Science.gov

Sample records for kek photon factory

  1. New control system for the KEK photon factory

    NASA Astrophysics Data System (ADS)

    Obina, Takashi; Pak, Cheol-On

    2007-07-01

    A new control system for the Photon Factory (PF) electron storage ring has been developed, incorporating modern technologies in both high-level and low-level control layers. The Experimental Physics and Industrial Control System (EPICS) software toolkit was introduced as a major framework in the middle- and high-level control layers. In the low-level layer, Programmable Logic Controllers (PLC) was used for a safety control system, for RF klystron control boards and for the vacuum control system, etc. Old VME-board computers with the HP-RT operating system were replaced by Linux-based board computers, which were used as low-level input/output controllers. The new control system has been running without any serious problems since its commissioning in September 2005.

  2. On KEK B-Factory

    NASA Astrophysics Data System (ADS)

    Sugawara, H.

    2009-07-01

    There are two principles which the management of a research institute like KEK must respect when dealing with such big project as B-Factory. One is the scientific merit of the project and the other is the organizational consideration which includes financial, human, technical and historical elements. Ideally, the two principles are to be fully taken into account. But, in many cases, one or the other is only partially fulfilled due to unavoidable circumstances. The lack of flexibility to respond to all possible situations is more dangerous and may lead to a disaster as in the case of SSC. I will describe the process which lead to the successful construction, operation and physics presentations of KEK B-Factory following faithfully the official records.

  3. Super B Factory at KEK

    SciTech Connect

    Cheon, Byung Gu

    2008-11-23

    A Super--KEKB factory, an asymmetric--energy e{sup +}e{sup -} lepton collider at KEK in Japan, has been proposed with the design peak luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 50 times higher than that of the current operation of the KEKB collider. The physics goal of this project is mainly to measure extremely rare heavy flavor weak decays and CP violation phenomena, which are very sensitive on physics beyond the Standard Model. Hot physics topics and the status of experimental design are briefly described.

  4. Time expanding multihit TDC for the BELLE TOF detector at the KEK B-factory

    SciTech Connect

    Varner, G.; Kichimi, H.; Yamaguchi, H.

    1997-12-31

    Utilizing a time expansion technique, a multihit TDC has been developed for readout of the BELLE TOF detector at the KEK B-Factory. Time digitization consists of three steps: tagging an input signal with respect to a beam collision synchronized reference clock, expansion of this time interval, and readout by a conventional multihit TDC. Using a time expansion factor of 20 and a multihit TDC with a 500 ps LSB, this system provides a precision TOF measurement of 25 ps LSB, {approximately}20 ps resolution, and with a dead time of less than 1 {mu}s.

  5. Design of HOM Power Absorbers for the KEK B-Factory

    SciTech Connect

    Ng, Cho-Kuen

    2003-05-23

    The Higher-Order-Mode (HOM) power deposition is one of most crucial problems in the KEK B-factory to achieve a total beam current of 2.6A at the Low Energy Ring (LER). The estimate shows that the HOM power of about 20 kW can pass at any point in the arc of the ring. A particular worry is the Interaction Point (IP) where the maximum tolerable heat deposition of the IP chamber is only 200 W. Two and one types of HOM power absorbers have been studied to protect the beamline components at the arc and the IP chamber, respectively. One structure for the arc consists of a radial line connected a coaxial pipe where an absorbing material is housed. Another one has an absorbing material directly attached to the inner surface of the copper chamber. The absorbing material is segmented to a dozen pieces of pencil shape, each being titled by 30-45 degrees for good couplings with both TM and TE modes. Calculations with MAFIA and HFSS show that they have absorbing efficiencies more than 10% and the loss factors of 0.1-0.2 V/pC. Our choice of absorber for the Interaction Region (IR) is a conventional cylindrical SiC attached to the IR chamber. It has an absorption rate of 70% in the wide range of frequency.

  6. Figures and Data Plots from the Published Papers of the BELLE Experiment at the KEK - B Factory

    DOE Data Explorer

    This resource provides more than 300 citations to preprints and papers with the figures from each one pulled out separately for easy access and downloading. These are physics publications. Be sure to also see the page of Technical Journal publications at http://belle.kek.jp/belle/bellenim/index.htm and the lists of conference presentations from 2000 through 2009. Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the international Belle Collaboration. The original Letter of Intent from the Collaboration stated their scientific goal as follows:

    The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry, the so-called CP violations, are only seen as a small effect in the decays of neutral K mesons. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how they occur. In 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time. The KM model for CP violation is now considered to be an essential part of the Standard Model. In 1980, Sanda and Carter pointed out that the KM model contained the possibility of rather sizable CP violating asymmetries in certain decay modes of the B meson. The subsequent observation of a long b quark lifetime and a large amount of mixing in the neutral B meson system indicated that it would be feasible to carry out decisive tests of the KM model by studying B meson decays. Our collaboration has been formed around the common interest of clarifying the long standing physics puzzle of CP violation. Our goal is to make a definitive test of the Standard ModelÆs predictions for CP violations in the decays of B mesons. [Copied, with editing, from Letter of Intent (KEK-Report94-2, April 1994); see http://belle.kek

  7. BELLE High Energy Physics Experiment at the KEK B-factory: Data and Physics Results for CPV, Rare, DKM, 5S, Charm, Tau, and New Particles

    DOE Data Explorer

    Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the International Belle Collaboration. The Collaboration was formed around the common interest of clarifying a long standing physics puzzle, that of CP violation. The goal of the experiments was to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. The original Belle experiment verified the KM theory, leading to a Nobel prize in 2008 for Kobayashi and Maskawa. Belle II Collaboration is now working on additional discoveries.

  8. Current status of BL-2B at photon factory

    SciTech Connect

    Nambu, Akira Ueda, Kazuhiro; Horiba, Koji; Tsuchiya, Kimichika; Kumigashira, Hiroshi; Amemiya, Kenta

    2016-07-27

    A new soft x-ray beamline BL-2B at Photon Factory of High Energy Accelerator Research Organization (KEK-PF) covers energy range from vacuum ultraviolet (30 eV) to soft x-ray (4000 eV). This wide energy range could be achieved by employing two undulators and two monochromators. Two different energy range undulators were installed tandem to a 9-meter straight section of PF storage ring. The 1{sup st} undulator is for VUV (30 eV) to SX (280 eV), while the other one is for SX (280 eV) to HX (4000 eV). It is also necessary to be equipped with two different monochrometors for energy above and under 2000 eV; grating monochrometor and double crystal monochrometor. One of the main purposes of this bemaline is spectroscopic study of light elements contained in several functional materials. The beamline is designed for photoemission spectroscopy (PES), X-ray absorption fine structure (XAFS) and other types of experiments. The performance of the new beamline is reported and typical examples of its application to material science are demonstrated.

  9. Upgrade of the Photon Factory Control System

    NASA Astrophysics Data System (ADS)

    Obina, T.; Pak, C. O.; Sato, Y.; Mishina, A.; Harada, K.; Kobayashi, Y.; Myajima, T.; Nagahashi, S.; Nogami, T.; Sakanaka, S.; Shioya, T.; Tadano, M.; Takahashi, T.; Tanimoto, Y.; Umemori, K.

    2007-01-01

    The Photon Factory control system was originally developed more than 20 years ago and has been upgraded several times. As a part of the straight-sections upgrade, which started in March, 2005, we renewed the control system incorporating modern technologies in both low-level and high-level control layers. In the low-level layer, a PLC (Programmable Logic Controller) is now intensively used for title safety control system, for RF klystron control boards and for the vacuum control system. In the middle-level and high-level layers, the EPICS (Experimental Physics and Industrial Control System) software toolkit was adopted. We also replaced VME-board computers with HP-RT operating system by Linux-based computers, which are now used as input/output controllers (IOCs) for the EPICS. The new system has been running without any serious problems since its commissioning in September, 2005.

  10. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  11. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    (Konstantinova), O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  12. Vertical displacement of the storage ring floor due to building distortion in the Photon Factory

    NASA Astrophysics Data System (ADS)

    Katsura, Tomotaro; Fujita, Yutaka

    1991-11-01

    The Light Source Building of the Photon Factory was found to distort so much as to induce the displacement of magnets in the storage ring. This resulted in drifting of the beam orbit. It was considered that the building was distorted by the variations of thermal stress, such as diurnal changes of the solar irradiation and atmospheric temperature. To reduce such thermal stress, the rooftop of the building was insulated with a layer of polyethylene foam. The building distortion was measured in terms of vertical floor displacements along the storage ring by using a hydrostatic level measuring system. Results of the measurement were compared with those of a model simulation based on the finite element method. Comparison between measured and simulated results showed good agreement before the insulation applied to the roof. After the insulation, the measured floor displacements reduced to about one half and were also comparable to the simulated results. A full description of the subject is given in T. Katsura, Ed., KEK Internal 90-32 (in Japanese) Jan. (1991).

  13. Characterization of undulator radiation at the photon factory

    NASA Astrophysics Data System (ADS)

    Maezawa, Hideki; Suzuki, Yoshio; Kitamura, Hideo; Sasaki, Taizo

    1986-05-01

    Spectra of undulator radiation of the Photon Factory undulator, model PMU-2, were measured in a scale of absolute brightness in the soft X-ray region for various values of the K-parameter from 0.72 to 1.66. A significant reduction of the peak brightness was observed, whereas we also observed a relatively sharp edge at the high energy side of the first harmonic. The results show that the peak brightness and the band width are highly dependent on the beam parameters and the geometry of spectral observation.

  14. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  15. KEK ATF Injector Upgrade

    SciTech Connect

    Yeremian, anahid D

    1999-03-24

    The main goal at the Accelerator Test Facility (ATF) at the KEK laboratory in Japan is to develop the technology that can stably supply the main linac with an extremely flat multi-bunch beam. The injector for this accelerator was upgraded to produce greater than 2 x 10{sup 10} in electrons a single bunch at 80 MeV in a very narrow bunch.

  16. Beamline front end for in-vacuum short period undulator at the photon factory storage ring

    SciTech Connect

    Miyauchi, Hiroshi; Tahara, Toshihiro Asaoka, Seiji

    2016-07-27

    The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum short period undulators. The first to fourth short period undulators SGU#17, SGU#03, SGU#01 and SGU#15 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006, 2009 and 2013, respectively. The beamline front end for SGU#15 is described in this paper.

  17. Compact scanning transmission x-ray microscope at the photon factory

    SciTech Connect

    Takeichi, Yasuo Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-28

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  18. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    SciTech Connect

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2007-01-19

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype of a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs.

  19. Single-pass BPM system of the Photon Factory storage ring.

    PubMed

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  20. Interlock systems using programmable sequence controllers and a monitoring system of the Photon Factory beamlines

    NASA Astrophysics Data System (ADS)

    Satow, Yoshinori; Ito, Kenji; Kosuge, Takashi

    1989-07-01

    Fully utilizing programmable sequence controllers, interlock systems for the Photon Factory beamlines were newly designed and constructed for providing the reliable and versatile control logic that is required for beamline characteristics. The systems, accommodated with radiation safety and vacuum interlock logic as well as protection logic for various components against heat and radiation damage, are in operation on eight beamlines. A centralized monitoring system, to which all interlock systems for the beamlines are connected through optical fiber links, was constructed for simultaneously monitoring the operation status of the interlock systems. Individual operations of each interlock system are also controlled by the monitoring system. Log data collected by the monitoring system are summarized and analyzed in order to provide the necessary information for smooth and safe operation as well as for further improvements of the beamlines. The interlock and the monitoring systems are described along with operational remarks.

  1. Newly designed double surface bimorph mirror for BL-15A of the photon factory

    SciTech Connect

    Igarashi, Noriyuki Nitani, Hiroaki; Takeichi, Yasuo; Niwa, Yasuhiro; Abe, Hitoshi; Kimura, Masao; Mori, Takeharu; Nagatani, Yasuko; Kosuge, Takashi; Kamijo, Ai; Koyama, Atsushi; Shimizu, Nobutaka; Ohta, Hiromasa

    2016-07-27

    BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance is promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.

  2. In-situ data collection at the photon factory macromolecular crystallography beamlines

    SciTech Connect

    Yamada, Yusuke Matsugaki, Naohiro; Kato, Ryuichi; Senda, Toshiya; Hiraki, Masahiko

    2016-07-27

    Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography, and in-situ diffraction experiment has a capability to make researchers to proceed this step more efficiently. At the Photon Factory, a new tabletop diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, an on-axis viewing system and a plate rack with a capacity for ten crystallization plates. These components sit on a common plate and are able to be placed on the existing diffractometer table. The CCD detector with a large active area and a pixel array detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and a user interface have also been developed. The new diffractometer has been operational for users and used for evaluation of crystallization screening since 2014.

  3. Upgrade of small angle x-ray scattering beamline BL-6A at the photon factory

    SciTech Connect

    Takagi, H. Igarashi, N.; Mori, T.; Saijo, S.; Nagatani, Y.; Kosuge, T.; Shimizu, N.; Ohta, H.

    2016-07-27

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally, a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.

  4. Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlines

    PubMed Central

    Yamada, Yusuke; pHonda, Nobuo; Matsugaki, Naohiro; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi

    2008-01-01

    Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client–server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. PMID:18421163

  5. X-ray beam stabilization at BL-17A, the protein microcrystallography beamline of the Photon Factory

    PubMed Central

    Igarashi, Noriyuki; Ikuta, Kazuyuki; Miyoshi, Toshinobu; Matsugaki, Naohiro; Yamada, Yusuke; Yousef, Mohammad S.; Wakatsuki, Soichi

    2008-01-01

    BL-17A is a new structural biology beamline at the Photon Factory, Japan. The high-brilliance beam, derived from the new short-gap undulator (SGU#17), allows for unique protein crystallographic experiments such as data collection from microcrystals and structural determination using softer X-rays. However, microcrystal experiments require robust beam stability during data collection and minor fluctuations could not be ignored. Initially, significant beam instability was observed at BL-17A. The causes of the beam instability were investigated and its various sources identified. Subsequently, several effective countermeasures have been implemented, and the fluctuation of the beam intensity successfully suppressed to within 1%. Here the instability reduction techniques used at BL-17A are presented. PMID:18421162

  6. Performance of the post-focusing mirror system at the reflectometry beamline BL-11D of the Photon Factory

    NASA Astrophysics Data System (ADS)

    Hatano, Tadashi; Aihara, Shogaku; Uchida, Kentaro; Tsuru, Toshihide

    2013-10-01

    Beamline BL-11D of the Photon Factory was recently opened for the characterization of extreme-ultraviolet and soft X-ray optical components. For reflectometry of multilayers for soft X-ray microscope optics, a small focus size on the sample surface matching the small acceptances of the curved multilayer samples is required. The post-focusing mirror system of BL-11D is composed of horizontally and vertically focusing elliptical mirrors. The performance was evaluated by microscopic beam profile observation, by a knife-edge scan test, and by the Ronchi test. The FWHM beam size was 120 μm (H) × 30 μm (V) with an insignificant spherical aberration, which is smaller than the requirement.

  7. Development of sample exchange robot PAM-HC for beamline BL-1A at the photon factory

    SciTech Connect

    Hiraki, Masahiko; Matsugaki, Naohiro; Yamada, Yusuke; Senda, Toshiya

    2016-07-27

    A macromolecular crystallography beamline, BL-1A, has been built at the Photon Factory (PF) for low energy experiments and has been operational since 2010. We have installed a sample exchange robot, PAM (PF Automated Mounting system), similar to other macromolecular crystallography beamlines. However, following the installation of a helium chamber to reduce the absorption of the diffraction signal by air, we developed a new sample exchange robot to replace PAM. The new robot, named PAM-HC (Helium Chamber), is designed with the goal of minimizing leakage of helium gas from the chamber. Here, the PAM-HC hardware and the flow of its movement are described. Furthermore, measurements of temperature changes during sample exchange are presented in this paper.

  8. AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory

    NASA Astrophysics Data System (ADS)

    Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi

    2010-06-01

    Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

  9. AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory

    SciTech Connect

    Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi

    2010-06-23

    Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

  10. The Physics of the B Factories

    DOE PAGES

    Bevan, A. J.

    2014-11-19

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

  11. Flavour physics at B factories

    NASA Astrophysics Data System (ADS)

    Križan, Peter

    2013-12-01

    This paper discusses the impact of B factories in the era of Large Hadron Collider (LHC) experiments. It presents the advantages of experiments at a B factory and at a super B factory, and their complementarity to the studies at the LHC. As examples, some selected recent results from B factories are presented; precision measurements of the unitarity triangle, studies of rare B decays, full reconstruction of events in D meson decays and searches for lepton violating τ lepton decays. The paper also reviews the status of the preparation of the next step, a super B factory at KEK, with the SuperKEKB high luminosity asymmetric electron-positron collider and the detector Belle II. Finally a summary and an outlook are given.

  12. High-throughput operation of sample-exchange robots with double tongs at the Photon Factory beamlines

    PubMed Central

    Hiraki, Masahiko; Watanabe, Shokei; pHonda, Nobuo; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2008-01-01

    Sample-exchange robots that can exchange cryo-pins bearing protein crystals out of experimental hutches according to user instructions have been developed. The robots were designed based on the SAM (Stanford Synchrotron Research Laboratory automated mounting) system. In order to reduce the time required for the sample exchange, the single tongs of the SAM system were modified and a double-tongs system that can hold two cryo-pins at the same time was developed. Robots with double tongs can move to the goniometer head holding the next cryo-pin with one set of tongs, dismount the experimented cryo-pin with the other set, and then mount the next pin onto the goniometer head without leaving the diffractometer area. Two different types of tongs have been installed: single tongs at beamlines BL-5A and AR-NW12A, and a double-tongs system at beamline BL-17A of the Photon Factory. The same graphical user interface software for operation of the sample-exchange robots is used at all beamlines, however, so that users do not need to consider differences between the systems. In a trial, the robot with double tongs could exchange samples within 10 s. PMID:18421164

  13. T0 chopper developed at KEK

    NASA Astrophysics Data System (ADS)

    Itoh, Shinichi; Ueno, Kenji; Ohkubo, Ryuji; Sagehashi, Hidenori; Funahashi, Yoshisato; Yokoo, Tetsuya

    2012-01-01

    We developed a T0 chopper rotating at 100 Hz at the High Energy Accelerator Research Organization (KEK) for the reduction of background noise in neutron scattering experiments at the Japan Proton Accelerator Research Complex (J-PARC). The T0 chopper consists of a rotor of 120 kg made from Inconel X750, supported by mechanical bearings in vacuum. The motor is located outside the vacuum and the rotation is transmitted into vacuum through magnetic seals. The motor should rotate in synchronization with the production timing of pulsed neutrons. The rotational fluctuations and running time were in good agreement with the specifications, i.e., phase control accuracy of less than 5 μs and running time of more than 4000 h without changing any component. A semi-auto installation mechanism was developed for installing under the shielding and for maintenance purposes. Based on the result of the development, actual machines were made for the neutron beamlines at J-PARC. We successfully reduced the background noise to 1/30 at neutron energies near 500 meV.

  14. KEK-IMSS Slow Positron Facility

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Yagishita, A.; Kosuge, T.; Saito, Y.; Kurihara, T.; Kikuchi, T.; Shirakawa, A.; Sanami, T.; Ikeda, M.; Ohsawa, S.; Kakihara, K.; Shidara, T.

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  15. Measurement of the CKM Angle alpha with the B-factories.

    SciTech Connect

    Bevan, Adrian; /Liverpool U.

    2005-12-21

    B-meson decays involving b {yields} u transitions are sensitive to the Unitarity Triangle angle {alpha} (or {phi}{sub 2}). The B-factories at SLAC and KEK have made significant progress toward the measurement of {alpha} in recent years. This paper summarizes the results of the B-factories' constraints on {alpha}.

  16. Present status of spin frozen deuteron target at KEK

    SciTech Connect

    Hiramatsu, S.; Isagawa, S.; Ishimoto, S.; Masaike, A.; Morimoto, K.

    1983-01-01

    Brief report on the present status of a spin frozen deuteron target at KEK is presented. Deuterons in fully deterated propanediol (D-8) with EHBA-Cr/sup v/ complex were polarized up to 40% in a high cooling power dilution refrigerator which was installed in a large aperture spectrometer. 4 references, 5 figures.

  17. Recent results from TRISTAN at KEK

    SciTech Connect

    Suzuki, Shiro

    1994-12-01

    Recent results of the TRISTAN experiment with high luminosity runs are reviewed. Updated results on lepton and quark pair production in the annihilation processes are presented, and limits on the compositeness scale and lower mass limit for extra Z bosons are given. The total hadronic cross section is presented in the effective Born approximation. A search for a resonance suggested by the L3 group is done in several different final states. The strong coupling constant {alpha}{sub s} is derived from several observables with an improved theoretical framework. The running nature of {alpha}{sub s} is studied in comparison with PEP4 and ALEPH data. Various properties of quark and gluon jets are examined. Hard scattering of two photons is established and these data provide information on quark and gluon distributions in the photon.

  18. High-Resolution X-ray Diffraction of Muscle Using Undulator Radiation from the Tristan Main Ring at KEK.

    PubMed

    Wakabayashi, K; Sugiyama, H; Yagi, N; Irving, T C; Iwamoto, H; Horiuti, K; Takezawa, Y; Sugimoto, Y; Ogino, M; Iino, S; Kim, D S; Majima, T; Amemiya, Y; Yamamoto, S; Ando, M

    1998-05-01

    High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.High-resolution X-ray diffraction studies on striated muscle fibres were performed using a hard X-ray undulator installed in the Tristan main ring at KEK, Tsukuba, Japan. The performance of the undulator, along with an example experiment which exploited the unique characteristics of undulator radiation, are reported. The vertical divergence angle of the first harmonic of the undulator was approximately 10 micro rad under 8 GeV multi-bunch operating conditions and the peak photon flux density was estimated to be approximately 3 x 10(16) photons s(-1) mrad(-2) (0.1% bandwidth)(-1) (10 mA)(-1). The well collimated X-ray beam from the undulator made it possible to resolve clearly, with high angular resolution ( approximately 700 nm), the closely spaced diffraction peaks on the meridional axis in the X-ray patterns arising from the thick filaments of a striated muscle under static conditions. By fitting the meridional intensity pattern, a model for the molecular arrangement of the constituent proteins in the thick filaments is proposed. These studies of muscle demonstrate the promise of undulator radiation from third-generation sources for high-resolution diffraction studies.

  19. The Physics of the B Factories

    NASA Astrophysics Data System (ADS)

    Bevan, A. J.; Golob, B.; Mannel, Th.; Prell, S.; Yabsley, B. D.; Aihara, H.; Anulli, F.; Arnaud, N.; Aushev, T.; Beneke, M.; Beringer, J.; Bianchi, F.; Bigi, I. I.; Bona, M.; Brambilla, N.; Brodzicka, J.; Chang, P.; Charles, M. J.; Cheng, C. H.; Cheng, H.-Y.; Chistov, R.; Colangelo, P.; Coleman, J. P.; Drutskoy, A.; Druzhinin, V. P.; Eidelman, S.; Eigen, G.; Eisner, A. M.; Faccini, R.; Flood, K. T.; Gambino, P.; Gaz, A.; Gradl, W.; Hayashii, H.; Higuchi, T.; Hulsbergen, W. D.; Hurth, T.; Iijima, T.; Itoh, R.; Jackson, P. D.; Kass, R.; Kolomensky, Yu. G.; Kou, E.; Križan, P.; Kronfeld, A.; Kumano, S.; Kwon, Y. J.; Latham, T. E.; Leith, D. W. G. S.; Lüth, V.; Martinez-Vidal, F.; Meadows, B. T.; Mussa, R.; Nakao, M.; Nishida, S.; Ocariz, J.; Olsen, S. L.; Pakhlov, P.; Pakhlova, G.; Palano, A.; Pich, A.; Playfer, S.; Poluektov, A.; Porter, F. C.; Robertson, S. H.; Roney, J. M.; Roodman, A.; Sakai, Y.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Sekula, S. J.; Steinhauser, M.; Sumisawa, K.; Swanson, E. S.; Tackmann, F.; Trabelsi, K.; Uehara, S.; Uno, S.; van de Water, R.; Vasseur, G.; Verkerke, W.; Waldi, R.; Wang, M. Z.; Wilson, F. F.; Zupan, J.; Zupanc, A.; Adachi, I.; Albert, J.; Banerjee, Sw.; Bellis, M.; Ben-Haim, E.; Biassoni, P.; Cahn, R. N.; Cartaro, C.; Chauveau, J.; Chen, C.; Chiang, C. C.; Cowan, R.; Dalseno, J.; Davier, M.; Davies, C.; Dingfelder, J. C.; Echenard, B.; Epifanov, D.; Fulsom, B. G.; Gabareen, A. M.; Gary, J. W.; Godang, R.; Graham, M. T.; Hafner, A.; Hamilton, B.; Hartmann, T.; Hayasaka, K.; Hearty, C.; Iwasaki, Y.; Khodjamirian, A.; Kusaka, A.; Kuzmin, A.; Lafferty, G. D.; Lazzaro, A.; Li, J.; Lindemann, D.; Long, O.; Lusiani, A.; Marchiori, G.; Martinelli, M.; Miyabayashi, K.; Mizuk, R.; Mohanty, G. B.; Muller, D. R.; Nakazawa, H.; Ongmongkolkul, P.; Pacetti, S.; Palombo, F.; Pedlar, T. K.; Piilonen, L. E.; Pilloni, A.; Poireau, V.; Prothmann, K.; Pulliam, T.; Rama, M.; Ratcliff, B. N.; Roudeau, P.; Schrenk, S.; Schroeder, T.; Schubert, K. R.; Shen, C. P.; Shwartz, B.; Soffer, A.; Solodov, E. P.; Somov, A.; Starič, M.; Stracka, S.; Telnov, A. V.; Todyshev, K. Yu.; Tsuboyama, T.; Uglov, T.; Vinokurova, A.; Walsh, J. J.; Watanabe, Y.; Won, E.; Wormser, G.; Wright, D. H.; Ye, S.; Zhang, C. C.; Abachi, S.; Abashian, A.; Abe, K.; Abe, N.; Abe, R.; Abe, T.; Abrams, G. S.; Adam, I.; Adamczyk, K.; Adametz, A.; Adye, T.; Agarwal, A.; Ahmed, H.; Ahmed, M.; Ahmed, S.; Ahn, B. S.; Ahn, H. S.; Aitchison, I. J. R.; Akai, K.; Akar, S.; Akatsu, M.; Akemoto, M.; Akhmetshin, R.; Akre, R.; Alam, M. S.; Albert, J. N.; Aleksan, R.; Alexander, J. P.; Alimonti, G.; Allen, M. T.; Allison, J.; Allmendinger, T.; Alsmiller, J. R. G.; Altenburg, D.; Alwyn, K. E.; An, Q.; Anderson, J.; Andreassen, R.; Andreotti, D.; Andreotti, M.; Andress, J. C.; Angelini, C.; Anipko, D.; Anjomshoaa, A.; Anthony, P. L.; Antillon, E. A.; Antonioli, E.; Aoki, K.; Arguin, J. F.; Arinstein, K.; Arisaka, K.; Asai, K.; Asai, M.; Asano, Y.; Asgeirsson, D. J.; Asner, D. M.; Aso, T.; Aspinwall, M. L.; Aston, D.; Atmacan, H.; Aubert, B.; Aulchenko, V.; Ayad, R.; Azemoon, T.; Aziz, T.; Azzolini, V.; Azzopardi, D. E.; Baak, M. A.; Back, J. J.; Bagnasco, S.; Bahinipati, S.; Bailey, D. S.; Bailey, S.; Bailly, P.; van Bakel, N.; Bakich, A. M.; Bala, A.; Balagura, V.; Baldini-Ferroli, R.; Ban, Y.; Banas, E.; Band, H. R.; Banerjee, S.; Baracchini, E.; Barate, R.; Barberio, E.; Barbero, M.; Bard, D. J.; Barillari, T.; Barlow, N. R.; Barlow, R. J.; Barrett, M.; Bartel, W.; Bartelt, J.; Bartoldus, R.; Batignani, G.; Battaglia, M.; Bauer, J. M.; Bay, A.; Beaulieu, M.; Bechtle, P.; Beck, T. W.; Becker, J.; Becla, J.; Bedny, I.; Behari, S.; Behera, P. K.; Behn, E.; Behr, L.; Beigbeder, C.; Beiline, D.; Bell, R.; Bellini, F.; Bellodi, G.; Belous, K.; Benayoun, M.; Benelli, G.; Benitez, J. F.; Benkebil, M.; Berger, N.; Bernabeu, J.; Bernard, D.; Bernet, R.; Bernlochner, F. U.; Berryhill, J. W.; Bertsche, K.; Besson, P.; Best, D. S.; Bettarini, S.; Bettoni, D.; Bhardwaj, V.; Bhimji, W.; Bhuyan, B.; Biagini, M. E.; Biasini, M.; van Bibber, K.; Biesiada, J.; Bingham, I.; Bionta, R. M.; Bischofberger, M.; Bitenc, U.; Bizjak, I.; Blanc, F.; Blaylock, G.; Blinov, V. E.; Bloom, E.; Bloom, P. C.; Blount, N. L.; Blouw, J.; Bly, M.; Blyth, S.; Boeheim, C. T.; Bomben, M.; Bondar, A.; Bondioli, M.; Bonneaud, G. R.; Bonvicini, G.; Booke, M.; Booth, J.; Borean, C.; Borgland, A. W.; Borsato, E.; Bosi, F.; Bosisio, L.; Botov, A. A.; Bougher, J.; Bouldin, K.; Bourgeois, P.; Boutigny, D.; Bowerman, D. A.; Boyarski, A. M.; Boyce, R. F.; Boyd, J. T.; Bozek, A.; Bozzi, C.; Bračko, M.; Brandenburg, G.; Brandt, T.; Brau, B.; Brau, J.; Breon, A. B.; Breton, D.; Brew, C.; Briand, H.; Bright-Thomas, P. G.; Brigljević, V.; Britton, D. I.; Brochard, F.; Broomer, B.; Brose, J.; Browder, T. E.; Brown, C. L.; Brown, C. M.; Brown, D. N.; Browne, M.; Bruinsma, M.; Brunet, S.; Bucci, F.; Buchanan, C.; Buchmueller, O. L.; Bünger, C.; Bugg, W.; Bukin, A. D.; Bula, R.; Bulten, H.; Burchat, P. R.; Burgess, W.; Burke, J. P.; Button-Shafer, J.; Buzykaev, A. R.; Buzzo, A.; Cai, Y.; Calabrese, R.; Calcaterra, A.; Calderini, G.; Camanzi, B.; Campagna, E.; Campagnari, C.; Capra, R.; Carassiti, V.; Carpinelli, M.; Carroll, M.; Casarosa, G.; Casey, B. C. K.; Cason, N. M.; Castelli, G.; Cavallo, N.; Cavoto, G.; Cecchi, A.; Cenci, R.; Cerizza, G.; Cervelli, A.; Ceseracciu, A.; Chai, X.; Chaisanguanthum, K. S.; Chang, M. C.; Chang, Y. H.; Chang, Y. W.; Chao, D. S.; Chao, M.; Chao, Y.; Charles, E.; Chavez, C. A.; Cheaib, R.; Chekelian, V.; Chen, A.; Chen, E.; Chen, G. P.; Chen, H. F.; Chen, J.-H.; Chen, J. C.; Chen, K. F.; Chen, P.; Chen, S.; Chen, W. T.; Chen, X.; Chen, X. R.; Chen, Y. Q.; Cheng, B.; Cheon, B. G.; Chevalier, N.; Chia, Y. M.; Chidzik, S.; Chilikin, K.; Chistiakova, M. V.; Cizeron, R.; Cho, I. S.; Cho, K.; Chobanova, V.; Choi, H. H. F.; Choi, K. S.; Choi, S. K.; Choi, Y.; Choi, Y. K.; Christ, S.; Chu, P. H.; Chun, S.; Chuvikov, A.; Cibinetto, G.; Cinabro, D.; Clark, A. R.; Clark, P. J.; Clarke, C. K.; Claus, R.; Claxton, B.; Clifton, Z. C.; Cochran, J.; Cohen-Tanugi, J.; Cohn, H.; Colberg, T.; Cole, S.; Colecchia, F.; Condurache, C.; Contri, R.; Convert, P.; Convery, M. R.; Cooke, P.; Copty, N.; Cormack, C. M.; Dal Corso, F.; Corwin, L. A.; Cossutti, F.; Cote, D.; Cotta Ramusino, A.; Cottingham, W. N.; Couderc, F.; Coupal, D. P.; Covarelli, R.; Cowan, G.; Craddock, W. W.; Crane, G.; Crawley, H. B.; Cremaldi, L.; Crescente, A.; Cristinziani, M.; Crnkovic, J.; Crosetti, G.; Cuhadar-Donszelmann, T.; Cunha, A.; Curry, S.; D'Orazio, A.; Dû, S.; Dahlinger, G.; Dahmes, B.; Dallapiccola, C.; Danielson, N.; Danilov, M.; Das, A.; Dash, M.; Dasu, S.; Datta, M.; Daudo, F.; Dauncey, P. D.; David, P.; Davis, C. L.; Day, C. T.; De Mori, F.; De Domenico, G.; De Groot, N.; De la Vaissière, C.; de la Vaissière, Ch.; de Lesquen, A.; De Nardo, G.; de Sangro, R.; De Silva, A.; DeBarger, S.; Decker, F. J.; del Amo Sanchez, P.; Del Buono, L.; Del Gamba, V.; del Re, D.; Della Ricca, G.; Denig, A. G.; Derkach, D.; Derrington, I. M.; DeStaebler, H.; Destree, J.; Devmal, S.; Dey, B.; Di Girolamo, B.; Marco, E. Di; Dickopp, M.; Dima, M. O.; Dittrich, S.; Dittongo, S.; Dixon, P.; Dneprovsky, L.; Dohou, F.; Doi, Y.; Doležal, Z.; Doll, D. A.; Donald, M.; Dong, L.; Dong, L. Y.; Dorfan, J.; Dorigo, A.; Dorsten, M. P.; Dowd, R.; Dowdell, J.; Drásal, Z.; Dragic, J.; Drummond, B. W.; Dubitzky, R. S.; Dubois-Felsmann, G. P.; Dubrovin, M. S.; Duh, Y. C.; Duh, Y. T.; Dujmic, D.; Dungel, W.; Dunwoodie, W.; Dutta, D.; Dvoretskii, A.; Dyce, N.; Ebert, M.; Eckhart, E. A.; Ecklund, S.; Eckmann, R.; Eckstein, P.; Edgar, C. L.; Edwards, A. J.; Egede, U.; Eichenbaum, A. M.; Elmer, P.; Emery, S.; Enari, Y.; Enomoto, R.; Erdos, E.; Erickson, R.; Ernst, J. A.; Erwin, R. J.; Escalier, M.; Eschenburg, V.; Eschrich, I.; Esen, S.; Esteve, L.; Evangelisti, F.; Everton, C. W.; Eyges, V.; Fabby, C.; Fabozzi, F.; Fahey, S.; Falbo, M.; Fan, S.; Fang, F.; Fanin, C.; Farbin, A.; Farhat, H.; Fast, J. E.; Feindt, M.; Fella, A.; Feltresi, E.; Ferber, T.; Fernholz, R. E.; Ferrag, S.; Ferrarotto, F.; Ferroni, F.; Field, R. C.; Filippi, A.; Finocchiaro, G.; Fioravanti, E.; Firmino da Costa, J.; Fischer, P.-A.; Fisher, A. S.; Fisher, P. H.; Flacco, C. J.; Flack, R. L.; Flaecher, H. U.; Flanagan, J.; Flanigan, J. M.; Ford, K. E.; Ford, W. T.; Forster, I. J.; Forti, A. C.; Forti, F.; Fortin, D.; Foster, B.; Foulkes, S. D.; Fouque, G.; Fox, J.; Franchini, P.; Franco Sevilla, M.; Franek, B.; Frank, E. D.; Fransham, K. B.; Fratina, S.; Fratini, K.; Frey, A.; Frey, R.; Friedl, M.; Fritsch, M.; Fry, J. R.; Fujii, H.; Fujikawa, M.; Fujita, Y.; Fujiyama, Y.; Fukunaga, C.; Fukushima, M.; Fullwood, J.; Funahashi, Y.; Funakoshi, Y.; Furano, F.; Furman, M.; Furukawa, K.; Futterschneider, H.; Gabathuler, E.; Gabriel, T. A.; Gabyshev, N.; Gaede, F.; Gagliardi, N.; Gaidot, A.; Gaillard, J.-M.; Gaillard, J. R.; Galagedera, S.; Galeazzi, F.; Gallo, F.; Gamba, D.; Gamet, R.; Gan, K. K.; Gandini, P.; Ganguly, S.; Ganzhur, S. F.; Gao, Y. Y.; Gaponenko, I.; Garmash, A.; Garra Tico, J.; Garzia, I.; Gaspero, M.; Gastaldi, F.; Gatto, C.; Gaur, V.; Geddes, N. I.; Geld, T. L.; Genat, J.-F.; George, K. A.; George, M.; George, S.; Georgette, Z.; Gershon, T. J.; Gill, M. S.; Gillard, R.; Gilman, J. D.; Giordano, F.; Giorgi, M. A.; Giraud, P.-F.; Gladney, L.; Glanzman, T.; Glattauer, R.; Go, A.; Goetzen, K.; Goh, Y. M.; Gokhroo, G.; Goldenzweig, P.; Golubev, V. B.; Gopal, G. P.; Gordon, A.; Gorišek, A.; Goriletsky, V. I.; Gorodeisky, R.; Gosset, L.; Gotow, K.; Gowdy, S. J.; Graffin, P.; Grancagnolo, S.; Grauges, E.; Graziani, G.; Green, M. G.; Greene, M. G.; Grenier, G. J.; Grenier, P.; Griessinger, K.; Grillo, A. A.; Grinyov, B. V.; Gritsan, A. V.; Grosdidier, G.; Grosse Perdekamp, M.; Grosso, P.; Grothe, M.; Groysman, Y.; Grünberg, O.; Guido, E.; Guler, H.; Gunawardane, N. J. W.; Guo, Q. H.; Guo, R. S.; Guo, Z. J.; Guttman, N.; Ha, H.; Ha, H. C.; Haas, T.; Haba, J.; Hachtel, J.; Hadavand, H. K.; Hadig, T.; Hagner, C.; Haire, M.; Haitani, F.; Haji, T.; Haller, G.; Halyo, V.; Hamano, K.; Hamasaki, H.; Hamel de Monchenault, G.; Hamilton, J.; Hamilton, R.; Hamon, O.; Han, B. Y.; Han, Y. L.; Hanada, H.; Hanagaki, K.; Handa, F.; Hanson, J. E.; Hanushevsky, A.; Hara, K.; Hara, T.; Harada, Y.; Harrison, P. F.; Harrison, T. J.; Harrop, B.; Hart, A. J.; Hart, P. A.; Hartfiel, B. L.; Harton, J. L.; Haruyama, T.; Hasan, A.; Hasegawa, Y.; Hast, C.; Hastings, N. C.; Hasuko, K.; Hauke, A.; Hawkes, C. M.; Hayashi, K.; Hazumi, M.; Hee, C.; Heenan, E. M.; Heffernan, D.; Held, T.; Henderson, R.; Henderson, S. W.; Hertzbach, S. S.; Hervé, S.; Heß, M.; Heusch, C. A.; Hicheur, A.; Higashi, Y.; Higasino, Y.; Higuchi, I.; Hikita, S.; Hill, E. J.; Himel, T.; Hinz, L.; Hirai, T.; Hirano, H.; Hirschauer, J. F.; Hitlin, D. G.; Hitomi, N.; Hodgkinson, M. C.; Höcker, A.; Hoi, C. T.; Hojo, T.; Hokuue, T.; Hollar, J. J.; Hong, T. M.; Honscheid, K.; Hooberman, B.; Hopkins, D. A.; Horii, Y.; Hoshi, Y.; Hoshina, K.; Hou, S.; Hou, W. S.; Hryn'ova, T.; Hsiung, Y. B.; Hsu, C. L.; Hsu, S. C.; Hu, H.; Hu, T.; Huang, H. C.; Huang, T. J.; Huang, Y. C.; Huard, Z.; Huffer, M. E.; Hufnagel, D.; Hung, T.; Hutchcroft, D. E.; Hyun, H. J.; Ichizawa, S.; Igaki, T.; Igarashi, A.; Igarashi, S.; Igarashi, Y.; Igonkina, O.; Ikado, K.; Ikeda, H.; Ikeda, H.; Ikeda, K.; Ilic, J.; Inami, K.; Innes, W. R.; Inoue, Y.; Ishikawa, A.; Ishino, H.; Itagaki, K.; Itami, S.; Itoh, K.; Ivanchenko, V. N.; Iverson, R.; Iwabuchi, M.; Iwai, G.; Iwai, M.; Iwaida, S.; Iwamoto, M.; Iwasaki, H.; Iwasaki, M.; Iwashita, T.; Izen, J. M.; Jackson, D. J.; Jackson, F.; Jackson, G.; Jackson, P. S.; Jacobsen, R. G.; Jacoby, C.; Jaegle, I.; Jain, V.; Jalocha, P.; Jang, H. K.; Jasper, H.; Jawahery, A.; Jayatilleke, S.; Jen, C. M.; Jensen, F.; Jessop, C. P.; Ji, X. B.; John, M. J. J.; Johnson, D. R.; Johnson, J. R.; Jolly, S.; Jones, M.; Joo, K. K.; Joshi, N.; Joshi, N. J.; Judd, D.; Julius, T.; Kadel, R. W.; Kadyk, J. A.; Kagan, H.; Kagan, R.; Kah, D. H.; Kaiser, S.; Kaji, H.; Kajiwara, S.; Kakuno, H.; Kameshima, T.; Kaminski, J.; Kamitani, T.; Kaneko, J.; Kang, J. H.; Kang, J. S.; Kani, T.; Kapusta, P.; Karbach, T. M.; Karolak, M.; Karyotakis, Y.; Kasami, K.; Katano, G.; Kataoka, S. U.; Katayama, N.; Kato, E.; Kato, Y.; Kawai, H.; Kawai, M.; Kawamura, N.; Kawasaki, T.; Kay, J.; Kay, M.; Kelly, M. P.; Kelsey, M. H.; Kent, N.; Kerth, L. T.; Khan, A.; Khan, H. R.; Kharakh, D.; Kibayashi, A.; Kichimi, H.; Kiesling, C.; Kikuchi, M.; Kikutani, E.; Kim, B. H.; Kim, C. H.; Kim, D. W.; Kim, H.; Kim, H. J.; Kim, H. O.; Kim, H. W.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, P.; Kim, S. K.; Kim, S. M.; Kim, T. H.; Kim, Y. I.; Kim, Y. J.; King, G. J.; Kinoshita, K.; Kirk, A.; Kirkby, D.; Kitayama, I.; Klemetti, M.; Klose, V.; Klucar, J.; Knecht, N. S.; Knoepfel, K. J.; Knowles, D. J.; Ko, B. R.; Kobayashi, N.; Kobayashi, S.; Kobayashi, T.; Kobel, M. J.; Koblitz, S.; Koch, H.; Kocian, M. L.; Kodyš, P.; Koeneke, K.; Kofler, R.; Koike, S.; Koishi, S.; Koiso, H.; Kolb, J. A.; Kolya, S. D.; Kondo, Y.; Konishi, H.; Koppenburg, P.; Koptchev, V. B.; Kordich, T. M. B.; Korol, A. A.; Korotushenko, K.; Korpar, S.; Kouzes, R. T.; Kovalskyi, D.; Kowalewski, R.; Kozakai, Y.; Kozanecki, W.; Kral, J. F.; Krasnykh, A.; Krause, R.; Kravchenko, E. A.; Krebs, J.; Kreisel, A.; Kreps, M.; Krishnamurthy, M.; Kroeger, R.; Kroeger, W.; Krokovny, P.; Kronenbitter, B.; Kroseberg, J.; Kubo, T.; Kuhr, T.; Kukartsev, G.; Kulasiri, R.; Kulikov, A.; Kumar, R.; Kumar, S.; Kumita, T.; Kuniya, T.; Kunze, M.; Kuo, C. C.; Kuo, T.-L.; Kurashiro, H.; Kurihara, E.; Kurita, N.; Kuroki, Y.; Kurup, A.; Kutter, P. E.; Kuznetsova, N.; Kvasnička, P.; Kyberd, P.; Kyeong, S. H.; Lacker, H. M.; Lae, C. K.; Lamanna, E.; Lamsa, J.; Lanceri, L.; Landi, L.; Lang, M. I.; Lange, D. J.; Lange, J. S.; Langenegger, U.; Langer, M.; Lankford, A. J.; Lanni, F.; Laplace, S.; Latour, E.; Lau, Y. P.; Lavin, D. R.; Layter, J.; Lebbolo, H.; LeClerc, C.; Leddig, T.; Leder, G.; Le Diberder, F.; Lee, C. L.; Lee, J.; Lee, J. S.; Lee, M. C.; Lee, M. H.; Lee, M. J.; Lee, S.-J.; Lee, S. E.; Lee, S. H.; Lee, Y. J.; Lees, J. P.; Legendre, M.; Leitgab, M.; Leitner, R.; Leonardi, E.; Leonidopoulos, C.; Lepeltier, V.; Leruste, Ph.; Lesiak, T.; Levi, M. E.; Levy, S. L.; Lewandowski, B.; Lewczuk, M. J.; Lewis, P.; Li, H.; Li, H. B.; Li, S.; Li, X.; Li, Y.; Gioi, L. Li; Libby, J.; Lidbury, J.; Lillard, V.; Lim, C. L.; Limosani, A.; Lin, C. S.; Lin, J. Y.; Lin, S. W.; Lin, Y. S.; Lindquist, B.; Lindsay, C.; Lista, L.; Liu, C.; Liu, F.; Liu, H.; Liu, H. M.; Liu, J.; Liu, R.; Liu, T.; Liu, Y.; Liu, Z. Q.; Liventsev, D.; Lo Vetere, M.; Locke, C. B.; Lockman, W. S.; Di Lodovico, F.; Lombardo, V.; London, G. W.; Lopes Pegna, D.; Lopez, L.; Lopez-March, N.; Lory, J.; LoSecco, J. M.; Lou, X. C.; Louvot, R.; Lu, A.; Lu, C.; Lu, M.; Lu, R. S.; Lueck, T.; Luitz, S.; Lukin, P.; Lund, P.; Luppi, E.; Lutz, A. M.; Lutz, O.; Lynch, G.; Lynch, H. L.; Lyon, A. J.; Lyubinsky, V. R.; MacFarlane, D. B.; Mackay, C.; MacNaughton, J.; Macri, M. M.; Madani, S.; Mader, W. F.; Majewski, S. A.; Majumder, G.; Makida, Y.; Malaescu, B.; Malaguti, R.; Malclés, J.; Mallik, U.; Maly, E.; Mamada, H.; Manabe, A.; Mancinelli, G.; Mandelkern, M.; Mandl, F.; Manfredi, P. F.; Mangeol, D. J. J.; Manoni, E.; Mao, Z. P.; Margoni, M.; Marker, C. E.; Markey, G.; Marks, J.; Marlow, D.; Marques, V.; Marsiske, H.; Martellotti, S.; Martin, E. C.; Martin, J. P.; Martin, L.; Martinez, A. J.; Marzolla, M.; Mass, A.; Masuzawa, M.; Mathieu, A.; Matricon, P.; Matsubara, T.; Matsuda, T.; Matsuda, T.; Matsumoto, H.; Matsumoto, S.; Matsumoto, T.; Matsuo, H.; Mattison, T. S.; Matvienko, D.; Matyja, A.; Mayer, B.; Mazur, M. A.; Mazzoni, M. A.; McCulloch, M.; McDonald, J.; McFall, J. D.; McGrath, P.; McKemey, A. K.; McKenna, J. A.; Mclachlin, S. E.; McMahon, S.; McMahon, T. R.; McOnie, S.; Medvedeva, T.; Melen, R.; Mellado, B.; Menges, W.; Menke, S.; Merchant, A. M.; Merkel, J.; Messner, R.; Metcalfe, S.; Metzler, S.; Meyer, N. T.; Meyer, T. I.; Meyer, W. T.; Michael, A. K.; Michelon, G.; Michizono, S.; Micout, P.; Miftakov, V.; Mihalyi, A.; Mikami, Y.; Milanes, D. A.; Milek, M.; Mimashi, T.; Minamora, J. S.; Mindas, C.; Minutoli, S.; Mir, L. M.; Mishra, K.; Mitaroff, W.; Miyake, H.; Miyashita, T. S.; Miyata, H.; Miyazaki, Y.; Moffitt, L. C.; Mohanty, G. B.; Mohapatra, A.; Mohapatra, A. K.; Mohapatra, D.; Moll, A.; Moloney, G. R.; Mols, J. P.; Mommsen, R. K.; Monge, M. R.; Monorchio, D.; Moore, T. B.; Moorhead, G. F.; Mora de Freitas, P.; Morandin, M.; Morgan, N.; Morgan, S. E.; Morganti, M.; Morganti, S.; Mori, S.; Mori, T.; Morii, M.; Morris, J. P.; Morsani, F.; Morton, G. W.; Moss, L. J.; Mouly, J. P.; Mount, R.; Mueller, J.; Müller-Pfefferkorn, R.; Mugge, M.; Muheim, F.; Muir, A.; Mullin, E.; Munerato, M.; Murakami, A.; Murakami, T.; Muramatsu, N.; Musico, P.; Nagai, I.; Nagamine, T.; Nagasaka, Y.; Nagashima, Y.; Nagayama, S.; Nagel, M.; Naisbit, M. T.; Nakadaira, T.; Nakahama, Y.; Nakajima, M.; Nakajima, T.; Nakamura, I.; Nakamura, T.; Nakamura, T. T.; Nakano, E.; Nakayama, H.; Nam, J. W.; Narita, S.; Narsky, I.; Nash, J. A.; Natkaniec, Z.; Nauenberg, U.; Nayak, M.; Neal, H.; Nedelkovska, E.; Negrini, M.; Neichi, K.; Nelson, D.; Nelson, S.; Neri, N.; Nesom, G.; Neubauer, S.; Newman-Coburn, D.; Ng, C.; Nguyen, X.; Nicholson, H.; Niebuhr, C.; Nief, J. Y.; Niiyama, M.; Nikolich, M. B.; Nisar, N. K.; Nishimura, K.; Nishio, Y.; Nitoh, O.; Nogowski, R.; Noguchi, S.; Nomura, T.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; Nozaki, S.; Nozaki, T.; Nugent, I. M.; O'Grady, C. P.; O'Neale, S. W.; O'Neill, F. G.; Oberhof, B.; Oddone, P. J.; Ofte, I.; Ogawa, A.; Ogawa, K.; Ogawa, S.; Ogawa, Y.; Ohkubo, R.; Ohmi, K.; Ohnishi, Y.; Ohno, F.; Ohshima, T.; Ohshima, Y.; Ohuchi, N.; Oide, K.; Oishi, N.; Okabe, T.; Okazaki, N.; Okazaki, T.; Okuno, S.; Olaiya, E. O.; Olivas, A.; Olley, P.; Olsen, J.; Ono, S.; Onorato, G.; Onuchin, A. P.; Onuki, Y.; Ooba, T.; Orimoto, T. J.; Oshima, T.; Osipenkov, I. L.; Ostrowicz, W.; Oswald, C.; Otto, S.; Oyang, J.; Oyanguren, A.; Ozaki, H.; Ozcan, V. E.; Paar, H. P.; Padoan, C.; Paick, K.; Palka, H.; Pan, B.; Pan, Y.; Panduro Vazquez, W.; Panetta, J.; Panova, A. I.; Panvini, R. S.; Panzenböck, E.; Paoloni, E.; Paolucci, P.; Pappagallo, M.; Paramesvaran, S.; Park, C. S.; Park, C. W.; Park, H.; Park, H. K.; Park, K. S.; Park, W.; Parry, R. J.; Parslow, N.; Passaggio, S.; Pastore, F. C.; Patel, P. M.; Patrignani, C.; Patteri, P.; Pavel, T.; Pavlovich, J.; Payne, D. J.; Peak, L. S.; Peimer, D. R.; Pelizaeus, M.; Pellegrini, R.; Pelliccioni, M.; Peng, C. C.; Peng, J. C.; Peng, K. C.; Peng, T.; Penichot, Y.; Pennazzi, S.; Pennington, M. R.; Penny, R. C.; Penzkofer, A.; Perazzo, A.; Perez, A.; Perl, M.; Pernicka, M.; Perroud, J.-P.; Peruzzi, I. M.; Pestotnik, R.; Peters, K.; Peters, M.; Petersen, B. A.; Petersen, T. C.; Petigura, E.; Petrak, S.; Petrella, A.; Petrič, M.; Petzold, A.; Pia, M. G.; Piatenko, T.; Piccolo, D.; Piccolo, M.; Piemontese, L.; Piemontese, M.; Pierini, M.; Pierson, S.; Pioppi, M.; Piredda, G.; Pivk, M.; Plaszczynski, S.; Polci, F.; Pompili, A.; Poropat, P.; Posocco, M.; Potter, C. T.; Potter, R. J. L.; Prasad, V.; Prebys, E.; Prencipe, E.; Prendki, J.; Prepost, R.; Prest, M.; Prim, M.; Pripstein, M.; Prudent, X.; Pruvot, S.; Puccio, E. M. T.; Purohit, M. V.; Qi, N. D.; Quinn, H.; Raaf, J.; Rabberman, R.; Raffaelli, F.; Ragghianti, G.; Rahatlou, S.; Rahimi, A. M.; Rahmat, R.; Rakitin, A. Y.; Randle-Conde, A.; Rankin, P.; Rashevskaya, I.; Ratkovsky, S.; Raven, G.; Re, V.; Reep, M.; Regensburger, J. J.; Reidy, J.; Reif, R.; Reisert, B.; Renard, C.; Renga, F.; Ricciardi, S.; Richman, J. D.; Ritchie, J. L.; Ritter, M.; Rivetta, C.; Rizzo, G.; Roat, C.; Robbe, P.; Roberts, D. A.; Robertson, A. I.; Robutti, E.; Rodier, S.; Rodriguez, D. M.; Rodriguez, J. L.; Rodriguez, R.; Roe, N. A.; Röhrken, M.; Roethel, W.; Rolquin, J.; Romanov, L.; Romosan, A.; Ronan, M. T.; Rong, G.; Ronga, F. J.; Roos, L.; Root, N.; Rosen, M.; Rosenberg, E. I.; Rossi, A.; Rostomyan, A.; Rotondo, M.; Roussot, E.; Roy, J.; Rozanska, M.; Rozen, Y.; Rozen, Y.; Rubin, A. E.; Ruddick, W. O.; Ruland, A. M.; Rybicki, K.; Ryd, A.; Ryu, S.; Ryuko, J.; Sabik, S.; Sacco, R.; Saeed, M. A.; Safai Tehrani, F.; Sagawa, H.; Sahoo, H.; Sahu, S.; Saigo, M.; Saito, T.; Saitoh, S.; Sakai, K.; Sakamoto, H.; Sakaue, H.; Saleem, M.; Salnikov, A. A.; Salvati, E.; Salvatore, F.; Samuel, A.; Sanders, D. A.; Sanders, P.; Sandilya, S.; Sandrelli, F.; Sands, W.; Sands, W. R.; Sanpei, M.; Santel, D.; Santelj, L.; Santoro, V.; Santroni, A.; Sanuki, T.; Sarangi, T. R.; Saremi, S.; Sarti, A.; Sasaki, T.; Sasao, N.; Satapathy, M.; Sato, Nobuhiko; Sato, Noriaki; Sato, Y.; Satoyama, N.; Satpathy, A.; Savinov, V.; Savvas, N.; Saxton, O. H.; Sayeed, K.; Schaffner, S. F.; Schalk, T.; Schenk, S.; Schieck, J. R.; Schietinger, T.; Schilling, C. J.; Schindler, R. H.; Schmid, S.; Schmitz, R. E.; Schmuecker, H.; Schneider, O.; Schnell, G.; Schönmeier, P.; Schofield, K. C.; Schott, G.; Schröder, H.; Schram, M.; Schubert, J.; Schümann, J.; Schultz, J.; Schumm, B. A.; Schune, M. H.; Schwanke, U.; Schwarz, H.; Schwiening, J.; Schwierz, R.; Schwitters, R. F.; Sciacca, C.; Sciolla, G.; Scott, I. J.; Seeman, J.; Seiden, A.; Seitz, R.; Seki, T.; Sekiya, A. I.; Semenov, S.; Semmler, D.; Sen, S.; Senyo, K.; Seon, O.; Serbo, V. V.; Serednyakov, S. I.; Serfass, B.; Serra, M.; Serrano, J.; Settai, Y.; Seuster, R.; Sevior, M. E.; Shakhova, K. V.; Shang, L.; Shapkin, M.; Sharma, V.; Shebalin, V.; Shelkov, V. G.; Shen, B. C.; Shen, D. Z.; Shen, Y. T.; Sherwood, D. J.; Shibata, T.; Shibata, T. A.; Shibuya, H.; Shidara, T.; Shimada, K.; Shimoyama, M.; Shinomiya, S.; Shiu, J. G.; Shorthouse, H. W.; Shpilinskaya, L. I.; Sibidanov, A.; Sicard, E.; Sidorov, A.; Sidorov, V.; Siegle, V.; Sigamani, M.; Simani, M. C.; Simard, M.; Simi, G.; Simon, F.; Simonetto, F.; Sinev, N. B.; Singh, H.; Singh, J. B.; Sinha, R.; Sitt, S.; Skovpen, Yu. I.; Sloane, R. J.; Smerkol, P.; Smith, A. J. S.; Smith, D.; Smith, D. S.; Smith, J. G.; Smol, A.; Snoek, H. L.; Snyder, A.; So, R. Y.; Sobie, R. J.; Soderstrom, E.; Soha, A.; Sohn, Y. S.; Sokoloff, M. D.; Sokolov, A.; Solagna, P.; Solovieva, E.; Soni, N.; Sonnek, P.; Sordini, V.; Spaan, B.; Spanier, S. M.; Spencer, E.; Speziali, V.; Spitznagel, M.; Spradlin, P.; Staengle, H.; Stamen, R.; Stanek, M.; Stanič, S.; Stark, J.; Steder, M.; Steininger, H.; Steinke, M.; Stelzer, J.; Stevanato, E.; Stocchi, A.; Stock, R.; Stoeck, H.; Stoker, D. P.; Stroili, R.; Strom, D.; Strother, P.; Strube, J.; Stugu, B.; Stypula, J.; Su, D.; Suda, R.; Sugahara, R.; Sugi, A.; Sugimura, T.; Sugiyama, A.; Suitoh, S.; Sullivan, M. K.; Sumihama, M.; Sumiyoshi, T.; Summers, D. J.; Sun, L.; Sun, S.; Sundermann, J. E.; Sung, H. F.; Susaki, Y.; Sutcliffe, P.; Suzuki, A.; Suzuki, J.; Suzuki, J. I.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Swain, J. E.; Swain, S. K.; T'Jampens, S.; Tabata, M.; Tackmann, K.; Tajima, H.; Tajima, O.; Takahashi, K.; Takahashi, S.; Takahashi, T.; Takasaki, F.; Takayama, T.; Takita, M.; Tamai, K.; Tamponi, U.; Tamura, N.; Tan, N.; Tan, P.; Tanabe, K.; Tanabe, T.; Tanaka, H. A.; Tanaka, J.; Tanaka, M.; Tanaka, S.; Tanaka, Y.; Tanida, K.; Taniguchi, N.; Taras, P.; Tasneem, N.; Tatishvili, G.; Tatomi, T.; Tawada, M.; Taylor, F.; Taylor, G. N.; Taylor, G. P.; Telnov, V. I.; Teodorescu, L.; Ter-Antonyan, R.; Teramoto, Y.; Teytelman, D.; Thérin, G.; Thiebaux, Ch.; Thiessen, D.; Thomas, E. W.; Thompson, J. M.; Thorne, F.; Tian, X. C.; Tibbetts, M.; Tikhomirov, I.; Tinslay, J. S.; Tiozzo, G.; Tisserand, V.; Tocut, V.; Toki, W. H.; Tomassini, E. W.; Tomoto, M.; Tomura, T.; Torassa, E.; Torrence, E.; Tosi, S.; Touramanis, C.; Toussaint, J. C.; Tovey, S. N.; Trapani, P. P.; Treadwell, E.; Triggiani, G.; Trincaz-Duvoid, S.; Trischuk, W.; Troost, D.; Trunov, A.; Tsai, K. L.; Tsai, Y. T.; Tsujita, Y.; Tsukada, K.; Tsukamoto, T.; Tuggle, J. M.; Tumanov, A.; Tung, Y. W.; Turnbull, L.; Turner, J.; Turri, M.; Uchida, K.; Uchida, M.; Uchida, Y.; Ueki, M.; Ueno, K.; Ujiie, N.; Ulmer, K. A.; Unno, Y.; Urquijo, P.; Ushiroda, Y.; Usov, Y.; Usseglio, M.; Usuki, Y.; Uwer, U.; Va'vra, J.; Vahsen, S. E.; Vaitsas, G.; Valassi, A.; Vallazza, E.; Vallereau, A.; Vanhoefer, P.; van Hoek, W. C.; Van Hulse, C.; van Winkle, D.; Varner, G.; Varnes, E. W.; Varvell, K. E.; Vasileiadis, G.; Velikzhanin, Y. S.; Verderi, M.; Versillé, S.; Vervink, K.; Viaud, B.; Vidal, P. B.; Villa, S.; Villanueva-Perez, P.; Vinograd, E. L.; Vitale, L.; Vitug, G. M.; Voß, C.; Voci, C.; Voena, C.; Volk, A.; von Wimmersperg-Toeller, J. H.; Vorobyev, V.; Vossen, A.; Vuagnin, G.; Vuosalo, C. O.; Wacker, K.; Wagner, A. P.; Wagner, D. L.; Wagner, G.; Wagner, M. N.; Wagner, S. R.; Wagoner, D. E.; Walker, D.; Walkowiak, W.; Wallom, D.; Wang, C. C.; Wang, C. H.; Wang, J.; Wang, J. G.; Wang, K.; Wang, L.; Wang, L. L.; Wang, P.; Wang, T. J.; Wang, W. F.; Wang, X. L.; Wang, Y. F.; Wappler, F. R.; Watanabe, M.; Watson, A. T.; Watson, J. E.; Watson, N. K.; Watt, M.; Weatherall, J. H.; Weaver, M.; Weber, T.; Wedd, R.; Wei, J. T.; Weidemann, A. W.; Weinstein, A. J. R.; Wenzel, W. A.; West, C. A.; West, C. G.; West, T. J.; White, E.; White, R. M.; Wicht, J.; Widhalm, L.; Wiechczynski, J.; Wienands, U.; Wilden, L.; Wilder, M.; Williams, D. C.; Williams, G.; Williams, J. C.; Williams, K. M.; Williams, M. I.; Willocq, S. Y.; Wilson, J. R.; Wilson, M. G.; Wilson, R. J.; Winklmeier, F.; Winstrom, L. O.; Winter, M. A.; Wisniewski, W. J.; Wittgen, M.; Wittlin, J.; Wittmer, W.; Wixted, R.; Woch, A.; Wogsland, B. J.; Won, E.; Wong, Q. K.; Wray, B. C.; Wren, A. C.; Wright, D. M.; Wu, C. H.; Wu, J.; Wu, S. L.; Wulsin, H. W.; Xella, S. M.; Xie, Q. L.; Xie, Y.; Xu, Z. Z.; Yéche, Ch.; Yamada, Y.; Yamaga, M.; Yamaguchi, A.; Yamaguchi, H.; Yamaki, T.; Yamamoto, H.; Yamamoto, N.; Yamamoto, R. K.; Yamamoto, S.; Yamanaka, T.; Yamaoka, H.; Yamaoka, J.; Yamaoka, Y.; Yamashita, Y.; Yamauchi, M.; Yan, D. S.; Yan, Y.; Yanai, H.; Yanaka, S.; Yang, H.; Yang, R.; Yang, S.; Yarritu, A. K.; Yashchenko, S.; Yashima, J.; Yasin, Z.; Yasu, Y.; Ye, S. W.; Yeh, P.; Yi, J. I.; Yi, K.; Yi, M.; Yin, Z. W.; Ying, J.; Yocky, G.; Yokoyama, K.; Yokoyama, M.; Yokoyama, T.; Yoshida, K.; Yoshida, M.; Yoshimura, Y.; Young, C. C.; Yu, C. X.; Yu, Z.; Yuan, C. Z.; Yuan, Y.; Yumiceva, F. X.; Yusa, Y.; Yushkov, A. N.; Yuta, H.; Zacek, V.; Zain, S. B.; Zallo, A.; Zambito, S.; Zander, D.; Zang, S. L.; Zanin, D.; Zaslavsky, B. G.; Zeng, Q. L.; Zghiche, A.; Zhang, B.; Zhang, J.; Zhang, J.; Zhang, L.; Zhang, L. M.; Zhang, S. Q.; Zhang, Z. P.; Zhao, H. W.; Zhao, M.; Zhao, Z. G.; Zheng, Y.; Zheng, Y. H.; Zheng, Z. P.; Zhilich, V.; Zhou, P.; Zhu, R. Y.; Zhu, Y. S.; Zhu, Z. M.; Zhulanov, V.; Ziegler, T.; Ziegler, V.; Zioulas, G.; Zisman, M.; Zito, M.; Zürcher, D.; Zwahlen, N.; Zyukova, O.; Živko, T.; Žontar, D.

    2014-11-01

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C. Please note that version 3 on the archive is the auxiliary version of the Physics of the B Factories book. This uses the notation alpha, beta, gamma for the angles of the Unitarity Triangle. The nominal version uses the notation phi_1, phi_2 and phi_3. Please cite this work as Eur. Phys. J. C74 (2014) 3026.

  20. Indirect measurement of field emission electron current from the main superconducting cavities of compact ERL at KEK

    NASA Astrophysics Data System (ADS)

    Matsumura, Hiroshi; Nakamura, Hajime; Toyoda, Akihiro; Hozumi, Ken-ichi; Sakai, Hiroshi; Enami, Kazuhiro; Furuya, Takaaki; Shinoe, Kenji; Umemori, Kensei; Haga, Kaiichi; Sakanaka, Shogo; Sawamura, Masaru; Cenni, Enrico

    2017-09-01

    The field emission electron currents from the main superconducting cavities (Cavities #3 and #4) of compact ERL at KEK, Japan, were estimated indirectly from photon dose rates measured around the cavities and on the roof of the compact ERL room. The field emission electron currents estimated from the photon dose rates measured around the cavities are in good agreement with those on the roof of the compact ERL room. The field emission electron currents increased steeply with the applied voltage. The field emission electron currents corresponding to the applied voltages were different between Cavity #3 and Cavity #4. We found that the field emission electron current exceeded 1 μA at 13.5 MV for Cavity #3 and at 15.5 MV for Cavity #4. This result was used in considering unexpected loss of field emission electrons.

  1. Belle2Link: A Global Data Readout and Transmission for Belle II Experiment at KEK

    NASA Astrophysics Data System (ADS)

    Sun, Dehui; Liua, Zhen'an.; Zhao, Jingzhou; Xu, Hao

    The Belle II experiment is an upgrade of the Belle experiment at KEK B-Factory, which will be also upgraded to SuperKEKB with a luminosity of 8 x 1035 cm-2 s-1. Belle II will be composed of new detector components: a new pixel vertex detector (PXD), a significantly larger silicon vertex detector (SVD), new design of central drift chamber (CDC), new particle identification (PID) detector, an improved electromagnetic calorimeter (ECL), higher rate KL and muon detector (KLM), and also a completely new trigger (TRG) and data acquisition systems (DAQ) to handle data produced in a 40 times higher rate. The collaboration has decided to use serial data transmission and unified readout techniques to reach simple, reliable connections between Front-End Electronics (FEE) and DAQ system with easy maintenance. A so-called Belle2Link - a unified readout and high speed data transmission has been designed for use both in the FEE of all sub-detector systems and in DAQ system. Proto-types of key modules for a HS link with 3.125Gbps line rate and <10-16 Bit Error Rate had been designed together with firmware development based on which a model system with CDC detector system had been setup. Overall test with CDC detector prototype and DAQ file server system showed that the present design satisfies the experiment requirement. This paper describes the techniques and also some test results.

  2. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  3. Industrial participation in TRISTAN project at KEK, Japan

    SciTech Connect

    Ozaki, Satoshi.

    1990-01-01

    Industry-Laboratory collaborations played a very important role in the construction of TRISTAN electron-positron colliding beam facility, and brought this construction project to a successful completion in a scheduled time. What had motivated the collaborations, what were the important elements in the successful collaborations and how the collaborations worked will be given based on the authors experience as the TRISTAN Project Director. It is my pleasure to participate in this meeting of IISSC, and to present a talk on my experience with industry-laboratory cooperations in the construction of a major high energy accelerator facility in Japan; namely the TRISTAN electron-positron colliding beam facility project at KEK, (National Laboratory for High Energy Physics) in Tsukuba, Japan.

  4. Synchrotron beam test of a photon counting pixel prototype based on Double-SOI technology

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Lu, Y.; Hashimoto, R.; Nishimura, R.; Kishimoto, S.; Arai, Y.; Ouyang, Q.

    2017-01-01

    The overall noise performances and first synchrotron beam measurement results of CPIXETEG3b, the first counting type Silicon-On-Insulator (SOI) pixel sensor prototype without crosstalk issue, are reported. The prototype includes a 64 × 64 pixel matrix with 50 μm pitch size. Each pixel consists of an N-in-P charge collection diode, a charge sensitive preamplifier, a shaper, a discriminator with thresholds adjustable by an in-pixel 4-bit DAC, and a 6-bit counter. The study was performed using the beam line 14A at KEK Photon Factory (KEK-PF) . The homogeneous response of the prototype, including charging-sharing effects between pixels were studied. 16 keV and 8 keV monochromatic small size (~ 10 μm diameter) X-ray beams were used for the charge sharing study, and a flat-field was added for homogenous response investigation. The overall detector homogeneity and the influence of basic detector parameters on charge sharing between pixels has been investigated.

  5. Transcription factories

    PubMed Central

    Rieder, Dietmar; Trajanoski, Zlatko; McNally, James G.

    2012-01-01

    There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes. PMID:23109938

  6. Construction of a New VUV/Soft X-ray Undulator Beamline BL-13A in the Photon Factory for Study of Organic Thin Films and Biomolecules Adsorbed on Surfaces

    SciTech Connect

    Mase, Kazuhiko; Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Amemiya, Kenta; Ito, Kenji

    2010-06-23

    A planar undulator beamline, BL-13A, covering 30-1,000 eV has been constructed in the Photon Factory. The main scientific targets are investigations of organic thin films and biomolecules adsorbed on well-defined surfaces using angle-resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. A variable-included-angle Monk-Gillieson mounting monochromator with varied-line-spacing plane gratings is used to achieve a high photon flux of 10{sup 10}-10{sup 12} photons/s with a high resolution (E/{Delta}E) of 7,000-30,000. A typical spot size on the sample position is estimated to be 130 {mu}m (horizontal)x40 {mu}m (vertical). After commissioning, BL-13A will be open for users from January 2010.

  7. Einzel lens chopper and behavior of the chopped beam in the KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Leo, K. W.; Adachi, T.; Arai, T.; Takayama, K.

    2013-04-01

    The KEK digital accelerator (KEK-DA), which is a small-scale rapid-cycle induction synchrotron (IS), has commenced operation. A permanent magnet x-band electron cyclotron resonance ion source serves as the KEK-DA ion source and delivers various ions. A new Einzel lens beam chopper has been developed to provide the necessary pulse width of a few microseconds. The chopper is implemented by applying a rectangular pulse voltage generated by a solid-state Marx generator to the middle electrode of the Einzel lens. Momentum modulation at the bunch head and tail resulting from chopping in longitudinal direction has been observed. This intrinsic property of the chopped pulse has been clearly observed in a long drift (a free run in the circular ring) in KEK-DA.

  8. A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

    PubMed

    Kato, Kazuhisa; Maruyama, Shinichiro; Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Mizoguchi, Tsuyoshi; Goto, Eiji; Ezura, Hiroshi

    2011-08-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.

  9. Slime Factory.

    ERIC Educational Resources Information Center

    Fowler, Marilyn L.

    1992-01-01

    Describes a classroom activity using slime, a colloid: it behaves like both a solid and liquid. Explains how slime can be produced from guar gum. An activity where students work in teams and become a slime factory is presented. (PR)

  10. Slime Factory.

    ERIC Educational Resources Information Center

    Fowler, Marilyn L.

    1992-01-01

    Describes a classroom activity using slime, a colloid: it behaves like both a solid and liquid. Explains how slime can be produced from guar gum. An activity where students work in teams and become a slime factory is presented. (PR)

  11. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  12. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  13. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δCP that a Neutrino Factory can achieve and the δCP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  14. Plant Factory

    NASA Astrophysics Data System (ADS)

    Ikeda, Hideo

    Recently, much attention is paid on the plant factory, as it enable to grow plants stably under extraordinary climate condition such as high and/or low air temperature and less rain. Lots of questions such as decreasing investing cost, realizing stable plant production and developing new growing technique should be solved for making popular this growing system. However, I think that we can introduce a highly developed Japanese industrial now-how to plant factory system and can produce a business chance to the world market.

  15. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  16. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  17. Resistive-wall impedance effects for the new KEK Light Source

    NASA Astrophysics Data System (ADS)

    Nakamura, N.

    2017-07-01

    Effects of resistive-wall (RW) impedance on a 3-GeV storage ring of the KEK Light Source (KEK-LS) are presented. Cu sheets used for in-vacuum undulators (IVUs) are regarded as the main source of the RW impedance. Although the calculated heating power per unit length due to the longitudinal impedance is more than 20 W, it is not serious for the water-cooled IVUs. The maximum growth rate of the coupled-bunch instability caused by the transverse impedance is calculated and as a result, a transverse feedback system with the damping rate of more than 104 s-1 is required for the instability suppression. NEG coating of about 1 μm can be used for the KEK-LS vacuum pipe because increase of the heating power due to the NEG coating impedance is small and the effect on the transverse coupled-bunch instability is negligible.

  18. Development of the detector system for β -decay spectroscopy at the KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Ishiyama, H.; Miyatake, H.; Hirayama, Y.; Watanabe, Y. X.; Jung, H. S.; Oyaizu, M.; Mukai, M.; Jeong, S. C.; Ozawa, A.

    2016-06-01

    The KEK Isotope Separation System has been developed to study the β -decay properties of the neutron-rich nuclei around the neutron magic number N = 126. These properties are essential for understanding the origin of the third peak in the r-process element abundance pattern. The detector system for β -decay spectroscopy at the KEK Isotope Separation System should have high detection efficiency for low-energy β -rays, and should be operated under a low-background environment. The detector system of the KEK Isotope Separation System consists of β -ray telescopes and a tape transport system. The solid angle covered by the β -ray telescopes is as large as 75% of 4 π in total. The Qβ -value dependence of the detection efficiency was estimated by Geant4 simulation. The background rate was 0.09 cps using a veto counter system and Pb shields. This background rate allows us to measure the lifetime of 202Os.

  19. Initial Studies of Nonlinear Dynamics in the KEK-ATF Wigglers

    SciTech Connect

    Wolski, A.

    2005-02-28

    The nonlinear fields in insertion devices can have a significant impact on the beam dynamics in storage rings. Various tools have been developed which allow the dynamical effects of a wiggler to be predicted, based on a detailed model of the magnetic field. The wigglers in the KEK-ATF have recently been commissioned, and provide an opportunity for benchmarking some of the analysis tools. We report on initial studies of the nonlinear effects of the KEK-ATF wigglers, based on studies of the change in betatron tunes with change in orbit through the wigglers, and compare the results with the predictions based on detailed field models.

  20. Suppression of Longitudinal Coupled-Bunch Instabilities at the KEK-PF

    SciTech Connect

    Obina, T.; Tobiyama, M.; Honda, T.; Tadano, M.; Flanagan, J.W.; Mitsuhashi, T.; Cheng, W.X.; Fox, J.D.; Teytelman, D.; /Dimtel, Redwood City

    2012-04-09

    A bunch-by-bunch feedback system has been developed to suppress longitudinal coupled-bunch instabilities at the KEK-PF. A longitudinal kicker based on a DAFNE-type overdamped cavity has been designed and installed in the ring, and a general purpose signal processor, called iGp, has been developed by the collaboration of the KEK, SLAC, and INFN-LNF. The entire feedback loop has been closed by the end of June 2007, and the feedback system has successfully suppressed the longitudinal dipole-mode instabilities up to 430 mA.

  1. KEKB and PEP-II B Factories

    SciTech Connect

    Seeman, J.T.

    1997-01-01

    Two asymmetric B-Factories KEKB at KEK and PEP-II at SLAC are under construction, designed to study CP violation in the b-quark sector with a center of mass energy of 10.58 GeV. These two new accelerators are high luminosity two-ring two-energy e{sup +}e{sup {minus}} colliders with one interaction point. There are many challenging accelerator physics and engineering issues associated with the high beam currents and high luminosities of these rings. The chosen solutions to these issues and the general parameters of the two rings are described in detail side-by-side. KEKB and PEP-II are well into the installation phase and are both scheduled to be completed in 1998. The particle physics programs are scheduled to start in 1999.

  2. High Gradient Results of ICHIRO 9-Cell Cavity in Collaboration With KEK and Jlab

    SciTech Connect

    Furuta, F.; Konomi, T.; Saito, K.; Eremeev, G. V.; Geng, R. L.

    2011-07-01

    KEK and Jlab have continued S0-study collaboration on ICHIRO 9-cell cavities since 2008. In 2010, we have started S0 study on ICHIRO#7, full 9-cell cavity with end groups. Surface treatments and vertical tests have been repeated at Jlab. Maximum gradient of 40MV/m was achieved so far. We will describe the details of that and further plan of S0-study on ICHIRO 9-cell.

  3. Preliminary results from IMB3 muon/electron identification tests at KEK

    SciTech Connect

    Bratton, C.B.; Breault, J.; Conner, Z.

    1995-09-01

    A test has been conducted at KEK, Japan using beams of electrons and muons in a 1 kiloton water Cherenkov detector instrumented with IMB3 phototubes and electronics to evaluate IMB`s algorithms for identifying electrons and muons. This identification is important because the IMB3 detector`s results on the atmospheric neutrino anomaly depend on the proper identification of the electrons and muons produced in neutrino charged-current interactions. Preliminary results are presented.

  4. Photon stimulated desorption (PSD) measurements of extruded copper and of welded copper beam chambers for the PEP II asymmetric B-factory

    SciTech Connect

    Foerster, C.L.; Lanni, C.; Perkins, C.; Calderon, M.; Barletta, W.

    1994-12-31

    PEP II is being built as a higher luminosity electron-positron collider, with asymmetric beams of 9 GeV and 3.1 GeV, having maximum currents of 3.0 A. Based on the previous work on the NSLS VUV beamline U10B, a copper was selected for construction of UHV beam chambers and absorbers to minimize the pressure rise from synchrotron radiation during operation. An extruded beam chamber and a welded beam chamber were fabricated from the selected copper for PSD measurements on NSLS X-ray beamline X28A. The chambers were exposed to white light with a critical energy of 5 KeV, both direct and through a 0.010 inch thick Beryllium filter. Each chamber was exposed to a dose of approximately 10{sup 23} photons per meter at an incidence angle of 25 mrad, after argon glow conditioning and a 150 C vacuum bake. Desorption yields for H{sub 2} CO, CO{sub 2}, and CH{sub 4} are reported as a function of accumulated photon flux, critical energy, and chamber preparation. The results are compared with the previous work on beamline U10B and with those of other published work for copper.

  5. Application of fiber laser for a Higgs factory

    SciTech Connect

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  6. SLAC High Gradient Testing of a KEK X-Band Accelerator Structure

    SciTech Connect

    Loewen, Rod

    2000-03-30

    The high accelerating gradients required for future linear colliders demands a better study of field emission and RF breakdown in accelerator structures. Changes in structure geometry, vacuum pumping, fabrication methods, and surface finish can all potentially impact the conditioning process, dark current emission, and peak RF power handling capability. Recent tests at SLAC of KEK's ``M2'' travelling wave x-band accelerator section provides an opportunity to investigate some of these effects by comparing its performance to previously high power tested structures at SLAC. In addition to studying ultimate power limitations, this test also demonstrates the use of computer automated conditioning to reach practical, achievable gradients.

  7. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    SciTech Connect

    Takagi, H. Igarashi, N.; Mori, T.; Saijo, S.; Nagatani, Y.; Shimizu, N.; Ohta, H.; Yamamoto, K.

    2016-10-14

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers and can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.

  8. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Igarashi, N.; Mori, T.; Saijo, S.; Nagatani, Y.; Ohta, H.; Yamamoto, K.; Shimizu, N.

    2016-10-01

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers and can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the qz direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.

  9. Interaction Region Upgrades of e+ e- B-Factories

    SciTech Connect

    Sullivan, M.; /SLAC

    2008-02-22

    Both the PEP-II and KEKB B-Factories have plans to upgrade their Interaction Regions (IRs) in order to improve luminosity performance. Last summer PEP-II added cooling to the IR beam pipe in order to increase beam currents thereby raising the luminosity. In addition, PEP-II is working on a design that modifies the permanent magnets near the Interaction Point (IP) for an even higher luminosity increase. KEKB is also planning an improvement to their IR that will decrease the detector beam pipe radius. In addition, KEK has a design to increase the luminosity of KEKB to 1 x 10{sup 35} cm{sup -2} sec{sup -1} which includes changes to the IR. PEP-II is also investigating the feasibility of a 1 x 10{sup 36} cm{sup -2} sec{sup -1} luminosity design. I summarize these various upgrades and concentrate on issues common to the different designs.

  10. Hidden photons in connection to dark matter

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah; Goodsell, Mark D.; Ringwald, Andreas

    2013-11-01

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter. We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  11. Studies on the Electro-Polishing process with Nb sample plates at KEK

    SciTech Connect

    Saeki, Takayuki; Funahashi, Y.; Hayano, Hitoshi; Kato, Seigo; Nishiwaki, Michiru; Sawabe, Motoaki; Ueno, Kenji; Watanabe, K.; Clemens, William A.; Geng, Rongli; Manus, Robert L.; Tyagi, Puneet

    2009-11-01

    In this article, two subjects would be described. the first subject is on the production of stains on the surface of Nb sample plates in Electro-polishing (EP) process and the second subject is on the development of defects/pits in the EP process on the surface of a Nb sample plate. Recently, some 9-cell cavities were treated with new EP acid at KEK and the performance of these cavities were limited by heavy field emissions. On the inside surface of these cavities, brown stains were observed. We made an effort to reproduce the brown stains on Nb sample plates with an EP setup in laboratory with varying the concentration of Nibium in the EP acid. We found that the brown stains would appear only when processed with new EP acid. In the second subject, we made artificial pits on the surface of a Nb-sample plate and observed the development of the pits after each step of 30um-EP process where 120um was removed in total by the EP process. This article describes these series EP-tests with Nb sample plates at KEK.

  12. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    PubMed

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the

  13. Development of the superconducting rf 2-cell cavity for cERL injector at KEK

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Noguchi, S.; Kako, E.; Umemori, K.; Shishido, T.

    2013-06-01

    An injector cryomodule for the compact energy recovery linac (cERL) is under development at KEK. This injector cryomodule has 3 L-band 2-cell superconducting rf cavities. The cERL is required to accelerate a 10-mA CW electron beam to 5 MeV. The required accelerating gradient per cavity is 7.5-12.5 MV/m at ˜30 kW input power to the cavity and the beam. The operational frequency is 1300 MHz at 2 K and the mode of operation is CW. In this application, the critical hardware components are not the cavities, but the rf input couplers and higher-order-mode (HOM) dampers. Initially, a TESLA-style coaxial HOM coupler was chosen for HOM damping of the injector cavities. However, this HOM coupler had a heating problem at low gradients (a few MV/m) in CW operation. The components heated in the accelerating mode were the HOM body and the feedthrough that extracts HOM power from the cavity. To control the heating problem, a new HOM coupler was designed based on a TESLA-style coaxial HOM coupler, and the feedthrough was also modified based on a Kyocera N-R type connector to have better thermal conductivity. A prototype 2-cell cavity and 3 other 2-cell cavities with 5 new HOM couplers for actual operation were fabricated through May 2011. Vertical tests of these cavities were carried out after standard surface preparation at the KEK Superconducting Accelerator Test Facility (KEK-STF) through March 2012. The accelerating gradient achieved exceeded 50 MV/m without quenching during the vertical test using the prototype 2-cell cavity and feedthroughs. The magnetic field at the cell equator was 2127 Oe. Three 2-cell cavities passing the criteria of the High Pressure Gas Safety Institute of Japan exceeded 25 MV/m without field emissions. The cavities with the best performance were prepared in March 2012 for the cERL injector. The designs of the HOM couplers and feedthroughs and the results of the vertical tests to evaluate their performance are reported here.

  14. Research progress at the Slow Positron Facility in the Institute of Materials Structure Science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Mochizuki, I.; Kimura, M.; Toge, N.; Shidara, T.; Fukaya, Y.; Maekawa, M.; Kawasuso, A.; Iida, S.; Michishio, K.; Nagashima, Y.

    2017-01-01

    Recent results at the Slow Positron Facility (SPF), Institute of Materials Structure Science (IMSS), KEK are reported. Studies using the total-reflection high-energy positron diffraction (TRHEPD) station revealed the structures of rutile-TiO2(110) (1×2), graphene on Cu (111) and Co (0001), and germanene on Al (111). First observations of the shape resonance in the Ps‑ photodetachment process were made using the positronium negative ion (Ps‑) station. Experiments using the positronium time-of-flight (Ps-TOF) station showed significant enhancement of the Ps formation efficiency and the energy loss in the Ps formation-emission process. A pulse-stretching section has been implemented, which stretches the positron pulse width from 1.2 μs up to almost 20 ms.

  15. Numerical investigation of beam halo from beam gas scattering in KEK-ATF

    NASA Astrophysics Data System (ADS)

    Yang, R.; Bambade, P.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.

    2017-07-01

    To demonstrate the final focus schemes of the Future Linear Collider (FLC), the Accelerator Test Facility 2 (ATF2) at KEK is devoted to focus the beam to a RMS size of a few tens of nanometers (nm) vertically and to provide stability at the nm level at the virtual Interaction Point (IP). However, the loss of halo particles upstream will introduce background to the diagnostic instrument measuring the ultra-small beam, using a laser interferometer monitor. To help the realization of the above goals and beam operation, understanding and mitigation of beam halo are crucial. In this paper, we present the systematical simulation of beam halo formation from beam gas Coulomb scattering (BGS) in the ATF damping ring. The behavior of beam halo with various machine parameters is also discussed.

  16. In-gas-cell laser ion source for KEK isotope separation system

    NASA Astrophysics Data System (ADS)

    Mukai, M.; Hirayama, Y.; Jeong, S. C.; Imai, N.; Ishiyama, H.; Miyatake, H.; Oyaizu, M.; Watanabe, Y. X.; Kim, Y. H.

    2014-02-01

    The KEK isotope separation system (KISS) is an element-selective isotope separator under development at RIKEN. The in-gas-cell laser ion source is a critical component of the KISS, a gas cell filled with argon gas of 50 kPa enclosed in a vacuum chamber. In the gas cell, nuclear reaction products are stopped (i.e., thermalized and neutralized) and transported by a laminar flow of argon to the ionization region just upstream of the gas outlet, and thereby an element of interest among those reaction products is selectively ionized by two-color resonant laser irradiation. Recently, we succeeded to extract laser-ionized Fe ions by injecting an energetic Fe beam into the gas cell. Recent off- and on-line test results were presented and discussed.

  17. Extremely Low Vertical-Emittance Beam in the Accelerator Test Facility at KEK

    NASA Astrophysics Data System (ADS)

    Kubo, K.; Akemoto, M.; Anderson, S.; Aoki, T.; Araki, S.; Bane, K. L.; Blum, P.; Corlett, J.; Dobashi, K.; Emma, P.; Frisch, J.; Fukuda, M.; Guo, Z.; Hasegawa, K.; Hayano, H.; Higo, T.; Higurashi, A.; Honda, Y.; Iimura, T.; Imai, T.; Jobe, K.; Kamada, S.; Karataev, P.; Kashiwagi, S.; Kim, E.; Kobuki, T.; Kotseroglou, T.; Kurihara, Y.; Kuriki, M.; Kuroda, R.; Kuroda, S.; Lee, T.; Luo, X.; McCormick, D. J.; McKee, B.; Mimashi, T.; Minty, M.; Muto, T.; Naito, Takashi; Naumenko, G.; Nelson, J.; Nguyen, M. N.; Oide, K.; Okugi, T.; Omori, T.; Oshima, T.; Pei, G.; Potylitsyn, A.; Qin, Q.; Raubenheimer, T.; Ross, M.; Sakai, H.; Sakai, I.; Schmidt, F.; Slaton, T.; Smith, H.; Smith, S.; Smith, T.; Suzuki, Toshikazu; Takano, M.; Takeda, Seishi; Terunuma, N.; Toge, N.; Turner, J.; Urakawa, J.; Vogel, V.; Woodley, M.; Yocky, J.; Young, A.; Zimmermann, F.

    2002-05-01

    Electron beams with the lowest, normalized transverse emittance recorded so far were produced and confirmed in single-bunch-mode operation of the Accelerator Test Facility at KEK. We established a tuning method of the damping ring which achieves a small vertical dispersion and small x-y orbit coupling. The vertical emittance was less than 1% of the horizontal emittance. At the zero-intensity limit, the vertical normalized emittance was less than 2.8×10-8 rad m at beam energy 1.3 GeV. At high intensity, strong effects of intrabeam scattering were observed, which had been expected in view of the extremely high particle density due to the small transverse emittance.

  18. What's Up in Factories?

    ERIC Educational Resources Information Center

    Miller, Robert A.

    1996-01-01

    A school-to-work curriculum (What's Up in Factories?) developed by a New York PBS station is giving some Ohio students a view of factory careers in the 1990s. Students are surprised at the level of job skills needed and are discovering the importance of teamwork, willingness to take responsibility, punctuality, effective communication, and…

  19. Midlands Teaching Factory, LTD.

    ERIC Educational Resources Information Center

    Midlands Technical Coll., Columbia, SC.

    In 1987, Midlands Technical College (MTC), in Columbia, South Carolina, initiated a Computer Integrated Manufacturing (CIM) project, the Midlands Teaching Factory, LTD, which integrated various college departments with the goal of manufacturing a high quality, saleable product. The faculty developed a teaching factory model which was designed to…

  20. What's Up in Factories?

    ERIC Educational Resources Information Center

    Miller, Robert A.

    1996-01-01

    A school-to-work curriculum (What's Up in Factories?) developed by a New York PBS station is giving some Ohio students a view of factory careers in the 1990s. Students are surprised at the level of job skills needed and are discovering the importance of teamwork, willingness to take responsibility, punctuality, effective communication, and…

  1. Review of coherent effects in B- and {Phi}-factories

    SciTech Connect

    Heifets, S.

    1998-01-01

    The author reviews instabilities which may be relevant to the storage rings under construction and in commissioning such as {Phi}-factor in Frascati, and the B-factories at SLAC and KEK. For this reason, he doesn't consider effects specific mostly for proton machines. Beam-beam effects are also not included because today these effects look like a somewhat distant future for the {Phi}- and B-factories, assumption that may become wrong very quickly. Personal interest and limited knowledge of the author also defined selected topics. It has been known for more than 30 years that interaction of the beam with environment can cause beam instabilities. Until recently, impedances and wake fields were associated with resistivity and variations of the beam pipe geometry. In addition, interaction with other (foreign) particles, existing or produced by the beam such as ions, trapped- or photo-electrons, may become important for multi-bunch beams, causing instabilities with growth rates substantially higher than these caused by geometric wake fields. The main topics are: Impedances; Traditional instabilities -- single- and multi-bunch instabilities; Effect of ions; and New instabilities.

  2. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  3. e+ e- Factory Developments

    SciTech Connect

    Sullivan, Michael; /SLAC

    2010-08-26

    The impressive performance of current (KEKB) and recent (PEP-II) B-Factory colliders has increased interest in developing even higher luminosity B-factories. Two new designs are being developed (SuperKEKB and SuperB). Both designs plan to deliver a luminosity in the range of 1 x 10{sup 36} cm{sup -2}s{sup -1}, nearly 100 times the present B-factory level. Achieving this high luminosity requires high-current beams and short bunch lengths and/or a new way of colliding the beams. The SuperB design employs a crabbed magnetic waist with a large crossing angle and the SuperKEKB design is looking at crab cavities with high-current beams and/or a travelling focus. I describe the designs being studied to achieve the high luminosity needed for the next generation of B-Factories.

  4. A large superconducting thin solenoid magnet for TRISTAN experiment (VENUS) at KEK

    SciTech Connect

    Wake, M.; Asai, O.; Fujita, R.; Hirabayashi, H.; Ishibashi, K.; Kawaguchi, T.; Kuno, K.; Matsui, T.; Satow, T.; Wakamoto, K.

    1985-03-01

    A 30 Gev e/sup +/e/sup -/ collider TRISTAN is now under construction at KEK. The detector system VENUS in TRISTAN requires a large space of 7.5 kG magnetic field for the tracking of the particles while keeping the material thickness of the magnet as thin as possible. The superconducting thin solenoid magnet which is in the middle of the construction has 3.4m in warm bore diameter and 5.24m in usable length with material thickness of 0.52 radiation length. The geometrical thickness of the magnet is as thin as 208 mm while the outside dimension is as large as 4m /phi/x5.64m. Since the electro-magnetic force is toward outside, the coil is supported by an aluminum 'case' covering outside the coil instead of a bobbin in the coil. The water cooled welding technique and an expandable mandrel were developed to form the coil-case composite. The conductor is made of NbTi/Cu and pure aluminum stabilizer is extruded so as to contain the conductor in the stabilizer. The cooling of the magnet is provided by the forced flow of two phase helium in the cooling channel of the 'case'. The cryostat uses CFRP (Carbon Fiber Reinforced Plastics) to reduce the material thickness of the magnet. The construction method and the design were confirmed by 1m/phi/ superconductive model and real size non-superconductive model. Major components such as conductors and cryostat have been completed and the magnet will be excited next spring.

  5. Cell Factory Engineering.

    PubMed

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-03-22

    Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Perspective view of threestory reinforced concrete factory. The factory is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of three-story reinforced concrete factory. The factory is painted pink with factory windows infilling the structural frame exposed on the exterior facade. On the east facade of the three-story factory is a two-story, seven bay addition that is painted the same tone as the larger factory. The last two bays of the two-story addition are newer. A brick base surrounds both the factory and the addition and runs the entire length of the building on Clay Ave. and Morrow St - Ivan Doverspike Company, 1925 Clay Avenue, Detroit, MI

  7. Perspective view of threestory reinforced concrete factory. The factory is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of three-story reinforced concrete factory. The factory is painted pink with factory windows infilling the structural frame exposed on the exterior facade. On the east facade of the three-story factory is a two-story, seven bay addition that is painted the same tone as the larger factory. The last two bays of the two-story addition are newer. A brick base surrounds both the factory and the addition and runs the entire length of the building on Clay Ave. and Morrow St. (Duplicate Color view of HAER MI-334-1) - Ivan Doverspike Company, 1925 Clay Avenue, Detroit, MI

  8. The Invention Factory

    ERIC Educational Resources Information Center

    Speitel, Thomas W.; Scott, Neil G.; Gabrielli, Sandy D.

    2007-01-01

    The Invention Factory is a nontraditional youth-based, after-school program in Honolulu that teaches information technology and mechanics to teenagers through interactive, hands-on projects that improve human computer interaction for individuals with disabilities. One objective of the program is to stimulate interest in science and engineering…

  9. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  10. The Old Factory

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    Technology education is not just about things, systems, and processes. It can also be about history, people, technological change, and impacts on society. In this design challenge, one uses technology education principles and ideas to convert an old factory into a museum and learning center. The challenge with this historical resource is to think…

  11. The Old Factory

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    Technology education is not just about things, systems, and processes. It can also be about history, people, technological change, and impacts on society. In this design challenge, one uses technology education principles and ideas to convert an old factory into a museum and learning center. The challenge with this historical resource is to think…

  12. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  13. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  14. The Invention Factory

    ERIC Educational Resources Information Center

    Speitel, Thomas W.; Scott, Neil G.; Gabrielli, Sandy D.

    2007-01-01

    The Invention Factory is a nontraditional youth-based, after-school program in Honolulu that teaches information technology and mechanics to teenagers through interactive, hands-on projects that improve human computer interaction for individuals with disabilities. One objective of the program is to stimulate interest in science and engineering…

  15. Sequence Factorial and Its Applications

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2012-01-01

    In this note, we introduce sequence factorial and use this to study generalized M-bonomial coefficients. For the sequence of natural numbers, the twin concepts of sequence factorial and generalized M-bonomial coefficients, respectively, extend the corresponding concepts of factorial of an integer and binomial coefficients. Some latent properties…

  16. Engineering the smart factory

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; Vera, Daniel; Ahmad, Bilal

    2016-10-01

    The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.

  17. The Super Flavor Factory

    SciTech Connect

    Bevan, A.J.; /Queen Mary, U. of London

    2007-01-26

    The main physics goals of a high luminosity e{sup +}e{sup -} flavor factory are discussed, including the possibilities to perform detailed studies of the CKM mechanism of quark mixing, and constrain virtual Higgs and Non-Standard Model particle contributions to the dynamics of rare B{sub u,d,s} decays. The large samples of D mesons and {tau} leptons produced at a flavor factory will result in improved sensitivities on D mixing and lepton flavor violation searches, respectively. One can also test fundamental concepts such as lepton universality to much greater precision than existing constraints and improve the precision on tests of CPT from B meson decays. Recent developments in accelerator physics have demonstrated the feasibility to build an accelerator that can achieve luminosities of {Omicron}(10{sup 36} cm{sup -2} s{sup -1}).

  18. Analysis of Factorial Experiments.

    DTIC Science & Technology

    1985-09-01

    The pro- bability that y 13 is bad is .37. Choosing Q greater than .37 ends the iteration. Choos - ing Q so that Y 13 is identified as a bad...ances as a Fraction of Their Total. Annals of Eugenics , 11, 47-52. Cochran, W. G. and Cox, G. M. (1957) Experimental Designs. New York: John Wiley...Experiments. London: Oliver and Boyd. Finney, D. J. (1945) The Fractional Replication of Factorial Arrangements. Annals of Eugenics , 12, 291-301

  19. SLAC B Factory computing

    SciTech Connect

    Kunz, P.F.

    1992-02-01

    As part of the research and development program in preparation for a possible B Factory at SLAC, a group has been studying various aspects of HEP computing. In particular, the group is investigating the use of UNIX for all computing, from data acquisition, through analysis, and word processing. A summary of some of the results of this study will be given, along with some personal opinions on these topics.

  20. Clusters, factories and domains

    PubMed Central

    Gillespie, Peter J

    2010-01-01

    During S-phase of the cell cycle, chromosomal DNA is replicated according to a complex replication timing program, with megabase-sized domains replicating at different times. DNA fiber analysis reveals that clusters of adjacent replication origins fire near-synchronously. Analysis of replicating cells by light microscopy shows that DNA synthesis occurs in discrete foci or factories. The relationship between timing domains, origin clusters and replication foci is currently unclear. Recent work, using a hybrid Xenopus/hamster replication system, has shown that when CDK levels are manipulated during S-phase the activation of replication factories can be uncoupled from progression through the replication timing program. Here, we use data from this hybrid system to investigate potential relationships between timing domains, origin clusters and replication foci. We suggest that each timing domain typically comprises several replicon clusters, which are usually processed sequentially by replication factories. We discuss how replication might be regulated at different levels to create this complex organization and the potential involvement of CDKs in this process. PMID:20724827

  1. Numerical Analysis of the Measurement of Near-Beam Electron Cloud Density in Field-Free Region at KEK B-Factory Low-Energy Ring

    NASA Astrophysics Data System (ADS)

    Jain, Puneet; Fukuma, Hitoshi; Kanazawa, Ken-ichi; Suetsugu, Yusuke

    2010-11-01

    A large number of electrons in the so-called electron cloud are accumulated in beam chambers in positron storage rings. These electrons interact with the beam and can make the beam unstable. The density information of the electron cloud near the beam is therefore fundamental for studying beam instability and mitigation techniques related to the electron cloud. Recently, a method to measure the density of the electron cloud near the beam has been proposed by Kanazawa et al. The method enables the measurement of high-energy electrons selectively using a retarding field analyzer located on a chamber wall, noting that the electrons near the beam receive a strong kick by the beam. They calculated the density of the electron cloud simply assuming that the electrons that receive a kick are stationary. We examined the measurement technique in detail using a new computer code developed by us. The analysis showed that the volume near the beam occupied by the detected electrons, i.e., the observed volume, was strongly deformed owing to the horizontal velocity of the electrons; nevertheless this volume calculated assuming that the stationary electrons can still be used for calculating the density of the electron cloud in their measurement conditions.

  2. Heavy Metal Factory

    NASA Astrophysics Data System (ADS)

    Löbling, Lisa

    2017-07-01

    The metal enrichment in the cosmic circuit of matter is dominated by the yields of asymptotic giant branch (AGB) nucleosynthesis, that are blown back into the interstellar medium just before these stars die as white dwarfs. To establish constraints on AGB processes, spectral analyses of hot post-AGB stars are mandatory. These show that such stars are heavy metal factories due to the AGB s-process. The Virtual Observatory service TheoSSA offers access to synthetic stellar spectra calculated with our Tübingen non-local thermodynamic equilibrium model-atmosphere package that are suitable for the analysis of hot post-AGB stars.

  3. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  4. Rare Kaon Decays, KEK experiment E391 and E14 at the Japan Physics and Accelerator Research Complex (J-PARC)

    SciTech Connect

    Wah, Yau Wai

    2012-12-06

    The goal of the J-PARC neutral kaon experiment (E14/KOTO) is to discover and measure the rate of the kaon rare decay to pi-zero and two neutrinos. This flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement (or depletion) to the branching ratio which in the Standard Model is accurately predicted within a few percent to be 2.8x10-11. The experiment is designed to observe more than 100 events at the Standard Model branching. It is a follow-up of the KEK E391a experiment and has stage-2 approval by J-PARC PAC in 2007. E14/KOTO has collaborators from Japan (Kyoto, Osaka, Yamagata, Saga), US (Arizona State, Chicago, Michigan Ann Arbor), Taiwan (National Taiwan), Korea, and Russia (Dubna). The experiment exploits the 300kW 30-50 GeV proton delivery of the J-PARC accelerator with a hermetic high acceptance detector with a fine grained Cesium Iodide (CsI) crystal calorimeter, and state of the art electronic front end and data acquisition system. With the recovery of the tsunami disaster on March 11th 2011, E14 is scheduled to start collecting data in December 2012. During the detector construction phase, Chicago focuses on the front end electronics readout of the entire detector system, particularly the CsI calorimeter. The CsI crystals together with its photomultipliers were previously used at the Fermilab KTeV experiment (E832/E799), and were loaned to E14 via this Chicago DOE support. The new readout electronics includes an innovative 10-pole pulse-shaping technique coupled with high speed digitization (14-bit 125MHz and 12-bit 500MHz). This new instrument enables us to measure both energy and timing, particularly with timing resolution better than 100 psec. Besides the cost saving by elimination of the standard time to digital converters, it is now possible to measure the momenta of the final state photons for additional background suppression

  5. A Classroom of Polymer Factories.

    ERIC Educational Resources Information Center

    Harris, Mary E.; Van Natta, Sandra

    1998-01-01

    Provides an activity in which students create small classroom factories and investigate several aspects of production including design, engineering, quality control, waste management, packaging, shipment, and communication. (DDR)

  6. A Classroom of Polymer Factories.

    ERIC Educational Resources Information Center

    Harris, Mary E.; Van Natta, Sandra

    1998-01-01

    Provides an activity in which students create small classroom factories and investigate several aspects of production including design, engineering, quality control, waste management, packaging, shipment, and communication. (DDR)

  7. New limits on hidden photons from past electron beam dumps

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-11-01

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and supersymmetry and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at the High Energy Accelerator Research Organization in Japan (KEK) and the Laboratoire de l’accelérateur linéaire (LAL, Orsay) that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  8. The eldercare factory.

    PubMed

    Sharkey, Noel; Sharkey, Amanda

    2012-01-01

    Rapid advances in service robotics together with dramatic shifts in population demographics have led to the notion that technology may be the answer to our eldercare problems. Robots are being developed for feeding, washing, lifting, carrying and mobilising the elderly as well as monitoring their health. They are also being proposed as a substitute for companionship. While these technologies could accrue major benefits for society and empower the elderly, we must balance their use with the ethical costs. These include a potential reduction in human contact, increased feeling of objectification and loss of control, loss of privacy and personal freedom as well as deception and infantilisation. With appropriate guidelines in place before the introduction of robots en masse into the care system, robots could improve the lives of the elderly, reducing their dependence and creating more opportunities for social interaction. Without forethought, the elderly may find themselves in a barren world of machines, a world of automated care: a factory for the elderly.

  9. Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.; Quimby, R.

    2010-12-01

    The Palomar Transient Factory (PTF) was designed to explicitly to chart the transient sky with a particular focus on events which lie in the nova-supernova gap. With its innovative two-telescope architecture it achieves both high cadence and large areal rate of coverage. PTF was commissioned during the summer of 2009. PTF is now finding an extragalactic transient every 20 minutes and a Galactic (strong) variable every 10 minutes. Spectroscopy undertaken at Keck and Palomar has allowed us: identify an emerging class of ultra-luminous supernovae, discover luminous red novae, undertake UV spectroscopy of Ia supernovae, discover supernovae powered by something other than Nickel-56, clarification of sub-classes of core collapse and thermo-nuclear explosions, map the systematics of core collapse supernovae, a trove of eclipsing binaries and many others.

  10. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  11. Tau physics and tau factories

    SciTech Connect

    Perl, M.L.

    1989-01-01

    Substantial progress in tau lepton physics requires larger and cleaner samples of /tau/'s produced in e/sup +/e/sup minus/ ..-->.. /tau//sup +//tau//sup minus/. Single-tagging of the /tau/ pair is crucial. Possibilities for such progress at particle factories are discussed with emphasis on the Tau-Charm Factory concept. 30 refs., 1 fig., 1 tab.

  12. General B factory design considerations

    SciTech Connect

    Zisman, M.S.

    1992-12-01

    We describe the general considerations that go into the design of an asymmetric B factory collider. Justification is given for the typical parameters of such a facility, and the physics and technology challenges that arise from these parameter choices are discussed. Cost and schedule issues for a B factory are discussed briefly. A summary of existing proposals is presented, noting their similarities and differences.

  13. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  14. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    NASA Astrophysics Data System (ADS)

    Caballero, J.; Hover, J.; Love, P.; Stewart, G. A.

    2012-12-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment's computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ‘pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to pick-up a real payload to execute. The first generation of pilot factories were usually specific to a single Virtual Organization (VO), and were bound to the particular architecture of that VO's distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new and improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is highly configurable. It is able to send different types of pilots to sites and exploit different submission mechanisms and queue characteristics. It is tightly integrated with the PanDA job submission framework, coupling pilot flow to the amount of work the site has to run. It gathers information from many sources in order to correctly configure itself for a site and its decision logic can easily be updated. Integrated into AutoPyFactory is a flexible system for delivering both generic and specific job wrappers which can perform many useful actions before starting to run end-user scientific applications, e.g., validation of the middleware, node profiling and diagnostics, and monitoring. AutoPyFactory also has a robust monitoring system that has been invaluable in establishing a reliable pilot factory service for ATLAS.

  15. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  16. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  17. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  18. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    SciTech Connect

    Spencer, Cherrill M.; Sugahara, Ryuhei; Masuzawa, Mika; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  19. Beta-Decay Spectroscopy of r-Process Nuclei with N = 126 at KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Mukai, M.; Kimura, S.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ˜ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and to study their β-decay properties, which are also of interest for astrophysics. We successfully extracted the stable 56Fe and 198Pt beam from KISS at the commissioning on-line experiments. The extraction efficiency was 0.25 and 0.15% for 56Fe and 198Pt, respectively. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.

  20. Evaluation of novel KEK/HPK n-in-p pixel sensors for ATLAS upgrade with testbeam

    NASA Astrophysics Data System (ADS)

    Nagai, R.; Idárraga, J.; Gallrapp, C.; Unno, Y.; Lounis, A.; Jinnouchi, O.; Takubo, Y.; Hanagaki, K.; Hara, K.; Ikegami, Y.; Kimura, N.; Nagai, K.; Nakano, I.; Takashima, R.; Terada, S.; Tojo, J.; Yorita, K.; Altenheiner, S.; Backhaus, M.; Bomben, M.; Forshaw, D.; George, M.; Janssen, J.; Jentzsch, J.; Lapsien, T.; La Rosa, A.; Macchiolo, A.; Marchiori, G.; Nellist, C.; Rubinsky, I.; Rummler, A.; Troska, G.; Weigell, P.; Weingarten, J.

    2013-01-01

    A new type of n-in-p planar pixel sensors have been developed at KEK/HPK in order to cope with the maximum particle fluence of 1-3×1016 1 MeV equivalent neutrons per square centimeter (neq/cm2) in the upcoming LHC upgrades. Four n-in-p devices were connected by bump-bonding to the new ATLAS Pixel front-end chip (FE-I4A) and characterized before and after the irradiation to 2×1015neq/cm2. These planar sensors are 150 μm thick, using biasing structures made out of polysilicon or punch-through dot and isolation structures of common or individual p-stop. Results of measurements with radioactive 90Sr source and with a 120 GeV/c momentum pion beam at the CERN Super Proton Synchrotron (SPS) are presented. The common p-stop isolation structure shows a better performance than the individual p-stop design, after the irradiation. The flat distribution of the collected charge in the depth direction after the irradiation implies that the effect of charge trapping is small, at the fluence, with the bias voltage well above the full depletion voltage.

  1. Irradiation and testbeam of KEK/HPK planar p-type pixel modules for HL-LHC

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Arai, Y.; Hagihara, M.; Hanagaki, K.; Hara, K.; Hori, R.; Hirose, M.; Ikegami, Y.; Jinnouchi, O.; Kamada, S.; Kawagoe, K.; Kohno, T.; Motohashi, K.; Nishimura, R.; Oda, S.; Otono, H.; Takubo, Y.; Terada, S.; Takashima, R.; Tojo, J.; Unno, Y.; Usui, J.; Wakui, T.; Yamaguchi, D.; Yamamoto, K.; Yamamura, K.

    2015-06-01

    For the ATLAS detector upgrade for the high luminosity LHC (HL-LHC), an n-in-p planar pixel sensor-module is being developed with HPK. The modules were irradiated at the Cyclotron RadioIsotope Center (CYRIC) using 70 MeV protons. For the irradiation, a novel irradiation box has been designed that carries 16 movable slots to irradiate the samples slot-by-slot independently, to reduce the time for replacing the samples by hand, thus reducing the irradiation to human body. The box can be moved horizontally and vertically to scan the samples for a maximum area of 11 cm × 11 cm. Tests were subsequently carried out with beam at CERN by using 120 GeV pions and at DESY with 4 GeV electrons. We describe the analyses of the testbeam data of the KEK/HPK sensor-modules, focussing on the comparison of the performance of old and new designs of pixel structures, together with a reference of the simplest design (no biasing structure). The novel design has shown comparably good performance as the no-structure design in detecting passing-through charged particles.

  2. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  3. Rural "Dropout Factories" Often Overshadowed

    ERIC Educational Resources Information Center

    Zehr, Mary Ann

    2010-01-01

    In the foothills of the Appalachian Mountains in the northwest corner of South Carolina, high schools' attempts to curb student dropouts may not match what many people picture when they hear talk of the nation's "dropout factories." Yet one-fifth of the 2,000 high schools nationwide categorized that way by researchers at Johns Hopkins…

  4. Multiple Segment Factorial Vignette Designs

    ERIC Educational Resources Information Center

    Ganong, Lawrence H.; Coleman, Marilyn

    2006-01-01

    The multiple segment factorial vignette design (MSFV) combines elements of experimental designs and probability sampling with the inductive, exploratory approach of qualitative research. MSFVs allow researchers to investigate topics that may be hard to study because of ethical or logistical concerns. Participants are presented with short stories…

  5. A Review of "Infinity Factory."

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    Following a discussion of the historical background of the TV series "Infinity Factory," the goals of the television project are listed. A general description of the television series, an evaluation of the entertainment value, and an evaluation of children's attitude change are briefly presented. The program's presentation of mathematics…

  6. Multiple Segment Factorial Vignette Designs

    ERIC Educational Resources Information Center

    Ganong, Lawrence H.; Coleman, Marilyn

    2006-01-01

    The multiple segment factorial vignette design (MSFV) combines elements of experimental designs and probability sampling with the inductive, exploratory approach of qualitative research. MSFVs allow researchers to investigate topics that may be hard to study because of ethical or logistical concerns. Participants are presented with short stories…

  7. Supernova Dust Factory in M74

    NASA Image and Video Library

    2006-06-09

    Astronomers using NASA Spitzer Space Telescope have spotted a dust factory 30 million light-years away in the spiral galaxy M74. The factory is located at the scene of a massive star explosive death, or supernova.

  8. From Neutrino Factory to Muon Collider

    SciTech Connect

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  9. Sequence Factorial of "g"-Gonal Numbers

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2013-01-01

    The gamma function, which has the property to interpolate the factorial whenever the argument is an integer, is a special case (the case "g"?=?2) of the general term of the sequence factorial of "g"-gonal numbers. In relation to this special case, a formula for calculating the general term of the sequence factorial of any…

  10. From Exam Factories to Communities of Discovery

    ERIC Educational Resources Information Center

    Coffield, Frank; Williamson, Bill

    2011-01-01

    The British current model of education has turned schools into exam factories and further education colleges and universities into skills factories for British industry. In their book, "From Exam Factories to Communities of Discovery: the Democratic Route," the authors offer an alternative way of thinking and talking about education, as well as…

  11. Sequence Factorial of "g"-Gonal Numbers

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2013-01-01

    The gamma function, which has the property to interpolate the factorial whenever the argument is an integer, is a special case (the case "g"?=?2) of the general term of the sequence factorial of "g"-gonal numbers. In relation to this special case, a formula for calculating the general term of the sequence factorial of any…

  12. 27 CFR 40.69 - Factory premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Factory premises. 40.69... PROCESSED TOBACCO Qualification Requirements for Manufacturers of Tobacco Products § 40.69 Factory premises. The premises to be used by a manufacturer of tobacco products as his factory may consist of more than...

  13. From Exam Factories to Communities of Discovery

    ERIC Educational Resources Information Center

    Coffield, Frank; Williamson, Bill

    2011-01-01

    The British current model of education has turned schools into exam factories and further education colleges and universities into skills factories for British industry. In their book, "From Exam Factories to Communities of Discovery: the Democratic Route," the authors offer an alternative way of thinking and talking about education, as well as…

  14. Impacts of B-factory measurements on determination of fragmentation functions from electron-positron annihilation data

    NASA Astrophysics Data System (ADS)

    Hirai, M.; Kawamura, H.; Kumano, S.; Saito, K.

    2016-11-01

    Fragmentation functions are determined for the pion and kaon by global analyses of charged-hadron production data in electron-positron annihilation. Accurate measurements were reported by the Belle and BaBar collaborations for the fragmentation functions at the center-of-mass energies of 10.52 and 10.54 GeV, respectively, at the KEK and SLAC B factories, whereas other available ee measurements were mostly done at higher energies, mainly at the Z mass of 91.2 GeV. There is a possibility that gluon fragmentation functions, as well as quark fragmentation functions, are accurately determined by scaling violation. We report our global analysis of the fragmentation functions especially to show impacts of the B-factory measurements on the fragmentation function determination. Our results indicate that the fragmentation functions are determined more accurately not only by the scaling violation but also by the high-statistical nature of the Belle and BaBar data. However, there are some tensions between the Belle and BaBar data in comparison with previous measurements. We also explain how the flavor dependence of quark fragmentation functions and the gluon function are separated by using measurements at different Q values. In particular, the electric and weak charges are different depending on the quark type, so that a light-quark flavor separation also became possible in principle due to the precise data at both √s ≃10.5 and 91.2 GeV.

  15. Exotic Hadrons from B Factories

    NASA Astrophysics Data System (ADS)

    Fulsom, Bryan

    2017-01-01

    The first generation of B-Factories, BaBar and Belle, operated over the previous decade and produced many world-leading measurements related to flavor physics. One of the most important discoveries was that of an apparent four-quark particle, named X(3872). It was the first of a growing X, Y, Z alphabet of exotic hadrons, now numbering more than a dozen, found by the e + e - collider experiments. These multi-quark states represent an unusual departure from the standard description that hadronic matter consists of only two or three quarks. These discoveries have led to the emergence of a new category of physics within heavy meson spectroscopy. This talk will review some of these key experimental results, and highlight the potential of the next generation B-Factory, Belle II, as it begins operation in the coming year.

  16. Intelligent Robots for Factory Automation

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Oh, S. J.

    1985-04-01

    Industrial robots are now proven technology in a variety of applications including welding, materials handling, spray painting, machine loading and assembly. However, to fully realize the potential of these universal manipulators , "intelligence" needs to be added to the industrial robot. This involves adding sensory capability and machine intelligence to the controls. The "intelligence" may be added externally or as integral components of the robot. These new "intelligent robots" promise to greatly enhance the versatility of the robot for factory applications. The purpose of this paper is to present a brief review of the techniques and applications of intelligent robots for factory automation and to suggest possible designs for the intelligent robot of the future.

  17. Safety in Royal Filling Factories

    DTIC Science & Technology

    1950-10-01

    Risks to personnel at R.F.F.s - Clean conditions 6 - Fireproof clothing 5 - Protection from Explosion 4,5 - Protection against Lightning 5 Royal...Last War Accident Records New factory planning methods Industrial safety Section 3 METHODS General Safety principles Test of clothing Clean...Instruction (1799) B. Report on safety aspects of certain explosives by the Government Committee of 1914/18* C. Standard tests on D.B. clothing

  18. Apiary B Factory Lattice Design

    SciTech Connect

    Donald, M.H.R.; Garren, A.A.

    1991-05-03

    The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper presents the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent.

  19. Apiary B Factory lattice design

    SciTech Connect

    Donald, M.H.R. ); Garren, A.A. )

    1991-04-01

    The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab.

  20. Results from the B Factories

    SciTech Connect

    Bevan, A.; /Queen Mary, U. of London

    2009-01-08

    These proceedings are based on lectures given at the Helmholtz International Summer School Heavy Quark Physics at the Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia, during August 2008. I review the current status of CP violation in B meson decays from the B factories. These results can be used, along with measurements of the sides of the Unitarity Triangle, to test the CKM mechanism. In addition I discuss experimental studies of B decays to final states with 'spin-one' particles.

  1. A Survey of Small Factories*

    PubMed Central

    Jefferys, Margot; Wood, C. H.

    1960-01-01

    This survey was undertaken by a group of doctors, nurses, and lecturers in the Department of Public Health of the London School of Hygiene and Tropical Medicine as part of the teaching programme for the Diploma in Public Health. Fifty small factories in an area of a metropolitan borough were invited to answer questions concerning their industrial processes, their labour force, their premises, their first-aid provision, and the visits they received from officials of local and central government. Forty-eight of these factories responded and observations were made by teams of three recording independently of each other in 45. A variety of industries was represented in these 48 firms, half of which employed less than 10 workers. The working environment, in respect of sanitary arrangements, cleanliness and tidiness, lighting on stairs and passage ways, was considered to be unsatisfactory in many firms. Some instances of inadequate safeguards of machines were seen. The accident rate was found to be rather less than the computed national rate for manufacturing industry in 1956. First-aid equipment and workers were also considered to be deficient in a number of instances. In case of accident and for the treatment of minor ailments most firms made use of a local casualty and out-patient department of a general hospital. This service was considered quite adequate. Many firms had not been visited by the Factory Inspector or his deputy during the previous year. Rather more had received visits from the local authority health inspectors. Many firms expressed confusion about the duties and functions of their various official visitors. The conclusions drawn from this limited enquiry were that the working conditions in small factories are often unsatisfactory; that in areas such as the one surveyed it is unrealistic to think in terms of development of an industrial health service similar to those operating in Slough and Harlow; and that the greatest impact on environmental

  2. Neutrino Factories and Beta Beams

    SciTech Connect

    Zisman, Michael S.

    2006-06-21

    In this paper we briefly review the concepts of Neutrino Factories and Beta Beam facilities, and indicate the main challenges in terms of beam performance and technological developments. We also describe the worldwide organizations that have embarked on defining and carrying out the necessary R&D on component design, beam simulations of facility performance, and benchmarking of key subsystems via actual beam tests. Currently approved subsystem tests include the Muon Ionization Cooling Experiment (MICE), under construction at Rutherford Appleton Laboratory, and the Mercury Intense Target (MERIT) experiment, to be carried out at CERN. These experiments are briefly described, and their schedules are indicated.

  3. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. Photonic Hypercrystals

    NASA Astrophysics Data System (ADS)

    Narimanov, Evgenii E.

    2014-10-01

    We introduce a new "universality class" of artificial optical media—photonic hypercrystals. These hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and surface-plasmon polaritons at the metal-dielectric interface.

  5. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  6. Topological photon

    NASA Astrophysics Data System (ADS)

    Tiwari, S. C.

    2008-03-01

    We associate intrinsic energy equal to hν /2 with the spin angular momentum of photon, and propose a topological model based on orbifold in space and tifold in time as topological obstructions. The model is substantiated using vector wavefield disclinations. The physical photon is suggested to be a particlelike topological photon and a propagating wave such that the energy hν of photon is equally divided between spin energy and translational energy, corresponding to linear momentum of hν /c. The enigma of wave-particle duality finds natural resolution, and the proposed model gives new insights into the phenomena of interference and emission of radiation.

  7. Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Omet, Mathieu; Sigit, Basuki Wibowo

    2015-09-01

    A disturbance observer (DOB)-based control for a digital low-level radio-frequency (LLRF) system in a compact energy recovery linac (cERL) at KEK has been developed. The motivation for this control approach is to compensate for or suppress the disturbance signal in the rf system such as beam loading, power supply ripples, and microphonics. Disturbance signals in specified frequency ranges were observed and reconstructed accurately in the field-programmable gate array and were then removed in the feedforward model in real time. The key component in this DOB controller is a disturbance observer, which includes the inverse mathematical model of the rf plant. In this paper, we have designed a DOB control-based approach in order to improve the LLRF system performance in disturbance rejection. We have confirmed this approach in the cERL beam commissioning.

  8. Construction and development of a UV free electron laser under the cooperation of Nihon U, KEK, PNC, ETL and Tohoku U

    SciTech Connect

    Hayakawa, K.; Tanaka, T.; Torizuka, Y.

    1995-12-31

    The construction and the development of a UV free electron laser have been started under the cooperation of Nihon U, KEK, PNC, ETL and Tohaku U. The project requires a 100MeV S-band electron linear accelerator to expand the oscillation of FEL using fundamental mode to the UV region. The injection system consists of a thermionic RF-gun with a LaB cathode and an {alpha} magnet for magnetic bunching. We are studying to reduce the back-bombardment electrons to realize the macropulse length of 20{mu}sec. Electron beams, up to the energy of 100MeV, are injected into the optical oscillators. Changing the accelerating energy and/or undulator parameters, this system will cover the range from infrared to ultraviolet for the applications in various fields.

  9. Naval Aircraft Factory (Curtiss) H-16

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Naval Aircraft Factory (Curtiss) H-16: The Naval Aircraft Factory H-16 flying boat, seen here on a beaching dolly on the Langley seaplane ramp, was one of 150 built by the Naval Aircraft Factory in Philadelphia, Pennsylvania. Most H-16s built were made by Curtiss, so the type is more readily known under that name. The NACA performed hull pressure distribution tests at Langley during 1929.

  10. The photon

    NASA Astrophysics Data System (ADS)

    Collins, Russell L.

    2009-10-01

    There are no TEM waves, only photons. Lets build a photon, using a radio antenna. A short antenna (2L<< λ) simplifies the calculation, letting B fall off everywhere as 1/r^2. The Biot-Savart law finds B = (μ0/4π)(LI0/r^2)θφt. The magnetic flux thru a semi-circle of radius λ/2 is set equal to the flux quantum h/e, determining the needed source strength, LI0. From this, one can integrate the magnetic energy density over a sphere of radius λ/2 and finds it to be 1.0121 hc/λ. Pretty close. A B field collapses when the current ceases, but the photon evades this by creating a ɛ0E / t displacement current at center that fully supports the toroidal B assembly as it moves at c. This E=vxB arises because the photon moves at c. Stopped, a photon decays. At every point along the photon's path, an observer will note a transient oscillation of an E field. This sources the EM ``guiding wave'', carrying little or no energy and expanding at c. At the head of the photon, all these spherical guiding waves gather ``in-phase'' as a planar wavefront. This model speaks to all the many things we know about light. The photon is tiny, but its guiding wave is huge.

  11. Charmonium production at neutrino factories

    SciTech Connect

    Petrov, A.A.; Torma, T.

    1999-11-01

    At existing and planned neutrino factories (high energy and high intensity neutrino beam facilities) precision studies of QCD in neutrino-nucleon interactions are a realistic opportunity. We investigate charmonium production in fixed target neutrino experiments. We find that J/{psi} production in neutrino-nucleon collisions is dominated by the color octet {sup 3}S{sub 1} nonrelativistic QCD (NRQCD) matrix element in a neutral current process, which is not accessible in photoproduction or leptoproduction. Neutrino experiments at a future Muon Collider will acquire a sufficient event rate to accurately measure color octet matrix element contributions. The currently running high energy neutrino experiments NOMAD and NuTeV could also observe several such events. {copyright} {ital 1999} {ital The American Physical Society}

  12. A Tau-Charm Factory at CEBAF

    SciTech Connect

    Seth, K.K.

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  13. 27 CFR 40.114 - Extension or curtailment of factory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory as...

  14. Charged Particle Optics in Circular Higgs Factory

    SciTech Connect

    Cai, Yunhai

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  15. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  16. Physics at a Higgsino factory

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2014-06-01

    Naturalness arguments applied to supersymmetric theories imply a spectrum containing four light higgsinos and with masses ~ 100 - 300 GeV (the closer to M Z , the more natural). The compressed mass spectrum and associated low energy release from and three-body decay makes higgsinos difficult to detect at LHC14, while the other sparticles might be heavy, and possibly even beyond LHC14 reach. In contrast, the International Linear e + e - Collider (ILC) with > 2 m( higgsino) would be a higgsino factory in addition to a Higgs boson factory and would serve as a discovery machine for natural SUSY! In this case, both chargino and neutralino production occur at comparable rates, and lead to observable signals above SM backgrounds. We examine two benchmark cases, one just beyond the LHC8 reach with mass gap of 15 (21) GeV, and a second more difficult case beyond even the LHC14 reach, where the mass gap is just 10 GeV, close to its minimum in models with no worse than 3% fine-tuning. The signal is characterized by low visible energy events together with [InlineMediaObject not available: see fulltext.] T in the one or two jets +1 ℓ channel from chargino production, and in the opposite sign, same-flavour, acoplanar dilepton channel from production. For both cases, we find that the signal is observable above backgrounds from the usual 2 → 2 SM events and from γγ collisions with just a few fb-1 of integrated luminosity. We also show that with an integrated luminosity of 100 fb-1, it should be possible to extract and masses at 2-3% level from chargino events if the mass gap is ≥ 15 GeV, and neutralino masses at the sub-percent level from neutralino events. The latter should also allow a determination of at the 200 MeV level. These measurements would point to higgsinos as the origin of new physics and strongly suggest a link to a natural origin for W , Z and h masses.

  17. Photon diffraction

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  18. Photonic lanterns

    NASA Astrophysics Data System (ADS)

    Leon-Saval, Sergio G.; Argyros, Alexander; Bland-Hawthorn, Joss

    2013-12-01

    Multimode optical fibers have been primarily (and almost solely) used as "light pipes" in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

  19. 3. VIEW TO SOUTHWEST (NORTHEAST CORNER OF EDIBLE FATS FACTORY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW TO SOUTHWEST (NORTHEAST CORNER OF EDIBLE FATS FACTORY) - Wilson's Oil House, Lard Refinery, & Edible Fats Factory, Edible Fats Factory, 2801 Southwest Fifteenth Street, Oklahoma City, Oklahoma County, OK

  20. 4. SOUTHEAST CORNER OF EDIBLE FATS FACTORY (CONNECTING BUILDING ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SOUTHEAST CORNER OF EDIBLE FATS FACTORY (CONNECTING BUILDING ON THE LEFT) - Wilson's Oil House, Lard Refinery, & Edible Fats Factory, Edible Fats Factory, 2801 Southwest Fifteenth Street, Oklahoma City, Oklahoma County, OK

  1. 1. VIEW TO SOUTHEAST (NORTHWEST CORNER OF EDIBLE FATS FACTORY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTHEAST (NORTHWEST CORNER OF EDIBLE FATS FACTORY) - Wilson's Oil House, Lard Refinery, & Edible Fats Factory, Edible Fats Factory, 2801 Southwest Fifteenth Street, Oklahoma City, Oklahoma County, OK

  2. Neutrino factories: realization and physics potential

    SciTech Connect

    Geer, S.; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  3. Plant cells as pharmaceutical factories.

    PubMed

    Rischer, Heiko; Häkkinen, Suvi T; Ritala, Anneli; Seppänen-Laakso, Tuulikki; Miralpeix, Bruna; Capell, Teresa; Christou, Paul; Oksman-Caldentey, Kirsi-Marja

    2013-01-01

    Molecules derived from plants make up a sizeable proportion of the drugs currently available on the market. These include a number of secondary metabolite compounds the monetary value of which is very high. New pharmaceuticals often originate in nature. Approximately 50% of new drug entities against cancer or microbial infections are derived from plants or micro-organisms. However, these compounds are structurally often too complex to be economically manufactured by chemical synthesis, and frequently isolation from naturally grown or cultivated plants is not a sustainable option. Therefore the biotechnological production of high-value plant secondary metabolites in cultivated cells is potentially an attractive alternative. Compared to microbial systems eukaryotic organisms such as plants are far more complex, and our understanding of the metabolic pathways in plants and their regulation at the systems level has been rather poor until recently. However, metabolic engineering including advanced multigene transformation techniques and state-of-art metabolomics platforms has given us entirely new tools to exploit plants as Green Factories. Single step engineering may be successful on occasion but in complex pathways, intermediate gene interventions most often do not affect the end product accumulation. In this review we discuss recent developments towards elucidation of complex plant biosynthetic pathways and the production of a number of highvalue pharmaceuticals including paclitaxel, tropane, morphine and terpenoid indole alkaloids in plants and cell cultures.

  4. Development of a super B-factory monolithic active pixel detector—the Continuous Acquisition Pixel (CAP) prototypes

    NASA Astrophysics Data System (ADS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-04-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R&D issues are presented.

  5. 6. FACTORY BUILDING, WITH FINISHED PRODUCT WAREHOUSE IN RIGHT BACKGROUND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FACTORY BUILDING, WITH FINISHED PRODUCT WAREHOUSE IN RIGHT BACKGROUND. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, Maizewood Insulation Company Factory, 275 Salina Street, Dubuque, Dubuque County, IA

  6. A reference architecture for the component factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Cantone, Giovanni

    1992-01-01

    Software reuse can be achieved through an organization that focuses on utilization of life cycle products from previous developments. The component factory is both an example of the more general concepts of experience and domain factory and an organizational unit worth being considered independently. The critical features of such an organization are flexibility and continuous improvement. In order to achieve these features we can represent the architecture of the factory at different levels of abstraction and define a reference architecture from which specific architectures can be derived by instantiation. A reference architecture is an implementation and organization independent representation of the component factory and its environment. The paper outlines this reference architecture, discusses the instantiation process, and presents some examples of specific architectures by comparing them in the framework of the reference model.

  7. HiPER Tritium factory elements

    NASA Astrophysics Data System (ADS)

    Guillaume, Didier

    2011-06-01

    HiPER will include a Tritium target factory. This presentation is an overview. We start from process ideas to go to first sketch passing through safety principles. We will follow the Tritium management process. We need first a gas factory producing the right gas mixture from hydrogen, Deuterium and Tritium storage. Then we could pass through the target factory. It is based on our LMJ single shot experiment and some new development like the injector. Then comes pellet burst and vapour recovery. The Tritium factory has to include the waste recovery, recycling process with gas purification before storage. At least, a nuclear plant is not a classical building. Tritium is also very special... All the design ideas have to be adapted. Many facilities are necessary, some with redundancy. We all have to well known these constraints. Tritium budget will be a major contributor for a material point of view as for a financial one.

  8. Visual evoked potentials in rubber factory workers.

    PubMed

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  9. Spacecraft factory-to-pad testing concept

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1975-01-01

    It is noted that the concept of factory-to-pad testing is based on the shipment of a flight-ready spacecraft to the launch base and can be achieved by thorough and comprehensive factory testing of the spacecraft. The principal objectives and results of this approach are shown to be significant cost reductions, increased test effectiveness, and fewer flight problems. Key elements for this concept's success are discussed, including factory-to-pad commonality of support equipment, test requirements and procedures, test teams, and computer programs. Applications of this approach in the space-shuttle era are considered, and a preliminary factory-to-pad concept for the Large Space Telescope spacecraft is presented.

  10. Verbal and Nonverbal Communication of Factory Workers

    ERIC Educational Resources Information Center

    Tway, Patricia

    1976-01-01

    Examines the verbal and nonverbal behavior patterns associated with two speech styles, one formal and the other informal, among factory workers. Available from: Mouton Publishers, Box 482, the Hague, Netherlands. (AM)

  11. Verbal and Nonverbal Communication of Factory Workers

    ERIC Educational Resources Information Center

    Tway, Patricia

    1976-01-01

    Examines the verbal and nonverbal behavior patterns associated with two speech styles, one formal and the other informal, among factory workers. Available from: Mouton Publishers, Box 482, the Hague, Netherlands. (AM)

  12. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  13. Vesicle Photonics

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  14. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    PubMed

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  15. Photonic Bandgaps in Photonic Molecules

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  16. Where is the ooid factory?

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; klepac-Ceraj, V.; Summons, R. E.; Newman, S. A.; Bosak, T.

    2014-12-01

    Ooids, concentrically laminated carbonate grains, are found in high-energy shallow water environments (the ooid factory). Consequently, ooid laminae are thought to precipitate around suspended grains. The role of microbes in this process is debated: abiotic models neither explain how ooids acquire a high organic content, nor do they account for the fast abrasion and loss of ooid carbonate in highly agitated areas. Here we probe the role of microbes and physical processes in ooid accretion on an oolitic beach in the leeward coast of Cat Island, the Bahamas. Grain size and petrography, microbial community composition and physical factors are compared along a cross-shore transect. A hydro-morphodynamic model is used to analyze sediment transport and sorting across the beach and shallow shelf. We find that the surf zone has a barren seafloor, and it is dominated by shiny and rounded ooids whose size decreases seaward, as predicted by physical grain sorting. Dull ooids and grapestones, irregular coated grains that are thought to form by microbially-mediated precipitation of carbonate around ooids and other grains, are present outside of the surf zone. The bulk size of these grains increases seaward, and they contain more abundant and diverse microbial communities than agitated ooids. The inverted sorting trend indicates that the time scale for grain accretion in this region is shorter than the decadal time scale for grain sorting. Modeling and field observations suggest that carbonate precipitation of both ooids and grapestones occurs in sediments that are colonized by diatom- and cyanobacteria-rich mats and reworked during storms. Periodic storms transport ooids to the surf zone, where they are rounded by abrasion and gain a shiny exterior in less than a day of reworking. Small ooids are periodically transported back to the microbially colonized areas, and the accretion cycle restarts. Grains too large to be frequently transported exit the accretion-erosion conveyor

  17. AGN jets as pion factories

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl

    There has been a dramatic revolution in gamma-ray astronomy throughout the last few years. Beginning with the discovery made by the spark chamber EGRET on board the Compton Gamma Ray Observatory that AGN with jets are the most powerful quasi-steady gamma-ray sources in the Universe, air-Cerenkov telescopes have soon after succeeded in detecting gamma-rays up to TeV energies. In the last year, it has become clear that these AGN emit photons even up to 10 TeV and more. This is a strong indication for proton acceleration going on in them, since protons owing to their large mass suffer weaker energy losses than electrons and can thus reach higher energies. Nucleons escaping from the AGN jets contribute to the local flux of cosmic rays at highest energies. If AGN produce the diffuse gamma-ray background, they would also be able to produce all the cosmic rays above the ankle in the local spectrum. The majority of AGN resides at large distances, indicated by their cosmological redshifts, and can therefore not be seen through the fog of electron-positron pairs which they produce interacting with diffuse infrared radiation from the era of galaxy formation. To observe the cosmic accelerators at large redshifts, neutrino observations are required. It is important to understand the astrophysical neutrino sources in order to be able to recognize signatures of new physics, e.g. due to decaying or annihilating particles from the early phases of the Universe.

  18. 27 CFR 40.254 - Receipt into factory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Receipt into factory. 40... Operations § 40.254 Receipt into factory. A manufacturer of tobacco products may receive in bond into his factory tobacco products and may also receive into his factory tobacco products on which the tax has been...

  19. Factorials of real negative and imaginary numbers - A new perspective.

    PubMed

    Thukral, Ashwani K

    2014-01-01

    Presently, factorials of real negative numbers and imaginary numbers, except for zero and negative integers are interpolated using the Euler's gamma function. In the present paper, the concept of factorials has been generalised as applicable to real and imaginary numbers, and multifactorials. New functions based on Euler's factorial function have been proposed for the factorials of real negative and imaginary numbers. As per the present concept, the factorials of real negative numbers, are complex numbers. The factorials of real negative integers have their imaginary part equal to zero, thus are real numbers. Similarly, the factorials of imaginary numbers are complex numbers. The moduli of the complex factorials of real negative numbers, and imaginary numbers are equal to their respective real positive number factorials. Fractional factorials and multifactorials have been defined in a new perspective. The proposed concept has also been extended to Euler's gamma function for real negative numbers and imaginary numbers, and beta function.

  20. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  1. Mass fainting in garment factories in Cambodia.

    PubMed

    Eisenbruch, Maurice

    2017-04-01

    This paper reports an ethnographic study of mass fainting among garment factory workers in Cambodia. Research was undertaken in 2010-2015 in 48 factories in Phnom Penh and 8 provinces. Data were collected in Khmer using nonprobability sampling. In participant observation with monks, factory managers, health workers, and affected women, cultural understandings were explored. One or more episodes of mass fainting occurred at 34 factories, of which 9 were triggered by spirit possession. Informants viewed the causes in the domains of ill-health/toxins and supernatural activities. These included "haunting" ghosts at factory sites in the wake of Khmer Rouge atrocities or recent fatal accidents and retaliating guardian spirits at sites violated by foreign owners. Prefigurative dreams, industrial accidents, or possession of a coworker heralded the episodes. Workers witnessing a coworker fainting felt afraid and fainted. When taken to clinics, some showed signs of continued spirit influence. Afterwards, monks performed ritual ceremonies to appease spirits, extinguish bonds with ghosts, and prevent recurrence. Decoded through its cultural motifs of fear and protest, contagion, forebodings, the bloody Khmer Rouge legacy, and trespass, mass fainting in Cambodia becomes less enigmatic.

  2. The Factory Approach to Creating TSTT Meshes

    SciTech Connect

    Epperly, T

    2003-10-21

    The factory approach (a.k.a. virtual constructor) hides the details of the class implementing the TSTT from TSTT users. In version 0.5 of TSTT.sidl, the client hard codes the name of the implementing class into their code. The client is forced to choose from the small set of possible concrete classes defined in TSTT.sidl. This approach makes it impossible to support multiple implementations of the TSTT in a single process because each implementation has to implement the same class. The factory approach hides the details of mesh creation from the client. The client does not need to know the name of the implementing class, and the client can dynamically determine which interfaces are supported by the new mesh. A factory can support multiple TSTT implementation because each implementation defines its own concrete classes to implement. The factory approach does require the TSTT compliant mesh packages to implement a MeshFactory interface, and everyone needs to link against an implementation of the Registry. The Registry only has 7 methods that are fairly easy to implement, and everyone can share one implementation of the Registry.

  3. Baby factories taint surrogacy in Nigeria.

    PubMed

    Makinde, Olusesan Ayodeji; Makinde, Olufunmbi Olukemi; Olaleye, Olalekan; Brown, Brandon; Odimegwu, Clifford O

    2016-01-01

    The practice of reproductive medicine in Nigeria is facing new challenges with the proliferation of 'baby factories'. Baby factories are buildings, hospitals or orphanages that have been converted into places for young girls and women to give birth to children for sale on the black market, often to infertile couples, or into trafficking rings. This practice illegally provides outcomes (children) similar to surrogacy. While surrogacy has not been well accepted in this environment, the proliferation of baby factories further threatens its acceptance. The involvement of medical and allied health workers in the operation of baby factories raises ethical concerns. The lack of a properly defined legal framework and code of practice for surrogacy makes it difficult to prosecute baby factory owners, especially when they are health workers claiming to be providing services to clients. In this environment, surrogacy and other assisted reproductive techniques urgently require regulation in order to define when ethico-legal lines have been crossed in providing surrogacy or surrogacy-like services. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. New generation electron-positron factories

    NASA Astrophysics Data System (ADS)

    Zobov, Mikhail

    2011-09-01

    In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.

  5. Microalgae photonics

    NASA Astrophysics Data System (ADS)

    Floume, Timmy; Coquil, Thomas; Sylvestre, Julien

    2011-05-01

    Due to their metabolic flexibility and fast growth rate, microscopic aquatic phototrophs like algae have a potential to become industrial photochemical converters. Algae photosynthesis could enable the large scale production of clean and renewable liquid fuels and chemicals with major environmental, economic and societal benefits. Capital and operational costs are the main issues to address through optical, process and biochemical engineering improvements. In this perspective, a variety of photonic approaches have been proposed - we introduce them here and describe their potential, limitations and compatibility with separate biotechnology and engineering progresses. We show that only sunlight-based approaches are economically realistic. One of photonics' main goals in the algae field is to dilute light to overcome photosaturation effects that impact upon cultures exposed to full sunlight. Among other approaches, we introduce a widely-compatible broadband spectral adaptation technique called AlgoSun® that uses luminescence to optimize sunlight spectrum in view of the bioconverter's requirements.

  6. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  7. Photonic homeostatics

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Fan-Hui

    2010-11-01

    Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.

  8. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  9. A conceptual design of circular Higgs factory

    SciTech Connect

    Cai, Yunhai

    2016-11-30

    Similar to a super B-factory, a circular Higgs factory (CHF) will require strong focusing systems near the interaction points and a low-emittance lattice in the arcs to achieve a factory luminosity. At electron beam energy of 125 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at the 2% level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of a CHF. In this paper, an example will be provided to illustrate the beam dynamics in a CHF, emphasizing the chromatic optics. Basic optical modules and advanced analysis will be presented. Most importantly, we will show that 2% momentum aperture is achievable.

  10. A conceptual design of circular Higgs factory

    NASA Astrophysics Data System (ADS)

    Cai, Yunhai

    2016-11-01

    Similar to a super B-factory, a circular Higgs factory (CHF) will require strong focusing systems near the interaction points and a low-emittance lattice in the arcs to achieve a factory luminosity. At electron beam energy of 125 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at the 2% level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of a CHF. In this paper, an example will be provided to illustrate the beam dynamics in a CHF, emphasizing the chromatic optics. Basic optical modules and advanced analysis will be presented. Most importantly, we will show that 2% momentum aperture is achievable.

  11. Ergonomic analysis jobs in recovered factories.

    PubMed

    Cuenca, Gabriela; Zotta, Gastón

    2012-01-01

    With the advent of the deep economic crisis in Argentina on 2001, the recovery of companies through to the creation of the Cooperatives Working Self-Management or Factories Recovered by its workers was constituted as one of the ways in which the salaried disobeyed the increasing unemployment. When the companies turn into recovered factories they tend to leave of side practices that have been seen like imposed by the previous organization and not understanding them as a primary condition for the execution of his tasks. Safety and ergonomics are two disciplines that are no longer considered relevant to the daily work. Therefore this investigation aims to revalue, undergo semantic to give back to a place in every organization analyzed. This research developed a self-diagnostic tool for working conditions, and the environment, present in the recovered factories.

  12. Developing Multicomponent Interventions using Fractional Factorial Designs

    PubMed Central

    Chakraborty, Bibhas; Collins, Linda M.; Strecher, Victor J.; Murphy, Susan A.

    2009-01-01

    SUMMARY Multicomponent interventions composed of behavioral, delivery, or implementation factors in addition to medications are becoming increasingly common in health sciences. A natural experimental approach to developing and refiing such multicomponent interventions is to start with a large number of potential components and screen out the least active ones. Factorial designs can be used efficiently in this endeavor. We address common criticisms and misconceptions regarding the use of factorial designs in these screening studies. We also provide an operationalization of screening studies. As an example we consider the use of a screening study in the development of a multicomponent smoking cessation intervention. Simulation results are provided to support the discussions. PMID:19575485

  13. Radiative Penguin Decays at the B Factories

    SciTech Connect

    Koneke, Karsten; /MIT, LNS

    2007-11-16

    In this article, I review the most recent results in radiative penguin decays from the B factories Belle and BABAR. Most notably, I will talk about the recent new observations in the decays B {yields} ({rho}/{omega}) {gamma}, a new analysis technique in b {yields} s{gamma}, and first measurements of radiative penguin decays in the B{sup 0}{sub s} meson system. Finally, I will summarize the current status and future prospects of radiative penguin B physics at the B factories.

  14. From super beams to neutrino factories

    SciTech Connect

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  15. Higher-order photon bunching in a semiconductor microcavity.

    PubMed

    Assmann, M; Veit, F; Bayer, M; van der Poel, M; Hvam, J M

    2009-07-17

    Quantum mechanically indistinguishable particles such as photons may show collective behavior. Therefore, an appropriate description of a light field must consider the properties of an assembly of photons instead of independent particles. We have studied multiphoton correlations up to fourth order in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior in the strong coupling case, which vanishes in the weak coupling regime as the cavity starts lasing. In particular, we verify the n factorial prediction for the zero-delay correlation function of n thermal light photons.

  16. Photonic Nanojets.

    PubMed

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V; Taflove, Allen; Backman, Vadim

    2009-09-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet's minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter d(ν) perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as d(ν)3 for a fixed λ. This perturbation is much slower than the d(ν)6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000(th) the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage.

  17. Photonic Nanojets

    PubMed Central

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V.; Taflove, Allen; Backman, Vadim

    2009-01-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet’s minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter dν perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as dν3 for a fixed λ. This perturbation is much slower than the dν6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000th the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage. PMID:19946614

  18. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  19. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  20. Predictors of Turnover of Female Factory Workers.

    ERIC Educational Resources Information Center

    Koch, James L.; Rhodes, Susan R.

    1981-01-01

    Examines predictors of turnover of female factory workers in a multivariate framework. Findings indicate that organizational, job, and personal characteristics are equally important in explaining turnover. Variables significantly related to turnover are tenure, cycle time, peer leadership, communication flow, training time, family income, and…

  1. An Epiphany in a Toilet Factory

    ERIC Educational Resources Information Center

    Cobb, Catlin

    2009-01-01

    In this article, the author shares her experiences of the universality of art making and artistic experience of being a dancer and teaching artist. She describes her performance at Kohler, a worldwide leader in plumbing products in Spartanburg, South Carolina, where she had an epiphany dancing in a toilet factory--a sudden, intuitive moment of…

  2. Making Connections: After the Factories Revisited.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart A.; Bergman, Edward M.

    This analysis of employment patterns in the American South extends a 1985 report, "After the Factories: Changing Employment Patterns in the Rural South," which was based on the years between 1977-1982. The 1985 report included Texas, but this analysis includes only the 12 Southern Growth Policies Board (SGPB) member states. This new…

  3. Undergraduate Students' Initial Conceptions of Factorials

    ERIC Educational Resources Information Center

    Lockwood, Elise; Erickson, Sarah

    2017-01-01

    Counting problems offer rich opportunities for students to engage in mathematical thinking, but they can be difficult for students to solve. In this paper, we present a study that examines student thinking about one concept within counting, factorials, which are a key aspect of many combinatorial ideas. In an effort to better understand students'…

  4. Reinventing the Factory with Lifelong Learning.

    ERIC Educational Resources Information Center

    Nopper, Norman S.

    1993-01-01

    Honeywell Inc.'s Canadian manufacturing facility offers comprehensive adult education and training programs. Courses offered spearhead cultural changes needed to become globally competitive. Changes start on the factory floor with those who directly affect three aspects of customer satisfaction: on-time delivery, product quality, and low cost.…

  5. The Idea Factory: An Interactive Intergroup Exercise

    ERIC Educational Resources Information Center

    Rosh, Lisa; Leach, Evan

    2011-01-01

    This article outlines the Idea Factory exercise, an interactive exercise designed to help participants examine group, individual, and organizational factors that affect intergroup conflict. Specific emphasis is placed on exploring the relationship between intra- and intergroup dynamics and identifying managerial practices that foster effective…

  6. An Epiphany in a Toilet Factory

    ERIC Educational Resources Information Center

    Cobb, Catlin

    2009-01-01

    In this article, the author shares her experiences of the universality of art making and artistic experience of being a dancer and teaching artist. She describes her performance at Kohler, a worldwide leader in plumbing products in Spartanburg, South Carolina, where she had an epiphany dancing in a toilet factory--a sudden, intuitive moment of…

  7. Monochromatic design for the Apiary B -factory

    SciTech Connect

    Dubrovin, A.; Zholents, A. ); Garren, A. )

    1990-10-10

    There are several ways to design {ital e}{sup +}{ital e}{sup {minus}} circular colliders to maximize luminosity. Here we present a design that achieves two principal goals: high luminosity and very small center-of-mass energy spread. The design possesses several attractive features, especially for an asymmetric {ital B}-factory.

  8. A Factorial Analysis of BDI Scores.

    ERIC Educational Resources Information Center

    Campbell, Ian M.; And Others

    1984-01-01

    Undertook a factorial analysis of the Beck Depression Inventory (BDI), on a sample of male cardiac outpatients (N=214) to investigate whether the BDI factor structure is dependent on the range of BDI scores selected. Results indicated that, in general, the subgroups' factor structures provided no clear interpretation. (LLL)

  9. The Idea Factory: An Interactive Intergroup Exercise

    ERIC Educational Resources Information Center

    Rosh, Lisa; Leach, Evan

    2011-01-01

    This article outlines the Idea Factory exercise, an interactive exercise designed to help participants examine group, individual, and organizational factors that affect intergroup conflict. Specific emphasis is placed on exploring the relationship between intra- and intergroup dynamics and identifying managerial practices that foster effective…

  10. Performance Comparison: Superbeams, Beta Beams, Neutrino Factory

    SciTech Connect

    Winter, Walter

    2011-10-06

    In this talk, the performance comparison among superbeams (SB), beta beams (BB), and the Neutrino Factory (NF) is discussed. The ingredients to such a comparison are described, and the optimization and status of BB and NF are addressed. Finally, one example for the performance comparison is shown.

  11. 2. OVERALL VIEW OF FACTORY COMPLEX, WITH BOILER HOUSE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF FACTORY COMPLEX, WITH BOILER HOUSE IN CENTER GROUND. VIEW TO NORTH. - Commercial & Industrial Buildings, Maizewood Insulation Company Factory, 275 Salina Street, Dubuque, Dubuque County, IA

  12. 5. OVERALL VIEW OF FACTORY COMPLEX, WITH DIGESTER HOUSE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OVERALL VIEW OF FACTORY COMPLEX, WITH DIGESTER HOUSE IN LEFT FOREGROUND. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, Maizewood Insulation Company Factory, 275 Salina Street, Dubuque, Dubuque County, IA

  13. 4. OVERALL VIEW OF FACTORY COMPLEX, WITH DIGESTER HOUSE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OVERALL VIEW OF FACTORY COMPLEX, WITH DIGESTER HOUSE IN LEFT FOREGROUND. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, Maizewood Insulation Company Factory, 275 Salina Street, Dubuque, Dubuque County, IA

  14. Tevatron direct photon results.

    SciTech Connect

    Kuhlmann, S.

    1999-09-21

    Tevatron direct photon results since DIS98 are reviewed. Two new CDF measurements are discussed, the Run Ib inclusive photon cross section and the photon + Muon cross section. Comparisons with the latest NLO QCD calculations are presented.

  15. Physics at high energy photon photon colliders

    SciTech Connect

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  16. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  17. Disordered photonics

    NASA Astrophysics Data System (ADS)

    Wiersma, Diederik S.

    2013-03-01

    What do lotus flowers have in common with human bones, liquid crystals with colloidal suspensions, and white beetles with the beautiful stones of the Taj Mahal? The answer is they all feature disordered structures that strongly scatter light, in which light waves entering the material are scattered several times before exiting in random directions. These randomly distributed rays interfere with each other, leading to interesting, and sometimes unexpected, physical phenomena. This Review describes the physics behind the optical properties of disordered structures and how knowledge of multiple light scattering can be used to develop new applications. The field of disordered photonics has grown immensely over the past decade, ranging from investigations into fundamental topics such as Anderson localization and other transport phenomena, to applications in imaging, random lasing and solar energy.

  18. 3. SOUTH AND WEST ELEVATION OF IPA FACTORY; TWOSTORY SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH AND WEST ELEVATION OF IPA FACTORY; TWO-STORY SECTION WITH BRICK PARAPET BUILT WITH FACTORY EXPANSION CA. 1948. GABLE ROOF SECTION IS PART OF ORIGINAL 1892 FACTORY. TO THE RIGHT IS AN ABANDONED (COMMONWEALTH EDISON) ELECTRICAL SUBSTATION. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  19. 27 CFR 45.33 - Return of shipment to factory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... factory. 45.33 Section 45.33 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... factory. Tobacco products, and cigarette papers and tubes which have been removed, under this part, may be returned to the factory without internal revenue supervision. (72 Stat. 1418, as amended; 26 U.S.C. 5704) ...

  20. 27 CFR 40.47 - Other businesses within factory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... factory. 40.47 Section 40.47 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... AND TUBES, AND PROCESSED TOBACCO Administrative Provisions § 40.47 Other businesses within factory. (a) General. The appropriate TTB officer may authorize such other businesses within the factory of a...

  1. 27 CFR 40.72 - Use of factory premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Use of factory premises... factory premises. (a) General. Unless otherwise authorized by the appropriate TTB officer as provided in § 40.47, the premises used by a manufacturer of tobacco products for his factory shall be used...

  2. Testing Factorial Invariance in Multilevel Data: A Monte Carlo Study

    ERIC Educational Resources Information Center

    Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun

    2012-01-01

    Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…

  3. Pion Production for Neutrino Factory-challenges

    SciTech Connect

    Breton, Florian; Le Couedic, Clement; Soler, F. J. P.

    2011-10-06

    One of the key issues in the design of a Neutrino Factory target station is the determination of the optimum kinetic energy of the proton beam due to the large uncertainties in simulations of protons impinging on nuclear targets. In this paper we have developed a procedure to correct GEANT4 simulations for the HARP data, and we have determined the yield of muons expected at the front-end of a Neutrino Factory as a function of target material (Be, C, Al, Ta and Pb) and energy (3-12 GeV).The maximum muon yield is found between 5 and 8 GeV for high Z targets and 3 GeV for low Z targets.

  4. IONIZATION COOLING SCENARIO FOR A NEUTRINO FACTORY.

    SciTech Connect

    FERNOW, R.C.; GALLARDO, J.C.; PALMER, R.B.; LEBRUN, P.L.

    2001-06-18

    The neutrino factory program aims to produce well-characterized neutrino fluxes, orders of magnitude larger than those available from conventional beams. An important feature of the machine design is a cooling section for reducing the muon transverse emittance to a level that can be accepted by the downstream accelerators and be contained in the storage ring. We describe simulations of a high-performance ionization cooling channel for the front end of a neutrino factory. The design considered here consists of a solenoidal lattice with alternating polarity and 2.75 m and 1.65 m cell lengths. Simulations show that the cooling increases the phase space density into the acceptance of the following linac by a factor of 3.

  5. New Physics Results from the B Factories

    SciTech Connect

    Sangro, Riccardo de

    2010-02-10

    We present a review of some recent experimental searches for new physics effects in precision flavour physics measurements performed at B factories. Recent results on selected leptonic, semi-leptonic and hadronic charm-less B decay channels studied by the BaBar and Belle collaborations will be presented and their implication within the framework of model extensions of the Standard Model will be discussed.

  6. Status of the Super B Factory Projects

    SciTech Connect

    Sangro, Riccardo de

    2010-08-05

    Two proposals have been presented for the construction of super high luminosity B factories, the SuperB in Italy and SuperKEKB in Japan. We review the physics case for the construction of such facilities in the LHC era and highlight several topics of hadronic physics that can benefit from the high luminosity they will integrate. The present status of the accelerator and detector work toward the Technical Design Reports is also presented.

  7. Hadronic Charm Decays From B Factories

    SciTech Connect

    Band, H.R.; /Wisconsin U., Madison

    2007-11-09

    The B factories, KEKB and PEPII, provide enormous samples of charmed mesons and baryons as well as B{bar B} events. The BELLE and BaBar collaborations have discovered many new particles containing charm quarks in the last few years and have measured their properties with increasing precision. The current status and most recent studies of these charm particle properties is briefly reviewed.

  8. On near detectors at a neutrino factory

    SciTech Connect

    Tang Jian; Winter, Walter

    2010-03-30

    The geometric effects of the beam in near detectors at a neutrino factory are discussed. The refined systematics treatment, including cross section errors, flux errors and background uncertainties, is compared with the IDS-NF one. Different near detector setups are included. We also probe their effects both at the measurements of standard neutrino oscillation parameters and constraints of the non-standard neutrino interaction.

  9. IDR Neutrino Factory Front End and Variations

    SciTech Connect

    Neuffer, D.; Alekou, A.; Rogers, C.; Snopok, P.; Yoshikawa, C.; /MUONS Inc., Batavia

    2012-05-01

    The International Design Report (IDR) neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of {mu}'s produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a {phi}-{delta}E rotation section leading into the cooling channel. Optimization and variations are discussed. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport.

  10. An asymmetric B factory based on PEP

    SciTech Connect

    Not Available

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  11. Physics opportunities at mu+ mu- Higgs factories

    SciTech Connect

    C. Blochinger et al.

    2004-01-12

    We update theoretical studies of the physics opportunities presented by {mu}{sup +} {mu}{sup -} Higgs factories. Interesting measurements of the Standard Model Higgs decays into {bar b}b, {tau}{sup +} {tau}{sup -} and WW* may be possible if the Higgs mass is less than about 160 GeV, as preferred by the precision electroweak data, the mass range being extended by varying appropriately the beam energy resolution. A suitable value of the beam energy resolution would also enable the uncertainty in the b-quark mass to be minimized, facilitating measurements of parameters in the MSSM at such a first {mu}{sup +} {mu}{sup -} Higgs factory. These measurements would be sensitive to radiative corrections to the Higgs-fermion-antifermion decay vertices, which may violate CP. Radiative corrections in the MSSM may also induce CP violation in Higgs-mass mixing, which can be probed via various asymmetries measurable using polarized {mu}{sup +} {mu}{sup -} beams. In addition, Higgs-chargino couplings may be probed at a second {mu}{sup +} {mu}{sup -} Higgs factory.

  12. Engineering Robustness of Microbial Cell Factories.

    PubMed

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-08-31

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories

    PubMed Central

    Ge, Xin Quan

    2010-01-01

    Replication origins are licensed by loading MCM2-7 hexamers before entry into S phase. However, only ∼10% of licensed origins are normally used in S phase, with the others remaining dormant. When fork progression is inhibited, dormant origins initiate nearby to ensure that all of the DNA is eventually replicated. In apparent contrast, replicative stress activates ataxia telangiectasia and rad-3–related (ATR) and Chk1 checkpoint kinases that inhibit origin firing. In this study, we show that at low levels of replication stress, ATR/Chk1 predominantly suppresses origin initiation by inhibiting the activation of new replication factories, thereby reducing the number of active factories. At the same time, inhibition of replication fork progression allows dormant origins to initiate within existing replication factories. The inhibition of new factory activation by ATR/Chk1 therefore redirects replication toward active factories where forks are inhibited and away from regions that have yet to start replication. This minimizes the deleterious consequences of fork stalling and prevents similar problems from arising in unreplicated regions of the genome. PMID:21173116

  14. Optomechanical photon shuttling between photonic cavities.

    PubMed

    Li, Huan; Li, Mo

    2014-11-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

  15. In-Factory Learning - Qualification For The Factory Of The Future

    NASA Astrophysics Data System (ADS)

    Quint, Fabian; Mura, Katharina; Gorecky, Dominic

    2015-07-01

    The Industry 4.0 vision anticipates that internet technologies will find their way into future factories replacing traditional components by dynamic and intelligent cyber-physical systems (CPS) that combine the physical objects with their digital representation. Reducing the gap between the real and digital world makes the factory environment more flexible, more adaptive, but also more complex for the human workers. Future workers require interdisciplinary competencies from engineering, information technology, and computer science in order to understand and manage the diverse interrelations between physical objects and their digital counterpart. This paper proposes a mixed-reality based learning environment, which combines physical objects and visualisation of digital content via Augmented Reality. It uses reality-based interaction in order to make the dynamic interrelations between real and digital factory visible and tangible. We argue that our learning system does not work as a stand-alone solution, but should fit into existing academic and advanced training curricula.

  16. A new kind of bottom quark factory

    SciTech Connect

    Mtingwa, S.K. . High Energy Physics Div.); Strikman, M. AN SSSR, Leningrad . Inst. Yadernoj Fiziki)

    1991-01-01

    We describe a novel method of producing large numbers of B mesons containing bottom quarks. It is known that one should analyze at least 10{sup 9} B meson decays to elucidate the physics of CP violation and rare B decay modes. Using the ultra high energy electron beams from the future generation of electron linear colliders, we Compton backscatter low energy laser beams off these electron beams. From this process, we produce hot photons having energy hundreds of GeV. Upon scattering these hot photons onto stationary targets, we show that it is possible to photoproduce and measure the necessary 10{sup 9} B mesons per year. 24 refs., 4 figs.

  17. The Personal Software Process: Downscaling the factory

    NASA Technical Reports Server (NTRS)

    Roy, Daniel M.

    1994-01-01

    It is argued that the next wave of software process improvement (SPI) activities will be based on a people-centered paradigm. The most promising such paradigm, Watts Humphrey's personal software process (PSP), is summarized and its advantages are listed. The concepts of the PSP are shown also to fit a down-scaled version of Basili's experience factory. The author's data and lessons learned while practicing the PSP are presented along with personal experience, observations, and advice from the perspective of a consultant and teacher for the personal software process.

  18. Microbial Cell Factories for Diol Production.

    PubMed

    Sabra, W; Groeger, C; Zeng, An-Ping

    2016-01-01

    Diols are compounds with two hydroxyl groups and have a wide range of appealing applications as chemicals and fuels. In particular, five low molecular diol compounds, namely 1,3-propanediol (1,3-PDO), 1,2-propanediol (1,2-PDO), 2,3-butanediol (2,3-BDO), 1,3-butanediol (1,3-BDO), and 1,4-butanediol (1,4-BDO), can be biotechnologically produced by direct microbial bioconversion of renewable materials. In this review, we summarize recent developments in the microbial production of diols, especially regarding the engineering of typical microbial strains as cell factory and the development of corresponding bioconversion processes.

  19. Object Classification at the Nearby Supernova Factory

    SciTech Connect

    Aragon, Cecilia R.; Bailey, Stephen; Aragon, Cecilia R.; Romano, Raquel; Thomas, Rollin C.; Weaver, B. A.; Wong, D.

    2007-12-21

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  20. Apiary B-Factory separation scheme

    SciTech Connect

    Garren, A. ); Sullivan, M. )

    1991-04-01

    A magnetic beam-separation scheme for an asymmetric-energy B-Factory based on the SLAC electron-positron collider PEP is described that has the following properties: the beams collide head-on and are separated magnetically with sufficient clearance at the parasitic crossing points and at the septum, the magnets have large beam-stay-clear apertures, synchrotron radiation produces low detector backgrounds and acceptable heat loads, and the peak {beta}-function values and contributions to the chromaticities in the IR quadrupoles are moderate. 8 figs., 2 tabs.

  1. Survey and Alignment of SLAC's B Factory

    SciTech Connect

    Pietryka, Matthew J.; Gaydosh, Michael L.; /SLAC

    2011-09-08

    The survey and alignment of SLAC's B-factory injector and high energy ring will be complete in March 1997. Modern digital electronic surveying tools are contributing to new, efficient alignment procedures. A laser tracker was used to fiducialize almost 300 quadrupole magnets. Digital levels were used to pre-set base plate elevations. Theodolites with very accurate co-axial distance meters were used for everything from layout to 3D magnet positioning to network surveys, all in free stationing mode. A number of procedures and measurement results are outlined.

  2. Resin Dermatitis in a Car Factory

    PubMed Central

    Engel, H. O.; Calnan, C. D.

    1966-01-01

    An outbreak of dermatitis in a car assembly factory is described; it affected 50 workers who handled rubber weatherstrips coated with an adhesive. The adhesive was found to contain para-tertiary butyl phenol (P.T.B.P.) formaldehyde resin. Of those patch tested 70% gave positive reactions to the adhesive and 65% to the resin. Improved methods of handling and personal protection succeeded in arresting the occurrence of dermatitis. Barrier creams gave no protection in these circumstances. The episode illustrates the different preventive control methods which have to be tried when dealing with a simple skin hazard which cannot be abolished. Images PMID:5904100

  3. APIARY B-Factory Separation Scheme

    SciTech Connect

    Garren, A.; Sullivan, M.

    1991-05-03

    A magnetic beam-separation scheme for an asymmetric-energy B Factory based on the SLAC electron-positron collider PEP is described that has the following properties: the beams collide head-on and are separated magnetically with sufficient clearance at the parasitic crossing points and at the septum, the magnets have large beam-stay-clear apertures, synchrotron radiation produces low detector backgrounds and acceptable heat loads, and the peak {beta}-function values and contributions to the chromaticities in the IR quadrupoles are moderate.

  4. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  5. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  6. The Skateboard Factory: Curriculum by Design--Oasis Skateboard Factory Q&A with Craig Morrison

    ERIC Educational Resources Information Center

    Pearson, George

    2012-01-01

    Since its opening three years ago, Oasis Skateboard Factory (OSF), founded by teacher Craig Morrison, has attracted considerable media exposure and received a Ken Spencer Award from the CEA for its innovative program. OSF is one of three programs offered by Oasis Alternative Secondary School, one of 22 alternative secondary schools of the Toronto…

  7. The Skateboard Factory: Curriculum by Design--Oasis Skateboard Factory Q&A with Craig Morrison

    ERIC Educational Resources Information Center

    Pearson, George

    2012-01-01

    Since its opening three years ago, Oasis Skateboard Factory (OSF), founded by teacher Craig Morrison, has attracted considerable media exposure and received a Ken Spencer Award from the CEA for its innovative program. OSF is one of three programs offered by Oasis Alternative Secondary School, one of 22 alternative secondary schools of the Toronto…

  8. Algal Cell Factories: Approaches, Applications, and Potentials.

    PubMed

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Nelson, David R; Al-Khairy, Dina; Mystikou, Alexandra; Alzahmi, Amnah; Salehi-Ashtiani, Kourosh

    2016-12-13

    With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive "cell factories": the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO₂, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.

  9. Separators for SLAC B-Factory

    SciTech Connect

    MacNair, Dave

    2002-08-21

    In order to separate the beams during injection, a closed vertical bump will be introduced in the B-Factory High Energy Ring (HER) using four dedicated, pulsed magnets. The design field in the magnets is B{sub 0} = 660 G; the field integrals of the magnets are nominally: {integral} Hdl = 0.0450 T{center_dot}m; {integral} Hdl = 0.0420 T{center_dot}m; {integral} Hdl = 0.0756 T{center_dot}m; {integral} Hdl = 0.0832 T{center_dot}m. The magnet apertures are 15 cm horizontal along the field direction and 10 cm in the vertical direction. The beams will be separated with a rise time of about 200 ms at the end of a coast and brought back into collision within about 1 ms. A good-field-region of {+-} 4.1 cm in the horizontal and {+-} 2.1 cm in the vertical direction with field non-uniformity less than 0.2% is aimed for, and fast magnetic field switch-off even through the present steel vacuum pipe of about 4 mm thickness. A 15% variation in each magnet current is done with variable shunts to allow tuning of the bump for different lattice configurations. The magnets have to fit into the existing constrained space of the B-factory. The magnets have been made and tested successfully at BINP and at SLAC. The whole system including pulsed power supply and shunts were also tested successfully.

  10. Quarkonium States at B-Factories

    SciTech Connect

    Robutti, Enrico; /INFN, Genoa

    2011-11-21

    An overview is given on recent progress in the study of quarkonium spectroscopy at the B-factories. In particular, an updated status report is presented of the long list of 'charmonium-like' resonances newly discovered, whose assignment as true charmonium states is in most cases at least controversial. Also, new measurements on the decay properties of bottomonium states above open-B production thresholds are shown. Much of the progress attained in recent years in the study of the quarkonium spectra is owed to the measurements performed at B-factories. The impressive amount of data recorded by the BABAR and Belle experiments has made it possible to study rare decay chains and to look for as yet undiscovered resonances in the charmonium and bottomonium mass regions. Results presented here are based on different subsamples of the full datasets recorded up to now by the two experiments, corresponding to integrated luminosities of about 430 fb{sup -1}(BABAR - final) and about 850 fb{sup -1}(Belle). Significant contributions also come from the analysis of the various data samples recorded by the CLEO detector.

  11. Muon Acceleration Concepts for Future Neutrino Factory

    SciTech Connect

    Bogacz, Slawomir Alex

    2016-05-01

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.

  12. Particle identification at an asymmetric B Factory

    SciTech Connect

    Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N.; Va'vra, J.; Ypsilantis, T.

    1991-09-01

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B{sup 0} decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R D conclude the chapter. 56 refs., 64 figs., 13 tabs.

  13. Design Concept of a Gamma-gamma Higgs Factory Driven by Thin Laser Targets and Energy Recovery Linacs

    SciTech Connect

    Zhang, Yuhong

    2013-06-01

    A gamma-gamma collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy gamma photons and further Higgs bosons through gamma-gamma collisions. The presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a gamma-gamma collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to gamma photon conversion rate. This new concept eliminates most useless and harmful low energy soft gamma photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a gamma-gamma collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.

  14. Carbonate factories: A conundrum in sedimentary geology

    NASA Astrophysics Data System (ADS)

    Pomar, L.; Hallock, P.

    2008-03-01

    by the end-Permian extinctions, excess photosynthesis by phytoplankton and microbial assemblages in surface waters, induced by moderately high CO 2 and temperature during the Early Mesozoic, supported proliferation of non-tissular metazoans (e.g., sponges) and heterotrophic bacteria at the sea floor. Metabolic activity by those microbes, especially sulfate reduction, resulted in abundant biologically-induced geochemical carbonate precipitation on and within the sea floor. For example, with the opening of Tethyan seaways during the Triassic, massive sponge/microbe boundstones (the benthic automicrite factory) formed steep, massive and thick progradational slopes and, locally, mud-mounds. As tectonic processes created shallow epicontinental seas, photosynthesis drove lime-mud precipitation in the illuminated zone of the water column. The resulting neritic lime-mud component of the shallow-water carbonate factory became predominant during the Jurassic, paralleling the increase in atmospheric pCO 2, while the decreasing importance of the benthic automicrite factory parallels the diversification of calcifying metazoans, phytoplankton and zooplankton. With atmospheric pCO 2 declining through the Cretaceous, the potential habitats for neritic lime-mud precipitation declined. At the same time, peak oceanic Ca 2+ concentrations promoted biotically-controlled calcification by the skeletal factory. With changes produced by extinctions and turnovers at the Cretaceous-Tertiary boundary, adaptations to decreasing Ca 2+ and pCO 2, coupled with increasing global temperature gradients (i.e., high-latitude and deep-water cooling), and strategies that efficiently linked photosynthesis and calcification, promoted successive changes of the dominant skeletal factory through the Cenozoic: larger benthic foraminifers (protist-protist symbiosis) during the Paleogene, red algae during the Miocene and modern coral reefs (metazoan-protist symbiosis) since Late Miocene.

  15. Asymptotic Normality Through Factorial Cumulants and Partition Identities

    PubMed Central

    Bobecka, Konstancja; Hitczenko, Paweł; López-Blázquez, Fernando; Rempała, Grzegorz; Wesołowski, Jacek

    2013-01-01

    In the paper we develop an approach to asymptotic normality through factorial cumulants. Factorial cumulants arise in the same manner from factorial moments as do (ordinary) cumulants from (ordinary) moments. Another tool we exploit is a new identity for ‘moments’ of partitions of numbers. The general limiting result is then used to (re-)derive asymptotic normality for several models including classical discrete distributions, occupancy problems in some generalized allocation schemes and two models related to negative multinomial distribution. PMID:24591773

  16. Integrating PCLIPS into ULowell's Lincoln Logs: Factory of the future

    NASA Technical Reports Server (NTRS)

    Mcgee, Brenda J.; Miller, Mark D.; Krolak, Patrick; Barr, Stanley J.

    1990-01-01

    We are attempting to show how independent but cooperating expert systems, executing within a parallel production system (PCLIPS), can operate and control a completely automated, fault tolerant prototype of a factory of the future (The Lincoln Logs Factory of the Future). The factory consists of a CAD system for designing the Lincoln Log Houses, two workcells, and a materials handling system. A workcell consists of two robots, part feeders, and a frame mounted vision system.

  17. National photonics skills standards for technicians

    NASA Astrophysics Data System (ADS)

    Hull, Darrell M.

    1995-10-01

    Photonics is defined as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of phonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's communication systems, from the laser that generates the digital information transported along a fiber- optic cable to the detector that decodes the information. Whether the transmitted information is a phone call from across the street or across the globe, photonics brings it to you. Where your health is concerned, photonics allows physicians to do minimally invasive surgery using fiber-optic endoscopes and lasers. Researches using spectroscopy and microscopy are pushing the frontiers of biotechnology in activities as widespread as diagnosing disease and probing the mysteries of the genetic code. Advanced sensing and imaging techniques monitor the environment, gathering data on crops and forests, analyzing the ocean's currents and contents, and probing the atmosphere of pollutants. Transportation needs are being impacted by photonic sensors and laser rangefinders that will soon monitor and control the traffic on our nation's highways. In our factories, photonics provides machine vision systems that give a level of quality control human inspectors could never achieve. In manufacturing, lasers are replacing a variety of cutting, welding, and marking techniques, while imaging systems teamed with neural networks are producing intelligent robots. In short, photonics is paving our way into the new millennium. The skill standard is intended to define the knowledge and capabilities - the skills - that workers in the phonics industry need. Phonics will be one of the primary battlefields of the world economic conflict, and it is imperative that U.S. photonics technicians be skilled enough to allow the United States to remain competitive in a global marketplace. The

  18. High energy photon-photon collisions

    SciTech Connect

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  19. Accelerator prospects for photon-photon physics

    SciTech Connect

    Hutton, A.

    1992-05-01

    This paper provides an overview of the accelerators in the world where two-photon physics could be carried out in the future. The list includes facilities where two-photon physics is already an integral part of the scientific program but also mentions some other machines where initiating new programs may be possible.

  20. Simulating single photons with realistic photon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Zhang, Zhen; Lütkenhaus, Norbert; Ma, Xiongfeng

    2016-12-01

    Quantum information processing provides remarkable advantages over its classical counterpart. Quantum optical systems have been proved to be sufficient for realizing general quantum tasks, which, however, often rely on single-photon sources. In practice, imperfect single-photon sources, such as a weak-coherent-state source, are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with imperfect photon sources, the key rate of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol will be very low, which fortunately can be resolved by utilizing the decoy-state method. As a generalization, we investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a few single-photon inputs with the ones that make use of only imperfect photon sources. In addition, our method also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we take a phase-randomized coherent state as an example for analysis. A general photon source applies similarly and may provide some further advantages for certain tasks.

  1. A trial of production of the plant-derived high-value protein in a plant factory

    PubMed Central

    Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Goto, Eiji

    2011-01-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m−2 s−1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity. PMID:21791976

  2. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  3. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  4. Photon structure function - theory

    SciTech Connect

    Bardeen, W.A.

    1984-12-01

    The theoretical status of the photon structure function is reviewed. Particular attention is paid to the hadronic mixing problem and the ability of perturbative QCD to make definitive predictions for the photon structure function. 11 references.

  5. Photon track evolution.

    PubMed

    Oliveira, A D

    2005-01-01

    Given the time scale of biological, biochemical, biophysical and physical effects in a radiation exposure of living tissue, the first physical stage can be considered to be independent of time. All the physical interactions caused by the incident photons happen at the same starting time. From this point of view it would seem that the evolution of photon tracks is not a relevant topic for analysis; however, if the photon track is considered as a sequence of several interactions, there are several steps until the total degradation of the energy of the primary photon. We can characterise the photon track structure by the probability p(E,j), that is, the probability that a photon with energy E suffers j secondary interactions. The aim of this work is to analyse the photon track structure by considering j as a step of the photon track evolution towards the total degradation of the photon energy. Low energy photons (<150 keV) are considered, with water phantoms and half-extended geometry. The photon track evolution concept is presented and compared with the energy deposition along the track and also with the spatial distribution of the several steps in the photon track.

  6. Light Hadron Physics at the B Factories

    SciTech Connect

    Li, Selina Z.; /SLAC

    2008-10-20

    We report measurements of hadronic final states produced in e{sup +}e{sup -} annihilations from the BABAR and Belle experiments. In particular, we present cross sections measured in several different processes, including two-photon physics, Initial-State Radiation, and exclusive hadron productions at center-of-mass energies near 10.58 GeV. Results are compared with theoretical predictions.

  7. [Shoe factory workers, solvents and health].

    PubMed

    Foà, Vito; Martinotti, Irene

    2012-01-01

    Exposure to organic solvents in footwear manufacturing industry came from the glues used adhering the shoe parts to each other. Benzene was the first solvent used in shoe factories until the evidence of its capacity to cause leukaemia. Then, the demonstration that exposure to n-hexane was related to distal polyneuropathy limited the use of this substance. After that, results of neurotoxicological studies conducted on workers exposed to different mixtures of organic solvents make necessary prevention measure directed to a progressive reduction of air dispersion of these chemicals. Today exposure to solvents in workplaces is regulated by health based exposure limit values that should warranty absence of central nervous system effects. One of the most important rules of occupational medicine is verify that these exposure levels are really health protective also for workers with increased susceptibility.

  8. The climacteric of Chinese factory workers.

    PubMed

    Tang, G W

    1994-10-01

    Chinese factory workers (427) mainly of Fujian origin were found to have few climacteric symptoms. Of these, 65% and 50% reported having no circulatory and nervosity symptoms, respectively. Only 18% of women experienced hot flushes. The climacteric symptoms were more pronounced at the perimenopausal period (P < 0.001) when these women experienced more irregular menstruation. Low socio-economic status and educational level did not have adverse effects on the symptom reporting. High parity and employment may be positive factors in this period of change of life. A majority of women (74%) felt that the climacteric and menopause is a natural process which caused them no concern. Of those who were still menstruating 80% did not anticipate that they would have problems with the climacteric and menopause. These women's different climacteric pattern could be related to their introspective abilities to cope adequately or in an impersonal manner.

  9. Intense muon beams and neutrino factories

    SciTech Connect

    Parsa, Z.

    2000-10-05

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy {mu}{sup +}{mu}{sup {minus}} colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings ({mu}SR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included.

  10. A plant factory for moth pheromone production

    PubMed Central

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer

    2014-01-01

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486

  11. [Toxic polyneuropathies in shoe factories: preventive aspects].

    PubMed

    Carapella, C

    1977-01-01

    An investigation was carried out concerning 19 shoe factories of Marches province, where 32 cases of polyneuropathy, upon 1264 workmen, have been verified. After examination of qualitative and quantitative risk factors the following conclusions can be deduced. Under the etiological aspect the syndrome can be attributed to poisoning caused by environmental pollutions and thus relating to aliphatic hydrocarbons (exane-cicloexane). Under the quantitative aspect the tecnopatic risk has a multifactorial origin which can be summarised as follows: 1) lack of poor efficiency of environmental purification systems; 2) lack of hygienic-environmental elements; 3) lack of sanitary precautions; 4) poor work organization. A strong preventive therapy is necessary to avoid or at least to reduce the polyneuretic tecnopathy incidence.

  12. A plant factory for moth pheromone production.

    PubMed

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2014-02-25

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.

  13. Cells as factories for humanized encapsulation.

    PubMed

    Mao, Zhengwei; Cartier, Regis; Hohl, Anja; Farinacci, Maura; Dorhoi, Anca; Nguyen, Tich-Lam; Mulvaney, Paul; Ralston, John; Kaufmann, Stefan H E; Möhwald, Helmuth; Wang, Dayang

    2011-05-11

    Biocompatibility is of paramount importance for drug delivery, tumor labeling, and in vivo application of nanoscale bioprobes. Until now, biocompatible surface processing has typically relied on PEGylation and other surface coatings, which, however, cannot minimize clearance by macrophages or the renal system but may also increase the risk of chemical side effects. Cell membranes provide a generic and far more natural approach to the challenges of encapsulation and delivery in vivo. Here we harness for the first time living cells as "factories" to manufacture cell membrane capsules for encapsulation and delivery of drugs, nanoparticles, and other biolabels. Furthermore, we demonstrate that the built-in protein channels of the new capsules can be utilized for controlled release of encapsulated reagents.

  14. Factorial Invariance of a Pan-Hispanic Familism Scale

    ERIC Educational Resources Information Center

    Villarreal, Ricardo; Blozis, Shelley A.; Widaman, Keith F.

    2005-01-01

    This article considers the validity and factorial invariance of an attitudinal measure of familism. Using a large, nationally representative sample of U.S. Hispanics, the validity and factorial invariance of the measure was tested across country of origin (United States, Mexico, and Latin America) and the language in which the survey was conducted…

  15. Factorial Invariance in Multiple Populations: A Multiple Testing Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.

    2013-01-01

    A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…

  16. Students Tackle Academics in Practical Context at Skateboard Factory

    ERIC Educational Resources Information Center

    Pearson, George

    2012-01-01

    High school student Nick Robertson came to Oasis Skateboard Factory (OSF) from a suburban Toronto district. He was surfing the web when he spotted a reference to Oasis Skateboard Factory, an alternative program in the Toronto District School Board. He says his first reaction was "Skateboards in school? It didn't seem possible." He…

  17. 27 CFR 40.254 - Receipt into factory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Receipt into factory. 40.254 Section 40.254 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Operations § 40.254 Receipt into factory. A manufacturer of tobacco products may receive in bond into his...

  18. 27 CFR 40.254 - Receipt into factory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Receipt into factory. 40.254 Section 40.254 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Operations § 40.254 Receipt into factory. A manufacturer of tobacco products may receive in bond into his...

  19. 27 CFR 40.254 - Receipt into factory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2014-04-01 2014-04-01 false Receipt into factory. 40.254 Section 40.254 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Operations § 40.254 Receipt into factory. A manufacturer of tobacco products may receive in bond into his...

  20. 27 CFR 40.254 - Receipt into factory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2013-04-01 2013-04-01 false Receipt into factory. 40.254 Section 40.254 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Operations § 40.254 Receipt into factory. A manufacturer of tobacco products may receive in bond into his...

  1. Congruences for central factorial numbers modulo powers of prime.

    PubMed

    Wang, Haiqing; Liu, Guodong

    2016-01-01

    Central factorial numbers are more closely related to the Stirling numbers than the other well-known special numbers, and they play a major role in a variety of branches of mathematics. In the present paper we prove some interesting congruences for central factorial numbers.

  2. 13. INTERIOR VIEW OF THIRD FLOOR OF ORIGINAL FACTORY, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF THIRD FLOOR OF ORIGINAL FACTORY, LOOKING SOUTHEAST. THIS SECTION OF THE FACTORY WAS USED FOR STORAGE; TO THE LEFT IS AN ELECTRIC MOTOR SUSPENDED FROM A COLLAR BEAM. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  3. 12. INTERIOR VIEW OF THIRD FLOOR OF ORIGINAL FACTORY, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF THIRD FLOOR OF ORIGINAL FACTORY, LOOKING NORTHEAST. THIS SECTION OF THE FACTORY WAS USED FOR STORAGE; CENTRAL LINE SHAFTING EXTENDS ALONG THE CENTER ROW OF COLUMNS. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  4. 11. INTERIOR VIEW OF THIRD FLOOR OF ORIGINAL FACTORY, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF THIRD FLOOR OF ORIGINAL FACTORY, LOOKING NORTHWEST. THIS SECTION OF THE FACTORY WAS USED FOR STORAGE; THE STAIRWAY LEADS DOWN TO THE SECOND FLOOR WHICH WAS THE LOCATION OF THE COMPANY OFFICE AND EMPLOYEE CHANGE ROOM. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  5. Students Tackle Academics in Practical Context at Skateboard Factory

    ERIC Educational Resources Information Center

    Pearson, George

    2012-01-01

    High school student Nick Robertson came to Oasis Skateboard Factory (OSF) from a suburban Toronto district. He was surfing the web when he spotted a reference to Oasis Skateboard Factory, an alternative program in the Toronto District School Board. He says his first reaction was "Skateboards in school? It didn't seem possible." He…

  6. 46 CFR 162.050-13 - Factory production and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Factory production and inspection. 162.050-13 Section 162.050-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION....050-13 Factory production and inspection. (a) Equipment manufactured under Coast Guard approval...

  7. 2. Aerial photograph of the Quaker Oats Cereal Factory looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Aerial photograph of the Quaker Oats Cereal Factory looking west to east. Structures included in this complex situated on the east side of Broadway Street between Bowery Street and Mill Street range in date of original use from 1886 to 1940. - Quaker Oats Cereal Factory, Southeast corner of Broadway & Mill Streets, Akron, Summit County, OH

  8. 1. Aerial photograph of the Quaker Oats Cereal Factory looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Aerial photograph of the Quaker Oats Cereal Factory looking east to west. Structures included in this complex situated on the east side of Broadway Street between Bowery Street and Mill Street range in date of original use from 1886 to 1940. - Quaker Oats Cereal Factory, Southeast corner of Broadway & Mill Streets, Akron, Summit County, OH

  9. 37. NORTH TO BINS ALONG NORTH WALL OF FACTORY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. NORTH TO BINS ALONG NORTH WALL OF FACTORY BUILDING WHICH REMAIN FILLED WITH NEW OLD STOCK AND USED PARTS FOR ELI WINDMILLS. THE ROPE AT THE LOWER FOREGROUND WAS USED IN ERECTING WINDMILLS AND TOWERS FOR CUSTOMERS. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  10. Perspective view. Fivestory reinforced concrete factory building reveals the structural ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view. Five-story reinforced concrete factory building reveals the structural frame on the exterior of the facade. Twelve bay facade facing onto Clay Avenue (north facade) has first floor openings bricked up. Mix of typical factory windows and glass block windows fill the majority of the openings on the rest of building - Russell Industrial Center, 1600 Clay Avenue, Detroit, MI

  11. Review of U.S. Neutrino Factory Studies

    SciTech Connect

    Zisman, Michael S.

    2005-08-23

    We summarize the status of the two U.S. feasibility studies carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) along with recent improvements to Neutrino Factory design developed during the American Physical Society (APS) Neutrino Physics Study. Suggested accelerator topics for the International Scoping Study (ISS) are also indicated.

  12. Regional and General Speech Patterns of Factory Workers.

    ERIC Educational Resources Information Center

    Tway, Patricia

    A china factory in Pennsylvania was the setting for a study of the characteristics of the factory, its workers, and the community. Specifically, the speech of 151 informants, representing 12 1/2% of the plant population, was analyzed for both careful and casual speech, in order to focus on lexical and grammatical forms which reflect regional and…

  13. 46 CFR 162.050-13 - Factory production and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Factory production and inspection. 162.050-13 Section 162.050-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION....050-13 Factory production and inspection. (a) Equipment manufactured under Coast Guard approval must...

  14. Factorial Invariance in Multiple Populations: A Multiple Testing Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.

    2013-01-01

    A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…

  15. Factorial Invariance of a Pan-Hispanic Familism Scale

    ERIC Educational Resources Information Center

    Villarreal, Ricardo; Blozis, Shelley A.; Widaman, Keith F.

    2005-01-01

    This article considers the validity and factorial invariance of an attitudinal measure of familism. Using a large, nationally representative sample of U.S. Hispanics, the validity and factorial invariance of the measure was tested across country of origin (United States, Mexico, and Latin America) and the language in which the survey was conducted…

  16. 27 CFR 40.47 - Other businesses within factory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Other businesses within... AND TUBES, AND PROCESSED TOBACCO Administrative Provisions § 40.47 Other businesses within factory. (a) General. The appropriate TTB officer may authorize such other businesses within the factory of a...

  17. 27 CFR 40.47 - Other businesses within factory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2014-04-01 2014-04-01 false Other businesses within... AND TUBES, AND PROCESSED TOBACCO Administrative Provisions § 40.47 Other businesses within factory. (a) General. The appropriate TTB officer may authorize such other businesses within the factory of a...

  18. 1. FACTORY BUILDING VIEWED FROM THE EAST, CURING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. FACTORY BUILDING VIEWED FROM THE EAST, CURING AND STORAGE WING TO THE LEFT, BOILING HOUSE IN THE CENTER, GRINDING PLATFORM TO THE FAR RIGHT, ST. THOMAS ISLAND VISIBLE IN BACKGROUND - Caneel Bay Plantation, Sugar Factory, Cruz Bay, St. John, VI

  19. Photon correlation holography.

    PubMed

    Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2011-01-17

    Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.

  20. Photonic Equations of Motion

    SciTech Connect

    Ritchie, A B; Crenshaw, M E

    2004-09-17

    Although the concept of the photon as a quantum particle is sharpened by the quantization of the energy of the classical radiation field in a cavity, the photon's spin has remained a classical degree of freedom. The photon is considered a spin-1 particle, although only two classical polarization states transverse to its direction of propagation are allowed. Effectively therefore the photon is a spin-1/2 particle, although it still obeys Bose-Einstein statistics because the photon-photon interaction is zero. Here they show that the two polarization states of the photon can be quantized using Pauli's spin vector, such that a suitable equation of motion for the photon is Dirac's relativistic wave equation for zero mass and zero charge. Maxwell's equations for a free photon are inferred from the Dirac-field formalism and thus provide proof of this claim. For photons in the presence of electronic sources for electromagnetic fields we posit Lorentz-invariant inhomogeneous photonic equations of motion. Electro-dynamic operator equations are inferred from this modified Dirac-field formalism which reduce to Maxwell's equations if spin-dependent terms in the radiation-matter interaction are dropped.

  1. Neutrino Factory Targets and the MICE Beam

    SciTech Connect

    Walaron, Kenneth Andrew

    2007-01-01

    The future of particle physics in the next 30 years must include detailed study of neutrinos. The first proof of physics beyond the Standard Model of particle physics is evident in results from recent neutrino experiments which imply that neutrinos have mass and flavour mixing. The Neutrino Factory is the leading contender to measure precisely the neutrino mixing parameters to probe beyond the Standard Model physics. Significantly, one must look to measure the mixing angle θ13 and investigate the possibility of leptonic CP violation. If found this may provide a key insight into the origins of the matter/anti- matter asymmetry seen in the universe, through the mechanism of leptogenesis. The Neutrino Factory will be a large international multi-billion dollar experiment combining novel new accelerator and long-baseline detector technology. Arguably the most important and costly features of this facility are the proton driver and cooling channel. This thesis will present simulation work focused on determining the optimal proton driver energy to maximise pion production and also simulation of the transport of this pion °ux through some candidate transport lattices. Bench-marking of pion cross- sections calculated by MARS and GEANT4 codes to measured data from the HARP experiment is also presented. The cooling channel aims to reduce the phase-space volume of the decayed muon beam to a level that can be e±ciently injected into the accelerator system. The Muon Ionisation Cooling Experiment (MICE) hosted by the Rutherford Appleton laboratory, UK is a proof-of-principle experiment aimed at measuring ionisation cooling. The experiment will run parasitically to the ISIS accelerator and will produce muons from pion decay. The MICE beamline provides muon beams of variable emittance and momentum to the MICE experiment to enable measurement of cooling over a wide range of beam conditions. Simulation work in the design of this beamline is presented in this thesis as

  2. The Experience Factory: Strategy and Practice

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi

    1995-01-01

    The quality movement, that has had in recent years a dramatic impact on all industrial sectors, has recently reached the system and software industry. Although some concepts of quality management, originally developed for other product types, can be applied to software, its specificity as a product which is developed and not produced requires a special approach. This paper introduces a quality paradigm specifically tailored on the problem of the systems and software industry. Reuse of products, processes and experiences originating from the system life cycle is seen today as a feasible solution to the problem of developing higher quality systems at a lower cost. In fact, quality improvement is very often achieved by defining and developing an appropriate set of strategic capabilities and core competencies to support them. A strategic capability is, in this context, a corporate goal defined by the business position of the organization and implemented by key business processes. Strategic capabilities are supported by core competencies, which are aggregate technologies tailored to the specific needs of the organization in performing the needed business processes. Core competencies are non-transitional, have a consistent evolution, and are typically fueled by multiple technologies. Their selection and development requires commitment, investment and leadership. The paradigm introduced in this paper for developing core competencies is the Quality Improvement Paradigm which consists of six steps: (1) Characterize the environment, (2) Set the goals, (3) Choose the process, (4) Execute the process, (5) Analyze the process data, and (6) Package experience. The process must be supported by a goal oriented approach to measurement and control, and an organizational infrastructure, called Experience Factory. The Experience Factory is a logical and physical organization distinct from the project organizations it supports. Its goal is development and support of core competencies

  3. The Experience Factory: Strategy and Practice

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi

    1995-01-01

    The quality movement, that has had in recent years a dramatic impact on all industrial sectors, has recently reached the system and software industry. Although some concepts of quality management, originally developed for other product types, can be applied to software, its specificity as a product which is developed and not produced requires a special approach. This paper introduces a quality paradigm specifically tailored on the problem of the systems and software industry. Reuse of products, processes and experiences originating from the system life cycle is seen today as a feasible solution to the problem of developing higher quality systems at a lower cost. In fact, quality improvement is very often achieved by defining and developing an appropriate set of strategic capabilities and core competencies to support them. A strategic capability is, in this context, a corporate goal defined by the business position of the organization and implemented by key business processes. Strategic capabilities are supported by core competencies, which are aggregate technologies tailored to the specific needs of the organization in performing the needed business processes. Core competencies are non-transitional, have a consistent evolution, and are typically fueled by multiple technologies. Their selection and development requires commitment, investment and leadership. The paradigm introduced in this paper for developing core competencies is the Quality Improvement Paradigm which consists of six steps: (1) Characterize the environment, (2) Set the goals, (3) Choose the process, (4) Execute the process, (5) Analyze the process data, and (6) Package experience. The process must be supported by a goal oriented approach to measurement and control, and an organizational infrastructure, called Experience Factory. The Experience Factory is a logical and physical organization distinct from the project organizations it supports. Its goal is development and support of core competencies

  4. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  5. Single-photon sources

    NASA Astrophysics Data System (ADS)

    Lounis, Brahim; Orrit, Michel

    2005-05-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information.

  6. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    SciTech Connect

    Takeichi, Y. Mase, K.; Ono, K.; Inami, N.; Suga, H.; Miyamoto, C.; Ueno, T.; Takahashi, Y.

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  7. A proposed NSLS x-ray ring upgrade using B factory technology

    SciTech Connect

    Blum, E.B.

    1995-05-01

    A proposed upgrade to the NSLS X-Ray Ring is described that will allow the storage of a 2.4 A. 3 GeV electron beam using technology developed for the PEP-II B factory at SLAC. In this configuration, a peak flux of greater than 10{sup 16} photons/sec/0.1% bandwidth/5 mrad will be produced. The four existing 53 MHz RF cavities will be replaced with eight 476 MHz cavities. Two 952 MHz cavities will also be used to lengthen the bunch, increasing the Touschek life-time. A copper vacuum chamber will be needed to absorb the increased synchrotron radiation and a feedback system may be needed to prevent multi-bunch instabilities.

  8. Photonic quantum well composed of photonic crystal and quasicrystal

    NASA Astrophysics Data System (ADS)

    Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Yang, Pingxiong; Chu, Paul K.

    2014-02-01

    A photonic quantum well structure composed of photonic crystal and Fibonacci quasicrystal is investigated by analyzing the transmission spectra and electric field distributions. The defect band in the photonic well can form confined quantized photonic states that can change in the band-gap of the photonic barriers by varying the thickness ratio of the two stacking layers. The number of confined states can be tuned by adjusting the period of the photonic well. The photons traverse the photonic quantum well by resonance tunneling and the coupling effect leads to the high transmission intensity of the confined photonic states.

  9. Factorial Experiments: Efficient Tools for Evaluation of Intervention Components

    PubMed Central

    Collins, Linda M.; Dziak, John J.; Kugler, Kari C.; Trail, Jessica B.

    2014-01-01

    Background An understanding of the individual and combined effects of a set of intervention components is important for moving the science of preventive medicine interventions forward. This understanding can often be achieved in an efficient and economical way via a factorial experiment, in which two or more independent variables are manipulated. The factorial experiment is a complement to the randomized controlled trial (RCT); the two designs address different research questions. Purpose This article offers an introduction to factorial experiments aimed at investigators trained primarily in the RCT. Method The factorial experiment is compared and contrasted with other experimental designs used commonly in intervention science to highlight where each is most efficient and appropriate. Results Several points are made: factorial experiments make very efficient use of experimental subjects when the data are properly analyzed; a factorial experiment can have excellent statistical power even if it has relatively few subjects per experimental condition; and when conducting research to select components for inclusion in a multicomponent intervention, interactions should be studied rather than avoided. Conclusions Investigators in preventive medicine and related areas should begin considering factorial experiments alongside other approaches. Experimental designs should be chosen from a resource management perspective, which states that the best experimental design is the one that provides the greatest scientific benefit without exceeding available resources. PMID:25092122

  10. Sterile neutrinos at a Neutrino Factory

    SciTech Connect

    Lopez-Pavon, Jacobo

    2010-03-30

    We study the potential of a Neutrino Factory (NF) to constrain the parameters of the (3+1)-scheme with a O(1)eV{sup 2} largest mass square difference, considering two set-ups: a NF with 50 GeV (20 GeV) stored muons, with two detectors of the Hybrid-MIND type located at L = 3000(4000), 7500 km. We show that the best sensitivity to sterile neutrinos can be achieved through the nu{sub m}u->nu{sub m}u and the nu{sub m}u->nu{sub t}au channels which can constrain theta{sub 34}<=12 deg. (14 deg.) and theta{sub 24}<=7.5 deg. (8 deg.) with the 50 GeV (20 GeV) NF. We also study the CP-violation in this new context showing that the CP-asymmetries in the nu{sub m}u->nu{sub t}au channel can give us the chance to see a clear new CP-violation signal associated with the sterile neutrinos.

  11. Agile manufacturing: The factory of the future

    NASA Technical Reports Server (NTRS)

    Loibl, Joseph M.; Bossieux, Terry A.

    1994-01-01

    The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.

  12. Algal Cell Factories: Approaches, Applications, and Potentials

    PubMed Central

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Nelson, David R.; Al-Khairy, Dina; Mystikou, Alexandra; Alzahmi, Amnah; Salehi-Ashtiani, Kourosh

    2016-01-01

    With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field. PMID:27983586

  13. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  14. VLBA Reveals Dust-Enshrouded "Supernova Factory"

    NASA Astrophysics Data System (ADS)

    2003-05-01

    Using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope, astronomers have discovered a newly-exploded star, or supernova, hidden deep in a dust-enshrouded "supernova factory" in a galaxy some 140 million light-years from Earth. "This supernova is likely to be part of a group of super star clusters that produce one such stellar explosion every two years," said James Ulvestad, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "We're extremely excited by the tremendous insights into star formation and the early Universe that we may gain by observing this 'supernova factory,'" he added. Ulvestad worked with Susan Neff of NASA's Goddard Space Flight Center in Greenbelt, MD, and Stacy Teng, a graduate student at the University of Maryland, on the project. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. "These super star clusters likely are forming in much the same way that globular clusters formed in the early Universe, and thus provide us with a unique opportunity to learn about how some of the first stars formed billions of years ago," Neff said. The cluster is in an object called Arp 299, a pair of colliding galaxies, where regions of vigorous star formation have been found in past observations. Since 1990, four other supernova explosions have been seen optically in Arp 299. Observations with the NSF's Very Large Array (VLA) earlier showed a region near the nucleus of one of the colliding galaxies which had all the earmarks of prolific star formation. The astronomers focused on this region, prosaically dubbed "Source A," with the VLBA and the NSF's Robert C. Byrd Green Bank Telescope in 2002, and found four objects in this dusty cloud that are likely young supernova remnants. When they observed the region again in February 2003, there was a new, fifth, object located only 7 light-years from one of the previously detected objects. More observations on April 30-May

  15. Ultrastructural Characterization of Zika Virus Replication Factories.

    PubMed

    Cortese, Mirko; Goellner, Sarah; Acosta, Eliana Gisela; Neufeldt, Christopher John; Oleksiuk, Olga; Lampe, Marko; Haselmann, Uta; Funaya, Charlotta; Schieber, Nicole; Ronchi, Paolo; Schorb, Martin; Pruunsild, Priit; Schwab, Yannick; Chatel-Chaix, Laurent; Ruggieri, Alessia; Bartenschlager, Ralf

    2017-02-28

    A global concern has emerged with the pandemic spread of Zika virus (ZIKV) infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs). Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER) membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton.

  16. Cell as a factory for humanized encapsulation

    NASA Astrophysics Data System (ADS)

    Mao, Zhengwei; Wang, Dayang

    2012-03-01

    Variety efforts are being made to develop colloidal based drug delivery systems (DDSs), which encapsulate cytotoxic drug in a vehicle and release them in a controlled manner. However, the synthetic carriers developed thus far are hampered by rapidly clearance in the body, for example by phagocytes, possibly due to the non-natural surface characteristics in terms of chemistry, morphology, and mechanics. To circumvent this important challenge, we have exploited living mammalian cells as factories to encapsulate drugs in "natural vesicles". These natural vesicles are termed cell membrane capsules (CMCs), because they maintain the major membrane structure and functions as well as cytosolic proteins of the parental cells. We demonstrate that CMCs act as unique delivery vehicles, in which encapsulated substances can be processed stepwise by cellular enzymes and then be selectively released through protein channels built-in the membrane, in a controlled and sustained manner. The preliminary study investigating the macrophage response to CMCs indicated the potential of CMCs to avoid attack by the immune system.

  17. Factorial Comparison of Working Memory Models

    PubMed Central

    van den Berg, Ronald; Awh, Edward; Ma, Wei Ji

    2014-01-01

    Three questions have been prominent in the study of visual working memory limitations: (a) What is the nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c) To what extent do spatial binding errors account for working memory failures? Modeling studies have typically focused on comparing possible answers to a single one of these questions, even though the result of such a comparison might depend on the assumed answers to both others. Here, we consider every possible combination of previously proposed answers to the individual questions. Each model is then a point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories (for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a) mnemonic precision is not quantized but continuous and not equal but variable across items and trials; (b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented models. Our results demonstrate the value of factorial model comparison in working memory. PMID:24490791

  18. Multilevel Factorial Designs With Experiment-Induced Clustering.

    PubMed

    Nahum-Shani, Inbal; Dziak, John J; Collins, Linda M

    2017-04-06

    Factorial experimental designs have many applications in the behavioral sciences. In the context of intervention development, factorial experiments play a critical role in building and optimizing high-quality, multicomponent behavioral interventions. One challenge in implementing factorial experiments in the behavioral sciences is that individuals are often clustered in social or administrative units and may be more similar to each other than to individuals in other clusters. This means that data are dependent within clusters. Power planning resources are available for factorial experiments in which the multilevel structure of the data is due to individuals' membership in groups that existed before experimentation. However, in many cases clusters are generated in the course of the study itself. Such experiment-induced clustering (EIC) requires different data analysis models and power planning resources from those available for multilevel experimental designs in which clusters exist prior to experimentation. Despite the common occurrence of both experimental designs with EIC and factorial designs, a bridge has yet to be built between EIC and factorial designs. Therefore, resources are limited or nonexistent for planning factorial experiments that involve EIC. This article seeks to bridge this gap by extending prior models for EIC, developed for single-factor experiments, to factorial experiments involving various types of EIC. We also offer power formulas to help investigators decide whether a particular experimental design involving EIC is feasible. We demonstrate that factorial experiments can be powerful and feasible even with EIC. We discuss design considerations and directions for future research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Laser-cooled radioactive francium factory at CYRIC

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Sato, T.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-12-01

    A factory of laser-cooled francium (Fr) atoms is being developed to search for the electric dipole moment (EDM) of the electron. The factory has achieved the production of Fr ions of 9 × 105 particles/s and transport with a transmission efficiency of 2%. In pilot experiments, the magneto-optical trapping of rubidium (Rb) has been performed using a new ion-to-atom converter. To achieve the Fr trap, the development and design of each of the factory's components are in progress.

  20. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  1. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  2. Photon reconstruction in CMS

    NASA Astrophysics Data System (ADS)

    Nysten, J.

    2004-11-01

    If the mass of the Higgs boson is less than 150 GeV/ c2, the H→γγ channel will provide a clear signature at the Large Hadron Collider (LHC). An overview of the general design of photon reconstruction in the Compact Muon Solenoid (CMS) experiment is given. The handling of converted photons and rejection of neutral pions pose an additional challenge to triggering and measuring. Topics related to photon reconstruction are presented, such as an algorithm for track building of the electron and the positron coming from the photon conversion.

  3. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  4. Overview of the nearby supernova factory

    SciTech Connect

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-07-29

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 {angstrom} for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.

  5. The Experiment Factory: Standardizing Behavioral Experiments

    PubMed Central

    Sochat, Vanessa V.; Eisenberg, Ian W.; Enkavi, A. Zeynep; Li, Jamie; Bissett, Patrick G.; Poldrack, Russell A.

    2016-01-01

    The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (Mason and Suri, 2011; McDonnell et al., 2012; de Leeuw, 2015; Lange et al., 2015) have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker, 2015; Open Science Collaboration, 2015) highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org) that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms. PMID:27199843

  6. The Experiment Factory: Standardizing Behavioral Experiments.

    PubMed

    Sochat, Vanessa V; Eisenberg, Ian W; Enkavi, A Zeynep; Li, Jamie; Bissett, Patrick G; Poldrack, Russell A

    2016-01-01

    The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (Mason and Suri, 2011; McDonnell et al., 2012; de Leeuw, 2015; Lange et al., 2015) have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker, 2015; Open Science Collaboration, 2015) highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org) that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms.

  7. First Results from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Scalzo, R. A.; Aldering, G.; Lee, B. C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Thomas, R. C.; Wang, L.; Wood-Vasey, W. M.; Adam, G.; Bacon, R.; Bonnaud, C.; Capoani, L.; Dubet, D.; Henault, F.; Lantz, B.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Blanc, N.; Boudoul, G.; Bongard, S.; Castera, A.; Copin, Y.; Gangler, E.; Smadja, G.; Kessler, R.; Antilogus, P.; Astier, P.; Berrelet, E.; Garavini, G.; Gilles, S.; Guevara, L.-A.; Imbault, D.; Juramy, C.; Pain, R.; Taillet, R.; Vincent, D.; Baltay, C.; Rabinovitz, D.; Snyder, J.; Nearby Supernova Factory

    2004-12-01

    The Nearby Supernova Factory (SNfactory) is a project to discover, and study in detail, approximately 300 type Ia supernovae (SNe Ia) in the redshift range 0.03 < z < 0.08. Supernova candidates are found by searching wide-field imaging data from the Near Earth Asteroid Tracking (NEAT) project at JPL, and from the Palomar Consortium (Yale/JPL/Caltech); this ultimately produces a sample of supernovae which is unbiased with respect to host galaxy type. Follow-up observations are performed with the Supernova Integral Field Spectrograph (SNIFS), a novel instrument installed on the University of Hawaii 2.2-meter telescope on Mauna Kea and commissioned in April 2004. By providing time series of flux-calibrated optical spectra taken every two to three nights for each supernova, the SNfactory data set will dramatically improve our understanding of the physics of SNe Ia and reduce the uncertainties in their use as cosmological standard candles. SNIFS observations have been conducted remotely from the United States and France since June 2004, with increasing emphasis on scripting and automation for greater efficiency. This poster reviews the current status of SNIFS and of the SNfactory project and presents its first results after the commissioning of SNIFS. Support for SNfactory is provided in the United States by the DOE Office of Science, the National Science Foundation through the High Performance Wireless Research and Education Network (HPWREN), the Kavli Institute for Cosmological Physics (KICP), and the Gordon and Betty Moore Foundation, and in France by the Centre National de la Recherche Scientifique (CNRS) through the Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), the Institut National des Sciences de l'Univers (INSU) and the Programme National de Cosmologie (PNC).

  8. Make your company a talent factory.

    PubMed

    Ready, Douglas A; Conger, Jay A

    2007-06-01

    Despite the great sums of money companies dedicate to talent management systems, many still struggle to fill key positions - limiting their potential for growth in the process. Virtually all the human resource executives in the authors' 2005 survey of 40 companies around the world said that their pipeline of high-potential employees was insufficient to fill strategic management roles. The survey revealed two primary reasons for this. First, the formal procedures for identifying and developing next-generation leaders have fallen out of sync with what companies need to grow or expand into new markets. To save money, for example, some firms have eliminated positions that would expose high-potential employees to a broad range of problems, thus sacrificing future development opportunities that would far outweigh any initial savings from the job cuts. Second, HR executives often have trouble keeping top leaders' attention on talent issues, despite those leaders' vigorous assertions that obtaining and keeping the best people is a major priority. If passion for that objective doesn't start at the top and infuse the culture, say the authors, talent management can easily deteriorate into the management of bureaucratic routines. Yet there are companies that can face the future with confidence. These firms don't just manage talent, they build talent factories. The authors describe the experiences of two such corporations - consumer products icon Procter & Gamble and financial services giant HSBC Group -that figured out how to develop and retain key employees and fill positions quickly to meet evolving business needs. Though each company approached talent management from a different direction, they both maintained a twin focus on functionality (rigorous talent processes that support strategic and cultural objectives) and vitality (management's emotional commitment, which is reflected in daily actions).

  9. 19. 1925 Main Factory building, interior, view of second floor's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 1925 Main Factory building, interior, view of second floor's permutit room, view looking east showing water treatment tanks - North Star Woolen Mill, 109 Portland Avenue South, Minneapolis, Hennepin County, MN

  10. 2. EAST ELEVATION OF IPA FACTORY; TWOSTORY SECTION BUILT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF IPA FACTORY; TWO-STORY SECTION BUILT IN 1892 AND PARTIALLY DESTROYED PARAPET SECTION BUILT CA. 1948. BRICK CHIMNEY ALSO BUILT CA. 1948. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  11. 46 CFR 164.009-23 - Factory inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-23 Factory... to conduct an inspection of the manufacturing and quality control procedures and to...

  12. 46 CFR 164.009-23 - Factory inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-23 Factory... to conduct an inspection of the manufacturing and quality control procedures and to...

  13. 46 CFR 164.009-23 - Factory inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-23 Factory... to conduct an inspection of the manufacturing and quality control procedures and to...

  14. 46 CFR 164.009-23 - Factory inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-23 Factory... to conduct an inspection of the manufacturing and quality control procedures and to...

  15. CHOICE OF PROTON DRIVER PARAMETERS FOR A NEUTRINO FACTORY.

    SciTech Connect

    KIRK, H.G.; BERG, J.S.; FERNOW, R.C.; GALLARDO, J.C.; SIMOS, N.; WENG, W.

    2006-06-23

    We discuss criteria for designing an optimal ''green field'' proton driver for a neutrino factory. The driver parameters are determined by considerations of space charge, power capabilities of the target, beam loading and available RF peak power.

  16. 18. 1925 Main Factory building, interior, second floor, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. 1925 Main Factory building, interior, second floor, view looking northeast at opening in the floor for dropping warp rolls - North Star Woolen Mill, 109 Portland Avenue South, Minneapolis, Hennepin County, MN

  17. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory

    PubMed Central

    Kitvatanachai, S; Apiwathnasorn, C; Leemingsawat, S; Wongwit, W; Overgaard, HJ

    2011-01-01

    Objective To determine lead level primarily in Culex quinquefasciatus (Cx. quinquefasciatus), and Culex gelidus (Cx. gelidus) larvae inhabiting lead consuming factories, and to putatively estimate eco-toxicological impact of effluents from the firms. Methods Third instars larvae were sampled by standard dipping method and lead concentrations in the larvae and their respective surrounding factory aquatic environments were determined through standard atomic absorption spectrophotometry (AAS). Results Cx. quinquefasciatus was the most abundant species followed by Cx. gelidus. The levels of lead were higher in the Cx. quinquefasciatus (1.08-47.47 µg/g), than in the wastewaters surface (0.01-0.78 µg/mL) from the factories or closer areas around factories. Other species were not reaching the criteria for lead determination. Conclusions The Cx. quinquefasciatus larvae can bio-accumulate the metal and can potentially serve as a biomarker of lead contamination, to complemente conventional techniques. PMID:23569727

  18. 1. VIEW LOOKING SOUTHWEST AT PARTIAL EAST ELEVATION OF FACTORY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHWEST AT PARTIAL EAST ELEVATION OF FACTORY, SHOWING FORMER OHIO & ERIE CANAL PRISM IN FOREGROUND THAT WAS USED AS WATER RESERVOIR (500,000 GALLON) - Jaite Paper Mill, 1200 West Highland Road, Sagamore Hills, Summit County, OH

  19. Pion production for neutrino factories and muon colliders

    SciTech Connect

    Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab

    2009-12-01

    Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.

  20. Toroidal magnetized iron neutrino detector for a neutrino factory

    SciTech Connect

    Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

  1. 5. MERCHANDISE BUILDING, BRIDGE, PAINT FACTORY, AND WALL PAPER MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. MERCHANDISE BUILDING, BRIDGE, PAINT FACTORY, AND WALL PAPER MILL, VIEW TO NORTHEAST - Sears Roebuck & Company Mail Order Plant, Bounded by Lexington & Grenshaw Streets, Kedzie Avenue & Independence Boulevard, Chicago, Cook County, IL

  2. Three-dimensional structure of Rubella virus factories

    SciTech Connect

    Fontana, Juan; Lopez-Iglesias, Carmen; Tzeng, Wen-Ping; Frey, Teryl K.; Fernandez, Jose J.; Risco, Cristina

    2010-09-30

    Viral factories are complex structures in the infected cell where viruses compartmentalize their life cycle. Rubella virus (RUBV) assembles factories by recruitment of rough endoplasmic reticulum (RER), mitochondria and Golgi around modified lysosomes known as cytopathic vacuoles or CPVs. These organelles contain active replication complexes that transfer replicated RNA to assembly sites in Golgi membranes. We have studied the structure of RUBV factory in three dimensions by electron tomography and freeze-fracture. CPVs contain stacked membranes, rigid sheets, small vesicles and large vacuoles. These membranes are interconnected and in communication with the endocytic pathway since they incorporate endocytosed BSA-gold. RER and CPVs are coupled through protein bridges and closely apposed membranes. Golgi vesicles attach to the CPVs but no tight contacts with mitochondria were detected. Immunogold labelling confirmed that the mitochondrial protein p32 is an abundant component around and inside CPVs where it could play important roles in factory activities.

  3. Magnetic Cataclysmic Variables Discovered in the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Margon, B.; Levitan, D.; Prince, T. A.; Hallinan, G.; PTF Collaboration

    2014-12-01

    The Palomar Transient Factory proves to be a prolific source of Magnetic Cataclysmic Variables, selected by their distinctive photometric variability, and followed up spectroscopically. Here, we present six new candidate systems, together with preliminary photometric periods and spectra.

  4. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1984-11-01

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(..pi../sup 0/ ..-->.. ..gamma gamma..) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in ..gamma gamma.. scattering, including especially the low mass dipion. 34 references.

  5. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  6. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    SciTech Connect

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the Building America expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  7. Noncommunicable disease risk profile of factory workers in Delhi

    PubMed Central

    Kishore, Jugal; Kohli, Charu; Sharma, Pramod Kumar; Sharma, Ekta

    2012-01-01

    Background: Noncommunicable diseases (NCDs) are becoming more prevalent in India. The data for presence of NCDs and its risk factors among factory workers is deficient in India. Materials and Methods: A cross-sectional comparative study was carried out among 37 factory workers and equal number of comparable subjects from general population. Screening for presence of diabetes along with its risk factors was made in both the groups using pretested predesigned World Health Organization STEPwise approach to surveillance (WHO STEPS) questionnaire in rural area of Delhi. Data was analyzed using SPSS version 16 software. The estimation of risk in two groups was done with calculation of odds ratio (OR). P values less than 0.05 were considered significant. Results: A total of 74 participants were included in the present study. Hypertension and diabetes was present in 13.5 and 5.4% of factory workers and four (10.8%) and three (8.8%) subjects in comparative group, respectively. Seven (18.9%) factory and eight (21.6%) non-factory subjects fell in the category of current smoker or smokeless tobacco users. High density lipoprotein levels were found abnormal among one (2.7%) factory worker and nine (24.3%) subjects in comparative group (P-value = 0.01). Behavioral risk factors, alcohol consumption, and fruits and vegetable intake were significantly different among two groups. Conclusion: Factory workers were having better profile than non-factory subjects except for risk factors such as alcohol intake and inadequate fruits and vegetable intake. However, healthy worker effect phenomenon cannot be ruled out. PMID:23776324

  8. 15. SOUTH TOWARD FRONT OF FACTORY FROM PUMP REPAIR WORK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SOUTH TOWARD FRONT OF FACTORY FROM PUMP REPAIR WORK BENCH, SHOWING HAND SHEAR MOUNTED ON A CASTER-FITTED TREE STUMP, WOOD-BURNING HEATING STOVE, CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS, AND PART OF CIRCA 1910 'THE RACINE' RECIPROCATING HACK SAW. THE WELDED STEEL PIPE RACK IN THE LEFT BACKGROUND IS A MODERN INTRUSION. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  9. Virtual Factory Framework for Supporting Production Planning and Control

    PubMed Central

    Kibira, Deogratias; Shao, Guodong

    2017-01-01

    Developing optimal production plans for smart manufacturing systems is challenging because shop floor events change dynamically. A virtual factory incorporating engineering tools, simulation, and optimization generates and communicates performance data to guide wise decision making for different control levels. This paper describes such a platform specifically for production planning. We also discuss verification and validation of the constituent models. A case study of a machine shop is used to demonstrate data generation for production planning in a virtual factory. PMID:28819462

  10. Virtual Factory Framework for Supporting Production Planning and Control.

    PubMed

    Kibira, Deogratias; Shao, Guodong

    2017-01-01

    Developing optimal production plans for smart manufacturing systems is challenging because shop floor events change dynamically. A virtual factory incorporating engineering tools, simulation, and optimization generates and communicates performance data to guide wise decision making for different control levels. This paper describes such a platform specifically for production planning. We also discuss verification and validation of the constituent models. A case study of a machine shop is used to demonstrate data generation for production planning in a virtual factory.

  11. Noncommunicable disease risk profile of factory workers in Delhi.

    PubMed

    Kishore, Jugal; Kohli, Charu; Sharma, Pramod Kumar; Sharma, Ekta

    2012-09-01

    Noncommunicable diseases (NCDs) are becoming more prevalent in India. The data for presence of NCDs and its risk factors among factory workers is deficient in India. A cross-sectional comparative study was carried out among 37 factory workers and equal number of comparable subjects from general population. Screening for presence of diabetes along with its risk factors was made in both the groups using pretested predesigned World Health Organization STEPwise approach to surveillance (WHO STEPS) questionnaire in rural area of Delhi. Data was analyzed using SPSS version 16 software. The estimation of risk in two groups was done with calculation of odds ratio (OR). P values less than 0.05 were considered significant. A total of 74 participants were included in the present study. Hypertension and diabetes was present in 13.5 and 5.4% of factory workers and four (10.8%) and three (8.8%) subjects in comparative group, respectively. Seven (18.9%) factory and eight (21.6%) non-factory subjects fell in the category of current smoker or smokeless tobacco users. High density lipoprotein levels were found abnormal among one (2.7%) factory worker and nine (24.3%) subjects in comparative group (P-value = 0.01). Behavioral risk factors, alcohol consumption, and fruits and vegetable intake were significantly different among two groups. Factory workers were having better profile than non-factory subjects except for risk factors such as alcohol intake and inadequate fruits and vegetable intake. However, healthy worker effect phenomenon cannot be ruled out.

  12. BEGET: The B-Factory Event Generator Version 21

    SciTech Connect

    Wright, D.M.

    1994-08-15

    This note is a reference manual for the B-Factory Event Generator (BEGET V21) software package which generates physics events relevant to B-Factory detector studies. The package provides a standard framework that can easily interface to various external generators and simulation applications. Version 21 of BEGET contains a number of physics and background generators and is interfaced to the JETSET and KORALB generators and the GEANT and ASLUND simulation programs.

  13. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1988-06-01

    Selected topics in meson spectroscoy are reviewed as they are illuminated by photon-photon collisons. Subjects include the S*/f/sub 0/ (975) and delta/a/sub 0/ (980) as /ovr qq/qq candidates, the /iota///eta/ (1460) and theta/f/sub 2/ (1700) as glueball candidates, and the spin 1 X(1420) seen in tagged events which represents new physics whether its parity is positive, J/sup PC/ = 1/sup + +/, or negative with exotic J/sup PC/ = 1/sup /minus/+/. 57 refs., 2 figs., 1 tab.

  14. Factorial designs: an overview with applications to orthodontic clinical trials.

    PubMed

    Pandis, Nikolaos; Walsh, Tanya; Polychronopoulou, Argy; Katsaros, Christos; Eliades, Theodore

    2014-06-01

    Factorial designs for clinical trials are often encountered in medical, dental, and orthodontic research. Factorial designs assess two or more interventions simultaneously and the main advantage of this design is its efficiency in terms of sample size as more than one intervention may be assessed on the same participants. However, the factorial design is efficient only under the assumption of no interaction (no effect modification) between the treatments under investigation and, therefore, this should be considered at the design stage. Conversely, the factorial study design may also be used for the purpose of detecting an interaction between two interventions if the study is powered accordingly. However, a factorial design powered to detect an interaction has no advantage in terms of the required sample size compared to a multi-arm parallel trial for assessing more than one intervention. It is the purpose of this article to highlight the methodological issues that should be considered when planning, analysing, and reporting the simplest form of this design, which is the 2 × 2 factorial design. An example from the field of orthodontics using two parameters (bracket type and wire type) on maxillary incisor torque loss will be utilized in order to explain the design requirements, the advantages and disadvantages of this design, and its application in orthodontic research.

  15. Photonic layered media

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  16. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  17. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  18. Exponential Localization of Photons

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo

    1998-06-01

    It is shown that photons can be localized in space with an exponential falloff of the energy density and photodetection rates. The limits of localization are determined by the fundamental Paley-Wiener theorem. A direct mathematical connection between the spatial localization of photons and the decay in time of quantum mechanical systems is established.

  19. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  20. Silicon nitride membrane photonics

    NASA Astrophysics Data System (ADS)

    Pernice, W. H. P.; Li, M.; Gallagher, D. F. G.; Tang, H. X.

    2009-11-01

    We propose a concept for realizing large area nanophotonic circuits in a silicon nitride membrane. Light is coupled into the membrane using a novel metallic photonic crystal grating coupler. A coupling loss of 5.5 dB is predicted for TE polarized light at 1550 nm. Waveguiding at telecoms wavelengths is achieved by using low loss photonic crystal defect waveguides. The propagation losses of the photonic crystal waveguides are estimated at 8.6 dB mm-1, comparable to early silicon photonic crystal waveguides. Using the proposed approach, photonic circuits can be fabricated using a single lithography and etching step. Thus the design scheme shows a route to low-cost fabrication.

  1. Nonlinear Photonics 2014: introduction.

    PubMed

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  2. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  3. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  4. Black hole as a wormhole factory

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Won; Park, Mu-In

    2015-12-01

    There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 < 1 / 2), the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2 = 1 / 2). This solution suggests the "Generalized Cosmic Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER

  5. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    shifted-fiber ( DSF ) and a highly nonlinear fiber (HNLF) can be cooled at the liquid nitrogen temperature (77K). The advantage of the HNLF is a larger......signal for one of the photon-pair generated in four-wave mixing process. χ : the Kerr nonlinearity. k : wave vector. DSF : dispersion shifted fiber

  6. FFAGs: Front-end for neutrino factories and medical accelerators

    NASA Astrophysics Data System (ADS)

    Mori, Yoshiharu

    The idea of Fixed Field Alternating Gradient (FFAG) accelerator was originated by different people and groups in the early 1950s. It was independently introduced by Ohkawa [Ohkawa (1953)], Symon et al. [Symon et al. (1956)], and Kolomensky [Kolomensky and Lebedev (1966)] when the strong Alternate Gradient (AG) focusing and the phase stability schemes were applied to particle acceleration. The first FFAG electron model was developed in the MURA accelerator project led by Kerst and Cole in the late 1950s. Since then, they have fabricated several electron models in the early 1960s [Symon et al. (1956)]. However, the studies did not lead to a single practical FFAG accelerator for the following 50 years. Because of the difficulties of treating non-linear magnetic field and RF acceleration for non-relativistic particles, the proton FFAG, especially, was not accomplished until recently. In 2000, the FFAG concept was revived with the world's first proton FFAG (POP) which was developed at KEK [Aiba (2000); Mori (1999)]. Since then, in many places [Berg (2004); Johnstone et al. (2004); Mori (2011); Ruggiero (2004); Trbojevic (2004)], FFAGs have been developed and constructed...

  7. 27 CFR 40.70 - Separation of and access to factory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 40.70 Separation of and access to factory. Where the factory consists of a portion of a building, or where portions of buildings are part of the factory, the factory shall be completely separated by walls from adjoining portions of the building. Such walls shall be securely constructed of substantial...

  8. A simple model for factory distribution: Historical effect in an industry city

    NASA Astrophysics Data System (ADS)

    Uehara, Takashi; Sato, Kazunori; Morita, Satoru; Maeda, Yasunobu; Yoshimura, Jin; Tainaka, Kei-ichi

    2016-02-01

    The construction and discontinuance processes of factories are complicated problems in sociology. We focus on the spatial and temporal changes of factories at Hamamatsu city in Japan. Real data indicate that the clumping degree of factories decreases as the density of factory increases. To represent the spatial and temporal changes of factories, we apply "contact process" which is one of cellular automata. This model roughly explains the dynamics of factory distribution. We also find "historical effect" in spatial distribution. Namely, the recent factories have been dispersed due to the past distribution during the period of economic bubble. This effect may be related to heavy shock in Japanese stock market.

  9. Progress in Ultrafast Photonics

    NASA Astrophysics Data System (ADS)

    Kamiya, Takeshi; Tsuchiya, Masahiro

    2005-08-01

    Recent progress in ultrafast photonics is reviewed with special emphasis on the research and development activities in Japanese research institutions in the field of optical communication and related measurement technologies. After summarizing the physical natures of ultrashort optical pulses, selected topics are reviewed on such as (1) ultrahigh-bit-rate optical communication employing the combination of optical time division multiplexing (OTDM) and wavelength division multiplexing (WDM), (2) optical components for ultrafast photonics with emphasis on all optical switches including semiconductor optical amplifiers, cascaded second order frequency converters, semiconductor saturable absorber switches, organic dye saturable absorber switches and bistable semiconductor lasers, (3) microwave photonics, emphasizing millimeter-wave/photonic communication technologies, and (4) high-speed optical measurements featuring both compact femtosecond pulse source development and rf magnetic field imaging. Some comments on the future prospect of ultrafast photonics are also given. It is concluded that in order to bring the powerful and versatile capability of ultrafast photonics into the real world, further collaboration between photonics specialists and production engineers/information specialists is strongly desired.

  10. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  11. Progress in neuromorphic photonics

    NASA Astrophysics Data System (ADS)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  12. Single photon quantum cryptography.

    PubMed

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  13. Is the photon paramagnetic?

    SciTech Connect

    Perez Rojas, H.; Querts, E. Rodriguez

    2009-05-01

    A photon exhibits a tiny anomalous magnetic moment {mu}{sub {gamma}} due to its interaction with an external constant magnetic field in vacuum through the virtual electron-positron background. It is paramagnetic ({mu}{sub {gamma}}>0) in the whole region of transparency, i.e., below the first threshold energy for pair creation, and has a maximum near this threshold. The photon magnetic moment is different for eigenmodes polarized along and perpendicular to the magnetic field. Explicit expressions are given for {mu}{sub {gamma}} for the cases of photon energies smaller than and closer to the first pair creation threshold. The region beyond the first threshold is briefly discussed.

  14. Integrated photonics research, 1993

    NASA Astrophysics Data System (ADS)

    Silberberg, Yaron

    1994-06-01

    Summaries of papers from the Integrated Photonics Research Topical Meeting, March 22-24, 1993, in Palm Springs, California are presented. Sessions include Novel Material and Devices, Time Domain Methods, Photonic Circuits and Lightwave Reception, III-V Semiconductor Switches and Modulators, Wavelength Selective Components, Optical Waveguide Simulators, Optical Switching, Silica on Silicon, Nonlinear Wave Propagation, Semiconductor Lasers, LiNbO3 and LiTaO3 Devices, Beam Propagation Methods, Photonic Integrated Circuits and Applications, Semiconductor Device Modeling, Waveguide Frequency Conversion, and Spatial and Temporal Solitons.

  15. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  16. Strained Silicon Photonics

    PubMed Central

    Schriever, Clemens; Bohley, Christian; Schilling, Jörg; Wehrspohn, Ralf B.

    2012-01-01

    A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon. PMID:28817015

  17. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  18. Novel Cherenkov photon detectors

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2005-11-01

    Gaseous detectors using multiple gas electron multiplier (GEM) electrodes permit to attain large amplification factors with a strong suppression of photon and ion-mediated feedback. With the first GEM in a cascade coated with a photosensitive layer, they provide efficient and fast single photon detection, with excellent position resolution. General performances of CsI-coated multi-GEM detectors are described, as well as a promising method of signal readout, the so-called hexaboard, a matrix of interconnected pads that permits to achieve ambiguity-free reconstruction of multi-photon events, a major requirement for RICH applications.

  19. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  20. Photonic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Vidrighin, Mihai D.; Dahlsten, Oscar; Barbieri, Marco; Kim, M. S.; Vedral, Vlatko; Walmsley, Ian A.

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

  1. The effect of entanglement in gravitational photon-photon scattering

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2016-09-01

    The differential cross-section for gravitational photon-photon scattering calculated in perturbative quantum gravity is shown to depend on the degree of polarization entanglement of the two photons. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons. The results are interpreted in terms of quantum interference, and it is shown how they fit into the idea of distance-dependent forces.

  2. Effect of polarization entanglement in photon-photon scattering

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2017-01-01

    It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.

  3. Microwave background constraints on mixing of photons with hidden photons

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter E-mail: javier.redondo@desy.de

    2009-03-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0} {approx}< 10{sup -7}-10{sup -5} for hidden photon masses between 10{sup -14} eV and 10{sup -7} eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained.

  4. Microbially induced and microbially catalysed precipitation: two different carbonate factories

    NASA Astrophysics Data System (ADS)

    Meister, Patrick

    2016-04-01

    The landmark paper by Schlager (2003) has revealed three types of benthic carbonate production referred to as "carbonate factories", operative at different locations at different times in Earth history. The tropical or T-factory comprises the classical platforms and fringing reefs and is dominated by carbonate precipitation by autotrophic calcifying metazoans ("biotically controlled" precipitation). The cool or C-factory is also biotically controlled but via heterotrophic, calcifying metazoans in cold and deep waters at the continental margins. A further type is the mud-mound or M-factory, where carbonate precipitation is supported by microorganisms but not controlled by a specific enzymatic pathway ("biotically induced" precipitation). How exactly the microbes influence precipitation is still poorly understood. Based on recent experimental and field studies, the microbial influence on modern mud mound and microbialite growth includes two fundamentally different processes: (1) Metabolic activity of microbes may increase the saturation state with respect to a particular mineral phase, thereby indirectly driving the precipitation of the mineral phase: microbially induced precipitation. (2) In a situation, where a solution is already supersaturated but precipitation of the mineral is inhibited by a kinetic barrier, microbes may act as a catalyser, i.e. they lower the kinetic barrier: microbially catalysed precipitation. Such a catalytic effect can occur e.g. via secreted polymeric substances or specific chemical groups on the cell surface, at which the minerals nucleate or which facilitate mechanistically the bonding of new ions to the mineral surface. Based on these latest developments in microbialite formation, I propose to extend the scheme of benthic carbonate factories of Schlager et al. (2003) by introducing an additional branch distinguishing microbially induced from microbially catalysed precipitation. Although both mechanisms could be operative in a M-factory

  5. Quantum computation with realistic magic-state factories

    NASA Astrophysics Data System (ADS)

    O'Gorman, Joe; Campbell, Earl T.

    2017-03-01

    Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.

  6. Kinetic models in industrial biotechnology - Improving cell factory performance.

    PubMed

    Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats

    2014-07-01

    An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Systems biology and metabolic engineering of Arthrospira cell factories.

    PubMed

    Klanchui, Amornpan; Vorapreeda, Tayvich; Vongsangnak, Wanwipa; Khannapho, Chiraphan; Cheevadhanarak, Supapon; Meechai, Asawin

    2012-01-01

    Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light) into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented.

  8. Operating a production pilot factory serving several scientific domains

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.; Würthwein, F.; Andrews, W.; Dost, J. M.; MacNeill, I.; McCrea, A.; Sheripon, E.; Murphy, C. W.

    2011-12-01

    Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.

  9. New results for a photon-photon collider

    SciTech Connect

    David Asner et al.

    2002-09-26

    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.

  10. New Results for a Photon-Photon Collider

    SciTech Connect

    Asner, D; Grzadkowski, B; Gunion, J F; Logan, H E; Martin, V; Schmitt, M; Velasco, M M

    2002-08-23

    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.

  11. Experiments with Individual Photons

    NASA Astrophysics Data System (ADS)

    Beck, Mark

    2004-05-01

    I describe several different experiments we have performed with individual photons. For example, while well known experiments involving phenomena such as the photoelectric effect and Compton scattering strongly suggest the existence of photons, they do not prove the existence of light quanta. To prove the existence of light quanta one must perform an experiment whose results cannot be explained using classical waves. We have performed such an experiment--it demonstrates the localization of light quanta by showing that a single photon only goes one way when it leaves a beamsplitter [1]. In a second experiment we demonstrate that this single photon will interfere with itself when it transits an interferometer. The experiments have been performed by undergraduates, and the goal of this project is to develop a series of experiments exploring fundamental aspects of quantum mechanics for an undergraduate teaching lab. [1] P. Grangier, G. Roger and A. Aspect, Europhys. Lett. 1, 173 (1986).

  12. Silicon photonics: optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Gardes, F. Y.; Hu, Youfang; Thomson, D.; Lever, L.; Kelsall, R.; Ikonic, Z.

    2010-01-01

    Silicon Photonics has the potential to revolutionise a whole raft of application areas. Currently, the main focus is on various forms of optical interconnects as this is a near term bottleneck for the computing industry, and hence a number of companies have also released products onto the market place. The adoption of silicon photonics for mass production will significantly benefit a range of other application areas. One of the key components that will enable silicon photonics to flourish in all of the potential application areas is a high performance optical modulator. An overview is given of the major Si photonics modulator research that has been pursued at the University of Surrey to date as well as a worldwide state of the art showing the trend and technology available. We will show the trend taken toward integration of optical and electronic components with the difficulties that are inherent in such a technology.

  13. Smart packaging for photonics

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  14. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  15. Photonics Explorer: revolutionizing photonics in the classroom

    NASA Astrophysics Data System (ADS)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  16. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  17. Happy centenary, photon

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton; Weihs, Gregor; Jennewein, Thomas; Aspelmeyer, Markus

    2005-01-01

    One hundred years ago Albert Einstein introduced the concept of the photon. Although in the early years after 1905 the evidence for the quantum nature of light was not compelling, modern experiments - especially those using photon pairs - have beautifully confirmed its corpuscular character. Research on the quantum properties of light (quantum optics) triggered the evolution of the whole field of quantum information processing, which now promises new technology, such as quantum cryptography and even quantum computers.

  18. Ultrastable Multigigahertz Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  19. Photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy

    2013-03-01

    Of the approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation, and relevance to other quantum technologies, including communication, metrology and measurement. We report an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [6-10]. We address the challenges of scaling up quantum circuits using new insights into how controlled operations can be efficiently realised, demonstrating Shor's algorithm with consecutive CNOT gates and the iterative phase estimation algorithm. We have shown how quantum circuits can be reconfigured, using thermo-optic phase shifters to realise a highly reconfigurable quantum circuit, and electro-optic phase shifters in lithium niobate to rapidly manipulate the path and polarisation of telecomm wavelength single photons. We have addressed miniaturisation using multimode interference architectures to directly implement NxN Hadamard operations, and by using high refractive index contrast materials such as SiOxNy, in which we have implemented quantum walks of correlated photons, and Si, in which we have demonstrated generation of orbital angular momentum states of light. We have incorporated microfluidic channels for the delivery of samples to measure the concentration of a blood protein with entangled states of light. We have begun to address the integration of superconducting single photon detectors and diamond and non-linear single photon sources. Finally, we give an overview of recent work on fundamental aspects of quantum measurement, including a quantum version of Wheeler's delayed choice experiment.

  20. Virtual and real photons

    NASA Astrophysics Data System (ADS)

    Meulenberg, Andrew, Jr.

    2011-09-01

    Maxwell did not believe in photons. However, his equations lead to electro-magnetic field structures that are considered to be photonic by Quantum ElectroDynamics (QED). They are complete, relativistically correct, and unchallenged after nearly 150 years. However, even though his far-field solution has been considered as the basis for photons, as they stand and are interpreted, they are better fitted to the concept of virtual rather than to real photons. Comparison between staticcharge fields, near-field coupling, and photonic radiation will be made and the distinctions identified. The question of similarities in, and differences between, the two will be addressed. Implied assumptions in Feynman's "Lectures" could lead one to believe that he had provided a general classical electrodynamics proof that an orbital electron must radiate. While his derivation is correct, two of the conditions defined do not always apply in this case. As a result, the potential for misinterpretation of his proof (as he himself did earlier) for this particular case has some interesting implications. He did not make the distinction between radiation from a bound electron driven by an external alternating field and one falling in a nuclear potential. Similar failures lead to misinterpreting the differences between virtual and real photons.

  1. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  2. [Prevalence and influence factors of hypertension among mechanic factory workers].

    PubMed

    Pang, Li-Juan; Chen, Li-Zhang; Fu, Ben-Yan

    2005-06-01

    To determine the status and influence factors of hypertension on mechanic factory workers and to provide reference for further hypertension prevention and control. A cross-sectional study on 1205 workers (exposed to different noise levels) in Hunan was carried out by using questionaire and measuring the blood pressure of the workers and the noise exposure level in the workplace. The prevalence and the influence factors of hypertension among mechanic factory workers were analysed. The hypertension prevalence was 12.1%. Logistic regression analysis showed the body weight index (BMI), age, and history of hypertension in parents and accumulative noise dose levels influenced the hypertension prevalence. Controlling the body weight, reducing alcohol consumption, decreasing the sound pressure level in workshops and advocating healthy diet may reduce the prevalence rate of hypertension among mechanic factory workers.

  3. Skin symptoms among workers in a spice factory.

    PubMed

    Meding, B

    1993-10-01

    Workers in a Swedish spice factory (n = 70), and in the office (n = 23) of the same company, were investigated by questionnaire regarding skin symptoms. In a 2nd part of the study, subjects reporting skin symptoms were examined and investigated by patch and prick testing. Skin symptoms were reported by 1/2 the factory workers. Pruritus and skin irritation, particularly from cinnamon powder, were common. Patch test reactions to cinnamic aldehyde were found in 11/25 factory workers, but in several cases, the nature of the reactions was difficult to evaluate. Irritant patch test reactions were seen from powders of cardamom, paprika and white pepper. On prick testing, 6/25 workers reacted to cinnamic aldehyde. The results illustrate the difficulties of patch testing with spices and indicate the need for further research and validation of methods.

  4. Longitudinal Beam Stability in the SUPER B-FACTORY

    SciTech Connect

    Novokhatski, A.; Zobov, M.; /Frascati

    2009-07-06

    We give an overview of wake fields and impedances in a proposed Super B project, which is based on extremely low emittance beams colliding at a large angle with a crab waist transformation. Understanding the effects that wake fields have on the beam is critical for a successful machine operation. We use our combined experience from the operation of the SLAC B-factory and DA{Phi}NE {Phi}-factory to eliminate strong HOM sources and minimize the chamber impedance in the Super B design. Based on a detailed study of the wake fields in this design we have developed a quasi-Green's function for the entire ring that is used to study bunch lengthening and beam stability. In particular, we check the stability threshold using numerical solutions of the Fokker-Plank equation. We also make a comparison of numerical simulations with the bunch lengthening data in the B- factory.

  5. Analysis of Interpersonal Communication Processes in Digital Factory Environments

    NASA Astrophysics Data System (ADS)

    Schütze, Jens; Baum, Heiko; Laue, Martin; Müller, Egon

    The paper outlines the scope of influence of digital factory on the interpersonal communication process and the exemplary description of them. On the basis of a brief description about the theoretical basic concepts of the digital factory occurs the illustration of communicative features in digital factory. Practical coherences of interpersonal communication from a human oriented view were analyzed in Volkswagen AG in Wolfsburg in a pilot project. A modeling method was developed within the process analysis. This method makes it possible to visualize interpersonal communication and its human oriented attribute in a technically focused workflow. Due to the results of a developed inquiry about communication analysis and process models of modeling methods it was possible to build the processes in a suitable way for humans and to obtain a positive implication on the communication processes.

  6. Gearing up to the factory of the future

    NASA Astrophysics Data System (ADS)

    Godfrey, D. E.

    1985-01-01

    The features of factories and manufacturing techniques and tools of the near future are discussed. The spur to incorporate new technologies on the factory floor will originate in management, who must guide the interfacing of computer-enhanced equipment with traditional manpower, materials and machines. Electronic control with responsiveness and flexibility will be the key concept in an integrated approach to processing materials. Microprocessor controlled laser and fluid cutters add accuracy to cutting operations. Unattended operation will become feasible when automated inspection is added to a work station through developments in robot vision. Optimum shop management will be achieved through AI programming of parts manufacturing, optimized work flows, and cost accounting. The automation enhancements will allow designers to affect directly parts being produced on the factory floor.

  7. Prevalence of Acute Symptoms among Workers in Printing Factories

    PubMed Central

    Decharat, Somsiri

    2014-01-01

    Objective. To identify socioeconomic situation factors and behavioral factors associated with the prevalence of acute symptoms among 150 printing workers in 16 printing factories in Southern Thailand. Materials and Methods. A cross-sectional study was conducted by interviewing 150 printing workers in 16 printing factories in Southern Thailand. Results. Acute symptoms comprised dizziness, drowsiness, eye irritation, light-headedness, rhinitis, shortness of breath, cough, chest tightness, nausea/vomiting, exacerbation of asthma, allergic skin reaction, and visual disorder. The prevalence of symptoms was consistently higher among workers in the printing process than among other workers. Smoking cigarettes and drinking alcohol were not associated with an increased prevalence of acute symptoms among these printing-factory workers. Conclusion. The significant associations were found between personal protective equipment and personal hygiene and prevalence of acute symptoms in printing workers. PMID:25386365

  8. Running medical image analysis on GridFactory desktop grid.

    PubMed

    Orellana, Frederik; Niinimaki, Marko; Zhou, Xin; Rosendahl, Peter; Müller, Henning; Waananen, Anders

    2009-01-01

    At the Geneva University Hospitals work is in progress to establish a computing facility for medical image analysis, potentially using several hundreds of desktop computers. Typically, hospitals do not have a computer infrastructure dedicated to research, nor can the data leave the hospital network for the reasons of privacy. For this purpose, a novel batch system called GridFactory has been tested along-side with the well-known batch system Condor. GridFactory's main benefits, compared to other batch systems, lie in its virtualization support and firewall friendliness. The tests involved running visual feature extraction from 50,000 anonymized medical images on a small local grid of 20 desktop computers. A comparisons with a Condor based batch system in the same computers is then presented. The performance of GridFactory is found satisfactory.

  9. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    SciTech Connect

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  10. Asymptotic Behavior of Gaps Between Roots of Weighted Factorials

    DTIC Science & Technology

    2014-12-20

    ASYMPTOTIC BEHAVIOR OF GAPS BETWEEN ROOTS OF WEIGHTED FACTORIALS COREY MARTINSEN AND PANTELIMON STĂNICĂ Abstract. Here, we find a general method...for computing the limit of differences of con- secutive terms of n-th roots of weighted factorials by a sequence xn (under some technical condition). As...a consequence, we show that lim n→∞ ( n+1 √ (n+ 1)!xn+1 − n √ n!xn ) = αe−1, where α ≥ 1 is the dominant root of the characteristic equation of an

  11. 40. NORTH ACROSS WOODWORKING AREA IN NORTHWESTERN QUADRANT OF FACTORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. NORTH ACROSS WOODWORKING AREA IN NORTHWESTERN QUADRANT OF FACTORY ACROSS STACKED LUMBER ON SAWHORSES TOWARD CIRCA 1900 THICKNESS PLANER, SHOP-MADE BELT GUARD, AND BELOW THE SKYLIGHT OVERHEAD LINE SHAFT, BELTS, AND PULLEYS. BEYOND THE LUMBER ON A WHEELED WORK STATION ARE CIRCA 1900 ROLLS FOR BENDING PROPER CURVATURE IN STEEL WINDMILL BLADES AND CIRCA 1900 BEADING MACHINE FOR FORMING CREASES IN THE EDGES OF SHEET METAL PARTS SUCH AS WHEEL BLADES. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  12. Linear collider approach to a B anti B factory

    SciTech Connect

    Wilson, P.B.

    1987-06-01

    In this paper we consider the basic design expression and principal design constraints for a linear collider suitable for a B anti-B factory: Energy approx. =10 GeV, luminosity 10/sup 33/-10/sup 34/ cm/sup -2/s/sup -1/, energy resolution approx. =10/sup -2/. The design of room temperature linear colliders for a B factory is discussed. In such colliders, the rf energy stored in the linac structure is thrown away after each linac pulse. Linear colliders using superconducting rf cavities are considered. Some brief conclusions are presented.

  13. Five practices of efficient factories applied to dental education.

    PubMed

    Nalliah, Romesh P

    2015-05-01

    Efficient factories, such as dental school clinics (DSC), are trying to improve the quality of their product by reducing inefficiencies, error rates, and wastage. Dental education is an expensive business for the student and the institution. Dental materials and equipment are costly, and students are novice providers who work slowly and inefficiently compared to an experienced dentist; this is not a good business model. The objective of this article was to present and apply five practices of efficient factories that could be applied to the DSC setting. I propose that this will lead to improved educational outcomes and improved patient outcomes in DSC. © 2015 Wiley Publishing Asia Pty Ltd.

  14. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  15. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  16. 21. SOUTH THROUGH FACTORY FROM NEAR NORTHEAST CORNER TOWARD SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SOUTH THROUGH FACTORY FROM NEAR NORTHEAST CORNER TOWARD SOUTH FRONT OF BUILDING. VISIBLE FROM LEFT TO RIGHT ARE CIRCA 1865 METAL-TURNING LATHE; CIRCA 1875 POWER SHEAR, PUNCH, AND RIVETING MACHINE (WITH FLOORING RAISED TO SHOW OPERATOR'S 'PIT'); LINE SHAFT WITH PULLEYS AND BELTS FOR OPERATING MACHINERY; PERMANENT WOODEN LADDER TO SKYLIGHT AREA (LOCATION OF CIRCA 1920 ELECTRIC MOTOR WHICH POWERED LINE SHAFT); AND BUFFALO FORGE CO. HAND SHEAR FOR ANGLE STEEL. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  17. Muon collider//neutrino factory: status and prospects

    NASA Astrophysics Data System (ADS)

    Kaplan, Daniel M.; Neutrino Factory Collaboration; Muon Collider Collaboration

    2000-10-01

    During the 1990s an international collaboration has been studying the possibility of constructing and operating a high-energy high-luminosity μ +μ - collider. Such a machine could be the approach of choice to extend our discovery reach beyond that of the LHC. More recently, a growing collaboration is exploring the potential of a stored-muon-beam "neutrino factory" to elucidate neutrino oscillations. A neutrino factory could be an attractive stepping-stone to a muon collider. Its construction, possibly feasible within the coming decade, could have substantial impact on neutrino physics.

  18. Jean Piaget: Images of a life and his factory.

    PubMed

    Burman, Jeremy Trevelyan

    2012-08-01

    In this article, I use a new book about Jean Piaget to introduce a new historical method: examining "psychological factories." I also discuss some of the ways that "Great Men" are presented in the literature, as well as opportunities for new projects if one approaches the history of the discipline differently and examines the conditions that made that greatness possible. To that end, the article includes many details about Piaget that have never before been discussed in English. Attention is drawn, in particular, to Piaget's collaborators: the hundreds of workers at his factory in Geneva, many of whom were women. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  19. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  20. Cost-effective design for a neutrino factory

    SciTech Connect

    Alex Bogacz

    2006-01-01

    There have been active efforts in the U.S., Europe, and Japan on the design of a neutrino factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high-energy storage ring. In the U.S., a second detailed feasibility study (FS2) for a neutrino factory was completed in 2001. Since that report was published, new ideas in bunching, cooling, and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as study 2B (ST2B), that should lead to significant cost savings over the FS2 design.

  1. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  2. Photonic Aharonov-Bohm effect in photon-phonon interactions.

    PubMed

    Li, Enbang; Eggleton, Benjamin J; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential.

  3. Multi-photon absorption limits to heralded single photon sources

    NASA Astrophysics Data System (ADS)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; de Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-11-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources.

  4. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  5. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  6. Molecular epidemiology of Salmonella spp. isolates from gulls, fish-meal factories, feed factories, animals and humans in Norway based on pulsed-field gel electrophoresis.

    PubMed Central

    Nesse, L. L.; Refsum, T.; Heir, E.; Nordby, K.; Vardund, T.; Holstad, G.

    2005-01-01

    The molecular epidemiology of 98 isolates of Salmonella serovar Agona (n = 27), S. Montevideo (n = 42) and S. Senftenberg (n = 29) from wild-living gulls, fish-meal factories, feed factories, humans and domestic animals was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis. Two of the S. Agona profiles were identified both in gulls and in two of the factories. In addition, one of these profiles was detected in two infected poultry farms. Two of the S. Montevideo profiles were also identified both in gulls and in two of the factories, and one of these profiles was observed in a human isolate. Four factories shared an identical S. Senftenberg profile. The S. Senftenberg profile found in gulls was not identified in any other source investigated. The presence of isolates with identical PFGE profiles indicates potential epidemiological links between different factories, as well as between gulls and factories. PMID:15724711

  7. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  8. Two-photon interference with non-identical photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  9. Unconventional Photon Blockade Based on Two-Photon Tunneling

    NASA Astrophysics Data System (ADS)

    Zhou, Y. H.; Shen, H. Z.

    2017-09-01

    The study on the unconventional photon blockade mainly focus on Kerr nonlinearity. In this paper, we study the unconventional photon blockade based on another kind of nonlinearity, that is two-photon tunneling. The optimal conditions for strong antibunching are found by analytic calculations and numerical simulations, and the results are compared with the unconventional photon blockade based on Kerr nonlinearity, we find that the two-photon tunneling system has advantages for the larger antibunching area. Finally, we show that, after the symmetric-antisymmetric mode transformation, the two kinds of nonlinearities are equivalent from the perspective of photon antibunching.

  10. Fuel Effective Photonic Propulsion

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  11. Gravitation, photons, clocks.

    NASA Astrophysics Data System (ADS)

    Okun, L. B.; Selivanov, K. G.; Telegdi, V.

    1999-10-01

    This paper is concerned with the classical phenomenon of gravitational red shift, the decrease in the measured frequency of a photon moving away from a gravitating body (e.g., the Earth) of the two current interpretations, one is that at higher altitudes the frequency-measuring clocks (atoms or atomic nuclei) run faster, i.e., their characteristic frequencies are higher, while the photon frequency in a static gravitational field is independent of the altitude and so the photon only reddens relative to the clocks. The other approach is that the photon reddens because it loses the energy when overcoming the attraction of the gravitational field. This view, which is especially widespread in popular science literature, ascribes such notions as a "gravitational mass" and "potential energy" to the photon. Unfortunately, also scientific papers and serious books on the general theory of relativity often employ the second interpretation as a "graphic" illustration of mathematically immaculate results. The authors show that this approach is misleading and only serves to create confusion in a simple subject.

  12. Antigravity Acts on Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  13. Observing Photons in Space

    NASA Astrophysics Data System (ADS)

    Huber, Martin C. E.; Pauluhn, Anuschka; Timothy, J. Gethyn

    This first chapter of the book "Observing Photons in Space" serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth"s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort -- including proper design, construction, testing and calibration -- and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today"s emphasis on observations at long wavelengths.

  14. Photonic topological insulators

    NASA Astrophysics Data System (ADS)

    Khanikaev, Alexander B.; Hossein Mousavi, S.; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H.; Shvets, Gennady

    2013-03-01

    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals—superlattices of metamaterials with judiciously designed properties—provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  15. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  16. Photonics for life.

    PubMed

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  17. Photonic topological insulators.

    PubMed

    Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady

    2013-03-01

    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  18. West Virginia's Byrd Institute: Teaching Factory for New Technology.

    ERIC Educational Resources Information Center

    Casto, James E.

    1993-01-01

    The Robert C. Byrd Institute for Advanced Flexible Manufacturing Systems at Marshall University (Huntington, West Virginia) is part of a nationwide network of teaching factories where manufacturers can learn new, more competitive production technologies. The institute has helped several local manufacturing companies develop computer programs to…

  19. West Virginia's Byrd Institute: Teaching Factory for New Technology.

    ERIC Educational Resources Information Center

    Casto, James E.

    1993-01-01

    The Robert C. Byrd Institute for Advanced Flexible Manufacturing Systems at Marshall University (Huntington, West Virginia) is part of a nationwide network of teaching factories where manufacturers can learn new, more competitive production technologies. The institute has helped several local manufacturing companies develop computer programs to…

  20. Physics at a 10{sup 36} Asymmetric B Factory

    SciTech Connect

    Roodman, Aaron

    2001-08-28

    The physics opportunities at an asymmetric B Factory operating at the unprecedented luminosity of 10{sup 36} cm{sup -2}s{sup -1} are unique and attractive. The accelerator appears to be practical and the challenges of performing a sensitive experiment in this environment can be met.

  1. Learning Factory--Assembling Learning Content with a Framework

    ERIC Educational Resources Information Center

    Steininger, Peter

    2016-01-01

    Many of the challenges currently facing lectures are symptoms of problems with learning content creation, development and presentation. Learning Factory solves these problems by integrating critical innovations that have been proven over the last ten to twenty years in different industrial areas, but have not yet been brought or ported together in…

  2. Factorial Design: An Eight Factor Experiment Using Paper Helicopters

    NASA Technical Reports Server (NTRS)

    Kozma, Michael

    1996-01-01

    The goal of this paper is to present the analysis of the multi-factor experiment (factorial design) conducted in EG490, Junior Design at Loyola College in Maryland. The discussion of this paper concludes the experimental analysis and ties the individual class papers together.

  3. Testing Measurement Models for Factorial Invariance: A Systematic Approach.

    ERIC Educational Resources Information Center

    Rensvold, Rover B.; Cheung, Gordon W.

    1998-01-01

    Summarizes the problem of factorial invariance in between-group difference studies, proposes a simplified notation intended to facilitate discussion of the problem, and suggests a structured approach for testing large models. Two computer programs are offered to help with the computation. (SLD)

  4. Perspective view. Threestory steel and brick building with factory windows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view. Three-story steel and brick building with factory windows punctuating facades. East and west facades have tall brick piers capped with evenly spaced stone capitals. North facade (facing Milwaukee Ave. E.) has parapet element decorated with stone accent lines and large flagpole. Piers on north facade have raised stone base - New Center Stamping, 950 East Milwaukee Avenue, Detroit, MI

  5. Child Protection Decision Making: A Factorial Analysis Using Case Vignettes

    ERIC Educational Resources Information Center

    Stokes, Jacqueline; Schmidt, Glen

    2012-01-01

    This study explored decision making by child protection social workers in the province of British Columbia, Canada. A factorial survey method was used in which case vignettes were constructed by randomly assigning a number of key characteristics associated with decision making in child protection. Child protection social workers (n = 118) assessed…

  6. 14. INTERIOR VIEW OF THIRD FLOOR OF FACTORY ADDITION, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW OF THIRD FLOOR OF FACTORY ADDITION, NORTHWEST CORNER OF BUILDING. AT THE CENTER IS THE BUFFING MACHINE, MANUFACTURED BY THE ACME CO. OF DETROIT, MICHIGAN. IT WAS HERE THAT ALUMINUM WARES WERE BROUGHT FOR FINAL GRINDING AND BUFFING. THE HOSES REMOVED DUST AND DEBRIS. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  7. 8. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, LOOKING SOUTHWEST. AT CENTER IS THE SAME PRESS AS SHOWN ABOVE (IL-25-7). TO LEFT IS PART OF THE OVERHEAD BELT GUARD. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  8. 7. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, LOOKING SOUTHEAST. AT CENTER IS A DEEP-BRAWN, HEAVY PRESS MANUFACTURED BY E. W. BLISS CO., BROOKLYN, NEW YORK. PRESS #3-1/2-C PATENTED BY E. W. BLISS CO., 1893. MANUFACTURER'S PLATE INDICATES PRESS DATES FROM 1922. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  9. 10. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, LOOKING SOUTH. AT CENTER IS A SHALLOW-DRAWN PRESS (#3-1/2) MANUFACTURED BY E. W. BLISS OF BROOKLYN, NEW YORK. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  10. [Functional state of myocardium in polisher colourers of automobile factory].

    PubMed

    Vlasov, V N

    2007-01-01

    The article covers influence of combined occupational chemical and physical factors on functional state of myocardium in polisher colourers of automobile factory painting shop. The authors detected dependence of myocardium functional state on work conditions and on duration of exposure to occupational factors.

  11. Epidemiology of Skin Disease in an Automobile Factory*

    PubMed Central

    Newhouse, Muriel L.

    1964-01-01

    A survey was made of a random sample of workers from the machine shops, assembly lines, and stock and store departments of an automobile factory. Among the 1,223 men seen, representing 97% of the sample, the prevalence of non-infective skin diseases was 14·5%. Skin diseases were classified into four groups: `dermatitis' and `folliculitis' of occupational origin, endogenous `eczemas', and miscellaneous skin diseases. Slightly more than half of all the skin diseases seen were considered to be occupational in origin. In this population the prevalence of skin disease was more than four times that based on patients attending the factory medical department. An unsuspected cause of allergic dermatitis was found on the assembly lines, where the incidence of dermatitis was significantly higher than among the non-production workers. The prevalence of folliculitis was significantly higher among production than non-production workers. There was no significant difference in the prevalence of `eczema' or the miscellaneous skin diseases in the various occupational groups. Among European workers fair men were more prone to skin disease than darker men. In another factory, a West Indian and Asiatic group of workers had a significantly lower prevalence of skin diseases than a group of Europeans doing similar work. Folliculitis was more prevalent among the younger workers and those recently employed in the factory; there was no obvious association between age and length of service and the occurrence of other types of skin disease. PMID:14249898

  12. Investigation on gait time series by means of factorial moments

    NASA Astrophysics Data System (ADS)

    Yang, Huijie; Zhao, Fangcui; Zhuo, Yizhong; Wu, Xizhen; Li, Zhuxia

    2002-09-01

    By means of factorial moments (FM), the fractal structures embedded in gait time series are investigated. Intermittency is found in records for healthy objects. And this kind of intermittency is much sensitive to disease or outside influences. It is found that FM is an effective tool to deal with this kind of time series.

  13. Improving the Welfare of Women Factory Workers: Lessons from Indonesia.

    ERIC Educational Resources Information Center

    White, Mary C.

    1990-01-01

    Attention to the quality of the working environment for women factory workers can make a real contribution to productivity. The example of an Indonesian project that introduced low-cost workplace improvements and provided health instruction shows the feasibility and effectiveness of such efforts, provided there is a clear commitment from…

  14. Factorial study of rain garden design for nitrogen removal

    EPA Science Inventory

    Abstract Nitrate (〖NO〗_3^--N ) removal studies in bioretention systems showed great variability in removal rates and in some cases 〖NO〗_3^--N was exported. A 3-way factorial design (2 x 2 x 4) was devised for eight outdoor un-vegetated rain gardens to evaluate the effects of ...

  15. Factory Acceptance Test Procedure Westinghouse 100 ton Hydraulic Trailer

    SciTech Connect

    Aftanas, B.L.

    1994-11-16

    This Factory Acceptance Test Procedure (FAT) is for the Westinghouse 100 Ton Hydraulic Trailer. The trailer will be used for the removal of the 101-SY pump. This procedure includes: safety check and safety procedures; pre-operation check out; startup; leveling trailer; functional/proofload test; proofload testing; and rolling load test.

  16. Using Propensity Score Methods to Approximate Factorial Experimental Designs

    ERIC Educational Resources Information Center

    Dong, Nianbo

    2011-01-01

    The purpose of this study is through Monte Carlo simulation to compare several propensity score methods in approximating factorial experimental design and identify best approaches in reducing bias and mean square error of parameter estimates of the main and interaction effects of two factors. Previous studies focused more on unbiased estimates of…

  17. The neutrino factory and beta beam experiments and development

    SciTech Connect

    Albright, C.; Barger, V.; Beacom, J.F.; Berg, J.S.; Black, E.; Blondel, A.; Bogacz, S.; Brice, S.; Caspi, S.; Chou, W.; Cummings, M.; Fernow, R.; Finley, D.; Gallardo, J.; Geer, S.; Gomez-Cadenas, J.J.; Goodman, M.; Harris, D.; Huber, Patrick; Jansson, A.; Johnstone, C.; /Fermilab /Wisconsin U., Madison /Brookhaven /IIT, Chicago /Geneva U. /Jefferson Lab /LBL, Berkeley /Northern Illinois U. /Valencia U., IFIC /Argonne /Munich, Tech. U. /Princeton U. /INFN, Naples /Naples U. /Illinois U., Urbana /Oak Ridge /Mississippi U. /Iowa State U.

    2004-11-01

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here.

  18. The Factory is Virtual...The Savings are Real

    DTIC Science & Technology

    2003-03-01

    and flow simulation "* Innovative product designs and manufacturing processes "* Re-engineering the processes and flow for lean manufacturing "* The...factory operations for military, commercial and space programs has provided the capability to develop and prove out lean manufacturing operations

  19. Replicating systems concepts: Self-replicating lunar factory and demonstration

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Automation of lunar mining and manufacturing facility maintenance and repair is addressed. Designing the factory as an automated, multiproduct, remotely controlled, reprogrammable Lunar Manufacturing Facility capable of constructing duplicates of itself which would themselves be capable of further replication is proposed.

  20. Holland Code, Job Satisfaction and Productivity in Clothing Factory Workers.

    ERIC Educational Resources Information Center

    Heesacker, Martin; And Others

    Published research on vocational interests and personality has not often assessed the characteristics of workers and the work environment in blue-collar, women-dominated industries. This study administered the Self-Directed Search (Form E) to 318 sewing machine operators in three clothing factories. Holland codes, productivity, job satisfaction,…

  1. The Use of Factorial Forecasting to Predict Public Response

    ERIC Educational Resources Information Center

    Weiss, David J.

    2012-01-01

    Policies that call for members of the public to change their behavior fail if people don't change; predictions of whether the requisite changes will take place are needed prior to implementation. I propose to solve the prediction problem with Factorial Forecasting, a version of functional measurement methodology that employs group designs. Aspects…

  2. Providing a Meaningful Social Studies Experience: Champions' Chocolate Factory.

    ERIC Educational Resources Information Center

    Presnell, Laurie L.; Shaw, Donna Gail

    1988-01-01

    Describes a student teacher's experiences using a classroom simulation to teach fifth graders about the world of work. Summarizes the economic concepts and principles that were illustrated through the simulation of a candy factory. Discusses student activities and reporting in the five-six day lesson and includes a list of resources for teaching…

  3. Search for Light New Physics at B Factories

    DOE PAGES

    Echenard, Bertrand

    2012-01-01

    Many extensions of the Standard Model include the possibility of light new particles, such as light Higgs bosons or dark matter candidates. These scenarios can be probed using the large datasets collected by B factories, complementing measurements performed at the LHC. This paper summarizes recent searches for light new physics conducted by the BABAR and Belle experiments.

  4. Development in the Learning Factory: Training Human Capital.

    ERIC Educational Resources Information Center

    Barton, Harry; Delbridge, Rick

    2001-01-01

    A study of human resource practices in 18 automobile factories in the United States and Britain showed that manufacturing innovations are placing greater demands on line managers and workers. Training is being refocused to develop their interpersonal, team, and leadership skills. However, lack of time and suitable training facilities are barriers.…

  5. No Child Left Behind: Factory Models and Business Paradigms

    ERIC Educational Resources Information Center

    Johnson, Andrew P.

    2006-01-01

    Because No Child Left Behind (NCLB) is not based on educational research or research-based theory, it offers no new innovations nor does anything to improve the fundamental quality of education. NCLB is built on a rigid, outdated factory model in which students step onto a thirteen-year conveyor belt in kindergarten and progress slowly forward,…

  6. [Detection of occupational hazards in a large shipbuilding factory].

    PubMed

    Du, Weijia; Wang, Zhi; Zhang, Hai; Zhou, Liping; Huang, Minzhi; Liu, Yimin

    2014-03-01

    To provide evidence for the prevention and treatment of occupational diseases by the analysis of existing major occupational hazards and health conditions of workers in a large shipbuilding factory. Field investigation of occupational conditions was conducted to examine the existence of occupational hazards from 2009 to 2012 in a large shipbuilding factory, and then the results of physical examination among its workers were analyzed. Other than the metal dust (total dust), the levels of other dusts and manganese dioxide were beyond the national standard to various degrees, and through a sampling point detection, it was found that the levels of manganese dioxide exceeded the standard by 42.8%. The maximum time-weighted average concentration in individuals was 27.927 mg/m(3), much higher than the national standard limit. For harmful gas detection in individuals, xylene was 38.4%above the standard level (the highest concentration reached 1447.7 mg/m(3)); moreover, both toluene and ethylbenzene exceeded the national standard at different levels. Among the noise-exposed workers, 71%worked in the environment where the daily noise was above the limit of the national standard (85 dB). Physical examinations in 2010 and 2012 showed that the abnormal rate of audiometry in workers was higher than 15%. Dust (total dust), manganese dioxide, benzene, and noise are the main occupational hazards among the workers in the large shipbuilding factory, and strict protection and control for these hazards should be implemented for the workers in the factory.

  7. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  8. From Exam Factories to Communities of Discovery: The Democratic Route

    ERIC Educational Resources Information Center

    Coffield, Frank; Williamson, Bill

    2011-01-01

    "From Exam Factories to Communities of Discovery" passionately calls for educators to challenge the dominant market-led model of education and instead build a more democratic one, better able to face threats such as environmental damage; intensified global competition; corrosive social inequalities in and between nations in the world;…

  9. Monochromatic design for the Apiary B-factory

    NASA Astrophysics Data System (ADS)

    Dubrovin, A.; Zholents, A.; Garren, A.

    1990-10-01

    There are several ways to design e+e- circular colliders to maximize luminosity. Here we present a design that achieves two principal goals: high luminosity and very small center-of-mass energy spread. The design possesses several attractive features, especially for an asymmetric B-factory.

  10. Honoring Accounts for Sexual Harassment: A Factorial Survey Analysis.

    ERIC Educational Resources Information Center

    Hunter, Christopher; McClelland, Kent

    1991-01-01

    A factorial survey incorporating 2,308 vignettes (1,198 vignettes by females and 1,110 by males) about student-to-student sexual harassment was completed by 231 undergraduates. Perceived seriousness of the incident depended most on behavior of the male offender. Implications for the study of sexual harassment and accounts of harassment are…

  11. Impedance study for the PEP-II B-factory

    SciTech Connect

    Heifets, S.; Daly, C.E.; Ko, K.

    1995-06-01

    The paper summarizes results of the impedance studies of the components of the B-factory. The prime goal of this activity was to support the design of the vacuum chamber and, at the same time, to get a reasonable model of the machine impedance, which can be used later for detail studies of collective effects.

  12. Neutrino Factory R&D in the U.S.

    SciTech Connect

    Zisman, Michael S.; for the Neutrino Factory and Muon Collider Collabo

    2003-09-24

    We report here on the technical progress and R&D plans of the U.S. Neutrino Factory and Muon Collider Collaboration. Programs in targetry, cooling, acceleration, and simulations are covered. U.S. activities in support of the international Muon Ionization Cooling Experiment (MICE) are also described.

  13. Bioretention Systems: Partial Factorial Designs for Nitrate Removal

    EPA Science Inventory

    Changes in nutrient loadings are monitored by introducing captured stormwater runoff into eight outdoor rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey scaled for residential and urban landscapes. The partial factorial design includes non-vegetated meso...

  14. Review of North American Neutrino Factory R and D

    SciTech Connect

    Zisman, Michael S.; Neutrino Factory and Muon Collider Collaboration

    2002-10-07

    We report here on the R and D program of the U.S. Neutrino Factory and Muon Collider Collaboration. Our effort includes work on targetry, muon ionization cooling, simulation work, and development of superconducting RF cavities. In addition, we are involved in the international effort toward a Muon Ionization Cooling Experiment (MICE). Recent activities in all these areas will be described.

  15. Bioretention Systems: Partial Factorial Designs for Nitrate Removal

    EPA Science Inventory

    Changes in nutrient loadings are monitored by introducing captured stormwater runoff into eight outdoor rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey scaled for residential and urban landscapes. The partial factorial design includes non-vegetated meso...

  16. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  17. Social Stratification and Linguistic Correlates of Factory Workers.

    ERIC Educational Resources Information Center

    Tway, Patricia

    This paper examines language in a factory setting and focuses on: (1) language workers use to express attitudes toward work areas, jobs and workers associated with them (Hymes, 1974); (2) behavior workers exhibit in relation to their socially defined status (Fishman 1970; Tyler 1971); and (3) speech forms workers use for particular situations and…

  18. Training Factory Workers: Three Case Studies. Contractor Report.

    ERIC Educational Resources Information Center

    Hirschhorn, Larry D.

    Case studies examined the context and impact of training in three factories: a bakery, a circuit assembly plant, and a plant that produces microchips. Cookie-Foods, Inc. used Statistical Process Control (SPC) and a course on problem solving to increase the operators' productivity. Impact of the SPC program was limited, because workers who…

  19. Occupational cobalt and chromium dermatitis in an offset printing factory.

    PubMed

    Spruit, D; Malten, K E

    1975-01-01

    A case history of three offset printers and the atomic absorption analysis of their contact materials is described. Though the factory direction and personnel felt strongly about cooperating in order to combat the disease, it became apparent that the prescribed measures had not been effectively carried out. The chemical analysis of the materials proved to be a necessary supplement to the patch testing procedure.

  20. Training Factory Workers: Three Case Studies. Contractor Report.

    ERIC Educational Resources Information Center

    Hirschhorn, Larry D.

    Case studies examined the context and impact of training in three factories: a bakery, a circuit assembly plant, and a plant that produces microchips. Cookie-Foods, Inc. used Statistical Process Control (SPC) and a course on problem solving to increase the operators' productivity. Impact of the SPC program was limited, because workers who…

  1. Factorial study of rain garden design for nitrogen removal

    EPA Science Inventory

    Abstract Nitrate (〖NO〗_3^--N ) removal studies in bioretention systems showed great variability in removal rates and in some cases 〖NO〗_3^--N was exported. A 3-way factorial design (2 x 2 x 4) was devised for eight outdoor un-vegetated rain gardens to evaluate the effects of ...

  2. From Exam Factories to Communities of Discovery: The Democratic Route

    ERIC Educational Resources Information Center

    Coffield, Frank; Williamson, Bill

    2011-01-01

    "From Exam Factories to Communities of Discovery" passionately calls for educators to challenge the dominant market-led model of education and instead build a more democratic one, better able to face threats such as environmental damage; intensified global competition; corrosive social inequalities in and between nations in the world;…

  3. No Child Left Behind: Factory Models and Business Paradigms

    ERIC Educational Resources Information Center

    Johnson, Andrew P.

    2006-01-01

    Because No Child Left Behind (NCLB) is not based on educational research or research-based theory, it offers no new innovations nor does anything to improve the fundamental quality of education. NCLB is built on a rigid, outdated factory model in which students step onto a thirteen-year conveyor belt in kindergarten and progress slowly forward,…

  4. Development in the Learning Factory: Training Human Capital.

    ERIC Educational Resources Information Center

    Barton, Harry; Delbridge, Rick

    2001-01-01

    A study of human resource practices in 18 automobile factories in the United States and Britain showed that manufacturing innovations are placing greater demands on line managers and workers. Training is being refocused to develop their interpersonal, team, and leadership skills. However, lack of time and suitable training facilities are barriers.…

  5. Report of the B-factory group: II, Accelerator technology

    SciTech Connect

    Siemann, R.H.; Cassel, D.G.; Feldman, G.J.; Alam, M.S.; Aleksan, R.; Atwood, W.B.; Bartelt, J.; Bisognano, J.J.; Boyce, J.R.; Cline, D.B.

    1989-01-01

    This report discusses the following topics on B-factory accelerators: Storage rings for the {Upsilon}(4S) and continuing Linear colliders for the {Upsilon}(4S) and continuum; and storage rings and linear colliders for the Z. 52 refs., 5 figs., 12 tabs.

  6. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  7. Manufacturing data analytics using a virtual factory representation.

    PubMed

    Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun

    2017-01-01

    Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.

  8. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  9. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  10. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  11. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M(2) reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  12. Photonic crystal microchip laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.

    2017-02-01

    The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.

  13. Photon Dynamics in Inflation

    NASA Astrophysics Data System (ADS)

    Törnkvist, O.

    2003-06-01

    In this talk, I present a recent calculation of one-loop vacuum polarization in a de-Sitter inflationary background. This provides possibly the first example of an analytical result from a calculation by hand of radiative corrections in an out-of-equilibrium situation. The model considered is massless, minimally coupled scalar QED. Gauge invariance remains manifest, but as a result of the photon coupling to the scalar, the conformal invariance of electromagnetism is broken. An effective photon field equation is obtained which, to leading order in the number of inflationary e-folds, is consistent with the existence of a dynamically generated photon mass. This work has been done in collaboration with Tomislav Prokopec at Heidelberg University and Richard Woodard at the University of Florida.

  14. Photon physics with PHENIX

    SciTech Connect

    White, S.

    1995-07-15

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. The author then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. The experiment will measure relatively low p{sub t} photons near y=0 in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  15. Tobacco smoking among migrant factory workers in Shenzhen, China.

    PubMed

    Mou, Jin; Fellmeth, Gracia; Griffiths, Sian; Dawes, Martin; Cheng, Jinquan

    2013-01-01

    While several studies of smoking behaviors in rural-to-urban Chinese migrants exist, none to our knowledge have focused on factory workers, estimated to represent between 10% and 20% of China's total rural-to-urban migratory population. This paper assesses factors associated with smoking behavior among rural-to-urban migrant factory workers in Shenzhen, China. A cross-sectional survey of migrant workers from 44 randomly selected factories in Shenzhen, China. Participants were migrant factory workers aged 16-59 years and holding nonlocal household registration. The main outcome measures were demographic, migration-related, and behavioral factors associated with smoking status. Four thousand and eighty-eight completed questionnaires were obtained (response rate 95.5%). Overall smoking prevalence (including occasional, daily, and heavy daily smoking) was 19.1%. The prevalence of daily smoking (including heavy daily smoking) was higher in men (27.3%) than women (0.7%). These rates are significantly lower than national smoking rates (59.5% in men, 3.7% in women) and rates found in a similar study. A high-risk group of men who smoke heavily and consume alcohol frequently was identified. Longer working hours and less rest were associated with higher rates of smoking. Frequent Internet use and lack of insurance were associated with lifetime smoking. Gender-adjusted models showed that poorer mental health and an accumulated working time in Shenzhen of 2-3 years increased female workers' likelihood of smoking. Migrant factory workers in Shenzhen had lower rates of smoking than other population groups in China. The identification of risk factors for heavy smoking may help to effectively target health promotion interventions.

  16. Photonic Floquet topological insulators.

    PubMed

    Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-04-11

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the

  17. Photon Sieve Space Telescope

    DTIC Science & Technology

    2010-09-01

    a two-year effort to test and construct a membrane photon sieve for deployment from a 3U CubeSat. With a 0.3m diameter and 1m focal length this...Photon Sieve Space Telescope Geoff Andersen, Mike Dearborn and Geoff McHarg 2354 Fairchild Dr, Ste 2A31 USAF Academy, CO 80840 Contact...geoff.andersen@usafa.edu, 719-333-2829 Introduction One approach for constructing ultra-large (>20m) next-generation, space-based telescopes is to use

  18. Coherent terahertz photonics.

    PubMed

    Seeds, Alwyn J; Fice, Martyn J; Balakier, Katarzyna; Natrella, Michele; Mitrofanov, Oleg; Lamponi, Marco; Chtioui, Mourad; van Dijk, Frederic; Pepper, Michael; Aeppli, Gabriel; Davies, A Giles; Dean, Paul; Linfield, Edmund; Renaud, Cyril C

    2013-09-23

    We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance of key components, show recent demonstrations of integrated platforms, and give examples of applications.

  19. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  20. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380