Sample records for keeping tetrapyrrol skeleton

  1. Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity▿

    PubMed Central

    Caughey, Winslow S.; Priola, Suzette A.; Kocisko, David A.; Raymond, Lynne D.; Ward, Anne; Caughey, Byron

    2007-01-01

    Cyclic tetrapyrroles are among the most potent compounds with activity against transmissible spongiform encephalopathies (TSEs; or prion diseases). Here the effects of differential sulfonation and metal binding to cyclic tetrapyrroles were investigated. Their potencies in inhibiting disease-associated protease-resistant prion protein were compared in several types of TSE-infected cell cultures. In addition, prophylactic antiscrapie activities were determined in scrapie-infected mice. The activity of phthalocyanine was relatively insensitive to the number of peripheral sulfonate groups but varied with the type of metal bound at the center of the molecule. The tendency of the various phthalocyanine sulfonates to oligomerize (i.e., stack) correlated with anti-TSE activity. Notably, aluminum(III) phthalocyanine tetrasulfonate was both the poorest anti-TSE compound and the least prone to oligomerization in aqueous media. Similar comparisons of iron- and manganese-bound porphyrin sulfonates confirmed that stacking ability correlates with anti-TSE activity among cyclic tetrapyrroles. PMID:17709470

  2. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  3. Cyclic Tetrapyrrolic Photosensitisers from the leaves of Phaeanthus ophthalmicus

    PubMed Central

    2011-01-01

    Background Twenty-seven extracts from 26 plants were identified as photo-cytotoxic in the course of our bioassay guided screening program for photosensitisers from 128 extracts prepared from 64 terrestrial plants in two different collection sites in Malaysia - Royal Belum Forest Reserve in the State of Perak and Gunung Nuang in the State of Selangor. One of the photo-cytotoxic extracts from the leaves of Phaeanthus ophtalmicus was further investigated. Results The ethanolic extract of the leaves from Phaeanthus ophtalmicus was able to reduce the in vitro viability of leukaemic HL60 cells to < 50% when exposed to 9.6 J/cm2 of a broad spectrum light at a concentration of 20 μg/mL. Dereplication of the photo-cytotoxic fractions from P. ophthalmicus extracts based on TLC Rf values and HPLC co-injection of reference tetrapyrrolic compounds enabled quick identification of known photosensitisers, pheophorbide-a, pheophorbide-a methyl ester, 132-hydroxypheophorbide-a methyl ester, pheophytin-a and 151-hydroxypurpurin 7-lactone dimethyl ester. In addition, compound 1 which was not previously isolated as a natural product was also identified as 7-formyl-151-hydroxypurpurin-7-lactone methyl ester using standard spectroscopic techniques. Conclusions Our results suggest that the main photosensitisers in plants are based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in very minor amounts or are not as active as those with the cyclic tetrapyrrole structure. PMID:21682931

  4. Prevention of poxvirus infection by tetrapyrroles

    PubMed Central

    Chen-Collins, Avril RM; Dixon, Dabney W; Vzorov, Andrei N; Marzilli, Luigi G; Compans, Richard W

    2003-01-01

    Background Prevention of poxvirus infection is a topic of great current interest. We report inhibition of vaccinia virus in cell culture by porphyrins and phthalocyanines. Most previous work on the inhibition of viruses with tetrapyrroles has involved photodynamic mechanisms. The current study, however, investigates light-independent inhibition activity. Methods The Western Reserve (WR) and International Health Department-J (IHD-J) strains of vaccinia virus were used. Virucidal and antiviral activities as well as the cytotoxicity of test compounds were determined. Results Examples of active compounds include zinc protoporphyrin, copper hematoporphyrin, meso(2,6-dihydroxyphenyl)porphyrin, the sulfonated tetra-1-naphthyl and tetra-1-anthracenylporphyrins, selected sulfonated derivatives of halogenated tetraphenyl porphyrins and the copper chelate of tetrasulfonated phthalocyanine. EC50 values for the most active compounds are as low as 0.05 µg/mL (40 nM). One of the most active compounds was the neutral meso(2,6-dihydroxyphenyl)porphyrin, indicating that the compounds do not have to be negatively charged to be active. Conclusions Porphyrins and phthalocyanines have been found to be potent inhibitors of infection by vaccinia virus in cell culture. These tetrapyrroles were found to be active against two different virus strains, and against both enveloped and non-enveloped forms of the virus, indicating that these compounds may be broadly effective in their ability to inhibit poxvirus infection. PMID:12773208

  5. The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masahiko; Ptaszek, Marcin; Chandrashaker, Vanampally; Lindsey, Jonathan S.

    2017-03-01

    Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen ( PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid ( ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.

  6. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    PubMed

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  7. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds.

    PubMed

    Koníčková, Renata; Vaňková, Kateřina; Vaníková, Jana; Váňová, Kateřina; Muchová, Lucie; Subhanová, Iva; Zadinová, Marie; Zelenka, Jaroslav; Dvořák, Aleš; Kolář, Michal; Strnad, Hynek; Rimpelová, Silvie; Ruml, Tomáš; J Wong, Ronald; Vítek, Libor

    2014-01-01

    Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 μM [PCB], and 125 μM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.

  8. Effects of ocean acidification on the dissolution rates of reef-coral skeletons.

    PubMed

    van Woesik, Robert; van Woesik, Kelly; van Woesik, Liana; van Woesik, Sandra

    2013-01-01

    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m(-2) y(-1), which is approximately -10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  9. Pi-metal complexes of tetrapyrrolic systems. A novel coordination mode in "porphyrin-like" chemistry.

    PubMed

    Cuesta, Luciano; Sessler, Jonathan L

    2009-09-01

    The coordination chemistry of porphyrins and related tetrapyrrolic ligands has traditionally centered around the ability of these systems to form pyrrole N-ligated complexes via the formation of sigma bonds, either within the N(4) core or displaced above it. In fact, such sigma-complexes are known with almost every metal cation in the periodic table. However, a growing number of pi-complexes derived from tetrapyrrolic ligands have been reported in recent years. The underlying coordination mode, while still novel in the context of "porphyrin-like" chemistry, is already being recognized for the effects it can impart over the reactivity, as well as the spectroscopic, redox, electronic, and optical properties of various oligopyrrolic macrocycles. This critical review summarizes accomplishments made in this fast-emerging field (59 references).

  10. Arabidopsis Chlorophyll Biosynthesis: An Essential Balance between the Methylerythritol Phosphate and Tetrapyrrole Pathways[C][W

    PubMed Central

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-01-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)–derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis. PMID:24363312

  11. Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2011-09-26

    A software program (PorphyrinViLiGe) has been developed to enumerate the type and relative amounts of substituted tetrapyrrole macrocycles in a virtual library formed by one of four different classes of reactions. The classes include (1) 4-fold reaction of n disubstituted heterocycles (e.g., pyrroles or diiminoisoindolines) to form β-substituted porphyrins, β-substituted tetraazaporphyrins, or α- or β-substituted phthalocyanines; (2) combination of m aminoketones and n diones to form m × n pyrroles, which upon 4-fold reaction give β-substituted porphyrins; (3) derivatization of an 8-point tetrapyrrole scaffold with n reagents, and (4) 4-fold reaction of n aldehydes and pyrrole to form meso-substituted porphyrins. The program accommodates variable ratios of reactants, reversible or irreversible reaction (reaction classes 1 and 2), and degenerate modes of formation. Pólya's theorem (for enumeration of cyclic entities) has also been implemented and provides validation for reaction classes 3 and 4. The output includes the number and identity of distinct reaction-accessible substituent combinations, the number and identity of isomers thereof, and the theoretical mass spectrum. Provisions for data mining enable assessment of the number of products having a chosen pattern of substituents. Examples include derivatization of an octa-substituted phthalocyanine with eight reagents to afford a library of 2,099,728 members (yet only 6435 distinct substituent combinations) and reversible reaction of six distinct disubstituted pyrroles to afford 2649 members (yet only 126 distinct substituent combinations). In general, libraries of substituted tetrapyrrole macrocycles occupy a synthetically accessible region of chemical space that is rich in isomers (>99% or 95% for the two examples, respectively).

  12. Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells

    PubMed Central

    Kobayashi, Yuki; Kanesaki, Yu; Tanaka, Ayumi; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi; Tanaka, Kan

    2009-01-01

    Eukaryotic cells arose from an ancient endosymbiotic association of prokaryotes, with plant cells harboring 3 genomes as the remnants of such evolution. In plant cells, plastid and mitochondrial DNA replication [organelle DNA replication (ODR)] occurs in advance of the subsequent cell cycles composed of nuclear DNA replication (NDR) and cell division. However, the mechanism by which replication of these genomes with different origins is coordinated is largely unknown. Here, we show that NDR is regulated by a tetrapyrrole signal in plant cells, which has been suggested as an organelle-to-nucleus retrograde signal. In synchronized cultures of the primitive red alga Cyanidioschyzon merolae, specific inhibition of A-type cyclin-dependent kinase (CDKA) prevented NDR but not ODR after onset of the cell cycle. In contrast, inhibition of ODR by nalidixic acid also resulted in inhibition of NDR, indicating a strict dependence of NDR on ODR. The requirement of ODR for NDR was bypassed by addition of the tetrapyrrole intermediates protoporphyrin IX (ProtoIX) or Mg-ProtoIX, both of which activated CDKA without inducing ODR. This scheme was also observed in cultured tobacco cells (BY-2), where inhibition of ODR by nalidixic acid prevented CDKA activation and NDR, and these inhibitions were circumvented by Mg-ProtoIX without inducing ODR. We thus show that tetrapyrrole-mediated organelle–nucleus replicational coupling is an evolutionary conserved process among plant cells. PMID:19141634

  13. [Skeleton extractions and applications].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at leastmore » two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.« less

  14. Skeleton of weighted social network

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhu, J.

    2013-03-01

    In the literature of social networks, understanding topological structure is an important scientific issue. In this paper, we construct a network from mobile phone call records and use the cumulative number of calls as a measure of the weight of a social tie. We extract skeletons from the weighted social network on the basis of the weights of ties, and we study their properties. We find that strong ties can support the skeleton in the network by studying the percolation characters. We explore the centrality of w-skeletons based on the correlation between some centrality measures and the skeleton index w of a vertex, and we find that the average centrality of a w-skeleton increases as w increases. We also study the cumulative degree distribution of the successive w-skeletons and find that as w increases, the w-skeleton tends to become more self-similar. Furthermore, fractal characteristics appear in higher w-skeletons. We also explore the global information diffusion efficiency of w-skeletons using simulations, from which we can see that the ties in the high w-skeletons play important roles in information diffusion. Identifying such a simple structure of a w-skeleton is a step forward toward understanding and representing the topological structure of weighted social networks.

  15. Chlorophyll Breakdown in Senescent Banana Leaves: Catabolism Reprogrammed for Biosynthesis of Persistent Blue Fluorescent Tetrapyrroles

    PubMed Central

    Vergeiner, Clemens; Banala, Srinivas; Kräutler, Bernhard

    2013-01-01

    Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll-derived bilin-type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles. PMID:23946204

  16. A New Approach for Human Forearm Motion Assist by Actuated Artificial Joint-An Inner Skeleton Robot

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata Kumar; Kiguchi, Kazuo; Teramoto, Kenbu

    In order to help the physical activities of the elderly or physically disabled persons, we propose a new concept of a power-assist inner skeleton robot (i.e., actuated artificial joint) that is supposed to assist the human daily life motion from inside of the human body. This paper presents an implantable 2 degree of freedom (DOF) inner skeleton robot that is designed to assist human elbow flexion-extension motion and forearm supination-pronation motion for daily life activities. We have developed a prototype of the inner skeleton robot that is supposed to assist the motion from inside of the body and act as an actuated artificial joint. The proposed system is controlled based on the activation patterns of the electromyogram (EMG) signals of the user's muscles by applying fuzzy-neuro control method. A joint actuator with angular position sensor is designed for the inner skeleton robot and a T-Mechanism is proposed to keep the bone arrangement similar to the normal human articulation after the elbow arthroplasty. The effectiveness of the proposed system has been evaluated by experiment.

  17. Time-resolved spectroscopic studies of photosynthetic reaction centers and tetrapyrrole chromophores for biomedical and solar-energy applications

    NASA Astrophysics Data System (ADS)

    Kee, Hooi Ling

    2008-10-01

    The photophysical properties of diverse tetrapyrrole chromophores as well as energy and electron transfer processes in tetrapyrrole dyads are investigated using static and time-resolved (femtoseconds to seconds) absorption and fluorescence spectroscopy. The goal of these studies is to elucidate the molecular design principals necessary to construct chromophores with the specific and tunable properties that will enhance applications in optical molecular imaging, photodynamic therapy, and solar-energy conversion. The kinetic properties of the transient intermediate P+H B- involving the bacteriopheophytin molecule HB on the normally inactive (B) cofactor branch of the bacterial photosynthetic reaction center are examined in Rhodobacter capsulatus mutants. Using nanosecond flash photolysis and F(L181)Y/Y(M208)F/L(M212)H mutant, the decay pathways and yields of P+HB- were measured, giving an overall yield of 13% for B-side charge separation P* → P+HB- → P+ QB- in this mutant. The goal of these studies is to understand the fundamental differences in the rates, yields, and mechanisms of charge separation and charge recombination along the two parallel electron-transport chains in the bacterial reaction center.

  18. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  19. The Skeletons' Halloween

    ERIC Educational Resources Information Center

    Bourque, Simone

    2010-01-01

    Mexican printer Jose Guadalupe Posada's (1851-1913) numerous prints of "calaveras" gave vast popularity to skeleton figures through his satirical and politically critical renditions of skeletons engaged in daily activities. They are oftentimes represented in festive and playful posturing. Calaveras have now become the most original trait…

  20. DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan

    2017-11-01

    Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the groundtruth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. Additionally, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: Foreground object segmentation and object proposal detection.

  1. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton.

    PubMed

    Keating, Joseph N; Marquart, Chloe L; Donoghue, Philip C J

    2015-06-01

    Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four-layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel-fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel-fibred bone, showing osteon-like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we interpret the

  2. High performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry for V and Ni quantification as tetrapyrroles

    NASA Astrophysics Data System (ADS)

    Duyck, Christiane Béatrice; Saint'Pierre, Tatiana Dillenburg; Miekeley, Norbert; da Fonseca, Teresa Cristina Oliveira; Szatmari, Peter

    2011-05-01

    A method was developed for the determination of V and Ni as tetrapyrroles by High Performance Liquid Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) using reversed phase and elution gradient. Chlorinated solvents and tetrahydrofuran were investigated as regard to separation time and ICP-MS detection efficiencies. The final elution gradient program started from pure methanol to a mixture of 20:80 (v/v) chloroform:methanol. External quantification of V and Ni with inorganic standards by flow injection ICP-MS, used online with HPLC, resulted in 95% of recoveries. The Limits of Detection for V during methanol elution and for Ni during the 20% chloroform gradient elution were evaluated by their minimum detectable concentrations, which were, respectively, 5 μg L - 1 and 8 μg L - 1 . The methodology was applied to polar and resin fractions separated from a Brazilian crude oil and a sediment extract from an oil-polluted area in the Guanabara Bay, Rio de Janeiro, Brazil. Vanadium as tetrapyrroles represented the totality of V content in the polar fraction, whereas Ni was in different polar forms in the resin and sediment extract.

  3. Evolutionary Aspects and Regulation of Tetrapyrrole Biosynthesis in Cyanobacteria under Aerobic and Anaerobic Environments

    PubMed Central

    Fujita, Yuichi; Tsujimoto, Ryoma; Aoki, Rina

    2015-01-01

    Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes. PMID:25830590

  4. Erythrocyte membrane skeleton inhibits nanoparticle endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Xinli; Yue, Tongtao; Tian, Falin; Liu, Zhiping; Zhang, Xianren

    2017-06-01

    Red blood cells (RBCs), also called erythrocytes, have been experimentally proposed in recent decades as the biological drug delivery systems through entrapping certain drugs by endocytosis. However, the internalization pathway of endocytosis seems to conflict with the robust mechanical properties of RBCs that is induced by the spectrin-actin network of erythrocyte membrane skeleton. In this work, we employed a minimum realistic model and the dissipative particle dynamics method to investigate the influence of the spectrin-actin membrane skeleton on the internalization of nanoparticles (NPs). Our simulations show that the existence of skeleton meshwork indeed induces an inhibiting effect that effectively prevents NPs from internalization. The inhibiting effect is found to depend on the membrane-NP attraction, skeleton tension and relative size of the NP to the membrane skeleton mesh. However, our simulations also demonstrate that there are two possibilities for successful internalization of NPs in the presence of the membrane skeleton. The first case is for NPs that has a much smaller size than the dimension of skeleton meshes, and the other is that the skeleton tension is rather weak so that the formed vesicle can still move inward for NP internalization.

  5. Weighted straight skeletons in the plane☆

    PubMed Central

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-01-01

    We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. PMID:25648398

  6. Spatially variant morphological restoration and skeleton representation.

    PubMed

    Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan

    2006-11-01

    The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.

  7. Coral Skeletons Defend against Ultraviolet Radiation

    PubMed Central

    Reef, Ruth; Kaniewska, Paulina; Hoegh-Guldberg, Ove

    2009-01-01

    Background Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage. Methodology/Principal Findings By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation. Conclusions/Significance Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life. PMID:19946361

  8. Skeletonization applied to magnetic resonance angiography images

    NASA Astrophysics Data System (ADS)

    Nystroem, Ingela

    1998-06-01

    When interpreting and analyzing magnetic resonance angiography images, the 3D overall tree structure and the thickness of the blood vessels are of interest. This shape information may be easier to obtain from the skeleton of the blood vessels. Skeletonization of digital volume objects denotes either reduction to a 2D structure consisting of 3D surfaces, and curves, or reduction to a 1D structure consisting of 3D curves only. Thin elongated objects, such as blood vessels, are well suited for reduction to curve skeletons. Our results indicate that the tree structure of the vascular system is well represented by the skeleton. Positions for possible artery stenoses may be identified by locating local minima in curve skeletons, where the skeletal voxels are labeled with the distance to the original background.

  9. The identification of submerged skeletonized remains.

    PubMed

    Byard, Roger W; Both, Katrin; Simpson, Ellie

    2008-03-01

    Examination was undertaken of skeletonized remains contained within 2 rubber boots dredged by a fishing boat from a depth of 145 m, approximately 185 km off the southern Australian coast in the Great Australian Bight. The boots had been manufactured in Australia in July 1993 and were of a type commonly used by local fishermen. Examination of the lower legs and feet revealed well-preserved bones with arthritic changes in keeping with an older male. DNA analyses using reference samples taken from relatives of fishermen who had disappeared in the area resulted in the identification of the victim as a 52-year-old prawn fisherman who had been swept off a boat over a decade earlier. DNA stability had been maintained by the low light, cold temperatures, and alkaline pH of the ocean floor. Integration of pathologic, anthropologic, and biologic analyses with police investigations enabled a positive identification to be made despite the unusual nature of the location of the remains and the time lapse since the disappearance of the victim.

  10. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  11. Efficient Skeletonization of Volumetric Objects.

    PubMed

    Zhou, Yong; Toga, Arthur W

    1999-07-01

    Skeletonization promises to become a powerful tool for compact shape description, path planning, and other applications. However, current techniques can seldom efficiently process real, complicated 3D data sets, such as MRI and CT data of human organs. In this paper, we present an efficient voxel-coding based algorithm for Skeletonization of 3D voxelized objects. The skeletons are interpreted as connected centerlines. consisting of sequences of medial points of consecutive clusters. These centerlines are initially extracted as paths of voxels, followed by medial point replacement, refinement, smoothness, and connection operations. The voxel-coding techniques have been proposed for each of these operations in a uniform and systematic fashion. In addition to preserving basic connectivity and centeredness, the algorithm is characterized by straightforward computation, no sensitivity to object boundary complexity, explicit extraction of ready-to-parameterize and branch-controlled skeletons, and efficient object hole detection. These issues are rarely discussed in traditional methods. A range of 3D medical MRI and CT data sets were used for testing the algorithm, demonstrating its utility.

  12. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joon-Heum; Jung, Sunyo

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F{sub v}/F{sub m}. NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced bymore » photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. - Highlights: • Two modes of photooxidation by carotenoid and tetrapyrrole biosynthetic inhibitors. • We examine differential alterations in chloroplast function and plastid signaling. • NF and OF cause differential alterations in chloroplast ultrastructure and function. • Photooxidation coordinates photosynthetic gene expression from nucleus and plastid.« less

  14. Topology preserve gray image skeletonization algorithm

    NASA Astrophysics Data System (ADS)

    Qian, Kai; Zhu, Weibin; Bhattacharya, Prabir

    1993-10-01

    A new algorithm which can skeletonize both black-white and gray pictures is presented. This algorithm is based on distance transformation and can preserve the topology of the original picture. It can be extended to 3-D skeletonization and can be implemented by parallel processing.

  15. An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization.

    PubMed

    Jalba, Andrei C; Sobiecki, Andre; Telea, Alexandru C

    2016-01-01

    Computing skeletons of 2D shapes, and medial surface and curve skeletons of 3D shapes, is a challenging task. In particular, there is no unified framework that detects all types of skeletons using a single model, and also produces a multiscale representation which allows to progressively simplify, or regularize, all skeleton types. In this paper, we present such a framework. We model skeleton detection and regularization by a conservative mass transport process from a shape's boundary to its surface skeleton, next to its curve skeleton, and finally to the shape center. The resulting density field can be thresholded to obtain a multiscale representation of progressively simplified surface, or curve, skeletons. We detail a numerical implementation of our framework which is demonstrably stable and has high computational efficiency. We demonstrate our framework on several complex 2D and 3D shapes.

  16. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.

    PubMed

    Kolossov, Vladimir L; Kopetz, Karen J; Rebeiz, Constantin A

    2003-08-01

    The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from

  17. Making an Inexpensive Skeleton for the Classroom.

    ERIC Educational Resources Information Center

    Shaw, Edward L., Jr.; Pruitt, Nancy E.

    1990-01-01

    Presented is an activity in which a skeleton is built using papier mache' and various household items. The materials; procedures for building each part of the skeleton; and directions for painting, assembling, and varnishing are included. (KR)

  18. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton.

    PubMed

    Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann

    2018-01-01

    We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.

  19. Embryonic origin of the gnathostome vertebral skeleton

    PubMed Central

    Gillis, J. Andrew

    2017-01-01

    The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts. PMID:29167367

  20. Skeletonization of Gridded Potential-Field Images

    NASA Astrophysics Data System (ADS)

    Gao, L.; Morozov, I. B.

    2012-12-01

    A new approach to skeletonization was developed for gridded potential-field data. Generally, skeletonization is a pattern-recognition technique allowing automatic recognition of near-linear features in the images, measurement of their parameters, and analyzing them for similarities. Our approach decomposes the images into arbitrarily-oriented "wavelets" characterized by positive or negative amplitudes, orientation angles, spatial dimensions, polarities, and other attributes. Orientations of the wavelets are obtained by scanning the azimuths to detect the strike direction of each anomaly. The wavelets are connected according to the similarities of these attributes, which leads to a "skeleton" map of the potential-field data. In addition, 2-D filtering is conducted concurrently with the wavelet-identification process, which allows extracting parameters of background trends and reduces the adverse effects of low-frequency background (which is often strong in potential-field maps) on skeletonization.. By correlating the neighboring wavelets, linear anomalies are identified and characterized. The advantages of this algorithm are the generality and isotropy of feature detection, as well as being specifically designed for gridded data. With several options for background-trend extraction, the stability for identification of lineaments is improved and optimized. The algorithm is also integrated in a powerful processing system which allows combining it with numerous other tools, such as filtering, computation of analytical signal, empirical mode decomposition, and various types of plotting. The method is applied to potential-field data for the Western Canada Sedimentary Basin, in a study area which extends from southern Saskatchewan into southwestern Manitoba. The target is the structure of crystalline basement beneath Phanerozoic sediments. The examples illustrate that skeletonization aid in the interpretation of complex structures at different scale lengths. The results

  1. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  2. Characterization of the complex between native and reduced bovine serum albumin with aquacobalamin and evidence of dual tetrapyrrole binding.

    PubMed

    Dereven'kov, Ilia A; Hannibal, Luciana; Makarov, Sergei V; Makarova, Anna S; Molodtsov, Pavel A; Koifman, Oskar I

    2018-05-02

    Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H 2 OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H 2 OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H 2 OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H 2 OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.

  3. Modeling The Skeleton Weight of an Adult Caucasian Man.

    PubMed

    Avtandilashvili, Maia; Tolmachev, Sergei Y

    2018-05-17

    The reference value for the skeleton weight of an adult male (10.5 kg) recommended by the International Commission on Radiological Protection in Publication 70 is based on weights of dissected skeletons from 44 individuals, including two U.S. Transuranium and Uranium Registries whole-body donors. The International Commission on Radiological Protection analysis of anatomical data from 31 individuals with known values of body height demonstrated significant correlation between skeleton weight and body height. The corresponding regression equation, Wskel (kg) = -10.7 + 0.119 × H (cm), published in International Commission on Radiological Protection Publication 70 is typically used to estimate the skeleton weight from body height. Currently, the U.S. Transuranium and Uranium Registries holds data on individual bone weights from a total of 40 male whole-body donors, which has provided a unique opportunity to update the International Commission on Radiological Protection skeleton weight vs. body height equation. The original International Commission on Radiological Protection Publication 70 and the new U.S. Transuranium and Uranium Registries data were combined in a set of 69 data points representing a group of 33- to 95-y-old individuals with body heights and skeleton weights ranging from 155 to 188 cm and 6.5 to 13.4 kg, respectively. Data were fitted with a linear least-squares regression. A significant correlation between the two parameters was observed (r = 0.28), and an updated skeleton weight vs. body height equation was derived: Wskel (kg) = -6.5 + 0.093 × H (cm). In addition, a correlation of skeleton weight with multiple variables including body height, body weight, and age was evaluated using multiple regression analysis, and a corresponding fit equation was derived: Wskel (kg) = -0.25 + 0.046 × H (cm) + 0.036 × Wbody (kg) - 0.012 × A (y). These equations will be used to estimate skeleton weights and, ultimately, total skeletal actinide activities for

  4. Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors.

    PubMed

    Kopetz, Karen J; Kolossov, Vladimir L; Rebeiz, Constantin A

    2004-06-15

    The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.

  5. ISTP CDF Skeleton Editor

    NASA Technical Reports Server (NTRS)

    Chimiak, Reine; Harris, Bernard; Williams, Phillip

    2013-01-01

    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.

  6. New presentation method for magnetic resonance angiography images based on skeletonization

    NASA Astrophysics Data System (ADS)

    Nystroem, Ingela; Smedby, Orjan

    2000-04-01

    Magnetic resonance angiography (MRA) images are usually presented as maximum intensity projections (MIP), and the choice of viewing direction is then critical for the detection of stenoses. We propose a presentation method that uses skeletonization and distance transformations, which visualizes variations in vessel width independent of viewing direction. In the skeletonization, the object is reduced to a surface skeleton and further to a curve skeleton. The skeletal voxels are labeled with their distance to the original background. For the curve skeleton, the distance values correspond to the minimum radius of the object at that point, i.e., half the minimum diameter of the blood vessel at that level. The following image processing steps are performed: resampling to cubic voxels, segmentation of the blood vessels, skeletonization ,and reverse distance transformation on the curve skeleton. The reconstructed vessels may be visualized with any projection method. Preliminary results are shown. They indicate that locations of possible stenoses may be identified by presenting the vessels as a structure with the minimum radius at each point.

  7. Investigating the Human Skeleton.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1982-01-01

    Instructions are provided for assembly of a pull-out, two-sided picture puzzle of the skeleton of a seven-year-old girl. Suggestions for activities using the assembled puzzle and comments on bones and bone morphology are also provided. (Author/JN)

  8. A single scan skeletonization algorithm: application to medical imaging of trabecular bone

    NASA Astrophysics Data System (ADS)

    Arlicot, Aurore; Amouriq, Yves; Evenou, Pierre; Normand, Nicolas; Guédon, Jean-Pierre

    2010-03-01

    Shape description is an important step in image analysis. The skeleton is used as a simple, compact representation of a shape. A skeleton represents the line centered in the shape and must be homotopic and one point wide. Current skeletonization algorithms compute the skeleton over several image scans, using either thinning algorithms or distance transforms. The principle of thinning is to delete points as one goes along, preserving the topology of the shape. On the other hand, the maxima of the local distance transform identifies the skeleton and is an equivalent way to calculate the medial axis. However, with this method, the skeleton obtained is disconnected so it is required to connect all the points of the medial axis to produce the skeleton. In this study we introduce a translated distance transform and adapt an existing distance driven homotopic algorithm to perform skeletonization with a single scan and thus allow the processing of unbounded images. This method is applied, in our study, on micro scanner images of trabecular bones. We wish to characterize the bone micro architecture in order to quantify bone integrity.

  9. Refining image segmentation by polygon skeletonization

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.

    1987-01-01

    A skeletonization algorithm was encoded and applied to a test data set of land-use polygons taken from a USGS digital land use dataset at 1:250,000. The distance transform produced by this method was instrumental in the description of the shape, size, and level of generalization of the outlines of the polygons. A comparison of the topology of skeletons for forested wetlands and lakes indicated that some distinction based solely upon the shape properties of the areas is possible, and may be of use in an intelligent automated land cover classification system.

  10. Anisotropic Laplace-Beltrami Eigenmaps: Bridging Reeb Graphs and Skeletons*

    PubMed Central

    Shi, Yonggang; Lai, Rongjie; Krishna, Sheila; Sicotte, Nancy; Dinov, Ivo; Toga, Arthur W.

    2010-01-01

    In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigenfunctions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately. PMID:21339850

  11. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  12. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  13. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton

    PubMed Central

    Looker, Oliver; Dixon, Matthew W.; Tilley, Leann

    2018-01-01

    We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions. PMID:29472997

  14. Dissection and Flat-mounting of the Threespine Stickleback Branchial Skeleton.

    PubMed

    Ellis, Nicholas A; Miller, Craig T

    2016-05-07

    The posterior pharyngeal segments of the vertebrate head give rise to the branchial skeleton, the primary site of food processing in fish. The morphology of the fish branchial skeleton is matched to a species' diet. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a model system to study the genetic and developmental basis of evolved differences in a variety of traits. Marine populations of sticklebacks have repeatedly colonized countless new freshwater lakes and creeks. Adaptation to the new diet in these freshwater environments likely underlies a series of craniofacial changes that have evolved repeatedly in independently derived freshwater populations. These include three major patterning changes to the branchial skeleton: reductions in the number and length of gill raker bones, increases in pharyngeal tooth number, and increased branchial bone lengths. Here we describe a detailed protocol to dissect and flat-mount the internal branchial skeleton in threespine stickleback fish. Dissection of the entire three-dimensional branchial skeleton and mounting it flat into a largely two-dimensional prep allows for the easy visualization and quantification of branchial skeleton morphology. This dissection method is inexpensive, fast, relatively easy, and applicable to a wide variety of fish species. In sticklebacks, this efficient method allows the quantification of skeletal morphology in genetic crosses to map genomic regions controlling craniofacial patterning.

  15. Quantifying the deformation of the red blood cell skeleton in shear flow

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2012-02-01

    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  16. Amorphous calcium carbonate particles form coral skeletons

    DOE PAGES

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang -Yu; ...

    2017-08-28

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3).more » We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.« less

  17. Amorphous calcium carbonate particles form coral skeletons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang -Yu

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3).more » We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.« less

  18. Amorphous calcium carbonate particles form coral skeletons

    NASA Astrophysics Data System (ADS)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  19. Amorphous calcium carbonate particles form coral skeletons.

    PubMed

    Mass, Tali; Giuffre, Anthony J; Sun, Chang-Yu; Stifler, Cayla A; Frazier, Matthew J; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V; Marcus, Matthew A; Gilbert, Pupa U P A

    2017-09-12

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO 3 ). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO 2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  20. Amorphous calcium carbonate particles form coral skeletons

    PubMed Central

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.

    2017-01-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya. PMID:28847944

  1. Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa).

    PubMed

    Dauphin, Yannicke; Cuif, Jean-Pierre; Williams, C Terry

    2008-05-01

    Our interpretation of the overall taxonomy and evolution of the Scleractinia, the most important reef builders in tropical areas, has long depended exclusively on morphology of the calcareous skeletons. The reported series of physical and biochemical characterizations of skeletons and the mineralizing matrices extracted from the skeletons allow, for the first time, the level of biochemical diversity among corallites of the same family to be estimated. Similarities and differences observed in the micro- and nanostructures of the skeletons reflect those of the soluble organic matrices. Sulphur is mainly associated with sulphated acidic sugars. The role of sulphated sugars on the biomineralization processes is still underestimated. The resulting data suggest that environmental conditions may act on the mineralization process through the detailed compositions of the mineralizing matrices.

  2. Dissection and Flat-mounting of the Threespine Stickleback Branchial Skeleton

    PubMed Central

    Ellis, Nicholas A.; Miller, Craig T.

    2016-01-01

    The posterior pharyngeal segments of the vertebrate head give rise to the branchial skeleton, the primary site of food processing in fish. The morphology of the fish branchial skeleton is matched to a species' diet. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a model system to study the genetic and developmental basis of evolved differences in a variety of traits. Marine populations of sticklebacks have repeatedly colonized countless new freshwater lakes and creeks. Adaptation to the new diet in these freshwater environments likely underlies a series of craniofacial changes that have evolved repeatedly in independently derived freshwater populations. These include three major patterning changes to the branchial skeleton: reductions in the number and length of gill raker bones, increases in pharyngeal tooth number, and increased branchial bone lengths. Here we describe a detailed protocol to dissect and flat-mount the internal branchial skeleton in threespine stickleback fish. Dissection of the entire three-dimensional branchial skeleton and mounting it flat into a largely two-dimensional prep allows for the easy visualization and quantification of branchial skeleton morphology. This dissection method is inexpensive, fast, relatively easy, and applicable to a wide variety of fish species. In sticklebacks, this efficient method allows the quantification of skeletal morphology in genetic crosses to map genomic regions controlling craniofacial patterning. PMID:27213248

  3. Stone skeleton asphalt : field trial U.S. 331, Luverne, Alabama

    DOT National Transportation Integrated Search

    2008-04-01

    Alabama Department of Transportation (ALDOT) developed Section 426, Stone Skeleton : Asphalt (SSA), based on results from a laboratory concept study. The concept of stone skeleton : asphalt was a mixture that would have similar performance characteri...

  4. Static analysis techniques for semiautomatic synthesis of message passing software skeletons

    DOE PAGES

    Sottile, Matthew; Dagit, Jason; Zhang, Deli; ...

    2015-06-29

    The design of high-performance computing architectures demands performance analysis of large-scale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this article is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed formore » the purposes of the skeleton. In this work, we develop a semiautomatic approach for extracting program skeletons based on compiler program analysis. Finally, we demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator.« less

  5. Development and evaluation of an articulated registration algorithm for human skeleton registration

    NASA Astrophysics Data System (ADS)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the

  6. Harmonic Skeleton Guided Evaluation of Stenoses in Human Coronary Arteries

    PubMed Central

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R.; Giddens, Don P.

    2013-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease. PMID:16685882

  7. Harmonic skeleton guided evaluation of stenoses in human coronary arteries.

    PubMed

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R; Giddens, Don P

    2005-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease.

  8. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  9. [Progress in Application of Measuring Skeleton by CT in Forensic Anthropology Research].

    PubMed

    Miao, C Y; Xu, L; Wang, N; Zhang, M; Li, Y S; Lü, J X

    2017-02-01

    Individual identification by measuring the human skeleton is an important research in the field of forensic anthropology. Computed tomography (CT) technology can provide high-resolution image of skeleton. Skeleton image can be reformed by software in the post-processing workstation. Different skeleton measurement indexes of anthropology, such as diameter, angle, area and volume, can be measured on section and reformative images. Measurement process is barely affected by human factors. This paper reviews the literatures at home and abroad about the application of measuring skeleton by CT in forensic anthropology research for individual identification in four aspects, including sex determination, height infer, facial soft tissue thickness measurement and age estimation. The major technology and the application of CT in forensic anthropology research are compared and discussed, respectively. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  10. The ocular skeleton through the eye of evo-devo.

    PubMed

    Franz-Odendaal, Tamara Anne

    2011-09-15

    An evolutionary developmental (evo-devo) approach to understanding the evolution, homology, and development of structures has proved important for unraveling complex integrated skeletal systems through the use of modules, or modularity. An ocular skeleton, which consists of cartilage and sometimes bone, is present in many vertebrates; however, the origin of these two components remains elusive. Using both paleontological and developmental data, I propose that the vertebrate ocular skeleton is neural crest derived and that a single cranial neural crest module divided early in vertebrate evolution, possibly during the Ordovician, to give rise to an endoskeletal component and an exoskeletal component within the eye. These two components subsequently became uncoupled with respect to timing, placement within the sclera and inductive epithelia, enabling them to evolve independently and to diversify. In some extant groups, these two modules have become reassociated with one another. Furthermore, the data suggest that the endoskeletal component of the ocular skeleton was likely established and therefore evolved before the exoskeletal component. This study provides important insights into the evolution of the ocular skeleton, a region with a long evolutionary history among vertebrates. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  11. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons.

    PubMed

    Gorzelak, P; Stolarski, J; Mazur, M; Meibom, A

    2013-01-01

    This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean. © 2012 Blackwell Publishing Ltd.

  12. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.

    PubMed

    Da, Qingen; Wang, Peng; Wang, Menglong; Sun, Ting; Jin, Honglei; Liu, Bing; Wang, Jinfa; Grimm, Bernhard; Wang, Hong-Bin

    2017-10-01

    In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1 , TRX m2 , and TRX m4 ( TRX ms ), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis ( Arabidopsis thaliana ). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m- silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Bone density and the lightweight skeletons of birds.

    PubMed

    Dumont, Elizabeth R

    2010-07-22

    The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals.

  14. The skeleton of postmetamorphic echinoderms in a changing world.

    PubMed

    Dubois, Philippe

    2014-06-01

    Available evidence on the impact of acidification and its interaction with warming on the skeleton of postmetamorphic (juvenile and adult) echinoderms is reviewed. Data are available on sea urchins, starfish, and brittle stars in 33 studies. Skeleton growth of juveniles of all sea urchin species studied so far is affected from pH 7.8 to 7.6 in seawater, values that are expected to be reached during the 21st century. Growth in adult sea urchins (six species studied) is apparently only marginally affected at seawater pH relevant to this century. The interacting effect of temperature differed according to studies. Juvenile starfish as well as adults seem to be either not impacted or even boosted by acidification. Brittle stars show moderate effects at pH below or equal to 7.4. Dissolution of the body wall skeleton is unlikely to be a major threat to sea urchins. Spines, however, due to their exposed position, are more prone to this threat, but their regeneration abilities can probably ensure their maintenance, although this could have an energetic cost and induce changes in resource allocation. No information is available on skeleton dissolution in starfish, and the situation in brittle stars needs further assessment. Very preliminary evidence indicates that mechanical properties in sea urchins could be affected. So, although the impact of ocean acidification on the skeleton of echinoderms has been considered as a major threat from the first studies, we need a better understanding of the induced changes, in particular the functional consequences of growth modifications and dissolution related to mechanical properties. It is suggested to focus studies on these aspects. © 2014 Marine Biological Laboratory.

  15. The origin of a new fin skeleton through tinkering

    PubMed Central

    Stewart, Thomas A.

    2015-01-01

    Adipose fins are positioned between the dorsal and caudal fins of many teleost fishes and primitively lack skeleton. In at least four lineages, adipose fins have evolved lepidotrichia (bony fin rays), co-opting the developmental programme for the dermal skeleton of other fins into this new territory. Here I provide, to my knowledge, the first description of lepidotrichia development in an adipose fin, characterizing the ontogeny of the redtail catfish, Phractocephalus hemioliopterus. Development of these fin rays differs from canonical lepidotrich development in the following four ways: skeleton begins developing in adults, not in larvae; rays begin developing at the fin's distal tip, not proximally; the order in which rays ossify is variable, not fixed; and lepidotrichia appear to grow both proximally and distally, not exclusively proximodistally. Lepidotrichia are often wavy, of irregular thickness and exhibit no regular pattern of segmentation or branching. This skeleton is among the most variable observed in a vertebrate appendage, offering a unique opportunity to explore the basis of hypervariation, which is generally assumed to reflect an absence of function. I argue that this variation reflects a lack of canalization as compared with other, more ancient lepidotrichs and suggest developmental context can affect the morphology of serial homologues. PMID:26179803

  16. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  17. Fast algorithms of constrained Delaunay triangulation and skeletonization for band images

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, ChengLei; Meng, XiangXu; Yang, YiJun; Yang, XiuKun

    2004-09-01

    For the boundary polygons of band-images, a fast constrained Delaunay triangulation algorithm is presented and based on it an efficient skeletonization algorithm is designed. In the process of triangulation the characters of uniform grid structure and the band-polygons are utilized to improve the speed of computing the third vertex for one edge within its local ranges when forming a Delaunay triangle. The final skeleton of the band-image is derived after reducing each triangle to local skeleton lines according to its topology. The algorithm with a simple data structure is easy to understand and implement. Moreover, it can deal with multiply connected polygons on the fly. Experiments show that there is a nearly linear dependence between triangulation time and size of band-polygons randomly generated. Correspondingly, the skeletonization algorithm is also an improvement over the previously known results in terms of time. Some practical examples are given in the paper.

  18. Skeletonization with hollow detection on gray image by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Prabir; Qian, Kai; Cao, Siqi; Qian, Yi

    1998-10-01

    A skeletonization algorithm that could be used to process non-uniformly distributed gray-scale images with hollows was presented. This algorithm is based on the Gray Weighted Distance Transformation. The process includes a preliminary phase of investigation in the hollows in the gray-scale image, whether these hollows are considered as topological constraints for the skeleton structure depending on their statistically significant depth. We then extract the resulting skeleton that has certain meaningful information for understanding the object in the image. This improved algorithm can overcome the possible misinterpretation of some complicated images in the extracted skeleton, especially in images with asymmetric hollows and asymmetric features. This algorithm can be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  19. Synthesis of Novel Basic Skeletons Derived from Naltrexone

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    We will describe eight interesting reactions using naltrexone derivatives. Almost all these reactions are characteristic of naltrexone derivatives, and can lead to the synthesis of many novel skeletons that provide new interesting pharmacological data. Some of the new reactions that were found with naltrexone derivatives were expanded into general reactions. For example, the reaction of 6α-hydroxyaldehyde derived from naltrexone led to the oxazoline dimer and the 1,3,5-trioxazatriquinane skeleton (triplet drug); this reaction was applied to general ketones which were converted to α-hydroxyaldehydes, followed by conversion to dimers and trimers, as described in Sect. 7.

  20. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.

    PubMed

    Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian

    2015-03-01

    We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.

  1. A practical introduction to skeletons for the plant sciences1

    PubMed Central

    Bucksch, Alexander

    2014-01-01

    Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network. PMID:25202645

  2. Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features

    NASA Astrophysics Data System (ADS)

    Liang, Yanjie

    2016-06-01

    In rock engineering, fracture measurement is important for many applications. This paper proposes a novel method for rock fracture skeleton tracing and analyzing. As for skeleton localizing, the curvilinear fractures are multiscale enhanced based on a Hessian matrix, after image binarization, and clutters are post-processed by image analysis; subsequently, the fracture skeleton is extracted via ridge detection combined with a distance transform and thinning algorithm, after which gap sewing and burrs removal repair the skeleton. In regard to skeleton analyzing, the roughness and distribution of a fracture network are respectively described by the fractal dimensions D s and D b; the intersection and fragmentation of a fracture network are respectively characterized by the average number of ends and junctions per fracture N average and the average length per fracture L average. Three rock fracture surfaces are analyzed for experiments and the results verify that both the fracture tracing accuracy and the analysis feasibility are satisfactory using the new method.

  3. Morphology of the axial skeleton of seven bat genera (Chiroptera: Phyllostomidae).

    PubMed

    Gaudioso, Pablo J; Díaz, M Mónica; Barquez, Rubén M

    2017-01-01

    Here we present detailed descriptions and comparisons of the axial skeleton of seven species of bats belonging to five subfamilies of Phyllostomidae of different trophic guilds. The material examined consisted of 34 complete skeletons of seven species. For five of the studied species, previous descriptions have not been conducted, and for the vampires only limited information is available, so that descriptions for these species are here completed. The axial skeleton has characters that allow grouping of the species phylogenetically of the same subfamily and by feeding habits. At the same time, there are characters that associate species from different subfamilies with different types of diet or ways to obtain food.

  4. Naked corals: Skeleton loss in Scleractinia

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Takaoka, Tori L.; Kuehl, Jennifer V.; Boore, Jeffrey L.

    2006-01-01

    Stony corals, which form the framework for modern reefs, are classified as Scleractinia (Cnidaria, Anthozoa, and Hexacorallia) in reference to their external aragonitic skeletons. However, persistent notions, collectively known as the “naked coral” hypothesis, hold that the scleractinian skeleton does not define a natural group. Three main lines of evidence have suggested that some stony corals are more closely related to one or more of the soft-bodied hexacorallian groups than they are to other scleractinians: (i) morphological similarities; (ii) lack of phylogenetic resolution in molecular analyses of scleractinians; and (iii) discrepancy between the commencement of a diverse scleractinian fossil record at 240 million years ago (Ma) and a molecule-based origination of at least 300 Ma. No molecular evidence has been able to clearly reveal relationships at the base of a well supported clade composed of scleractinian lineages and the nonskeletonized Corallimorpharia. We present complete mitochondrial genome data that provide strong evidence that one clade of scleractinians is more closely related to Corallimorpharia than it is to a another clade of scleractinians. Thus, the scleractinian skeleton, which we estimate to have originated between 240 and 288 Ma, was likely lost in the ancestry of Corallimorpharia. We estimate that Corallimorpharia originated between 110 and 132 Ma during the late- to mid-Cretaceous, coinciding with high levels of oceanic CO2, which would have impacted aragonite solubility. Corallimorpharians escaped extinction from aragonite skeletal dissolution, but some modern stony corals may not have such fortunate fates under the pressure of increased anthropogenic CO2 in the ocean. PMID:16754865

  5. An Interactive Exhibition about Animal Skeletons: Did the Visitors Learn Any Zoology?

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Laterveer-de Beer, Manon

    2002-01-01

    Explores museum visitors' understanding of skeleton exhibits and whether such exhibits increase their understanding of the zoology displayed. The exhibition under study focused on the diversity of vertebrae skeletons which were arranged according to the mode of locomotion. (DDR)

  6. Relationship between push phase and final race time in skeleton performance.

    PubMed

    Zanoletti, Costanza; La Torre, Antonio; Merati, Giampiero; Rampinini, Ermanno; Impellizzeri, Franco M

    2006-08-01

    The aim of this study was to examine the relationship between push-time and final race time in skeleton participants during a series of major international competitions to determine the importance of the push phase in skeleton performance. Correlations were computed from the first and second heat split data measured during 24 men and 24 women skeleton competitions. Body mass, height, age, and years of experience of the first 30 men and women athletes of the skeleton, bobsleigh and luge 2003-2004 World Cup ranking were used for the comparison between sliding sports. Moderate but significant correlations (p < 0.05) were found between push-time and final race time in men (r(mean) = 0.48) and women (r(mean) = 0.63). No correlations were found between changes in the individual push-time between the first and second heat with the corresponding changes in final race time. The bobsleigh sliders are heavier than the athletes of the other sliding disciplines. Luge athletes have more experience and are younger than bobsleigh and skeleton sliders. The results of this study suggest that a fast push phase is a prerequisite to success in competition and confirms that the selection of skeleton athletes based on the ability to accelerate to a maximum speed quickly could be valid. However, a good or improved push-time does not ensure a placement in the top finishing positions. On the basis of these results, we suggest that strength and power training is necessary to maintain a short push-time but additional physical training aimed to enhance the push phase might not reflect performance improvements. The recruitment of younger athletes and an increase of youthful competitive activity may be another effective way to reach international competitive results.

  7. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    NASA Astrophysics Data System (ADS)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  8. Organic membranous skeleton of the Precambrian metazoans from Namibia

    NASA Astrophysics Data System (ADS)

    Dzik, Jerzy

    1999-06-01

    Unlike the celebrated Ediacara fossils, those from the roughly coeval localities of the Kuibis Quarzite of Namibia are preserved not as imprints on the sandstone bedding plane, but three-dimensionally, within the rock matrix. The pattern of deformation and the presence of sand in lower parts of the bodies of Ernietta, the most common and typical of those organisms, indicate that their three-dimensional preservation is a result of a density-controlled sinking of sand-filled organic skeletons within hydrated mud layers. Specimens of Ernietta have preserved various stages of migration across the mud beds. Their wall material, as documented by the mode of deformation, was not only flexible, but also elastic, which makes it unlike chitin. The walls thus seem to be proteinaceous, built probably of a collagenous fabric. The Ernietta skeleton was built of series of parallel chambers, which excludes the possibility that these were external body covers. The chambers apparently represent walls of hydraulic skeleton units, resembling the basement membrane of chaetognaths or the notochord sheath of primitive chordates. Such chambers are widespread among the earliest fossil animals represented by fossils preserved in sandstone. The rise and fall of the Ediacaran faunas thus seem to be partially preservational artifacts. The range of its occurrence is a result of two successive evolutionary events: the origin of an internal hydraulic skeleton enclosed by a strong basement membrane, and the appearance of decomposers with abilities to disintegrate such collagenous sheaths.

  9. Novel approach for image skeleton and distance transformation parallel algorithms

    NASA Astrophysics Data System (ADS)

    Qing, Kent P.; Means, Robert W.

    1994-05-01

    Image Understanding is more important in medical imaging than ever, particularly where real-time automatic inspection, screening and classification systems are installed. Skeleton and distance transformations are among the common operations that extract useful information from binary images and aid in Image Understanding. The distance transformation describes the objects in an image by labeling every pixel in each object with the distance to its nearest boundary. The skeleton algorithm starts from the distance transformation and finds the set of pixels that have a locally maximum label. The distance algorithm has to scan the entire image several times depending on the object width. For each pixel, the algorithm must access the neighboring pixels and find the maximum distance from the nearest boundary. It is a computational and memory access intensive procedure. In this paper, we propose a novel parallel approach to the distance transform and skeleton algorithms using the latest VLSI high- speed convolutional chips such as HNC's ViP. The algorithm speed is dependent on the object's width and takes (k + [(k-1)/3]) * 7 milliseconds for a 512 X 512 image with k being the maximum distance of the largest object. All objects in the image will be skeletonized at the same time in parallel.

  10. Genetic analysis and ethnic affinities from two Scytho-Siberian skeletons.

    PubMed

    Ricaut, François-Xavier; Keyser-Tracqui, Christine; Cammaert, Laurence; Crubézy, Eric; Ludes, Bertrand

    2004-04-01

    We extracted DNA from two skeletons belonging to the Sytho-Siberian population, which were excavated from the Sebÿstei site (dating back 2,500 years) in the Altai Republic (Central Asia). Ancient DNA was analyzed by autosomal short tandem repeats (STRs) and by the sequencing of the hypervariable region 1 (HV1) of the mitochondrial DNA (mtDNA) control region. The results showed that these two skeletons were not close relatives. Moreover, their haplogroups were characteristic of Asian populations. Comparison with the haplogroup of 3,523 Asian and American individuals linked one skeleton with a putative ancestral paleo-Asiatic population and the other with Chinese populations. It appears that the genetic study of ancient populations of Central Asia brings important elements to the understanding of human population movements in Asia. Copyright 2003 Wiley-Liss, Inc.

  11. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton

    PubMed Central

    Keating, Joseph N.; Donoghue, Philip C. J.

    2016-01-01

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. PMID:26962140

  12. Endocarditis associated with vertebral osteomyelitis and septic arthritis of the axial skeleton.

    PubMed

    Murillo, Oscar; Grau, Imma; Gomez-Junyent, Joan; Cabrera, Celina; Ribera, Alba; Tubau, Fe; Peña, Carmen; Ariza, Javier; Pallares, Roman

    2018-04-01

    The relationship between infective endocarditis (IE) and osteoarticular infections (OAIs) are not well known. We aimed to study the characteristics of patients with IE and OAIs, and the interactions between these two infections. An observational study (1993-2014) which includes two cohorts: (1) patients with IE (n = 607) and (2) patients with bacteremic OAIs (n = 458; septic arthritis of peripheral and axial skeleton, and vertebral and peripheral osteomyelitis). These two cohorts were prospectively collected, and we retrospectively reviewed the clinical and microbiological variables. There were 70 cases of IE with concomitant OAIs, representing 11.5% of IE cases and 15% of bacteremic OAI cases. Among cases with IE, the associated OAIs mainly involved the axial skeleton (n = 54, 77%): 43 were vertebral osteomyelitis (61%), mainly caused by "less virulent" bacteria (viridans and bovis streptococci, enterococci, and coagulase-negative staphylococci), and 15 were septic arthritis of the axial skeleton (21%), which were mainly caused by Staphylococcus aureus. OAIs with involvement of the axial skeleton were associated with IE (adjusted OR = 2.2; 95% CI 1.1-4.3) independently of age, sex, and microorganisms. Among patients with IE, the associated OAIs mainly involve the axial skeleton. Transesophageal echocardiography should be carefully considered in patients presenting with these bacteremic OAIs.

  13. Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman M.; Zaremba, Marek B.

    2003-03-01

    Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.

  14. Naked Stony Corals: Skeleton Loss in Scleractinia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Monica; Collins, Allen G.; Takaoka, Tori L.

    2005-12-01

    Hexacorallia includes the Scleractinia, or stony corals, characterized by having an external calcareous skeleton made of aragonite, and the Corallimorpharia, or mushroom corals, that lack such a skeleton. Although each group has traditionally been considered monophyletic, some molecular phylogenetic analyses have challenged this, suggesting that skeletal features are evolutionarily plastic, and reviving notions that the scleractinian skeleton may be ephemeral and that the group itself may be polyphyletic. Nevertheless, the most comprehensive phylogenetic study of Hexacorallia supported scleractinian monophyly (REF), and so this remains controversial. In order to resolve this contentious issue, we sequenced the complete mitochondrial genome sequences ofmore » nine scleractinians and four corallimorpharians and performed phylogenetic analysis that also included three outgroups (an octocoral and two sea anemones). Our data provide the first strong evidence that Scleractinia is paraphyletic and that the Corallimorpharia is derived from within the group, from which we conclude that skeletal loss has occurred in the latter group secondarily. It is possible that a driving force in such skeletal loss could be the high levels of CO{sub 2} in the ocean during the mid-Cretaceous, which would have impacted aragonite solubility. We estimate from molecular divergence measures that the Corallimorpharia arose in the mid-Cretaceous, approximately 87 million years ago (Ma), supporting this view. These data also permit us to date the origin of Scleractinia to 265 Ma, narrowing the gap between the group's phylogenetic origin and its earliest fossil record.« less

  15. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons.

    PubMed

    Reyes-Nivia, Catalina; Diaz-Pulido, Guillermo; Kline, David; Guldberg, Ove-Hoegh; Dove, Sophie

    2013-06-01

    Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm - 24 °C) and future pCO2 -temperature scenarios projected for the end of the century (Medium: +230 μatm - +2 °C; High: +610 μatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2 -temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2 -temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2 -temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans. © 2013

  16. Discovery of chitin in skeletons of non-verongiid Red Sea demosponges.

    PubMed

    Ehrlich, Hermann; Shaala, Lamiaa A; Youssef, Diaa T A; Żółtowska-Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R; Ivanenko, Viatcheslav N; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil

    2018-01-01

    Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.

  17. Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage.

    PubMed

    Ke, Xi; Cheng, Yifeng; Liu, Jun; Liu, Liying; Wang, Naiguang; Liu, Jianping; Zhi, Chunyi; Shi, Zhicong; Guo, Zaiping

    2018-04-25

    Rechargeable lithium metal anodes (LMAs) with long cycling life have been regarded as the "Holy Grail" for high-energy-density lithium metal secondary batteries. The skeleton plays an important role in determining the performance of LMAs. Commercially available copper foam (CF) is not normally regarded as a suitable skeleton for stable lithium storage owing to its relatively inappropriate large pore size and relatively low specific surface area. Herein, for the first time, we revisit CF and address these issues by rationally designing a highly porous copper (HPC) architecture grown on CF substrates (HPC/CF) as a three-dimensional (3D) hierarchically bicontinuous porous skeleton through a novel approach combining the self-assembly of polystyrene microspheres, electrodeposition of copper, and a thermal annealing treatment. Compared to the CF skeleton, the HPC/CF skeleton exhibits a significantly improved Li plating/stripping behavior with high Coulombic efficiency (CE) and superior Li dendrite growth suppression. The 3D HPC/CF-based LMAs can run for 620 h without short-circuiting in a symmetric Li/Li@Cu cell at 0.5 mA cm -2 , and the Li@Cu/LiFePO 4 full cell exhibits a high reversible capacity of 115 mAh g -1 with a high CE of 99.7% at 2 C for 500 cycles. These results demonstrate the effectiveness of the design strategy of 3D hierarchically bicontinuous porous skeletons for developing stable and safe LMAs.

  18. A simple algorithm for computing positively weighted straight skeletons of monotone polygons☆

    PubMed Central

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-01-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlog⁡n) time and O(n) space, where n denotes the number of vertices of the polygon. PMID:25648376

  19. A simple algorithm for computing positively weighted straight skeletons of monotone polygons.

    PubMed

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-02-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in [Formula: see text] time and [Formula: see text] space, where n denotes the number of vertices of the polygon.

  20. Strong surfaces, surface skeletons, and image superimposition

    NASA Astrophysics Data System (ADS)

    Malgouyres, Remy; Fourey, Sebastien

    1998-10-01

    After having recalled the definition and some local properties of strong surfaces, we present a related new thinning algorithm with surface skeleton and a specific application of these notions to superimposition of images of brains obtained by Magnetic Resonance Image.

  1. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).

    PubMed

    Sefton, Elizabeth M; Piekarski, Nadine; Hanken, James

    2015-01-01

    The impressive morphological diversification of vertebrates was achieved in part by innovation and modification of the pharyngeal skeleton. Extensive fate mapping in amniote models has revealed a primarily cranial neural crest derivation of the pharyngeal skeleton. Although comparable fate maps of amphibians produced over several decades have failed to document a neural crest derivation of ventromedial elements in these vertebrates, a recent report provides evidence of a mesodermal origin of one of these elements, basibranchial 2, in the axolotl. We used a transgenic labeling protocol and grafts of labeled cells between GFP+ and white embryos to derive a fate map that describes contributions of both cranial neural crest and mesoderm to the axolotl pharyngeal skeleton, and we conducted additional experiments that probe the mechanisms that underlie mesodermal patterning. Our fate map confirms a dual embryonic origin of the pharyngeal skeleton in urodeles, including derivation of basibranchial 2 from mesoderm closely associated with the second heart field. Additionally, heterotopic transplantation experiments reveal lineage restriction of mesodermal cells that contribute to pharyngeal cartilage. The mesoderm-derived component of the pharyngeal skeleton appears to be particularly sensitive to retinoic acid (RA): administration of exogenous RA leads to loss of the second basibranchial, but not the first. Neural crest was undoubtedly critical in the evolution of the vertebrate pharyngeal skeleton, but mesoderm may have played a central role in forming ventromedial elements, in particular. When and how many times during vertebrate phylogeny a mesodermal contribution to the pharyngeal skeleton evolved remain to be resolved. © 2015 Wiley Periodicals, Inc.

  2. New descriptor for skeletons of planar shapes: the calypter

    NASA Astrophysics Data System (ADS)

    Pirard, Eric; Nivart, Jean-Francois

    1994-05-01

    The mathematical definition of the skeleton as the locus of centers of maximal inscribed discs is a nondigitizable one. The idea presented in this paper is to incorporate the skeleton information and the chain-code of the contour into a single descriptor by associating to each point of a contour the center and radius of the maximum inscribed disc tangent at that point. This new descriptor is called calypter. The encoding of a calypter is a three stage algorithm: (1) chain coding of the contour; (2) euclidean distance transformation, (3) climbing on the distance relief from each point of the contour towards the corresponding maximal inscribed disc center. Here we introduce an integer euclidean distance transform called the holodisc distance transform. The major interest of this holodisc transform is to confer 8-connexity to the isolevels of the generated distance relief thereby allowing a climbing algorithm to proceed step by step towards the centers of the maximal inscribed discs. The calypter has a cyclic structure delivering high speed access to the skeleton data. Its potential uses are in high speed euclidean mathematical morphology, shape processing, and analysis.

  3. The costal skeleton of the Regourdou 1 Neandertal.

    PubMed

    Gómez-Olivencia, Asier; Holliday, Trenton; Madelaine, Stéphane; Couture-Veschambre, Christine; Maureille, Bruno

    2018-02-26

    The morphology and size of the Neandertal thorax is a subject of growing interest due to its link to general aspects of body size and shape, including physiological aspects related to bioenergetics and activity budgets. However, the number of well-preserved adult Neandertal costal remains is still low. The recent finding of new additional costal remains from the Regourdou 1 (R1) skeleton has rendered this skeleton as one of the most complete Neandertal costal skeletons with a minimum of 18 ribs represented, five of which are complete or virtually complete. Here we describe for the first time all the rib remains from R1 and compare them to a large modern Euroamerican male sample as well as to other published Neandertal individuals. The costal skeleton of this individual shows significant metric and morphological differences from our modern human male comparative sample. The perceived differences include: dorsoventrally large 1st and 2nd ribs, 3rd ribs with a very closed dorsal curvature and large maximum diameters at the posterior angle, a large tubercle-iliocostal line distance in the 4th rib, thick shafts at the dorsal end of its 6th ribs, thick mid-shafts of the 8th ribs, large articular tubercles at the 9th ribs, and thick shafts of the 11th and 12th ribs. Here we also describe a new mesosternal fragment: the left lateral half of sternebral segments 4 and 5. This portion reveals that the mesosternum of R1 had a sternal foramen in its inferiormost preserved sternal segment and supports previous estimation of the total length of this mesosternum. The new costal remains from R1 support the view that Neandertals, when compared with modern humans, show a significantly different thorax, consistent with differences found in other anatomical regions such as the vertebral column and pelvis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang

    A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.

  5. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis1[OPEN

    PubMed Central

    Sun, Ting; Jin, Honglei; Wang, Jinfa

    2017-01-01

    In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1, TRX m2, and TRX m4 (TRX ms), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis (Arabidopsis thaliana). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m-silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway. PMID:28827456

  6. Skeletonization of gray-scale images by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Qian, Kai; Cao, Siqi; Bhattacharya, Prabir

    1997-07-01

    In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  7. Skeleton-Based Human Action Recognition With Global Context-Aware Attention LSTM Networks

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, Gang; Duan, Ling-Yu; Abdiyeva, Kamila; Kot, Alex C.

    2018-04-01

    Human action recognition in 3D skeleton sequences has attracted a lot of research attention. Recently, Long Short-Term Memory (LSTM) networks have shown promising performance in this task due to their strengths in modeling the dependencies and dynamics in sequential data. As not all skeletal joints are informative for action recognition, and the irrelevant joints often bring noise which can degrade the performance, we need to pay more attention to the informative ones. However, the original LSTM network does not have explicit attention ability. In this paper, we propose a new class of LSTM network, Global Context-Aware Attention LSTM (GCA-LSTM), for skeleton based action recognition. This network is capable of selectively focusing on the informative joints in each frame of each skeleton sequence by using a global context memory cell. To further improve the attention capability of our network, we also introduce a recurrent attention mechanism, with which the attention performance of the network can be enhanced progressively. Moreover, we propose a stepwise training scheme in order to train our network effectively. Our approach achieves state-of-the-art performance on five challenging benchmark datasets for skeleton based action recognition.

  8. Postmortem microbial communities in burial soil layers of skeletonized humans.

    PubMed

    Thomas, Torri B; Finley, Sheree J; Wilkinson, Jeremy E; Wescott, Daniel J; Gorski, Azriel; Javan, Gulnaz T

    2017-07-01

    Microorganisms are major ecological participants in the successional decomposition of vertebrates. The relative abundance, or the scarcity, of certain microbial taxa in gravesoil has the potential to determine the ecological status of skeletons. However, there are substantial knowledge gaps that warrant consideration in the context of the surrounding terrestrial ecosystem. In the current study, we hypothesized that i.) soil microbial diversity is disparate in the latter stage of decomposition (skeletonization) compared to the earlier stages (fresh, bloat, active and advanced decay), and ii.) the three layers of gravesoil (top, middle, and bottom) encompass similar microbial taxa and are analogous with control soil. To test these hypotheses, microbial communities in layers of burial soil of skeletonized bodies (treated) and from control soil, obtained from burial plots with no bodies (untreated), were compared using sequencing data of the 16S rRNA gene. The results demonstrated that Acidobacteria was confirmed as the most abundant microbial genus in all treated and untreated soil layers. Furthermore, Proteobacteria demonstrated a relatively low abundance in skeletonized gravesoil which is dissimilar from previous findings that assessed soil from earlier stages of human decomposition. Also, these results determined that soil microbial signatures were analogous in all three soil layers under the effects of similar abiotic and biotic factors, and they were similar to the communities in untreated soil. Therefore, the current study produced empirical data that give conclusive evidence of soil microbial successional changes, particularly for Proteobacteria, for potential use in forensic microbiology research. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Compositional variations at ultra-structure length scales in coral skeleton

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Cuif, Jean-Pierre; Houlbreque, Fanny; Mostefaoui, Smail; Dauphin, Yannicke; Meibom, Karin L.; Dunbar, Robert

    2008-03-01

    Distributions of Mg and Sr in the skeletons of a deep-sea coral ( Caryophyllia ambrosia) and a shallow-water, reef-building coral ( Pavona clavus) have been obtained with a spatial resolution of 150 nm, using the NanoSIMS ion microprobe at the Muséum National d'Histoire Naturelle in Paris. These trace element analyses focus on the two primary ultra-structural components in the skeleton: centers of calcification (COC) and fibrous aragonite. In fibrous aragonite, the trace element variations are typically on the order of 10% or more, on length scales on the order of 1-10 μm. Sr/Ca and Mg/Ca variations are not correlated. However, Mg/Ca variations in Pavona are strongly correlated with the layered organization of the skeleton. These data allow for a direct comparison of trace element variations in zooxanthellate and non-zooxanthellate corals. In both corals, all trace elements show variations far beyond what can be attributed to variations in the marine environment. Furthermore, the observed trace element variations in the fibrous (bulk) part of the skeletons are not related to the activity of zooxanthellae, but result from other biological activity in the coral organism. To a large degree, this biological forcing is independent of the ambient marine environment, which is essentially constant on the growth timescales considered here. Finally, we discuss the possible detection of a new high-Mg calcium carbonate phase, which appears to be present in both deep-sea and reef-building corals and is neither aragonite nor calcite.

  10. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates

    PubMed Central

    Sire, Jean-Yves; Donoghue, Philip C J; Vickaryous, Matthews K

    2009-01-01

    Most non-tetrapod vertebrates develop mineralized extra-oral elements within the integument. Known collectively as the integumentary skeleton, these elements represent the structurally diverse skin-bound contribution to the dermal skeleton. In this review we begin by summarizing what is known about the histological diversity of the four main groups of integumentary skeletal tissues: hypermineralized (capping) tissues; dentine; plywood-like tissues; and bone. For most modern taxa, the integumentary skeleton has undergone widespread reduction and modification often rendering the homology and relationships of these elements confused and uncertain. Fundamentally, however, all integumentary skeletal elements are derived (alone or in combination) from only two types of cell condensations: odontogenic and osteogenic condensations. We review the origin and diversification of the integumentary skeleton in aquatic non-tetrapods (including stem gnathostomes), focusing on tissues derived from odontogenic (hypermineralized tissues, dentines and elasmodine) and osteogenic (bone tissues) cell condensations. The novelty of our new scenario of integumentary skeletal evolution resides in the demonstration that elasmodine, the main component of elasmoid scales, is odontogenic in origin. Based on available data we propose that elasmodine is a form of lamellar dentine. Given its widespread distribution in non-tetrapod lineages we further propose that elasmodine is a very ancient tissue in vertebrates and predict that it will be found in ancestral rhombic scales and cosmoid scales. PMID:19422423

  11. Non-Conventional Carbon Nanotube Skeleton Reinforced Composites for Space Applications

    NASA Astrophysics Data System (ADS)

    Hepp, Felicitas; Pfeiffer, E. K.; Pereira, C.; Martins, M.; Liedtke, V.; Macho, C.; Aschenbrenner, O.; Forero, S.; Linke, S.; Masouras, A.; Vavouliotis, A.; Kostopoulos, V.; Wulz, H.-G.; Pambaguian, L.

    2014-06-01

    Carbon Nanotubes (CNT) embedded in composite materials like CFRP, polymers or ceramics, can improve specific performance characteristics such as e.g. electrical conductivity, mechanical fatigue and crack propagation, mechanical properties, alpha/epsilon values, PIM-reduction, EMC shielding, etc.CNT skeletons, also called Bucky papers and Bucky discs, are macroscopic aggregates of Carbon Nanotubes. These skeletons are used in composites with different matrices, namely metal, ceramic or polymer or directly used in CFRP composites.The aim is to increase the performance of composite space structures by increasing the material characteristics or provide composites with additional sensing abilities like structural health monitoring.

  12. Septic tank burial: not just another skeleton in the closet.

    PubMed

    Lew, E O; Bannach, B; Rodriguez, W C

    1996-09-01

    Backed-up toilets lead to the discovery of a skeleton in the septic tank. Our challenges began with the excavation of this unconventional grave and progressed through recovery and examination of the skeleton, determination of the cause and manner of death, and ultimately, identification of the victim. Main aspects of the septic tank system are summarized, including functional theory, physical design and components, and general comments on use and maintenance. We discuss some basic principles applicable to the excavation and examination of any human skeletal remains, and offer a general approach to identification of the decedent.

  13. Chemical transformations on botryane skeleton. Effect on the cytotoxic activity.

    PubMed

    Reino, José L; Durán-Patrón, Rosa; Segura, Inmaculada; Hernández-Galán, Rosario; Riese, Hans H; Collado, Isidro G

    2003-03-01

    Eighteen compounds with a botryane skeleton have been obtained through chemical transformations of various toxins from the fungus Botrytis cinerea. During the course of these transformations, the C-10 carbon of the botryane skeleton was found to exhibit an interesting high regioselectivity to oxidizing and reducing agents. In addition, the cytotoxicity of 27 botryane derivatives was determined in vitro against Hs578T, MDA-MB-231, HT-1080, U87-MG, IMR-90, and HUVEC cell lines. The results of this study confirm that the cytotoxicity of botrydial (1) and its derivatives is related to the presence of a 1,5-dialdehyde functionality.

  14. Do sporting activities convey benefits to bone mass throughout the skeleton?

    PubMed

    Nevill, Alan; Holder, Roger; Stewart, Arthur

    2004-07-01

    It is well known that sport and exercise play an important role in stimulating site-specific bone mineral density (BMD). However, what is less well understood is how these benefits dissipate throughout the body. Hence, the aim of the present study was to compare the BMD (recorded at nine sites throughout the skeleton) of 106 male athletes (from nine sports) with that of 15 male non-exercising age-matched controls. Given that BMD is known to increase with body mass and peak with age, multivariate and univariate analyses of covariance were performed to compare the BMD of the nine sports groups with controls (at all sites) using body mass and age as covariates. Our results confirmed a greater adjusted BMD in the arms of the upper-body athletes, the right arm of racket players and the legs of runners (compared with controls), supporting the site-specific nature (i.e. specific to the externally loaded site) of the bone remodelling response (all P <0.01). However, evidence that bone mass acquisition is not just site-specific comes from the results of the rugby players, strength athletes, triathletes and racket players. The rugby players' adjusted BMD was the greatest of all sports groups and greater than controls at all nine sites (all P <0.01), with differences ranging from 8% greater in the left arm to 21% in the lumbar spine. Similarly, the strength athletes' adjusted BMD was superior to that of controls at all sites (P <0.05) except the legs. The adjusted BMD of the triathletes was significantly greater than that of the controls in both the arms and the legs as well as the thoracic and lumbar spine. The racket players not only had significantly greater right arm BMD compared with the controls but also a greater BMD of the lumbar spine, the pelvis and legs. In contrast, the low-strain, low-impact activities of keep-fit, cycling and rowing failed to benefit BMD compared with the age-matched controls. These results suggest that sporting activities involving high impact

  15. Recent advances in fixation of the craniomaxillofacial skeleton.

    PubMed

    Meslemani, Danny; Kellman, Robert M

    2012-08-01

    Fixation of the craniomaxillofacial skeleton is an evolving aspect for facial plastic, oral and maxillofacial, and plastic surgery. This review looks at the recent advances that aid in reduction and fixation of the craniomaxillofacial skeleton. More surgeons are using resorbable plates for craniomaxillofacial fixation. A single miniplate on the inferior border of the mandible may be sufficient to reduce and fixate an angle fracture. Percutaneous K-wires may assist in plating angle fractures. Intraoperative computed tomography (CT) may prove to be useful for assessing reduction and fixation. Resorbable plates are becoming increasingly popular in orthognathic surgery and facial trauma surgery. There are newer operative techniques for fixating the angle of the mandible. Also, the utilization of the intraoperative CT provides immediate feedback for accurate reduction and fixation. Prebent surgical plates save operative time, decrease errors, and provide more accurate fixation.

  16. Conditioning of sewage sludge by Fenton's reagent combined with skeleton builders.

    PubMed

    Liu, Huan; Yang, Jiakuan; Shi, Yafei; Li, Ye; He, Shu; Yang, Changzhu; Yao, Hong

    2012-06-01

    Physical conditioners, often known as skeleton builders, are commonly used to improve the dewaterability of sewage sludge. This study evaluated a novel joint usage of Fenton's reagent and skeleton builders, referred to as the F-S inorganic composite conditioner, focusing on their efficacies and the optimization of the major operational parameters. The results demonstrate that the F-S composite conditioner for conditioning sewage sludge is a viable alternative to conventional organic polymers, especially when ordinary Portland cement (OPC) and lime are used as the skeleton builders. Experimental investigations confirmed that Fenton reaction required sufficient time (80 min in this study) to degrade organics in the sludge. The optimal condition of this process was at pH=5, Fe(2+)=40 mg g(-1) (dry solids), H(2)O(2)=32 mg g(-1), OPC=300 mg g(-1) and lime=400 mg g(-1), in which the specific resistance to filtration reduction efficiency of 95% was achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Thermal dielectroscopy - A new method for studying the membrane skeleton of human erythrocytes

    NASA Astrophysics Data System (ADS)

    Paarvanova, Boyana; Tacheva, Bilyana; Karabaliev, Miroslav; Ivanov, Ivan T.

    2017-11-01

    The structure and mechanical properties of erythrocyte plasma membrane are strongly affected by both the dephosphorylation and thermal denaturation (49.5°C) of erythrocyte under-membrane spectrin skeleton. Here, the dielectric loss (DL) of suspensions, containing native erythrocytes or erythrocyte ghost membranes (EGMs), was determined applying a mathematical method to remove the conductive loss from the imaginary capacitance, Cim, of the suspensions. The DL frequency profile of spectrin skeleton was obtained subtracting the DL data collected prior to, and after the denaturation of spectrin at 49.5°C. Spectrin skeleton exhibited narrow bell-shaped DL frequency curve, centered at 1.5 MHz, presumably reflecting the segmental mobility of spectrin. The area of this curve was reduced by 30 % after mild dephosphorylation (starvation of erythrocytes at 37°C for 5 h) and reduced to zero at EGMs resealed with alkaline phosphatase (full dephosphorylation). These results, combined with others, indicate the relevance of dielectric analysis for the study of dynamics and separation of membrane skeleton from the lipid membrane of erythrocytes.

  18. Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans.

    PubMed

    Chatters, James C; Kennett, Douglas J; Asmerom, Yemane; Kemp, Brian M; Polyak, Victor; Blank, Alberto Nava; Beddows, Patricia A; Reinhardt, Eduard; Arroyo-Cabrales, Joaquin; Bolnick, Deborah A; Malhi, Ripan S; Culleton, Brendan J; Erreguerena, Pilar Luna; Rissolo, Dominique; Morell-Hart, Shanti; Stafford, Thomas W

    2014-05-16

    Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry. Copyright © 2014, American Association for the Advancement of Science.

  19. Melorheostosis involving the craniofacial skeleton.

    PubMed

    Ethunandan, Madanagopalan; Khosla, Nalin; Tilley, Elizabeth; Webb, Andrew

    2004-11-01

    Melorheostosis is a rare bone disorder, usually affecting the long bones and adjacent soft tissue. It was originally described by Leri and Joanny in 1922, after its classic x-ray features of flowing hyperostosis resembling dripping candle wax. There have been fewer than 10 reported cases of craniofacial involvement, and in most instances these have also involved the appendicular skeleton. The authors report a case of melorheostosis with isolated craniofacial involvement, describe the clinical course and radiologic and histologic features, and review the pertinent literature.

  20. Anisotropic polarization π -molecular skeleton coupled dynamics in proton-displacive organic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Horiuchi, S.; Kida, N.; Shimano, R.; Tokura, Y.

    2009-09-01

    We have investigated the polarization π -molecular skeleton coupled dynamics for the proton-displacive organic ferroelectrics, cocrystal of phenazine with the 2,5-dihalo-3,6-dihydroxy-p-benzoquinones by measurements of the terahertz/infrared spectroscopy. In the course of the ferroelectric-to-paraelectric transition, the ferroelectric soft phonon mode originating from the intermolecular dynamical displacement is observed in the imaginary part of dielectric spectra γ2 , when the electric field of the light (E) is parallel to the spontaneous polarization (P) . The soft phonon mode is isolated from the intramolecular vibrational mode and hence the intramolecular skeleton dynamics is almost decoupled from the polarization fluctuation. In the spectra for E parallel to the hydrogen-bonded supramolecular chain, by contrast, the vibrational mode mainly originating from the oxygen atom motion within the π -molecular plane is anomalously blurred and amalgamated into the polarization relaxation mode concomitantly with the dynamical proton disorder. This indicates that the dynamical disorder of the intramolecular skeleton structure, specifically that of oxygen atom, is strongly enhanced by the proton fluctuation and is significantly coupled to the polarization fluctuation along the hydrogen-bonded supramolecular chain. The results are discussed in terms of the proton-mediated anisotropic polarization π -molecular skeleton interaction, which characterizes these emerging proton-displacive ferroelectrics.

  1. Biological forcing controls the chemistry of reef-building coral skeleton

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Mostefaoui, Smail; Cuif, Jean-Pierre; Dauphin, Yannicke; Houlbreque, Fanny; Dunbar, Robert; Constantz, Brent

    2007-01-01

    We present analyses of major elements C and Ca and trace elements N, S, Mg and Sr in a Porites sp. exoskeleton with a spatial resolution better than ˜150 nm. Trace element variations are evaluated directly against the ultra-structure of the skeleton and are ascribed to dynamic biological forcing. Individual growth layers in the bulk fibrous aragonite skeleton form on sub-daily timescales. Magnesium concentration variations are dramatically correlated with the growth layers, but are uncorrelated with Sr concentration variations. Observed (sub)seasonal relationships between water temperature and skeletal trace-element chemistry are secondary, mediated by sensitive biological processes to which classical thermodynamic formalism does not apply.

  2. Determination of Ca content of coral skeleton by analyte additive method using the LIBS technique

    NASA Astrophysics Data System (ADS)

    Haider, A. F. M. Y.; Khan, Z. H.

    2012-09-01

    Laser-induced breakdown spectroscopic (LIBS) technique was used to study the elemental profile of coral skeletons. Apart from calcium and carbon, which are the main elemental constituents of coral skeleton, elements like Sr, Na, Mg, Li, Si, Cu, Ti, K, Mn, Zn, Ba, Mo, Br and Fe were detected in the coral skeletons from the Inani Beach and the Saint Martin's island of Bangladesh and the coral from the Philippines. In addition to the qualitative analysis, the quantitative analysis of the main elemental constituent, calcium (Ca), was done. The result shows the presence of (36.15±1.43)% by weight of Ca in the coral skeleton collected from the Inani Beach, Cox's Bazar, Bangladesh. It was determined by using six calibration curves, drawn for six emission lines of Ca I (428.301 nm, 428.936 nm, 431.865 nm, 443.544 nm, 443.569 nm, and 445.589 nm), by standard analyte additive method. Also from AAS measurement the percentage content of Ca in the same sample of coral skeleton obtained was 39.87% by weight which compares fairly well with the result obtained by the analyte additive method.

  3. Morphological interaction between the nasal septum and nasofacial skeleton during human ontogeny.

    PubMed

    Goergen, Matthew J; Holton, Nathan E; Grünheid, Thorsten

    2017-05-01

    The nasal septal cartilage is thought to be a key growth center that contributes to nasofacial skeletal development. Despite the developmental influence of the nasal septum however, humans often exhibit a high frequency of septal deviation suggesting discordance in the growth between the septum and surrounding nasofacial skeleton. While there are numerous etiological factors that contribute to septal deviation, the surrounding nasofacial skeleton may also act to constrain the septum, resulting in altered patterns of growth. That is, while the nasal septum has a direct morphogenetic influence on aspects of the nasofacial skeleton, other nasofacial skeletal components may restrict septal growth resulting in deviation. Detailing the developmental relationship between these structures is important not only for understanding the causal determinants of nasal septal deviation, but also for developing a broader understanding of the complex interaction between the facial skeleton and chondrocranium. We selected 66 non-syndromic subjects from the University of Minnesota Orthodontic Clinic who ranged from 7 to 18 years in age and had an existing pretreatment cone-beam computed tomography (CBCT) scan. Using CBCT data, we examined the developmental relationship between nasal septal deviation and the surrounding nasofacial skeleton. We measured septal deviation as a percentage of septal volume relative to a modeled non-deviated septum. We then collected a series of coordinate landmark data in the region immediately surrounding the nasal septum in the midsagittal plane representing the nasofacial skeleton. First, we examined ontogenetic changes in the magnitude of nasal septal deviation relative to chronological age and nasofacial size. Next, using Procrustes-based geometric morphometric techniques, we assessed the morphological relationship between nasal septal deviation and nasofacial skeletal shape. Our results indicate that variation in the magnitude of nasal septal

  4. Specification to biomineralization: following a single cell type as it constructs a skeleton.

    PubMed

    Lyons, Deirdre C; Martik, Megan L; Saunders, Lindsay R; McClay, David R

    2014-10-01

    The sea urchin larva is shaped by a calcite endoskeleton. That skeleton is built by 64 primary mesenchyme cells (PMCs) in Lytechinus variegatus. The PMCs originate as micromeres due to an unequal fourth cleavage in the embryo. Micromeres are specified in a well-described molecular sequence and enter the blastocoel at a precise time using a classic epithelial-mesenchymal transition. To make the skeleton, the PMCs receive signaling inputs from the overlying ectoderm, which provides positional information as well as control of the growth of initial skeletal tri-radiates. The patterning of the skeleton is the result both of autonomous inputs from PMCs, including production of proteins that are included in the skeletal matrix, and of non-autonomous dynamic information from the ectoderm. Here, we summarize the wealth of information known about how a PMC contributes to the skeletal structure. The larval skeleton is a model for understanding how information encoded in DNA is translated into a three-dimensional crystalline structure. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Diverse mechanisms of plant resistance to cauliflower mosaic virus revealed by leaf skeleton hybridization.

    PubMed

    Melcher, U; Brannan, C M; Gardner, C O; Essenberg, R C

    1992-01-01

    Plants not hosts for cauliflower mosaic virus (CaMV) may prevent systemic CaMV infection by interfering with dissemination of infection through the plant or by preventing viral replication and maturation. Leaf skeleton hybridization allows distinction between these two barriers. The technique assesses the spatial distribution of CaMV in an inoculated leaf by hybridization of a skeleton of the leaf with a CaMV DNA probe. Leaves or leaflets of soybean, cucumber, peanut, tomato, lettuce, spinach, pepper, onion, wheat, maize and barley, inoculated with CaMV DNA or CaMV virions were processed for leaf skeleton hybridization either immediately after inoculation or two weeks thereafter. Autoradiographic images of soybean and cucumber skeletons had many dark spots suggesting that CaMV DNA replication and local spread had occurred. Images of onion leaf skeletons prepared two weeks after inoculation with CaMV DNA had fewer spots. To test whether these spots resulted from CaMV replication, DNA was extracted from inoculated onion leaves and analyzed by electrophoresis, blotting and hybridization. Molecules recovered two weeks after inoculation resembled those inoculated, indicating absence of replication. For the other species, we found no evidence of local spread of CaMV infections. Thus, many plant species resist systemic CaMV infection by preventing replication or local spread of CaMV, while others solely prevent systemic movement of infection.

  6. Generalized spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons

    NASA Astrophysics Data System (ADS)

    Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi

    1998-07-01

    Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.

  7. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls.

    PubMed

    Thewissen, J G; Williams, E M; Roe, L J; Hussain, S T

    2001-09-20

    Modern members of the mammalian order Cetacea (whales, dolphins and porpoises) are obligate aquatic swimmers that are highly distinctive in morphology, lacking hair and hind limbs, and having flippers, flukes, and a streamlined body. Eocene fossils document much of cetaceans' land-to-water transition, but, until now, the most primitive representative for which a skeleton was known was clearly amphibious and lived in coastal environments. Here we report on the skeletons of two early Eocene pakicetid cetaceans, the fox-sized Ichthyolestes pinfoldi, and the wolf-sized Pakicetus attocki. Their skeletons also elucidate the relationships of cetaceans to other mammals. Morphological cladistic analyses have shown cetaceans to be most closely related to one or more mesonychians, a group of extinct, archaic ungulates, but molecular analyses have indicated that they are the sister group to hippopotamids. Our cladistic analysis indicates that cetaceans are more closely related to artiodactyls than to any mesonychian. Cetaceans are not the sister group to (any) mesonychians, nor to hippopotamids. Our analysis stops short of identifying any particular artiodactyl family as the cetacean sister group and supports monophyly of artiodactyls.

  8. Astronomical image data compression by morphological skeleton transformation

    NASA Astrophysics Data System (ADS)

    Huang, L.; Bijaoui, A.

    A compression method adapted for exact restoring of the detected objects and based on the morphological skeleton transformation is presented. The morphological skeleton provides a complete and compact description of an object and gives an efficient compression rate. The flexibility of choosing a structuring element adapted to different images and the simplicity of the implementation are considered to be advantages of the method. The experiment was carried out on three typical astronomical images. The first two images were obtained by digitizing a Palomar Schmidt photographic plate in a coma field with the PDS microdensitometer at Nice Observatory. The third image was obtained by CCD camera at the Pic du Midi Observatory. Each pixel was coded by 16 bits and stored at a computer system (VAX785) with STII format. Each image is characterized by 256 x 256 pixels. It is found that first image represents a stellar field, the second represents a set of galaxies in the Coma, and the third image contains an elliptical galaxy.

  9. Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and paleobiology.

    PubMed

    Franzen, Jens L; Gingerich, Philip D; Habersetzer, Jörg; Hurum, Jørn H; von Koenigswald, Wighart; Smith, B Holly

    2009-05-19

    The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record. We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650-900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest. Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine diversification.

  10. Novel skeleton sesquiterpenoids isolated from guava leaves.

    PubMed

    Ouyang, Wen; Zhu, Xiao-ai; Wang, Wei; Chen, Xue-Xiang; Chen, Yun-Jiao; Cao, Yong

    2016-01-01

    A chemical investigation of the plant Psidium guajava L., collected in Guangdong province, afforded two novel skeleton sesquiterpenoids 1 and 2. Compound 2 also known as isocaryolan-9-one was a new natural product. The structure of the novel compound 1 was determined as guavacid A by various spectroscopic methods. A possible biosynthetic pathway for 1 and 2 was proposed.

  11. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling.

    PubMed

    Park, Joon-Heum; Jung, Sunyo

    2017-01-22

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Key functional role of the optical properties of coral skeletons in coral ecology and evolution.

    PubMed

    Enríquez, Susana; Méndez, Eugenio R; Hoegh-Guldberg, Ove; Iglesias-Prieto, Roberto

    2017-04-26

    Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean. © 2017 The Author(s).

  13. Keeping Your Voice Healthy

    MedlinePlus

    ... an ENT Doctor Near You Keeping Your Voice Healthy Keeping Your Voice Healthy Patient Health Information News ... voice-related. Key Steps for Keeping Your Voice Healthy Drink plenty of water. Moisture is good for ...

  14. Mineralization of the Sea Urchin Skeleton

    NASA Astrophysics Data System (ADS)

    Wilt, F.

    2001-12-01

    The sea urchin possess a calcareous skeleton composed of over 99% magnesian calcite,an enveloping extracellular matrix, and an occluded protein matrix. The most intensively studied skeletal element is the spicule of the embryo. At the 32 cell stage of development a cohort of 4 cells becomes irrevocably dedicated to spicule formation. At the early gastrula stage the descendants of these founder cells form the primary mesenchyme (PMC). The PMCs fuse to form a multinucleated syncytium connected by cytoplasmic cables, and the calcitic skeleton is formed within these cables. Our primary concern is with the cellular and molecular mechanisms that support the formation of the mineralized spicules. The import of calcium into the PMCs results in appearance of intracellular vesicles containing precipitated calcium, which is neither very stable nor birefringent, and could be amorphous. The precipitated calcium is vectorially secreted into an extracellular space. This space is almost completely enclosed by cytoplasmic strands, and the mineral is encased in an extracellular matrix. Proteins destined for the extracellular matrix, and for inclusion in the spicule, are present in the Golgi membranes and in small intracellular vesicles. These vesicles apparently deliver the matrix proteins to the growing spicule. Our current view is that the matrix molecules are much more than a passive armature, but are actively involved in precipitation, secretion, and organization of the mineral phase.

  15. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones.

    PubMed

    Zhang, Dongjian; Jiang, Cuihua; Yang, Shengwei; Gao, Meng; Huang, Dejian; Wang, Xiaoning; Shao, Haibo; Feng, Yuanbo; Sun, Ziping; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2016-01-01

    Necrosis avid agents (NAAs) can be used for diagnose of necrosis-related diseases, evaluation of therapeutic responses and targeted therapeutics of tumor. In order to probe into the effects of molecular skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones, four dianthrone compounds with the same substituents but different skeletal structures, namely Hypericin (Hyp), protohypericin (ProHyp), emodin dianthrone mesomer (ED-1) and emodin dianthrone raceme (ED-2) were synthesized and radioiodinated. Then radioiodinated dianthrones were evaluated in vitro for their necrosis avidity in A549 lung cancer cells untreated and treated with H2O2. Their biodistribution and pharmacokinetic properties were determined in rat models of induced necrosis. In vitro cell assay revealed that destruction of rigid skeleton structure dramatically reduced their necrosis targeting ability. Animal studies demonstrated that destruction of rigid skeleton structure dramatically reduced the necrotic tissue uptake and speed up the clearance from the most normal tissues for the studied compounds. Among these (131)I-dianthrones, (131)I-Hyp exhibited the highest uptake and persistent retention in necrotic tissues. Hepatic infarction could be clearly visualized by SPECT/CT using (131)I-Hyp as an imaging probe. The results suggest that the skeleton structure of Hyp is the lead structure for further structure optimization of this class of NAAs.

  16. Determination of skeleton and sign map for phase obtaining from a single ESPI image

    NASA Astrophysics Data System (ADS)

    Yang, Xia; Yu, Qifeng; Fu, Sihua

    2009-06-01

    A robust method of determining the sign map and skeletons for ESPI images is introduced in this paper. ESPI images have high speckle noise which makes it difficult to obtain the fringe information, especially from a single image. To overcome the effects of high speckle noise, local directional computing windows are designed according to the fringe directions. Then by calculating the gradients from the filtered image in directional windows, sign map and good skeletons can be determined robustly. Based on the sign map, single image phase-extracting methods such as quadrature transform can be improved. And based on skeletons, fringe phases can be obtained directly by normalization methods. Experiments show that this new method is robust and effective for extracting phase from a single ESPI fringe image.

  17. Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron

    PubMed Central

    Chang, Dong Woo; Kim, Bora; Shin, Jae Hoon; Yun, Young Min; Je, Jung Ho; Hwu, Yeu kuang; Yoon, Jung Hee

    2011-01-01

    The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification. PMID:21586868

  18. Weightlessness and the human skeleton: A new perspective

    NASA Technical Reports Server (NTRS)

    Holick, Michael F.

    1994-01-01

    It is now clear after more than two decades of space exploration that one of the major short- and long-term effects of microgravity on the human body is the loss of bone. The purpose of this presentation will be to review the data regarding the impact of microgravity and bed rest on calcium and bone metabolism. The author takes the position in this Socratic debate that the effect of microgravity on bone metabolism can be either reversed or mitigated. As we begins to contemplate long-duration space flight and habitation of Space Station Freedom and the moon, one of the issues that needs to be addressed is whether humans need to maintain a skeleton that has been adapted for the one-g force on earth. Clearly, in the foreseeable future, a healthy and structurally sound skeleton will be required for astronauts to shuttle back and forth from earth to the moon, space station, and Mars. Based on most available data from bed-rest studies and the short- and long-duration microgravity experiences by astronauts and cosmonauts, bone loss is a fact of life in this environment. With the rapid advances in understanding of bone physiology it is now possible to contemplate measures that can prevent or mitigate microgravity-induced bone loss. Will the new therapeutic approaches for enhancing bone mineralization be useful for preventing significant bone loss during long-term space flight? Are there other approaches such as exercise and electrical stimulation that can be used to mitigate the impact of microgravity on the skeleton? A recent study that evaluated the effect of microgravity on bone modeling in developing chick embryos may perhaps provide a new perspective about the impact of microgravity on bone metabolism.

  19. Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology

    PubMed Central

    Franzen, Jens L.; Gingerich, Philip D.; Habersetzer, Jörg; Hurum, Jørn H.; von Koenigswald, Wighart; Smith, B. Holly

    2009-01-01

    Background The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record. Methodology/Principal Findings We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650–900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest. Conclusions/Significance Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine

  20. Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris

    PubMed

    Quillin

    1998-05-21

    Soft-bodied organisms with hydrostatic skeletons range enormously in body size, both during the growth of individuals and in the comparison of species. Therefore, body size is an important consideration in an examination of the mechanical function of hydrostatic skeletons. The scaling of hydrostatic skeletons cannot be inferred from existing studies of the lever-like skeletons of vertebrates and arthropods because the two skeleton types function by different mechanisms. Hydrostats are constructed of an extensible body wall in tension surrounding a fluid or deformable tissue under compression. It is the pressurized internal fluid (rather than the rigid levers of vertebrates and arthropods) that enables the maintenance of posture, antagonism of muscles and transfer of muscle forces to the environment. The objectives of the present study were (1) to define the geometric, static stress and dynamic stress similarity scaling hypotheses for hydrostatic skeletons on the basis of their generalized form and function, and (2) to apply these similarity hypotheses in a study of the ontogenetic scaling of earthworms, Lumbricus terrestris, to determine which parameters of skeletal function are conserved or changed as a function of body mass during growth (from 0.01 to 8 g). Morphometric measurements on anesthetized earthworms revealed that the earthworms grew isometrically; the external proportions and number of segments were constant as a function of body size. Calculations of static stresses (forces per cross-sectional area in the body wall) during rest and dynamic stresses during peristaltic crawling (calculated from measurements of internal pressure and body wall geometry) revealed that the earthworms also maintained static and dynamic stress similarity, despite a slight increase in body wall thickness in segment 50 (but not in segment 15). In summary, the hydrostatic skeletons of earthworms differ fundamentally from the rigid, lever-like skeletons of their terrestrial

  1. A geometrical defect detection method for non-silicon MEMS part based on HU moment invariants of skeleton image

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Jin, Xin; Zhang, Zhijing; Lu, Jun

    2014-01-01

    In order to improve the accuracy of geometrical defect detection, this paper presented a method based on HU moment invariants of skeleton image. This method have four steps: first of all, grayscale images of non-silicon MEMS parts are collected and converted into binary images, secondly, skeletons of binary images are extracted using medialaxis- transform method, and then HU moment invariants of skeleton images are calculated, finally, differences of HU moment invariants between measured parts and qualified parts are obtained to determine whether there are geometrical defects. To demonstrate the availability of this method, experiments were carried out between skeleton images and grayscale images, and results show that: when defects of non-silicon MEMS part are the same, HU moment invariants of skeleton images are more sensitive than that of grayscale images, and detection accuracy is higher. Therefore, this method can more accurately determine whether non-silicon MEMS parts qualified or not, and can be applied to nonsilicon MEMS part detection system.

  2. New Insights into the Carbon Isotope Variations in Coral Skeletons (Invited)

    NASA Astrophysics Data System (ADS)

    Swart, P. K.

    2010-12-01

    The origin of the carbon isotopic composition of coral skeletons has been a subject of speculation and controversy since the first stable C and O isotopic measurements were made on corals in the 1960s and the first models of fractionation were proposed by Weber and coworkers. Early models focused on the interactions between the zooxanthellae and the coral organism and the relationship with insolation. Models were proposed that linked higher levels of photosynthesis to both 13C enriched and 13C depleted skeletal material. While the model which showed elevated 13C values related to enhanced photosynthesis generally has found favor and fits the majority of the data from experimental and field studies, more recent work has also shown the importance of the natural variability of the δ13C of the dissolved inorganic carbon on interannual and longer time scales. This variability can overwhelm photosynthetic induced variability. For example, changes over the time period of 100s of years, caused by the addition of fossil fuel CO2 to the atmosphere, has resulted in a general decline in the δ13C of coral skeletons since ~1800. These changes are even larger in instances in which local variations in δ13C are related to land use changes and the openness of the environment. Recently there has been concern regarding the decrease in the pH of the oceans related to increases in oceanic pCO2. This also has potential to changes the δ13C of the coral skeleton. Finally there are seasonal variations in the types of organic compounds being oxidized by the coral. This may be related to the types of materials being translocated between the zooxanthellae and the coral. All these factors make changes in the δ13C of coral skeletons much more than a reflection of the influence of insolation.

  3. New indolizines with phenanthroline skeleton: Synthesis, structure, antimycobacterial and anticancer evaluation.

    PubMed

    Danac, Ramona; Al Matarneh, Cristina M; Shova, Sergiu; Daniloaia, Teofil; Balan, Mihaela; Mangalagiu, Ionel I

    2015-05-15

    We report herein a feasible study concerning the design, synthesis, structure and in vitro antimycobacterial and anticancer activity of two new classes (containing four and five fused rings) of indolizine with phenanthroline skeleton. The preparation is straight and efficient, involving a Huisgen [3+2] dipolar cycloaddition of cycloimmonium ylides to alkynes or alkenes dipolarophiles. The cycloaddition reactions are highly stereo- or regioselective, according with the dipolarophiles nature. The structure of the new compounds was assigned unambiguously, X-ray analysis including. The primary antimycobacterial screening reveals that one of the thirteen tested compounds had a good activity against Mycobacterium tuberculosis H37Rv under aerobic conditions. The antiproliferative evaluation against a NCI 60 human tumor cell line panel, revealed that two indolizine with phenanthroline skeleton exhibit a selective and significant antitumor growth inhibitory activity against Breast Cancer (MCF7 and T-47D) and a slightly moderate activity against some forms of Leukemia, Non-Small Cell Lung Cancer, Renal Cancer and Breast Cancer (MDA-MB-468). The X-ray diffraction study of the indolizines with phenanthroline skeleton prove a flat coplanar structure which, corroborated with their anticancer activity, allow us to suggest that an interaction with DNA (via an intercalation mechanism) would be reasonable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hierarchical automated clustering of cloud point set by ellipsoidal skeleton: application to organ geometric modeling from CT-scan images

    NASA Astrophysics Data System (ADS)

    Banegas, Frederic; Michelucci, Dominique; Roelens, Marc; Jaeger, Marc

    1999-05-01

    We present a robust method for automatically constructing an ellipsoidal skeleton (e-skeleton) from a set of 3D points taken from NMR or TDM images. To ensure steadiness and accuracy, all points of the objects are taken into account, including the inner ones, which is different from the existing techniques. This skeleton will be essentially useful for object characterization, for comparisons between various measurements and as a basis for deformable models. It also provides good initial guess for surface reconstruction algorithms. On output of the entire process, we obtain an analytical description of the chosen entity, semantically zoomable (local features only or reconstructed surfaces), with any level of detail (LOD) by discretization step control in voxel or polygon format. This capability allows us to handle objects at interactive frame rates once the e-skeleton is computed. Each e-skeleton is stored as a multiscale CSG implicit tree.

  5. 41. Ground level photograph of two floors of skeleton complete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Ground level photograph of two floors of skeleton complete with 3rd and 4th floors being started,upper floors of county bldg visible - Chicago City Hall, 121 North LaSalle Street, Chicago, Cook County, IL

  6. Anabolic effects of IGF-1 signaling on the skeleton

    PubMed Central

    Tahimic, Candice G. T.; Wang, Yongmei; Bikle, Daniel D.

    2013-01-01

    This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also discussing the current model which takes into account the GH-independent actions of IGF-1. Next, the skeletal phenotypes of IGF-1-deficient animals are described in both embryonic and postnatal stages of development, which include severe dwarfism and an undermineralized skeleton. We then highlight two mechanisms by which IGF-1 exerts its anabolic action on the skeleton. Firstly, the role of IGF-1 signaling in the modulation of anabolic effects of parathyroid hormone (PTH) on bone will be discussed, presenting in vitro and in vivo studies that establish this concept and the proposed underlying molecular mechanisms involving Indian hedgehog (Ihh) and the ephrins. Secondly, the crosstalk of IGF-1 signaling with mechanosensing pathways will be discussed, beginning with the observation that animals subjected to skeletal unloading by hindlimb elevation are unable to mitigate cessation of bone growth despite infusion with IGF-1 and the failure of IGF-1 to activate its receptor in bone marrow stromal cell cultures from unloaded bone. Disrupted crosstalk between IGF-1 signaling and the integrin mechanotransduction pathways is discussed as one of the potential mechanisms for this IGF-1 resistance. Next, emerging paradigms on bone-muscle crosstalk are examined, focusing on the potential role of IGF-1 signaling in modulating such interactions. Finally, we present a future outlook on IGF research. PMID:23382729

  7. Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other drosophila epithelia.

    PubMed

    Baumann, O

    2001-11-01

    In epithelial cells, the various components of the membrane skeleton are segregated within specialized subregions of the plasma membrane, thus contributing to the development and stabilization of cell surface polarity. It has previously been shown that, in various Drosophila epithelia, the membrane skeleton components ankyrin and alphabeta-spectrin reside at the lateral surface, whereas alphabeta(H)-spectrin is restricted to the apical domain. By use of confocal immunofluorescence microscopy, the present study characterizes the membrane skeleton of epithelial cells in the posterior midgut, leading to a number of unexpected results. First, ankyrin and alphabeta-spectrin are not detected on the entire lateral surface but appear to be restricted to the apicolateral area, codistributing with fasciclin III at smooth septate junctions. The presumptive ankyrin-binding proteins neuroglian and Na(+),K(+)-ATPase, however, do not colocalize with ankyrin. Second, alphabeta(H)-spectrin is enriched at the apical domain but is also present in lower amounts on the entire lateral surface, colocalizing apicolaterally with ankyrin/alphabeta-spectrin. Finally, despite the absence of zonulae adherentes, F-actin, beta(H)-spectrin, and nonmuscle myosin-II are enriched in the midlateral region. Thus, the model established for the organization of the membrane skeleton in Drosophila epithelia does not hold for the posterior midgut, and there is quite some variability between the different epithelia with respect to the organization of the membrane skeleton. Copyright 2001 Academic Press.

  8. Structural integrity assessment and stress measurement of chasnupp-1 fuel assembly skeleton: under tensile loading condition

    NASA Astrophysics Data System (ADS)

    Waseem; Siddiqui, Ashfaq Ahmad; Murtaza, Ghulam; Maqbool, Abu Baker

    2017-12-01

    Fuel assembly (FA) structure without fuel rods is called FA skeleton which is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the Chashma Nuclear power plant-1 FA skeleton at room temperature. The finite element (FE) analysis has been performed using ANSYS, in order to determine the elongation of the FA skeleton as well as the location of max. stress and stresses developed in axial direction under tensile load of 9800 N or 2 g being the FA handling or lifting load [Y. Zhang et al., Fuel Assembly Design Report, SNERDI, China, 1994]. The FE model of grids, guide thimbles with dash-pots and flow holes has been developed using Shell 181. It has been observed that FA skeleton elongation values obtained through FE analysis and experiment are comparable and show linear behaviors. Moreover, the values of stresses obtained at different locations of the guide thimbles are also comparable with the stress values of the experiment determined at the same locations through strain gauges. Therefore, validation of the FE methodology is confirmed. The values of stresses are less than the design limit of the materials used for the grid and the guide thimble. Therefore, the structural integrity criterion of CHASNUPP-1 FA skeleton is fulfilled safely.

  9. Performance Measurements for the Microsoft Kinect Skeleton

    DTIC Science & Technology

    2012-03-01

    Information Inter- faces and Presentation]: User Interfaces—Input devices and strate- gies; 1 INTRODUCTION The Microsoft Kinect for Xbox 360 (“Kinect...these values. 2 MEASUREMENTS We conducted our tests on a machine configured with Windows 7 Ultimate (Service Pack 1) equipped with two Intel Core2...test. We tested with one , two, and three users present, although only two skeletons may be tracked. 2.1 Range We need to know how close and how far a

  10. Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins

    NASA Astrophysics Data System (ADS)

    Cheng, Polly; Kambli, Ankita; Stone, Johnny

    2017-10-01

    Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

  11. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON.

    PubMed

    Rücklin, Martin; Donoghue, Philip C J; Cunningham, John A; Marone, Federica; Stampanoni, Marco

    2014-07-01

    Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.

  12. Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions

    NASA Astrophysics Data System (ADS)

    Gorzelak, Przemysław; Krzykawski, Tomasz; Stolarski, Jarosław

    2016-09-01

    One of the most profound environmental changes thought to be reflected in chemical composition of numerous geological archives is Mg/Ca ratio of the seawater, which has varied dramatically throughout the Phanerozoic. Echinoderms that today typically form high magnesium calcite skeletons are increasingly being utilized as a proxy for interpreting secular changes in seawater chemistry. However, accurate characterization of the diagenetic changes of their metastable high magnesium calcite skeletons is a prerequisite for assessing their original, major-element geochemical composition. Here we expand the existing models of diagenesis of echinoderm skeleton by integration of various analytical methods that up to now rarely have been used to assess the diagenetic changes of fossil echinoderms. We validated the preservation of a suite of differently preserved echinoderm ossicles, mostly crinoids, ranging in age from the Cambrian through Recent. In 13 of 99 fossil echinoderm ossicles we found well-preserved porous microstructure (stereom), non-luminescent behaviour or blotchy dark color in cathodoluminescence, and distinct nanostructural features (layered and nanocomposite structure). Moreover, in representatives of such preserved samples, distribution of sulphates associated with organic matter is identical to those in Recent echinoderms. Only such ossicles, despite of local micrometer-scale diagenetic changes, were herein considered well-preserved, retaining their original major-element skeletal composition. By contrast, majority of samples show transformation to the stable low magnesium calcite that leads to obliteration of the primary geochemical and micro/nanostructural features and is accompanied with increase in cathodoluminescence emission intensity. Using only well-preserved fossil echinoderm samples, we found purely random variation in Mg/Ca in echinoderm skeletons through the observed time series; any periodicities in echinoderm skeletal Mg/Ca ratio which might

  13. Branching out: origins of the sea urchin larval skeleton in development and evolution

    PubMed Central

    McIntyre, Daniel C.; Lyons, Deirdre C.; Martik, Megan; McClay, David R.

    2014-01-01

    It is a challenge to understand how the information encoded in DNA is used to build a three dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, FGF, VEGF, and Wnt5. Each is necessary for explicit tasks in skeleton production. PMID:24549853

  14. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.

    Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less

  15. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing

    DOE PAGES

    Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.; ...

    2017-05-31

    Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less

  16. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  17. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  18. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  19. Shedding light into the function of the earliest vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Martinez-Perez, Carlos; Purnell, Mark; Rayfield, Emily; Donoghue, Philip

    2016-04-01

    Conodonts are an extinct group of jawless vertebrates, the first in our evolutionary lineage to develop a biomineralized skeleton. As such, the conodont skeleton is of great significance because of the insights it provides concerning the biology and function of the primitive vertebrate skeleton. Conodont function has been debated for a century and a half on the basis of its paleocological importance in the Palaezoic ecosystems. However, due to the lack of extanct close representatives and the small size of the conodont element (under a milimiter in length) strongly limited their functional analysis, traditional restricted to analogy. More recently, qualitative approaches have been developed, facilitating tests of element function based on occlusal performance and analysis of microwear and microstructure. In this work we extend these approaches using novel quantitative experimental methods including Synchrotron Radiation X-ray Tomographic Microscopy or Finite Element Analysis to test hypotheses of conodont function. The development of high resolution virtual models of conodont elements, together with biomechanical approaches using Finite Element analysis, informed by occlusal and microwear analyses, provided conclusive support to test hypothesis of structural adaptation within the crown tissue microstructure, showing a close topological co-variation patterns of compressive and tensile stress distribution with different crystallite orientation. In addition, our computational analyses strongly support a tooth-like function for many conodont species. Above all, our study establishes a framework (experimental approach) in which the functional ecology of conodonts can be read from their rich taxonomy and phylogeny, representing an important attempt to understand the role of this abundant and diverse clade in the Phanerozoic marine ecosystems.

  20. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis.

    PubMed

    Wang, Peng; Liang, Fu-Cheng; Wittmann, Daniel; Siegel, Alex; Shan, Shu-Ou; Grimm, Bernhard

    2018-04-10

    Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.

  1. Job Keeping Skills.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum is designed to help teachers teach a course in job keeping skills to high school students in order to instill in them appropriate attitudes for the world of work. The guide introduces the human aspects of working in an organization. "Job Keeping Skills" is divided into 10 instructional units. Each unit contains four or more lessons…

  2. Fast and robust curve skeletonization for real-world elongated objects

    USDA-ARS?s Scientific Manuscript database

    We consider the problem of extracting curve skeletons of three-dimensional, elongated objects given a noisy surface, which has applications in agricultural contexts such as extracting the branching structure of plants. We describe an efficient and robust method based on breadth-first search that ca...

  3. Talent identification and deliberate programming in skeleton: ice novice to Winter Olympian in 14 months.

    PubMed

    Bullock, Nicola; Gulbin, Jason P; Martin, David T; Ross, Angus; Holland, Terry; Marino, Frank

    2009-02-15

    The aims of this study were to talent transfer, rapidly develop, and qualify an Australian female athlete in the skeleton event at the 2006 Torino Winter Olympic Games and quantify the volume of skeleton-specific training and competition that would enable this to be achieved. Initially, 26 athletes were recruited through a talent identification programme based on their 30-m sprint time. After attending a selection camp, 10 athletes were invited to undertake an intensified skeleton training programme. Four of these athletes were then selected to compete for Australia on the World Cup circuit. All completed runs and simulated push starts were documented over a 14-month period. The athlete who eventually represented Australia at the Torino Winter Olympic Games did so following approximately 300 start simulations and about 220 training/competition runs over a period of 14 months. Using a deliberate programming model, these findings provide a guide to the minimum exposure required for a novice skeleton athlete to reach Olympic representative standard following intensified sport-specific training. The findings of this study are discussed in the context of the deliberate practice theory and offer the term "deliberate programming" as an alternative way of incorporating all aspects of expert development.

  4. Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.

  5. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    PubMed

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  6. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  7. Simulating certain aspects of hypogravity - Effects on bone maturation in the nonweight bearing skeleton

    NASA Technical Reports Server (NTRS)

    Simmons, D. J.; Grazman, B.; Russell, J. E.; Walker, W. V.; Bikle, D. D.; Morey, E. R.

    1983-01-01

    For a determination of how the nonweight-bearing skeletons, i.e., lower jaws, of 41-day and 1-year old rats would respond to 10 or 14 days of partial skeletal unloading by elevating the hindquarters (PULEH), an experimental system to simulate the fluid shifts and unloading of portions of the skeleton which occur during spaceflight was developed. In comparison with the bone matrix mineralization recorded in the mandibles of rats flown in the Soviet 18.5 day Cosmos-1129 mission, the PULEH studies failed to produce spaceflight-like maturation defects.

  8. Is the assessment of the central skeleton sufficient for osseous staging in breast cancer patients? A retrospective approach using bone scans.

    PubMed

    Krammer, Julia; Engel, Dorothee; Schnitzer, Andreas; Kaiser, Clemens G; Dinter, Dietmar J; Brade, Joachim; Schoenberg, Stefan O; Wasser, Klaus

    2013-06-01

    By analyzing bone scans we aimed to determine whether the assessment of the central skeleton is sufficient for osseous staging in breast cancer patients. This might be of interest for future staging modalities, especially positron emission tomography/computed tomography, usually sparing the peripheral extremities, as well as the skull. In this retrospective study, a total of 837 bone scans for initial staging or restaging of breast cancer were included. A total of 291 bone scans in 172 patients were positive for bone metastases. The localization and distribution of the metastases were re-evaluated by two readers in consensus. The extent of the central skeleton involvement was correlated to the incidence of peripheral metastases. In all 172 patients bone metastases were seen in the central skeleton (including the proximal third of humerus and femur). In 34 patients (19.8 %) peripheral metastases of the extremities (distally of the proximal third of humerus and femur) could be detected. Sixty-four patients (37.2 %) showed metastases of the skull. Summarizing the metastases of the distal extremities and skull, 79 patients (45.9 %) had peripheral metastases. None of the patients showed peripheral metastases without any affliction of the central skeleton. The incidence of peripheral metastases significantly correlated with the extent of central skeleton involvement (p<0.001). Regarding bone scans, an isolated metastatic spread to the peripheral skeleton without any manifestation in the central skeleton seems to be the exception. Thus, the assessment of the central skeleton should be sufficient in osseous breast cancer staging and restaging. However, in case of central metastases, additional imaging of the periphery should be considered for staging and restaging.

  9. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Chun; Palek, Jiri

    1980-06-01

    The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

  10. Improved 3D skeletonization of trabecular bone images derived from in vivo MRI

    NASA Astrophysics Data System (ADS)

    Magland, Jeremy F.; Wehrli, Felix W.

    2008-03-01

    Independent of overall bone density, 3D trabecular bone (TB) architecture has been shown to play an important role in conferring strength to the skeleton. Advances in imaging technologies such as micro-computed tomography (CT) and micro-magnetic resonance (MR) now permit in vivo imaging of the 3D trabecular network in the distal extremities. However, various experimental factors preclude a straightforward analysis of the 3D trabecular structure on the basis of these in vivo images. For MRI, these factors include blurring due to patient motion, partial volume effects, and measurement noise. While a variety of techniques have been developed to deal with the problem of patient motion, the second and third issues are inherent limitations of the modality. To address these issues, we have developed a series of robust processing steps to be applied to a 3D MR image and leading to a 3D skeleton that accurately represents the trabecular bone structure. Here we describe the algorithm, provide illustrations of its use with both specimen and in vivo micro-MR images, and discuss the accuracy and quantify the relationship between the original bone structure and the resulting 3D skeleton volume.

  11. Branching out: origins of the sea urchin larval skeleton in development and evolution.

    PubMed

    McIntyre, Daniel C; Lyons, Deirdre C; Martik, Megan; McClay, David R

    2014-03-01

    It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production. Copyright © 2014 Wiley Periodicals, Inc.

  12. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.

    PubMed

    Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric

    2014-02-06

    Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.

  13. Switching skeletons: hydrostatic support in molting crabs

    NASA Technical Reports Server (NTRS)

    Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)

    2003-01-01

    Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.

  14. Determination of thorium (IV) using isophthalaldehyde-tetrapyrrole as probe by resonance light scattering, second-order scattering and frequency-doubling scattering spectra

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Xue, Jinhua; Xiao, Xilin; Xu, Li; Jiang, Min; Peng, Pengcheng; Liao, Lifu

    2017-12-01

    The coordination reaction of thorium (IV) with a ditopic bidentate ligand to form supramolecular polymer was studied by resonance light scattering (RLS) spectra, second-order scattering (SOS) spectra and frequency-doubling scattering (FDS) spectra, respectively. The ditopic bidentate ligand is isophthalaldehyde-tetrapyrrole (IPTP). It was synthesized through a condensation reaction of isophthalaldehyde with pyrrole. The formation of supramolecular polymer results in remarkable intensity enhancements of the three light scattering signals. The maximum scattering wavelengths of RLS, FDS and SOS were 290, 568 and 340 nm, respectively. The reaction was used to establish new light scattering methods for the determination of thorium (IV) by using IPTP as probe. Under optimum conditions, the intensity enhancements of RLS, SOS and FDS were directly proportional to the concentration of thorium (IV) in the ranges of 0.01 to 1.2 μg mL- 1, 0.05 to 1.2 μg mL- 1 and 0.05 to 1.2 μg mL- 1, respectively. The detection limits were 0.003 μg mL- 1, 0.012 μg mL- 1 and 0.021 μg mL- 1, respectively. The methods were suitable for analyzing thorium (IV) in actual samples. The results show acceptable recoveries and precision compared with a reference method.

  15. A three-dimensional placoderm (stem-group gnathostome) pharyngeal skeleton and its implications for primitive gnathostome pharyngeal architecture.

    PubMed

    Brazeau, Martin D; Friedman, Matt; Jerve, Anna; Atwood, Robert C

    2017-09-01

    The pharyngeal skeleton is a key vertebrate anatomical system in debates on the origin of jaws and gnathostome (jawed vertebrate) feeding. Furthermore, it offers considerable potential as a source of phylogenetic data. Well-preserved examples of pharyngeal skeletons from stem-group gnathostomes remain poorly known. Here, we describe an articulated, nearly complete pharyngeal skeleton in an Early Devonian placoderm fish, Paraplesiobatis heinrichsi Broili, from Hunsrück Slate of Germany. Using synchrotron light tomography, we resolve and reconstruct the three-dimensional gill arch architecture of Paraplesiobatis and compare it with other gnathostomes. The preserved pharyngeal skeleton comprises elements of the hyoid arch (probable ceratohyal) and a series of branchial arches. Limited resolution in the tomography scan causes some uncertainty in interpreting the exact number of arches preserved. However, at least four branchial arches are present. The final and penultimate arches are connected as in osteichthyans. A single median basihyal is present as in chondrichthyans. No dorsal (epibranchial or pharyngobranchial) elements are observed. The structure of the pharyngeal skeleton of Paraplesiobatis agrees well with Pseudopetalichthys from the same deposit, allowing an alternative interpretation of the latter taxon. The phylogenetic significance of Paraplesiobatis is considered. A median basihyal is likely an ancestral gnathostome character, probably with some connection to both the hyoid and the first branchial arch pair. Unpaired basibranchial bones may be independently derived in chondrichthyans and osteichthyans. © 2017 The Authors Journal of Morphology Published by Wiley Periodicals, Inc.

  16. Historic timber skeleton structures and the local seismic culture

    NASA Astrophysics Data System (ADS)

    Bostenaru, M.

    2009-04-01

    This presentation deals with the employment of timber skeleton structure and the local seismic culture. After the 1755 earthquake in the reconstruction of Lisbon a type of building with timber skeleton and masonry infill called "gaiola pombalina" was promoted, since this was designed to better resists earthquakes. "Gaiola" means cage, and it was also named after the Marques de Pombal who introduced it in the reconstruction following the earthquake. The „gaiola pombalina" presents a timber skeleton with Saint Andrew crosses in the interior walls with masonry infill and thick masonry load bearing walls loosing in thickness to the upper floors in the exterior walls. The masonry can fall out during earthquakes but the building remains staying given the interior timber skeleton. The type of buildings with timber structure and (masonry) infill behaved well in earthquakes in various parts of the earth, like Nepal (the dhaji dewary type), Pakistan, Turkey (the himiş type after the 1999 earthquake) [both latter types were researched by Langenbach, www.conservationtech.com and www.traditional-is-modern.net] and also in Germany after the 1356 earthquake (the Southern German subtype of Fachwerk). Also in Italy a subtype called "casa baraccata" was promoted in a construction code to a similar time (following the 1783 earthquake in Southern Italy, see Tobriner 1983) as that of the "gaiola pombalina", the time of the Baroque, when town planning acquired another status. Unlike at the "gaiola pombalina" the "casa baraccata" the timber skeleton is at the exterior walls. For this reason this type of buildings is considered to be an expression of the local seismic culture. However, this type of buildings is common also for areas where seismic risk is not an issue, like half-timbered in England and the northern subtype of Fachwerk in Northern Germany, and in some high seismic risk regions with mountains and timber resources like Romania is not spread. Given these premises the author

  17. Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Reiss, Michael

    1999-01-01

    Describes students' (n=175) understandings of the structure of animal (including human) skeletons and the internal organs found in them. Finds that older students have a better knowledge of animals' internal anatomies, although knowledge of human internal structure is significantly better than knowledge of rat, bird, and fish internal structure.…

  18. Intact carbohydrate structures as part of the melanoidin skeleton.

    PubMed

    Cämmerer, Bettina; Jalyschko, Walentina; Kroh, Lothar W

    2002-03-27

    Model melanoidins from monomeric, oligomeric, and polymeric carbohydrates, and amino acids formed under aqueous as well as water-free reaction conditions, were submitted to acidic catalyzed hydrolysis. Their degradation products were detected qualitatively and quantitatively by HPTLC and HPLC-DAD. A considerable amount of monomer carbohydrates from hydrolysis of model melanoidins formed under water-free reaction conditions was detected. It can be seen clearly that the amount of carbohydrates released increased with increasing degree of polymerization of the carbohydrates used as starting material. In comparison, the hydrolysis of melanoidins formed in aqueous condition resulted in only a small glucose release. It seems that in the Maillard reaction under water-free conditions, a significant amount of di- and oligomer carbohydrates were incorporated into the melanoidin skeleton as complete oligomer with intact glycosidic bond, forming side chains at the melanoidin skeleton. Additional side chains could be formed by transglycosylation reactions. With increasing water content, hydrothermolytic as well as retro-aldol reactions of the starting carbonyl components became significant, and therefore the possibility of forming side chains decreased. The results are consistent with the postulated melanoidin structure being built up mainly from sugar degradation products, probably branched via amino compounds.

  19. DSA Image Blood Vessel Skeleton Extraction Based on Anti-concentration Diffusion and Level Set Method

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wu, Jian; Feng, Daming; Cui, Zhiming

    Serious types of vascular diseases such as carotid stenosis, aneurysm and vascular malformation may lead to brain stroke, which are the third leading cause of death and the number one cause of disability. In the clinical practice of diagnosis and treatment of cerebral vascular diseases, how to do effective detection and description of the vascular structure of two-dimensional angiography sequence image that is blood vessel skeleton extraction has been a difficult study for a long time. This paper mainly discussed two-dimensional image of blood vessel skeleton extraction based on the level set method, first do the preprocessing to the DSA image, namely uses anti-concentration diffusion model for the effective enhancement and uses improved Otsu local threshold segmentation technology based on regional division for the image binarization, then vascular skeleton extraction based on GMM (Group marching method) with fast sweeping theory was actualized. Experiments show that our approach not only improved the time complexity, but also make a good extraction results.

  20. Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.

    PubMed

    Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T

    2018-05-03

    Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.

  1. Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey.

    PubMed

    Wang, Qian; Dechow, Paul C

    2006-11-01

    Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling. (c) 2006 Wiley-Liss, Inc.

  2. Entheseal changes and pathological lesions in draught reindeer skeletons - Four case studies from present-day Siberia.

    PubMed

    Salmi, Anna-Kaisa; Niinimäki, Sirpa

    2016-09-01

    Draught use and being ridden often result in typical pathological patterns in animal skeletons. Moreover, physical activity patterns may be reflected in bone biomechanical properties and entheseal changes at muscle attachment sites. This paper presents the pathologies and entheseal changes observed in four draught and/or racing reindeer skeletons against information on their life histories and discusses the probability of linking the observed changes to their use. The results of this study are a useful point of comparison to researchers working on reindeer and other species of draught animals. However, our results also emphasize that entheseal changes and many pathologies have multifactorial etiologies and that interpretation of skeletal change patterns is not straightforward, even when there is information on the life history of the animal and its complete skeleton can be examined. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The integumentary skeleton of tetrapods: origin, evolution, and development

    PubMed Central

    Vickaryous, Matthew K; Sire, Jean-Yves

    2009-01-01

    Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis. Gymnophionan dermal scales are structurally similar to the elasmoid scales of most teleosts and are not comparable with osteoderms. Whereas details of development are lacking, it is hypothesized that dermal scales are derivatives of an odontogenic neural crest cell population and that skeletogenesis is comparable with the formation of elasmoid scales. Little is known about the lamina calcarea. It is

  4. Two-Photon Study on the Electronic Interactions between the First Excited Singlet States in Carotenoid-Tetrapyrrole Dyads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Pen-Nan; Pillai, Smitha; Gust, Devens

    Electronic interactions between the first excited states (S 1) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S 1-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S 1 state allowed sensitive monitoring of the flow of energy between Car S 1 and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S 1 and that only amore » small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S 1 → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S 1 energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S 1 state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S 1-Pc Q y interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.« less

  5. Keeping a Journal: A Path to Uncovering Identity (and Keeping Your Sanity)

    ERIC Educational Resources Information Center

    Cooper, Joanne E.

    2013-01-01

    A journal can help keep a person more organized, clarify their identity, and help them grapple with them own sense of belonging in the often bewildering world of academe. In this article, the author discusses: (1) the benefits and uses of keeping a journal; (2) Techniques for writing in a journal; and (3) Drawbacks of journal writing.

  6. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

    PubMed Central

    Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve

    2017-01-01

    Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379

  7. Histomorphological analysis of the variability of the human skeleton: forensic implications.

    PubMed

    Cummaudo, Marco; Cappella, Annalisa; Biraghi, Miranda; Raffone, Caterina; Màrquez-Grant, Nicholas; Cattaneo, Cristina

    2018-01-20

    One of the fundamental questions in forensic medicine and anthropology is whether or not a bone or bone fragment is human. Surprisingly at times for the extreme degradation of the bone (charred, old), DNA cannot be successfully performed and one must turn to other methods. Histological analysis at times can be proposed. However, the variability of a single human skeleton has never been tested. Forty-nine thin sections of long, flat, irregular and short bones were obtained from a well-preserved medieval adult human skeleton. A qualitative histomorphological analysis was performed in order to assess the presence of primary and secondary bone and the presence, absence and orientation of vascular canals. No histological sections exhibited woven or fibro-lamellar bone. Long bones showed a higher variability with an alternation within the same section of areas characterized by tightly packed secondary osteons and areas with scattered secondary osteons immersed in a lamellar matrix. Flat and irregular bones appeared to be characterized by a greater uniformity with scattered osteons in abundant interstitial lamellae. Some cases of "osteon banding" and "drifting osteons" were observed. Although Haversian bone represent the most frequent pattern, a histomorphological variability between different bones of the same individual, in different portions of the same bone, and in different parts of the same section has been observed. Therefore, the present study has highlighted the importance of extending research to whole skeletons without focusing only on single bones, in order to have a better understanding of the histological variability of both human and non-human bone.

  8. Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene

    NASA Astrophysics Data System (ADS)

    Chester, Stephen G. B.; Williamson, Thomas E.; Bloch, Jonathan I.; Silcox, Mary T.; Sargis, Eric J.

    2017-05-01

    Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62 Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the first postcranial elements recovered for a palaechthonid. Results from a cladistic analysis that includes new data from this skeleton suggest that palaechthonids are a paraphyletic group of stem primates, and that T. wilsoni is most closely related to paromomyids. New evidence from the appendicular skeleton of T. wilsoni fails to support an influential hypothesis based on inferences from craniodental morphology that palaechthonids were terrestrial. Instead, the postcranium of T. wilsoni indicates that it was similar to that of all other plesiadapiforms for which skeletons have been recovered in having distinct specializations consistent with arboreality.

  9. Micromorphology of Skeletonized and Pedicled Internal Thoracic and Radial Arteries.

    PubMed

    Mamchur, Sergey; Bokhan, Nikita; Vecherskii, Yuri; Malyshenko, Egor

    2015-01-01

    The objective of the study was to estimate the internal thoracic arteries (ITA) and radial arteries (RA) micromorphologic features by light microscopy after harvesting them using the skeletonization and pedicled methods in patients undergoing coronary artery bypass grafting. The micromorphologic characteristics of ITA and RA were studied by luminous microscopy in 61 patients undergoing coronary artery bypass grafting. A total of 122 ITA and RA segments harvested during surgery, fixed in formalin, and stained with hematoxiline and eosin were evaluated. The mean intima-media thickness of ITA was 9.2 and 134.7 µm and that of RA was 9.1 and 334.2 µm, respectively. In the distal segment of ITA the media-intima relation was 1.5 times bigger than in the proximal segment. None of ITA specimens contained atherosclerotic plaques or lipid inclusions. Atherosclerotic plaques were found in 3 (5%) RA specimens. Other degenerative changes were detected in 30%-74.2% of the specimens: splitting of internal elastic lamina, reduced tortuosity of the internal elastic lamina, and thickening and detachment of the intima; their incidence was associated with the skeletonization of the vessels. In conclusion, the incidence of ITA and RA degenerative changes varies from 30%-74.2% and its increase is associated with the skeletonization of the vessels, which is statistically significant. The media of the RA is 2.5 times thicker than that of the ITA (P < 0.01). This fact shows that RA has higher spasmogenic potential than that of ITA. The distal segment of the ITA has 1.5 times bigger media-intima relation than the proximal segment. Therefore, in case of enough graft length, it is recommended to avoid the distal segment and cut it off. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Navigable points estimation for mobile robots using binary image skeletonization

    NASA Astrophysics Data System (ADS)

    Martinez S., Fernando; Jacinto G., Edwar; Montiel A., Holman

    2017-02-01

    This paper describes the use of image skeletonization for the estimation of all the navigable points, inside a scene of mobile robots navigation. Those points are used for computing a valid navigation path, using standard methods. The main idea is to find the middle and the extreme points of the obstacles in the scene, taking into account the robot size, and create a map of navigable points, in order to reduce the amount of information for the planning algorithm. Those points are located by means of the skeletonization of a binary image of the obstacles and the scene background, along with some other digital image processing algorithms. The proposed algorithm automatically gives a variable number of navigable points per obstacle, depending on the complexity of its shape. As well as, the way how the algorithm can change some of their parameters in order to change the final number of the resultant key points is shown. The results shown here were obtained applying different kinds of digital image processing algorithms on static scenes.

  11. Brief communication: Testing the usefulness of the basilar suture as a means to determine age in great ape skeletons.

    PubMed

    Poe, Demelza J

    2011-01-01

    A fused/closed basilar suture is usually treated as an indication of old age in great apes. A sample, drawn from a variety of sources, of known-aged captive great ape skeletons was analyzed to test the usefulness of using the basilar suture to categorize adult skeletons as either "adult" or "old adult". The state of closure of the basilar suture was examined in 30 chimpanzees, 19 gorillas, and 15 orangutans, all of known age. The results show that the basilar suture demonstrates a high level of uniformity in rate of closure and is closed at an early age in virtually all known-aged individuals. Thus, an old adult category most likely includes individuals who are, in fact, relatively young. This indicates that using the basilar suture as a means to classify individual skeletons as adult or old adult is very imprecise. The homogenous nature of basilar suture closure appears to prevent meaningful application of suture status for categorizing adult ape skeletons by age groups.

  12. Heavy metal contamination from gold mining recorded in Porites lobata skeletons, Buyat-Ratototok district, North Sulawesi, Indonesia.

    PubMed

    Edinger, Evan N; Azmy, Karem; Diegor, Wilfredo; Siregar, P Raja

    2008-09-01

    Shallow marine sediments and fringing coral reefs of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of tailings from industrial gold mining and by small-scale gold mining using mercury amalgamation. Between-site variation in heavy metal concentrations in shallow marine sediments was partially reflected by trace element concentrations in reef coral skeletons from adjacent reefs. Corals skeletons recorded silicon, manganese, iron, copper, chromium, cobalt, antimony, thallium, and lead in different concentrations according to proximity to sources, but arsenic concentrations in corals were not significantly different among sites. Temporal analysis found that peak concentrations of arsenic and chromium generally coincided with peak concentrations of silica and/or copper, suggesting that most trace elements in the coral skeleton were incorporated into detrital siliciclastic sediments, rather than impurities within skeletal aragonite.

  13. Decomposing Huge Networks into Skeleton Graphs by Reachable Relations

    DTIC Science & Technology

    2017-06-07

    AFRL-AFOSR-JP-TR-2017-0047 Decomposing Huge Networks into Skeleton Graphs by Reachable Relations Kazumi Saito University Of Shizuoka Final Report 06...07/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force...ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the

  14. Melorheostosis of the axial skeleton with associated fibrolipomatous lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garver, P.; Resnick, D.; Haghighi, P.

    1982-11-01

    Two patients with melorheostotic-like lesions of the axial skeleton are described. In each case adjacent soft tissue masses containing both fatty and fibrous tissues were evident. The presence of such soft tissue tumors as well as other soft tissue abnormalities in melorheostosis emphasizes that the diesease should not be regarded as one confined to bone. The precise pathogenesis of the osseous and soft tissue abnormalities in melorheostosis remains obscure.

  15. Photoinduced electron transfer at the tetrapyrrole-TiO2 interface: Effect of the energy alignment

    NASA Astrophysics Data System (ADS)

    Nieto-Pescador, Jesus S.

    Photoinduced electron transfer is a ubiquitous process behind several physical, chemical, and biological processes. Its potential applications, ranging from solar cell technologies to photodynamic cancer therapy, require a thorough understanding of the basics of the reaction. This dissertation addresses open questions for a particular case of electron transfer processes: Heterogeneous Electron Transfer (HET). In this process, an electron is transferred between a localized donor and a multitude of delocalized acceptor states. HET between photoexcited tetrapyrroles and colloidal TiO2 has been investigated using femtosecond transient absorption spectroscopy. Specifically, this work explores the not well-understood influence of the availability of states on the HET reaction. This problem is addressed by measuring electron injection times as a function of the energy difference between the LUMO and the conduction band of TiO2. The change in the energy alignment was done using two experimental strategies. The first one employs a recently synthesized phlorin with two different excited states above the conduction band of TiO2. This molecule allows comparing HET rates from two different excited states. The second strategy measures the electron injection rates after exciting the same electronic state of a set of specially designed porphyrins. The novelty of the approach is that the difference in energy alignment is attained by the introduction of dipole groups within the bridge group of the molecule. This strategy generates a difference in energy alignment of up to 200 meV. The reported measurements were carried in a high vacuum environment with an apparatus capable of resolving sub 30 fs processes. Disentanglement of the electron transfer processes was done, after careful study of the relaxation dynamics of the molecules in solution, by monitoring the decay of the excited state absorption and the rise of the cation spectral signatures. Within our time resolution, our results

  16. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    NASA Astrophysics Data System (ADS)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  17. Biology of bone and how it orchestrates the form and function of the skeleton

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  18. Revascularization of Left Coronary System Using a Skeletonized Left Internal Mammary Artery - Sequential vs. Separate Grafting.

    PubMed

    Ji, Qiang; Shi, YunQing; Xia, LiMin; Ma, RunHua; Shen, JinQiang; Lai, Hao; Ding, WenJun; Wang, ChunSheng

    2017-12-25

    To evaluate in-hospital and mid-term outcomes of sequential vs. separate grafting of in situ skeletonized left internal mammary artery (LIMA) to the left coronary system in a single-center, propensity-matched study.Methods and Results:After propensity score-matching, 120 pairs of patients undergoing first scheduled isolated coronary artery bypass grafting (CABG) with in situ skeletonized LIMA grafting to the left anterior descending artery (LAD) territory were entered into a sequential group (sequential grafting of LIMA to the diagonal artery and then to the LAD) or a control group (separate grafting of LIMA to the LAD). The in-hospital and follow-up clinical outcomes and follow-up LIMA graft patency were compared. Both propensity score-matched groups had similar in-hospital and follow-up clinical outcomes. Sequential LIMA grafting was not found to be an independent predictor of adverse events. During a follow-up period of 27.0±7.3 months, 99.1% patency for the diagonal site and 98.3% for the LAD site were determined by coronary computed tomographic angiography after sequential LIMA grafting, both of which were similar with graft patency of separate grafting of in situ skeletonized LIMA to the LAD. Revascularization of the left coronary system using a skeletonized LIMA resulted in excellent in-hospital and mid-term clinical outcomes and graft patency using sequential grafting.

  19. New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance

    NASA Astrophysics Data System (ADS)

    Sato, H.; Uematsu, M.; Watanabe, K.; Saul, A.; Wagner, W.

    1988-10-01

    The current knowledge of thermodynamic properties of ordinary water substance is summarized in a condensed form of a set of skeleton steam tables, where the most probable values with the reliabilities on specific volume and enthalpy are provided in the range of temperatures from 273 to 1073 K and pressures from 101.325 kPa to 1 GPa and at the saturation state from the triple point to the critical point. These tables have been accepted as the IAPS Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water Substance(IST-85) by the International Association for the Properties of Steam(IAPS). The former International Skeleton Steam Tables, October 1963(IST-63), have been withdrawn by IAPS. About 17 000 experimental thermodynamic data were assessed and classified previously by Working Group 1 of IAPS. About 10 000 experimental data were collected and evaluated in detail and especially about 7000 specific-volume data among them were critically analyzed with respect to their errors using the statistical method originally developed at Keio University by the first three authors. As a result, specific-volume and enthalpy values with associated reliabilities were determined at 1455 grid points of 24 isotherms and 61 isobars in the single-fluid phase state and at 54 temperatures along the saturation curve. The background, analytical procedure, and reliability of IST-85 as well as the assessment of the existing experimental data and equations of state are also discussed in this paper.

  20. Skeleton and Glucose Metabolism: A Bone-Pancreas Loop

    PubMed Central

    Luce, Vincenza; Ventura, Annamaria; Colucci, Silvia; Cavallo, Luciano; Grano, Maria

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine “gland” and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteoprotegerin, in the regulation of insulin function and glucose metabolism. PMID:25873957

  1. Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees

    PubMed Central

    Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa

    2011-01-01

    Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829

  2. Sea urchin skeleton: Structure, composition, and application as a template for biomimetic materials

    NASA Astrophysics Data System (ADS)

    Shapkin, Nikolay P.; Khalchenko, Irina G.; Panasenko, Alexander E.; Drozdov, Anatoly L.

    2017-07-01

    SEM and optical microscopy, chemical and EDX analysis, XRD, and FT-IR spectroscopy of three sea urchins skeletons (tests) show that the test is a spongy stereom, consisting of calcite with high content of magnesium. The tests are composed of mineral-organic composite of calcite-magnesite crystals, coated with organic film, containing silicon in form of polyphenylsiloxane. In the test of sea urchin pore spaces are linked into united system of regular structure with structure motive period about 20 um. This developed three-dimensional structure was used as a template for polymer material based on polyferrofenilsiloxane [OSiC6H5OH]x[OSiC6H5O]y[OFeO]z, which is chemically similar to the native film, coating sea urchins skeleton.

  3. Building Up the Milky Way's Skeleton

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A team of scientistshas now uncovered half of theentire skeleton of the Milky Way, using an automated method to identify large filaments of gas and dust hiding between stars in the galactic plane.Galactic distribution of 54 newly discovered filaments, plotted along with colored lines indicating six relevant spiral arms in our galaxy. The upper two plots show the consistency of the filaments motion with the spiral arms, while the lower shows their location within the galactic plane. [Wang et al. 2016]The Search for Nessie and FriendsThe Milky Ways interstellar medium is structured hierarchically into filaments. These structures are difficult to observe since they largely lie in the galactic plane, but if we can discover the distribution and properties of these filaments, we can better understand how our galaxy formed, and how the filaments affect star formation in our galaxy today.Some of the largest of the Milky Ways filaments are hundreds of light-years long like the infrared dark cloud nicknamed Nessie, declared in 2013 to be one of the bones of the Milky Way because of its position along the center of the Scutum-Centaurus spiral arm.Follow-up studies since the discovery of Nessie (like this one, or this) have found a number of additional large-scale filaments, but these studies all use different search methods and selection criteria, and the searches all start with visual inspection by humans to identify candidates.What if we could instead automate the detection process and build a homogeneous sample of the large filaments making up the skeleton of the Milky Way?Automated DetectionThis is exactly what a team of astronomers led by Ke Wang (European Southern Observatory) has done. The group used a customization of an algorithm called a minimum spanning tree the technique used to optimize the cost of internet networks, road networks, and electrical grids in our communities to perform an automated search of data from the Bolocam Galactic Plane Survey. The search was

  4. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    PubMed

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  5. Average geodesic distance of skeleton networks of Sierpinski tetrahedron

    NASA Astrophysics Data System (ADS)

    Yang, Jinjin; Wang, Songjing; Xi, Lifeng; Ye, Yongchao

    2018-04-01

    The average distance is concerned in the research of complex networks and is related to Wiener sum which is a topological invariant in chemical graph theory. In this paper, we study the skeleton networks of the Sierpinski tetrahedron, an important self-similar fractal, and obtain their asymptotic formula for average distances. To provide the formula, we develop some technique named finite patterns of integral of geodesic distance on self-similar measure for the Sierpinski tetrahedron.

  6. Modeling of the axon membrane skeleton structure and implications for its mechanical properties

    PubMed Central

    Tzingounis, Anastasios V.

    2017-01-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young’s modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration. PMID:28241082

  7. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    PubMed

    Zhang, Yihao; Abiraman, Krithika; Li, He; Pierce, David M; Tzingounis, Anastasios V; Lykotrafitis, George

    2017-02-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  8. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton.

    PubMed

    Square, Tyler; Jandzik, David; Romášek, Marek; Cerny, Robert; Medeiros, Daniel Meulemans

    2017-07-15

    The apparent evolvability of the vertebrate head skeleton has allowed a diverse array of shapes, sizes, and compositions of the head in order to better adapt species to their environments. This encompasses feeding, breathing, sensing, and communicating: the head skeleton somehow participated in the evolution of all these critical processes for the last 500 million years. Through evolution, present head diversity was made possible via developmental modifications to the first head skeletal genetic program. Understanding the development of the vertebrate common ancestor's head skeleton is thus an important step in identifying how different lineages have respectively achieved their many innovations in the head. To this end, cyclostomes (jawless vertebrates) are extremely useful, having diverged from jawed vertebrates approximately 400 million years ago, at the deepest node within living vertebrates. From this ancestral vantage point (that is, the node connecting cyclostomes and gnathostomes) we can best identify the earliest major differences in development between vertebrate classes, and start to address how these might translate onto morphology. In this review we survey what is currently known about the cell biology and gene expression during head development in modern vertebrates, allowing us to better characterize the developmental genetics driving head skeleton formation in the most recent common ancestor of all living vertebrates. By pairing this vertebrate composite with information from fossil chordates, we can also deduce how gene regulatory modules might have been arranged in the ancestral vertebrate head. Together, we can immediately begin to understand which aspects of head skeletal development are the most conserved, and which are divergent, informing us as to when the first differences appear during development, and thus which pathways or cell types might be involved in generating lineage specific shape and structure. Copyright © 2017 Elsevier Inc. All

  9. Design and synthesis of novel δ opioid receptor agonists with an azatricyclodecane skeleton for improving blood-brain barrier penetration.

    PubMed

    Watanabe, Yoshikazu; Hayashida, Kohei; Saito, Daisuke; Takahashi, Toshihiro; Sakai, Junichi; Nakata, Eriko; Kanda, Takashi; Iwai, Takashi; Hirayama, Shigeto; Fujii, Hideaki; Yamakawa, Tomio; Nagase, Hiroshi

    2017-08-01

    We designed and synthesized novel δ opioid receptor (DOR) agonists 3a-i with an azatricyclodecane skeleton, which was a novel structural class of DOR agonists. Among them, 3b exhibited high values of binding affinity and potent agonistic activity for the DOR that were approximately equivalent to those of 2 which bore an oxazatricyclodecane skeleton. In vitro assays using the blood-brain barrier (BBB) permeability test kit supported the idea that 3b achieved an excellent BBB permeability by converting an oxygen atom of 2 to a carbon atom (methylene group) in the core skeleton. As a result, 3b showed potent antinociceptive effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Keeping Your Child's Teeth Healthy

    MedlinePlus

    ... for Educators Search English Español Keeping Your Child's Teeth Healthy KidsHealth / For Parents / Keeping Your Child's Teeth ... and guidelines. When Should Kids Start Brushing Their Teeth? Good dental care begins before a baby's first ...

  11. Designing a warm-up protocol for elite bob-skeleton athletes.

    PubMed

    Cook, Christian; Holdcroft, Danny; Drawer, Scott; Kilduff, Liam P

    2013-03-01

    To investigate how different warm-ups influenced subsequent sled-pull sprint performance in Olympic-level bob-skeleton athletes as part of their preparation for the 2010 Winter Olympics. Three female and 3 male athletes performed 5 different randomized warm-ups of differing intensities, durations, and timing relative to subsequent testing, each 2 days apart, all repeated twice. After warm-ups, testing on a sled-pull sprint over 20 m, 3 repeats 3 min apart, took place. Performance testing showed improvement (P < .001, ES > 1.2) with both increasing intensity of warm-up and closeness of completion to testing, with 20-m sled sprinting being 0.1-0.25 s faster in higher-intensity protocols performed near testing In addition, supplementing the warm-ups by wearing of a light survival coat resulted in further performance improvement (P = .000, ES 1.8). Changing timing and intensity of warm-up and using an ancillary passive heat-retention device improved sprint performance in Olympic-level bob-skeleton athletes. Subsequent adoption of these on the competitive circuit was associated with a seasonal improvement in push times and was ultimately implemented in the 2010 Winter Olympics.

  12. Companions for ``Nessie'' in the Milky Way's Skeleton

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    The recent discovery of a purported bone of the Milky Way, a dark cloud nicknamed Nessie, has provided us with new clues for mapping out the spiral structure of our galaxy. It turns out that Nessie may not be alone: a follow-up study has identified more bones, potentially making up a skeleton of the Milky Way that traces out the densest parts of its spiral arms.Inconvenient Vantage PointHow many spiral arms does the Milky Way have? Where are they located? What does the structure look like between the arms? It may seem surprising that these fundamental questions dont yet have clear answers. But because were stuck in the galaxys disk, were forced to piece together our understanding of the Milky Ways structure based primarily on measurements of position and radial velocity of structures within the galactic plane.The discovery of Nessie presents an intriguing new tool to identify the layout of the galaxy. Nessie is a very long, thin, infrared-dark filament that runs along the modeled position of the Scutum-Centaurus arm and is believed therefore to trace the structure of the arm. In a new study led by Catherine Zucker (University of Virginia, Harvard-Smithsonian Center for Astrophysics), the authors have searched for additional bones like Nessie, hoping to use them to map out the skeleton of the Milky Way.New Bones DiscoveredIn this map of radial velocity vs. galactic longitude, the bone candidates are indicated by the numbered points. The colored lines indicate the positions of two of the galactic spiral arms, according to various models. Click for a closer look! [Zucker et al. 2015]Zucker and collaborators began by using World Wide Telescope, a tool that facilitates visualization of multiple layers of data at a variety of scales, to search through Spitzer infrared data for additional structures like Nessie. Searching specifically along the predicted positions of galactic arms, they found 15 initial bone candidates.Next, the team obtained radial-velocity data for the

  13. Keeping Naval Guns Ready

    DTIC Science & Technology

    2016-03-01

    Keeping Naval Guns Ready David L. Rogers Rogers is the Deputy Department Head, Systems Integration Department, Naval Surface Warfare Center Indian...maritime routes and the global economy. This protection depends on keeping these forward naval ships ready, par- ticularly their guns and ammunition...the weapons of choice for counter- ing a multitude of threats. That gun readiness is assured with responsive technical support. It is done fast, and

  14. [Characteristics of local human skeleton reactions to microgravity and drug treatment of osteoporosis in clinic].

    PubMed

    Oganov, V S; Skripnikova, I A; Novikov, V E; Bakulin, A V; Kabitskaia, O E; Murashko, L M

    2011-01-01

    Analysis of the results of long-term investigations of bones in cosmonauts flown on the orbital station MIR and International space station (n = 80) was performed. Theoretically predicted (evolutionary predefined) change in mass of different skeleton bones was found to correlate (r = 0.904) with position relatively the Earth's gravity vector. Vector dependence of bone loss ensues from local specificity of expression of bone metabolism genes which reflects mechanic prehistory of skeleton structures in the evolution of Homo erectus. Genetic polymorphism is accountable for high individual variability of bone loss attested by the dependence of bone loss rate on polymorphism of certain bone metabolism markers. Parameters of one and the other orbital vehicle did not modulate individual-specific stability of the bone loss ratio in different segments of the skeleton. This fact is considered as a phenotype fingerprint of local metabolism in the form of a locus-unique spatial structure of distribution of noncollagenous proteins responsible for position regulation of endosteal metabolism. Drug treatment of osteoporosis (n = 107) evidences that recovery rate depends on bone location; the most likely reason is different effectiveness of local osteotrophic intervention into areas of bustling resorption.

  15. Effect of automatic record keeping on vigilance and record keeping time.

    PubMed

    Allard, J; Dzwonczyk, R; Yablok, D; Block, F E; McDonald, J S

    1995-05-01

    We have evaluated the effect of an automatic anaesthesia record keeper (AARK) on record keeping time and vigilance. With informed patient consent and institutional approval, we videotaped the attending anaesthetist and his/her immediate surroundings during 66 surgical procedures. Thirty-seven cases were charted manually and the remaining 29 were charted with a commercially available AARK. In order to evaluate vigilance, a physician examiner entered the operating room unannounced once during 33 of the manually charted cases and during 22 of the automatically charted cases and asked the anaesthetist to turn away from the monitors and recall the current value of eight patient physiological variables. The examiner recorded the recalled values and also the actual current monitor values of these variables. The videotapes were reviewed and the anaesthetist's intraoperative time was categorized into 15 predefined activities, including intraoperative anaesthesia record keeping time. We compared recalled and actual variable values to determine if the recalled values were within clinically relevant error limits. There was no statistical difference between the mean percentage case time spent recording manually (14.11 (SD 3.98)%) and automatically (12.39 (3.92)%). Moreover, use of the AARK did not significantly affect vigilance. Despite major advances in monitoring technology over the past 14 years, record keeping still occupies 10-15% of the anaesthetist's intraoperative time. It appears that in using an AARK, the anaesthetist reallocates intraoperative record keeping time from manual charting to dealing with problems in the anaesthetist machine interface caused by inadequate design.

  16. Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues: density functional theory studies.

    PubMed

    Qi, Dongdong; Zhang, Yuexing; Cai, Xue; Jiang, Jianzhuang; Bai, Ming

    2009-02-01

    Density functional theory (DFT) calculations were carried out to study the inner hydrogen atom transfer in low symmetrical metal-free tetrapyrrole analogues ranging from tetraazaporphyrin H(2)TAP (A(0)B(0)C(0)D(0)) to naphthalocyanine H(2)Nc (A(2)B(2)C(2)D(2)) via phthalocyanine H(2)Pc (A(1)B(1)C(1)D(1)). All the transition paths of sixteen different compounds (A(0)B(0)C(0)D(0)-A(2)B(2)C(2)D(2) and A(0)B(0)C(m)D(n), m skeleton have significant effect on the potential energy barrier of the inner hydrogen atom transfer. Introducing fused benzene rings onto the hydrogen-releasing pyrrole rings can increase the transitivity of inner hydrogen atom and thus lower the transfer barrier of this inner hydrogen atom while fusing benzene rings onto the hydrogen-accepting pyrrole rings will increase the hydrogen transfer barrier to this pyrrole ring. The transient cis-isomer intermediate with hydrogen atoms joined to the two adjacent pyrrole rings with less fused benzene rings is much stable than the others. It is also found that the benzene rings fused directly onto pyrrole rings have more effect on the inner hydrogen atom transfer than the outer benzene rings fused onto the periphery of isoindole rings. The present work, representing the first effort towards systematically understanding the effect of ring enlargement through asymmetrical peripheral fusion of benzene ring(s) onto the TAP skeleton on the inner hydrogen transfer of tetrapyrrole derivatives, will be helpful in clarifying the N-H tautomerization phenomenon and detecting the cis-porphyrin isomer in bio-systems.

  17. Proteins and saccharides of the sea urchin organic matrix of mineralization: characterization and localization in the spine skeleton.

    PubMed

    Ameye, L; De Becker, G; Killian, C; Wilt, F; Kemps, R; Kuypers, S; Dubois, P

    2001-04-01

    Properties of the echinoderm skeleton are under biological control, which is exerted in part by the organic matrix embedded in the mineralized part of the skeleton. This organic matrix consists of proteins and glycoproteins whose carbohydrate component is specifically involved in the control mechanisms. The saccharide moiety of the organic matrix of the spines of the echinoid Paracentrotus lividus was characterized using enzyme-linked lectin assays (ELLAs). O-glycoproteins, different types of complex N-glycoproteins, and terminal sialic acids were detected. Sialic acids are known to interact with Ca ions and could play an important role in the mineralization process. Some of the carbohydrate components detected by ELLAs as well as two organic matrix proteins (SM30 and SM50) were localized within different subregions of the spine skeleton using field-emission scanning electron microscopy. The mappings show that some of these components are not homogeneously distributed in the different skeletal subregions. For example, some N-glycoproteins were preferentially located in the putative amorphous subregion of the skeleton, whereas some O-glycoproteins were localized in the subregion where skeletal growth is inhibited. These results suggest that the biological control exerted on the skeletal properties can be partly modulated by local differences in the organic matrix composition. Copyright 2001 Academic Press.

  18. Diabetic bone lesions: a study on 38 known modern skeletons and the implications for forensic scenarios.

    PubMed

    Biehler-Gomez, Lucie; Castoldi, Elisa; Baldini, Elisa; Cappella, Annalisa; Cattaneo, Cristina

    2018-06-02

    Diabetes mellitus is a condition with severe and life-threatening complications and epidemic proportions worldwide. The study of diabetes on bones can provide crucial information to the forensic practice, the archeological field and medical research. In this paper, the authors report and discuss the lesions observed on the skeletons of 38 individuals (plus 11 negative control samples) of the CAL Milano Cemetery Skeletal Collection with known diabetes. As a result, different types of lesions were highlighted in the feet: periosteal new bone formation, lysis of tuft, lytic lesions, evidence of trauma, osteomyelitis, and osteochondritis dissecans. In 50% of the skeletons of the study sample, lesions were located on bones of the first ray of the foot. Vascular calcifications were also collected and considered. None of these lesions is pathognomonic of diabetes and each implies a broad differential diagnosis that can be confronted with the upper and axial lesions. However, they are coherent with the disease development and complications. This study is the first to document skeletons with known diabetes from an identified collection and discuss their diagnostic potential.

  19. Comparison of premortem and postmortem estimates of plutonium deposited in the skeleton and liver of six individuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Bihl, D.E.; Carbaugh, E.H.

    1988-04-01

    Assessment of organ burdens after internal exposures to radionuclides is often necessary to evaluate the health and regulatory implications of the exposure. The assessment of plutonium activity in skeleton and liver is usually estimated from measurements of plutonium excreted via urine. As part of the overall evaluation of internal dose assessment techniques, it is useful to compare the results of organ burden estimates made from evaluation of urinary excretion data with those made at death from tissue samples collected posthumously from the individual. Estimates of plutonium in the skeleton and liver, based on postmortem analysis of tissue samples for sixmore » individuals, were obtained from the US Transuranium Registry (USTR). Bioassay data and other radiation exposure information obtained from the individuals' files were used to estimate their skeleton and liver burdens at the times of their deaths, and these estimates were compared to those obtained through tissue analysis. 6 refs., 2 tabs.« less

  20. In vivo imaging of coral tissue and skeleton with optical coherence tomography

    PubMed Central

    Wentzel, Camilla; Jacques, Steven L.; Wagner, Michael

    2017-01-01

    Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology. PMID:28250104

  1. In vivo imaging of coral tissue and skeleton with optical coherence tomography.

    PubMed

    Wangpraseurt, Daniel; Wentzel, Camilla; Jacques, Steven L; Wagner, Michael; Kühl, Michael

    2017-03-01

    Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology. © 2017 The Author(s).

  2. Stable isotopic records of bleaching and endolithic algae blooms in the skeleton of the boulder forming coral Montastraea faveolata

    NASA Astrophysics Data System (ADS)

    Hartmann, A. C.; Carilli, J. E.; Norris, R. D.; Charles, C. D.; Deheyn, D. D.

    2010-12-01

    Within boulder forming corals, fixation of dissolved inorganic carbon is performed by symbiotic dinoflagellates within the coral tissue and, to a lesser extent, endolithic algae within the coral skeleton. Endolithic algae produce distinctive green bands in the coral skeleton, and their origin may be related to periods of coral bleaching due to complete loss of dinoflagellate symbionts or “paling” in which symbiont populations are patchily reduced in coral tissue. Stable carbon isotopes were analyzed in coral skeletons across a known bleaching event and 12 blooms of endolithic algae to determine whether either of these types of changes in photosynthesis had a clear isotopic signature. Stable carbon isotopes tended to be enriched in the coral skeleton during the initiation of endolith blooms, consistent with enhanced photosynthesis by endoliths. In contrast, there were no consistent δ13C patterns directly associated with bleaching, suggesting that there is no unique isotopic signature of bleaching. On the other hand, isotopic values after bleaching were lighter 92% of the time when compared to the bleaching interval. This marked drop in skeletal δ13C may reflect increased kinetic fractionation and slow symbiont recolonization for several years after bleaching.

  3. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  4. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  5. Keeping ether "en-vogue": the role of Nathan Cooley Keep in the history of ether anesthesia.

    PubMed

    Guralnick, Walter C; Kaban, Leonard B

    2011-07-01

    In this report, we explore the little known role of Dr Nathan Cooley Keep in the dissemination of ether anesthesia in Boston. Keep was a prominent Boston dentist who, for a short time, taught and employed both William Morton and Horace Wells. He used ether anesthesia for a variety of dental and other surgical procedures requiring pain control. Keep administered ether to anesthetize Henry Wadsworth Longfellow's wife during the delivery of their daughter. This was the first use of ether for obstetric anesthesia. Dr Keep was also the first Dean of the Harvard Dental School and convinced the Massachusetts General Hospital to appoint a dentist to the staff of the hospital for the first time. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Employee Records: What to Keep, How to Keep, and When to Shred.

    PubMed

    Viau, Joshua H

    2015-01-01

    Offices receive, generate, and maintain an inordinate volume of documents related to employees. Office managers, supervisors, and human resource professionals are always looking for ways to clear the clutter in what are often overcrowded administrative desks and records areas. While most are well versed in the various legal requirements concerning maintenance and destruction of patient records, there also are a myriad of laws that cover confidential information and records of employees. It is important for those in charge of maintaining such records to know what to keep, where to keep it, and for how long.

  7. Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor, E-mail: victor.erokhin@fis.unipr.it

    Stochastic networks of memristive devices were fabricated using a sponge as a skeleton material. Cyclic voltage-current characteristics, measured on the network, revealed properties, similar to the organic memristive device with deterministic architecture. Application of the external training resulted in the adaptation of the network electrical properties. The system revealed an improved stability with respect to the networks, composed from polymer fibers.

  8. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation

    NASA Astrophysics Data System (ADS)

    Arbour, Victoria M.; Evans, David C.

    2017-05-01

    The terrestrial Judith River Formation of northern Montana was deposited over an approximately 4 Myr interval during the Campanian (Late Cretaceous). Despite having been prospected and collected continuously by palaeontologists for over a century, few relatively complete dinosaur skeletons have been recovered from this unit to date. Here we describe a new genus and species of ankylosaurine dinosaur, Zuul crurivastator, from the Coal Ridge Member of the Judith River Formation, based on an exceptionally complete and well-preserved skeleton (ROM 75860). This is the first ankylosaurin skeleton known with a complete skull and tail club, and it is the most complete ankylosaurid ever found in North America. The presence of abundant soft tissue preservation across the skeleton, including in situ osteoderms, skin impressions and dark films that probably represent preserved keratin, make this exceptional skeleton an important reference for understanding the evolution of dermal and epidermal structures in this clade. Phylogenetic analysis recovers Zuul as an ankylosaurin ankylosaurid within a clade of Dyoplosaurus and Scolosaurus, with Euoplocephalus being more distantly related within Ankylosaurini. The occurrence of Z. crurivastator from the upper Judith River Formation fills a gap in the ankylosaurine stratigraphic and geographical record in North America, and further highlights that Campanian ankylosaurines were undergoing rapid evolution and stratigraphic succession of taxa as observed for Laramidian ceratopsids, hadrosaurids, pachycephalosaurids and tyrannosaurids.

  9. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation

    PubMed Central

    Evans, David C.

    2017-01-01

    The terrestrial Judith River Formation of northern Montana was deposited over an approximately 4 Myr interval during the Campanian (Late Cretaceous). Despite having been prospected and collected continuously by palaeontologists for over a century, few relatively complete dinosaur skeletons have been recovered from this unit to date. Here we describe a new genus and species of ankylosaurine dinosaur, Zuul crurivastator, from the Coal Ridge Member of the Judith River Formation, based on an exceptionally complete and well-preserved skeleton (ROM 75860). This is the first ankylosaurin skeleton known with a complete skull and tail club, and it is the most complete ankylosaurid ever found in North America. The presence of abundant soft tissue preservation across the skeleton, including in situ osteoderms, skin impressions and dark films that probably represent preserved keratin, make this exceptional skeleton an important reference for understanding the evolution of dermal and epidermal structures in this clade. Phylogenetic analysis recovers Zuul as an ankylosaurin ankylosaurid within a clade of Dyoplosaurus and Scolosaurus, with Euoplocephalus being more distantly related within Ankylosaurini. The occurrence of Z. crurivastator from the upper Judith River Formation fills a gap in the ankylosaurine stratigraphic and geographical record in North America, and further highlights that Campanian ankylosaurines were undergoing rapid evolution and stratigraphic succession of taxa as observed for Laramidian ceratopsids, hadrosaurids, pachycephalosaurids and tyrannosaurids. PMID:28573004

  10. Major KEEP Findings, 1971 - 1975.

    ERIC Educational Resources Information Center

    Kamehameha Schools, Honolulu, HI. Kamehameha Early Education Project.

    This report lists the 34 major research findings from the Kamehameha Early Education Program (KEEP) for the years 1971-1975. Each finding is accompanied by a listing of KEEP technical reports and working papers which contain information relevant to that finding. Included among areas covered in the findings are: (1) student motivation, (2) teacher…

  11. KEEP Five-Year Summary Report.

    ERIC Educational Resources Information Center

    Gallimore, Ronald; Tharp, Roland G.

    This brief summary outlines the activities and findings of the research and development efforts of the Kamehameha Early Education Program (KEEP) from 1971 to 1976. The paper suggests that the original goals of the program were met and that the initial operating procedures agreed upon by KEEP and the Hawaii State Department of Education were…

  12. Acid-Base and the Skeleton

    NASA Astrophysics Data System (ADS)

    Bushinsky, David A.

    2008-09-01

    Chronic metabolic acidosis increases urine calcium (Ca) excretion in the absence of a concomitant increase in intestinal Ca absorption resulting in a net loss of total body. The source of this additional urine Ca is almost certainly the skeleton, the primary reservoir of body Ca. In vitro metabolic acidosis, modeled as a primary reduction in medium bicarbonate concentration, acutely (<24 h) stimulates Ca efflux primarily through physicochemical mineral dissolution while at later time periods (>24 h) cell-mediated mechanisms predominate. In cultured neonatal mouse calvariae, acidosis-induced, cell-mediated Ca efflux is mediated by effects on both osteoblasts and osteoclasts. Metabolic acidosis inhibits extracellular matrix production by osteoblasts, as determined by measurement of collagen levels and levels for the non-collagenous matrix proteins osteopontin and matrix gla protein. Metabolic acidosis upregulates osteoblastic expression of RANKL (Receptor Activator of NFκB Ligand), an important osteoclastogenic and osteoclast-activating factor. Acidosis also increases osteoclastic activity as measured by release of β-glucuronidase, an enzyme whose secretion correlates with osteoclast-mediated bone resorption.

  13. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  14. DNA and bone structure preservation in medieval human skeletons.

    PubMed

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Prevalence of potential nitrogen-fixing, green sulphur bacteria in the skeleton of reef-building coral Isopora palifera

    NASA Astrophysics Data System (ADS)

    Yang, S. H.

    2016-02-01

    Microbial endoliths, which inhabit interior pores of rocks, skeletons and coral, are ubiquitous in terrestrial and marine environments. In the present study, various colored layers stratified the endolithic environment within the skeleton of Isopora palifera; however, there was a distinct green-pigmented layer in the skeleton (beneath the living coral tissue). To characterize diversity of endolithic microorganisms, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate bacterial communities in the green layer of Isopora palifera coral colonies retrieved fromGreen Island, Taiwan. The dominant bacterial group in the green layer belonged to the bacterial phylum Chlorobi, green sulphur bacteria capable of anoxygenic photosynthesis and nitrogen fixation. Specifically, bacteria of the genus Prosthecochloris were dominant in this green layer. To our knowledge, this is the first study to provide a detailed profile of endolithic bacteria in coral and to determine prevalence of Prosthecochloris in the green layer. Based on our findings, we infer that these bacteria may have an important functional role in the coral holobiont in the nutrient-limited coral reef ecosystem.

  16. Integration of parts in the facial skeleton and cervical vertebrae.

    PubMed

    McCane, Brendan; Kean, Martin R

    2011-01-01

    The purpose of this study was to undertake an exploratory analysis of the relationship among parts in the facial skeleton and cervical vertebrae and their integration as 2-dimensional shapes by determining their individual variations and covariations. The study was motivated by considerations applicable to clinical orthodontics and maxillofacial surgery, in which such relationships bear directly on pretreatment analysis and assessment of posttreatment outcome. Lateral radiographs of 61 adolescents of both sexes without major malocclusions were digitized and marked up by using continuous outline spline curves for 8 defined parts in the facial skeleton, including the cervical vertebrae. Individual part variation was analyzed by using principal components analysis, and paired part covariation was analyzed by using 2-block partial least squares analysis in 2 modes: relative size, position, and shape; and shape only. For individual part variations, cranial base, soft-tissue profile, and mandible had the largest variations across the sample. For covariation of relative size, position, and shape, the cervical vertebrae were highly correlated with the cranial base (r = 0.80), nasomaxillary complex (r = 0.70), mandible (r = 0.74), maxillary dentition (r = 0.70), and mandibular dentition (r = 0.74); the maxillary dentition and mandibular dentition were highly correlated (r = 0.70); the mandible was highly correlated with the bony profile (r = 0.72), soft-tissue profile (r = 0.79), and, to a lesser extent, the cranial base (r = 0.67); the bony profile was highly correlated with the cranial base (r = 0.70) and soft-tissue profile (r = 0.80); the soft-tissue profile was highly correlated with the nasomaxillary dentition (r = 0.81). Covariation of shape only was much weaker with significant covariations found between bony profile and mandible (r = 0.53), bony profile and mandibular dentition (r = 0.65), mandibular dentition and soft-tissue profile (r = 0.54), mandibular

  17. A comparative study of the ocular skeleton of fossil and modern chondrichthyans

    PubMed Central

    Pilgrim, Brettney L; Franz-Odendaal, Tamara A

    2009-01-01

    Many vertebrates have an ocular skeleton composed of cartilage and/or bone situated within the sclera of the eye. In this study we investigated whether modern and fossil sharks have an ocular skeleton, and whether it is conserved in morphology. We describe the scleral skeletal elements of three species of modern sharks and compare them to those found in fossil sharks from the Cleveland Shale (360 Mya). We also compare the elements to contemporaneous arthrodires from the same deposit. Surprisingly, the morphology of the skeletal support of the eye was found to differ significantly between modern and fossil sharks. All three modern shark species examined (spiny dogfish shark Squalus acanthias, porbeagle shark Lamna nasus and blue shark Prionace glauca) have a continuous skeletal element that encapsulates much of the eyeball; however, the tissue composition is different in each species. Histological and morphological examination revealed scleral cartilage with distinct tesserae in parts of the sclera of the porbeagle and blue shark, and more diffuse calcification in the dogfish. Strengthening of the scleral cartilage by means of tesserae has not been reported previously in the shark eye. In striking contrast, the ocular skeleton of fossil sharks comprises a series of individual elements that are arranged in a ring, similar to the arrangement in modern and fossil reptiles. Fossil arthrodires also have a multi-unit sclerotic ring but these are composed of fewer elements than in fossil sharks. The morphology of these elements has implications for the behaviour and visual capabilities of sharks that lived during the Devonian Period. This is the first time that such a dramatic variation in the morphology of scleral skeletal elements has been observed in a single lineage (Chondrichthyes), making this lineage important for broadening our understanding of the evolution of these elements within jawed vertebrates. PMID:19538630

  18. Keeping Portions Under Control (For Parents)

    MedlinePlus

    ... for Educators Search English Español Keeping Portions Under Control KidsHealth / For Parents / Keeping Portions Under Control Print ... serve more balanced meals to your family. Portion-Control Tips Parents need to take control of our ...

  19. The Membrane Skeleton Controls Diffusion Dynamics and Signaling through the B Cell Receptor

    PubMed Central

    Treanor, Bebhinn; Depoil, David; Gonzalez-Granja, Aitor; Barral, Patricia; Weber, Michele; Dushek, Omer; Bruckbauer, Andreas; Batista, Facundo D.

    2010-01-01

    Summary Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igβ as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival. PMID:20171124

  20. Comparison of the effects of three oral bisphosphonate therapies on the peripheral skeleton in postmenopausal osteoporosis: the TRIO study.

    PubMed

    Paggiosi, M A; Peel, N; McCloskey, E; Walsh, J S; Eastell, R

    2014-12-01

    We compared the effects of oral alendronate, ibandronate and risedronate on the central and peripheral skeleton over 2 years. We report differences in effect on the central skeleton but not on the peripheral skeleton. Greater effects were observed for ibandronate (and alendronate) than risedronate at the spine but not the hip. Generally, comparative clinical trials of bisphosphonates have examined changes in bone within central skeletal regions. We have examined the effects of bisphosphonate treatment on the peripheral skeleton. We conducted a 2-year, open-label, parallel randomised control trial of three orally administered bisphosphonates, at their licensed dose, to examine and compare their effects on the peripheral skeleton using multiple modes of measurement. We studied 172 postmenopausal women (53-84 years) who had either a bone mineral density (BMD) T-score of  ≤ -2.5 at the spine and/or total hip or  < -1.0 at either site plus a previous low trauma fracture. Participants were randomised to receive either (i) ibandronate 150 mg/month, (ii) alendronate 70 mg/week or (iii) risedronate 35 mg/week, plus calcium (1,200 mg/day) and vitamin D (800 IU/day), for 2 years. Premenopausal women (33-40 years, n = 226) were studied to monitor device stability. We measured central BMD of the lumbar spine, total hip, total body and forearm using dual-energy X-ray absorptiometry. We measured calcaneus BMD (using dual-energy X-ray absorptiometry plus laser), radius and tibia BMD (using peripheral quantitative computed tomography), finger BMD (using radiographic absorptiometry), and phalangeal and calcaneal ultrasound variables (using quantitative ultrasound). Mixed effects regression models were used to evaluate effects of time and treatment allocation on BMD change. By 2 years, there were significant increases (p < 0.05) in central BMD sites (lumbar spine, total hip). In the peripheral skeleton, only significant changes in calcaneus BMD, 33 % total radius

  1. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography

    USGS Publications Warehouse

    Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagon, Alexander C.; Prouty, Nancy G.; Roark, E. Brendan; van de Flierdt, Tina

    2014-01-01

    Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.

  2. Growth and formation of the foreleg skeleton inbred mice and rats under conditions of hypo-, normo- and hyperdynamia

    NASA Technical Reports Server (NTRS)

    Kogan, B. I.; Antipov, Y. S.

    1980-01-01

    Inbred 1 month old males of C57B 1/6, CBA, CC57Br/Mw interlinear hybrid mice of the first generation and rats of the August and Wistar lines were subjected to conditions of hypo-, normo- and hyperdynamia for 2 months. The statistically reliable dependence is shown between mechanical underloadings and overloadings and macro microscopic changes in the hind limb skeleton of animals. Genetic determination of growth and formation of the forelimb skeleton is established. Hereditary susceptibility and the phenomenon of heterosis are preserved under all motor conditions.

  3. Associations in the hominoid facial skeleton.

    PubMed

    Moore, W J

    1977-02-01

    A comparative study has been made of the correlations between numerous linear and angular dimensions of the facial skeleton of man and the three great apes. The Varimax (rotated orthogonal) factor analysis was found to be an essential aid in analysing the very large correlation matrices obtained. It indicated that three groups of association can be identified in the hominoid skull. The first reflects co-ordonated variation in total skull size; the second, co-ordinated variation within common anatomical regions; the third, co-ordination between the jaws and dentition. A broadly similar pattern was found in each group for all four genera. The principal contrasts between man, on the one hand, and the apes, on the other, were found in groups 1 and 2. The most prominent of these was a generally much tighter degree of association between the size and position of upper and lower jaws in the apes, and a consequently reduced tendency for disruption of the occlusal relationship of the teeth.

  4. 7 CFR 3200.9 - Accountability and record keeping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Accountability and record keeping. 3200.9 Section... TRANSFER OF EXCESS PERSONAL PROPERTY § 3200.9 Accountability and record keeping. USDA requires that Federal... accountability and record keeping systems. ...

  5. High-throughput multiple-mouse imaging with micro-PET/CT for whole-skeleton assessment.

    PubMed

    Yagi, Masashi; Arentsen, Luke; Shanley, Ryan M; Hui, Susanta K

    2014-11-01

    Recent studies have proven that skeleton-wide functional assessment is essential to comprehensively understand physiological aspects of the skeletal system. Therefore, in contrast to regional imaging studies utilizing a multiple-animal holder (mouse hotel), we attempted to develop and characterize a multiple-mouse imaging system with micro-PET/CT for high-throughput whole-skeleton assessment. Using items found in a laboratory, a simple mouse hotel that houses four mice linked with gas anesthesia was constructed. A mouse-simulating phantom was used to measure uniformity in a cross sectional area and flatness (Amax/Amin*100) along the axial, radial and tangential directions, where Amax and Amin are maximum and minimum activity concentration in the profile, respectively. Fourteen mice were used for single- or multiple-micro-PET/CT scans. NaF uptake was measured at eight skeletal sites (skull to tibia). Skeletal (18)F activities measured with mice in the mouse hotel were within 1.6 ± 4% (mean ± standard deviation) of those measured with mice in the single-mouse holder. Single-holder scanning yields slightly better uniformity and flatness over the hotel. Compared to use of the single-mouse holder, scanning with the mouse hotel reduced study time (by 65%), decreased the number of scans (four-fold), reduced cost, required less computer storage space (40%), and maximized (18)F usage. The mouse hotel allows high-throughput, quantitatively equivalent scanning compared to the single-mouse holder for micro-PET/CT imaging for whole-skeleton assessment of mice. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Keeping Pace

    ERIC Educational Resources Information Center

    Henderson, Nancy

    2008-01-01

    This article describes the struggles of two tough moms who team up to start their own company. Fed up with a lack of stylish, properly-fitting shoes for their children with cerebral palsy, they established "Keeping Pace" which currently offers a selection of stylish girls' and boys' athletic sneakers and casual dress shoes for boys, all sold…

  7. Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea).

    PubMed

    Huang, Wei; Hongjamrassilp, Watcharapong; Jung, Jae-Young; Hastings, Philip A; Lubarda, Vlado A; McKittrick, Joanna

    2017-03-15

    Animal propulsion systems are believed to show high energy and mechanical efficiency in assisting movement compared to artificial designs. As an example, batoid fishes have very light cartilaginous skeletons that facilitate their elegant swimming via enlarged wing-like pectoral fins. The aim of this work is to illustrate the hierarchical structure of the pectoral fin of a representative batoid, the Longnose Skate (Raja rhina), and explain the mechanical implications of its structural design. At the macro level, the pectoral fins are comprised of radially oriented fin rays, formed by staggered mineralized skeletal elements stacked end-to-end. At the micro level, the midsection of each radial element is composed of three mineralized components, which consist of discrete segments (tesserae) that are mineralized cartilage and embedded in unmineralized cartilage. The radial elements are wrapped with aligned, unmineralized collagen fibers. This is the first report of the detailed structure of the ray elements, including the observation of a 3-chain mineralized tesserae. Structural analyses demonstrate that this configuration enhances stiffness in multiple directions. A two-dimensional numerical model based on the morphological analysis demonstrated that the tessera structure helps distributing shear, tensile and compressive stress more ideally, which can better support both lift and thrust forces when swimming without losing flexibility. Batoid fishes have very light cartilaginous skeletons that facilitate their elegant swimming by applying their enlarged wing-like pectoral fins. Previous studies have shown structural features and mechanical properties of the mineralized cartilage skeleton in various batoid fishes. However, the details of the pectoral fin structure at different length scales, as well as the relationship between the mechanical properties and structural design remains unknown. The present work illustrates the hierarchical structure of the pectoral fin of

  8. Bioerosion by euendoliths decreases in phosphate-enriched skeletons of living corals

    NASA Astrophysics Data System (ADS)

    Godinot, C.; Tribollet, A.; Grover, R.; Ferrier-Pagès, C.

    2012-03-01

    While the role of microboring organisms, or euendoliths, is relatively well known in dead coral skeletons, their function in live corals remains poorly understood. They are suggested to behave like ectosymbionts or parasites, impacting their host health. However, the species composition of microboring communities, their abundance and dynamics in live corals under various environmental conditions have never been explored. Here, the effect of phosphate enrichment on boring microorganisms in live corals was tested for the first time. S. pistillata nubbins were exposed to 3 different treatments (phosphate enrichments of 0, 0.5 and 2.5 μmol l-1) during 15 weeks. After 15 weeks of phosphate enrichment, petrographic thin sections were prepared for observation with light microscopy, and additional samples were examined with scanning electron microscopy (SEM). Euendoliths comprised mainly autotrophic Ostreobium sp. filaments. Rare filaments of heterotrophic fungi were also observed. Filaments were densely distributed in the central part of nubbins, and less abundant towards the apex. Unexpectedly, there was a visible reduction of filaments abundance in the most recently-calcified apical part of phosphate-enriched nubbins. The overall abundance of euendoliths significantly decreased, from 9.12 ± 1.09% of the skeletal surface area in unenriched corals, to 5.81 ± 0.77% and 5.27 ± 0.34% in 0.5 and 2.5 μmol l-1-phosphate enriched corals respectively. SEM observations confirmed this decrease. Recent studies have shown that phosphate enrichment increases coral skeletal growth and metabolic rates, while it decreases skeletal density and resilience to mechanical stress. We thus hypothesize that increased skeletal growth in the presence of phosphate enrichment occurred too fast for an effective euendolith colonization. They could not keep up with coral growth, so they became diluted in the apex areas as nubbins grew with phosphate enrichment. The possible advantages and

  9. R-spondins: novel matricellular regulators of the skeleton.

    PubMed

    Knight, M Noelle; Hankenson, Kurt D

    2014-07-01

    R-spondins are a family of four matricellular proteins produced by a variety of cell-types. Structurally, R-spondins contain a TSR1 domain that retains the tryptophan structure and a modified cysteine-rich CSVCTG region. In addition, the R-spondins contain two furin repeats implicated in canonical Wnt signaling. R-spondins positively regulate canonical Wnt signaling by reducing Wnt receptor turnover and thereby increasing beta-catenin stabilization. R-spondins are prominently expressed in the developing skeleton and contribute to limb formation, particularly of the distal digit. Additionally, results suggest that R-spondins may contribute to the maintenance of adult bone mass by regulating osteoblastogenesis and bone formation. Copyright © 2014. Published by Elsevier B.V.

  10. Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons.

    PubMed

    Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing

    2014-01-01

    In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.

  11. Regulation Mechanism of the Lateral Diffusion of Band 3 in Erythrocyte Membranes by the Membrane Skeleton

    PubMed Central

    Tomishige, Michio; Sako, Yasushi; Kusumi, Akihiro

    1998-01-01

    Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton. PMID:9722611

  12. 7 CFR 58.530 - Keeping quality requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Cottage Cheese Bearing Usda Official Identification § 58.530 Keeping quality requirements. Keeping quality...

  13. Primary cilia: cellular sensors for the skeleton.

    PubMed

    Anderson, Charles T; Castillo, Alesha B; Brugmann, Samantha A; Helms, Jill A; Jacobs, Christopher R; Stearns, Tim

    2008-09-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions.

  14. Primary Cilia: Cellular Sensors for the Skeleton

    PubMed Central

    Anderson, Charles T.; Castillo, Alesha B.; Brugmann, Samantha A.; Helms, Jill A.; Jacobs, Christopher R.; Stearns, Tim

    2010-01-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions. PMID:18727074

  15. A comparison between skeleton and bounding box models for falling direction recognition

    NASA Astrophysics Data System (ADS)

    Narupiyakul, Lalita; Srisrisawang, Nitikorn

    2017-12-01

    Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible, several works attempted to implement different algorithms to recognize the fall. Our work compares the performance of two models based on features extraction: (i) Body joint data (Skeleton Data) which are the joint's positions in 3 axes and (ii) Bounding box (Box-size Data) covering all body joints. Machine learning algorithms that were chosen are Decision Tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Linear discriminant analysis (LDA), Voting Classification (VC), and Gradient boosting (GB). The results illustrate that the models trained with Skeleton data are performed far better than those trained with Box-size data (with an average accuracy of 94-81% and 80-75%, respectively). KNN shows the best performance in both Body joint model and Bounding box model. In conclusion, KNN with Body joint model performs the best among the others.

  16. Reconstructing the Curve-Skeletons of 3D Shapes Using the Visual Hull.

    PubMed

    Livesu, Marco; Guggeri, Fabio; Scateni, Riccardo

    2012-11-01

    Curve-skeletons are the most important descriptors for shapes, capable of capturing in a synthetic manner the most relevant features. They are useful for many different applications: from shape matching and retrieval, to medical imaging, to animation. This has led, over the years, to the development of several different techniques for extraction, each trying to comply with specific goals. We propose a novel technique which stems from the intuition of reproducing what a human being does to deduce the shape of an object holding it in his or her hand and rotating. To accomplish this, we use the formal definitions of epipolar geometry and visual hull. We show how it is possible to infer the curve-skeleton of a broad class of 3D shapes, along with an estimation of the radii of the maximal inscribed balls, by gathering information about the medial axes of their projections on the image planes of the stereographic vision. It is definitely worth to point out that our method works indifferently on (even unoriented) polygonal meshes, voxel models, and point clouds. Moreover, it is insensitive to noise, pose-invariant, resolution-invariant, and robust when applied to incomplete data sets.

  17. Spine and axial skeleton injuries in the National Football League.

    PubMed

    Mall, Nathan A; Buchowski, Jacob; Zebala, Lukas; Brophy, Robert H; Wright, Rick W; Matava, Matthew J

    2012-08-01

    The majority of previous literature focusing on spinal injuries in American football players is centered around catastrophic injuries; however, this may underestimate the true number of these injuries in this athletic cohort. The goals of this study were to (1) report the incidence of spinal and axial skeleton injuries, both minor and severe, in the National Football League (NFL) over an 11-year period; (2) determine the incidence of spinal injury by injury type, anatomic location, player position, mechanism of injury, and type of exposure (practice vs game); and (3) determine the average number of practices and days missed because of injury for each injury type. Descriptive epidemiological study. All documented injuries to the cervical, thoracic, and lumbar spine; pelvis; ribs; and spinal cord were retrospectively analyzed using the NFL's injury surveillance database over a period of 11 seasons from 2000 through 2010. The data were analyzed by the number of injuries per athlete-exposure, the anatomic location and type of injury, player position, mechanism of injury, and number of days missed per injury. A total of 2208 injuries occurred to the spine or axial skeleton over an 11-season interval in the NFL, with a mean loss of 25.7 days per injury. This represented 7% of the total injuries during this time period. Of these 2208 injuries, 987 (44.7%) occurred in the cervical spine. Time missed from play was greatest for thoracic disc herniations (189 days/injury). Other injuries that had a mean time missed greater than 30 days included (in descending order) cervical fracture (120 days/injury), cervical disc degeneration/herniation (85 days/injury), spinal cord injury (77 days/injury), lumbar disc degeneration/herniation (52 days/injury), thoracic fracture (34 days/injury), and thoracic nerve injury (30 days/injury). Offensive linemen were the most likely to suffer a spinal injury, followed by defensive backs, defensive linemen, and linebackers. Blocking and tackling

  18. The study of cognitive processes in the brain EEG during the perception of bistable images using wavelet skeleton

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Zhuravlev, Maksim O.; Pysarchik, Alexander N.; Khramova, Marina V.; Grubov, Vadim V.

    2017-03-01

    In the paper we study the appearance of the complex patterns in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. A new method based on the calculation of the maximum energy component for the continuous wavelet transform (skeletons) is proposed. Skeleton analysis allows us to identify specific patterns in the EEG data set, appearing in the perception of ambiguous objects. Thus, it becomes possible to diagnose some cognitive processes associated with the concentration of attention and recognition of complex visual objects. The article presents the processing results of experimental data for 6 male volunteers.

  19. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton.

    PubMed

    Huang, Alice H

    2017-09-15

    Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Morphometric analysis of early Eocene Corbisema skeletons (Silicoflagellata) in Mors, Denmark

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hideto; Jordan, Richard W.; Nishiwaki, Niichi; Nishida, Shiro

    2018-02-01

    A two-dimensional morphometric programme, recently designed to measure fossil skeletons of the silicoflagellate genus Corbisema, was used to investigate specimens of the C. apiculata-C. triacantha complex found in a sample from the Fur Formation on the island of Mors, Jutland, Denmark. The semi-automated programme measured the lengths of the basal sides and radial spines, the basal side curvature, and the location of the pikes (if present) from a photographic database (N = 469). As a result, two distinct morphological groups were revealed based on their radial spine length : basal side length ratio and the presence or absence of pikes: group A (ratio of 1 : 1.3, no pikes) and group B, with the latter subdivided into B1 (ratio of 1 : 7, with pikes) and B2 (ratio of 1 : 6, no pikes). Group A (C. triacantha sensu lato) possesses a small basal ring with relatively straight basal sides and long radial spines, while group B has a large basal ring with curved basal sides and short radial spines. In B1 specimens (C. apiculata sensu stricto) the pikes are positioned 0 to 1 µm away from the junction point of the strut and basal ring. This would suggest that B1 double skeletons are likely to be in the Star-of-David configuration, while A and B2 double skeletons (which lack pikes) are likely to be in the corner-to-corner configuration. Compared with the previously published biometric studies of extant Stephanocha (Stephanocha speculum complex in the Southern Ocean and S. medianoctisol in the Arctic Ocean), the results are somewhat different: although C. triacantha sensu lato (group A) is similar to the modern species of Stephanocha, the latter have smaller basal ring diameters, whereas specimens of C. apiculata sensu lato (types B1 and B2) have large basal rings. If their cell diameters are calculated, B1 is the largest, with S. speculum being the smallest - about half the size of B1. This could suggest that the relationship between radial spine length and mean basal ring

  1. Do allergic families avoid keeping furry pets?

    PubMed

    Bertelsen, R J; Carlsen, K C L; Granum, B; Carlsen, K-H; Håland, G; Devulapalli, C S; Munthe-Kaas, M C; Mowinckel, P; Løvik, M

    2010-06-01

    Studies addressing the relationship between pet keeping and development of asthma and allergies may be influenced by pet avoidance in families with a history of allergic disease. Following a cohort of 1019 children in Oslo till 10 years of age, we studied the association of pet keeping with socio-economic factors and allergic disease in the family. A family history of asthma and rhinoconjunctivitis was not significantly associated with pet ownership at birth or with pet removal by 10 years. Acquiring cats and dogs was less likely if the child had allergic rhinoconjunctivitis, whereas no association was seen with asthma (in any family member). Single parenthood increased the likelihood of acquiring a cat, smoking parents more often had cats or dogs, and having older siblings was associated with keeping dogs and other furry pets. Among 319 families reporting pet avoidance, 70% never had pets, 8% had given up pets, and 22% avoided a particular type of pet only. Twenty-four per cent of the parents failed to retrospectively report pet keeping during the child's first year of life. Overall, allergic rhinitis, but not asthma was associated with actual pet avoidance, whereas the strongest predictors for keeping pets were found to be socio-economic factors. Allergic disease in a child most often does not lead to the removal of the family's furry pet. Pet avoidance is associated with allergic symptoms, but not asthma. Socio-economic factors like parental education, single parenthood and smoking affects the families' decisions on pet keeping, including the type of pets the families will avoid or acquire. The large recall error demonstrated points to the need for prospective data regarding pet keeping.

  2. Persistence of bone collagen cross-links in skeletons of the Nuraghi population living in Sardinia 1500-1200 B.C

    NASA Technical Reports Server (NTRS)

    Wojtowicz, A.; Yamauchi, M.; Montella, A.; Bandiera, P.; Sotowski, R.; Ostrowski, K.

    1999-01-01

    Bone collagen has a specific molecular ultrastructure which can be proved by birefringence. This protein, forming the main organic component of bone tissue, is known to survive millennia in paleontological bones and teeth. Birefringence of bone collagen obtained from the skeletons of the Nuraghi population living in Sardinia c-ca 1500 years B.C. was found previously by the use of polarizing microscopy [1]. In this paper, using high pressure liquid chromatography (HPLC) techniques, we show the existence of bone collagen cross-links preserved in Nuraghi skeletons after more than 3000 years.

  3. Revisiting the Debate: Does Exercise Build Strong Bones in the Mature and Senescent Skeleton?

    PubMed Central

    Hughes, Julie M.; Charkoudian, Nisha; Barnes, Jill N.; Morgan, Barbara J.

    2016-01-01

    Traditional exercise programs seem to be less osteogenic in the mature and post-mature skeleton compared to the young skeleton. This is likely because of the decline in sensitivity of bone to mechanical loading that occurs with advancing age. Another factor contributing to the apparently diminished benefit of exercise in older adults is failure of widely used measurement techniques (i.e., DXA) to identify changes in 3-dimensional bone structure, which are important determinants of bone strength. Moreover, although hormonal contributors to bone loss in the elderly are well-recognized, the influence of age-related increases in sympathetic nervous system activity, which impacts bone metabolism, is rarely considered. In this Perspective, we cite evidence from animal and human studies demonstrating anabolic effects of exercise on bone across the lifespan and we discuss theoretical considerations for designing exercise regimens to optimize bone health. We conclude with suggestions for future research that should help define the osteogenic potential of exercise in older individuals. PMID:27679578

  4. Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and [sup 234]U/[sup 238]U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Matthews, M.; Wasserburg, G.J.; Chen, J.H.

    1993-01-01

    A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographic and trace element analyses on a suite of Pleistocene samples that had previously been studied from [sup 234]U, [sup 230]Th, and U-[sup 230]Th ages (Chen et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles aremore » highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial [delta][sup 234]U, are generally correlated (Chen et al., 1991). As all these diagenetic changes involve the recystallization and deposition of aragonite, the authors infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the [sup 234]U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U-[sup 230]Th dating. The basic problem of identifying a priori unaltered coral skeletons for [sup 230]Th dating is not yet resolved. 64 refs., 16 figs., 5 tabs.« less

  5. Explodator: A new skeleton mechanism for the halate driven chemical oscillators

    NASA Astrophysics Data System (ADS)

    Noszticzius, Z.; Farkas, H.; Schelly, Z. A.

    1984-06-01

    In the first part of this work, some shortcomings in the present theories of the Belousov-Zhabotinskii oscillating reaction are discussed. In the second part, a new oscillatory scheme, the limited Explodator, is proposed as an alternative skeleton mechanism. This model contains an always unstable three-variable Lotka-Volterra core (the ``Explodator'') and a stabilizing limiting reaction. The new scheme exhibits Hopf bifurcation and limit cycle oscillations. Finally, some possibilities and problems of a generalization are mentioned.

  6. Young children mostly keep, and expect others to keep, their promises.

    PubMed

    Kanngiesser, Patricia; Köymen, Bahar; Tomasello, Michael

    2017-07-01

    Promises are speech acts that create an obligation to do the promised action. In three studies, we investigated whether 3- and 5-year-olds (N=278) understand the normative implications of promising in prosocial interactions. In Study 1, children helped a partner who promised to share stickers. When the partner failed to uphold the promise, 3- and 5-year-olds protested and referred to promise norms. In Study 2, when children in this same age range were asked to promise to continue a cleaning task-and they agreed-they persisted longer on the task and mentioned their obligation more frequently than without such a promise. They also persisted longer after a promise than after a cleaning reminder (Study 3). In prosocial interactions, thus, young children feel a normative obligation to keep their promises and expect others to keep their promises as well. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of Radiographic Contrast Media on the Spectrin/Band3-Network of the Membrane Skeleton of Erythrocytes

    PubMed Central

    Franke, Ralf-Peter; Scharnweber, Tim; Fuhrmann, Rosemarie; Wenzel, Folker; Krüger, Anne; Mrowietz, Christof; Jung, Friedrich

    2014-01-01

    The membrane of red blood cells consists of a phospholipid bilayer with embedded membrane proteins and is associated on the cytoplasmatic side with a network of proteins, the membrane skeleton. Band3 has an important role as centre of the functional complexes e.g. gas exchange complex and as element of attachment for the membrane skeleton maintaining membrane stability and flexibility. Up to now it is unclear if band3 is involved in the morphology change of red blood cells after contact with radiographic contrast media. The study revealed for the first time that Iopromide induced markedly more severe alterations of the membrane skeleton compared to Iodixanol whose effects were similar to erythrocytes suspended in autologous plasma. A remarkable clustering of band3 was found associated with an accumulation of band3 in spicules and also a sequestration of band3 to the extracellular space. This was evidently accompanied by a gross reduction of functional band3 complexes combined with a dissociation of spectrin from band3 leading to a loss of homogeneity of the spectrin network. It could be demonstrated for the first time that RCM not only induced echinocyte formation but also exocytosis of particles at least coated with band3. PMID:24586837

  8. Effects of acidified seawater on coral calcification and variations of U/Ca ratio in their skeletons

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Ozaki, S.; Iguchi, A.; Sakai, K.; Suzuki, A.; Kawahata, H.

    2011-12-01

    The rising CO2 concentration in the atmosphere is changing the carbonate chemistry of the ocean. Elevated partial pressure of CO2 (pCO2) has caused significant decrease in surface seawater pH and carbonate ion concentration. Therefore, ocean acidification has a negative effect on calcification of marine calcifying organisms. Especially, hermatypic corals are dominant organisms in coral reef ecosystems, so their calcificication is a key to determine the health of reef ecosystems. On the other hand, recent study has suggested that there is a negative correlation between U/Ca ratio in coral skeleton and seawater pH, based on the culture experiment using primary polyps of Acropora digitifera. In this study, primary polyps and adult colonies of A. digitifera and adult colonies of Porites australiensis, which are the dominant species around the Ryukyu Islands, Japan, were reared in seawater with different pCO2 (300, 400, 600, 800, 1000ppm) and pH (7.4, 7.6, 8.0) settings controlled by CO2 bubbling. Calcification rate of adult coral was estimated by buoyant method, while skeletal growth of polyps was evaluated by measuring the dry weight of each skeleton after the experiments. In order to evaluate the relationship between U/Ca ratios in coral skeletons and seawater pH, U/Ca ratios in reared corals were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results of A. digitifera showed that the growth rate of adult corals had no significant correlation against pCO2, but dry weight of polyp skeletons decreased with increase in pCO2. Growth rate of P. australiensis typically showed a positive correlation with pH. However, growth rates were different among colonies, suggesting that their responses to acidification may vary among the colonies. Regarding the variations of U/Ca ratios, there were positive correlations between U/Ca ratios in adults of A. digitifera and P. australiensis and seawater pCO2 (pH), while no relation was observed in polyp corals.

  9. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia

    PubMed Central

    Duarte, Cidália; Maurício, João; Pettitt, Paul B.; Souto, Pedro; Trinkaus, Erik; van der Plicht, Hans; Zilhão, João

    1999-01-01

    The discovery of an early Upper Paleolithic human burial at the Abrigo do Lagar Velho, Portugal, has provided evidence of early modern humans from southern Iberia. The remains, the largely complete skeleton of a ≈4-year-old child buried with pierced shell and red ochre, is dated to ca. 24,500 years B.P. The cranium, mandible, dentition, and postcrania present a mosaic of European early modern human and Neandertal features. The temporal bone has an intermediate-sized juxtamastoid eminence. The mandibular mentum osseum and the dental size and proportions, supported by mandibular ramal features, radial tuberosity orientation, and diaphyseal curvature, as well as the pubic proportions align the skeleton with early modern humans. Body proportions, reflected in femorotibial lengths and diaphyseal robusticity plus tibial condylar displacement, as well as mandibular symphyseal retreat and thoracohumeral muscle insertions, align the skeleton with the Neandertals. This morphological mosaic indicates admixture between regional Neandertals and early modern humans dispersing into southern Iberia. It establishes the complexities of the Late Pleistocene emergence of modern humans and refutes strict replacement models of modern human origins. PMID:10377462

  10. How to Keep an Infusion Log: Intravenous Immune Globulin (IVIG)

    MedlinePlus

    How to keep an INFUSION LOG Intravenous Immune Globulin (IVIG) How to keep an INFUSION LOG The Value of Keeping Records Excellence in health care ... keeping track of your Intravenous Immune Globulin (IVIG) infusions. Each of the manufacturers prepares IVIG in a ...

  11. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.

    PubMed

    van der Kooij, Herman; Veneman, Jan; Ekkelenkamp, Ralf

    2006-01-01

    We have designed and built a lower extremity powered exo-skeleton (LOPES) for the training of post-stroke patients. This paper describes the philosophy behind the design of LOPES, motivates the choices that have been made and gives some exemplary results of the ranges of mechanical impedances that can be achieved.

  12. What's Inside Bodies? Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Reiss, Michael

    This paper describes a study of young children's understanding of what is on the inside of animals--skeletons and other organ systems. The study uses 2-D drawings based on the idea that a drawing is the representational model and is the outward expression of the mental model. The 617 drawings made by participants in the study were awarded one of…

  13. 18F-NaF PET/CT in Extensive Melorheostosis of the Axial and Appendicular Skeleton With Soft-Tissue Involvement.

    PubMed

    Papadakis, Georgios Z; Jha, Smita; Bhattacharyya, Timothy; Millo, Corina; Tu, Tsang-Wei; Bagci, Ulas; Marias, Kostas; Karantanas, Apostolos H; Patronas, Nicholas J

    2017-07-01

    Melorheostosis is a rare, nonhereditary, benign, sclerotic bone dysplasia with no sex predilection, typically occurring in late childhood or early adulthood, which can lead to substantial functional morbidity, depending on the sites of involvement. We report on a patient with extensive melorheostosis in the axial and appendicular skeleton, as well as in the soft tissues, who was evaluated with whole-body F-NaF PET/CT scan. All melorheostotic lesions of the skeleton and of the ossified soft-tissue masses demonstrated intensely increased F-NaF activity, suggesting the application of this modality in assessing and monitoring the disease activity.

  14. Success of long bone fracture healing in ancient Egypt: a paleoepidemiological study of the Giza Necropolis skeletons.

    PubMed

    Erfan Zaki, Moushira

    2013-01-01

    Complications may provide information regarding the management of fractures in ancient populations. The aim of this study was to determine the rates of long-bone fractures and the proportion of misalignments as indicators of failed treatment or no treatment at all in skeletons from the Giza Necropolis dating to the Old Kingdom period (2700-2190 BC). We visually examined for fractures 2287 long bones of 204 adult skeletons (112 male and 92 female) and took x-rays of fractured bones in standard AP and ML views, so that we can analyse misalignments. Fractures were found in 45 of the 2287 examined long bones (1.97 %). Most of the fractures healed with good alignment, most likely as a result of successful treatment, and only three fractures showed misalignment.

  15. Keeping Campuses Safe.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    1999-01-01

    Describes how colleges and universities are using technology, as well as traditional methods, to keep campuses safe and reduce crime. Topics include using free pizza in a successful contest to teach students about campus safety, installing security cameras, using access-control cards, providing adequate lighting, and creating a bicycle patrol…

  16. A novel triterpenoid carbon skeleton in immature sulphur-rich sediments

    NASA Astrophysics Data System (ADS)

    Schouten, Stefan; Sinninghe Damsté, Jaap S.; de Leeuw, Jan W.

    1995-03-01

    A novel S compound, 1,4-bis(2',5',5',8a'-tetramethylhexahydrothiochroman)-butane has been detected in several immature S-rich sediments, of which the desulphurized counterpart was unambiguously identified by synthesis of an authentic standard and coinjection experiments. This C skeleton of the S compound, 1,10-bis(2',2',6'-trimethylcyclohexyl)-3,8-dimethyldodecane(I), has not been reported yet in any sediment or organism. We suggest that it may be biosynthesized through an enzymatic cyclization reaction of squalene (II), which shows similarities with the biosynthesis of β,β-carotene (III) from lycopene (IV).

  17. A comprehensive audit of nursing record keeping practice.

    PubMed

    Griffiths, Paul; Debbage, Samantha; Smith, Alison

    Good quality record keeping is essential to safe and effective patient care. To ensure that high standards of record keeping are maintained, regular clinical audit should be undertaken. This article describes an audit and re-audit of nursing record keeping at Sheffield Teaching Hospital NHS Foundation Trust. The article demonstrates improving audit data in 2005 and 2006 and describes how audit and the resulting recommendations and action plans can result in real improvements in the quality of record keeping. The keys to success in this ongoing audit programme are identified as stakeholder involvement, support from the senior nurses in the organization and the use of the data for both local and trust-wide purposes.

  18. Morphological integration in the appendicular skeleton of two domestic taxa: the horse and donkey.

    PubMed

    Hanot, Pauline; Herrel, Anthony; Guintard, Claude; Cornette, Raphaël

    2017-10-11

    Organisms are organized into suites of anatomical structures that typically covary when developmentally or functionally related, and this morphological integration plays a determinant role in evolutionary processes. Artificial selection on domestic species causes strong morphological changes over short time spans, frequently resulting in a wide and exaggerated phenotypic diversity. This raises the question of whether integration constrains the morphological diversification of domestic species and how natural and artificial selection may impact integration patterns. Here, we study the morphological integration in the appendicular skeleton of domestic horses and donkeys, using three-dimensional geometric morphometrics on 75 skeletons. Our results indicate that a strong integration is inherited from developmental mechanisms which interact with functional factors. This strong integration reveals a specialization in the locomotion of domestic equids, partly for running abilities. We show that the integration is stronger in horses than in donkeys, probably because of a greater degree of specialization and predictability of their locomotion. Thus, the constraints imposed by integration are weak enough to allow important morphological changes and the phenotypic diversification of domestic species. © 2017 The Author(s).

  19. Keeping Kids Healthy.

    ERIC Educational Resources Information Center

    Mays, Sharon; And Others

    This pamphlet offers a collection of items relating to child health in the day care setting. Included is an overview of a collaborative project to develop a comprehensive set of national standards for health, nutrition, safety, and sanitation in child care programs. Contents of the project's resource kit, "Keeping Kids Healthy and Parents at…

  20. Mimix hydroxyapatite cement use in the reconstruction of the craniofacial skeleton.

    PubMed

    Mann, Robert J; Blount, Andrew L; Neaman, Keith C; Korepta, Lindsey

    2011-11-01

    Reconstruction of the craniofacial skeleton has undergone a significant evolution during the past century. Initially, the use of autogenous bone grafts from various sites was the criterion standard. However, owing to donor site morbidity and lack of sufficient bone for large defects, surgeons have relied on various bone substitutes. Hydroxyapatite (HA) has served as an alternative to autogenous grafts, but questions regarding biocompatibility, risk of infection, and slow set times have hampered its acceptance. This article serves as a review of a single surgeon's experience using HA in the craniofacial skeleton. Eighteen patients receiving HA between March 2000 and November 2006 were observed. Sixteen underwent recontouring of skull-based bone defects, and 2 underwent recontouring for nasal and alveolar defects. The mean amount of HA used in each patient was 30.2 g. For large contour irregularities, the maximum thickness of HA used was 8 mm. The size of bone defects ameliorated averaged 4.8 cm(2). Complications occurred in 3 (16.7%) of 18 patients and included scalp hematoma and superficial cellulitis. In addition, 1 patient developed a facial abscess after placement along the alveolar floor, which necessitated removal. Hydroxyapatite represents a viable alternative to autogenous bone grafts when used in the correct manner. Hydroxyapatite should be used only for smaller defects or used in conjunction with absorbable plates when attempting to fill larger defects. Use of HA for nasal piriform augmentation or alveolar bone grafting should not be considered owing to problems with late infections.

  1. 40 CFR 86.1925 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1925 What records must I keep? (a) Organize and... important to keep required information readily available. (b) Keep the following paper or electronic records...

  2. 40 CFR 60.1830 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What records must I keep? 60.1830 Section 60.1830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.1830 What records must I keep? You must keep four types of records: (a) Operator training and...

  3. 40 CFR 60.1830 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What records must I keep? 60.1830 Section 60.1830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.1830 What records must I keep? You must keep four types of records: (a) Operator training and...

  4. 40 CFR 60.1830 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What records must I keep? 60.1830 Section 60.1830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.1830 What records must I keep? You must keep four types of records: (a) Operator training and...

  5. 40 CFR 60.1830 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What records must I keep? 60.1830 Section 60.1830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.1830 What records must I keep? You must keep four types of records: (a) Operator training and...

  6. 40 CFR 60.1830 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What records must I keep? 60.1830 Section 60.1830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.1830 What records must I keep? You must keep four types of records: (a) Operator training and...

  7. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Meiburger, K. M.; Nam, S. Y.; Chung, E.; Suggs, L. J.; Emelianov, S. Y.; Molinari, F.

    2016-11-01

    Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  <  0.05) when comparing two anatomic locations on the same day and when considering the same anatomic location at two separate times (i.e. before and after burn surgery). The study demonstrates an

  8. The Caudal Skeleton of the Zebrafish, Danio rerio, from a Phylogenetic Perspective: A Polyural Interpretation of Homologous Structures

    PubMed Central

    Wiley, Edward O.; Fuiten, Allison M.; Doosey, Michael H.; Lohman, Brian K.; Merkes, Christopher; Azuma, Mizuki

    2016-01-01

    The structure of the caudal skeleton of extant teleost fishes has been interpreted in two different ways. In a diural interpretation, a caudal skeleton is composed of two centra articulated with one to six hypurals. Most subsequent authors have followed this interpretation. In contrast, a polyural interpretation considers the teleost fin to be derived from a fully metameristic ancestral bauplan originally composed of a one-to-one relationship between neural arches, centra (when present), and hypurals. Three different interpretations of the identity and homology of skeletal components of the caudal skeleton of the teleost fish Danio rerio have been proposed, two from a diural perspective and one from a polyural perspective. We examine each caudal skeletal component of Danio rerio from both a developmental and phylogenetic perspective. We propose that a polyural interpretation of structures is consistent with the current interpretation of the basal neopterygian caudal fin for this model organism rather than the older diural interpretation that does not take into account the metamerism observed in caudal structures during development. The polyural interpretation suggests several shared evolutionary innovations of major clades that would remain undiscovered under the older diural naming paradigm and makes the terminology of the parts of the caudal fin of Danio rerio strictly comparable to more basal fishes. PMID:28250540

  9. Density Banding in Coral Skeletons: A Biotic Response to Sea Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Oehlert, A. M.; Piggot, A. M.; Yau, P. M.; Fouke, B. W.

    2008-12-01

    Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. This provides a sensitive reconstructive tool for paleothermometry, paleoclimatology and paleoecology. However, the detailed mechanisms controlling aragonite nucleation and crystallization events and the rate of skeletal growth remain uncertain. The organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles (annual mean variation in SST is 29° C in mid-September to 26° C in late February). Samples were collected in the following three contextual modes: 1) at two sites (Water Plant and Playa Kalki) along a lateral 25 km spatial transect; 2) across a vertical bathymetric gradient from 5 to 15 m water depth at each site; and 3) at strategic time periods spanning the 3° C annual variations in SST. Preliminary results indicate that skeletal density banding is also expressed in the organic matrix, permitting biochemical characterization and correlation of the organic matrix banding to the skeletal banding. In addition, both surficial and ectodermal mucins were characterized in terms of total protein content, abundance and location of their anionic, cationic, and neutral macromolecular constituents. Furthermore, the ratio of mucocytes in the oral ectoderm to gastrodermal symbiotic zooxanthellae has permitted estimates of seasonal carbon allocation by

  10. Expression of Dlx-5 and Msx-1 in Craniofacial Skeletons and Ilia of Rats Treated With Zoledronate.

    PubMed

    Xuan, Bin; Yang, Pan; Wu, Shichao; Li, Lin; Zhang, Jian; Zhang, Wenyi

    2017-05-01

    Because of the different embryologic origins of the craniofacial skeleton and ilium, differences in gene expression patterns have been observed between the jaw bones and ilium. Distal-less homeobox (Dlx) genes and Msh homeobox genes, particularly Dlx-5 and Msx-1, play major roles in cell differentiation and osteogenesis. The purpose of this study was to investigate the effects of zoledronate (ZOL) on the craniofacial skeleton and ilium by detecting changes in Dlx-5 and Msx-1 expression at both the protein and messenger RNA levels. A total of 24 female Sprague-Dawley rats were randomly divided into 2 groups: ZOL group (n = 12), in which the rats were injected intraperitoneally with zoledronic acid for 12 weeks, and control group (n = 12), in which the rats were injected with saline solution for 12 weeks. By use of immunohistochemistry, Western blotting, and real-time reverse transcription polymerase chain reaction, the expression levels of Dlx-5 and Msx-1 in the craniofacial skeleton (including the maxilla, mandible, and parietal bone) and ilium were examined. Dlx-5 expression in the maxilla and mandible was increased at the protein and messenger RNA levels in the ZOL group compared with the control group (P < .01). In addition, Msx-1 expression in the maxilla and mandible was decreased in the ZOL group (P < .01). Furthermore, Dlx-5 and Msx-1 expression in the ilium was decreased in the ZOL group (P < .05). However, no significant difference in Dlx-5 or Msx-1 expression in the parietal bone was observed between the 2 groups (P > .05). Site-specific differences in the effects of ZOL on the craniofacial skeleton and ilium could be explained by differently altered tendencies in Dlx-5 and Msx-1 expression. The jaw bones were more susceptible to the effects of ZOL than the parietal bone and ilium. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. 30 CFR 250.466 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Modify and Well Records § 250.466 What records must I keep? You must keep complete, legible, and accurate records for each well. You must keep drilling records...

  12. 40 CFR 86.1925 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... it is important to keep required information readily available. (b) Keep the following paper or electronic records of your in-use testing for five years after you complete all the testing required for an... determine why a vehicle failed the vehicle-pass criteria described in § 86.1912. (3) Keep a copy of the...

  13. In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial.

    PubMed

    Nandi, Samit K; Kundu, Biswanath; Mahato, Arnab; Thakur, Narsinh L; Joardar, Siddhartha N; Mandal, Biman B

    2015-02-01

    This investigation was carried out to identify and characterize marine sponges as potential bioscaffolds in bone tissue engineering. The marine sponge (Biemna fortis) samples were collected from the rocky intertidal region of Anjuna, Goa, India, freeze-dried and converted to pure cristobalite at low temperature. After thorough evaluation of sponge samples by DTA-TGA thermography, XRD, FTIR, SEM and cell cytotoxicity by MTT assay, bare sponge scaffolds were fabricated by firing at 1190 °C. These scaffolds were loaded with growth factors (IGF-1 and BMP-2), checked for quasi-dynamic in vitro release kinetics and finally implanted into femoral bone defects in rabbits for up to 90 days, by keeping an empty defect as a control. The in vivo bone healing process was evaluated and compared using chronological radiology, histology, SEM and fluorochrome labeling studies. SEM revealed that the sponge skeleton possesses a collagenous fibrous network consisting of highly internetworked porosity in the size range of 10-220 μm. XRD and FTIR analysis showed a cristobalite phase with acicular crystals of high aspect ratio, and crystallinity was found to increase from 725 to 1190 °C. MTT assay demonstrated the non-cytotoxicity of the samples. A combination of burst and sustained release profile was noticed for both the growth factors and about 74.3% and 83% total release at day 28. In the radiological, histological, scanning electron microscopy and fluorochrome labeling analysis, the IGF-1 impregnated converted sponge scaffold promoted excellent osseous tissue formation followed by the BMP-2 loaded and bare one. These observations suggest that the marine sponge alone and in combination with growth factors is a promising biomaterial for bone repair and bone augmentation.

  14. Automated seamline detection along skeleton for remote sensing image mosaicking

    NASA Astrophysics Data System (ADS)

    Zhang, Hansong; Chen, Jianyu; Liu, Xin

    2015-08-01

    The automatic generation of seamline along the overlap region skeleton is a concerning problem for the mosaicking of Remote Sensing(RS) images. Along with the improvement of RS image resolution, it is necessary to ensure rapid and accurate processing under complex conditions. So an automated seamline detection method for RS image mosaicking based on image object and overlap region contour contraction is introduced. By this means we can ensure universality and efficiency of mosaicking. The experiments also show that this method can select seamline of RS images with great speed and high accuracy over arbitrary overlap regions, and realize RS image rapid mosaicking in surveying and mapping production.

  15. [The evolution of nursing record-keeping].

    PubMed

    Didry, Pascale

    2017-05-01

    Nursing record-keeping forms an integral part of the provision of care. It helps to assure its traceability and monitoring. It also contributes to the circulation of information among the different players involved in the patient's treatment, thereby helping to assure the quality and safety of care. For nurses, whose professional history has its roots in a culture of oral communication, record-keeping represents the affirmation of a real nursing way of thinking. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Temperature calibration of amino acid racemization: age implications for the Yuha skeleton

    USGS Publications Warehouse

    Bischoff, J.L.; Childers, W.M.

    1979-01-01

    D/L of aspartic acid ranged from 0.52 to 0.56 for femur samples of the Yuha skeleton. Subsurface temperature measurements made at the burial site indicate average annual temperature is 18??C and diagenetic temperature is 21.6??C. These data and a relation derived for the dependence of the aspartic acid rate constant on diagenetic temperature indicate an age of 23,600. The result is consistent with 14C and 230Th dating of calcrete found coating the bones. ?? 1979.

  17. [Sarcoidosis of the skeleton. Review of the literature and case report. (author's transl)].

    PubMed

    Uehlinger, E; Wurm, K

    1976-08-01

    The frequency of sarcoidosis in the skeleton varies between 3 and 36%. Skeletal sarcoidosis is rare in early stages (Löfgren-syndrom), relatively frequent in late stages. The initial phase is characterized by the formation of miliary non-caseating epitheloid-cell granulomas in the bone marrow. The invasion of the bone marrow may either be tolerated by the bone tissue or it initiates a perifocal osteosclerosis or a osteolysis. Correspondingly the X-ray of the skeleton shows normal structure or focal osteosclerosis or osteolysis. Therefore in the first case the sarcoidosis cannot be identified by X-ray. Most frequent locations are the phalanges of the fingers and toes, less common the stem skelton (skull, vertebrae, pelvis) and very rare the long tubular bones. In most cases the skeletal sarcoidosis is well tolerated. Report of a case of osteosclerotic sarcoidosis of the pelvis of a 39-years old woman with generalized sarcoidosis which was diagnozed four years earlier. The X-rays of the phalanges were normal. The biopsy of the iliac crest shows miliary sarcoid granuloma of the bone marrow and accretion of lamellar bone on the surface of the bone trabeculi with a distinct mosaic pattern. Treatment with steroids during the following five years was ineffective.

  18. Mouth and Teeth: How To Keep Them Healthy

    MedlinePlus

    ... and Wellness Staying Healthy Healthy Living Mouth and Teeth: How to Keep Them Healthy Mouth and Teeth: How to Keep Them Healthy Share Print Taking good care of your mouth and teeth throughout your whole life can help prevent problems ...

  19. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats.

    PubMed

    Stepien, Magdalena; Azzout-Marniche, Dalila; Even, Patrick C; Khodorova, Nadezda; Fromentin, Gilles; Tomé, Daniel; Gaudichon, Claire

    2016-10-01

    We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[ 15 N]-[ 13 C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15 N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13 CO 2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13 C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet. Copyright © 2016 the American Physiological Society.

  20. Effective self-regulated science learning through multimedia-enriched skeleton concept maps

    NASA Astrophysics Data System (ADS)

    Marée, Ton J.; van Bruggen, Jan M.; Jochems, Wim M. G.

    2013-04-01

    Background: This study combines work on concept mapping with scripted collaborative learning. Purpose: The objective was to examine the effects of self-regulated science learning through scripting students' argumentative interactions during collaborative 'multimedia-enriched skeleton concept mapping' on meaningful science learning and retention. Programme description: Each concept in the enriched skeleton concept map (ESCoM) contained annotated multimedia-rich content (pictures, text, animations or video clips) that elaborated the concept, and an embedded collaboration script to guide students' interactions. Sample: The study was performed in a Biomolecules course on the Bachelor of Applied Science program in the Netherlands. All first-year students (N=93, 31 women, 62 men, aged 17-33 years) took part in this study. Design and methods: The design used a control group who received the regular course and an experimental group working together in dyads on an ESCoM under the guidance of collaboration scripts. In order to investigate meaningful understanding and retention, a retention test was administered a month after the final exam. Results: Analysis of covariance demonstrated a significant experimental effect on the Biomolecules exam scores between the experimental group and the control, and the difference between the groups on the retention test also reached statistical significance. Conclusions: Scripted collaborative multimedia ESCoM mapping resulted in meaningful understanding and retention of the conceptual structure of the domain, the concepts, and their relations. Not only was scripted collaborative multimedia ESCoM mapping more effective than the traditional teaching approach, it was also more efficient in requiring far less teacher guidance.

  1. Skeleton-Controlled pDNA Delivery of Renewable Steroid-Based Cationic Lipids, the Endocytosis Pathway Analysis and Intracellular Localization

    PubMed Central

    Wang, Zhao; Luo, Ting; Cao, Amin; Sun, Jingjing

    2018-01-01

    Using renewable and biocompatible natural-based resources to construct functional biomaterials has attracted great attention in recent years. In this work, we successfully prepared a series of steroid-based cationic lipids by integrating various steroid skeletons/hydrophobes with (l-)-arginine headgroups via facile and efficient synthetic approach. The plasmid DNA (pDNA) binding affinity of the steroid-based cationic lipids, average particle sizes, surface potentials, morphologies and stability of the steroid-based cationic lipids/pDNA lipoplexes were disclosed to depend largely on the steroid skeletons. Cellular evaluation results revealed that cytotoxicity and gene transfection efficiency of the steroid-based cationic lipids in H1299 and HeLa cells strongly relied on the steroid hydrophobes. Interestingly, the steroid lipids/pDNA lipoplexes inclined to enter H1299 cells mainly through caveolae and lipid-raft mediated endocytosis pathways, and an intracellular trafficking route of “lipid-raft-mediated endocytosis→lysosome→cell nucleic localization” was accordingly proposed. The study provided possible approach for developing high-performance steroid-based lipid gene carriers, in which the cytotoxicity, gene transfection capability, endocytosis pathways, and intracellular trafficking/localization manners could be tuned/controlled by introducing proper steroid skeletons/hydrophobes. Noteworthy, among the lipids, Cho-Arg showed remarkably high gene transfection efficacy, even under high serum concentration (50% fetal bovine serum), making it an efficient gene transfection agent for practical application. PMID:29373505

  2. Radionuclide distribution dynamics in skeletons of beagles fed 90Sr: Correlation with injected 226Ra and 239Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, N.J.

    Data for the bone-by-bone redistribution of 90Sr in the beagle skeleton are reported for a period of 4000 d following a midgestation-to-540-d-exposure by ingestion. The partitioned clearance model (PCM) that was originally developed to describe bone-by-bone radionuclide redistribution of 226Ra after eight semimonthly injections at ages 435-535 d has been fitted to the 90Sr data. The parameter estimates for the PCM that describe the distribution and clearance of 226Ra after deposition on surfaces following injection and analogous parameter estimates for 90Sr after uniform deposition in the skeleton as a function of Ca mass are given. Fractional compact bone masses permore » bone group (mi,COM) are also predicted by the model and compared to measured values; a high degree of correlation (r = 0.84) is found. Bone groups for which the agreement between the model and experimental values of mi,COM was poor had tissue-to-calcium weight ratios about 1.5 times those for bones that agreed well. Metabolically defined surface in PCM is initial activity fraction per Ca fraction in a given skeletal component for intravenously injected alkaline earth (Sae) radionuclides; comparisons are made to similarly defined surface (Sact) values from 239Pu injection studies. The patterns of Sae and Sact distribution throughout the skeleton are similar.« less

  3. Hyoid skeleton, its related muscles, and morphological novelties in the frog Lepidobatrachus (anura, ceratophryidae).

    PubMed

    Fabrezi, Marissa; Lobo, Fernando

    2009-11-01

    Many traits of the skull of ceratophryines are related to the capture of large prey independently of aquatic or terrestrial feeding. Herein, detailed descriptions of the development of hyoid skeleton and the anatomy of muscles responsible for hyoid and tongue movements in Lepidobatrachus laevis and L. llanensis are provided and compared with those of other neobatrachians. The aquatic Lepidobatrachus has special features in its hyoid skeleton that integrates a set of derived features convergent with the conditions observed in non-neobatrachian anurans and morphological novelties (e.g., dorsal dermal hyoid ossification) that deviate from the generalized pattern found in most frogs. Further, reduction of fibers of muscles of buccal floor, reduction or loss of hyoid muscles (m. geniohyoideus rama lateralis, anterior pair of m. petrohyoideus posteriores), small tongue, and simplified tongue muscles are also morphological deviations from the pattern of terrestrial ceratophryines, and other aquatic ceratophryids (e.g., Telmatobius) that seem to be related to feeding underwater. The historical derived features shared with Chacophrys and Ceratophrys involved in megalophagy are conserved in Lepidobatrachus and morphological changes in the hyoglossal apparatus define a unique functional complex among anurans.

  4. Keeping Plateaued Performers Motivated.

    ERIC Educational Resources Information Center

    DeLon, Barbara A.

    1993-01-01

    Discusses the problem of keeping library staff motivated when promotions are not available. Topics addressed include the importance of management training that emphasizes communication skills; alternative ways to help employees grow, including staff development programs, lateral transfers, job rotation, and short-term projects; and helpful…

  5. The role of symbiotic algae in the formation of the coral polyp skeleton: 3-D morphological study based on X-ray microcomputed tomography

    NASA Astrophysics Data System (ADS)

    Iwasaki, Shinya; Inoue, Mayuri; Suzuki, Atsushi; Sasaki, Osamu; Kano, Harumasa; Iguchi, Akira; Sakai, Kazuhiko; Kawahata, Hodaka

    2016-09-01

    Symbiotic algae of primary polyps play an important role in calcification of coral skeletons. However, the function of the symbiotic algae, including the way they influence the physical features of their host skeleton under various conditions, is not well understood. We used X-ray microcomputed tomography to observe skeletal shape characteristics in symbiotic and aposymbiotic primary polyps of Acropora digitifera that were cultured at various temperature and pCO2 levels (temperature 27, 29, 33°C; pCO2 400, 800, 1000 µatm). Symbiotic polyps had a basal plate with a well-developed folding margin supporting the branched skeleton, whereas aposymbiotic ones did not. The features of the folding margin suggest that it might be the initial growth stage of the epitheca. In addition, three-dimensional (3-D) morphological measurements made by X-ray microcomputed tomography show that the branched skeletons of symbiotic primary polyps were taller than those of aposymbiotic ones, suggesting that zooxanthellae in coral primary polyps play a critical role in the height growth of skeletal branches. Furthermore, results of the temperature- and pCO2-controlled experiments suggest that global warming might greatly affect the activity of zooxanthellae, whereas ocean acidification might reduce calcification by damaging the coral host itself. Our findings provide new knowledge about the role of zooxanthellae in coral calcification.

  6. Benchmarking high performance computing architectures with CMS’ skeleton framework

    NASA Astrophysics Data System (ADS)

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    2017-10-01

    In 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.

  7. Earliest colobine skeletons from Nakali, Kenya.

    PubMed

    Nakatsukasa, Masato; Mbua, Emma; Sawada, Yoshihiro; Sakai, Tetsuya; Nakaya, Hideo; Yano, Wataru; Kunimatsu, Yutaka

    2010-11-01

    Old World monkeys represent one of the most successful adaptive radiations of modern primates, but a sparse fossil record has limited our knowledge about the early evolution of this clade. We report the discovery of two partial skeletons of an early colobine monkey (Microcolobus) from the Nakali Formation (9.8-9.9 Ma) in Kenya that share postcranial synapomorphies with extant colobines in relation to arboreality such as mediolaterally wide distal humeral joint, globular humeral capitulum, distinctly angled zona conoidea, reduced medial trochlear keel, long medial epicondyle with weak retroflexion, narrow and tall olecranon, posteriorly dislocated fovea on the radial head, low projection of the femoral greater trochanter, wide talar head with a greater rotation, and proximodistally short cuboid and ectocuneiform. Microcolobus in Nakali clearly differs from the stem cercopithecoid Victoriapithecus regarding these features, as Victoriapithecus is postcranially similar to extant small-sized terrestrial cercopithecines. However, degeneration of the thumb, a hallmark of modern colobines, is not observed, suggesting that this was a late event in colobine evolution. This discovery contradicts the prevailing hypothesis that the forest invasion by cercopithecids first occurred in the Plio-Pleistocene, and shows that this event occurred by the late Miocene at a time when ape diversity declined. © 2010 Wiley-Liss, Inc.

  8. Fifty years of atomic time-keeping at VNIIFTRI

    NASA Astrophysics Data System (ADS)

    Domnin, Yu; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G.

    2005-06-01

    Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI—the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH4 laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard.

  9. [How can I keep up with my literature?].

    PubMed

    Vandenbroucke, J P

    1998-03-28

    To keep up with the literature, the author and his wife have personal home subscriptions to the 'big five' general medical journals, two top general science journals, and close to a dozen specialist journals. Two of the general medical journals are regularly read in more depth. Since computerized search systems permit almost immediate retrieval on whatever subject at whatever work location, the author keeps no filing system of the items of interest. For three (slowly growing) subjects that transgress the boundaries of the usual keywords of search systems, copies of papers are collected in piles: (a) important methodological papers (which may have been published anywhere, on any subject), (b) papers about concepts of the origin and evolution of diseases, and (c) papers of strong general interest. The disadvantage of not keeping track of the literature by a personal filing system is that the author regularly forgets about papers and books he already has; the advantage is that no time is spent keeping a personal filing system.

  10. Simulating the Incorporation of Geochemical Proxies into Scleractinian Coral Skeletons: Effects of Different Environmental and Biological Factors and Implications for Paleo-reconstruction

    NASA Astrophysics Data System (ADS)

    Guo, W.

    2017-12-01

    Chemical and isotopic compositions of scleractinian coral skeletons reflect the physicochemical condition of the seawater in which corals grow. This makes coral skeleton one of the best archives of ocean climate and biogeochemical changes. A number of coral-based geochemical proxies have been developed and applied to reconstruct past seawater conditions, such as temperature, pH, carbonate chemistry and nutrient concentrations. Detailed laboratory and field-based studies of these proxies, however, indicate interpretation of the geochemistry of coral skeletons is not straightforward, due to the presence of `vital effects' and the variations of empirical proxy calibrations among and within different species. This poses challenges for the broad application of many geochemical proxies in corals, and highlights the need to better understand the fundamental processes governing the incorporation of different proxies. Here I present a numerical model that simulates the incorporation of a suite of geochemical proxies into coral skeletons, including δ11B, Mg/Ca, Sr/Ca, U/Ca, B/Ca and Ba/Ca. This model, building on previous theoretical studies of coral calcification, combines our current understanding of coral calcification mechanism with experimental constraints on the isotope and element partition during carbonate precipitation. It enables quantitative evaluation of the effects of different environmental and biological factors on each proxy. Specifically, this model shows that (1) the incorporation of every proxy is affected by multiple seawater parameters (e.g. temperature, pH, DIC) as opposed to one single parameter, and (2) biological factors, particularly the interplay between enzymatic alkalinity pumping and the exchange of coral calcifying fluid with external seawater, also exert significant controls. Based on these findings, I propose an inverse method for simultaneously reconstructing multiple seawater physicochemical parameters, and compare the performance of this

  11. Linear measurements of the neurocranium are better indicators of population differences than those of the facial skeleton: comparative study of 1,961 skulls.

    PubMed

    Holló, Gábor; Szathmáry, László; Marcsik, Antónia; Barta, Zoltán

    2010-02-01

    The aim of this study is to individualize potential differences between two cranial regions used to differentiate human populations. We compared the neurocranium and the facial skeleton using skulls from the Great Hungarian Plain. The skulls date to the 1st-11th centuries, a long space of time that encompasses seven archaeological periods. We analyzed six neurocranial and seven facial measurements. The reduction of the number of variables was carried out using principal components analysis. Linear mixed-effects models were fitted to the principal components of each archaeological period, and then the models were compared using multiple pairwise tests. The neurocranium showed significant differences in seven cases between nonsubsequent periods and in one case, between two subsequent populations. For the facial skeleton, no significant results were found. Our results, which are also compared to previous craniofacial heritability estimates, suggest that the neurocranium is a more conservative region and that population differences can be pointed out better in the neurocranium than in the facial skeleton.

  12. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock

    PubMed Central

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie FA; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume

    2018-01-01

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. PMID:29624170

  13. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock.

    PubMed

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie Fa; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume; Morelli, Luis G; Oates, Andrew C; Schulte-Merker, Stefan

    2018-04-06

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. © 2018, Lleras Forero et al.

  14. 7 CFR 3200.9 - Accountability and record keeping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Accountability and record keeping. 3200.9 Section... TRANSFER OF EXCESS PERSONAL PROPERTY § 3200.9 Accountability and record keeping. USDA requires that Federal... use for a research, educational, technical, or scientific activity, or for a related purpose, within 1...

  15. An Analysis of a Self-Initiated Coping Behavior: Diary-Keeping.

    ERIC Educational Resources Information Center

    Burt, Christopher D. B.

    1994-01-01

    Two surveys of university students examined the behavior of diary-keeping. Indications of motives for diary-keeping and the material entered in diaries suggests the behavior is a means of organizing one's life and for expressing thoughts, feelings, and emotions. The organizing characteristic of diary-keeping was often a useful strategy for…

  16. Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and 234U /238U

    NASA Astrophysics Data System (ADS)

    Bar-Matthews, M.; Wasserburg, G. J.; Chen, J. H.

    1993-01-01

    A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographie and trace element analyses on a suite of Pleistocene samples that had previously been studied for 234U, 230Th, and U- 230Th ages ( CHEN et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). The normal texture exhibited by modern corals under OM consists of fine needles of aragonite forming a radial-fibrous pattern around a central dark line (center of calcification). This pattern can also be seen in many fossil corals. In most cases, the central dark line partially disappears during diagenesis, the radialfibrous pattern is obscured, and there is a distinct coarsening of the radial fabric of aragonite to unoriented platy or equant aragonite crystals. SEM images show diagenetic textures ranging from dense structureless images of the coralline matrix, with sharp boundaries at the septa walls, to the development of (1) a patchy distribution of dissolution micropores partially filled with aragonite fibers in the matrix, (2)aragonite needles coming from selvages in the septa walls which radiate into the septa voids. Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles are highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial δ 234U, are generally correlated ( CHEN et al., 1991). As all these diagenetic

  17. A Skeleton Tells Its Own Story: Forensic Analyses of Skeletal Elements for the Science Classroom Laboratory

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Breed, David; Miller, Jon S.

    2010-01-01

    The techniques of forensic anthropology and pathology can provide new information to increase student interest in studying the structural details of the human skeleton. We present a simplified methodology for assessing skeletal ethnicity, sex, age, and stature. An inexpensive method has been devised for constructing an osteometric board to allow…

  18. Skeleton-based region competition for automated gray matter and white matter segmentation of human brain MR images

    NASA Astrophysics Data System (ADS)

    Chu, Yong; Chen, Ya-Fang; Su, Min-Ying; Nalcioglu, Orhan

    2005-04-01

    Image segmentation is an essential process for quantitative analysis. Segmentation of brain tissues in magnetic resonance (MR) images is very important for understanding the structural-functional relationship for various pathological conditions, such as dementia vs. normal brain aging. Different brain regions are responsible for certain functions and may have specific implication for diagnosis. Segmentation may facilitate the analysis of different brain regions to aid in early diagnosis. Region competition has been recently proposed as an effective method for image segmentation by minimizing a generalized Bayes/MDL criterion. However, it is sensitive to initial conditions - the "seeds", therefore an optimal choice of "seeds" is necessary for accurate segmentation. In this paper, we present a new skeleton-based region competition algorithm for automated gray and white matter segmentation. Skeletons can be considered as good "seed regions" since they provide the morphological a priori information, thus guarantee a correct initial condition. Intensity gradient information is also added to the global energy function to achieve a precise boundary localization. This algorithm was applied to perform gray and white matter segmentation using simulated MRI images from a realistic digital brain phantom. Nine different brain regions were manually outlined for evaluation of the performance in these separate regions. The results were compared to the gold-standard measure to calculate the true positive and true negative percentages. In general, this method worked well with a 96% accuracy, although the performance varied in different regions. We conclude that the skeleton-based region competition is an effective method for gray and white matter segmentation.

  19. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies.

    PubMed

    Davis, Michael J; Janke, Robert

    2018-01-04

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  20. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert

    2018-05-01

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  1. Educational Possibilities of Keeping Goats in Elementary Schools in Japan

    PubMed Central

    Koda, Naoko; Kutsumi, Shiho; Hirose, Toshiya; Watanabe, Gen

    2016-01-01

    Many Japanese elementary schools keep small animals for educational purposes, and the effects and challenges have been investigated. Although goats are medium-sized animals that are familiar to Japanese, few practical studies have been conducted on keeping goats in schools. This study investigated the effects and challenges of keeping goats in elementary schools and discussed its educational possibilities. A semi-structured interview survey was conducted with 11 personnel that were responsible for keeping goats in 6 elementary schools in urban areas. They described benefits, problems, and tips related to keeping goats. Participant observation was also conducted on daily human–goat interactions in these schools. The results indicated that children in all six grades were able to care for goats. Goats were used for various school subjects and activities. As a result of keeping goats, children developed affection for them, attitude of respect for living things, greater sense of responsibility, and enhanced interpersonal interactional skills. Stronger ties between the schools and parents and community were developed through cooperation in goat-keeping. Some anxieties existed about the risk of injury to children when interacting with goats. Other challenges included the burden of taking care of the goats on holidays and insufficient knowledge about treatment in case of their illness or injury. The results suggested similarities to the benefits and challenges associated with keeping small animals in elementary schools, although the responsibility and the burden on the schools were greater for keeping goats than small animals because of their larger size and the need for children to consider the goats’ inner state and to cooperate with others when providing care. At the same time, goats greatly stimulated interest, cooperation, and empathy in children. Goats can expand educational opportunities and bring about many positive effects on child development. PMID:28083538

  2. Educational Possibilities of Keeping Goats in Elementary Schools in Japan.

    PubMed

    Koda, Naoko; Kutsumi, Shiho; Hirose, Toshiya; Watanabe, Gen

    2016-01-01

    Many Japanese elementary schools keep small animals for educational purposes, and the effects and challenges have been investigated. Although goats are medium-sized animals that are familiar to Japanese, few practical studies have been conducted on keeping goats in schools. This study investigated the effects and challenges of keeping goats in elementary schools and discussed its educational possibilities. A semi-structured interview survey was conducted with 11 personnel that were responsible for keeping goats in 6 elementary schools in urban areas. They described benefits, problems, and tips related to keeping goats. Participant observation was also conducted on daily human-goat interactions in these schools. The results indicated that children in all six grades were able to care for goats. Goats were used for various school subjects and activities. As a result of keeping goats, children developed affection for them, attitude of respect for living things, greater sense of responsibility, and enhanced interpersonal interactional skills. Stronger ties between the schools and parents and community were developed through cooperation in goat-keeping. Some anxieties existed about the risk of injury to children when interacting with goats. Other challenges included the burden of taking care of the goats on holidays and insufficient knowledge about treatment in case of their illness or injury. The results suggested similarities to the benefits and challenges associated with keeping small animals in elementary schools, although the responsibility and the burden on the schools were greater for keeping goats than small animals because of their larger size and the need for children to consider the goats' inner state and to cooperate with others when providing care. At the same time, goats greatly stimulated interest, cooperation, and empathy in children. Goats can expand educational opportunities and bring about many positive effects on child development.

  3. 49 CFR 172.317 - KEEP AWAY FROM HEAT handling mark.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false KEEP AWAY FROM HEAT handling mark. 172.317 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.317 KEEP AWAY FROM HEAT handling mark. (a) General. For... of Division 5.2 must be marked with the KEEP AWAY FROM HEAT handling mark specified in this section...

  4. 49 CFR 172.317 - KEEP AWAY FROM HEAT handling mark.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false KEEP AWAY FROM HEAT handling mark. 172.317 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.317 KEEP AWAY FROM HEAT handling mark. (a) General. For... of Division 5.2 must be marked with the KEEP AWAY FROM HEAT handling mark specified in this section...

  5. 32 CFR 707.6 - Minesweeping station keeping lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Minesweeping station keeping lights. 707.6... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.6 Minesweeping station keeping lights... intervals and bearings, two white lights in a vertical line visible from 070° through 290° relative. ...

  6. 32 CFR 707.6 - Minesweeping station keeping lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Minesweeping station keeping lights. 707.6... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.6 Minesweeping station keeping lights... intervals and bearings, two white lights in a vertical line visible from 070° through 290° relative. ...

  7. 32 CFR 707.6 - Minesweeping station keeping lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Minesweeping station keeping lights. 707.6... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.6 Minesweeping station keeping lights... intervals and bearings, two white lights in a vertical line visible from 070° through 290° relative. ...

  8. 32 CFR 707.6 - Minesweeping station keeping lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Minesweeping station keeping lights. 707.6... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.6 Minesweeping station keeping lights... intervals and bearings, two white lights in a vertical line visible from 070° through 290° relative. ...

  9. Galileo Station Keeping Strategy

    NASA Technical Reports Server (NTRS)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel

    2007-01-01

    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  10. Keeping Track of Technology

    ERIC Educational Resources Information Center

    Dyrli, Kurt O.

    2009-01-01

    A lack of consistent and accurate auditing and record keeping of district IT equipment can lead to confusion between administrative departments, including redundant purchases, transferred equipment being mislabeled as stolen, computers and other equipment simply being lost, or a variety of other scenarios. This had led to an increased demand for…

  11. Semiautomated skeletonization of the pulmonary arterial tree in micro-CT images

    NASA Astrophysics Data System (ADS)

    Hanger, Christopher C.; Haworth, Steven T.; Molthen, Robert C.; Dawson, Christopher A.

    2001-05-01

    We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel's axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized.

  12. Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming

    USGS Publications Warehouse

    Worum, F.P.; Carricart-Ganivet, J. P.; Benson, L.; Golicher, D.

    2007-01-01

    We present a model of annual density banding in skeletons of Montastraea coral species growing under thermal stress associated with an ocean-warming scenario. The model predicts that at sea-surface temperatures (SSTs) <29??C, high-density bands (HDBs) are formed during the warmest months of the year. As temperature rises and oscillates around the optimal calcification temperature, an annual doublet in the HDB (dHDB) occurs that consists of two narrow HDBs. The presence of such dHDBs in skeletons of Montastraea species is a clear indication of thermal stress. When all monthly SSTs exceed the optimal calcification temperature, HDBs form during the coldest, not the warmest, months of the year. In addition, a decline in mean-annual calcification rate also occurs during this period of elevated SST. A comparison of our model results with annual density patterns observed in skeletons of M. faveolata and M. franksi, collected from several localities in the Mexican Caribbean, indicates that elevated SSTs are already resulting in the presence of dHDBs as a first sign of thermal stress, which occurs even without coral bleaching. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  13. Power of Your Pancreas: Keep Your Digestive Juices Flowing

    MedlinePlus

    ... Issues Subscribe February 2017 Print this issue The Power of Your Pancreas Keep Your Digestive Juices Flowing ... your entire digestive system working properly. Related Stories Power to the Pelvis Battling a Bulging Hernia Keeping ...

  14. First Partial Skeleton of a 1.34-Million-Year-Old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania

    PubMed Central

    Domínguez-Rodrigo, Manuel; Pickering, Travis Rayne; Baquedano, Enrique; Mabulla, Audax; Mark, Darren F.; Musiba, Charles; Bunn, Henry T.; Uribelarrea, David; Smith, Victoria; Diez-Martin, Fernando; Pérez-González, Alfredo; Sánchez, Policarpo; Santonja, Manuel; Barboni, Doris; Gidna, Agness; Ashley, Gail; Yravedra, José; Heaton, Jason L.; Arriaza, Maria Carmen

    2013-01-01

    Recent excavations in Level 4 at BK (Bed II, Olduvai Gorge, Tanzania) have yielded nine hominin teeth, a distal humerus fragment, a proximal radius with much of its shaft, a femur shaft, and a tibia shaft fragment (cataloged collectively as OH 80). Those elements identified more specifically than to simply Hominidae gen. et sp. indet are attributed to Paranthropus boisei. Before this study, incontrovertible P. boisei partial skeletons, for which postcranial remains occurred in association with taxonomically diagnostic craniodental remains, were unknown. Thus, OH 80 stands as the first unambiguous, dentally associated Paranthropus partial skeleton from East Africa. The morphology and size of its constituent parts suggest that the fossils derived from an extremely robust individual who, at 1.338±0.024 Ma (1 sigma), represents one of the most recent occurrences of Paranthropus before its extinction in East Africa. PMID:24339873

  15. Benchmarking high performance computing architectures with CMS’ skeleton framework

    DOE PAGES

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    2017-11-23

    Here, in 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta,more » Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.« less

  16. Simultaneous drag and flow measurements of Olympic skeleton athletes

    NASA Astrophysics Data System (ADS)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  17. Benchmarking high performance computing architectures with CMS’ skeleton framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    Here, in 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta,more » Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.« less

  18. Physanolide A, a novel skeleton steroid, and other cytotoxic principles from Physalis angulata.

    PubMed

    Kuo, Ping-Chung; Kuo, Tsung-Hsiao; Damu, Amooru G; Su, Chung-Ren; Lee, E-Jian; Wu, Tian-Shung; Shu, Rexen; Chen, Chou-Ming; Bastow, Kenneth F; Chen, Tzu-Hsuan; Lee, Kuo-Hsiung

    2006-07-06

    [reaction: see text] A novel withasteroid, physanolide A (1), with an unprecedented skeleton containing a seven-membered ring, and two new physalins, physalins U (2) and V (3), were isolated from Physalis angulata. The structures were elucidated from spectroscopic analysis, and plausible biosynthetic pathways were postulated. Physalins B (4), D (5), and F (6) showed strong cytotoxicity against multiple tumor cell lines, including KB, A431, HCT-8, PC-3, and ZR751, with EC(50) values less than 4 microg/mL.

  19. Social networking between cells of the foetal skeleton: the importance of thyroid hormones.

    PubMed

    Farquharson, Colin

    2011-08-01

    In this issue of Journal of Endocrinology, Lanham et al. investigated the effects of hypothyroidism on the developing skeleton of the ovine foetus in utero. Their analyses indicated that, following thyroidectomy, bone growth, structure and mechanical properties were all altered at late gestation or at term. Adrenalectomy, whilst preventing the prepartum rise in triiodothyronine, did not modify skeletal development. The hypothyroid-mediated skeletal defects of the developing foetus described in this study may have clinical implications for bone health in later life.

  20. Exercises for Keeping Pianists' Hands in Top Form

    ERIC Educational Resources Information Center

    Perlmutter, Adam

    2009-01-01

    Some pianists have idiosyncratic ways of keeping their hands and fingers relaxed. Glenn Gould, for example, religiously soaked his digits in hot water before performing or recording. While the jury is still out on the effectiveness of Gould's routine, there are plenty of other exercises and practices that will keep a pianist's fingers limber.…

  1. Keeping PCs up to Date Can Be Fun

    ERIC Educational Resources Information Center

    Goldsborough, Reid

    2004-01-01

    The "joy" of computer maintenance takes many forms. These days, automation is the byword. Operating systems such as Microsoft Windows and utility suites such as Symantec's Norton Internet Security let you automatically keep crucial parts of your computer system up to date. It's fun to watch the technology keep tabs on itself. This document offers…

  2. Variation in the myosoricine hand skeleton and its implications for locomotory behavior (Eulipotyphla: Soricidae)

    USGS Publications Warehouse

    Woodman, Neal; Stabile, Frank A.

    2015-01-01

    Substrate use and locomotory behavior of mammals are typically reflected in external characteristics of the forefeet, such as the relative proportions of the digits and claws. Although skeletal anatomy of the forefeet can be more informative than external characters, skeletons remain rare in systematic collections. This is particularly true for the Myosoricinae (Eulipotyphla: Soricidae), a small clade of African shrews that includes both ambulatory forest shrews (Myosorex) and semifossorial mole shrews (Surdisorex). Most species in this subfamily have restricted distributions, and their behavior and ecology are mostly unstudied. To better understand the potential range of locomotory behavior among myosoricines, we used digital x-rays to image and facilitate measuring the forefoot skeletons of 9 species. As a gauge of potential variation, we compared them with the ambulatory talpid Uropsilus (Talpidae) and the semifossorial talpid Neurotrichus. The hand morphologies of myosoricines show a graded range of potential substrate use between ambulatory and semifossorial. Some of these shrews exhibit adaptations for increased burrowing efficiency that are similar to those seen in talpids and other mammals, such as longer, broader distal phalanges and claws and shorter, wider metacarpals and proximal and middle phalanges. They also, however, have characteristics that are distinct from talpids, such as maintenance of forefoot asymmetry and an increased emphasis of ray III.

  3. The skeleton in the closet: should historians of science care about the history of mathematics?

    PubMed

    Alexander, Amir

    2011-09-01

    Up until the 1950s, the history of mathematics was an integral part of the history of science. To George Sarton and his contemporaries, mathematics was the rational skeleton that organized science and held it together, and its history was a fundamental component of the broader history of science. But when historians began focusing on the cultural roots of science rather than its rational structure, the study of mathematics was marginalized and ultimately excluded from the history of science. The alienation between the two fields is detrimental to both, and in recent years there has been a sustained effort to reestablish meaningful communication between the two. This time, however, mathematics is seen not as the static skeleton of science but, instead, as a dynamic and historically evolving field in its own right-just like science itself. The new approach allows for a culturally sensitive study of mathematics, as well as a new and fruitful relationship between the history of science and the history of mathematics. The essays in this Focus section offer a sampling of the new approaches, opening the way to a rapprochement between fields that have gone their separate ways but should by rights be closely interconnected.

  4. Evaluating MJO Event Initiation and Decay in the Skeleton Model using an RMM-like Index

    DTIC Science & Technology

    2015-11-25

    climatology and document 35 the occurrence of primary, continuing, and terminating MJO events in the skeleton model. The 36 overall amount of MJO...solutions in a framework consistent with observations including MJO event 104 climatology and the precursor conditions associated with the initiation and...the 112 7 model along with several applications that include a comparison to the observed MJO event 113 climatology and identification of

  5. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  6. Dissepiments, density bands and signatures of thermal stress in Porites skeletons

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.

    2017-09-01

    The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the

  7. Coding the echinoid skeleton - a quasimetric description of complex taphonomic pathways

    NASA Astrophysics Data System (ADS)

    Grun, Tobias; Nebelsick, James

    2016-04-01

    Taphonomic pathways determine the contribution of organisms remains to the fossil record. Skeletons which experience strong taphonomic processes can either be filtered out before they become fossilized or are highly affected and thus potentially bias paleontological analyses. The echinoid test is a multi-element skeleton and features a variety of micro- and macrostructural surface characters such as tubercles, ambulacral pores, genital pores and variations in stereom morphology. Although all characters are exposed to the environment, stereom differentiation as well as the spatial character distribution on the test can result in a range of taphonomic alteration grades on a single specimen. The present study is based on 1052 test of the minute clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea and is analyzed for fragmentation, encrustation as well as the abrasion of tubercles, stereom surface as well as genital- and ambulacral pores. The use of character coding including both taphonomic grades as well as spatial distributions of specific characters on the test results in a quasimetric and numerical description of taphonomic abrasion grades. These values can be handled as interval-scaled data thus enabling bi- and multivariate statistical analysis. Results show that the Mediterranean Echinocyamus tests are generally well preserved; abrasion values are low, fragmentation and encrustation is rare. A comparison of the surface characters shows that abrasion grades of the tubercles are higher than that of the surface stereom or pore margins. Exposed tubercles show significantly higher abrasion grades than sheltered tubercles of the peristomal area. Analysis also indicate that abrasion values increase significantly with increasing encrustation levels, which can be due to the fact that incrusting organisms cross plate boundaries and thus strengthen the structural integrity of the echinoid tests.

  8. Hysteroscopy and episiotomy in a rescued, cold-stressed Florida manatee (Trichechus manatus latirostris) for diagnosis and treatment of a retained fetal skeleton.

    PubMed

    Hall, Natalie H; Walsh, Mike; DeLuca, Catherine; Bukoski, Alex

    2012-09-01

    A rescued female manatee was observed expelling a fetal bone from the vulva. The manatee was anesthetized and diagnosed with uterine retention of a fetal skeleton by ultrasound and hysteroscopy. Episiotomy was performed to gain manual access to the vagina and uterus for removal of the skeleton. Second intention healing of the episiotomy site produced excellent results. Rescued female manatees should receive a thorough reproductive tract evaluation since presence of retained fetal tissues might not be evident in blood or hormone analyses. Retention of a whole or partial dead fetus can be life-threatening to manatees, and retained tissues should be removed as early as possible.

  9. Body Shape and Life Style of the Extinct Balearic Dormouse Hypnomys (Rodentia, Gliridae): New Evidence from the Study of Associated Skeletons

    PubMed Central

    Bover, Pere; Alcover, Josep A.; Michaux, Jacques J.; Hautier, Lionel; Hutterer, Rainer

    2010-01-01

    Hypnomys is a genus of Gliridae (Rodentia) that occurred in the Balearic Islands until Late Holocene. Recent finding of a complete skeleton of the chronospecies H. morpheus (Late Pleistocene-Early Holocene) and two articulated skeletons of H. cf. onicensis (Late Pliocene) allowed the inference of body size and the calculation of several postcranial indexes. We also performed a Factorial Discriminant Analysis (FDA) in order to evaluate locomotory behaviour and body shape of the taxa. Using allometric models based on skull and tooth measurements, we calculated a body weight between 173 and 284 g for H. morpheus, and direct measurements of articulated skeletons yielded a Head and Body Length (HBL) of 179 mm and a Total Body Length of 295 mm for this species. In addition to the generally higher robustness of postcranial bones already recorded by previous authors, H. morpheus, similar to Canariomys tamarani, another extinct island species, displayed elongated zygopodium bones of the limbs and a wider distal humerus and femur than in an extant related taxon, Eliomys quercinus. Indexes indicated that Hypnomys was more terrestrial and had greater fossorial abilities than E. quercinus. This was also corroborated by a Discriminant Analysis, although no clear additional inference of locomotory abilities could be calculated. PMID:21209820

  10. [A murder case from 900 years ago? Analysis of extensive cranial trauma observed in a historical skeleton recovered in central Poland].

    PubMed

    Lorkiewicz, Wiesław; Teul, Iwona; Marchelak, Ireneusz; Tyszler, Lubomira

    2011-01-01

    This work presents the results of study of a human skeleton from the early Middle Ages recovered in Pecławice (province of Łódź), presenting signs of extensive cranial trauma suffered perimortem. The skeleton belonged to a 20-30 year-old male of sturdy build, with prominent bone processes, marked right-side asymmetry of the bones and joints of the upper extremities, and tallness (stature well above average for early medieval times). Except for the skull, the skeleton lacks any pathologic or traumatic lesions. The right side of the skull bears signs of three extensive injuries involving the frontal and parietal bones and the temporomandibular joint. Two of them penetrated deeply into the cranial cavity. The nature and location of the lesions suggests that the axe was used and that the victim was not confronted face-to-face. None of the lesions show any signs of healing. Fragmentation of the facial bones, which were mostly incomplete except for the well-preserved mandible, suggests additional blows to the face. These massive injuries must have been fatal due to damage to the brain and main blood vessels of the neck and thus they were recognized as the cause of death of the individual.

  11. Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties.

    PubMed

    Zhao, Hewei; Yue, Yonghai; Guo, Lin; Wu, Juntao; Zhang, Youwei; Li, Xiaodong; Mao, Shengcheng; Han, Xiaodong

    2016-07-01

    Ceramic/polymer composite equipped with 3D interlocking skeleton (3D IL) is developed through a simple freeze-casting method, exhibiting exceptionally light weight, high strength, toughness, and shock resistance. Long-range crack energy dissipation enabled by 3D interlocking structure is considered as the primary reinforcing mechanism for such superior properties. The smart composite design strategy should hold a place in developing future structural engineering materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 30 CFR 250.466 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations..., legible, and accurate records for each well. You must keep drilling records onsite while drilling activities continue. After completion of drilling activities, you must keep all drilling and other well...

  13. 30 CFR 250.466 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations..., legible, and accurate records for each well. You must keep drilling records onsite while drilling activities continue. After completion of drilling activities, you must keep all drilling and other well...

  14. 30 CFR 250.466 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations..., legible, and accurate records for each well. You must keep drilling records onsite while drilling activities continue. After completion of drilling activities, you must keep all drilling and other well...

  15. Simulation of a supersonic flow around a body with a frontal gas-permeable insert by using a skeleton model of a highly porous cellular material

    NASA Astrophysics Data System (ADS)

    Poplavskaya, T. V.; Kirilovskiy, S. V.; Mironov, S. G.

    2017-10-01

    Numerical simulation of supersonic flow past a cylinder with a frontal gas-permeable insert is performed using the skeleton model of a highly porous cellular material. Numerical simulation was carried out within the framework of two-dimensional RANS equations written in an axisymmetric form. The skeleton model is a system of coaxial rings of different diameters, arranged in staggered order. The calculations were carried out in a wide range of determining parameters: Mach numbers M∞ = 3, 4.85 and 7, unit Reynolds numbers Re1∞ = 13.8×105 ÷ 13.8×106 m-1, the cylinder diameter 6÷40mm, the length of the porous insert 3÷45mm, the cell diameter of 1 and 3 mm. The results of the calculations are consistent with the available experimental data. The applicability of the skeleton model for the description of supersonic flow around axisymmetric bodies with front inserts from cellular-porous materials is shown.

  16. On the existence of mosaic-skeleton approximations for discrete analogues of integral operators

    NASA Astrophysics Data System (ADS)

    Kashirin, A. A.; Taltykina, M. Yu.

    2017-09-01

    Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.

  17. The KEEP Phone Discrimination Test. Technical Report No. 64.

    ERIC Educational Resources Information Center

    Smith, Kenneth; And Others

    The urban, ethnically Hawaiian child typically experiences great difficulty in learning to read English. In order to determine whether phonological confusion is a source of dialectical interference, the Kamehameha Early Education Program (KEEP) Phone Discrimination Test (KPDT) was developed for the one hundred twelve students in the KEEP school…

  18. 40 CFR 60.1340 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What records must I keep? 60.1340 Section 60.1340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Recordkeeping § 60.1340 What records must I keep...

  19. 40 CFR 60.1340 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What records must I keep? 60.1340 Section 60.1340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Recordkeeping § 60.1340 What records must I keep...

  20. 40 CFR 60.1340 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What records must I keep? 60.1340 Section 60.1340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Recordkeeping § 60.1340 What records must I keep...

  1. 40 CFR 60.1340 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What records must I keep? 60.1340 Section 60.1340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Recordkeeping § 60.1340 What records must I keep...

  2. 40 CFR 60.1340 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What records must I keep? 60.1340 Section 60.1340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Recordkeeping § 60.1340 What records must I keep...

  3. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites.

    PubMed

    Dubreuil, R R; MacVicar, G; Dissanayake, S; Liu, C; Homer, D; Hortsch, M

    1996-05-01

    The protein ankyrin links integral membrane proteins to the spectrin-based membrane skeleton. Ankyrin is often concentrated within restricted membrane domains of polarized epithelia and neurons, but the mechanisms responsible for membrane targeting and its segregation within a continuous lipid bilayer remain unexplained. We provide evidence that neuroglian, a cell adhesion molecule related to L1 and neurofascin, can transmit positional information directly to ankyrin and thereby polarize its distribution in Drosophila S2 tissue culture cells. Ankyrin was not normally associated with the plasma membrane of these cells. Upon expression of an inducible neuroglian minigene, however, cells aggregated into large clusters and ankyrin became concentrated at sites of cell-cell contact. Spectrin was also recruited to sites of cell contact in response to neuroglian expression. The accumulation of ankyrin at cell contacts required the presence of the cytoplasmic domain of neuroglian since a glycosyl phosphatidylinositol-linked form of neuroglian failed to recruit ankyrin to sites of cell-cell contact. Double-labeling experiments revealed that, whereas ankyrin was strictly associated with sites of cell-cell contact, neuroglian was more broadly distributed over the cell surface. A direct interaction between neuroglian and ankyrin was demonstrated using yeast two-hybrid analysis. Thus, neuroglian appears to be activated by extracellular adhesion so that ankyrin and the membrane skeleton selectively associate with sites of cell contact and not with other regions of the plasma membrane.

  4. Keeping Connected: The Design and Overview of the Research

    ERIC Educational Resources Information Center

    Moss, Julianne

    2014-01-01

    The special issue "Keeping Connected: Identity, Social Connection and Education for Young People" opens with a paper that discusses the research design and overview of a three-year project by a Melbourne (Australia)-based multi-disciplinary team. Over 2007-2009, the Keeping Connected team of 10 researchers investigated the lives of…

  5. KEEP Motivational Research: Strategy and Results. Technical Report #24.

    ERIC Educational Resources Information Center

    Gallimore, Ronald; Tharp, Roland G.

    This report briefly summarizes the motivation research strategy and results from the Kamehameha Early Education Program (KEEP). The rationale behind KEEP's use of on-task behavior to measure student motivation is discussed and the two strategies of motivation enhancement researched are described. These two strategies were: (1) staff training in…

  6. 40 CFR 1051.350 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  7. 40 CFR 1048.350 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  8. 40 CFR 1048.350 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  9. 40 CFR 1048.350 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  10. 40 CFR 1048.350 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  11. 40 CFR 1051.350 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  12. 40 CFR 1051.350 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  13. 40 CFR 1051.350 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.350 What records must I keep? (a) Organize and maintain your records as described in this section. We may review your records at any time. (b) Keep paper or electronic records of your production...

  14. Keeping Nuclear Materials Secure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For 50 years, Los Alamos National Laboratory has been helping to keep nuclear materials secure. We do this by developing instruments and training inspectors that are deployed to other countries to make sure materials such as uranium are being used for peaceful purposes and not diverted for use in weapons. These measures are called “nuclear safeguards,” and they help make the world a safer place.

  15. A description of the Omo I postcranial skeleton, including newly discovered fossils.

    PubMed

    Pearson, Osbjorn M; Royer, Danielle F; Grine, Frederick E; Fleagle, John G

    2008-09-01

    Recent fieldwork in the Kibish Formation has expanded our knowledge of the geological, archaeological, and faunal context of the Omo I skeleton, the earliest known anatomically modern human. In the course of this fieldwork, several additional fragments of the skeleton were recovered: a middle manual phalanx, a distal manual phalanx, a right talus, a large and a small fragment of the left os coxae, a portion of the distal diaphysis of the right femur that conjoins with the distal epiphysis recovered in 1967, and a costal fragment. Some researchers have described the original postcranial fragments of Omo I as anatomically modern but have noted that a variety of aspects of the specimen's morphology depart from the usual anatomy of many recent populations. Reanalysis confirms this conclusion. Some of the unusual features in Omo I--a medially facing radial tuberosity, a laterally flaring facet on the talus for the lateral malleolus, and reduced dorsovolar curvature of the base of metacarpal I--are shared with Neandertals, some early modern humans from Skhul and Qafzeh, and some individuals from the European Gravettian, raising the possibility that Eurasian early modern humans inherited these features from an African predecessor rather than Neandertals. The fragment of the os coxae does not unambiguously diagnose Omo I's sex: the greater sciatic notch is intermediate in form, the acetabulum is large (male?), and a preauricular sulcus is present (female?). The preserved portion of the left humerus suggests that Omo I was quite tall, perhaps 178-182 cm, but the first metatarsal suggests a shorter stature of 162-173 cm. The morphology of the auricular surface of the os coxae suggests a young adult age.

  16. Coexistence of melorheostosis and DISH in a female skeleton from Magna Graecia (Sixth Century BC).

    PubMed

    Canci, Alessandro; Marchi, Damiano; Caramella, Davide; Fornaciari, Gino; Borgognini Tarli, Silvana M

    2005-03-01

    This paper reports on a case of massive hyperostotic alterations observed in the skeleton of an adult woman from the necropolis of Montescaglioso Belvedere (Basilicata, Southern Italy) attributed to the Enotrian culture and dated to the 6th century BC. Hyperostotic changes involve joints, the vertebral column, and the lower limbs. In particular, the large flowing ossification in both the thoracic (T6-T10) and lumbar (L2-L5) tracts, the sacralization of L5, accompanied by sacroiliac fusion on the left side, and the proliferative bone production on both the metaphyseal portion of the left tibia and the left third metatarsal are described. The vertebral antero-lateral ossification and the sacroiliac fusion support a diagnosis of diffuse idiopathic skeletal hyperostosis (DISH), while the flowing bone formation on the lower limbs supports a diagnosis of melorheostosis. The pathological conditions described here were already described in the literature, but this is the first reported case of the coexistence of DISH and the very rare melorheostosis. Furthermore, the skeleton from Montescaglioso Belvedere represents the first case of this disease described for ancient Europe, therefore adding a valuable contribution to the reconstruction of the antiquity and distribution of skeletal dysplasias. (c) 2004 Wiley-Liss, Inc.

  17. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures.

    PubMed

    Gamer, Laura W; Cox, Karen; Carlo, Joelle M; Rosen, Vicki

    2009-09-01

    Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone. 2009 Wiley-Liss, Inc.

  18. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton

    PubMed Central

    Yue, Rui; Shen, Bo; Morrison, Sean J

    2016-01-01

    Bone marrow stromal cells maintain the adult skeleton by forming osteoblasts throughout life that regenerate bone and repair fractures. We discovered that subsets of these stromal cells, osteoblasts, osteocytes, and hypertrophic chondrocytes secrete a C-type lectin domain protein, Clec11a, which promotes osteogenesis. Clec11a-deficient mice appeared developmentally normal and had normal hematopoiesis but reduced limb and vertebral bone. Clec11a-deficient mice exhibited accelerated bone loss during aging, reduced bone strength, and delayed fracture healing. Bone marrow stromal cells from Clec11a-deficient mice showed impaired osteogenic differentiation, but normal adipogenic and chondrogenic differentiation. Recombinant Clec11a promoted osteogenesis by stromal cells in culture and increased bone mass in osteoporotic mice in vivo. Recombinant human Clec11a promoted osteogenesis by human bone marrow stromal cells in culture and in vivo. Clec11a thus maintains the adult skeleton by promoting the differentiation of mesenchymal progenitors into mature osteoblasts. In light of this, we propose to call this factor Osteolectin. DOI: http://dx.doi.org/10.7554/eLife.18782.001 PMID:27976999

  19. The oldest known primate skeleton and early haplorhine evolution.

    PubMed

    Ni, Xijun; Gebo, Daniel L; Dagosto, Marian; Meng, Jin; Tafforeau, Paul; Flynn, John J; Beard, K Christopher

    2013-06-06

    Reconstructing the earliest phases of primate evolution has been impeded by gaps in the fossil record, so that disagreements persist regarding the palaeobiology and phylogenetic relationships of the earliest primates. Here we report the discovery of a nearly complete and partly articulated skeleton of a primitive haplorhine primate from the early Eocene of China, about 55 million years ago, the oldest fossil primate of this quality ever recovered. Coupled with detailed morphological examination using propagation phase contrast X-ray synchrotron microtomography, our phylogenetic analysis based on total available evidence indicates that this fossil is the most basal known member of the tarsiiform clade. In addition to providing further support for an early dichotomy between the strepsirrhine and haplorhine clades, this new primate further constrains the age of divergence between tarsiiforms and anthropoids. It also strengthens the hypothesis that the earliest primates were probably diurnal, arboreal and primarily insectivorous mammals the size of modern pygmy mouse lemurs.

  20. Why Should Scholars Keep Coming Back to John Dewey?

    ERIC Educational Resources Information Center

    Gordon, Mordechai

    2016-01-01

    This essay attempts to explain why philosophers, philosophers of education, and scholars of democracy should keep coming back to John Dewey for insights and inspiration on issues related to democracy and education. Mordechai Gordon argues that there are four major reasons that contribute to scholars' need to keep returning to Dewey for inspiration…

  1. Identification and geochemical significance of cyclic di-and trisulphides with linear and acyclic isoprenoid carbon skeletons in immature sediments

    NASA Astrophysics Data System (ADS)

    Kohnen, Math E. L.; Sinninghe Damsté, Jaap S.; ten Haven, H. L.; Van Dalen, A. C. Kock; Schouten, Stefan; De Leeuw, Jan W.

    1991-12-01

    Homologous series (C 15-C 24) of novel 3- n-alkyl-1,2-dithianes and 3- n-alkyl-6-methyl-1,2-di-thianes have been identified in immature sediments. The identification of these compounds was based on comparison of mass spectra and Chromatographie data with those of synthesized 3-methyl-6-tridecyll, 2-dithiane. In addition, 4-methyl-3-(3,7,11-trimethyldodecyl)-1,2-dithiane, 4-(4,8,12-trimethyltridecyl)-1,2-dithiane, 5-methyl-4-(3,7,11-trimethyldodecyl)-1,2,3-trithiepane, and a 1,2-dithiane possessing a pentakishomohopane carbon skeleton were tentatively assigned on the basis of mass spectral characteristics, selective chemolysis, and desulphurisation. The occurrence of these cyclic di-and trisulphides with linear, acyclic isoprenoid and hopanoid carbon skeletons in thermally immature sediments indicates that inorganic polysulphides are incorporated into functionalised lipids during the early stages of diagenesis.

  2. Associated skeletons of a new middle Triassic "Rauisuchia" from Brazil.

    PubMed

    França, Marco Aurélio G; Ferigolo, Jorge; Langer, Max C

    2011-05-01

    For more than 30 million years, in early Mesozoic Pangea, "rauisuchian" archosaurs were the apex predators in most terrestrial ecosystems, but their biology and evolutionary history remain poorly understood. We describe a new "rauisuchian" based on ten individuals found in a single locality from the Middle Triassic (Ladinian) Santa Maria Formation of southern Brazil. Nine articulated and associated skeletons were discovered, three of which have nearly complete skulls. Along with sedimentological and taphonomic data, this suggests that those highly successful predators exhibited some kind of intraspecific interaction. Other monotaxic assemblages of Triassic archosaurs are Late Triassic (Norian-Rhaetian) in age, approximately 10 million years younger than the material described here. Indeed, the studied assemblage may represent the earliest evidence of gregariousness among archosaurs, adding to our knowledge on the origin of a behavior pattern typical of extant taxa.

  3. Morphometric Comparison of Clavicle Outlines from 3D Bone Scans and 2D Chest Radiographs: A Short-listing Tool to Assist Radiographic Identification of Human Skeletons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Carl N.; Amidan, Brett G.; Trease, Harold E.

    This paper describes a computerized clavicle identification system, primarily designed to resolve the identities of unaccounted for US soldiers who fought in the Korean War. Elliptical Fourier analysis is used to quantify the clavicle outline shape from skeletons and postero-anterior antemortem chest radiographs to rank individuals in terms of metric distance. Similar to leading fingerprint identification systems, shortlists of the top matching candidates are extracted for subsequent human visual assessment. Two independent tests of the computerized system using 17 field-recovered skeletons and 409 chest radiographs demonstrate that true positive matches are captured within the top 5% of the sample 75%more » of the time. These results are outstanding given the eroded state of some field-recovered skeletons and the faintness of the 1950’s photoflurographs. These methods enhance the capability to resolve several hundred cold cases for which little circumstantial information exists and current DNA and dental record technologies cannot be applied.« less

  4. New higher taxa in the lichen family Graphidaceae (lichenized Ascomycota: Ostropales) based on a three-gene skeleton phylogeny

    Treesearch

    H. Thorsten Lumbsch; Ekaphan Kraichak; Sittiporn Parnmen; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Shirley Cunha Feuerstein; Joel A. Mercado-Diaz; Bettina Staiger; Dries Van den Broeck; Robert Lücking

    2014-01-01

    We provide an updated skeleton phylogeny of the lichenized family Graphidaceae (excluding subfamily Gomphilloideae), based on three loci (mtSSU, nuLSU, RPB2), to elucidate the position of four new genera, Aggregatorygma, Borinquenotrema, Corticorygma, and Paratopeliopsis, as well as the placement of the enigmatic species Diorygma erythrellum, Fissurina monilifera, and...

  5. 40 CFR 63.10032 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...

  6. 40 CFR 63.10032 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...

  7. 40 CFR 63.10032 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...

  8. Trajectory of Externalizing Child Behaviors in a KEEP Replication

    ERIC Educational Resources Information Center

    Uretsky, Mathew C.; Lee, Bethany R.; Greeno, Elizabeth J.; Barth, Richard P.

    2017-01-01

    Objective: The purpose of this study is to examine the correlates of child behavior change over time in a replication of the KEEP intervention. Method: The study sample was drawn from the treatment group of the Maryland replication of KEEP (n=65). Change over time was analyzed using multilevel linear mixed modeling. Results: Parents' use of…

  9. Ba, B, and U element partitioning in magnesian calcite skeletons of Octocorallia corals

    NASA Astrophysics Data System (ADS)

    Yoshimura, T.; Suzuki, A.; Iwasaki, N.

    2015-01-01

    Barium, boron and uranium element partitioning and oxygen and carbon isotope fractionation of high-Mg calcite skeletons of Octocorallia corals were investigated. The dissolved Ba concentration in seawater and the coral Ba/Ca ratio showed a clear positive correlation. The empirically derived barium partition coefficient is comparable to previous data for not only calcitic corals but also intermediate- to deep-water-dwelling scleractinian corals whose skeletons are composed of aragonite. Octocorallia corals are geologically important producers of biominerals, and they provide long-term records (up to hundreds of years) of environmental conditions in the deep ocean. Our data suggest that Ba/Ca ratios in Octocorallia corals may be a useful proxy for nutrients in intermediate and deep waters. The Ba/Ca ratio, a possible proxy for pH or carbonate ion concentration in seawater, showed the largest correlation with δ13C among the examined parameters. This result implies that the pH of the extracytoplasmic calcifying fluid (ECF) simultaneously influences δ18O, δ13C, and Ba/Ca by influencing the relative contributions of dissolved carbon sources in the ECF. Positive correlations of Ba/Ca with δ18 and δ13C suggest that δ18 and δ13C are enriched in light isotopes when conditions are less alkaline, suggesting a potential role of biological alkalinity pumping becomes more favorable with decreasing calcifying fluid pH. Substantial inter- and intra-specimen variations in Ba/Ca suggest that physicochemical factors do not exert a dominant systematic control on U incorporation.

  10. [Revascularization of left anterior descending artery area using a skeletonized left internal mammary artery: a comparison between sequential and separate grafting].

    PubMed

    Shen, J Q; Ji, Q; Ding, W J; Xia, L M; Wei, L; Wang, C S

    2018-03-13

    Objective: To evaluate in-hospital and mid-term outcomes of sequential versus separate grafting of in situ skeletonized left internal mammary artery (LIMA) to the left coronary system in a single-center, propensity-matched study. Methods: After propensity score matching, 120 pairs of patients undergoing first, scheduled, isolated coronary artery bypass grafting (CABG) with in situ skeletonized LIMA grafting to the left anterior descending artery (LAD) territory were entered into a sequential group (sequential grafting of LIMA to the diagonal artery and then to the LAD) or a control group (separate grafting of LIMA to the LAD). The in-hospital and follow-up clinical outcomes and follow-up LIMA graft patency were compared. Results: The two propensity score-matched groups had similar in-hospital and follow-up clinical outcomes. The number of bypass conduits ranged from 3 to 6 (with a mean of 3.5), and 91.3%(219/240)of the included patients received off-pump CABG surgery. No significant differences were found between the two propensity score-matched groups in the in-hospital outcomes, including in-hospital death and the incidence of complications associated with CABG (prolonged ventilation, peroperative stroke, re-operation before discharge, and deep sternal wound infection). During follow-up, 9 patients (4 patients from the sequential group and 5 patients from the control group) died, and the all-cause mortality rate was 3.9%. No significant difference was found in the all-cause mortality rate between the 2 groups[3.4% (4/116) vs 4.3% (5/115), P =0.748]. During follow-up period, 99.1% (115/116) patency for the diagonal site and 98.3% (114/116) for the LAD site were determined by coronary computed tomographic angiography after sequential LIMA grafting, both of which were similar with graft patency of separate grafting of in situ skeletonized LIMA to the LAD. Conclusions: Revascularization of the left coronary system using a skeletonized LIMA resulted in excellent in

  11. 25 CFR 170.472 - What construction records must tribes and BIA keep?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What construction records must tribes and BIA keep? 170... Construction and Construction Monitoring § 170.472 What construction records must tribes and BIA keep? The following table shows which IRR construction records BIA and tribes must keep and the requirements for...

  12. Neural net applied to anthropological material: a methodical study on the human nasal skeleton.

    PubMed

    Prescher, Andreas; Meyers, Anne; Gerf von Keyserlingk, Diedrich

    2005-07-01

    A new information processing method, an artificial neural net, was applied to characterise the variability of anthropological features of the human nasal skeleton. The aim was to find different types of nasal skeletons. A neural net with 15*15 nodes was trained by 17 standard anthropological parameters taken from 184 skulls of the Aachen collection. The trained neural net delivers its classification in a two-dimensional map. Different types of noses were locally separated within the map. Rare and frequent types may be distinguished after one passage of the complete collection through the net. Statistical descriptive analysis, hierarchical cluster analysis, and discriminant analysis were applied to the same data set. These parallel applications allowed comparison of the new approach to the more traditional ones. In general the classification by the neural net is in correspondence with cluster analysis and discriminant analysis. However, it goes beyond these classifications because of the possibility of differentiating the types in multi-dimensional dependencies. Furthermore, places in the map are kept blank for intermediate forms, which may be theoretically expected, but were not included in the training set. In conclusion, the application of a neural network is a suitable method for investigating large collections of biological material. The gained classification may be helpful in anatomy and anthropology as well as in forensic medicine. It may be used to characterise the peculiarity of a whole set as well as to find particular cases within the set.

  13. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites

    PubMed Central

    1996-01-01

    The protein ankyrin links integral membrane proteins to the spectrin- based membrane skeleton. Ankyrin is often concentrated within restricted membrane domains of polarized epithelia and neurons, but the mechanisms responsible for membrane targeting and its segregation within a continuous lipid bilayer remain unexplained. We provide evidence that neuroglian, a cell adhesion molecule related to L1 and neurofascin, can transmit positional information directly to ankyrin and thereby polarize its distribution in Drosophila S2 tissue culture cells. Ankyrin was not normally associated with the plasma membrane of these cells. Upon expression of an inducible neuroglian minigene, however, cells aggregated into large clusters and ankyrin became concentrated at sites of cell-cell contact. Spectrin was also recruited to sites of cell contact in response to neuroglian expression. The accumulation of ankyrin at cell contacts required the presence of the cytoplasmic domain of neuroglian since a glycosyl phosphatidylinositol- linked form of neuroglian failed to recruit ankyrin to sites of cell- cell contact. Double-labeling experiments revealed that, whereas ankyrin was strictly associated with sites of cell-cell contact, neuroglian was more broadly distributed over the cell surface. A direct interaction between neuroglian and ankyrin was demonstrated using yeast two-hybrid analysis. Thus, neuroglian appears to be activated by extracellular adhesion so that ankyrin and the membrane skeleton selectively associate with sites of cell contact and not with other regions of the plasma membrane. PMID:8636238

  14. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  15. Psiguadials A and B, two novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava.

    PubMed

    Shao, Meng; Wang, Ying; Liu, Zhong; Zhang, Dong-Mei; Cao, Hui-Hui; Jiang, Ren-Wang; Fan, Chun-Lin; Zhang, Xiao-Qi; Chen, He-Ru; Yao, Xin-Sheng; Ye, Wen-Cai

    2010-11-05

    Psiguadials A (1) and B (2), two novel sesquiterpenoid-diphenylmethane meroterpenoids with unusual skeletons, along with a pair of known epimers, psidial A (3) and guajadial (4), were isolated from the leaves of Psidium guajava. Their structures with absolute configurations were elucidated by means of NMR, X-ray diffraction, and quantum chemical CD calculation. Compounds 1, 2, and 4 exhibited potent inhibitory effects on the growth of human hepatoma cells.

  16. Facial skeleton asymmetry and its relationship to mastication in the Early Medieval period (Great Moravian Empire, Mikulčice, 9th-10th century).

    PubMed

    Ibrová, Alexandra; Dupej, Ján; Stránská, Petra; Velemínský, Petr; Poláček, Lumír; Velemínská, Jana

    2017-12-01

    The aim of this study was to analyse the relationship of mastication and directional asymmetry (DA) of upper facial skeleton in Early Medieval sample from the Mikulčice settlement (Czech Republic). The settlement is divided into two burial areas of presumably different socioeconomic status: the castle and the sub-castle. The material consisted of 193 individuals (125 castle, 68 sub-castle). The relationship of facial skeleton DA and mastication was analysed by examining tooth wear and mandibular shape by means of 3D geometric morphometrics. Tooth wear of premolars and molars was evaluated using appropriate scoring systems. 3D coordinates of 35 mandibular landmarks were scanned using MicroScribe G2X digitizing system. The results did not reveal any significant differences in tooth wear DA or mandible DA values between burial areas or sexes. Mandibular shape, however, differed significantly between burial areas and sexes. Directional changes of mandibular landmarks supported a right chewing side preference in the sample. Significant relationship between upper facial skeleton DA and mandible DA was recorded. Differences in subsistence between burial areas and sexes did not translate into differences in mandible DA and dental wear. However, mandibular shape analysis revealed prominence of areas affected by masticatory muscles in individuals from the castle. Higher consumption of tough material, such as meat, has been proposed as possible explanation. The right side was found to be preferential for chewing. The relationship between upper facial skeleton DA and mandible DA was concluded to be the result of the compensatory and adaptive function of mandible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Catching (and Keeping!) E-Patrons.

    ERIC Educational Resources Information Center

    Puacz, Jeanne Holba

    2002-01-01

    Based on experiences of the Vigo County Public Library in Terre Haute, Indiana, this article outlines ways libraries can attract patrons to their Web sites and features that can keep them returning. Discusses marketing and publicity; basic content and special sources and services; attractive and easy-to-use site design; good Web site maintenance;…

  18. Teaching Record-Keeping Skills to 4-H Youths through Experiential Learning Techniques

    ERIC Educational Resources Information Center

    Roland, Tyanne J.; Fisher, Meredith

    2016-01-01

    Teaching record keeping for breeding projects in a way that keeps youths engaged is a difficult task. The activity discussed in this article was used to teach 4-H participants the importance of record keeping by implementing the experiential learning model and without lecturing. A description of the activity, instructions and materials for the…

  19. Archaeological skeletons support a northwest European origin for Paget's disease of bone.

    PubMed

    Mays, Simon

    2010-08-01

    The strong genetic component in the etiology of Paget's disease of bone (PDB), together with marked geographic variation in its prevalence, with high frequencies in British populations, has led some to suggest that the disease originated in Britain and spread around the world in recent times by the migration and admixture of British populations. This study aims to investigate this hypothesis by studying the world geographic distribution of PDB cases identified in ancient skeletons excavated from archaeological sites. The methodology is a review of PDB cases described in the literature. There were 109 cases that met modern diagnostic criteria. All came from Western Europe, 94% from England. These data support the hypothesis that PDB originated in this geographic region.

  20. Animals, Pictures, and Skeletons: Andreas Vesalius's Reinvention of the Public Anatomy Lesson.

    PubMed

    Shotwell, R Allen

    2016-01-01

    In this paper, I examine the procedures used by Andreas Vesalius for conducting public dissections in the early sixteenth century. I point out that in order to overcome the limitations of public anatomical demonstration noted by his predecessors, Vesalius employed several innovative strategies, including the use of animals as dissection subjects, the preparation and display of articulated skeletons, and the use of printed and hand-drawn illustrations. I suggest that the examination of these three strategies for resolving the challenges of public anatomical demonstration helps us to reinterpret Vesalius's contributions to sixteenth-century anatomy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Morphological-transformation-based technique of edge detection and skeletonization of an image using a single spatial light modulator

    NASA Astrophysics Data System (ADS)

    Munshi, Soumika; Datta, A. K.

    2003-03-01

    A technique of optically detecting the edge and skeleton of an image by defining shift operations for morphological transformation is described. A (2 × 2) source array, which acts as the structuring element of morphological operations, casts four angularly shifted optical projections of the input image. The resulting dilated image, when superimposed with the complementary input image, produces the edge image. For skeletonization, the source array casts four partially overlapped output images of the inverted input image, which is negated, and the resultant image is recorded in a CCD camera. This overlapped eroded image is again eroded and then dilated, producing an opened image. The difference between the eroded and opened image is then computed, resulting in a thinner image. This procedure of obtaining a thinned image is iterated until the difference image becomes zero, maintaining the connectivity conditions. The technique has been optically implemented using a single spatial modulator and has the advantage of single-instruction parallel processing of the image. The techniques have been tested both for binary and grey images.

  2. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens

    PubMed Central

    Nowak, Roberta B.; Fischer, Robert S.; Zoltoski, Rebecca K.; Kuszak, Jerome R.

    2009-01-01

    Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry. PMID:19752024

  3. Atlanto-occipital fusion and spondylolisthesis in an Anasazi skeleton from Bright Angel Ruin, Grand Canyon National Park, Arizona.

    PubMed

    Merbs, C F; Euler, R C

    1985-08-01

    The skeleton of a middle-aged female showing an unusual pattern of congenital, traumatic, and degenerative pathology was recovered from a small Kayenta Anasazi site located near the confluence of Bright Angel Creek with the Colorado River in the Inner Gorge of Grand Canyon. The atlas is fused with the base of the skull and C2 is fused with C3. The cervical region was subjected to hyperextension, perhaps through use of a tumpline, with resultant reduction of the neural canal to 8 mm, a condition that quite likely led to neurological problems. The skeleton also includes a depression fracture of the lateral condyle of the left tibia. Complete, bilateral spondylolysis of L5 led to an olisthesis of approximately 15 mm. The disc between L5 and S1 then ossified, most likely from staphylococcus bacteremia, making the olisthesis permanent and thereby creating a unique arachaeological specimen. Although spondylolysis is usually viewed as a stress fracture, the general pattern of pathology in this individual makes it necessary to consider an etiology of acute trauma.

  4. Benzomorphan skeleton, a versatile scaffold for different targets: A comprehensive review.

    PubMed

    Turnaturi, Rita; Montenegro, Lucia; Marrazzo, Agostino; Parenti, Rosalba; Pasquinucci, Lorella; Parenti, Carmela

    2018-06-07

    Despite the fact that the benzomorphan skeleton has mainly been employed in medicinal chemistry for the development of opioid analgesics, it is a versatile structure. Its stereochemistry, as well as opportune modifications at the phenolic hydroxyl group and at the basic nitrogen, play a pivotal role addressing the benzomorphan-based compounds to a specific target. In this review, we describe the structure activity-relationships (SARs) of benzomorphan-based compounds acting at sigma 1 receptor (σ1R), sigma 2 receptor (σ2R), voltage-dependent sodium channel, N-Methyl-d-Aspartate (NMDA) receptor-channel complex and other targets. Collectively, the SARs data have highlighted that the benzomorphan nucleus could be regarded as a useful template for the synthesis of drug candidates for different targets. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Retained broken implants in the craniomaxillofacial skeleton.

    PubMed

    Nallathamby, Vigneswaran; Lee, Hanjing; Lin, Yap Yan; Lim, Jane; Ong, Wei Chen; Lim, Thiam-Chye

    2014-06-01

    Facial fracture patients are seen in a Level 1 trauma hospital. In our institution, we manage many patients with facial fractures and carry out more than 150 surgical procedures every year. Open reduction and internal fixation is our management of choice. All surgical procedures involve drilling of bone and implant insertion to keep the fractured bones in an anatomically reduced position to aid healing. Occasionally, drill bits used to create the pilot hole break and are embedded in the bone. We present a situation in which such an incident occurred and review the literature on retained broken implants and devices.

  6. 28 CFR 55.21 - Record keeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.21 Record keeping. The Attorney General's implementation of the Act's provisions concerning language minority groups...

  7. 28 CFR 55.21 - Record keeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.21 Record keeping. The Attorney General's implementation of the Act's provisions concerning language minority groups...

  8. Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton

    NASA Astrophysics Data System (ADS)

    Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.

    2012-12-01

    Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.

  9. A critical survey of vestigial structures in the postcranial skeletons of extant mammals

    PubMed Central

    Moch, John G.

    2015-01-01

    In the Mammalia, vestigial skeletal structures abound but have not previously been the focus of study, with a few exceptions (e.g., whale pelves). Here we use a phylogenetic bracketing approach to identify vestigial structures in mammalian postcranial skeletons and present a descriptive survey of such structures in the Mammalia. We also correct previous misidentifications, including the previous misidentification of vestigial caviid metatarsals as sesamoids. We also examine the phylogenetic distribution of vestigiality and loss. This distribution indicates multiple vestigialization and loss events in mammalian skeletal structures, especially in the hand and foot, and reveals no correlation in such events between mammalian fore and hind limbs. PMID:26623192

  10. A Review of Extension Master Gardener Program Record-Keeping Systems

    ERIC Educational Resources Information Center

    Dorn, Sheri

    2016-01-01

    Record-keeping systems (or volunteer management systems) were identified as a capacity-building tool for Extension master gardener volunteer (EMGV) programs. Not all states have or use such systems, and there are differences among existing systems. A survey was conducted in June 2015 to document and compare record-keeping systems for EMGV programs…

  11. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  12. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery.

    PubMed

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-05

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  13. Art, science, or both? Keeping the care in nursing.

    PubMed

    Jasmine, Tayray

    2009-12-01

    Nursing is widely considered as an art and a science, wherein caring forms the theoretical framework of nursing. Nursing and caring are grounded in a relational understanding, unity, and connection between the professional nurse and the patient. Task-oriented approaches challenge nurses in keeping care in nursing. This challenge is ongoing as professional nurses strive to maintain the concept, art, and act of caring as the moral center of the nursing profession. Keeping the care in nursing involves the application of art and science through theoretical concepts, scientific research, conscious commitment to the art of caring as an identity of nursing, and purposeful efforts to include caring behaviors during each nurse-patient interaction. This article discusses the profession of nursing as an art and a science, and it explores the challenges associated with keeping the care in nursing.

  14. Guidelines for Keeping the Cornell Farm Account Book. Student Manual.

    ERIC Educational Resources Information Center

    Paterson, Dale J.

    This student manual contains guidelines for keeping the Cornell Farm Account Book. The manual is divided into the following fifteen units of instruction: (1) Why Keep Records?, (2) Operating Expenses, (3) Labor Records, (4) Interest and Debt Payments, (5) Capital Purchases and Improvements, (6) Milk Sales, (7) Crop Sales, (8) Livestock Sold, (9)…

  15. 17 CFR 1.31 - Books and records; keeping and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Books and records; keeping and... REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Recordkeeping § 1.31 Books and records; keeping and inspection. (a)(1) All books and records required to be kept by the Act or by these regulations shall be kept for...

  16. 17 CFR 1.31 - Books and records; keeping and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Books and records; keeping and... REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Recordkeeping § 1.31 Books and records; keeping and inspection. (a)(1) All books and records required to be kept by the Act or by these regulations shall be kept for...

  17. 30 CFR 250.467 - How long must I keep records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... days after you complete drilling operations. (b) Casing and liner pressure tests, diverter tests, and BOP tests Two years after the completion of drilling operations. (c) Completion of a well or of any... Permit to Modify and Well Records § 250.467 How long must I keep records? You must keep records for the...

  18. Cranial airways and the integration between the inner and outer facial skeleton in humans.

    PubMed

    Bastir, Markus; Rosas, Antonio

    2013-10-01

    The cranial airways are in the center of the human face. Therefore variation in the size and shape of these central craniofacial structures could have important consequences for the surrounding midfacial morphology during development and evolution. Yet such interactions are unclear because one school of thought, based on experimental and developmental evidence, suggests a relative independence (modularity) of these two facial compartments, whereas another one assumes tight morphological integration. This study uses geometric morphometrics of modern humans (N = 263) and 40 three-dimensional-landmarks of the skeletal nasopharynx and nasal cavity and outer midfacial skeleton to analyze these questions in terms of modularity. The sizes of all facial compartments were all strongly correlated. Shape integration was high between the cranial airways and the outer midfacial skeleton and between the latter and the anterior airway openings (skeletal regions close to and including piriform aperture). However, no shape integration was detected between outer midface and posterior airway openings (nasopharynx and choanae). Similarly, no integration was detected between posterior and anterior airway openings. This may reflect functional modularization of nasal cavity compartments related to respiratory physiology and differential developmental interactions with the face. Airway size likely relates to the energetics of the organism, whereas airways shape might be more indicative of respiratory physiology and climate. Although this hypothesis should be addressed in future steps, here we suggest that selection on morphofunctional characteristics of the cranial airways could have cascading effects for the variation, development, and evolution of the human face. Copyright © 2013 Wiley Periodicals, Inc.

  19. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity).

    PubMed

    Kornreich, L; Konen, O; Schwarz, M; Siegel, Y; Horev, G; Hershkovitz, I; Laron, Z

    2008-02-01

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (P<0.001); however, at L5 the canal was wider, relative to the vertebral body. The study group had a higher rate of anterior osteophytes in the lumbar spine than the controls had, and their osteophytes were also significantly larger. In the six patients for whom radiographs of the upper extremity in its entirety were available on one film, the ulna appeared to be rotated. In one 22-year-old man, multiple epiphyses were still open. Congenital IGF-1 deficiency leads to skeletal abnormalities

  20. Cytotoxic Meroterpenoids with Rare Skeletons from Psidium guajava Cultivated in Temperate Zone

    PubMed Central

    Qin, Xu-Jie; Yan, Huan; Ni, Wei; Yu, Mu-Yuan; Khan, Afsar; Liu, Hui; Zhang, Hong-Xia; He, Li; Hao, Xiao-Jiang; Di, Ying-Tong; Liu, Hai-Yang

    2016-01-01

    Three new meroterpenoids, guajavadials A–C (1–3), were isolated from Psidium guajava cultivated in temperate zone. Their structures were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Guajavadial A (1) represents a novel skeleton of the 3,5-diformylbenzyl phloroglucinol-coupled monoterpenoid, while guajavadials B (2) and C (3) are new adducts of the 3,5-diformylbenzyl phloroglucinol and a sesquiterpene with different coupling models. The plausible biosynthetic pathways as well as antimicrobial and cytotoxic activities of these meroterpenoids are also discussed. All these isolates exhibited moderate cytotoxicities against five human cancer cell lines, with 3 being most effective with an IC50 value of 3.54 μM toward SMMC-7721 cell lines. PMID:27586698

  1. [Anatomical names of fossae and foveae in skeleton].

    PubMed

    Shikano, S; Yamashita, Y

    1999-09-01

    Latin anatomical names of Fossae and Foveae in the skeleton were analyzed and compared with Japanese anatomical names for better understanding of the structures of the human body and for possible revision in the future. The conclusions were as follows: 1. In general, round excavations were called Foveae (singular : Fovea), and nonround excavations were called Fossae (singular : Fossa). Some shallow excavations for articulation and some shallow excavations with the names which indicate their contents were called Foveae even though they were not round. 2. Each name of Fossae contained the word which indicates form, location or content of Fossa, the bone (or osseous structure) which articulates with Fossa, or the muscle which is attached to Fossa. 3. Each name of Foveae contained the word which indicates location, content or articulation of Fovea, the bone (or osseous structure) which articulates with Fovea, or the muscle (or muscular trochlea) which is attached to Fovea. 4. The Japanese name which corresponds to Fossa canina should be changed from Kenshi (canine tooth) = ka (fossa) to Kenshikin (canine muscle) = ka or Koukakukyokin (levator anguli oris muscle) = ka. 5. The Japanese name which corresponds to Fossa pterygopalatina should be changed from Yoku (wing) = kougai (palate) = ka (fossa) to Yokutotsu (pterygoid process) = kougaikotsu (palatine bone) = ka.

  2. [Growth characteristics of Porites lutea skeleton in east sea area of Hainan Island, China and main affecting environmental factors.

    PubMed

    Jiang, Qiao Wen; Cao, Zhi Min; Wang, Dao Ru; Li, Yuan Chao; Ni, Jian Yu

    2016-03-01

    The growth characteristics of Porites lutea skeleton in east sea area of Hainan Island were studied by CoralXDS software based on X-ray chronology. The growth parameters obtained included extension rate (ER), skeleton density (D), and calcification rate (CR). The results showed that ER varied from 0.49 to 1.10 cm·a -1 with an annual average of 0.76 cm·a -1 , D varied from 1.11 to 1.35 g·cm -3 with an annual average of 1.22 g·cm -3 , and CR varied from 0.55 to 1.41 g·cm -2 ·a -1 with an annual average of 0.94 g·cm -2 ·a -1 . Statistical analyses indicated that sea surface temperature (SST) was the key environmental factor that controlled the growth characteristics, as it highly co-varied with ER and CR, less so with D. All of the three growth characteristics increased with the increase of SST. There were other factors that influenced the growth characteristics of the coral column, such as light, water salinity, and hydrodynamics, etc. In addition, typhoon and severe tropical storms also imposed a significant impact on the growth pattern of Porites lutea coral. The change in growth pattern of coral skeleton in east of Hainan Island was a response to complex climate fluctuation. Over the past century, SST of east Hainan Island dramatically increased at a rate of 0.15 ℃·(10 a) -1 . The SST increase trend for the oceanic region could be divided into two stages, early 1940s and early 1980s. The human activities and global warming was the main causes for the increase of SST.

  3. Hypochlorhydria-induced calcium malabsorption does not affect fracture healing but increases post-traumatic bone loss in the intact skeleton.

    PubMed

    Haffner-Luntzer, Melanie; Heilmann, Aline; Heidler, Verena; Liedert, Astrid; Schinke, Thorsten; Amling, Michael; Yorgan, Timur Alexander; Vom Scheidt, Annika; Ignatius, Anita

    2016-11-01

    Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post-traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr-/- mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr-/- and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium-enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro-computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme-linked immunosorbent assay. Fracture healing was unaffected in Cckbr-/- mice. However, Cckbr-/- mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr-/- mice. Therefore, under conditions of hypochlorhydria-induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J

  4. Peripheral Substitution: An Easy Way to Tuning the Magnetic Behavior of Tetrakis(phthalocyaninato) Dysprosium(III) SMMs

    PubMed Central

    Shang, Hong; Zeng, Suyuan; Wang, Hailong; Dou, Jianmin; Jiang, Jianzhuang

    2015-01-01

    Two tetrakis(phthalocyaninato) dysprosium(III)-cadmium(II) single-molecule magnets (SMMs) with different extent of phthalocyanine peripheral substitution and therefore different coordination geometry for the Dy ions were revealed to exhibit different SMM behavior, providing an easy way to tuning and controlling the molecular structure and in turn the magnetic properties of tetrakis(tetrapyrrole) lanthanide SMMs through simple tetrapyrrole peripheral substitution. PMID:25744587

  5. Keeping adolescents busy with extracurricular activities.

    PubMed

    Kao, Tsui-Sui Annie; Salerno, Jennifer

    2014-02-01

    Adolescent participation in academic/extracurricular activities is related to fewer diagnoses of sexually transmitted infections during adolescence. The role parents play in motivating participation in such activities is unclear. This mixed-methods study explored parental influences on academic/extracurricular activity participation, and the relationship of such participation to adolescents' future aspirations and sexual behavior, over a 4-year period. We utilized semistructured interviews with 28 White and Asian American adolescents (age 17-19) and event history calendar self-reports of activities, part-time jobs, and sexual behaviors. Data triangulation was used to integrate qualitative and quantitative data. Increased participation was correlated with abstinence and later sexual onset. Many adolescents reported that parents were reluctant to talk with them about sexual risks and instead preferred to keep them busy and ensure that they had the "right" friends. Adolescents endorsed the parental strategy of keeping them busy with activities. Findings and implications for school nursing practice are discussed.

  6. Early lens ablation causes dramatic long-term effects on the shape of bones in the craniofacial skeleton of Astyanax mexicanus.

    PubMed

    Dufton, Megan; Hall, Brian K; Franz-Odendaal, Tamara A

    2012-01-01

    The Mexican tetra, Astyanax mexicanus, exists as two morphs of a single species, a sighted surface morph and a blind cavefish. In addition to eye regression, cavefish have an increased number of taste buds, maxillary teeth and have an altered craniofacial skeleton compared to the sighted morph. We investigated the effect the lens has on the development of the surrounding skeleton, by ablating the lens at different time points during ontogeny. This unique long-term study sheds light on how early embryonic manipulations on the eye can affect the shape of the adult skull more than a year later, and the developmental window during which time these effects occur. The effects of lens ablation were analyzed by whole-mount bone staining, immunohistochemisty and landmark based morphometric analyzes. Our results indicate that lens ablation has the greatest impact on the skeleton when it is ablated at one day post fertilisation (dpf) compared to at four dpf. Morphometric analyzes indicate that there is a statistically significant difference in the shape of the supraorbital bone and suborbital bones four through six. These bones expand into the eye orbit exhibiting plasticity in their shape. Interestingly, the number of caudal teeth on the lower jaw is also affected by lens ablation. In contrast, the shape of the calvariae, the length of the mandible, and the number of mandibular taste buds are unaltered by lens removal. We demonstrate the plasticity of some craniofacial elements and the stability of others in the skull. Furthermore, this study highlights interactions present between sensory systems during early development and sheds light on the cavefish phenotype.

  7. Analysis of Age-Related Changes in Asian Facial Skeletons Using 3D Vector Mathematics on Picture Archiving and Communication System Computed Tomography.

    PubMed

    Kim, Soo Jin; Kim, So Jung; Park, Jee Soo; Byun, Sung Wan; Bae, Jung Ho

    2015-09-01

    There are marked differences in facial skeletal characteristics between Asian and Caucasian. However, ethnic differences in age-related facial skeletal changes have not yet been fully established. The aims of this study were to evaluate age-related changes in Asian midfacial skeletons and to explore ethnic differences in facial skeletal structures with aging between Caucasian and Asian. The study included 108 men (aged 20-79 years) and 115 women (aged 20-81 years). Axial CT images with a gantry tilt angle of 0 were analyzed. We measured three-dimensional (3D) coordinates at each point with a pixel lens cursor in a picture archiving and communication system (PACS), and angles and widths between the points were calculated using 3D vector mathematics. We analyzed angular changes in 4 bony regions, including the glabellar, orbital, maxillary, and pyriform aperture regions, and changes in the orbital aperture width (distance from the posterior lacrimal crest to the frontozygomatic suture) and the pyriform width (between both upper margins of the pyriform aperture). All 4 midfacial angles in females and glabellar and maxillary angles in males showed statistically significant decreases with aging. On the other hand, the orbital and pyriform widths did not show statistically significant changes with aging. The results of this study suggest that Asian midfacial skeletons may change continuously throughout life, and that there may be significant differences in the midfacial skeleton between both sexes and between ethnic groups.

  8. How do skeletons with HIV present? A study on the identified CAL Milano Cemetery Skeletal Collection.

    PubMed

    Biehler-Gomez, Lucie; Cabrini, Antonio; De Angelis, Danilo; Cattaneo, Cristina

    2018-04-24

    With the Human Immunodeficiency Virus (HIV) infection and Acquired Immune Deficiency Syndrome (AIDS) pandemic, the study of HIV/AIDS on bones has become of pivotal interest for research in bone pathologies, forensic applications (especially in the matter of identification when confronted to antemortem data) and medical purposes. In this paper, we document and discuss the macroscopic lesions found on the skeletons of nine individuals with known HIV, including four with known AIDS, coming from the identified CAL Milano Cemetery Skeletal Collection. As a result, several types of lesions were observed on bones: periosteal new bone formation, dental lesions, thickening of the frontal diploë, destructive localized porosity and evidence of trauma. None of the lesions reported can be directly linked to HIV because the virus does not directly affect bones in a macroscopic way. However, HIV/AIDS-induced infections and inflammations and HIV-related risk factors may leave bone markers. The differential diagnosis of each of the lesions noted in this research and its potential link to HIV or AIDS was discussed. Although it is not possible to diagnose HIV on bare bones, this was not the focus of this study. To our knowledge, no anthropological study has ever been performed on known HIV individuals. With this paper, we present for the first time skeletons with known HIV. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Ligubenzocycloheptanone A, a Novel Tricyclic Butenolide with a 6/7/5 Skeleton from Ligusticum chuanxiong

    PubMed Central

    Han, Bing; Zhang, Xu; Feng, Zi-Ming; Jiang, Jian-Shuang; Li, Li; Yang, Ya-Nan; Zhang, Pei-Cheng

    2016-01-01

    Ligubenzocycloheptanone A (1), a novel tricyclic butenolide with a 6/7/5-membered ring skeleton, was isolated from the rhizome of Ligusticum chuanxiong. Its unusual structure was determined using UV, IR, HRESIMS, 1D and 2D NMR data, X-ray diffraction crystallography and by the comparison of experimental and calculated electronic circular dichroism (ECD) spectra. 1 possessed a benzocycloheptanone core featuring butyrolactone, which is rarely observed in nature. A possible biosynthetic pathway was proposed. Ligubenzocycloheptanone A showed strong radical scavenging activity with an IC50 value of 2.3 μM. PMID:27461841

  10. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    PubMed Central

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104

  11. A divergent [5+2] cascade approach to bicyclo[3.2.1]octanes: facile synthesis of ent-kaurene and cedrene-type skeletons.

    PubMed

    He, Chi; Bai, Zengbing; Hu, Jialei; Wang, Bingnan; Xie, Hujun; Yu, Lei; Ding, Hanfeng

    2017-07-25

    A solvent-dependent oxidative dearomatization-induced divergent [5+2] cascade approach to bicyclo[3.2.1]octanes was described. This novel protocol enables a facile synthesis of a series of diversely functionalized ent-kaurene and cedrene-type skeletons in good yields and excellent diastereoselectivities.

  12. Synthetic study toward ecteinascidin 743: concise construction of the diazabicyclo[3.3.1]nonane skeleton and assembly of the pentacyclic core.

    PubMed

    Enomoto, Taro; Yasui, Yoshizumi; Takemoto, Yoshiji

    2010-07-16

    Synthesis of the pentacyclic core of ecteinascidin 743 is described. This synthesis features concise construction of the diazabicyclo[3.3.1]nonane skeleton using gold(I)-catalyzed one-pot keto amide formation, acid-promoted enamide formation, and oxidative Friedel-Crafts cyclization as the key steps.

  13. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives

    NASA Astrophysics Data System (ADS)

    McMahon, Kelton W.; Williams, Branwen; Guilderson, Thomas P.; Glynn, Danielle S.; McCarthy, Matthew D.

    2018-01-01

    Compound-specific stable isotopes of amino acids (CSI-AA) from proteinaceous deep-sea coral skeletons have the potential to improve paleoreconstructions of plankton community composition, and our understanding of the trophic dynamics and biogeochemical cycling of sinking organic matter in the Ocean. However, the assumption that the molecular isotopic values preserved in protein skeletal material reflect those of the living coral polyps has never been directly investigated in proteinaceous deep-sea corals. We examined CSI-AA from three genera of proteinaceous deep-sea corals from three oceanographically distinct regions of the North Pacific: Primnoa from the Gulf of Alaska, Isidella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre. We found minimal offsets in the δ13C values of both essential and non-essential AAs, and in the δ15N values of source AAs, between paired samples of polyp tissue and protein skeleton. Using an essential AA δ13C fingerprinting approach, we show that estimates of the relative contribution of eukaryotic microalgae and prokaryotic cyanobacteria to the sinking organic matter supporting deep-sea corals are the same when calculated from polyp tissue or recently deposited skeletal tissue. The δ15N values of trophic AAs in skeletal tissue, on the other hand, were consistently 3-4‰ lower than polyp tissue for all three genera. We hypothesize that this offset reflects a partitioning of nitrogen flux through isotopic branch points in the synthesis of polyp (fast turnover tissue) and skeleton (slow, unidirectional incorporation). This offset indicates an underestimation, albeit correctable, of approximately half a trophic position from gorgonin protein-based deep-sea coral skeleton. Together, our observations open the door for applying many of the rapidly evolving CSI-AA based tools developed for metabolically active tissues in modern systems to archival coral tissues in a paleoceanographic context.

  14. Helikaurolides A-D with a Diterpene-Sesquiterpene Skeleton from Supercritical Fluid Extracts of Helianthus annuus L. var. Arianna.

    PubMed

    Torres, Ascensión; Molinillo, José M G; Varela, Rosa M; Casas, Lourdes; Mantell, Casimiro; Martínez de la Ossa, Enrique J; Macías, Francisco A

    2015-10-02

    Four novel compounds (1-4) with an unprecedented skeleton that combines a sesquiterpene lactone and a kaurane diterpene acid were isolated from Helianthus annuus L. var. Arianna extract, which was obtained under supercritical conditions. The structures of 1-4 were elucidated by NMR and MS analyses. The biosynthetic routes involve sesquiterpene lactones and kauranic acid, both of which were previously isolated from this species.

  15. Keeping Active and Healthy Eating for Men

    MedlinePlus

    ... For Reporters Meetings & Workshops Follow Us Home Health Information Weight Management Keeping Active and Healthy Eating for Men Related ... at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information ... Disease Urologic Diseases Endocrine Diseases Diet & Nutrition ...

  16. Estimating the Post-Mortem Interval of skeletonized remains: The use of Infrared spectroscopy and Raman spectro-microscopy

    NASA Astrophysics Data System (ADS)

    Creagh, Dudley; Cameron, Alyce

    2017-08-01

    When skeletonized remains are found it becomes a police task to determine to identify the body and establish the cause of death. It assists investigators if the Post-Mortem Interval (PMI) can be established. Hitherto no reliable qualitative method of estimating the PMI has been found. A quantitative method has yet to be developed. This paper shows that IR spectroscopy and Raman microscopy have the potential to form the basis of a quantitative method.

  17. Intramolecular Parallel [4+3] Cycloadditions of Cyclopropane 1,1-Diesters with [3]Dendralenes: Efficient Construction of [5.3.0]Decane and Corresponding Polycyclic Skeletons.

    PubMed

    Zhang, Chi; Tian, Jun; Ren, Jun; Wang, Zhongwen

    2017-01-26

    Aiming to develop efficient and general strategies for construction of complex and diverse polycyclic skeletons, we have successfully developed [4+3]IMPC (intramolecular parallel cycloaddition) of cyclopropane 1,1-diesters with [3]dendralenes. With a combination of the [4+3]IMPC and subsequent [4+n] cycloadditions, trans-[5.3.0]decane skeleton and its corresponding structurally complex and diverse polycyclic variants could be constructed efficiently. This novel [4+3] cycloaddition reaction mode of donor-acceptor cyclopropanes proceeds as a result of the ring-strain relief of a trans-[3.3.0]octane. We strongly believe that the developed methods will demonstrate potential applications in natural products synthesis and drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 21 CFR 1310.03 - Persons required to keep records and file reports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.03 Persons required to keep records and... chemical, a tableting machine, or an encapsulating machine shall keep a record of the transaction as...

  19. 21 CFR 1310.03 - Persons required to keep records and file reports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.03 Persons required to keep records and... chemical, a tableting machine, or an encapsulating machine shall keep a record of the transaction as...

  20. The life cycle of chondrocytes in the developing skeleton

    PubMed Central

    Shum, Lillian; Nuckolls, Glen

    2002-01-01

    Cartilage serves multiple functions in the developing embryo and in postnatal life. Genetic mutations affecting cartilage development are relatively common and lead to skeletal malformations, dysfunction or increased susceptibility to disease or injury. Characterization of these mutations and investigation of the molecular pathways in which these genes function have contributed to an understanding of the mechanisms regulating skeletal patterning, chondrogenesis, endochondral ossification and joint formation. Extracellular growth and differentiation factors including bone morphogenetic proteins, fibroblast growth factors, parathyroid hormone-related peptide, extracellular matrix components, and members of the hedgehog and Wnt families provide important signals for the regulation of cell proliferation, differentiation and apoptosis. Transduction of these signals within the developing mesenchymal cells and chondrocytes results in changes in gene expression mediated by transcription factors including Smads, Msx2, Sox9, signal transducer and activator of transcription (STAT), and core-binding factor alpha 1. Further investigation of the interactions of these signaling pathways will contribute to an understanding of cartilage growth and development, and will allow for the development of strategies for the early detection, prevention and treatment of diseases and disorders affecting the skeleton. PMID:11879545

  1. Ocean acidification causes structural deformities in juvenile coral skeletons.

    PubMed

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  2. Ocean acidification causes structural deformities in juvenile coral skeletons

    PubMed Central

    Foster, Taryn; Falter, James L.; McCulloch, Malcolm T.; Clode, Peta L.

    2016-01-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a “business-as-usual” emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  3. A new computational growth model for sea urchin skeletons.

    PubMed

    Zachos, Louis G

    2009-08-07

    A new computational model has been developed to simulate growth of regular sea urchin skeletons. The model incorporates the processes of plate addition and individual plate growth into a composite model of whole-body (somatic) growth. A simple developmental model based on hypothetical morphogens underlies the assumptions used to define the simulated growth processes. The data model is based on a Delaunay triangulation of plate growth center points, using the dual Voronoi polygons to define plate topologies. A spherical frame of reference is used for growth calculations, with affine deformation of the sphere (based on a Young-Laplace membrane model) to result in an urchin-like three-dimensional form. The model verifies that the patterns of coronal plates in general meet the criteria of Voronoi polygonalization, that a morphogen/threshold inhibition model for plate addition results in the alternating plate addition pattern characteristic of sea urchins, and that application of the Bertalanffy growth model to individual plates results in simulated somatic growth that approximates that seen in living urchins. The model suggests avenues of research that could explain some of the distinctions between modern sea urchins and the much more disparate groups of forms that characterized the Paleozoic Era.

  4. Social and cognitive factors associated with children's secret-keeping for a parent.

    PubMed

    Gordon, Heidi M; Lyon, Thomas D; Lee, Kang

    2014-01-01

    This study examined children's secret-keeping for a parent and its relation to trust, theory of mind, secrecy endorsement, and executive functioning (EF). Children (N = 107) between 4 and 12 years of age participated in a procedure wherein parents broke a toy and asked children to promise secrecy. Responses to open-ended and direct questions were examined. Overall, secret-keeping increased with age and promising to keep the secret was related to fewer disclosures in open-ended questioning. Children who kept the secret in direct questioning exhibited greater trust and better parental ratings of EF than children who disclosed the secret. Findings highlight the importance of both social and cognitive factors in secret-keeping development. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  5. Web Tools: Keeping Learners on Pace

    ERIC Educational Resources Information Center

    Kosloski, Mickey

    2016-01-01

    One of the greatest challenges in teaching technology and engineering is pacing. Some students grasp new technological concepts quickly, while others need repetition and may struggle to keep pace. This poses an obstacle for the technology and engineering teacher, and is particularly true when teaching students to build a website. However, there…

  6. Keeping Marriages Strong in Challenging Times

    ERIC Educational Resources Information Center

    Ober, Marci Wolff

    2009-01-01

    What makes a strong marriage anyway...? There are definite qualities that exist in healthy marriages, that is, a marriage that is defined by both partners to be "mostly" or "usually" very satisfying. This article explores these qualities and looks at what really works to make and keep marriages strong, healthy, and satisfying…

  7. Longitudinal Associations between Keeping a Secret and Psychosocial Adjustment in Adolescence

    ERIC Educational Resources Information Center

    Frijns, Tom; Finkenauer, Catrin

    2009-01-01

    Increasing bodies of evidence suggest that keeping secrets may be detrimental to well-being and adjustment, whereas confiding secrets may alleviate the detriments of secrecy and benefit well-being and adjustment. However, few studies have addressed the consequences of keeping and confiding secrets simultaneously, and even fewer have done so…

  8. Doctor group sues to keep capitation arrangement.

    PubMed

    2005-05-01

    An independent practice association has sued Humana Kansas City Inc. over the health plan's decision to terminate its capitated contract. The suit alleges breach of contract and seeks an injunction to keep the flow of capitated dollars coming.

  9. Oregon Graduation Requirements: Guidelines for Record Keeping Procedures and Sample Forms.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    These guidelines and sample forms for record keeping are intended to serve as a supplement to Oregon Graduation Requirements, Administrative Guidelines (Section 1), which was published in September 1973. The purposes of the guidelines and sample forms are to outline various record-keeping procedures and to provide sample forms that districts may…

  10. 30 CFR 1206.61 - What records must I keep and produce?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false What records must I keep and produce? 1206.61 Section 1206.61 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Oil § 1206.61 What records must I keep and produce? (a) On...

  11. 30 CFR 1206.61 - What records must I keep and produce?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false What records must I keep and produce? 1206.61 Section 1206.61 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Oil § 1206.61 What records must I keep and produce? (a) On...

  12. 30 CFR 1206.61 - What records must I keep and produce?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false What records must I keep and produce? 1206.61 Section 1206.61 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Oil § 1206.61 What records must I keep and produce? (a) On...

  13. 47 CFR 51.713 - Bill-and-keep arrangements for reciprocal compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunications Traffic § 51.713 Bill-and-keep arrangements for reciprocal compensation. (a) For purposes of this... so, and no showing has been made pursuant to § 51.711(b). (c) Nothing in this section precludes a... 47 Telecommunication 3 2011-10-01 2011-10-01 false Bill-and-keep arrangements for reciprocal...

  14. 47 CFR 51.713 - Bill-and-keep arrangements for reciprocal compensation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunications Traffic § 51.713 Bill-and-keep arrangements for reciprocal compensation. (a) For purposes of this... so, and no showing has been made pursuant to § 51.711(b). (c) Nothing in this section precludes a... 47 Telecommunication 3 2010-10-01 2010-10-01 false Bill-and-keep arrangements for reciprocal...

  15. Station-Keeping Strategies for Lead-Trail Formation Flying

    NASA Astrophysics Data System (ADS)

    Martinot, V.; Rozanes, P.

    Numerous projects in the Science and Observation domains involve the use of formation flying to ensure the mission performance. The formation flying configurations proposed in some of them are quite complex with several satellites in different planes generating relative differential motions between the satellites like in case of circular projected formation-flying. However, more simple designs consisting of two satellites in a lead-trail formation appear to be sufficient for a wide range of applications (interferometry, geodesy,...). This article concentrates on the station- keeping phase of such formations in Low-Earth Orbits The station-keeping criterion for such formations can be expressed for example in terms of difference in argument of latitude between both satellites and at the altitudes considered, it evolves mainly under the differential effect of the atmospheric drag between the trailing and leading satellites. In the present paper, this differential effect is supposed to originate from the difference in the area-to-mass ratio between the satellites due to their different designs. A preliminary estimation of the navigation performance is first given assuming that on-board GPS receiver are mounted on each satellite of the formation to acquire pseudo-range measurements between the LEO satellites and the MEO GPS constellation. The distance between both satellites of the formation is derived from independent orbit restitution performed for each LEO satellite in a ground master control station processing the GPS measurements. A strategy for controlling the satellite formation disturbed by the differential effect of the drag is then proposed. Simulations are performed to assess the feasibility of the station-keeping with different types of engines. As by-products, the propellant budget and the frequency of the station-keeping manoeuvres are also given. A case study inspired from the ESA project Acechem/Metop is used for the simulations.

  16. Record keeping in Norwegian general practice.

    PubMed

    Lönberg, N C; Bentsen, B G

    1984-11-01

    Routines of medical record keeping were studied in a random sample of 50 out of 228 general practitioners in two counties, Möre & Romsdal and Sör-Tröndelag. One doctor refused to participate and one had retired. The 48 physicians were interviewed and a questionnaire was completed with details about their record keeping. The standard of the records was assessed according to legibility, quality of notes, past history and tidiness using a score system. All general practitioners had records for every patient, but the quality of the records varied considerably. More than 50 per cent used handwriting in progress notes, which varied from diagnostic labels to extended reports. Few records contained accessible background information about the patient concerned, and many records contained large amounts of old and irrelevant papers. The record-scores varied from 3 to maximum 10 with an average of 6.7. Higher Standards of recording in general practice are called for, since the quality of records does not only affect the individual patient, but, in the end, the quality of medical care in general.

  17. Blood Pressure Matters: Keep Hypertension in Check

    MedlinePlus

    ... 2016 Print this issue Blood Pressure Matters Keep Hypertension in Check En español Send us your comments ... 1 in 3 adults in the U.S. has high blood pressure, but many don’t realize it. High blood ...

  18. Guajavadimer A, a Dimeric Caryophyllene-Derived Meroterpenoid with a New Carbon Skeleton from the Leaves of Psidium guajava.

    PubMed

    Li, Chuang-Jun; Ma, Jie; Sun, Hua; Zhang, Dan; Zhang, Dong-Ming

    2016-01-15

    Guajavadimer A (1), a dimeric sesquiterpene-based meroterpenoid which possessed an unprecedented two caryophyllenes, a benzylphlorogulcinol, and a flavonone-fused complicated stereochemical skeleton, was isolated from the leaves of Psidium guajava L. Its structure and absolute configuration were elucidated on the basis of spectroscopic data and X-ray crystallography. Guajavadimer A (1) showed moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells.

  19. The N Terminus of Phosphodiesterase TbrPDEB1 of Trypanosoma brucei Contains the Signal for Integration into the Flagellar Skeleton

    PubMed Central

    Luginbuehl, Edith; Ryter, Damaris; Schranz-Zumkehr, Judith; Oberholzer, Michael; Kunz, Stefan; Seebeck, Thomas

    2010-01-01

    The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton. PMID:20693305

  20. 40 CFR 60.1345 - Where must I keep my records and for how long?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... Where must I keep my records and for how long? (a) Keep all records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste...

  1. 40 CFR 60.1345 - Where must I keep my records and for how long?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... Where must I keep my records and for how long? (a) Keep all records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste...

  2. 40 CFR 60.1345 - Where must I keep my records and for how long?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... Where must I keep my records and for how long? (a) Keep all records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste...

  3. 40 CFR 60.1345 - Where must I keep my records and for how long?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... Where must I keep my records and for how long? (a) Keep all records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste...

  4. 40 CFR 60.1345 - Where must I keep my records and for how long?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... Where must I keep my records and for how long? (a) Keep all records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste...

  5. KEEP Language Research Strategy. Technical Report #14.

    ERIC Educational Resources Information Center

    Tharp, Roland G.; Gallimore, Ronald

    This paper outlines the strategies of Kamehameha Early Education Program (KEEP) language research, and briefly reviews the findings through Spring 1974. A major research emphasis has been placed on the assessment of Standard English comptence of Hawaii school children. (CM)

  6. The facial skeleton of the chimpanzee-human last common ancestor

    PubMed Central

    Cobb, Samuel N

    2008-01-01

    This review uses the current morphological evidence to evaluate the facial morphology of the hypothetical last common ancestor (LCA) of the chimpanzee/bonobo (panin) and human (hominin) lineages. Some of the problems involved in reconstructing ancestral morphologies so close to the formation of a lineage are discussed. These include the prevalence of homoplasy and poor phylogenetic resolution due to a lack of defining derived features. Consequently the list of hypothetical features expected in the face of the LCA is very limited beyond its hypothesized similarity to extant Pan. It is not possible to determine with any confidence whether the facial morphology of any of the current candidate LCA taxa (Ardipithecus kadabba, Ardipithecus ramidus, Orrorin tugenensis and Sahelanthropus tchadensis) is representative of the LCA, or a stem hominin, or a stem panin or, in some cases, a hominid predating the emergence of the hominin lineage. The major evolutionary trends in the hominin lineage subsequent to the LCA are discussed in relation to the dental arcade and dentition, subnasal morphology and the size, position and prognathism of the facial skeleton. PMID:18380866

  7. The Cost of Keeping Up Appearances.

    ERIC Educational Resources Information Center

    Welch, Mary A., Ed.

    1996-01-01

    This issue focuses on the costs of keeping up appearances by landscaping the environment. Although insects can be a threat to plant health, much of the injury they cause will only threaten plant appearance. The study comes from a survey of two groups, landscape specialists and homeowners, who were asked to identify which plants in a photograph…

  8. Social and cognitive factors associated with children’s secret-keeping for a parent

    PubMed Central

    Gordon, Heidi M.; Lyon, Thomas D.; Lee, Kang

    2014-01-01

    This study examined children’s secret-keeping for a parent and its relationship to trust, theory of mind, secrecy endorsement, and executive functioning (EF). Children (N = 107) between 4 and 12 years of age participated in a procedure wherein parents broke a toy and asked children to promise secrecy. Responses to open-ended and direct questions were examined. Overall, secret-keeping increased with age and promising to keep the secret was related to fewer disclosures in open-ended questioning. Children who kept the secret in direct questioning exhibited greater trust and better parental ratings of EF than children who disclosed the secret. Findings highlight the importance of both social and cognitive factors in secret-keeping development. PMID:25291258

  9. To Keep or Not to Keep? The Question of Crystallographic Waters for Enzyme Simulations in Organic Solvent

    PubMed Central

    Dahanayake, Jayangika N.; Gautam, Devaki N.; Verma, Rajni; Mitchell-Koch, Katie R.

    2016-01-01

    The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results. PMID:27403032

  10. Modeling Surface Water Transport in the Central Pacific Ocean With 129I Records From Coral Skeletons

    NASA Astrophysics Data System (ADS)

    Beck, W.; Biddulph, D. L.; Russell, J. L.; Burr, G. S.; Jull, T. J.; Correge, T.; Roeder, B.

    2008-12-01

    129I occurs naturally in extremely low abundance via cosmic ray interactions in the atmosphere as well as by spontaneous fission of uranium. Oceanic concentrations of 129I have risen by several orders of magnitude during the last half century largely from environmental pollution coming from several point-source nuclear fuel reprocessing plants. In the Pacific basin, much of the increase has apparently come from the Hanford Nuclear reprocessing plant in the United States, with iodine primarily arriving via the Columbia River. Coral skeletons preserve records of 129I concentration of the surface waters from which they were deposited, yielding records with annual resolution or better. We will present three such records from different locations in the Pacific Ocean: the Solomon Islands, Easter Island and Clipperton Atoll. For this study, drill cores from living massive coral skeletons of the species Porites Lobata were collected from these sites. 129I/127I values were measured using accelerator mass spectrometry (AMS) at the University of Arizona with an NEC 3 MV Pelletron accelerator. Results from the analysis of the corals will be compared to the distribution of other mixed-layer tracers (chloro-fluorocarbons and tritium) collected during the World Ocean Circulation Experiment cruises conducted between 1990 and 2002. The 129I/127I records observed in these corals will also be compared to tracer transit time calculations determined from a 20th century simulation of the GFDL coupled-climate passive-tracer model.

  11. Automatic identification of watercourses in flat and engineered landscapes by computing the skeleton of a LiDAR point cloud

    NASA Astrophysics Data System (ADS)

    Broersen, Tom; Peters, Ravi; Ledoux, Hugo

    2017-09-01

    Drainage networks play a crucial role in protecting land against floods. It is therefore important to have an accurate map of the watercourses that form the drainage network. Previous work on the automatic identification of watercourses was typically based on grids, focused on natural landscapes, and used mostly the slope and curvature of the terrain. We focus in this paper on areas that are characterised by low-lying, flat, and engineered landscapes; these are characteristic to the Netherlands for instance. We propose a new methodology to identify watercourses automatically from elevation data, it uses solely a raw classified LiDAR point cloud as input. We show that by computing twice a skeleton of the point cloud-once in 2D and once in 3D-and that by using the properties of the skeletons we can identify most of the watercourses. We have implemented our methodology and tested it for three different soil types around Utrecht, the Netherlands. We were able to detect 98% of the watercourses for one soil type, and around 75% for the worst case, when we compared to a reference dataset that was obtained semi-automatically.

  12. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  13. Added Value of SPECT/CT in the Evaluation of Benign Bone Diseases of the Appendicular Skeleton.

    PubMed

    Abikhzer, Gad; Srour, Saher; Keidar, Zohar; Bar-Shalom, Rachel; Kagna, Olga; Israel, Ora; Militianu, Daniela

    2016-04-01

    Bone scintigraphy is a sensitive technique to detect altered bone mineralization but has limited specificity. The use of SPECT/CT has improved significantly the diagnostic accuracy of bone scintigraphy, in patients with cancer as well as in evaluation of benign bone disease. It provides precise localization and characterization of tracer-avid foci, shortens the diagnostic workup, and decreases patient anxiety. Through both the SPECT and the CT components, SPECT/CT has an incremental value in characterizing benign bone lesions, specifically in the appendicular skeleton, as illustrated by present case series.

  14. 32 CFR 707.6 - Minesweeping station keeping lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.6 Minesweeping station keeping lights. Naval vessels engaged in minesweeping operations may display, as an aid in maintaining prescribed...

  15. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: A new method and proxy evaluation at Bermuda

    NASA Astrophysics Data System (ADS)

    Wang, X. T.; Sigman, D. M.; Cohen, A. L.; Sinclair, D. J.; Sherrell, R. M.; Weigand, M. A.; Erler, D. V.; Ren, H.

    2015-01-01

    The skeleton-bound organic nitrogen in reef-building symbiotic corals may be a high-resolution archive of ocean nitrogen cycle dynamics and a tool for understanding coral biogeochemistry and physiological processes. However, the existing methods for measuring the isotopic composition of coral skeleton-bound organic nitrogen (hereafter, CS-δ15N) either require too much skeleton material or have low precision, limiting the applications of this relatively new proxy. In addition, the controlling factors on CS-δ15N remain poorly understood: the δ15N of source nitrogen and the internal nitrogen cycle of the coral/zooxanthellae symbiosis may both be important. Here, we describe a new ("persulfate/denitrifier"-based) method for measuring CS-δ15N, requiring only 5 mg of skeleton material and yielding a long-term precision better than 0.2‰ (1σ). Using this new method, we investigate CS-δ15N at Bermuda. Ten modern Diploria labyrinthiformis coral cores/colonies from 4 sampling sites were measured for CS-δ15N. Nitrogen concentrations (nitrate + nitrite, ammonium, and dissolved organic nitrogen) and δ15N of plankton were also measured at these coral sites. Among the 4 sampling sites, CS-δ15N shows an increase with proximity to the island, from ∼3.8‰ to ∼6.8‰ vs. atmospheric N2, with the northern offshore site having a CS-δ15N 1-2‰ higher than the δ15N of thermocline nitrate in the surrounding Sargasso Sea. Two annually resolved CS-δ15N time series suggest that the offshore-inshore CS-δ15N gradient has persisted since at least the 1970s. Plankton δ15N among these 4 sites also has an inshore increase, but of only ∼1‰. Coral physiological change must explain the remaining (∼2‰) inshore increase in CS-δ15N, and previous work points to the coral/zooxanthellae N cycle as a control on host tissue (and thus carbonate skeletal) δ15N. The CS-δ15N gradient is hypothesized to result mainly from varying efficiency in the internal nitrogen recycling of the

  16. Volunteer Magic: Finding and Keeping Library Volunteers.

    ERIC Educational Resources Information Center

    Thelen, Laurie

    2001-01-01

    Offers suggestions for a successful volunteer program in a school setting. Topics include recruitment strategies, including advertising for parents, grandparents, other groups, and students; training programs for adult volunteers and for students; how to keep volunteers; how to afford rewards; and helpful resources. (LRW)

  17. 38 CFR 17.164 - Patient responsibility in making and keeping dental appointments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... making and keeping dental appointments. 17.164 Section 17.164 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Dental Services § 17.164 Patient responsibility in making and keeping dental appointments. Any veteran eligible for dental treatment on a one-time completion basis only and...

  18. 38 CFR 17.164 - Patient responsibility in making and keeping dental appointments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... making and keeping dental appointments. 17.164 Section 17.164 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Dental Services § 17.164 Patient responsibility in making and keeping dental appointments. Any veteran eligible for dental treatment on a one-time completion basis only and...

  19. 38 CFR 17.164 - Patient responsibility in making and keeping dental appointments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... making and keeping dental appointments. 17.164 Section 17.164 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Dental Services § 17.164 Patient responsibility in making and keeping dental appointments. Any veteran eligible for dental treatment on a one-time completion basis only and...

  20. 38 CFR 17.164 - Patient responsibility in making and keeping dental appointments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... making and keeping dental appointments. 17.164 Section 17.164 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Dental Services § 17.164 Patient responsibility in making and keeping dental appointments. Any veteran eligible for dental treatment on a one-time completion basis only and...

  1. 38 CFR 17.164 - Patient responsibility in making and keeping dental appointments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... making and keeping dental appointments. 17.164 Section 17.164 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Dental Services § 17.164 Patient responsibility in making and keeping dental appointments. Any veteran eligible for dental treatment on a one-time completion basis only and...

  2. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE PAGES

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...

    2017-01-01

    Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less

  3. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines

    PubMed Central

    Caughey, Winslow S.; Raymond, Lynne D.; Horiuchi, Motohiro; Caughey, Byron

    1998-01-01

    A central aspect of pathogenesis in the transmissible spongiform encephalopathies or prion diseases is the conversion of normal protease-sensitive prion protein (PrP-sen) to the abnormal protease-resistant form, PrP-res. Here we identify porphyrins and phthalocyanines as inhibitors of PrP-res accumulation. The most potent of these tetrapyrroles had IC50 values of 0.5–1 μM in scrapie-infected mouse neuroblastoma (ScNB) cell cultures. Inhibition was observed without effects on protein biosynthesis in general or PrP-sen biosynthesis in particular. Tetrapyrroles also inhibited PrP-res formation in a cell-free reaction composed predominantly of hamster PrP-res and PrP-sen. Inhibitors were found among phthalocyanines, deuteroporphyrins IX, and meso-substituted porphines; examples included compounds containing anionic, neutral protic, and cationic peripheral substituents and various metals. We conclude that certain tetrapyrroles specifically inhibit the conversion of PrP-sen to PrP-res without apparent cytotoxic effects. The inhibition observed in the cell-free conversion reaction suggests that the mechanism involved direct interactions of the tetrapyrrole with PrP-res and/or PrP-sen. These findings introduce a new class of inhibitors of PrP-res formation that represents a potential source of therapeutic agents for transmissible spongiform encephalopathies. PMID:9770449

  4. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.

    Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less

  5. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions].

    PubMed

    Oganov, V S; Bogomolov, V V; Bakulin, A V; Novikov, V E; Kabitskaia, O E; Murashko, L M; Morgun, V V; Kasparskiĭ, R R

    2010-01-01

    A summary of investigations results of human bone tissue changes in space flight on the orbital station (OS) Mir and international space station (ISS) using dual energy X-ray absorptiometry (DXA) is given. Results comparative analysis revealed an absence of significant differences in bone mass (BM) changes on the both OS. Theoretically expected BM loss was observed in bone trabecular structure of skeleton low part after space flight lasting 5-7 month. The BM losses are qualified in some cases as quicly developed but reversible osteopenia and generally interpreted as evidence of bone functional adaptation to the alterating mechanical loading. It was demonstrated the high individual variability BM loss amplitudes. Simultaneously was observed the individual pattern of BM loss distribution across different segments of skeleton after repetitive flights independently upon type of OS. In according with the above mentioned individual peculiarities it was impossible to establish the dependence of BM changes upon duration of space missions. Therefore we have not sufficiently data for calculation of probability to achive the critical demineralization level by the augmentation the space mission duration till 1.5-2 years. It is more less possibility of the bone quality changes prognosis, which in the aggregate with BM losses determines the bone fracture risk. It become clearly that DXA technology is unsuffitiently for this purpose. It is considered the main direction which may optimized the elaboration of the interplanetary project meaning the perfectly safe of skeleton mechanical function.

  6. Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton

    PubMed Central

    Gaddini, Gino W.; Turner, Russell T.; Grant, Kathleen A.; Iwaniec, Urszula T.

    2016-01-01

    Background Alcohol is an important nonessential component of diet, but the overall impact of drinking on bone health, especially at moderate levels, is not well understood. Bone health is important because fractures greatly reduce quality of life and are a major cause of morbidity and mortality in the elderly. Regular alcohol consumption is most common following skeletal maturity, emphasizing the importance of understanding the skeletal consequences of drinking in adults. Method This review focuses on describing the complex effects of alcohol on the adult skeleton. Studies assessing the effects of alcohol on bone in adult humans as well as skeletally-mature animal models published since the year 2000 are emphasized. Results Light to moderate alcohol consumption is generally reported to be beneficial, resulting in higher bone mineral density (BMD) and reduced age-related bone loss, whereas heavy alcohol consumption is generally associated with decreased BMD, impaired bone quality and increased fracture risk. Bone remodeling is the principle mechanism for maintaining a healthy skeleton in adults and dysfunction in bone remodeling can lead to bone loss and/or decreased bone quality. Light to moderate alcohol may exert beneficial effects in older individuals by slowing the rate of bone remodeling but the impact of light to moderate alcohol on bone remodeling in younger individuals is less certain. The specific effects of alcohol on bone remodeling in heavy drinkers is even less certain because the effects are often obscured by unhealthy lifestyle choices, alcohol-associated disease, and altered endocrine signaling. Conclusions Although there have been advances in understanding the complex actions of alcohol on bone, much remains to be determined. Limited evidence implicates age, skeletal site evaluated, duration and pattern of drinking as important variables. Few studies systematically evaluating the impact of these factors have been conducted and should be made a

  7. The development of the time-keeping clock with TS-1 single chip microcomputer.

    NASA Astrophysics Data System (ADS)

    Zhou, Jiguang; Li, Yongan

    The authors have developed a time-keeping clock with Intel 8751 single chip microcomputer that has been successfully used in time-keeping station. The hard-soft ware design and performance of the clock are introduced.

  8. Scottish Keep Well health check programme: an interrupted time series analysis.

    PubMed

    Geue, Claudia; Lewsey, James D; MacKay, Daniel F; Antony, Grace; Fischbacher, Colin M; Muirie, Jill; McCartney, Gerard

    2016-09-01

    Effective interventions are available to reduce cardiovascular risk. Recently, health check programmes have been implemented to target those at high risk of cardiovascular disease (CVD), but there is much debate whether these are likely to be effective at population level. This paper evaluates the impact of wave 1 of Keep Well, a Scottish health check programme, on cardiovascular outcomes. Interrupted time series analyses were employed, comparing trends in outcomes in participating and non-participating practices before and after the introduction of health checks. Health outcomes are defined as CVD mortality, incident hospitalisations and prescribing of cardiovascular drugs. After accounting for secular trends and seasonal variation, coronary heart disease mortality and hospitalisations changed by 0.4% (95% CI -5.2% to 6.3%) and -1.1% (-3.4% to 1.3%) in Keep Well practices and by -0.3% (-2.7% to 2.2%) and -0.1% (-1.8% to 1.7%) in non-Keep Well practices, respectively, following the intervention. Adjusted changes in prescribing in Keep Well and non-Keep Well practices were 0.4% (-10.4% to 12.5%) and -1.5% (-9.4% to 7.2%) for statins; -2.5% (-12.3% to 8.4%) and -1.6% (-7.1% to 4.3%) for antihypertensive drugs; and -0.9% (-6.5% to 5.0%) and -2.4% (-10.1% to 6.0%) for antiplatelet drugs. Any impact of the Keep Well health check intervention on CVD outcomes and prescribing in Scotland was very small. Findings do not support the use of the screening approach used by current health check programmes to address CVD. We used an interrupted time series method, but evaluation methods based on randomisation are feasible and preferable and would have allowed more reliable conclusions. These should be considered more often by policymakers at an early stage in programme design when there is uncertainty regarding programme effectiveness. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Cochlear Implants Keep Twin Sisters Learning, Discovering Together

    MedlinePlus

    ... University. Photo: Johns Hopkins University Keep Twin Sisters Learning, Discovering Together Mia and Isabelle Jeppsen, 10, share ... her mother, gratefully, "There's the obvious benefit of learning to read, write and communicate with facility and ...

  10. Standardized Test Results: KEEP and Control Students. 1975-1976, Technical Report #69.

    ERIC Educational Resources Information Center

    Antill, Ellen; Speidel, Gisela E.

    This report presents the results of various standardized measures administered to Kamehameha Early Education Program (KEEP) students and control students in the school year 1975-1976. In contrast to previous comparisons, KEEP employed more rigorous procedures for the selection of the control students and for the conditions of test administration.…

  11. Description of the KEEP Reading Curriculum, 1975-76. Technical Report No. 43.

    ERIC Educational Resources Information Center

    Au, Kathryn H.

    The Kamehameha Early Education Program (KEEP) is a research and development program designed to develop, demonstrate, and disseminate methods for improving the education of Hawaiian and part-Hawaiian children; this report contains a description of the reading curriculum used in the KEEP demonstration school during the 1975-76 school year. The…

  12. 49 CFR 37.163 - Keeping vehicle lifts in operative condition: Public entities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Keeping vehicle lifts in operative condition: Public entities. 37.163 Section 37.163 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Provision of Service § 37.163 Keeping vehicle lifts in operative condition: Public entities. ...

  13. 49 CFR 37.163 - Keeping vehicle lifts in operative condition: Public entities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Keeping vehicle lifts in operative condition: Public entities. 37.163 Section 37.163 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Provision of Service § 37.163 Keeping vehicle lifts in operative condition: Public entities. ...

  14. Canaliculi in the tessellated skeleton of cartilaginous fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, M.N.; Socha, J.J.; Hall, B.K.

    2010-08-04

    The endoskeletal elements of sharks and rays are comprised of an uncalcified, hyaline cartilage-like core overlain by a thin fibro-ceramic layer of mineralized hexagonal tiles (tesserae) adjoined by intertesseral fibers. The basic spatial relationships of the constituent tissues (unmineralized cartilage, mineralized cartilage, fibrous tissue) are well-known - endoskeletal tessellation is a long-recognized synapomorphy of elasmobranch fishes - but a high-resolution and three-dimensional (3D) understanding of their interactions has been hampered by difficulties in sample preparation and lack of technologies adequate for visualizing microstructure and microassociations. We used cryo-electron microscopy and synchrotron radiation tomography to investigate tessellated skeleton ultrastructure but withoutmore » damage to the delicate relationships between constituent tissues or to the tesserae themselves. The combination of these techniques allowed visualization of never before appreciated internal structures, namely passages connecting the lacunar spaces within tesserae. These intratesseral 'canaliculi' link consecutive lacunar spaces into long lacunar strings, radiating outward from the center of tesserae. The continuity of extracellular matrix throughout the canalicular network may explain how chondrocytes in tesserae remain vital despite encasement in mineral. Extracellular fluid exchange may also permit transmission of nutrients, and mechanical and mineralization signals among chondrocytes, in a manner similar to the canalicular network in bone. These co-adapted mechanisms for the facilitated exchange of extracellular material suggest a level of parallelism in early chondrocyte and osteocyte evolution.« less

  15. Callistrilones A and B, Triketone-Phloroglucinol-Monoterpene Hybrids with a New Skeleton from Callistemon rigidus.

    PubMed

    Cao, Jia-Qing; Huang, Xiao-Jun; Li, Yu-Ting; Wang, Ying; Wang, Lei; Jiang, Ren-Wang; Ye, Wen-Cai

    2016-01-04

    The first triketone-phloroglucinol-monoterpene hybrids, callistrilones A and B (1 and 2), along with a postulated biosynthetic intermediate (3) were isolated from the leaves of Callistemon rigidus. Compounds 1 and 2 featured a new carbon skeleton with an unprecedented [1]benzofuro[2,3-a]xanthene or [1]benzofuro[3,2-b]xanthene pentacyclic ring system composed of three kinds of building blocks. Their structures and absolute configurations were elucidated by spectroscopic analysis, X-ray diffraction, and electronic circular dichroism (ECD) calculations. A plausible biogenetic pathway for the new compounds is also proposed. Compound 1 exhibited moderate antibacterial activity against Gram-positive bacteria including multiresistant strains.

  16. Caustic Skeleton & Cosmic Web

    NASA Astrophysics Data System (ADS)

    Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost

    2018-05-01

    arbitrary dynamics. Most important in the present context is that it allows us to follow and describe the full three-dimensional geometric and topological complexity of the purely gravitationally evolving nonlinear cosmic matter field. While generic and statistical results can be based on the eigenvalue characteristics, one of our key findings is that of the significance of the eigenvector field of the deformation field for outlining the entire spatial structure of the caustic skeleton emerging from a primordial density field. In this paper we explicitly consider the caustic conditions for the three-dimensional Zel'dovich approximation, extending earlier work on those for one- and two-dimensional fluids towards the full spatial richness of the cosmic web. In an accompanying publication, we apply this towards a full three-dimensional study of caustics in the formation of the cosmic web and evaluate in how far it manages to outline and identify the intricate skeletal features in the corresponding N-body simulations.

  17. Biosynthetic studies on the botcinolide skeleton: new hydroxylated lactones from Botrytis cinerea.

    PubMed

    Reino, José L; Durán-Patrón, Rosa M; Daoubi, Mourad; Collado, Isidro G; Hernández-Galán, Rosario

    2006-01-20

    [reaction: see text] The biosynthetic origin of the botcinolide skeleton was investigated by means of feeding 13C- and 2H-labeled precursors to Botrytis cinerea. Three new compounds, two homobotcinolide derivatives, 3-O-acetylhomobotcinolide (5) and 8-methylhomobotcinolide (6), and a new 11-membered lactone (7), were isolated. Their structures were elucidated on the basis of spectroscopic data, including one-bond and long-range 1H-13C correlations. The relative stereochemistries were determined by combined analyses of NOE data and 1H-1H coupling constants. According to the results of feeding experiments with 13C- and 2H-labeled acetate and l-S-methylmethionine, 5 is an acetate-derived polyketide whose methyl groups originate from l-S-methylmethionine. This is a rare example of the incorporation of a methyl from methionine into a supposed C3 starter unit of the polyketide synthesis.

  18. Keep New Mexico Beautiful, Recycling Project Successful

    ERIC Educational Resources Information Center

    Bickel, Victor R.

    1975-01-01

    Through the efforts of community groups, the support of local industries, and the state government, Keep New Mexico Beautiful, Inc. (KNMB) is now operating a large-scale recycling business. KNMB has been able to save tons of natural resources, provide local employment, and educate the public to this environmental concern. (MA)

  19. Hyperostosis frontalis interna: criteria for sexing and aging a skeleton.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Cohen, Haim; Abbas, Janan; Medlej, Bahaa; Hershkovitz, Israel

    2011-09-01

    Estimation of sex and age in skeletons is essential in anthropological and forensic medicine investigations. The aim of the current study was to examine the potential of hyperostosis frontalis interna (HFI) as a criterion for determining sex and age in forensic cases. Macroscopic examination of the inner aspect of the frontal bone of 768 skulls (326 males and 442 females) aged 1 to 103, which had undergone a head computerized tomography scan, was carried out using the volume rendering technique. HFI was divided into two categories: minor and major. HFI is a sex- and age-dependent phenomena, with females manifesting significantly higher prevalence than males (p<0.01). In both females and males, prevalence of HFI increases as age increases (p<0.01). We present herein the probabilities of designating an unknown skull to a specific sex and age cohort according to the presence of HFI (standardized to age distribution in an Israeli population). Moreover, we present the probability of an individual belonging to a specific sex or age cohort according to age or sex (respectively) and severity of HFI. We suggest a valid, reliable, and easy method for sex and age identification of unknown skulls.

  20. The dynamics of secretion during sea urchin embryonic skeleton formation.

    PubMed

    Wilt, Fred H; Killian, Christopher E; Hamilton, Patricia; Croker, Lindsay

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.