxies as a whole is mainly determined by the star formation rate, because of the rarity of bright AGNs. We also find that the slope of the line integral number counts is flatter than two implying that the number of detections at fixed observing time increases more by extending the survey area than by going deeper. We thus propose a wide spectroscopic survey of 1 h integration per field of view over an area of 5 deg2 to detect (at 5σ) ˜760 AGNs in [O IV]25.89 μm - the brightest AGN mid-infrared line - out to z ˜ 2. Pointed observations of strongly lensed or hyperluminous galaxies previously detected by large area surveys such as those by Herschel and by the South Pole Telescope can provide key information on the galaxy-AGN co-evolution out to higher redshifts.

  18. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  19. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  20. Predictions for imaging and spectroscopic surveys of galaxies and Active Galactic Nuclei in the mid-/far-Infrared

    NASA Astrophysics Data System (ADS)

    Bonato, Matteo

    2015-02-01

    While continuum imaging data at far-infrared to sub-millimeter wavelengths have provided tight constraints on the population properties of dusty star-forming galaxies up to high redshifts, future space missions like the Space Infra-Red Telescope for Cosmology and Astrophysics (SPICA) and ground based facilities like the Atacama Large Millimeter/submillimeter Array (ALMA) and the Cerro Chajnantor Atacama Telescope (CCAT) will allow detailed investigations of their physical properties via their mid-/far-infrared line emission. The goal of this thesis project was to carry out predictions for these spectroscopic surveys using both a phenomenological approach and physically grounded models. These predictions are useful to optimize the planning of the surveys. In the first part of the work, I present updated predictions for the number counts and the redshift distributions of star-forming galaxies spectroscopically detectable by these future missions. These predictions exploit a recent upgrade of evolutionary models, that includes the effect of strong gravitational lensing, in the light of the most recent Herschel and South Pole Telescope (SPT) data. Moreover the relations between line and continuum infrared luminosity are re-assessed, considering also differences among source populations, with the support of extensive simulations that take into account dust obscuration. My reference model for the redshift dependent IR luminosity functions is the one worked out by Cai et al. (2013) based on a comprehensive hybrid approach combining a physical model for the progenitors of early-type galaxies with a phenomenological one for late-type galaxies. The derived line luminosity functions are found to be highly sensitive to the spread of the line to continuum luminosity ratios. Estimates of the expected numbers of detections per spectral line by the SpicA FAR infrared Instrument (SAFARI) and by CCAT surveys for different integration times per field of view at fixed total observing

  1. Atmospheric turbulence characterization with the Keck adaptive optics systems. I. Open-loop data.

    PubMed

    Schöck, Matthias; Le Mignant, David; Chanan, Gary A; Wizinowich, Peter L; van Dam, Marcos A

    2003-07-01

    We present a detailed investigation of different methods of the characterization of atmospheric turbulence with the adaptive optics systems of the W. M. Keck Observatory. The main problems of such a characterization are the separation of instrumental and atmospheric effects and the accurate calibration of the devices involved. Therefore we mostly describe the practical issues of the analysis. We show that two methods, the analysis of differential image motion structure functions and the Zernike decomposition of the wave-front phase, produce values of the atmospheric coherence length r0 that are in excellent agreement with results from long-exposure images. The main error source is the calibration of the wave-front sensor. Values determined for the outer scale L0 are consistent between the methods and with typical L0 values found at other sites, that is, of the order of tens of meters.

  2. Spectroscopic observations of X-ray selected late type stars

    NASA Technical Reports Server (NTRS)

    Takalo, L. O.

    1988-01-01

    A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.

  3. Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument

    NASA Astrophysics Data System (ADS)

    Femenía Castellá, Bruno; Serabyn, Eugene; Mawet, Dimitri; Absil, Olivier; Wizinowich, Peter; Matthews, Keith; Huby, Elsa; Bottom, Michael; Campbell, Randy; Chan, Dwight; Carlomagno, Brunella; Cetre, Sylvain; Defrère, Denis; Delacroix, Christian; Gomez Gonzalez, Carlos; Jolivet, Aïssa; Karlsson, Mikael; Lanclos, Kyle; Lilley, Scott; Milner, Steven; Ngo, Henry; Reggiani, Maddalena; Simmons, Julia; Tran, Hien; Vargas Catalan, Ernesto; Wertz, Olivier

    2016-07-01

    On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.

  4. Cosmic homogeneity: a spectroscopic and model-independent measurement

    NASA Astrophysics Data System (ADS)

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  5. The science enabled by the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Babusiaux, C.

    2017-12-01

    With its unique wide-field, multi-object, and dedicated spectroscopic capabilities, the Maunakea Spectroscopic Explorer (MSE) is a powerful facility to shed light on the faint Universe. Built around an upgrade of the Canada-France Hawaii Telescope (CFHT) to a 11.25-meter telescope with a dedicated ˜1.5 deg^2, 4,000-fiber wide-field spectrograph that covers the optical and near-infrared wavelengths at resolutions between 2,500 and 40,000, the MSE is the essential follow-up complement to the current and next generations of multi-wavelength imaging surveys, such as the LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for the extremely large telescopes that are currently being built (E-ELT, GMT, and TMT). The science enabled by the MSE is vast and would have an impact on almost all aspects of astronomy research.

  6. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  7. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  8. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman

    2018-06-01

    We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.

  9. The Rest-frame Optical Spectroscopic Properties of Lyalpha-emitters at Z~2.5: The Physical Origins of Strong Lyalpha Emission

    NASA Astrophysics Data System (ADS)

    Trainor, Ryan F.; Strom, Allison L.; Steidel, Charles C.; Rudie, Gwen C.

    2016-12-01

    We present the rest-frame optical spectroscopic properties of 60 faint (R AB ˜ 27; L ˜ 0.1 L *) Lyα-selected galaxies (LAEs) at z ≈ 2.56. These LAEs also have rest-UV spectra of their Lyα emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Lyα photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z ≈ 2-3. In particular, the LAEs have extremely high [O III] λ5008/Hβ ratios (log([O III]/Hβ) ˜ 0.8) and low [N II] λ6585/Hα ratios (log([N II]/Hα) < 1.15). Coupled with a detection of the [O III] λ4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T e ≈ 1.8 × 104 K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z neb ≈ 0.22Z ⊙), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9-7.4 (Z neb ≈ 0.02-0.05Z ⊙). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Lyα emission across the largest current sample of combined Lyα and rest-optical galaxy spectroscopy, including both the 60 KBSS-Lyα LAEs and 368 more luminous galaxies at similar redshifts. We find that the net Lyα emissivity (parameterized by the Lyα equivalent width) is

  10. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  11. Galaxy And Mass Assembly (GAMA): spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.

    2013-04-01

    The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.

  12. Spectroscopic classification of three SNe Ia at Asiago

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2015-06-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of Gaia15agj in FGC 0955 discovered by Gaia satellite on 2015 Jun 03.05 UT (ATel #7615); ASASSN-15kx (ATel #7621) in PGC 068459 discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN) and PSN J14432601+5725412 (= MASTER OT J144326.01+572541.2) discovered by MASTER-Kislovodsk auto-detection system (ATel #7618).

  13. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE PAGES

    Smith, M.

    2017-12-11

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  14. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two

    NASA Astrophysics Data System (ADS)

    Smith, M.; Sullivan, M.; Nichol, R. C.; Galbany, L.; D’Andrea, C. B.; Inserra, C.; Lidman, C.; Rest, A.; Schirmer, M.; Filippenko, A. V.; Zheng, W.; Cenko, S. Bradley; Angus, C. R.; Brown, P. J.; Davis, T. M.; Finley, D. A.; Foley, R. J.; González-Gaitán, S.; Gutiérrez, C. P.; Kessler, R.; Kuhlmann, S.; Marriner, J.; Möller, A.; Nugent, P. E.; Prajs, S.; Thomas, R.; Wolf, R.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Davis, C.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; The DES Collaboration

    2018-02-01

    We present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z≈ 2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z = 1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z = 0.102), with a peak absolute magnitude of U=-22.26+/- 0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with 10 similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV ({λ }{rest}≈ 2500 Å), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z< 1) and high redshift (z> 1), but there is clear evidence of diversity in the spectrum at {λ }{rest}< 2000 \\mathringA , possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z = 3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z< 1), we highlight that at z> 2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-field Infrared Survey Telescope, which should detect such SLSNe-I to z = 3.5, 3.7, and 6.6, respectively.

  15. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  16. Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.

    2015-06-01

    The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.

  17. Multiband Photometric and Spectroscopic Analysis of HV Cnc

    NASA Astrophysics Data System (ADS)

    Gökay, G.; Gürol, B.; Derman, E.

    2013-11-01

    In this paper, radial velocity and VI- and JHKS - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHKS filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M ⊙, 0.52 M ⊙, 1.87 R ⊙, and 0.48 R ⊙, respectively. All results are compared with previously published literature values and discussed.

  18. The 2-degree Field Lensing Survey: design and clustering measurements

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian

    2016-11-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

  19. The Initial-Final Mass Relationship: Spectroscopy of White Dwarfs in NGC 2099 (M37)

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot Singh; Richer, Harvey B.; Reitzel, David; Hansen, Brad M. S.; Rich, R. Michael; Fahlman, Gregory G.; Gibson, Brad K.; von Hippel, Ted

    2005-01-01

    We present new observations of very faint white dwarfs (WDs) in the rich open star cluster NGC 2099 (M37). Following deep, wide-field imaging of the cluster using the Canada-France-Hawaii Telescope, we have now obtained spectroscopic observations of candidate WDs using both the Gemini Multi-Object Spectrograph on Gemini North and the Low-Resolution Imaging Spectrometer on Keck. Of our 24 WD candidates (all fainter than V=22.4), 21 are spectroscopically confirmed to be bona fide WDs, four or five of which are most likely field objects. Fitting 18 of the 21 WD spectra with model atmospheres, we find that most WDs in this cluster are quite massive (0.7-0.9 Msolar), as expected given the cluster's young age (650 Myr) and, hence, high turnoff mass (~2.4 Msolar). We determine a new initial-final mass relationship and almost double the number of existing data points from previous studies. The results indicate that stars with initial masses between 2.8 and 3.4 Msolar lose 70%-75% of their mass through stellar evolution. For the first time, we find some evidence of a metallicity dependence on the initial-final mass relationship. Based on observations with Gemini (run ID GN-2002B-Q-11) and Keck. Gemini is an international partnership managed by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation. The W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, was made possible by the generous financial support of the W. M. Keck Foundation.

  20. CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawet, Dimitri; Bottom, Michael; Matthews, Keith

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L ′ band (3.8 μ m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the innermore » working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q , N , and 8.6 μ m PAH emission reported earlier. We also see an outward progression in dust location from the L ′ band to the H band (Very Large Telescope/SPHERE image) to the visible ( Hubble Space Telescope ( HST )/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L ′-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.« less

  1. Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex Coronagraphy

    NASA Astrophysics Data System (ADS)

    Mawet, Dimitri; Choquet, Élodie; Absil, Olivier; Huby, Elsa; Bottom, Michael; Serabyn, Eugene; Femenia, Bruno; Lebreton, Jérémy; Matthews, Keith; Gomez Gonzalez, Carlos A.; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Forsberg, Pontus; Habraken, Serge; Jolivet, Aissa; Karlsson, Mikael; Milli, Julien; Pinte, Christophe; Piron, Pierre; Reggiani, Maddalena; Surdej, Jean; Vargas Catalan, Ernesto

    2017-01-01

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L‧ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L‧ band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L‧-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.

  2. Probing Collimated Jets and Dusty Waists in Dying Stars with Keck LGSAO

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Le Mignant, D.; Sanchez Contreras, C.; Stute, M.; Morris, M.

    2005-12-01

    The shaping of planetary nebulae (PNs) is probably the most exciting yet least understood problem in the late evolution of intermediate mass stars. PNs evolve from the envelopes of AGB stars via a supposedly short ( ˜1000 yr) pre-planetary nebula (PPN) phase. HST imaging of PPNs and PNs has shown the widespread presence of diverse bipolar and multipolar morphologies. In 1998, in a radical departure from the long-standing theoretical paradigm for PN formation, Sahai & Trauger proposed that as most stars evolve off the AGB, they drive collimated fast winds that sweep up and shock the AGB circumstellar envelope, producing the observed dramatic changes in circumstellar geometry and kinematics from the AGB to the PN phase. The search for these collimated jets has proved to be rather elusive, partly because these are most likely episodic and operate only for a few x 100 years in the early PPN phase. During this phase, much of the circumstellar environment, including the central dusty waist of these nebulae, is optically-thick at visible wavelengths. We are therefore carrying out a program of observing PPNs with the LGSAO system on Keck II at near-infrared (1.1-4.7 micron) wavelengths. Our very first attempt met with remarkable success -- observations of the bipolar young PPN, IRAS16342-3814, revealed a remarkable corkscrew-shaped structure apparently etched into the lobe walls -- direct signature of an underlying precessing jet. Here we present results from new high-resolution (55 mas at 2 micron) observations of a small sample of PPNs with the LGSAO system. As in their HST images, our objects display bipolar/multipolar morphologies, but in addition, the bubble-like ``wind-swept" structure of the lobes is clearly revealed. Furthermore, the dusty waists appear much thinner geometrically than in the HST images, but surprisingly, in some PPNs, the central stars still remain obscured, with important implications for the poorly-known physical structure of the waists. We

  3. The Keck "Mars 2000" Project: Using Mars Orbiter Laser Altimeter Data to Assess Geological Processes and Regional Stratigraphy Near Orcus Patera and Marte Vallis on Mars

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.

    2001-01-01

    During the Keck 'Mars 2000' summer project 10 undergraduates (rising juniors) used Mars Orbiter Laser Altimeter (MOLA) data to study a 19x14 degree region they identified as a potential Mars 2003 landing site. Here we introduce the project science and organization. Additional information is contained in the original extended abstract.

  4. New high-precision orbital and physical parameters of the double-lined low-mass spectroscopic binary BY Draconis

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Konacki, M.; Muterspaugh, M. W.; Browne, S. E.; Howard, A. W.; Kulkarni, S. R.

    2012-01-01

    We present the most precise to date orbital and physical parameters of the well-known short period (P= 5.975 d), eccentric (e= 0.3) double-lined spectroscopic binary BY Draconis (BY Dra), a prototype of a class of late-type, active, spotted flare stars. We calculate the full spectroscopic/astrometric orbital solution by combining our precise radial velocities (RVs) and the archival astrometric measurements from the Palomar Testbed Interferometer (PTI). The RVs were derived based on the high-resolution echelle spectra taken between 2004 and 2008 with the Keck I/high-resolution echelle spectrograph, Shane/CAT/HamSpec and TNG/SARG telescopes/spectrographs using our novel iodine-cell technique for double-lined binary stars. The RVs and available PTI astrometric data spanning over eight years allow us to reach 0.2-0.5 per cent level of precision in Msin 3i and the parallax but the geometry of the orbit (i≃ 154°) hampers the absolute mass precision to 3.3 per cent, which is still an order of magnitude better than for previous studies. We compare our results with a set of Yonsei-Yale theoretical stellar isochrones and conclude that BY Dra is probably a main-sequence system more metal rich than the Sun. Using the orbital inclination and the available rotational velocities of the components, we also conclude that the rotational axes of the components are likely misaligned with the orbital angular momentum. Given BY Dra's main-sequence status, late spectral type and the relatively short orbital period, its high orbital eccentricity and probable spin-orbit misalignment are not in agreement with the tidal theory. This disagreement may possibly be explained by smaller rotational velocities of the components and the presence of a substellar mass companion to BY Dra AB.

  5. New Teff and [Fe/H] spectroscopic calibration for FGK dwarfs and GK giants

    NASA Astrophysics Data System (ADS)

    Teixeira, G. D. C.; Sousa, S. G.; Tsantaki, M.; Monteiro, M. J. P. F. G.; Santos, N. C.; Israelian, G.

    2016-10-01

    Context. The ever-growing number of large spectroscopic survey programs has increased the importance of fast and reliable methods with which to determine precise stellar parameters. Some of these methods are highly dependent on correct spectroscopic calibrations. Aims: The goal of this work is to obtain a new spectroscopic calibration for a fast estimate of Teff and [Fe/H] for a wide range of stellar spectral types. Methods: We used spectra from a joint sample of 708 stars, compiled from 451 FGK dwarfs and 257 GK-giant stars. We used homogeneously determined spectroscopic stellar parameters to derive temperature calibrations using a set of selected EW line-ratios, and [Fe/H] calibrations using a set of selected Fe I lines. Results: We have derived 322 EW line-ratios and 100 Fe I lines that can be used to compute Teff and [Fe/H], respectively. We show that these calibrations are effective for FGK dwarfs and GK-giant stars in the following ranges: 4500 K survey, and a sample of 582 FGK-dwarf stars. We also provide a new computer code, GeTCal, for automatically producing new calibration files based on any new sample of stars.

  6. Development of a State Machine Sequencer for the Keck Interferometer: Evolution, Development and Lessons Learned using a CASE Tool Approach

    NASA Technical Reports Server (NTRS)

    Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee

    2004-01-01

    This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  7. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    NASA Astrophysics Data System (ADS)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  8. Spectroscopic and theoretical constraints on the differentiation of planetesimals

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas A.

    The differentiation of small proto-planetary bodies into metallic cores, silicate mantles and basaltic crusts was a common occurrence in the first few million years of Solar System history. In this thesis, observational and theoretical methods are employed to investigate this process. Particular focus is given to the basaltic, crustal remnants of those differentiated parent bodies. A visible-wavelength spectroscopic survey was designed and performed to constrain the population of basaltic asteroids in the Main Belt. The results of this survey were used to provide statistical constraints on the orbital and size-frequency distributions of these objects. These distributions imply that basaltic material is rare in the Main Belt (particularly beyond the 3:1 mean motion resonance at 2.5 AU), however relic fragments of crust from multiple differentiated parent bodies are likely present. To provide insight on the mineralogical diversity of basaltic asteroids in the Main Belt, we performed a series of near-infrared spectroscopic observations. We find that V-type asteroids in the inner belt have spectroscopic properties consistent with an origin from a single parent body, most likely the asteroid Vesta. Spectroscopic differences (namely band area ratio) between these asteroids and basaltic meteorites here on Earth are best explained by space weathering of the asteroid surfaces. We also report the discovery of unusual spectral properties for asteroid 10537 (1991 RY16), a V-type asteroid in the outer Main Belt that has an ambiguous mineralogical interpretation. We conclude this thesis with a theoretical investigation of the relevant stages in the process of differentiation. We show that if partial silicate melting occurs within the interior of a planetesimal then both core and crust formation could have happened on sub-million year (Myr) time scales. However, it is shown that the high temperatures necessary to facilitate these processes may have been affected by the migration

  9. Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)

    NASA Astrophysics Data System (ADS)

    Waniak, Waclaw; Drahus, Michal

    2016-10-01

    One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21-22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is only

  10. Automatic Image Processing Workflow for the Keck/NIRC2 Vortex Coronagraph

    NASA Astrophysics Data System (ADS)

    Xuan, Wenhao; Cook, Therese; Ngo, Henry; Zawol, Zoe; Ruane, Garreth; Mawet, Dimitri

    2018-01-01

    The Keck/NIRC2 camera, equipped with the vortex coronagraph, is an instrument targeted at the high contrast imaging of extrasolar planets. To uncover a faint planet signal from the overwhelming starlight, we utilize the Vortex Image Processing (VIP) library, which carries out principal component analysis to model and remove the stellar point spread function. To bridge the gap between data acquisition and data reduction, we implement a workflow that 1) downloads, sorts, and processes data with VIP, 2) stores the analysis products into a database, and 3) displays the reduced images, contrast curves, and auxiliary information on a web interface. Both angular differential imaging and reference star differential imaging are implemented in the analysis module. A real-time version of the workflow runs during observations, allowing observers to make educated decisions about time distribution on different targets, hence optimizing science yield. The post-night version performs a standardized reduction after the observation, building up a valuable database that not only helps uncover new discoveries, but also enables a statistical study of the instrument itself. We present the workflow, and an examination of the contrast performance of the NIRC2 vortex with respect to factors including target star properties and observing conditions.

  11. Innovative approaches to exoplanet detection and characterization: Notes from the Nov 10-13 Keck Institute for Space Studies workshop

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Traub, Wesley; Unwin, Stephen; Stapelfeldt, Karl

    2010-05-01

    A four-day workshop was convened on November 10-13, 2009 by the Keck Institute for Space Studies and JPL to consider innovative approaches to detecting and characterizing exoplanets and planetary systems. The program and many of the presentations can be found online: . We present some of the observational strategies discussed in this workshop and summarize some of the issues associated with them. In particular, we will highlight some of the advantages and shortcomings of suborbital and orbital (e.g., ESPA rings) observing platforms in the context of exoplanet detection and characterization.

  12. How much can we trust high-resolution spectroscopic stellar chemical abundances?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Nordlander, T.; Heiter, U.; Jofré, P.; Masseron, T.; Casamiquela, L.; Tabernero, H. M.; Bhat, S. S.; Casey, A. R.; Meléndez, J.; Ramírez, I.

    2017-03-01

    To study stellar populations, it is common to combine chemical abundances from different spectroscopic surveys/studies where different setups were used. These inhomogeneities can lead us to inaccurate scientific conclusions. In this work, we studied one aspect of the problem: When deriving chemical abundances from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  13. The HETDEX pilot survey. V. The physical origin of Lyα emitters probed by near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mimi; Finkelstein, Steven L.; Gebhardt, Karl

    2014-08-10

    We present the results from a Very Large Telescope/SINFONI and Keck/NIRSPEC near-infrared spectroscopic survey of 16 Lyα emitters (LAEs) at z = 2.1-2.5 in the COSMOS and GOODS-N fields discovered from the Hobby Eberly Telescope Dark Energy Experiment Pilot Survey. We detect rest-frame optical nebular lines (Hα and/or [O III] λ5007) for 10 of the LAEs and measure physical properties, including the star formation rate (SFR), gas-phase metallicity, gas mass fraction, and Lyα velocity offset. We find that LAEs may lie below the mass-metallicity relation for continuum-selected star-forming galaxies at the same redshift. The LAEs all show velocity shifts ofmore » Lyα relative to the systemic redshift ranging between +85 and +296 km s{sup –1} with a mean of +180 km s{sup –1}. This value is smaller than measured for continuum-selected star-forming galaxies at similar redshifts. The Lyα velocity offsets show a moderate correlation with the measured SFR (2.5σ), but no significant correlations are seen with the SFR surface density, specific SFR, stellar mass, or dynamical mass (≲1.5σ). Exploring the role of dust, kinematics of the interstellar medium (ISM), and geometry on the escape of Lyα photons, we find no signature of selective quenching of resonantly scattered Lyα photons. However, we also find no evidence that a clumpy ISM is enhancing the Lyα equivalent width. Our results suggest that the low metallicity in LAEs may be responsible for yielding an environment with a low neutral hydrogen column density and less dust, easing the escape of Lyα photons over that in continuum-selected star-forming galaxies.« less

  14. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGES

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  15. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    NASA Astrophysics Data System (ADS)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  16. Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits

    USGS Publications Warehouse

    Besse, S.; Sunshine, J.M.; Gaddis, L.R.

    2014-01-01

    Moon Mineralogy Mapper spectroscopic observations are used to assess the mineralogy of five sites that have recently been proposed to include lunar dark mantle deposits (DMDs). Volcanic glasses have, for the first time, clearly been identified at the location of three of the proposed pyroclastic deposits. This is the first time that volcanic glasses have been identified at such a small scale on the lunar surface from remote sensing observations. Deposits at Birt E, Schluter, and Walther A appear to be glassy DMDs. Deposits at Birt E and Schluter show (1) morphological evidence suggesting a likely vent and (2) mineralogical evidence indicative of the presence of volcanic glasses. The Walther A deposits, although they show no morphological evidence of vents, have the spectroscopic characteristics diagnostic of volcanic glasses. The deposits of the Freundlich-Sharonov basin are separated in two areas: (1) the Buys-Ballot deposits lack mineralogical and morphological evidence and thus are found to be associated with mare volcanism not with DMDs and (2) the Anderson crater deposits, which do not exhibit glassy DMD signatures, but they appear to be associated with possible vent structures and so may be classifiable as DMDs. Finally, dark deposits near the crater Kopff are found to be associated with likely mare volcanism and not associated with DMDs. The spectral identification of volcanic glass seen in many of the potential DMDs is a strong indicator of their pyroclastic origin.

  17. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    NASA Technical Reports Server (NTRS)

    E. Aliu; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boettcher, M.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; hide

    2012-01-01

    We report on VERITAS very-high-energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey (SDSS) spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and XRT data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars show a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission region.

  18. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerji, M.; Jouvel, S.; Lin, H.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band ( grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factormore » of ~4.5 relative to a simple catalogue level matching and results in a ~1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES+VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z ~ 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less

  19. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerji, M.; Jouvel, S.; Lin, H.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor ofmore » similar to 4.5 relative to a simple catalogue level matching and results in a similar to 1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z similar to 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less

  20. The ISM in O-star spectroscopic surveys: GOSSS, OWN, IACOB, NoMaDS, and CAFÉ-BEANS

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.

    I present results on the interstellar medium towards the O stars observed in five optical spectroscopic surveys: GOSSS, OWN, IACOB, NoMaDS, and CAFÉ-BEANS. I have measured both the amount [E(4405-5495)] and type [R5495] of extinction towards several hundreds of Galactic O stars and verified that the \\citet{Maizetal14a} family of extinction laws provides a significantly better fit to optical+NIR Galactic extinction than either the \\citet{Cardetal89} or the \\citet{Fitz99} families. R5495 values are concentrated between 3.0 and 3.5 but for low values of E(4405-5495) there is a significant population with larger R5495 associated with H II regions. I have also measured different DIBs and I have found that EW{5797}/EW{5780} is anticorrelated with R5495, a sign that extreme zeta clouds are characterized not only by low ionization environments (as opposed to sigma clouds) but also by having a larger fraction of small dust grains. The equivalent width of the ``Gaia DIB'' (8621 Å) is strongly correlated with E(4405-5495), as expected, and its behavior appears to be more sigma -like than zeta -like. We have also started analyzing some individual sightlines in detail.

  1. 51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.

    2009-10-01

    We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less

  2. Discovery of Four Field Methane (T-Type) Dwarfs with the Two Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Kirkpatrick, J. Davy; Brown, Michael E.; Reid, I. Neill; Gizis, John E.; Dahn, Conard C.; Monet, David G.; Beichman, Charles A.; Liebert, James; Cutri, Roc M.; Skrutskie, Michael F.

    1999-09-01

    We report the discovery of four field methane (``T''-type) brown dwarfs using Two Micron All-Sky Survey (2MASS) data. One additional methane dwarf, previously discovered by the Sloan Digital Sky Survey, was also identified. Near-infrared spectra clearly show the 1.6 and 2.2 μm CH4 absorption bands characteristic of objects with Teff<~1300 K as well as broadened H2O bands at 1.4 and 1.9 μm. Comparing the spectra of these objects with that of Gl 229B, we propose that all new 2MASS T dwarfs are warmer than 950 K, in order from warmest to coolest: 2MASS J1217-03, 2MASS J1225-27, 2MASS J1047+21, and 2MASS J1237+65. Based on this preliminary sample, we find a warm T dwarf surface density of 0.0022 T dwarfs deg-2, or ~90 warm T dwarfs over the whole sky detectable to J<16. The resulting space density upper limit, 0.01 T dwarfs pc-3, is comparable to that of the first L dwarf sample from Kirkpatrick et al. Portions of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by generous financial support of the W. M. Keck Foundation.

  3. VizieR Online Data Catalog: VIMOS Public Extragalactic Survey (VIPERS) DR1 (Garilli+, 2014)

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Guzzo, L.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; de Lucia, G.; de la Torre, S.; Franzetti, P.; Fritz, A.; Fumana, M.; Granett, B. R.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fevre, O.; Maccagni, D.; Malek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-09-01

    We present the first Public Data Release (PDR-1) of the VIMOS Public Extragalactic Survey (VIPERS). It comprises 57204 spectroscopic measurements together with all additional information necessary for optimal scientific exploitation of the data, in particular the associated photometric measurements and quantification of the photometric and survey completeness. VIPERS is an ESO Large Programme designed to build a spectroscopic sample of =~100000 galaxies with iAB<22.5 and 0.5survey spectroscopic targets are selected from the CFHTLS-Wide five-band catalogues in the W1 and W4 fields. The final survey will cover a total area of nearly 24 deg2, for a total comoving volume between z=0.5 and 1.2 of =~4x107(Mpc/h)3 and a median galaxy redshift of z=~0.8. The release presented in this paper includes data from virtually the entire W4 field and nearly half of the W1 area, thus representing 64% of the final dataset. We provide a detailed description of sample selection, observations and data reduction procedures; we summarise the global properties of the spectroscopic catalogue and explain the associated data products and their use, and provide all the details for accessing the data through the survey database (http://vipers.inaf.it) where all information can be queried interactively. (4 data files).

  4. The Snapshot A Star SurveY (SASSY)

    NASA Astrophysics Data System (ADS)

    Garani, Jasmine I.; Nielsen, Eric; Marchis, Franck; Liu, Michael C.; Macintosh, Bruce; Rajan, Abhijith; De Rosa, Robert J.; Jinfei Wang, Jason; Esposito, Thomas M.; Best, William M. J.; Bowler, Brendan; Dupuy, Trent; Ruffio, Jean-Baptiste

    2018-01-01

    The Snapshot A Star Survey (SASSY) is an adaptive optics survey conducted using NIRC2 on the Keck II telescope to search for young, self-luminous planets and brown dwarfs (M > 5MJup) around high mass stars (M > 1.5 M⊙). We present the results of a custom data reduction pipeline developed for the coronagraphic observations of our 200 target stars. Our data analysis method includes basic near infrared data processing (flat-field correction, bad pixel removal, distortion correction) as well as performing PSF subtraction through a Reference Differential Imaging algorithm based on a library of PSFs derived from the observations using the pyKLIP routine. We present the results from the pipeline of a few stars from the survey with analysis of candidate companions. SASSY is sensitive to companions 600,000 times fainter than the host star withint the inner few arcseconds, allowing us to detect companions with masses ~8MJup at age 110 Myr. This work was supported by the Leadership Alliance's Summer Research Early Identification Program at Stanford University, the NSF REU program at the SETI Institute and NASA grant NNX14AJ80G.

  5. The Faint End of the Quasar Luminosity Function at z ~ 4

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 < M 1450 < -22.0) at redshifts z = 3.8-5.2 in order to measure the faint end of the QLF at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg2. Thirty candidates have R <= 23 mag. We conducted spectroscopic follow-up for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z < 5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function (LF) is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450 Å. Considering only our R <= 23 sample, the best-fit single power law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 < β < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the

  6. VizieR Online Data Catalog: Follow-up study of gal. & AGNs in z>1 clusters (Alberts+, 2016)

    NASA Astrophysics Data System (ADS)

    Alberts, S.; Pope, A.; Brodwin, M.; Chung, S. M.; Cybulski, R.; Dey, A.; Eisenhardt, P. R. M.; Galametz, A.; Gonzalez, A. H.; Jannuzi, B. T.; Stanford, S. A.; Snyder, G. F.; Stern, D.; Zeimann, G. R.

    2016-08-01

    In this work, we concentrate our analysis on 11 spectroscopically confirmed clusters from the IRAC Shallow/Distant Cluster Survey (ISCS/IDCS) that we observed with Herschel/PACS at 100 and 160um, obtained during Open Time 2 observing (PID: OT2apope3) (summary of imaging in table 6 spanning from June 2012 to January 2013). Given the resolution of PACS (FWHM~6.7" at 100um and 11" at 160um), we expect the majority of sources and all cluster galaxies in our maps to be point sources. See sections 2.1 and 2.3 for further details. The IRAC Shallow Survey (ISS) was followed up with three more observations as part of SDWFS (Ashby et al. 2009, see J/ApJ/716/530), providing a factor of 2 deeper IRAC catalog with an aperture-corrected 5σ limit of 5.2uJy at 4.5um ([4.5]=18.83mag). Spitzer/MIPS observations are available from the MIPS AGM and Galaxy Evolution Survey (MAGES; Jannuzi et al. 2010AAS...21547001J). See section 2.4 for further details. Targeted follow up campaigns by our group have obtained spectroscopic redshifts for galaxies and AGNs in z>1 clusters using multi-object Keck optical spectroscopy and Wide Field Camera 3 (WFC3) slitless NIR grism spectroscopy from the Hubble Space Telescope (HST). The reader is directed to Brodwin et al. (2013ApJ...779..138B), Zeimann et al. (2013, J/ApJ/779/137), and references therein for a detailed description of the targeted spectroscopy. Some spectroscopic redshifts are additionally provided by the AGN and Galaxy Evolution Survey (AGES; Kochanek et al. 2012, J/ApJS/200/8). See section 2.2. (3 data files).

  7. International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.

    2013-09-01

    Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.

  8. High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.

    2007-01-01

    We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power

  9. The Lyα properties of faint galaxies at z ∼ 2-3 with systemic redshifts and velocity dispersions from Keck-MOSFIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erb, Dawn K.; Steidel, Charles C.; Trainor, Ryan F.

    2014-11-01

    We study the Lyα profiles of 36 spectroscopically detected Lyα-emitters (LAEs) at z ∼ 2-3, using Keck MOSFIRE to measure systemic redshifts and velocity dispersions from rest-frame optical nebular emission lines. The sample has a median optical magnitude R=26.0, and ranges from R≃23 to R>27, corresponding to rest-frame UV absolute magnitudes M {sub UV} ≅ –22 to M {sub UV} > –18.2. Dynamical masses range from M {sub dyn} < 1.3 × 10{sup 8} M {sub ☉} to M {sub dyn} = 6.8 × 10{sup 9} M {sub ☉}, with a median value of M {sub dyn} = 6.3 ×more » 10{sup 8} M {sub ☉}. Thirty of the 36 Lyα emission lines are redshifted with respect to the systemic velocity with at least 1σ significance, and the velocity offset with respect to systemic Δv {sub Lyα} is correlated with the R-band magnitude, M {sub UV}, and the velocity dispersion measured from nebular emission lines with >3σ significance: brighter galaxies with larger velocity dispersions tend to have larger values of Δv {sub Lyα}. We also make use of a comparison sample of 122 UV-color-selected R<25.5 galaxies at z ∼ 2, all with Lyα emission and systemic redshifts measured from nebular emission lines. Using the combined LAE and comparison samples for a total of 158 individual galaxies, we find that Δv {sub Lyα} is anti-correlated with the Lyα equivalent width with 7σ significance. Our results are consistent with a scenario in which the Lyα profile is determined primarily by the properties of the gas near the systemic redshift; in such a scenario, the opacity to Lyα photons in lower mass galaxies may be reduced if large gaseous disks have not yet developed and if the gas is ionized by the harder spectrum of young, low metallicity stars.« less

  10. Galaxy Evolution Spectroscopic Explorer (GESE): Science Rationale, Optical Design, and Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd

    2014-01-01

    One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.

  11. Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES

    2016-10-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD

  12. MULTIBAND PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF HV Cnc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gökay, G.; Gürol, B.; Derman, E., E-mail: ggokay@science.ankara.edu.tr

    2013-11-01

    In this paper, radial velocity and VI- and JHK{sub S} - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D)more » code and JHK{sub S} filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M {sub ☉}, 0.52 M {sub ☉}, 1.87 R {sub ☉}, and 0.48 R {sub ☉}, respectively. All results are compared with previously published literature values and discussed.« less

  13. Science capabilities of the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Devost, Daniel; McConnachie, Alan; Flagey, Nicolas; Cote, Patrick; Balogh, Michael; Driver, Simon P.; Venn, Kim

    2017-01-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multiobject spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 20,000. The project is currently in design phase, with full science operations nominally starting in 2025. MSE will enable transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for E-ELT, TMT and GMT. I will give an update on the status of the project and review some of the most exciting scientific capabilities of the observatory.

  14. OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Seymour, N.; Sharp, R.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.

    2017-11-01

    We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2-3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts.

  15. The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disc turbulence in z ≈ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.; Harrison, C. M.; Swinbank, A. M.; Tiley, A. L.; Stott, J. P.; Bower, R. G.; Smail, Ian; Bunker, A. J.; Sobral, D.; Turner, O. J.; Best, P.; Bureau, M.; Cirasuolo, M.; Jarvis, M. J.; Magdis, G.; Sharples, R. M.; Bland-Hawthorn, J.; Catinella, B.; Cortese, L.; Croom, S. M.; Federrath, C.; Glazebrook, K.; Sweet, S. M.; Bryant, J. J.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; Medling, A. M.; Owers, M. S.; Richards, S.

    2018-03-01

    We analyse the velocity dispersion properties of 472 z ˜ 0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 ± 5 per cent with vC/σ0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is σ0 = 43.2 ± 0.8 km s-1 with a rotational velocity to dispersion ratio of vC/σ0 = 2.6 ± 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate, and redshift, we combine KROSS with data from the SAMI survey (z ˜ 0.05) and an intermediate redshift MUSE sample (z ˜ 0.5). Whilst there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by discs that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.

  16. The Large Area KX Quasar Survey: Photometric Redshift Selection and the Complete Quasar Catalogue

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, P. C.; Peroux, C.

    2013-01-01

    We have completed a large area, ˜600 square degree, spectroscopic survey for luminous quasars flux-limited in the K-band. The survey utilises the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. We exploit the K-band excess (KX) of all quasars with respect to Galactic stars in combination with a custom-built photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The survey is complete to K≤16.6, and includes >3200 known quasars from the SDSS, with more than 250 additional confirmed quasars from the KX-selection which eluded the SDSS quasar selection algorithm. The selection is >95% complete with respect to known SDSS quasars and >95% efficient, largely independent of redshift and magnitude. The KX-selected quasars will provide new constraints on the fraction of luminous quasars reddened by dust with E(B-V)≤0.5 mag. Several projects utilizing the KX quasars are ongoing, including a spectroscopic campaign searching for dusty quasar intervening absorption systems. The KX survey is a well-defined sample of quasars useful for investigating the properties of luminous quasars with intermediate levels of dust extinction either within their host galaxies or due to intervening absorption systems.

  17. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miknaitis, Gajus; Pignata, G.; Rest, A.

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on usingmore » reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).« less

  18. VizieR Online Data Catalog: The Taurus-Auriga ecosystem. I. (Kraus+, 2017)

    NASA Astrophysics Data System (ADS)

    Kraus, A. L.; Herczeg, G. J.; Rizzuto, A. C.; Mann, A. W.; Slesnick, C. L.; Carpenter, J. M.; Hillenbrand, L. A.; Mamajek, E. E.

    2017-11-01

    High-resolution spectroscopic observations for 35 candidates from the surveys of Slesnick+ (2006, J/AJ/132/2665) and Li & Hu (1998, J/A+AS/132/173) were previously obtained with Keck/HIRES on 2006 December 12 and 13 (PIs Carpenter and Slesnick). We downloaded these observations, extracted the spectra, and analyzed them to measure the radial velocity, Hα equivalent width, and Li equivalent width for each object. We observed 32 candidates with the SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope between 2014 November and 2015 January (PIs Herczeg and Mann). These observations (R~1000) are similar to those described by Mann+ (2015, J/ApJ/804/64), who describe some of the observations and reductions in more detail. See section 3 for further details. (9 data files).

  19. The 3D-HST Survey: An Introduction

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Van Dokkum, P. G.; Brammer, G.; Franx, M.; Skelton, R.; Lundgren, B.; Whitaker, K. E.; 3D-HST Team

    2013-01-01

    3D-HST is a near-IR spectroscopic survey with the Hubble Space Telescope designed to study galaxy evolution at 1surveying ~600 sq. arcmin of well-studied extragalactic fields (AEGIS, COSMOS, GOODS-S, UKIDSS-UDS) with two orbits of primary WFC3/G141 grism coverage and two to four orbits with ACS/G800L grism coverage. When completed in early 2013, 3D-HST would provide the critical third dimension - redshift - for some ~10,000 galaxies at z>1. In this talk, I will review the observational details, reduction pipeline, data quality and the wide range of public data products, including added-value photometric and spectroscopic catalogs. Data from the 3D-HST survey are non-proprietary and are useful for a wide variety of science investigations. Our first public data release will be in early 2013 and we would like to advertise this unique data set to the community.

  20. Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects

    NASA Astrophysics Data System (ADS)

    Paiano, Simona; Falomo, Renato; Franceschini, Alberto; Treves, Aldo; Scarpa, Riccardo

    2017-12-01

    We present optical spectroscopy secured at the 10 m Gran Telescopio Canarias of the counterparts of 20 extragalactic γ-ray sources detected by the Fermi satellite. The observations allow us to investigate the nature of these sources and to determine their redshift. We find that all optical counterparts have a spectrum that is consistent with a BL Lac object nature. We are able to determine the redshift for 11 objects and set spectroscopic redshift limits for five targets. The optical spectrum is found featureless for only four sources. In the latter cases, we can set lower limits on the redshift based on the assumption that they are hosted by a typical massive elliptical galaxy whose spectrum is diluted by the nonthermal continuum. The observations allow us to unveil the nature of these gamma-ray sources and provide a sanity check of a tool to discover the counterparts of γ-ray emitters/blazars based on their multiwavelength emission.

  1. SDSS-IV eBOSS emission-line galaxy pilot survey

    DOE PAGES

    Comparat, J.; Delubac, T.; Jouvel, S.; ...

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less

  2. A closer look at the quadruply lensed quasar PSOJ0147: spectroscopic redshifts and microlensing effect

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2018-04-01

    I present a timely spectroscopic follow-up of the newly discovered, quadruply lensed quasar PSOJ0147 from the Pan-STARRS 1 survey. The newly acquired optical spectra with GMOS onboard the Gemini North Telescope allow us to pin down the redshifts of both the foreground lensing galaxy and the background lensed quasar to be z = 0.572 and 2.341, providing a firm basis for cosmography with future high-cadence photometric monitoring. I also inspect difference spectra from two of the quasar images, revealing the microlensing effect. Long-term spectroscopic follow-ups will shed lights on the structure of the active galactic nucleus and its environment.

  3. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000-2000 Å) and rest-frame optical (3600-7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}⊙ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}⊙ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}⊙ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  4. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.; hide

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  5. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Sánchez, C.; Carrasco Kind, M.; Lin, H.; Miquel, R.; Abdalla, F. B.; Amara, A.; Banerji, M.; Bonnett, C.; Brunner, R.; Capozzi, D.; Carnero, A.; Castander, F. J.; da Costa, L. A. N.; Cunha, C.; Fausti, A.; Gerdes, D.; Greisel, N.; Gschwend, J.; Hartley, W.; Jouvel, S.; Lahav, O.; Lima, M.; Maia, M. A. G.; Martí, P.; Ogando, R. L. C.; Ostrovski, F.; Pellegrini, P.; Rau, M. M.; Sadeh, I.; Seitz, S.; Sevilla-Noarbe, I.; Sypniewski, A.; de Vicente, J.; Abbot, T.; Allam, S. S.; Atlee, D.; Bernstein, G.; Bernstein, J. P.; Buckley-Geer, E.; Burke, D.; Childress, M. J.; Davis, T.; DePoy, D. L.; Dey, A.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A.; Fernández, E.; Finley, D.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Glazebrook, K.; Honscheid, K.; Kim, A.; Kuehn, K.; Kuropatkin, N.; Lidman, C.; Makler, M.; Marshall, J. L.; Nichol, R. C.; Roodman, A.; Sánchez, E.; Santiago, B. X.; Sako, M.; Scalzo, R.; Smith, R. C.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Uddin, S. A.; Valdés, F.; Walker, A.; Yuan, F.; Zuntz, J.

    2014-12-01

    We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method in a multidimensional colour-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ˜ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.

  6. The kinematic footprints of five stellar streams in Andromeda's halo

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Ibata, R.; Irwin, M.; Koch, A.; Letarte, B.; Martin, N.; Collins, M.; Lewis, G. F.; McConnachie, A.; Peñarrubia, J.; Rich, R. M.; Trethewey, D.; Ferguson, A.; Huxor, A.; Tanvir, N.

    2008-11-01

    We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within Stream`C', all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream`C' and Stream`D' to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H] ~ -0.7) stars at vhel = -349.5kms-1,σv,corr ~ 5.1 +/- 2.5km s-1 are proposed as a serendipitous detection of Stream`Cr', with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H] ~-1.3) stars confined to a narrow, 15 km s-1 velocity bin centred at vhel = -285.6, σv,corr = 4.3+1.7-1.4 km s-1 represent a kinematic detection of Stream`Cp', again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H] ~-1.4, are found at vhel = -282 suggesting it could be related to Stream`Cp'. No similarly obvious cold kinematic candidate is found for Stream`D', although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~ -400km s-1). Spectroscopy near the edge of Stream`B' suggests a likely kinematic detection at vhel ~ -330, σv,corr ~ 6.9km s-1, while a candidate kinematic detection of Stream`A' is found (plausibly associated to M33 rather than M31) with vhel ~ -170, σv,corr = 12.5km s-1. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar

  7. A Spectroscopic Follow-up Program of Very Massive Galaxies at 3 < z < 4: Confirmation of Spectroscopic Redshifts, and a High Fraction of Powerful AGNs

    NASA Astrophysics Data System (ADS)

    Marsan, Z. Cemile; Marchesini, Danilo; Brammer, Gabriel B.; Geier, Stefan; Kado-Fong, Erin; Labbé, Ivo; Muzzin, Adam; Stefanon, Mauro

    2017-06-01

    We present the analysis and results of a spectroscopic follow-up program of a mass-selected sample of six galaxies at 3< z< 4 using data from Keck-NIRPSEC and VLT-Xshooter. We confirm the z> 3 redshifts for half of the sample through the detection of strong nebular emission lines, and improve the z phot accuracy for the remainder of the sample through the combination of photometry and spectra. The modeling of the emission-line-corrected spectral energy distributions (SEDs) adopting improved redshifts confirms the very large stellar masses of the sample ({M}* ˜ 1.5{--}4× {10}11{M}⊙ ) in the first 2 Gyr of cosmic history, with a diverse range in stellar ages, star-formation rates, and dust content. From the analysis of emission-line luminosities and widths, and far-infrared (FIR) fluxes, we confirm that ≳ 80 % of the sample are hosts to luminous hidden active galactic nuclei (AGNs), with bolometric luminosities of ˜1044-46 erg s-1. We find that the MIPS 24 μm photometry is largely contaminated by AGN continuum, rendering the SFRs derived using only 24 μm photometry to be severely overestimated. By including the emission from the AGN in the modeling of the UV-to-FIR SEDs, we confirm that the presence of the AGN does not considerably bias the stellar masses (< 0.3 dex at 1σ). We show evidence for a rapid increase of the AGN fraction from ˜30% to ˜60%-100% over the 1 Gyr between z˜ 2 and z˜ 3. Although we cannot exclude some enhancement of the AGN fraction for our sample due to selection effects, the small measured [O III] contamination to the observed K-band fluxes suggests that our sample is not significantly biased toward massive galaxies hosting AGNs.

  8. A Magellan M2FS Spectroscopic Survey of Galaxies at 5.5 < z < 6.8: Program Overview and a Sample of the Brightest Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Shen, Yue; Bian, Fuyan; Zheng, Zhen-Ya; Wu, Jin; Oyarzún, Grecco A.; Blanc, Guillermo A.; Fan, Xiaohui; Ho, Luis C.; Infante, Leopoldo; Wang, Ran; Wu, Xue-Bing; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Olszewski, Edward W.; Shectman, Stephen; Thompson, Ian; Walker, Matthew G.

    2017-09-01

    We present a spectroscopic survey of high-redshift, luminous galaxies over four square degrees on the sky, aiming to build a large and homogeneous sample of Lyα emitters (LAEs) at z≈ 5.7 and 6.5, and Lyman-break galaxies (LBGs) at 5.5< z< 6.8. The fields that we choose to observe are well studied, such as by the Subaru XMM-Newton Deep Survey and COSMOS. They have deep optical imaging data in a series of broad and narrow bands, allowing for the efficient selection of galaxy candidates. Spectroscopic observations are being carried out using the multi-object spectrograph M2FS on the Magellan Clay telescope. M2FS is efficient enough to identify high-redshift galaxies, owing to its 256 optical fibers deployed over a circular field of view 30\\prime in diameter. We have observed ˜2.5 square degrees. When the program is completed, we expect to identify more than 400 bright LAEs at z≈ 5.7 and 6.5, and a substantial number of LBGs at z≥slant 6. This unique sample will be used to study a variety of galaxy properties and to search for large protoclusters. Furthermore, the statistical properties of these galaxies will be used to probe cosmic reionization. We describe the motivation, program design, target selection, and M2FS observations. We also outline our science goals, and present a sample of the brightest LAEs at z≈ 5.7 and 6.5. This sample contains 32 LAEs with Lyα luminosities higher than 1043 erg s-1. A few of them reach ≥3 × 1043 erg s-1, comparable to the two most luminous LAEs known at z≥slant 6, “CR7” and “COLA1.” These LAEs provide ideal targets to study extreme galaxies in the distant universe.

  9. OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release

    DOE PAGES

    Childress, M. J.; Lidman, C.; Davis, T. M.; ...

    2017-07-26

    We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less

  10. OzDES multifibre spectroscopy for the Dark Energy Survey: Three year results and first data release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childress, M. J.; Lidman, C.; Davis, T. M.

    We present results for the first three years of OzDES, a six-year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshiftsmore » of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-Angstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as the 4m Multi-Object Spectroscopic Telescope (4MOST), the Subaru Prime Focus Spectrograph (PFS), and the Maunakea Spectroscopic Explorer (MSE). This work marks the first OzDES data release, comprising 14,693 redshifts. OzDES is on target to obtain over a yield of approximately 5,700 supernova host-galaxy redshifts.« less

  11. The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B

    NASA Astrophysics Data System (ADS)

    Serabyn, E.; Huby, E.; Matthews, K.; Mawet, D.; Absil, O.; Femenia, B.; Wizinowich, P.; Karlsson, M.; Bottom, M.; Campbell, R.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Forsberg, P.; Gomez Gonzalez, C.; Habraken, S.; Jolivet, A.; Liewer, K.; Lilley, S.; Piron, P.; Reggiani, M.; Surdej, J.; Tran, H.; Vargas Catalán, E.; Wertz, O.

    2017-01-01

    An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L‧-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP 79124, which had previously been detected by means of interferometry. With HIP 79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L‧ band versus H band, this new coronagraphic capability will enable high-contrast, small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.

  12. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excessmore » appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).« less

  13. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  14. Robo-AO M Dwarf Multiplicity Survey

    NASA Astrophysics Data System (ADS)

    Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Ziegler, Carl; Schonhut-Stasik, Jessica

    2018-06-01

    We analyzed close to 7,000 observations from Robo-AO’s field M dwarf survey taken on the 2.1m Kitt Peak telescope. Results will help determine the total multiplicity fraction and multiplicity functions of M dwarfs, which are crucial steps towards understanding their evolution and formation mechanics. Through its robotic, laser-guided, and automated system, the Robo-AO instrument has yielded the largest adaptive-optics M dwarf survey to date. I developed a graphical user interface to quickly analyze this data. Initial data analysis included assessing data quality, checking the result from Robo-AO’s automatic reduction pipeline, and determining existence as well as the relative position of companions through a visual inspection. This program can be applied to other datasets and was successfully tested by re-analyzing observations from a separate Robo-AO survey. After a conservative initial cut for quality, over 350 companions were found within 4” of a primary star out of 2,746 high quality Robo-AO M dwarf observations, including four triple systems. Further observations were done with the Keck II telescope by using its NIRC2 imager to follow up on ten select targets for the existence and physical association of companions. Future research will yield insights into low-mass stellar formation and provide a database of nearby M dwarf multiples that will potentially assist ongoing and future surveys for planets around these stars, such as the NASA TESS mission.

  15. The Rest-frame Ultraviolet Spectra of UV-selected Active Galactic Nuclei at z ~ 2-3

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Shapley, Alice E.; Greene, Jenny E.; Steidel, Charles C.

    2011-05-01

    We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z ~ 2-3. The rest-frame UV composite spectrum for our AGN sample shows several emission lines characteristic of AGNs, as well as interstellar absorption features detected in star-forming Lyman break galaxies (LBGs). We report a detection of N IV] λ1486, which has been observed in high-redshift radio galaxies, as well as in rare optically selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star-forming galaxies. Blueshifted Si IV absorption provides evidence for outflowing highly ionized gas in these objects at speeds of ~103 km s-1, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as the Lyα equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Lyα emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Lyα photons. However, the AGN composite does not show the same trends between Lyα strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high redshift between star-forming galaxies and similar galaxies that host AGN activity. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  16. The identification of post-starburst galaxies at z ˜ 1 using multiwavelength photometry: a spectroscopic verification

    NASA Astrophysics Data System (ADS)

    Maltby, David T.; Almaini, Omar; Wild, Vivienne; Hatch, Nina A.; Hartley, William G.; Simpson, Chris; McLure, Ross J.; Dunlop, James; Rowlands, Kate; Cirasuolo, Michele

    2016-06-01

    Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare opportunity to study this transition phase, but few have currently been spectroscopically identified at high redshift (z > 1). In this paper, we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. The method classifies the broad-band optical-near-infrared spectral energy distributions (SEDs) of galaxies using three spectral shape parameters (supercolours), derived from a principal component analysis of model SEDs. When applied to the multiwavelength photometric data in the UKIDSS Ultra Deep Survey, this technique identified over 900 candidate post-starbursts at redshifts 0.5 < z < 2.0. In this study, we present deep optical spectroscopy for a subset of these galaxies, in order to confirm their post-starburst nature. Where a spectroscopic assessment was possible, we find the majority (19/24 galaxies; ˜80 per cent) exhibit the strong Balmer absorption (H δ equivalent width Wλ > 5 Å) and Balmer break, characteristic of post-starburst galaxies. We conclude that photometric methods can be used to select large samples of recently-quenched galaxies in the distant Universe.

  17. Keck/LRIS Spectroscopy of the Distant Cluster Cl0016+16

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Koo, David C.

    1994-12-01

    The rich galaxy cluster Cl0016+16 at z=0.55 initially achieved visibility (Koo 1981) for being the original ``anti Butcher-Oemler effect'' cluster: its galaxy population was found to be almost entirely red, indistinguishable in rest-frame color from local E/S0 galaxies, despite the expectation that higher redshift clusters should have a greater proportion of blue galaxies (Butcher & Oemler 1978, 1984). Interest in this cluster has heightened over the last decade as: X-ray observations found it to be among the most luminous clusters known (Henry et al. 1992); radio observations showed it to be among only a handful of clusters exhibiting a Sunyaev-Zel'dovich microwave decrement, useful for measuring the Hubble Constant (Lasenby 1992); optical spectroscopy revealed a significant population of ``E+A'' galaxies, enigmatic objects with spectra suggesting a recently-concluded episode of star formation (Dressler & Gunn 1992). Further observations by ROSAT, ASCA, and HST have established Cl0016+16 as among the best-studied clusters beyond Coma. The red nature of its galaxy population makes Cl0016+16 a prime candidate for the study of cluster galaxy evolution. As part of an ongoing effort to study the early-type galaxies in this cluster, we recently used the Keck Telescope and Low-Resolution Imaging Spectrograph to obtain high quality spectra of 19 cluster members at 6 Angstroms (FWHM) resolution. This poster describes the preliminary results from these data, which will allow us to investigate galaxy age and metallicity at lookback times nearly halfway to the Big Bang, probe the internal kinematics of galaxies at z=0.55, and thus perhaps trace the evolution of the ``fundamental plane'' for E/S0 galaxies.

  18. Remote Observing with the Keck Telescope Using the ACTS Satellite

    NASA Technical Reports Server (NTRS)

    Cohen, Judy; Shopbell, Patrick; Bergman, Larry

    1998-01-01

    As a technical demonstration project for the NASA Advanced Communications Technology Satellite (ACTS), we have implemented remote observing on the 10-meter Keck II telescope on Mauna Kea in Hawaii from the California Institute of Technology campus in Pasadena. The data connection consists of optical fiber networks in Hawaii and California, connecting the end-points to high data rate (HDR) ACTS satellite antennae at JPL in Pasadena and at the Tripler Army Medical Center in Honolulu. The terrestrial fiber networks run the asynchronous transfer mode (ATM) protocol at DS-3 (45 Mbit/sec) speeds, providing ample bandwidth to enable remote observing with a software environment identical to that used for on-site observing in Hawaii. This experiment has explored the data requirements of remote observing with a modern research telescope and large-format detector arrays. While the maximum burst data rates are lower than those required for many other applications (e.g., HDTV), the network reliability and data integrity requirements are critical. As we show in this report, the former issue particularly may be the greatest challenge for satellite networks for this class of application. We have also experimented with the portability of standard TCP/IP applications to satellite networks, demonstrating the need for alternative TCP congestion algorithms and minimization of bit error rates (BER). Reliability issues aside, we have demonstrated that true remote observing over high-speed networks provides several important advantages over standard observing paradigms. Technical advantages of the high-speed network access include more rapid download of data to a user's home institution and the opportunity for alternative communication facilities between members of an observing team, such as audio- and videoconferencing.

  19. Exploring the early dust-obscured phase of galaxy formation with blind mid-/far-infrared spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Negrello, M.; Cai, Z.-Y.; De Zotti, G.; Bressan, A.; Lapi, A.; Gruppioni, C.; Spinoglio, L.; Danese, L.

    2014-03-01

    While continuum imaging data at far-infrared to submillimetre wavelengths have provided tight constraints on the population properties of dusty star-forming galaxies up to high redshifts, future space missions like the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and ground-based facilities like the Cerro Chajnantor Atacama Telescope (CCAT) will allow detailed investigations of their physical properties via their mid-/far-infrared line emission. We present updated predictions for the number counts and the redshift distributions of star-forming galaxies spectroscopically detectable by these future missions. These predictions exploit a recent upgrade of evolutionary models, that include the effect of strong gravitational lensing, in the light of the most recent Herschel and South Pole Telescope data. Moreover the relations between line and continuum infrared luminosity are re-assessed, considering also differences among source populations, with the support of extensive simulations that take into account dust obscuration. The derived line luminosity functions are found to be highly sensitive to the spread of the line to continuum luminosity ratios. Estimates of the expected numbers of detections per spectral line by SPICA/SpicA FAR-infrared Instrument (SAFARI) and by CCAT surveys for different integration times per field of view at fixed total observing time are presented. Comparing with the earlier estimates by Spinoglio et al. we find, in the case of SPICA/SAFARI, differences within a factor of 2 in most cases, but occasionally much larger. More substantial differences are found for CCAT.

  20. W. M. Keck Observatory primary mirror segment repair project: overview and status

    NASA Astrophysics Data System (ADS)

    Meeks, Robert L.; Doyle, Steve; Higginson, Jamie; Hudek, John S.; Irace, William; McBride, Dennis; Pollard, Mike; Tai, Kuochou; Von Boeckmann, Tod; Wold, Leslie; Wold, Truman

    2016-07-01

    The W. M. Keck Observatory Segment Repair Project is repairing stress-induced fractures near the support points in the primary mirror segments. The cracks are believed to result from deficiencies in the original design and implementation of the adhesive joints connecting the Invar support components to the ZERODUR mirror. Stresses caused by temperature cycling over 20 years of service drove cracks that developed at the glass-metal interfaces. Over the last few years the extent and cause of the cracks have been studied, and new supports have been designed. Repair of the damaged glass required development of specialized tools and procedures for: (1) transport of the segments; (2) pre-repair metrology to establish the initial condition; (3) removal of support hardware assemblies; (4) removal of the original supports; (5) grinding and re-surfacing the damaged glass areas; (6) etching to remove sub-surface damage; (7) bonding new supports; (8) re-installation of support assemblies; and (9) post-repair metrology. Repair of the first segment demonstrated the new tools and processes. On-sky measurements before and after repair verified compliance with the requirements. This paper summarizes the repair process, on-sky results, and transportation system, and also provides an update on the project status and schedule for repairing all 84 mirror segments. Strategies for maintaining quality and ensuring that repairs are done consistently are also presented.

  1. Joint observations of Titan's North Pole by Cassini/VIMS and Keck/NIRSPEC

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Griffith, C. A.; Fitzpatrick, R.; Lawrence, K. J.

    2017-12-01

    One of many Titan's characteristics is the presence of hydrocarbon seas and lakes in the Northern hemisphere, which represent one reservoir involved in the methane cycle that controls Titan's meteorology. During Titan's spring, the North Pole is illuminated and evaporation of methane should happen. Observations of the non-saturated absorption bands in the 1.6 micron atmospheric window by the NIRSPEC (Near Infrared Spectrometer) instrument on the Keck telescope should allow us to retrieve this critical information to understand the methane cycle on Titan. Such observations were performed during the night of July 9, 2017. Simultaneously, images of Titan's North pole were taken by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during non-targeted flybys between 7:00 am and 8:45 am UT on July 10, 2017. As observed during recent non-targeted flybys, cloud activity at high northern latitudes is increasing as Titan gets closer to summer solstice. During Rev 283, elongated clouds form a circle along latitude 60 N (green arrow) with an apparent higher activity around 90W (blue arrow). There is also a bright patch at the North Pole (red arrow) that is visible at 2.1 micron and not at 2.0 micron, which also suggests cloud activity. Analysis of the 1.6 micron atmospheric window will be presented while the processing of the NIRSPEC data are ongoing.

  2. Public surveys at ESO

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Delmotte, Nausicaa; Hilker, Michael; Hussain, Gaitee; Mascetti, Laura; Micol, Alberto; Petr-Gotzens, Monika; Rejkuba, Marina; Retzlaff, Jörg; Mieske, Steffen; Szeifert, Thomas; Ivison, Rob; Leibundgut, Bruno; Romaniello, Martino

    2016-07-01

    ESO has a strong mandate to survey the Southern Sky. In this article, we describe the ESO telescopes and instruments that are currently used for ESO Public Surveys, and the future plans of the community with the new wide-field-spectroscopic instruments. We summarize the ESO policies governing the management of these projects on behalf of the community. The on-going ESO Public Surveys and their science goals, their status of completion, and the new projects selected during the second ESO VISTA call in 2015/2016 are discussed. We then present the impact of these projects in terms of current numbers of refereed publications and the scientific data products published through the ESO Science Archive Facility by the survey teams, including the independent access and scientific use of the published survey data products by the astronomical community.

  3. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    DOE PAGES

    Sanchez, C.; Carrasco Kind, M.; Lin, H.; ...

    2014-10-09

    In this study, we present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method inmore » a multidimensional colour–magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. In addition, empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ~ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.« less

  4. Spectroscopic Classification of Nine Optical Transients with the 2.5-m du Pont Telescope

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Holoien, Tom; Prieto, Jose L.; Dong, Subo; Chen, P.; Stanek, K. Z.

    2018-04-01

    We report spectroscopic observations and classifications of optical transients using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory. Targets were discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee et al. 2014) (ATel #11391, ATel #11343, ATel #11459), Gaia Alerts (http://gsaweb.ast.cam.ac.uk/alerts/alertsindex) and A. Rest et al. (for 2018agk).

  5. Detecting Reddening by Dust for Star Clusters in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Cohn, Amy; Dorman, C.; Guhathakurta, P.; PHAT Collaboration

    2014-01-01

    We have developed a technique to detect reddening by interstellar dust of star clusters in the Andromeda Galaxy, using Hubble Space Telescope ACS/WFC imaging in B and I and spectroscopic data from Keck II DEIMOS spectrograph. These data are from the Panchromatic Hubble Andromeda Treasury (PHAT) and Spectroscopic and Panchromatic Landscape of Andromeda's Stellar Halo (SPLASH) surveys. We compared the observed color indices from the PHAT data to the intrinsic color indices quantitatively inferred from a chi-squared goodness of fit comparison between the SPLASH data and a library of template spectra, to detect reddening. The spectral comparison utilizes the strength of the titanium oxide bands. This technique will be applied to an additional 150 star clusters, in Andromeda, to determine the amount of reddening they have experienced. It will also be used as part of the process of correcting for the reddening, developing a reddening law, and learning more about the physical properties of the dust. This research was carried out under the auspices of UCSC's Science Internship Program. We thank the National Aeronautics and Space Administration and the National Science Foundation for funding support.

  6. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    DOE PAGES

    Aliu, E.; Archambault, S.; Arlen, T.; ...

    2012-10-25

    In this paper, we report on VERITAS very high energy (VHE; E ≥ 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources describedmore » here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. Finally, the SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.« less

  7. Spectroscopic classification of SN 2017hro with NOT

    NASA Astrophysics Data System (ADS)

    Babooram, C.; Jormanainen, J.; Wagner, S.; Wierda, F.; Kuncarayakti, H.; Fedorets, G.; Dyrbye, S.

    2017-11-01

    We report the spectroscopic classification of supernova SN 2017hro (ATLAS17mwv) in host galaxy 2MASX J22161573+4003267. The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2017-11-01.8 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes ATLAS17mwv | SN 2017hro | 2017-10-28.3 | 18.765 | 2017-11-01.8 | 0.015 | II | around maximum | (1) (1) SN redshift is obtained from host emission lines and consistent with that derived from the SN spectrum.

  8. PRISM: Processing routines in IDL for spectroscopic measurements (installation manual and user's guide, version 1.0)

    USGS Publications Warehouse

    Kokaly, Raymond F.

    2011-01-01

    This report describes procedures for installing and using the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software. PRISM provides a framework to conduct spectroscopic analysis of measurements made using laboratory, field, airborne, and space-based spectrometers. Using PRISM functions, the user can compare the spectra of materials of unknown composition with reference spectra of known materials. This spectroscopic analysis allows the composition of the material to be identified and characterized. Among its other functions, PRISM contains routines for the storage of spectra in database files, import/export of ENVI spectral libraries, importation of field spectra, correction of spectra to absolute reflectance, arithmetic operations on spectra, interactive continuum removal and comparison of spectral features, correction of imaging spectrometer data to ground-calibrated reflectance, and identification and mapping of materials using spectral feature-based analysis of reflectance data. This report provides step-by-step instructions for installing the PRISM software and running its functions.

  9. Keck and VLT Observations of Super-Damped Lyman-Alpha Absorbers at z 2- 2.5: Constraints on Chemical Compositions and Physical Conditions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-01

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log NH i ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (˜-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between NH i, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 - log NH i in the metallicity versus NH i plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log NH i < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ˜1.6 and ˜0.7 M⊙ yr-1, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log NH i > 21.7 may have somewhat narrower velocity dispersions Δv90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas. Includes observations collected during program ESO 93.A-0422 at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the Ultraviolet-Visual Echelle Spectrograph (UVES) on the 8.2 m telescopes operated at the Paranal Observatory, Chile. Some of the data presented herein were

  10. Galactic Surveys in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Wyse, Rosemary F. G.

    2018-04-01

    The final astrometric data from the Gaia mission will transform our view of the stellar content of the Galaxy, particularly when complemented with spectroscopic surveys providing stellar parameters, line-of-sight kinematics and elemental abundances. Analyses with Gaia DR1 are already demonstrating the insight gained and the promise of what is to come with future Gaia releases. I present a brief overview of results and puzzles from recent Galactic Archaeology surveys for context, focusing on the Galactic discs.

  11. The Data-Driven Approach to Spectroscopic Analyses

    NASA Astrophysics Data System (ADS)

    Ness, M.

    2018-01-01

    I review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.

  12. Characterizing site specific considerations for protecting aircraft during LGS operations at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J., Jr.; Campbell, Randy; McCann, Kevin; Shimko, Steve

    2010-07-01

    W. M. Keck Observatory (WMKO) routinely operates laser guide star (LGS) Adaptive Optics (AO) systems at the telescope facility on the Big Island of Hawaii. One of the operational requirements for the LGS system is that a safety system to prevent nearby aircraft from being adversely affected by the laser must be provided. We will support operations in the near term with human aircraft spotters until we can successfully develop and get the appropriate approvals needed for an Automated, Integrated and Reliable System for an Aircraft Friendly Environment (AIRSAFE). This report describes some of the preliminary requirements development work at WMKO in support of the future development of AIRSAFE. We discuss the results of recent work to characterize site specific considerations that impact requirements development. The site specific considerations include the proximity of WMKO laser operations to nearby commercial airports, the implications of military operations in the area and the character of the air traffic volume and flight patterns over the telescope facility. Finally, we discuss how the design and implementation of AIRSAFE will be impacted by these site specific considerations.

  13. The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo

    2011-02-01

    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. THE RADIAL VELOCITY TATOOINE SEARCH FOR CIRCUMBINARY PLANETS: PLANET DETECTION LIMITS FOR A SAMPLE OF DOUBLE-LINED BINARY STARS-INITIAL RESULTS FROM KECK I/HIRES, SHANE/CAT/HAMSPEC, AND TNG/SARG OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konacki, Maciej; Helminiak, Krzysztof G.; Muterspaugh, Matthew W.

    2009-10-10

    We present preliminary results of the first and on-going radial velocity survey for circumbinary planets. With a novel radial velocity technique employing an iodine absorption cell, we achieve an unprecedented radial velocity (RV) precision of up to 2 m s{sup -1} for double-lined binary stars. The high-resolution spectra collected with the Keck I/Hires, TNG/Sarg, and Shane/CAT/Hamspec telescopes/spectrographs over the years 2003-2008 allow us to derive RVs and compute planet detection limits for 10 double-lined binary stars. For this initial sample of targets, we can rule out planets on dynamically stable orbits with masses as small as approx0.3 to 3 Mmore » {sub Jup} for the orbital periods of up to approx5.3 years. Even though the presented sample of stars is too small to make any strong conclusions, it is clear that the search for circumbinary planets is now technique-wise possible and eventually will provide new constraints for the planet formation theories.« less

  15. Spectroscopic database

    NASA Technical Reports Server (NTRS)

    Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.

    1985-01-01

    Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.

  16. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela

    Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less

  17. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe

    DOE PAGES

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; ...

    2017-06-29

    Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less

  18. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    NASA Astrophysics Data System (ADS)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu

    2017-07-01

    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

  19. VizieR Online Data Catalog: HI-selected Lyman limit systems metallicities (Lehner+, 2016)

    NASA Astrophysics Data System (ADS)

    Lehner, N.; O'Meara, J. M.; Howk, J. C.; Prochaska, J. X.; Fumagalli, M.

    2018-04-01

    All the new data presented here are from our Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ) database as part of our new KODIAQ Z survey (Lehner+ 2014, J/ApJ/788/119 ; O'Meara+ 2015, J/AJ/150/111). In short, these data were acquired with the HIgh Resolution Echelle Spectrometer (HIRES) on the Keck I telescope on Maunakea. These data were obtained by different PIs from different institutions with Keck access, and hundreds of spectra of QSOs at 0

  20. Unusual broad-line Mg II emitters among luminous galaxies in the baryon oscillation spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.

    2014-02-01

    Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions withmore » levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.« less

  1. Spectroscopic CCD surveys for quasars at large redshift. 3: The Palomar Transit Grism Survey catalog

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1994-01-01

    This paper reports the initial results of the Palomar Transit Grism Survey (PTGS). The PTGS was designed to produce a sample of z greater than 2.7 quasars that were identified by well-defined selection criteria. The survey consists of six narrow (approximately equal to 8.5 min wide) strips of sky; the total effective area is 61.47 sq deg. Low-resolution slitless spectra, covering the wavelength range from 4400 to 7500 A, were obtained for approximately 600 000 objects. The wavelength- and flux-calibrated spectra were searched for emission lines with an automatic software algorithm. A total to 1655 emission features in the grism data satisfied our signal-to-noise ratio and equivalent width selection criteria; subsequent slit spectroscopy of the candidates confirmed the existence of 1052 lines (928 different objects). Six groups of emission lines were detected in the survey: Lyman alpha + N V, C IV, C III1, Mg II, H Beta + (O III), and H alpha + (S II). More than two-thirds of the candidates are low-redshift (z less than 0.45) emission-line galaxies; ninety objects are high-redshift quasars (z greater than 2.7) detected via their Lyman alpha + N V emission lines. The survey contains three previously unknown quasars brighter than 17th magnitude; all three have redshifts of approximately equal to 1.3. In this paper we present the observational properties of the survey, the algorithms used to select the emission-line candidates, and the catalog of emission-line objects.

  2. Clustering redshift distributions for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Helsby, Jennifer

    Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.

  3. Near Field Cosmology with the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    McConnachie, A. W.; PAndAS Collaboration

    2012-08-01

    I describe the Pan-Andromeda Archaeological Survey (PAndAS), and discuss several recent science highlights, including studies of its dwarf satellite systems, its stellar halo, and correlations with the HI content. I also discuss the need for a large scale, wide field, multi-object spectroscopic survey, such as the type made possible with the proposed Next Generation Canada-France-Hawaii Telescope (NG-CFHT).

  4. The CHARA Array Resolves the 1.1 Day Period Spectroscopic Binary HD 146361, the Shortest Period System Resolved To-Date

    NASA Astrophysics Data System (ADS)

    Raghavan, Deepak; McAlister, H. A.

    2007-12-01

    We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.

  5. Faint Blue Objects at High Galactic Latitude. VIII. Performance Characteristics of the US Survey

    NASA Astrophysics Data System (ADS)

    Mitchell, Kenneth J.; Usher, P. D.

    2004-07-01

    The US survey has cataloged 3987 objects in seven high Galactic latitude fields according to their optical colors, magnitudes, and morphologies using photographic techniques. This paper analyzes the effectiveness of the survey at producing finding lists for complete samples of hot stars and quasars that exhibit blue and/or ultraviolet excess (B-UVX) relative to the colors of halo F and G subdwarf stars. A table of 599 spectroscopic identifications summarizes the spectroscopic coverage of the US objects that has been accomplished to date. In addition, some of the survey plates have been reexamined for objects missed during the original selection, and the literature has been searched for all other spectroscopically identified blue stars and quasars with z<2.2 that have been selected by other surveys within the US survey areas. These results are used to estimate empirically both the accuracy of the US survey selection boundaries (in color, morphology, and brightness) and the completeness of the resulting samples of B-UVX US objects within those boundaries. In particular, it is shown that the reliability of the US color classifications is high and that the previously derived US morphological boundary for the complete selection of unresolved quasars is accurate. The contribution of color and morphological classification errors to B-UVX sample incompleteness is therefore correspondingly small. The empirical tests indicate high levels of completeness (95+1-2%) for the samples of US quasars and hot stars isolated within the stated survey selection limits. Errata and improvements to some of the published catalog data are presented in Appendices.

  6. NuSTAR Observations of Heavily Obscured Quasars Selected by WISE

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    2017-08-01

    A key goal of the Nuclear Spectroscopic Telescope Array (NuSTAR) program is to find and characterize heavily obscured quasars, luminous accreting supermassive black holes hidden by gas and dust. Based on mid-infrared (IR) photometry from Wide-Field Infrared Survey Explorer (WISE) and optical photometry from the Sloan Digital Sky Surveys, we have selected a large population of obscured quasars; here we report the NuSTAR observations of four WISE-selected heavily obscured quasars for which we have optical spectroscopy from the Southern African Large Telescope and KECK Telescope. Three of four objects are undetected with NuSTAR, while the fourth has only a marginal detection. We confirm our objects have observed hard X-ray (10-40 keV) luminosities at or below ~1043 erg s-1. We compare IR and X-ray luminosities to obtain estimates of hydrogen column NH based on the suppression of the hard X-ray emission. We estimate NH to be at or greater than 1025 cm-2, confirming that WISE and optical selection can identify very heavily obscured quasars that may be missed in X-ray surveys.

  7. TYC 1240-945-1b: First Brown Dwarf Candidate from the SDSS-III-MARVELS Planet Search

    NASA Astrophysics Data System (ADS)

    Lee, Brian L.; Ge, J.; Fleming, S. W.; Mahadevan, S.; Sivarani, T.; De Lee, N.; Dou, L.; Jiang, P.; Xie, J.; Gaudi, B. S.; Eastman, J.; Pepper, J.; Stassun, K.; Gary, B.; Wisniewski, J. P.; Barnes, R.; Kane, S. R.; van Eyken, J. C.; Wang, J.; Chang, L.; Costello, E.; Fletcher, A.; Groot, J.; Guo, P.; Hanna, K.; Malik, M.; Rohan, P.; Varosi, F.; Wan, X.; Zhao, B.; Hearty, F.; Shelden, A.; Leger, F.; Long, D.; Agol, E.; Ford, E. B.; Ford, H. C.; Holtzman, J. A.; Schneider, D.; Weinberg, D. H.; Eisenstein, D.; Hawley, S.; Snedden, S.; Bizyaev, D.; Brewington, H.; Malanushenko, V.; Malanushenko, E.; Oravetz, D.; Pan, K.; Simmons, A.

    2010-01-01

    We present a new brown dwarf candidate, TYC 1240-945-1b, discovered in the first year of MARVELS, a multi-object radial velocity (RV) planet search which is part of the Sloan Digital Sky Survey (SDSS-III). From our RV discovery data taken at 15 epochs spread over a 100d time baseline at the SDSS 2.5-m telescope, we derive a preliminary characterization of the orbit with semi-amplitude K=2.5 km/s, period P=5.9d, and no detectable eccentricity. Adopting a mass of 1.2 solar masses for the F9V host star TYC 1240-945-1, we infer that the candidate has Msini 26MJup and semimajor axis 0.068AU. In addition to exhibiting the discovery data, we show the pre-survey and follow-up spectroscopic observations that have been taken to further refine the stellar parameters for the host star. This work was supported by the W.M. Keck Foundation, NSF, SDSS-III consortium, NASA, and UF.

  8. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1more » + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.« less

  9. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.

    PubMed

    Sanders, C R; Oxenoid, K

    2000-11-23

    Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.

  10. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  11. THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DWARF SPHEROIDAL GALAXIES {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalirai, Jason S.; Beaton, Rachael L.; Majewski, Steven R.

    2010-03-10

    We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of membermore » stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s{sup -1}, includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each system's mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromeda's total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L {approx} 10{sup 5} and 10{sup 7} L{sub sun}, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31's brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower

  12. The Swift/BAT AGN Spectroscopic Survey. IX. The Clustering Environments of an Unbiased Sample of Local AGNs

    NASA Astrophysics Data System (ADS)

    Powell, M. C.; Cappelluti, N.; Urry, C. M.; Koss, M.; Finoguenov, A.; Ricci, C.; Trakhtenbrot, B.; Allevato, V.; Ajello, M.; Oh, K.; Schawinski, K.; Secrest, N.

    2018-05-01

    We characterize the environments of local accreting supermassive black holes by measuring the clustering of AGNs in the Swift/BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.01 < z < 0.1 over the full sky from the DR1 catalog, BASS provides the largest, least biased sample of local AGNs to date due to its hard X-ray selection (14–195 keV) and rich multiwavelength/ancillary data. By measuring the projected cross-correlation function between the AGN and 2MASS galaxies, and interpreting it via halo occupation distribution and subhalo-based models, we constrain the occupation statistics of the full sample, as well as in bins of absorbing column density and black hole mass. We find that AGNs tend to reside in galaxy group environments, in agreement with previous studies of AGNs throughout a large range of luminosity and redshift, and that on average they occupy their dark matter halos similar to inactive galaxies of comparable stellar mass. We also find evidence that obscured AGNs tend to reside in denser environments than unobscured AGNs, even when samples were matched in luminosity, redshift, stellar mass, and Eddington ratio. We show that this can be explained either by significantly different halo occupation distributions or statistically different host halo assembly histories. Lastly, we see that massive black holes are slightly more likely to reside in central galaxies than black holes of smaller mass.

  13. Near-infrared images of MG 1131+0456 with the W. M. Keck telescope: Another dusty gravitational lens?

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.

    1994-01-01

    Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.

  14. Spectroscopic identification of type 2 quasars at z < 1 in SDSS-III/BOSS

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Strauss, Michael A.; Zakamska, Nadia L.

    2016-10-01

    The physics and demographics of type 2 quasars remain poorly understood, and new samples of such objects selected in a variety of ways can give insight into their physical properties, evolution, and relationship to their host galaxies. We present a sample of 2758 type 2 quasars at z ≲ 1 from the Sloan Digital Sky Survey-III (SDSS-III)/Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic data base, selected on the basis of their emission-line properties. We probe the luminous end of the population by requiring the rest-frame equivalent width of [O III] to be >100 Å. We distinguish our objects from star-forming galaxies and type 1 quasars using line widths, standard emission line ratio diagnostic diagrams at z < 0.52 and detection of [Ne V]λ3426 Å at z > 0.52. The majority of our objects have [O III] luminosities in the range 1.2 × 1042-3.8 × 1043 erg s-1 and redshifts between 0.4 and 0.65. Our sample includes over 400 type 2 quasars with incorrectly measured redshifts in the BOSS data base; such objects often show kinematic substructure or outflows in the [O III] line. The majority of the sample has counterparts in the Wide-field Infrared Survey Explorer survey, with median infrared luminosity νLν[12 μm] = 4.2 × 1044 erg s- 1. Only 34 per cent of the newly identified type 2 quasars would be selected by infrared colour cuts designed to identify obscured active nuclei, highlighting the difficulty of identifying complete samples of type 2 quasars. We make public the multi-Gaussian decompositions of all [O III] profiles for the new sample and for 568 type 2 quasars from SDSS I/II, together with non-parametric measures of the [O III] line profile shapes. We also identify over 600 candidate double-peaked [O III] profiles.

  15. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less

  16. The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typical z ˜ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Stott, John P.; Swinbank, A. M.; Johnson, Helen L.; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J.; Bureau, Martin; Harrison, Chris M.; Jarvis, Matt J.; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele

    2016-04-01

    The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ˜ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ˜ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be H α emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ˜35 per cent, and the majority are consistent with being marginally unstable (Toomre Q ˜ 1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ˜ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.

  17. The methane distribution on Titan: high resolution spectroscopy in the near-IR with Keck NIRSPEC/AO

    NASA Astrophysics Data System (ADS)

    Adamkovics, Mate; Mitchell, Jonathan L.

    2014-11-01

    The distribution of methane on Titan is a diagnostic of regional scale meteorology and large scale atmospheric circulation. The observed formation of clouds and the transport of heat through the atmosphere both depend on spatial and temporal variations in methane humidity. We have performed observations to measure the the distribution on methane Titan using high spectral resolution near-IR (H-band) observations made with NIRSPEC, with adaptive optics, at Keck Observatory in July 2014. This work builds on previous attempts at this measurement with improvement in the observing protocol and data reduction, together with increased integration times. Radiative transfer models using line-by-line calculation of methane opacities from the HITRAN2012 database are used to retrieve methane abundances. We will describe analysis of the reduced observations, which show latitudinal spatial variation in the region the spectrum that is thought to be sensitive to methane abundance. Quantifying the methane abundance variation requires models that include the spatial variation in surface albedo and meridional haze gradient; we will describe (currently preliminary) analysis of the the methane distribution and uncertainties in the retrieval.

  18. The LAMOST spectroscopic survey of stars in the Kepler field of view: Activity indicators and stellar parameters

    NASA Astrophysics Data System (ADS)

    Molenda-Żakowicz, Joanna; Frasca, Antonio; De Cat, Peter; Catanzaro, Giovanni

    2017-09-01

    We summarize the results of the completed first round of the LAMOST-Kepler project, and describe the status of its on-going second round. As a result of the first round of this project, the atmospheric parameters (Teff, log g, and [Fe/H]), the spectral classification (spectral type and luminosity class), and the radial velocities (RV) have been measured for 51,385 stars. For 4031 stars, we were able to measure the projected rotational velocity, while the minimum detectable v sin i was 120 km s-1. For 8821 stars with more than one observation, we computed the χ-square probability that the detected RV variations have a random occurrence. Finally, we classified 442 stars as chromospherically active on the basis of the analysis of their Hα and Ca II-IRT fluxes. All our results have been obtained from the low-resolution (R ˜ 1800) spectroscopic observations acquired with the LAMOST instrument. Based on observations collected with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) located at the Xinglong Observatory, China.

  19. A search for lithium in Pleiades brown dwarf candidates using the Keck hires echelle

    NASA Technical Reports Server (NTRS)

    Marcy, Geoffrey W.; Basri, Gibor; Graham, James R.

    1994-01-01

    We report Keck Observatory high-resolution echelle spectra of lithium at 670.8 nm in two of the lowest luminosity brown dwarf candidates in the Pleiades. These objects have estimated masses of 0.055 to 0.059 solar mass from their location on a color-magnitude diagram relative to theoretical isochrones. Stellar interior models predict that Li has not burned in them. However, we find no evidence of the Li line, at limits 100 to 1000 times below the initial abundance. This indicates that Li has in fact been depleted, presumably by nuclear processing as occurs in Pleiades stars. Interior models suggest that such large Li depletion occurs only for objects with M greater than 0.09 solar mass at the age of the Pleiades. Thus, it is unlikely that the candidates are brown dwarfs. The brown dwarf candidates present a conflict: either they have masses greater than suggested from their placement on the H-R diagram, or they do have the very low suggested masses but are nonetheless capable of destroying Li, in only 70 Myr. Until this dilemma is resolved, the photometric identification of brown dwarfs will remain difficult. Resolution may reside in higher T(sub eff) derived from optical and IR colors or in lower T(sub eff) in the interior models.

  20. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release

    NASA Astrophysics Data System (ADS)

    Pâris, Isabelle; Petitjean, Patrick; Aubourg, Éric; Myers, Adam D.; Streblyanska, Alina; Lyke, Brad W.; Anderson, Scott F.; Armengaud, Éric; Bautista, Julian; Blanton, Michael R.; Blomqvist, Michael; Brinkmann, Jonathan; Brownstein, Joel R.; Brandt, William Nielsen; Burtin, Étienne; Dawson, Kyle; de la Torre, Sylvain; Georgakakis, Antonis; Gil-Marín, Héctor; Green, Paul J.; Hall, Patrick B.; Kneib, Jean-Paul; LaMassa, Stephanie M.; Le Goff, Jean-Marc; MacLeod, Chelsea; Mariappan, Vivek; McGreer, Ian D.; Merloni, Andrea; Noterdaeme, Pasquier; Palanque-Delabrouille, Nathalie; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tojeiro, Rita; Weaver, Benjamin A.; Weijmans, Anne-Marie; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo

    2018-05-01

    We present the data release 14 Quasar catalog (DR14Q) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). This catalog includes all SDSS-IV/eBOSS objects that were spectroscopically targeted as quasar candidates and that are confirmed as quasars via a new automated procedure combined with a partial visual inspection of spectra, have luminosities Mi [z = 2] < -20.5 (in a Λ CDM cosmology with H0 = 70 km s-1 Mpc-1, Ω M =0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width at half maximum larger than 500 km s-1 or, if not, have interesting/complex absorption features. The catalog also includes previously spectroscopically-confirmed quasars from SDSS-I, II, and III. The catalog contains 526 356 quasars (144 046 are new discoveries since the beginning of SDSS-IV) detected over 9376 deg2 (2044 deg2 having new spectroscopic data available) with robust identification and redshift measured by a combination of principal component eigenspectra. The catalog is estimated to have about 0.5% contamination. Redshifts are provided for the Mg II emission line. The catalog identifies 21 877 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3610-10 140 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from the SDSS Science Archiver Server. http://www.sdss.org/dr14/algorithms/qso_catalog

  1. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z ~ 2

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-06-01

    Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.

  2. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less

  3. The WEAVE-LOFAR Survey

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Best, P. N.; Duncan, K. J.; Hatch, N. A.; Jarvis, M. J.; Röttgering, H. J. A.; Simpson, C. J.; Stott, J. P.; Cochrane, R. K.; Coppin, K. E.; Dannerbauer, H.; Davis, T. A.; Geach, J. E.; Hale, C. L.; Hardcastle, M. J.; Hatfield, P. W.; Houghton, R. C. W.; Maddox, N.; McGee, S. L.; Morabito, L.; Nisbet, D.; Pandey-Pommier, M.; Prandoni, I.; Saxena, A.; Shimwell, T. W.; Tarr, M.; van Bemmel, I.; Verma, A.; White, G. J.; Williams, W. L.

    2016-12-01

    In these proceedings we highlight the primary scientific goals and design of the WEAVE-LOFAR survey, which will use the new WEAVE spectrograph on the 4.2m William Herschel Telescope to provide the primary source of spectroscopic information for the LOFAR Surveys Key Science Project. Beginning in 2018, WEAVE-LOFAR will generate more than 10^6 R=5000 365-960nm spectra of low-frequency selected radio sources, across three tiers designed to efficiently sample the redshift-luminosity plane, and produce a data set of enormous legacy value. The radio frequency selection, combined with the high multiplex and throughput of the WEAVE spectrograph, make obtaining redshifts in this way very efficient, and we expect that the redshift success rate will approach 100 per cent at z < 1. This unprecedented spectroscopic sample - which will be complemented by an integral field component - will be transformational in key areas, including studying the star formation history of the Universe, the role of accretion and AGN-driven feedback, properties of the epoch of reionisation, cosmology, cluster haloes and relics, as well as the nature of radio galaxies and protoclusters. Each topic will be addressed in unprecedented detail, and with the most reliable source classifications and redshift information in existence.

  4. A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s –1 with a median of 350 km s –1. We also discovermore » a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s –1) group or group candidate projected within 2' of the lens.« less

  5. A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog

    DOE PAGES

    Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; ...

    2016-12-16

    With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s –1 with a median of 350 km s –1. We also discovermore » a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s –1) group or group candidate projected within 2' of the lens.« less

  6. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band.

    PubMed

    Ade, P A R; Ahmed, Z; Aikin, R W; Alexander, K D; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bowens-Rubin, R; Brevik, J A; Buder, I; Bullock, E; Buza, V; Connors, J; Crill, B P; Duband, L; Dvorkin, C; Filippini, J P; Fliescher, S; Grayson, J; Halpern, M; Harrison, S; Hilton, G C; Hui, H; Irwin, K D; Karkare, K S; Karpel, E; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leitch, E M; Lueker, M; Megerian, K G; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Richter, S; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Steinbach, B; Sudiwala, R V; Teply, G P; Thompson, K L; Tolan, J E; Tucker, C; Turner, A D; Vieregg, A G; Weber, A C; Wiebe, D V; Willmert, J; Wong, C L; Wu, W L K; Yoon, K W

    2016-01-22

    We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.

  7. The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.

    2013-03-01

    We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0

  8. The PHAT and SPLASH Surveys: Rigorous Structural Decomposition of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Dorman, Claire; Guhathakurta, P.; Widrow, L.; Foreman-Mackey, D.; Seth, A.; Dalcanton, J.; Gilbert, K.; Lang, D.; Williams, B. F.; SPLASH Team; PHAT Team

    2013-01-01

    Traditional surface brightness profile (SBP) based structural decompositions of late-type galaxies into Sersic bulge, exponential disk, and power-law halo are often degenerate in the best-fit profiles. The Andromeda galaxy (M31) is the only large spiral close enough that the relative contributions of the subcomponents can be further constrained via their distinct signatures in resolved stellar population surveys. We make use of two such surveys. The SPLASH program has used the Keck/DEIMOS multiobject spectrograph to measure radial velocities of over 10,000 individual red giant branch stars in the inner 20kpc of M31. The PHAT survey, an ongoing Hubble Space Telescope Multicycle Treasury program, has so far obtained six-filter photometry of over 90 million stars in the same region. We use an MCMC algorithm to simultaneously fit a simple bulge/disk/halo structural model to the SBP, the disk fraction as measured from kinematics, and the PHAT luminosity function. We find that the additional constraints favor a larger bulge than expected from a pure SBP fit. Comparison to galaxy formation models will constrain the formation histories of large spiral galaxies such as the Milky Way and Andromeda.

  9. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  10. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. The IACOB project. V. Spectroscopic parameters of the O-type stars in the modern grid of standards for spectral classification

    NASA Astrophysics Data System (ADS)

    Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.

    2018-06-01

    Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement

  12. The SDSS-III Multi-object Apo Radial-velocity Exoplanet Large-area Survey

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Mahadevan, S.; Lee, B.; Wan, X.; Zhao, B.; van Eyken, J.; Kane, S.; Guo, P.; Ford, E. B.; Agol, E.; Gaudi, S.; Fleming, S.; Crepp, J.; Cohen, R.; Groot, J.; Galvez, M.; Liu, J.; Ford, H.; Schneider, D.; Seager, S.; Hawley, S. L.; Weinberg, D.; Eisenstein, D.

    2007-12-01

    As part of SDSS-III survey in 2008-2014, the Multi-object APO Radial-Velocity Exoplanet Large-area Survey (MARVELS) will conduct the largest ground-based Doppler planet survey to date using the SDSS telescope and new generation multi-object Doppler instruments with 120 object capability and 10-20 m/s Doppler precision. The baseline survey plan is to monitor a total of 11,000 V=8-12 stars ( 10,000 main sequence stars and 1000 giant stars) over 800 square degrees over the 6 years. The primary goal is to produce a large, statistically well defined sample of giant planets ( 200) with a wide range of masses ( 0.2-10 Jupiter masses) and orbits (1 day-2 years) drawn from a large of host stars with a diverse set of masses, compositions, and ages for studying the diversity of extrasolar planets and constraining planet formation, migration & dynamical evolution of planetary systems. The survey data will also be used for providing a statistical sample for theoretical comparison and discovering rare systems and identifying signposts for lower-mass or more distant planets. Early science results from the pilot program will be reported. We would like to thank the SDSS MC for allocation of the telescope time and the W.M. Keck Foundation, NSF, NASA and UF for support.

  13. GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.

    2012-11-20

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to amore » projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.« less

  14. OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Lidman, C.; Davis, T. M.; Childress, M.; Abdalla, F. B.; Banerji, M.; Buckley-Geer, E.; Carnero Rosell, A.; Carollo, D.; Castander, F. J.; D'Andrea, C. B.; Diehl, H. T.; Cunha, C. E.; Foley, R. J.; Frieman, J.; Glazebrook, K.; Gschwend, J.; Hinton, S.; Jouvel, S.; Kessler, R.; Kim, A. G.; King, A. L.; Kuehn, K.; Kuhlmann, S.; Lewis, G. F.; Lin, H.; Martini, P.; McMahon, R. G.; Mould, J.; Nichol, R. C.; Norris, R. P.; O'Neill, C. R.; Ostrovski, F.; Papadopoulos, A.; Parkinson, D.; Reed, S.; Romer, A. K.; Rooney, P. J.; Rozo, E.; Rykoff, E. S.; Sako, M.; Scalzo, R.; Schmidt, B. P.; Scolnic, D.; Seymour, N.; Sharp, R.; Sobreira, F.; Sullivan, M.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Wechsler, R. H.; Wester, W.; Wilcox, H.; Zhang, B.; Abbott, T.; Allam, S.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carrasco Kind, M.; Covarrubias, R.; Crocce, M.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; Marshall, J.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.

    2015-09-01

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.

  15. Spectroscopic Confirmation of Young Planetary-mass Companions on Wide Orbits

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W.

    2014-03-01

    We present moderate-resolution (R ~ 4000-5000) near-infrared integral field spectroscopy of the young (1-5 Myr) 6-14 M Jup companions ROXs 42B b and FW Tau b obtained with Keck/OSIRIS and Gemini-North/NIFS. The spectrum of ROXs 42B b exhibits clear signs of low surface gravity common to young L dwarfs, confirming its extreme youth, cool temperature, and low mass. Overall, it closely resembles the free-floating 4-7 M Jup L-type Taurus member 2MASS J04373705+2331080. The companion to FW Tau AB is more enigmatic. Our optical and near-infrared spectra show strong evidence of outflow activity and disk accretion in the form of line emission from [S II], [O I], Hα, Ca II, [Fe II], Paβ, and H2. The molecular hydrogen emission is spatially resolved as a single lobe that stretches ≈0.''1 (15 AU). Although the extended emission is not kinematically resolved in our data, its morphology resembles shock-excited H2 jets primarily seen in young Class 0 and Class I sources. The near-infrared continuum of FW Tau b is mostly flat and lacks the deep absorption features expected for a cool, late-type object. This may be a result of accretion-induced veiling, especially in light of its strong and sustained Hα emission (EW(Hα) >~ 290 Å). Alternatively, FW Tau b may be a slightly warmer (M5-M8) accreting low-mass star or brown dwarf (0.03-0.15 M ⊙) with an edge-on disk. Regardless, its young evolutionary stage is in stark contrast to its Class III host FW Tau AB, indicating a more rapid disk clearing timescale for the host binary system than for its wide companion. Finally, we present near-infrared spectra of the young (~2-10 Myr) low-mass (12-15 M Jup) companions GSC 6214-210 B and SR 12 C and find they best resemble low-gravity M9.5 and M9 substellar templates. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National

  16. Book Review: Reiner Salzer and Heinz W. Siesler (Eds.): Infrared and Raman spectroscopic imaging, 2nd ed.

    DOE PAGES

    Moore, David Steven

    2015-05-10

    This second edition of "Infrared and Raman Spectroscopic Imaging" propels practitioners in that wide-ranging field, as well as other readers, to the current state of the art in a well-produced and full-color, completely revised and updated, volume. This new edition chronicles the expanded application of vibrational spectroscopic imaging from yesterday's time-consuming point-by-point buildup of a hyperspectral image cube, through the improvements afforded by the addition of focal plane arrays and line scan imaging, to methods applicable beyond the diffraction limit, instructs the reader on the improved instrumentation and image and data analysis methods, and expounds on their application to fundamentalmore » biomedical knowledge, food and agricultural surveys, materials science, process and quality control, and many others.« less

  17. ROBO-AO M DWARF MULTIPLICITY SURVEY

    NASA Astrophysics Data System (ADS)

    Lamman, Claire; Berta-Thompson, Zachory; Baranec, Christoph; Law, Nicholas; Schonhut, Jessica

    2018-01-01

    We analyzed over 7,000 observations from Robo-AO’s field M dwarf survey taken on the 2.1m Kitt Peak telescope. Results will help determine the multiplicity fraction of M dwarfs as a function of primary mass, which is a crucial step towards understanding their evolution and formation mechanics. Through its robotic, laser-guided, and automated system, the Robo-AO instrument has yielded the largest adaptive-optics M dwarf survey to date. I developed a graphical user interface to quickly analyze this data. Initial data analysis included assessing data quality, checking the result from Robo-AO’s automatic reduction pipeline, and determining existence as well as the relative position of companions through a visual inspection. This program can be applied to other datasets and was successfully tested by re-analyzing observations from a separate Robo-AO survey. Following the preliminary results from this data analysis tool, further observations were done with the Keck II telescope by using its NIRC2 imager to follow up on ten select targets for the existence and physical association of companions. After a conservative initial cut for quality, 356 companions were found within 4” of a primary star out of 2,746 high quality Robo-AO M dwarf observations, including four triple systems. We will present a preliminary estimate for the multiplicity rate of wide M dwarf companions after accounting for observation limitations and the completeness of our search. Future research will yield insights into low-mass stellar formation and provide a database of nearby M dwarf multiples that will potentially assist ongoing and future surveys for planets around these stars, such as the NASA TESS mission.

  18. BAT AGN Spectroscopic Survey - III. An Observed Link Between AGN Eddington Ratio and Narrow-Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; hide

    2016-01-01

    We investigate the observed relationship between black hole mass (M(sub BH)), bolometric luminosity (L(sub bol)) and Eddington ratio (lambda(sub Edd)) with optical emission-line ratios ([N II] lambda6583/Halpha, [S II]lambda-lamda6716, 6731/Halpha, [O I] lamda6300/Halpha, [O III] lamda5007/Hbeta, [Ne III] lamda3869/Hbeta and He II lamda4686/Hbeta) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] lamda6583/Halpha ratio exhibits a significant correlation with lamda(sub Edd) (R(sub Pear) = -0.44, p-value 3 x 10(exp. -13) sigma = 0.28 dex), and the correlation is not solely driven by M(sub BH) or L(sub bol). The observed correlation between [N II] lamda6583/Halpha ratio and M(sub BH) is stronger than the correlation with L(sub bol), but both are weaker than the lamda(sub Edd) correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] lamda6583/Halpha is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure lambda(sub Edd) and thus M(sub BH) from the measured L(sub bol), even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  19. Central stars of planetary nebulae in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Hultzsch, P. J. N.; Puls, J.; Méndez, R. H.; Pauldrach, A. W. A.; Kudritzki, R.-P.; Hoffmann, T. L.; McCarthy, J. K.

    2007-06-01

    Context: Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. Aims: By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. Methods: We analyze optical H/He profiles of five Galactic bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (Teff, log g, helium abundance and wind strength). Masses and other stellar radius dependent quantities are obtained from both the known distances and from evolutionary tracks, and the results from both approaches are compared. Results: The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0±1.6 kpc and 12.2±2.1 kpc, respectively. An “average extinction law” leads to a distance of 10.7±1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws. Conclusions: Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN

  20. Spectroscopic identification of SNe 2004ds and SN 2004dt

    NASA Astrophysics Data System (ADS)

    Gal-Yam, Avishay

    2004-08-01

    A. Gal-Yam, D. Fox and S. Kulkarni, California Institute of Technology, report on red spectra (range 550-780 nm) obtained by Kulkarni and Fox on Aug. 13.5 UT at the 10-m Keck I telescope (+ LRIS). The spectrum of of SN 2004ds (IAUC #8386), shows a broad, well-developed P-Cyg H_alpha line and suggests that this is a type II supernova. The spectrum of SN 2004dt (IAUC #8386), shows the distinctive Si II 6100 absorption trough around 6100 Angstrom, indicating this is a young SN Ia.

  1. Status and new developments with the Keck I near-infrared tip-tilt sensor

    NASA Astrophysics Data System (ADS)

    Femenía Castellá, Bruno; Wizinowich, Peter; Rampy, Rachel; Cetre, Sylvain; Lilley, Scott; Lyke, Jim; Ragland, Sam; Stomski, Paul; van Dam, Marcos

    2016-07-01

    The sky coverage and performance of Laser Guide Star (LGS) adaptive optics (AO) systems is limited by the Natural Guide Star (NGS) used for low order correction (tip-tilt and defocus modes). This limitation can be reduced by measuring image motion of the NGS in the near-infrared where it is partially corrected by the LGS AO system and where stars are generally several magnitudes brighter than at visible wavelengths. We have integrated a Near-InfraRed Tip-Tilt Sensor (NIRTTS) with the Keck I telescopes LGS AO system. The sensor is a H2RG-based near-infrared camera with 0.05 arcsecond pixels. Low noise at high sample rates is achieved by only reading a small region of interest, from 2x2 to 16x16 pixels, centered on an NGS anywhere in an 100 arc second diameter field. The sensor operates at either Ks or H-band using light reflected by a choice of dichroic beam-splitters located in front of the OSIRIS integral field spectrograph. The implementation of the NIRTTS involved modifications to the AO bench, real-time control system, higher-level controls and operations software. NIRTTS is nearly ready for science operation in shared-risk mode. We are also implementing a number of enhancements to the NIRTTS system which involve substantial changes to the operations software. This work presents an update of the work performed since the NIRTTS system was reported in Ref. 1 and Ref. 2.

  2. Quantitative spectroscopic analyses in the IACOB+OWN project: Massive O-type stars in the Galaxy with the current Gaia information

    NASA Astrophysics Data System (ADS)

    Holgado, Gonzalo; Simón-Díaz, Sergio; Barbá, Rodolfo

    2017-11-01

    We present the results from the quantitative spectroscopic analysis of ~280 likely single O stars targeted by the IACOB and OWN surveys. This implies the largest sample of Galactic O-type stars analyzed homogeneously to date. We used the iacob-broad and iacob-gbat tools (see Simón-Díaz et al. 2011,2015) to obtain the complete set of spectroscopic parameters which can be determined from the optical spectrum of O-type stars: projected rotational velocity (v sin i), macroturbulence velocity (v mac), effective temperature (T eff), gravity (logg), wind-strength (logQ), helium abundance (Y He), microturbulence (ξt), and the exponent of the wind-law (β).

  3. Spectroscopic classification of SN 2018bwp as a type Ia supernova a few weeks after peak brightness

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Angel R.; Galbany, Lluis; Ascasibar, Yago; Fiegert, Kristin; Barnes, Timothy; Cunningham, Casey; Cristiano, Tony; Dean, Sarah; Edwards, Robert; East, Nicholas; Franks, Karen; Hams, Julie; Higgins, Robert Ian; Hogan, Jennifer; Last, Rusel; Longmuir, Mark; McRae, Andrew; McElhinney, Neil; Miller, Rosie; Murphy, Chris; Quarrell, Christopher Daniel Andrew; O'Donnell, Gianna; Rochler, Michael; Roberts, Hayden; Robinson, Lyn; Soule, Stephan; Spillman, Natalie J.; Shelmerdine, Paul; Vassie, Robert; Vickers, Michael; Westwood, Jennifer A.; Smethurst, Rebecca J.; Lintott, Chris; Moller, Anais; Tucker, Brad; Armstrong, Patrick; Bray, Charles; Chang, Seo-Won; Onken, Chris; Ridden-Harper, Ryan; Taylor, Georgie; Ruiter, Ashley; Cox, Brian; Zemiro, Julia

    2018-05-01

    We report the spectroscopic classification of SN 2018bwp (RA=13:25:54.77, DEC=-37:14:12.05) in the galaxy 2MASX J13255427-3714139 . The candidate was discovered by the SkyMapper Transient (SMT) survey (Scalzo et al. 2017, PASA, 34:30) on UT 2018-05-04 09:50 UT at 19.1 mag in the r-band.

  4. Spectroscopic classification of SN 2018bwq as a type Ia supernova a few days before maximum light.

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Angel R.; Galbany, Lluis; Ascasibar, Yago; Fiegert, Kristin; Burchat, Leigh; Long, Barb; Roberts, Hayden; Newling, Pip; Smethurst, Rebecca J.; Lintott, Chris; Moller, Anais; Tucker, Brad; Armstrong, Patrick; Bray, Charles; Chang, Seo-Won; Onken, Chris; Ridden-Harper, Ryan; Taylor, Georgie; Ruiter, Ashley; Cox, Brian; Zemiro, Julia

    2018-05-01

    We report the spectroscopic classification of SN 2018bwq (RA=21:29:11.76, DEC=-29:09:46.2) in the galaxy 2MASX J21291210-2909468. The candidate was discovered by the SkyMapper Transient (SMT) survey (Scalzo et al. 2017, PASA, 34:30) on UT 2018-05-13 15:34 UT at 19.32 mag in the r-band.

  5. VizieR Online Data Catalog: Full spectroscopic data release of the SPT-GMOS (Bayliss+, 2016)

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    The data presented in this paper follow the same observational design described by Ruel et al. (2014ApJ...792...45R). The final Gemini-S observing allocation for SPT-GMOS concluded at the end of the 2015B semester. Over the course of the entire survey we observed 121 individual spectroscopic masks targeting 62 SPT-SZ galaxy clusters (see table 1). All final data products from SPT-GMOS are publicly released via the Harvard Dataverse Network (http://dataverse.harvard.edu/dataverse/SPT_Clusters). The galaxy clusters observed in the SPT-GMOS are all drawn from the SPT-SZ survey, completed in 2011 November. The full SPT-SZ survey covered approximately 2500deg2 of the southern sky at 95, 150, and 220GHz with an angular resolution of ~1'. (4 data files).

  6. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  7. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  8. Flux Calibration and Spectral Typing of the SPLASH Sample

    NASA Astrophysics Data System (ADS)

    Chang, Caroline; Vemuri, Nikita; Hamren, Katherine; Guhathakurta, Puragra

    2015-01-01

    We present the spectroscopic identification of M-stars in the disk of the Andromeda Galaxy (M31) and revised spectral types for the M-stars in the X-Shooter Library (XSL). Our dataset consists of optical spectra taken with the DEIMOS spectrograph on the Keck II 10-m telescope as part of the Spectroscopic Landscape of Andromeda's Stellar Halo (SPLASH) survey. We use stars from the MILES and X-Shooter Libraries to perform a first order flux calibration of these spectra, then use TiO-based indices from Fluks et al. 1994 to determine the probable M spectral subtype. While testing this procedure on the M-stars of the XSL, we find that the spectral subtypes derived from the spectra themselves are different from the spectral subtypes obtained from the literature and that XSL includes several spectra with subtypes seemingly later than M10. We suggest that this is due to stellar variability. We also identify ~2000 M-stars in the SPLASH sample. We present the distribution of subtypes here.This research was funded by grants from the National Science Foundation and the Space Telescope Science Institute. Some of the research presented here was conducted by high-school students under the auspices of the University of California Santa Cruz's Science Internship Program.

  9. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  10. The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Hathi, N. P.; Schaerer, D.; Ilbert, O.; Zamorani, G.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Paltani, S.; Ribeiro, B.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2015-09-01

    We study the evolution of the star formation rate (SFR) - stellar mass (M⋆) relation and specific star formation rate (sSFR) of star-forming galaxies (SFGs) since a redshift z ≃ 5.5 using 2435 (4531) galaxies with highly reliable spectroscopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log (SFR) - log (M⋆) relation for SFGs remains roughly linear all the way up to z = 5, but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M⋆ ≥ 3.2 × 109M⊙ the SFR increases by a factor of ~13 between z = 0.4 and z = 2.3. Weextend this relation up to z = 5, finding an additional increase in SFR by a factor of 1.7 from z = 2.3 to z = 4.8 for masses M⋆ ≥ 1010M⊙. We observe a turn-off in the SFR-M⋆ relation at the highest mass end up to a redshift z ~ 3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z ~ 2, but it grows much less rapidly in 2

  11. Spectroscopic and theoretical studies of charge-transfer interaction of 1-(2-pyridylazo)-2-napthol with nitroaromatics

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Singh, Bula

    2017-05-01

    1-(2-Pyridylazo)-2-napthol (hereafter 1Q) is widely used as a chelating ligand applied in chelatometric, spectrophotometric analysis of metal ions. It appeared from the literature survey that no inclusion complex of 1Q was reported with nitroaromatics. The formation of charge-transfer complex gives an opportunity to improve the physico-chemical properties of different donors. So the complex of 1Q with 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), picric acid (PA), and 3,5-dinitrosalicylic acid (3,5-DNSA) was described in this work in methanol medium. The ground and excited state binding constants and other spectroscopic data have been determined using UV-vis and fluorescence spectroscopic studies. All the complexes have been synthesized and characterized using FT-IR, 1H NMR, and elemental analysis. Spectroscopic data reveal that 1Q joins by a N+sbnd Hsbnd O- type hydrogen bond with nitroaromatics. Job's plot of the continuous variation of absorbance indicates that stoichiometry of CT-complex was 1:1. Thermal stability of the synthesized complex has determined by TGA-DTA analysis. Energy-minimization DFT calculation further supported the formation of the H-bonded charge-transfer adduct.

  12. Neutron Spectroscopic Factors from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Lee, Jenny; Tsang, M. B.

    2007-05-01

    We have extracted the ground state to ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with a minimum of assumptions. A three-body model with global optical potentials and standard geometry of n-potential is applied. For the 60 nuclei where modern shell model calculations are available, such analysis reproduces, to within 20%, the experimental spectroscopic factors for most nuclei. If we constraint the nucleon-target optical potential and the geometries of the bound neutron-wave function with the modern Hartree-Fock calculations, our deduced neutron spectroscopic factors are reduced by 30% on average.

  13. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  14. KECK II OBSERVATIONS OF HEMISPHERICAL DIFFERENCES IN H{sub 2}O{sub 2} ON EUROPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, K. P.; Brown, M. E., E-mail: khand@jpl.nasa.gov

    We present results from Keck II observations of Europa over four consecutive nights using the near-infrared spectrograph. Spectra were collected in the 3.14-4.0 {mu}m range, enabling detection and monitoring of the 3.5 {mu}m feature due to hydrogen peroxide. Galileo Near-Infrared Mapping Spectrometer results first revealed hydrogen peroxide on Europa in the anti-Jovian region of the leading hemisphere at a percent by number abundance of 0.13% {+-} 0.07% relative to water. We find comparable results for the two nights over which we observed the leading hemisphere. Significantly, we observed a small amount of hydrogen peroxide ({approx}0.04%) during observations of Europa's anti-Jovianmore » and sub-Jovian hemispheres. Almost no hydrogen peroxide was detected during observations of just the trailing hemisphere. We conclude that the Galileo observations likely represent the maximum hydrogen peroxide concentration, the exception potentially being the cold water ice regions of the poles, which are not readily observable from the ground. Our mapping of the peroxide abundance across Europa requires revisions to previous estimates for Europa's global surface abundance of oxidants and leads to a reduction in the total oxidant delivery expected for the subsurface ocean if an exchange of surface material with the ocean occurs.« less

  15. Erratum: ``Spectroscopic Survey of M Dwarfs within 100 Parsecs of the Sun'' (AJ, 130, 1871 [2005])

    NASA Astrophysics Data System (ADS)

    Bochanski, John J.; Hawley, Suzanne L.; Reid, I. Neill; Covey, Kevin R.; West, Andrew A.; Tinney, C. G.; Gizis, John E.

    2006-06-01

    In Table 2 of the recent paper titled ``Spectroscopic Survey of M Dwarfs within 100 Parsecs of the Sun'' by Bochanski et al., the authors presented UVW space velocities, proper motions, radial velocities, and distances to the 574 M dwarfs within their sample. The UVW motions were then examined as a function of vertical distance from the Galactic plane, with a discussion on the significance of the results and their application to dynamic heating models. The authors have discovered an error in the calculation of the UVW motions. During the preparation of the manuscript, the computed space motions were not accurately recorded for a given star, resulting in sporadic errors throughout Table 2 and the subsequent analysis. In addition, the authors want to explicitly state that the UVW motions, corrected to the local standard of rest, are in a right-handed system, with a positive U-velocity in the direction of the Galactic center. The new space velocities for the M dwarfs within this sample affect Tables 2 and 4-6 and Figures 8 and 9. The new values are included below, but the authors stress that the original conclusions presented in § 6 of the original paper remain valid. In the new version of Figure 9, the general decrease in velocity dispersion of the broad component (circles) with distance from the plane is preserved, along with the mostly constant dispersion of the narrow velocity dispersion component (squares). For completeness, a new illustrative demonstration of our kinematic analysis is shown, along with updated versions of Tables 4-6, which present the details of the kinematic analysis for UVW. The authors sincerely regret any confusion introduced by this error and wish to thank Francesca Figueras for helpful discussion.

  16. A spectroscopic survey of the youngest field stars in the solar neighborhood . II. The optically faint sample

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Guillout, P.; Klutsch, A.; Ferrero, R. Freire; Marilli, E.; Biazzo, K.; Gandolfi, D.; Montes, D.

    2018-05-01

    Context. Star formation in the solar neighborhood is mainly traced by young stars in open clusters, associations, and in the field, which can be identified, for example, by their X-ray emission. The determination of stellar parameters for the optical counterparts of X-ray sources is crucial for a full characterization of these stars. Aims: This work extends the spectroscopic study of the RasTyc sample, obtained by the cross-correlation of the Tycho and ROSAT All-Sky Survey catalogs, to stars fainter than V = 9.5 mag and aims to identify sparse populations of young stars in the solar neighborhood. Methods: We acquired 625 high-resolution spectra for 443 presumably young stars with four different instruments in the northern hemisphere. The radial and rotational velocity (vsini) of our targets were measured by means of the cross-correlation technique, which is also helpful to discover single-lined (SB1), double-lined spectroscopic binaries (SB2), and multiple systems. We used the code ROTFIT to perform an MK spectral classification and to determine the atmospheric parameters (Teff, logg, [Fe/H]) and vsini of the single stars and SB1 systems. For these objects, we used the spectral subtraction of slowly rotating templates to measure the equivalent widths of the Hα and Li I 6708 Å lines, which enabled us to derive their chromospheric activity level and lithium abundance. We made use of Gaia DR1 parallaxes and proper motions to locate the targets in the Hertzsprung-Russell (HR) diagram and to compute the space velocity components of the youngest objects. Results: We find a remarkable percentage (at least 35%) of binaries and multiple systems. On the basis of the lithium abundance, the sample of single stars and SB1 systems appears to be mostly ( 60%) composed of stars younger than the members of the UMa cluster. The remaining sources are in the age range between the UMa and Hyades clusters ( 20%) or older ( 20%). In total, we identify 42 very young (PMS-like) stars

  17. Acoustic Neuroma Educational Video

    MedlinePlus Videos and Cool Tools

    ... Library Patient Info Booklets Member Login Research ANA Survey/Registry AN Research Patient Registry Other Caregivers Public ... Newsletter Library Patient Info Booklets Research Back ANA Survey/Registry AN Research Back Keck Medicine of USC ...

  18. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    DOE PAGES

    Yuan, Fang

    2015-07-29

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxiesmore » and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as m r = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.« less

  19. Asiago spectroscopic classification of ASAS-SN18ck, ASAS-SN18cp, ASAS-SN18cq and ASASSN-18cj

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.

    2018-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASAS-SN18ck, ASAS-SN18cp, ASAS-SN18cq and ASASSN-18cj, discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014, Atel #11178).

  20. The [Y/Mg] clock works for evolved solar metallicity stars

    NASA Astrophysics Data System (ADS)

    Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.

    2017-08-01

    Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.